• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2018.tde-19032018-163827
Documento
Autor
Nome completo
Claudia Regina Milaré
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1997
Orientador
Banca examinadora
Carvalho, André Carlos Ponce de Leon Ferreira de (Presidente)
Monard, Maria Carolina
Zaverucha, Gerson
Título em português
Sistema híbrido: raciocínio baseado em casos e redes neurais
Palavras-chave em português
Não disponível
Resumo em português
Os processos de recuperação e aprendizado de casos, que exercem um papel fundamental, em sistemas de Raciocínio Baseado em Casos, não são fáceis de serem desenvolvidos. Estes dois processos são bastante dependentes. Os casos devem ser recuperados rapidamente da memória para o sistema de Raciocínio Baseado em Casos ser eficiente. Isto implica em estruturas mais elaboradas para armazenálos, organizá-los e recuperá-los. Quando um conhecimento novo é incorporado ao sistema (aprendizado), a reorganização dos casos na memória torna-se muito complexa devido justamente à estas estruturas. O principal objetivo deste trabalho é a integração de Raciocínio Baseado em Casos e Redes Neurais. Neste trabalho, uma Rede Neural, modelo ART1, é utilizada para auxiliar na recuperação e aprendizado de casos em um sistema de Raciocínio Baseado em Casos.
Título em inglês
Not available
Palavras-chave em inglês
Not available
Resumo em inglês
The retrieval and learning phases, which plays a fundamental role in a Case Based Reasoning system, usually are not easy to design. These processes strongly depend on each other. For a Case Based Reasoning system to be considered efficient, suitable cases must be fastly retrieved. For such, complex structures have been used. However, these structures makes harder the learning of new cases. This work proposes a Case Based Reasoning system which uses Neural Networks to retrieve stored cases and learn new cases. The network used, ARTI, supports incremental learning and groups cases in clusters by extracting features from the cases, which can later be used to retrieve cases.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-03-19
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.