• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.55.2012.tde-19022013-142839
Documento
Autor
Nome completo
Jorge Yoshio Kanda
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2012
Orientador
Banca examinadora
Carvalho, André Carlos Ponce de Leon Ferreira de (Presidente)
Hruschka Júnior, Estevam Rafael
Ochi, Luiz Satoru
Prudêncio, Ricardo Bastos Cavalcante
Soares, Carlos Manuel Milheiro de Oliveira Pinto
Título em português
Uso de meta-aprendizado na recomendação de meta-heurísticas para o problema do caixeiro viajante
Palavras-chave em português
Aprendizado de máquina
Meta-aprendizado
Meta-heurísticas
Problema de seleção de algoritmos
Problema do caixeiro viajante
Resumo em português
O problema do caixeiro viajante (PCV) é um problema clássico de otimização que possui diversas variações, aplicações e instâncias. Encontrar a solução ótima para muitas instâncias desse problema é geralmente muito difícil devido o alto custo computacional. Vários métodos de otimização, conhecidos como meta-heurísticas (MHs), são capazes de encontrar boas soluções para o PCV. Muitos algoritmos baseados em diversas MHs têm sido propostos e investigados para diferentes variações do PCV. Como não existe um algoritmo universal que encontre a melhor solução para todas as instâncias de um problema, diferentes MHs podem prover a melhor solução para diferentes instâncias do PCV. Desse modo, a seleção a priori da MH que produza a melhor solução para uma dada instância é uma tarefa difícil. A pesquisa desenvolvida nesta tese investiga o uso de abordagens de meta-aprendizado para selecionar as MHs mais promissoras para novas instâncias de PCV. Essas abordagens induzem meta-modelos preditivos a partir do treinamento das técnicas de aprendizado de máquina em um conjunto de meta-dados. Cada meta-exemplo, em nosso conjunto de meta-dados, representa uma instância de PCV descrita por características (meta-atributos) do PCV e pelo desempenho das MHs (meta-atributo alvo) para essa instância. Os meta-modelos induzidos são usados para indicar os valores do meta-atributo alvo para novas instâncias do PCV. Vários experimentos foram realizados durante a investigação desta pesquisa e resultados importantes foram obtidos
Título em inglês
Using meta-learning on the recommendation of meta-heuristics for the traveling salesman problem
Palavras-chave em inglês
Algorithm selection problem
Machine learning
Meta-heuristics
Meta-learning
Traveling salesman problem
Resumo em inglês
The traveling salesman problem (TSP) is a classical optimization problem that has several variations, applications and instances. To find the optimal solution for many instances of this problem is usually a very hard task due to high computational cost. Various optimization methods, known as metaheuristics (MHs), are capable to generate good solutions for the TSP. Many algorithms based on different MHs have been proposed and investigated for different variations of the TSP. Different MHs can provide the best optimization solution for different TSP instances, since there is no a universal algorithm able to find the best solution for all instances. Thus, a priori selection of the MH that produces the best solution for a given instance is a hard task. The research developed in this thesis investigates the use of meta-learning approaches to select the most promising MHs for new TSP instances. These approaches induce predictive meta-models from the training of machine learning techniques on a set of meta-data. In our meta-data, each meta-example is a TSP instance described by problem characteristics (meta-features) and performance of MHs (target meta-features) for this instance. The induced meta-models are used to indicate the values of the target meta-feature for new TSP instances. During the investigation of this research, several experiments were performed and important results were obtained
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Jorgerevisada.pdf (7.90 Mbytes)
Data de Publicação
2013-02-19
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.