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Abstract

This thesis presents new methods based on fractal theory and data mining techniques
to support agricultural monitoring in regional scale, specifically regions with sugar cane
fields. This commodity greatly contributes to the Brazilian economy since it is a viable
alternative to replace fossil fuels. Since climate influences the national agricultural produc-
tion, researchers use climate data associated to agrometeorological indexes, and recently
they also employed data from satellites to support decision making processes. In this
context, we proposed a method that uses the fractal dimension to identify trend changes
in climate series jointly with a statistical analysis module to define which attributes are
responsible for the behavior alteration in the series.

Moreover, we also proposed two methods of similarity measure to allow comparisons
among different agricultural regions represented by multiples variables from meteorological
data and remote sensing images. Given the importance of studying the extreme weather
events, which could increase in intensity, duration and frequency according to different
scenarios indicated by climate forecasting models, we proposed the CLIPSMiner algorithm
to identify relevant patterns and extremes in climate series. CLIPSMiner also detects
correlations among multiple time series considering time lag and finds patterns according
to parameters, which can be calibrated by the users.

We applied two distinct approaches in order to discover association patterns on time
series. The first one is the Apriori-FD method that integrates an algorithm to perform
attribute selection through applying the correlation fractal dimension, an algorithm of dis-
cretization to convert continuous values of series into discrete intervals, and a well-known
association rules algorithm (Apriori). Although Apriori-FD has identified interesting pat-
terns related to temperature, this method failed to appropriately deal with time lag.
As a solution, we proposed CLEARMiner that is an unsupervised algorithm in order to
mine the association patterns in one time series relating them to patterns in other series
considering the possibility of time lag.

The proposed methods were compared with similar techniques as well as assessed
by a group of meteorologists, and specialists in agrometeorology and remote sensing.
The experiments showed that applying data mining techniques and fractal theory can
contribute to improve the analyses of agrometeorological and satellite data. These new
techniques can aid researchers in their work on decision making and become important
tools to support decision making in agribusiness.
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Resumo

Esta tese apresenta novos métodos baseados na teoria dos fractais e em técnicas de min-
eração de dados para dar suporte ao monitoramento agŕıcola em escala regional, mais
especificamente áreas com plantações de cana-de-açúcar que tem um papel importante na
economia brasileira como uma alternativa viável para a substituição de combust́ıveis fós-
seis. Uma vez que o clima tem um grande impacto na agricultura, os agrometeorologistas
utilizam dados climáticos associados a ı́ndices agrometeorológicos e mais recentemente
dados provenientes de satélites para apoiar a tomada de decisão. Neste sentido, foi pro-
posto um método que utiliza a dimensão fractal para identificar mudanças de tendências
nas séries climáticas juntamente com um módulo de análise estat́ıstica para definir quais
atributos são responsáveis por essas alterações de comportamento.

Além disso, foram propostos dois métodos de medidas de similaridade para auxiliar
na comparação de diferentes regiões agŕıcolas representadas por múltiplas variáveis prove-
nientes de dados meteorológicos e imagens de sensoriamento remoto. Diante da importân-
cia de se estudar os extremos climáticos que podem se intensificar dado os cenários que
preveem mudanças globais no clima, foi proposto o algoritmo CLIPSMiner que identifica
padrões relevantes e extremos em séries climáticas. CLIPSMiner também permite a iden-
tificação de correlação de múltiplas séries considerando defasagem de tempo e encontra
padrões de acordo com parâmetros que podem ser calibrados pelos usuários.

A busca por padrões de associação entre séries foi alcançada por meio de duas abor-
dagens distintas. A primeira delas integrou o cálculo da correlação de dimensão fractal
com uma técnica para tornar os valores cont́ınuos das séries em intervalos discretos e um
algoritmo de regras de associação gerando o método Apriori-FD. Embora tenha identifi-
cado padrões interessantes em relação à temperatura, este método não conseguiu lidar de
forma apropriada com defasagem temporal. Foi proposto então o algoritmo CLEARMiner
que de forma não-supervisionada minera padrões em uma série associando-os a padrões
em outras séries considerando a possibilidade de defasagem temporal.

Os métodos propostos foram comparados a técnicas similares e avaliados por um grupo
composto por meteorologistas, agrometeorologistas e especialistas em sensoriamento re-
moto. Os experimentos realizados mostraram que a aplicação de técnicas de mineração
de dados e fractais contribui para melhorar a análise dos dados agrometeorológicos e de
satélite auxiliando no trabalho de pesquisadores, além de se configurar como uma ferra-
menta importante para apoiar a tomada de decisão no agronegócio.
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Chapter 1

Introduction

According to official data (IBGE, 2007), the Brazilian agribusiness segment contributed

with 23.3% of the national Gross Domestic Product (GDP), 42% of exports and 37%

of jobs in 2007. Significant advances have been made in determining suitable areas for

agricultural crop development through agricultural zoning program, undertaken by the

Brazilian Ministry of Agriculture (Rosseti, 2001).

The Brazilian agricultural zoning program aims at reducing agriculture losses caused

by two climatic-associated risks: dry spells during the reproductive stage and excessive

rainfall during the harvesting periods. This official program defines planting calendars for

the main crops in the country, which have been calculated to achieve risk rates lower than

20% regarding climate problems, based on climate data and agrometeorological methods.

Since agriculture is affected by the climate conditions, it is strategic to the governments

to be able to forecast climate trends in order to generate or modify public policies and

to act when necessary to reduce negative impacts on the economy. In this context, the

scientific community has a particular concern in relation to the climate since researchers

in whole world have no doubt about global warming, being necessary to understand the

main causes of this phenomenon and its consequences for Earth’s ecosystems. Since the

global warming affects the whole planet, the Intergovernmental Panel on Climate Change

(IPCC) was created, aimed at evaluating and analyzing the data concerning such changes

and proposing ways to deal with the issues derived from the climate changes.

One of the causes for the global warming is the increase of greenhouse gases emis-

sions. Thus, one alternative to mitigate this problem is the replacement of fossil fuels

with renewable energy sources, such as ethanol. In Brazil, sugar cane is the main agri-

cultural crop used to produce ethanol. The country has a privileged position to support

the growing international demand for sugar and anhydrous ethanol for fuel. With two

main producing regions and alternate crops, Brazil is able to maintain its worldwide mar-

ket presence throughout the year. In fact, this agricultural commodity has a strategic
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importance to the national economy. Therefore, there is an evident need for accurate

crop prediction techniques that would help the production planning and the marketing

strategy for domestic and foreign markets.

In this context, remote sensing data can be used to improve traditional agrometeo-

rological methods for harvest monitoring or forecasting. Nowadays, these data are more

accessible and there are appropriate technology (software and hardware) to receive, dis-

tribute, manipulate and process long time series of satellite images. Remote sensing

images have contributed to advances in several areas, such as Geography, Meteorology

and more recently Agriculture. These technologies can improve agrometeorological moni-

toring enabling a reduction in losses of agricultural crops by extreme weather events, such

as drought and frost.

Reliable estimates of agricultural production are powerful tools to guide producers

on issues related to planting and also to assist agribusiness in operating and marketing

sectors. They may generate trustworthy data to support the government in the decision

making process, aimed at reducing negative impacts on the economy or to take advantage

of favorable situations in the climate and in the agricultural market.

Considering this scenario, the development of computational models to filter, trans-

form, merge and analyze data from many different areas is complex and challenging. The

complexity increases whenever it is necessary to combine several climatic and agromete-

orological variables, and moreover when using climate and agriculture models together.

Therefore, the application of statistical models, as well as the development of new com-

putational methods become very important to aid in the analyses of climate data from

ground-based stations, and outputs of forecasting models and remote sensing imagery.

1.1 Motivation

Recently, improvements in data collection methods and sensor technology have provided

an increase in the acquisition of spatial data. Consequently, data related to agrome-

teorology gathered from ground-based stations and those obtained from remote sensing

imagery have increased fast and continuously. This huge amount of data has been stored

by several research institutions and universities, once Climatology and Agrometeorology

research need historical series at least 30 years long (Zhai et al., 2005).

Historical series of agrometeorological data from several private and governmental

institutions in Brazil have been integrated in the Agritempo system 1 developed in part-

nership between Embrapa Agriculture Informatics and the Center for Meteorological and

1www.agritempo.gov.br
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Climatic Research Applied to Agriculture (Cepagri) at the University of Campinas (Uni-

camp) since 2001. Agritempo organizes and manages over 1,000 ground-based stations

(mechanical and automatic).

Although the meteorological stations network in the country is continuously increas-

ing, it is already insufficient to gather information from all regions of Brazil. Moreover, the

accurate information about agricultural commodities is strategic to an organized economy

and to resources management of a nation. In order to obtain this valuable information,

the process of crop yield estimation should be precise and objective. In Brazil, the re-

sponsible companies for crop season forecasting are CONAB2 and IBGE3 that still use

conventional methods based on surveys with producers, cooperatives, seed and fertilizer

suppliers and other productive chain sectors. These surveys are applied six times a year

in several Brazilian regions. However, in order to be more accurate about the extension of

agricultural crops, it should be important to carry out a crop inventory more frequently.

Nevertheless, these periodic inventories are not viable because of the great extension of

Brazilian’s territory.

The equation of crop season forecasting system is relatively simple, since it consists

on multiplying the estimation of cultivated area by the average productivity expected for

the crop. Thus, the difficulty of this equation is to precisely determine the information

regarding two variables: cultivated area and productivity. There are crops with several

varieties and kinds of management in the country. Moreover, there are many kinds of

soil and pluviometric regimes that lead to productivity levels completely different for each

region in Brazil.

These facts strengthen the importance of applying remote sensing in assessment,

monitoring and forecasting of agriculture crops in the country. In this context, Cepa-

gri/Unicamp has stored remote sensing images from NOAA-AVHRR since April, 1995.

At present, there are over six terabytes of images, which have been used in Agrome-

teorology and Remote Sensing research. In general, information extracted from remote

sensing imagery combined with climate data can reveal useful information, which can help

researchers to monitor and to estimate the production of agricultural crops.

Employing information obtained by remote sensing images makes the process more

robust and trustful, but also more time consuming. Meteorologists and agrometeorologists

use well-known statistical methods, such as principal component analysis, cluster analysis,

frequency distribution, geostatistics, Fourier transform, non-parametric statistics and so

on, for analyzing and finding patterns in Earth science. They are interested in defining the

climatic behavior of each region in order to identify their anomalies, such as long periods of

2http://www.conab.gov.br/
3http://www.ibge.gov.br/
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drought (days with rainfall bellow 10 mm or without rainfall), days with extreme rainfall,

periods of drought in the Winter associated to high temperatures and other phenomena.

Considering all these aspects, the necessity of developing methods and techniques to

aid agrometeorologists to analyze and to extract relationships and patterns from this

large amount of climate data, as well as remote sensing images and outputs of climate

forecasting models is evident.

In fact, the diversity, complexity and volume of data to be processed bring interest-

ing challenges to the computer science field. For example, data mining techniques can

be employed to extract relevant patterns and correlations from climate data (Ganguly &

Steinhaeuser, 2008). Outliers and exception analyses (Luo et al., 2008) can help finding

critical points in the climate changes. Temporal association rules (Yoo & Shekhar, 2009)

are important tools in data mining and can be employed to relate climate data to inter-

pretation from the meteorologist. Beyond that, visual data mining (Simoff et al., 2008) is

a valuable resource to explore and to help understanding the data.

Finally, as the doctorate candidate is a researcher with Embrapa Agriculture Infor-

matics, which is partner of Cepagri/Unicamp, the access to climate and remote sensing

databases was granted. According to all aspects described in this section, we define the

goals of this doctorate thesis in the next section.

1.2 Goals

The main goal of this thesis is the definition and development of methods to support

agrometeorologists in tasks related to agricultural monitoring and research on climate

change. The hypothesis is that the development of methods based on fractal theory and

time series mining allows the correlation analysis and knowledge discovery from time series

of climate data and remote sensing images.

A numerous quantity of time series is available in real agroclimatic applications. Ad-

ditionally, climate data distribution usually changes over time. Thus, a specific goal of

this work was the proposition of methods to track the behavior of evolving data, pointing

out the attributes that are responsible for trend changes.

Agricultural crop fields can be characterized by different variables involving physiologic

aspects of plants, agrometeorological indexes, climatic conditions and vegetation indexes

obtained from operations between satellite channels. Thus, another specific goal of this

thesis was the development of methods to similarity search of agricultural crop fields

considering them as multidimensional objects.

Finally, the most important objective of this work was the definition of methods to
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detect relevant patterns and extreme events in time series and association rules between

heterogeneous time series of climate data and remote sensing images.

1.3 Challenges

A challenge in the time series mining field is the development of well-suited techniques to

mine patterns in time series of continuous values without losing the information about the

time of occurrences. Specifically, quantizing time series to retain the temporal meaning

of the patterns is a problem to be considered.

Other great challenge for data miners is the mining process of heterogeneous time

series. When we have to consider time delay to discover association patterns between

heterogeneous time series, the problem becomes even more complex. However, this is

an important issue to be tackled once the influence of meteorological events, such as

occurrence of rainfall or not, during the growing of plants happens after a certain period

of time.

One of the main effects of climate change is the increasing in the frequency, duration

and intensity of extreme phenomena (IPCC, 2007). Thus, another challenge is how to

detect these extremes with enough details about the conditions of occurrence analyzing

historical series of climate data.

Summarizing, some questions must be answered to overcome these challenges:

• How to discover higher and extreme events in time series maintaining the semantic

information?

• How to detect correlation between time series considering time delay?

• How to compare regions represented as multidimensional objects composed of het-

erogeneous time series?

• How to associate heterogeneous time series of continuous data in order to discover

new patterns retaining temporal meaning?

To deal with these problems we proposed the use of the fractal theory associated to

time series mining techniques, which is not commonly employed in Climatology, Agrom-

eteorology and Remote Sensing fields.

1.4 Contributions

This thesis brings contributions to different areas of knowledge: time series mining, cli-

matology, agrometeorology and remote sensing. The major contributions are:
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• A new method to mine association rules from heterogeneous time series (Apriori-

FD). The Apriori-FD method combines techniques of feature selection, discretization

and association rules to discover patterns and knowledge from climate data and

remote sensing images. This method was applied on datasets of sugar cane crop

fields and detected interesting rules related to temperature conditions appropriate

to the best sugar cane production, which varies from one region to another (Romani

et al., 2008).

• A data stream monitoring method combining a fractal-based approach with a statis-

tical analysis module to monitor data highlighting trend changes and the attributes

that influence the changes. Results showed that monitoring the fractal dimension

is a suitable technique to monitor climate and remote sensing streams spotting the

regions of interest making the agrometeorologists’ work easier (Romani et al., 2009a;

Nunes et al., 2010).

• Two new similarity measures for multidimensional objects composed of heteroge-

neous time series. Both methods weight the well-known DTW distance function

with a correlation factor. The CV-DTW uses correlation between two variables

such as Pearson’s correlation and FD-DTW takes advantage of correlation fractal

dimension. Experiments showed that the methods are appropriate to compare re-

gions of sugar cane fields (Romani et al., 2009d, 2010a).

• A new unsupervised algorithm (CLIPSMiner) for discovering relevant and extreme

patterns in heterogeneous climate and remote sensing time series of continuous data.

The algorithm also discovers high and extreme phenomena according to parameters

tuned by users in entire time series or by time windows, which allows comparisons

between different periods of time. Results showed that CLIPSMiner finds climatic

episodes along the historical series retaining the semantic of the data (Romani et al.,

2009c, 2010d). Experiments with real data reached results according to climatolo-

gists’ expectations (Romani et al., 2009b).

• A new unsupervised algorithm (CLEARMiner) to mine rules that associate patterns

in a time series to patterns in other series considering time lag. CLEARMiner first

converts time series into a symbolic representation and afterwards discovers asso-

ciation patterns between series. The algorithm considers a time-window constraint

to reduce the search space. Results indicated that CLEARMiner finds rules known

and unknown by specialists and can be used to support decision making processes

(Romani et al., 2010c).
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1.5 Organization of this work

This thesis is organized in 9 chapters as follows:

• Chapter 1 presented the introduction, motivation and objectives of this thesis.

• Chapter 2 describes concepts related to Agrometeorology and Remote Sensing that

are important to better comprehend the problems tackled in this work. The chap-

ter presents the geo-processing process employed to correct distortions in satellite

images and the aspects concerning sugar cane crops.

• Chapter 3 details the fractal theory that is used to detect correlation between climate

and remote sensing data and to support some methods proposed in this thesis.

• Chapter 4 reviews concepts regarding data mining and time series mining. The

chapter also presents the main data mining tasks highlighting association rules,

which is the focus of this thesis. Moreover, this chapter briefly introduces some

similarity measures.

• Chapter 5 shows how we employ the fractal theory in time series analysis. This

chapter details the Apriori-FD method, which combines the correlation fractal di-

mension and the Apriori algorithm to association rules mining. In addition, this

chapter presents a data stream monitoring method.

• Chapter 6 reports details about two similarity measures developed to deal with

multidimensional objects, weighting the well-known DTW distance function by cor-

relation factors.

• Chapter 7 describes the CLIPSMiner, which is an algorithm proposed to detect

relevant and extreme events in time series.

• Chapter 8 details the CLEARMiner algorithm that was proposed to find association

patterns between time series, which was the main contribution of this thesis.

• Finally, chapter 9 presents conclusions, the major contributions of this thesis and

ideas for further works.

There are also two appendixes that describe the SatImagExplorer system and an im-

provement in the fractal-based analysis method described in chapter 5. Both implemen-

tations were performed by undergraduate students on the scope of this doctorate project.
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Chapter 2

Agrometeorology and Remote

Sensing

2.1 Introduction

The branch of science that studies physical phenomena of the atmosphere called meteors

(in Greek) is defined as Meteorology. Specifically, meteorologists study atmospheric con-

ditions in a given time. These conditions result from the air motion that is originated

from the spatial variation of forces acting on the air mass. Another important aspect

of this atmospheric movement is its statistical description in terms of sequential average

values. Based on these values, meteorologists can describe annual rate of atmospheric

phenomena occurrence. This average sequencing defines the climate of a given region and

determines which activities can be performed in that place. Thus, this average character-

ization defines the Climatology. Therefore, Meteorology works with instantaneous values

while Climatology uses average values (of long periods).

Meteorology is divided in different specialized parts with specific objectives. One of

them is denominated Agrometeorology, which is devoted to the atmospheric conditions

and its consequences in the rural environment. The climatic conditions indicate the most

viable agricultural activity to a given region and the meteorological conditions determine

the productivity level for that activity in a certain period (Pereira et al., 2002).

Agrometeorologists defined a planting calendar through the balance between rainfall

and evapotranspiration, which depends on surface conditions (land use and soil) and

atmospheric demand (energy availability, air humidity and wind speed). One of the most

important crops in Brazil is the sugar cane, which is used to produce sugar, ethanol, and

energy. Brazil occupies the top position in the world ranking of the sugar cane production

and has an important role to attend the world’s sugar and ethanol needs. Then, this
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agricultural commodity is strategic to the economy of the country. The sugar cane crops

are cultivated in large and contiguous fields, which allows the use of low resolution satellite

images.

Thus, remote sensing data can be an alternative to more conventional methods, be-

cause the sensors have an excellent spatial and temporal coverage. These sensors also

make it possible to obtain continuous information from the country land, with spatial

resolution of a few kilometers and temporal data in order of minutes. However, measure-

ments obtained from remote sensors are indirect and, therefore, it is necessary to develop

models that relate the features available in the satellite spectral channels to parameters

associated with the required information.

In this scenario, several satellites are being used to assist in land monitoring and

climate forecasting. In this chapter, some concepts of Agrometeorology, Remote Sensing

and Sugar Cane crops are presented to provide a theoretical foundation in the application

field of this work. Thus, climate and weather are defined in Section 2.2. Sugar cane

characteristics and related work are presented in Section 2.3. Basic concepts of remote

sensing are defined in Section 2.4, as well as vegetation indexes and the sensor and the

satellite used in this thesis. Finally, some works about remote sensing images for sugar

cane monitoring are discussed in Section 2.4.3.

2.2 Weather and Climate

Atmosphere is a mass in continuous movement that induces variations in the meteorologi-

cal conditions predominant in a region. The description of atmosphere status can be both

in terms of instant (current condition) or statistical (average condition). It introduces a

time scale to describe the atmospheric conditions. Thus, weather refers to instantaneous

description and climate is related to average description.

Definition 2.1 Weather is the state of the atmosphere, mainly with respect to its effects

upon life and human activities. As distinguished from climate, weather consists of the

short-term (minutes to days) variations in the atmosphere. Popularly, weather is thought

in terms of temperature, humidity, precipitation, cloudiness, visibility, and wind (Pereira

et al., 2002; Vianello & Alves, 1991).

Definition 2.2 Climate is a statistical description that expresses the average conditions

(30 years or more) of the sequencing of time at a place, i.e. the slowly varying aspects

of the atmosphere–hydrosphere–land surface system. The pace of seasonal variations in

temperature, rainfall, humidity, etc. characterizes the climate of a region (Pereira et al.,

2002; Vianello & Alves, 1991).
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Based on climatic descriptions, it is possible to know in advance what weather condi-

tions are predominant in the region, and hence what agricultural activities have a higher

chance of success. According to the World Meteorological Organization (WMO), a uni-

form period of at least three consecutive ten-years is called Climatological Normal. This

30-year period is defined by WMO as sufficient and satisfactory to cancel outliers in the

series, but must also take into consideration the ever-changing climate. WMO advises

choosing periods such as 1901-1930, 1931-1960, 1961-1990, that define the succession of

Climatological Normal patterns to make comparisons among stations of data gathering,

regions and periods of 30 years (Zhai et al., 2005).

Figure 2.1 presents the annual variation of air temperature and rainfall for the São

Paulo state. In fact, one year similar to the Climatological Normal probably never oc-

curred. However, the Normal represents the most likely climate conditions in a given

region. As it can be seen in Figure 2.1(a), temperature of São Paulo state varies between

a minimum 11oC in July and maximum 28oC in February. Analyzing the graph of rainfall

(Figure 2.1(b)), it can be observed that the majority of the annual rainfall occurs during

Spring and Summer in the southeast of Brazil. During the Winter, months are less rainy.

Accordingly, the climate of São Paulo state is characterized by rainy and warm Summers,

while Winters are mild and dry.

Figure 2.1: Graphs of the last Climatological Normal for São Paulo state corresponding to the period
from 1961 to 1990. (a) Air temperature varying from 11oC to 29oC (b) Rainfall distribution along the
year (adapted from National Institute of Meteorology - INMET).

One region has a daily variation in the meteorological conditions (rainfall, tempera-

ture, humidity, etc.) due to the Earth’s rotation movement. This variation is a natural

phenomenon that occurs in all locations, with greater or lesser intensity. There is also an-

nual variation of meteorological conditions that generates the seasons owing to the yearly

revolution of the Earth around the Sun and the tilt of the Earth’s axis relative to the

plane of revolution.
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Air temperature and rainfall are the most used variables that represent the meteoro-

logical conditions. Temperature is one of the effects of sun radiation. The atmosphere

warming near the surface occurs mainly by transport of heat from surface heating by solar

rays.

The height of sensor for measuring the temperature is between 1.5 to 2.0 m above

the surface in a meteorological shelter to allow the free passage of air, but prevents the

incidence of solar radiation on equipment.

For meteorological and climatological purposes, the air temperature is measured under

a reference condition, which allows comparison between different locations. Considering

this reference condition, the default pattern of daily variation for temperature during the

Winter in the São Paulo state is similar to the graph presented in Figure 2.2(a). During

Summer, the average temperature is higher than during the Winter, as it can be seen

in Figure 2.2(b). The maximum temperature occurs with a lag of two or three hours in

relation to the peak of solar irradiance (12 o’clock on days without clouds), whereas the

minimum temperature occurs just before sunrise due to the night cooling (Pereira et al.,

2002).

Figure 2.2: Typical daily variation of air temperature in the Sao Paulo state: (a) During Winter,
temperatures range from 3oC to 20oC (b) In the Summer, temperature is higher than in other seasons
(from 18 to 35).

Rainfall is another important variable that is used in different analyses by climatol-

ogy and agrometeorology. In tropical regions, rainfall or pluviometric precipitation is the

main way that water returns from the atmosphere to the Earth’s surface after the evapora-

tion and condensation process. The volume and distribution of rainfall that precipitates

annually in a given region determine the possible kinds of vegetation and agricultural

exploration.

Rainfall may be characterized by their source, such as frontal passage, local convection

and orographic effects (mountains). Rainfall is measured by the pluviometric height,

which is the height of precipitated water and is expressed in millimeters (mm). This

pluviometric height is equivalent to the height of the precipitated volume by unit of
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horizontal area.

Usually, the data gathering is made everyday at 12 UTC or 9:00 a.m. LT (Local Time)

in the conventional agrometeorological post. The record of rainfall value is continuous in

an automatic ground-based station, obtaining values of intensity and total height from 0

to 24 hours.

In the São Paulo state, the distribution of rainfall along the year follows the pattern of

the Climatological Normal. In other words, Summers/Springs are rainy and Fall/Winters

are dry as exemplified in Figure 2.3.

Figure 2.3: Graphs of rainfall distribution in two different seasons: Summer and Fall. (a) The first one
presents more occurrence of rainfall along the month (January) with extreme rainfall and high values of
maximum temperatures. (b) The second one shows lack of rainfall during the month (May) and minimum
temperatures reaching lower values.

São Paulo is an important state in Brazil, responsible for approximately 30% of the

Brazilian gross domestic product (GDP). This state has many activities in the industry

and agriculture segments that depend on water resources. Thus, any change in the climate

conditions can impact on the social and economy of the state.

In order to verify if there are alterations in the total and extreme rainfall in São

Paulo, Dufek & Ambrizzi (2008) assessed some climate change indexes derived from daily

precipitation data. They discovered that the number of days with very heavy precipitation

increased as well as the number of consecutive dry days. Additionally, they observed

that intense precipitation was concentrated in a few days in the studied period (1950 to

1999). These results indicate an important change in São Paulo’s climate reinforcing the
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requirement of more researches on climate change and anomalies.

2.2.1 Anomalies and Climate Change

Meteorologists are interested in defining the climatic behavior of each region by identifying

anomalies, which are meteorological and climatological events with large deviations from

the mean. Some examples of anomalies are long periods of drought, unusual floods, heat

waves, days with extreme rainfall, increasing in the number of hurricanes, etc.

Experts have tried to explain these anomalies through phenomena, which occur in

the ocean and affect the nature, such as El Niño and La Niña. The El Niño Southern

Oscillation (ENSO) is a phenomenon of the atmosphere-ocean interaction, associated to

the changes in normal patterns of the Sea Surface Temperature (SST) and trade winds

in the region of Equatorial Pacific between the coast of Peru and the west Pacific near

Australia (Berlato & Fontana, 2003). ENSO is composed of an oceanic component (El

Niño), which is characterized by the warming of surface waters in the tropical eastern

Pacific Ocean. The Southern Oscillation is the atmospheric component of ENSO and

is characterized by changes in surface pressure in the tropical western Pacific. ENSO is

popularly called just El Niño, which is a Spanish word and refers to the Christ child due

to this annual warming in the Pacific that usually occurs around Christmas. Nowadays,

the term is applied only to anomalous events.

The cold phase of ENSO is known as La Niña when the cooling of surface water in the

eastern Pacific intensifies and the trade winds strengthen. Both oceanic and atmospheric

components are coupled because the surface pressures in the western Pacific are high

during the warm phase (El Niño) and these pressures are low when the cold phase is in

effect (La Niña).

ENSO is associated with floods, droughts and other weather extreme events in different

regions of the World. In El Niño years, there is an increase in the number of occurrences

of heavy rains between October and February with a break in January in the southeast

region of Brazil. However, the signal is less pronounced about the total of monthly rainfall

occurring in some regions and not in others. In years of La Niña the opposite occurs,

reducing the number of extreme events and their intensity.

Figure 2.4 presents SST variation in the region of Niño 3.4 (one of the four regions

where temperature in Pacific ocean is measured) for the period 1970 to 2010, where it

can be seen the three strongest warm events (ENSO) of the twentieth century (1973,

1982/1983 and 1997/1998). Moreover, it can also be seen a concentration of events ENSO

between 1980 and 2000 with six El Niños and five La Niñas.

Recent studies have indicated a disturbing situation regarding the temperature and
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Figure 2.4: Anomalies of Sea Surface Temperature (SST) in the region of Niño 3.4 (1970 - 1990 and
1990 - 2010) (adapted from NOAA).

precipitation in the Planet. Specifically, the results of several analyses have shown that

some extreme weather events have changed in frequency, duration and intensity over the

last years (Meehl & Tebaldi, 2004; Vincent et al., 2005; Groisman et al., 2005; Goswami

et al., 2006; Alexander et al., 2006; Ganguly & Steinhaeuser, 2008). Consequently, in-

creased temperatures and regional changes in rainfall patterns can have adverse effects on

natural and human systems.

Since the global warming affects the whole Planet, the Intergovernmental Panel on

Climate Change (IPCC) was created, aimed at evaluating and analyzing the data con-

cerning such changes and proposing ways to deal with the problems derived from the

climate changes. In February 2007, IPCC published its Fourth Assessment Report on Cli-

mate Change, or IPCC-AR4 for short (IPCC, 2007). It indicates increases in the global

average temperature between 1.8◦C and 4.0◦C by 2100. Regarding Brazil, in the same

period, the average temperature shall increase around 0.75◦C (Marengo et al., 2007).

In order to assess the real impact of such increases, as well as on how to deal with

it, initiatives of collaborative work involving meteorologists, mathematicians, statisticians

and computer scientists have emerged in several countries with promising results. One of

them is the definition of a suite of climate change indexes derived from daily temperature

and rainfall data in order to organize and allow comparisons among works around the

World.

To understand trends of extreme events it is very important that governments and
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communities learn and are prepared to mitigate the problems, and more importantly, to

make decisions in a timely manner. Additionally, analyses of temperature time series

indicate that it is crucial to define methods to reduce the emission of greenhouse gases

and to adapt agricultural crops to the new conditions of increasing temperatures.

An alternative to reduce emissions of greenhouse gases is to replace fossil fuels with

renewable sources. In Brazil, sugar cane is the main agricultural crop used to produce

ethanol. Although sugar cane benefits from the increase of temperature, other agriculture

crops will suffer with the global warming. Several studies simulating spatial distribution

for agriculture crops, and considering the climate changes perspectives pointed by IPCC

were performed by Brazilian experts. One of the most recent studies claims that tem-

perature increases can lead to harvest losses in grain crops in the order of R$ 7.4 billions

in 2020, and that the loss can achieve R$ 14 billions in 2070, what would deeply affect

the geography of the agriculture production in Brazil (Pinto & Assad, 2008; Assad et al.,

2007).

The work described in (Pinto & Assad, 2008) shows that the temperature increase

predicted by IPCC (2007) would lead to a new distribution of agriculture crops in Brazil

by the end of the 21st century. Among the most damaged crops will be coffee. Therefore,

it would be advantageous for the country to plan ahead how to profit of such scenarios

without damaging other crops. Uncontrolled sugar cane expansion can impair other food

crops, thus negatively impairing the country economy.

The studies simulating the impact of temperature increases on agriculture crops con-

sider the calculus of agrometeorological variables that include temperature. Based on

these new values of agrometeorological indexes, experts are able to assess and to propose

alternatives in order to mitigate the effects of global warming on Agriculture.

2.2.2 Water Balance and WRSI

Interaction of the soil-plant-atmosphere system refers to a certain amount of water that

enters and leaves of each one of these components, what implies in a constant variation

in the water stored in soil. This variation represents the balance of input and output of

the system, whereas the intensity depends on the environment conditions. Water balance

is an accounting soil water by applying the principle of mass conservation for water in a

volume of vegetated soil (Pereira et al., 2002).

Basically, there are six possible inputs (rainfall, dew, superficial runoff, side drain,

rising damp and irrigation) and four outputs (evapotranspiration, superficial runoff, lateral

drainage and deep drainage). Rainfall and dew depend on the climate of the region, while

the other entries depend on soil type and topography of the region. Thus, the driving
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force of the system is climate (Pereira et al., 2002).

One of the most widely used methods to calculate the water balance was proposed by

Thornthwaite & Mather (1955). This method requires basically evapotranspiration data,

crop coefficient over the period of crop growing, rainfall, temperature and available water

capacity for the considered period.

Definition 2.3 Evapotranspiration is defined as the process of transferring water to

atmosphere by evaporation of water from the soil and transpiration from plants (Thorn-

thwaite & Mather, 1955; Pereira et al., 2002).

Other variables have been used to improve the water balance calculation, such as

potential evapotranspiration, real evapotranspiration and maximum evapotrasnpiration.

Definition 2.4 Potential evapotranspiration occurs in an area vegetated with grass

and availability of water in the soil, in active growth phase, covering the soil surface.

This evapotranspiration is indicative of the evapotranspiration demand of atmosphere in

a given place and period (Ometto, 1988; Pereira et al., 2002).

Definition 2.5 Real evapotranspiration: is considered the real amount of water used

by a large surface that is vegetated with grass in an active growth with or without water re-

striction. The real evapotranspiration is equal to potential evapotranspiration when water

restriction does not occur (Pereira et al., 2002).

Definition 2.6 Maximum evapotranspiration or agricultural crop evapotran-

spiration is the evapotranspiration when plants are able to maximize production and

reach the maximum yield. That is, it is the amount of water used by an agriculture crop

at any stage of its development (planting to harvest) without water restriction (Pereira

et al., 2002).

Maximum evapotranspiration can be obtained from the potential evapotranspiration,

according to Equation 2.1, proposed by Jensen (1968).

ETM = Kc ∗ ETP (2.1)

where ETM is the maximum evapotranspiration, Kc is the crop coefficient and ETP is

the potential evapotranspiration.

The crop coefficient (Kc) is the adjustment factor between the maximum evapotran-

spiration and the potential evapotranspiration that varies according to the maturity stage
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of the plant, species and cultivars. This coefficient is calculated considering the leaf area

index (LAI).

According to Doorenbos & Kassam (1994), adequate moisture during the period of

sugar cane growth is important to obtain maximum yields, since vegetative growth is

directly proportional to transpired water.

One way to assess the climate impact on the sugar cane production can be through the

use of indexes, which cover the main atmospheric parameters simultaneously rather than

using each one individually. One example is the Water Requirements Satisfaction Index

(WRSI), which is calculated through simulations of water balance during the agricultural

crop cycle. This index is obtained by Equation 2.2.

WRSI =
ETR

ETM
(2.2)

where ETR is the real evapotranspiration and ETM is the maximum evapotranspiration.

WRSI expresses the relationship between the quantity of water consumed by the plant

and desirable one in order to ensure maximum productivity of the plant(Assad & Sano,

1998). This index ranges from zero to one, being the highest when the amount of stored

water in soil is the maximum one. Thus, WRSI is related to the volume of rainfall and

the water storage in soil.

2.3 Sugar Cane Crops

Sugar cane (Saccharum officinarum L.) is originated from Asia, probably in New Guinea,

mainly produced between latitudes 35◦ north and 35◦ south (Doorenbos & Kassam, 1979).

It is a semi-perennial grass that can have vegetative cycle of 12 months when planted early

in the rainy season (from September to November). When it is planted in the middle of

the rainy season, its growing cycle enlarges from 14 to 21 months.

According to Alfonsi et al. (1987), Brazil is the only country with two seasons of annual

harvests, one in the north-northeast, which starts in September and extends until April

and another in the central-south from June to December.

Before the first cut, sugar cane is called plant cane. After the cut, clogs or knuckles

sprout after 20 to 30 days, resulting in a ratoon cane that has its completed cycle in

approximately one year (Camara, 1993). Figure 2.5 shows the growth cycle of both plant

cane and ratoon cane.

Sugar cane is essentially a tropical plant and its best growing conditions occurs under

high temperature and humidity. The optimum temperature for sprouting on the stalk is

32◦C to 38◦C. The optimum growth is achieved by daily average temperatures between
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Figure 2.5: Cycle of sugar cane with three cuts (adapted from (Gonçalves, 2008)).

22◦C to 30◦C. Minimum temperature for strong growth is approximately 20◦C. However,

for sugar cane maturation are convenient temperatures around 20◦C to 10◦C (Doorenbos

& Kassam, 1979).

Sugar cane grows rapidly in ideal weather conditions, producing wide and relatively

thick internodes. The sugar cane growth becomes slower and the internodes become

shorter and thinner whether one of the weather factors fail (Fauconier & Bassereau, 1975).

Sugar cane matures later when the heat and rain in the Summer extend to the Fall.

Consequently, the amount of sugar stored in stems is reduced. On the other hand, the

best yields of sugar cane rich in sucrose are obtained when Summer is hot and humid,

and Fall is cool and dry. It grows less during periods of drought in the Summer and in

the overcast days (Godoy & Toledo, 1972).

Generally, sugar cane requires six to eight months with high temperatures, intense

solar radiation and regular rainfalls to allow full vegetative growth. After that, it needs

four to six months with dry season and/or low temperatures, which are adverse condi-

tions to growth, but extremely beneficial and stimulating to the accumulation of sucrose

(Casagrande, 1991).

Sugar cane provides the raw material for the production of alcohol, which is mixed

with diesel generating biodiesel. Researchers in Brazil have investigated others oleaginous

species as potential sources for biodiesel production (Nass et al., 2007). However, ethanol

deriving from sugar cane is the main alternative to replace fossil fuels and researchers have

been studying the issues related to greenhouse gases emissions in the production and use

of ethanol (Goldemberg, 2007; Macedo et al., 2008; Goldemberg et al., 2008). Economic

factors contribute to the use of ethanol as fuel due to the inherent instability in the supply

of oil as well as its high price. Also, ethanol is considered renewable/energy sources.

Environmental and social issues are linked to the expansion of sugar cane for ethanol
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production in Brazil, such as atmospheric pollution due to burning, degradation of soils

and water resources as well as exploitation of cane cutters, among others (Martinelli &

Filoso, 2008). In their work, Martinelli & Filoso (2008) provide some recommendations

to aid at establishing a code for ethanol production by policy makers and Brazilian gov-

ernment. The production of sugar cane in Brazil, in general, has been growing in recent

years. The production of São Paulo state represents approximately 60% of the national

production of sugar cane.

In this scenario, a massive data volume has been generated by industry, research

institutes and universities due to the increasing importance of the sugar cane production.

Traditional statistical methods and new approaches based on data mining methods have

been employed to assess data related to sugar cane production and to predict sugar cane

yields (Garcia & Vieira, 2008; Everinghama et al., 2009; Ferraro et al., 2009). In addition,

remote sensing images have been used in studies about sugar cane production as detailed

in the next section.

2.4 Concepts of Remote Sensing

Remote sensing is defined as the use of modern sensors, equipment for processing and

transmitting data, aircraft and spacecraft, aimed at studying the terrestrial environment

by recording and analyzing the interactions between electromagnetic radiation and sub-

stances, which compose the Earth planet regarding their various manifestations (Novo,

1992).

Remote sensors are devices designed to measure electromagnetic energy (in certain

intervals of the electromagnetic spectrum) from an object. Remote sensors measure the

energy from targets in the Earth’s surface, as shown in Figure 2.6.

Remote sensors transform electromagnetic energy into an electrical signal that can

be stored or transmitted in real time. Thus, the signal is converted into information

describing the features of objects, which compose the Earth’s surface. The multispec-

tral characteristic of remote sensing allows recording the electromagnetic energy in the

wavelength ranges called bands or channels. Knowledge about spectral behavior of land

surfaces in different wavelength bands of the electromagnetic spectrum is crucial to be

able to use satellites to monitor agriculture. Based on this knowledge, several vegetation

indexes have been developed in recent years.
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Figure 2.6: Illustration showing the relationship between source-target-sensor (adapted from (Antunes,
2005)).

2.4.1 Vegetation indexes

Vegetation indexes are based on the combination of electromagnetic radiation reflected

by vegetation in some spectral bands of the electromagnetic spectrum. The spectral mea-

surement represents the relationship between the amount and condition of vegetation in

the region, where this measurement was made (Moreira & Shimabukuro, 2004). Spectral

vegetation index is a quantity obtained by sum, ratio, difference, or other processing of

spectral data, to represent the characteristics of vegetation cover (Ponzoni, 2001).

Vegetation indexes have been studied to characterize biophysical parameters of vegeta-

tion. They indicate the presence of some characteristics and/or some condition regarding

the vegetation. For example, biomass is related to the solar energy absorbed. In gen-

eral, vegetation indexes are associated with leaf area index (Xavier & Vettorazzi, 2004;

Wang et al., 2005), green biomass (Anyamba & Tucker, 2005) and vegetation productivity

(Holben et al., 1980).

Several vegetation indexes have been proposed due to different possibilities, such as

sensor type, and applications. The most used is the Normalized Difference Vegetation

Index (NDVI), which was proposed by Rouse et al. (1973). NDVI is based on data from

channels 1 (red) and 2 (near-infrared) combined through the Equation 2.3.

NDV I =
(ρNIR − ρR)

(ρNIR + ρR)
(2.3)

where ρNIR is the reflectance in the near-infrared (channel 2) and ρR is the reflectance in

the red (channel 1).
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NDVI values vary in the range (-1, +1). Values close to zero indicate regions with-

out vegetation, and values close to +1 indicate vegetated areas with the highest possible

density of green leaves. As NDVI has limitations (rapid saturation for increasing green

biomass, sensitivity to soil background effects and less effective for atmospheric correc-

tion), other indexes have been proposed such as the Enhanced Vegetation Index (EVI),

which is a modified version of NDVI and was developed for Moderate Resolution Imaging

Spectroradiometer (MODIS) data (Huete et al., 1997).

2.4.2 NOAA satellites and AVHRR sensor

Several satellites can be used to help the monitoring and estimation of agricultural pro-

duction, mainly the satellites from the National Oceanic and Atmospheric Administration

(NOAA), with the Advanced Very High Resolution Radiometer (AVHRR) sensor. This

sensor is applied to studies of ecosystems due to availability of long time series of its

data. Moreover, other advantages of AVHRR sensor are global coverage and free access

to data. NOAA-AVHRR images have been used in land surface studies, such as drought

investigation (Bajgiran et al., 2008), estimation of crop area and yield (Liu & Kogan,

2002), vegetation phenology estimation or evaluation (Maignan et al., 2008).

NOAA meteorological satellites are scheduled to accomplish two daily passes (day and

night) focusing the same target on Earth (Kampel, 2004). They are polar-orbiting and

spend approximately 102 minutes to cross the Equator line again. The passes of each

satellite occur in the same solar hour regardless of the latitude. Thus, the frequency of

daily image acquisition on the same point is high, particularly when several satellites are

working well simultaneously.

Since February 2009 four satellites (NOAA-15, NOAA-17, NOAA-18, and NOAA-19)

have been in orbit with their main sensors in full operation. Therefore, it is possible

to have at least four images by day and four images by night every day at each point

of Earth’s surface. Table 2.1 shows the hours of Equatorial crossing time for the latest

NOAA-AVHRR satellites.

Table 2.1: Equatorial crossing time of latest NOAA-AVHRR satellites.

Orbit
Satellites Ascending (LT) Descending (LT)

NOAA-15 05:00 p.m. 05:00 a.m.
NOAA-17 10:00 p.m. 10:00 a.m.
NOAA-18 04:00 a.m. 04:00 p.m.
NOAA-19 02:00 a.m. 02:00 p.m.

AVHRR sensor has five spectral channels in the visible, near-infrared, mid-infrared and
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thermal infrared. The NOAA-AVHRR has a 12 hour temporal resolution and a spatial

resolution of 1 km by 1 km at nadir1 and 2.4 x 6.9 km in extremes (Townshend, 1994).

Figure 2.7 presents an RGB-321 (where the channel 3 is in the red (R), channel 2 is in

the green (G) and channel 1 is in the blue (B)) image of the São Paulo state acquired by

NOAA17-AVHRR on May/27th/2006 at 13:04GMT.

Figure 2.7: An example of RGB-321 image of the São Paulo state acquired by NOAA17-AVHRR on
May/27th/2006 at 13:04GMT

AVHRR images are received by an acquisition station, located at the view angle of

NOAA satellites to capture and to record data. Transmission mode of AVHRR images is

the High Resolution Picture Transmission (HRPT). NOAA-AVHRR images have geomet-

ric distortions caused by Earth curvature, rotation, attitude errors and imprecise orbital

(Rosborough & Baldwin, 1994). These distortions must be corrected specially for land

applications that require a highly accurate geometric matching, following some phases,

such as:

• Format conversion from HRPT to standard;

• Radiometric calibration;

• Geometric correction;

• Identification of pixels classified as cloud.

We have used the NAVPRO system developed by Esquerdo et al. (2006) to perform

the preprocessing of AVHRR images, specially the geometric correction. NAVPRO is

an automatic set of C-shell scripts that call subroutines of the NAV system described

1Intersection point between vertical line that is perpendicular to the horizontal plane and the celestial
sphere, but in the opposite hemisphere to that one, where observer is located.
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by Emery et al. (1989), developed by the Colorado Center for Astrodynamics Research

(CCAR), Aerospace Engineering Sciences, with the University of Colorado, Boulder, USA.

NAVPRO converts the images from High Resolution Picture Transmission (HRPT)

raw data format to another one named CCAR, similar to Level 1B Local Area Coverage

(LAC). The next step is the radiometric calibration, when digital numbers are transformed

to reflectance at the top of atmosphere for 1, 2 and 3A AVHRR channels and brightness

temperatures for 3B, 4 and 5 channels.

Geometric correction combines indirect navigation and spacecraft attitude error esti-

mation. After that, the Maximum Cross Correlation (MCC) technique is used to detect

the geographic displacement between a base image and a target one (Emery et al., 2003).

When the MCC technique finishes, output images are calibrated and submitted to an

accurate navigation. Thus, the images are stored in a file containing the seven channels.

The first five channels are composed of each AVHRR channels.

Some images are eliminated during the process of image correction due to problems,

such as cloud coverage greater than 20% or different kinds of noise, as illustrated in Figure

2.8.

Figure 2.8: Examples of images that were eliminated due to different problems during geo-processing.

Measurements and indexes, such as cloud mask, surface temperature, albedo and
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NDVI images are generated wherever an image satisfies all conditions in the steps of

the NAVPRO system. Examples of these images are presented in Figure 2.9. Albedo

is the ratio between the amount of radiation reflected by the Earth’s surface (including

the atmosphere) and the total of incident radiation (from Sun) at a given temperature.

Surfaces of sand and snow have high albedo values while forests have low values of albedo

(Song & Gao, 1999).

Figure 2.9: Examples of images generated by the NAVPRO system.

The effect of shadows, aerosols and water vapor are minimized by the use of Maximum

Value Composite (MVC) for NDVI, as described by Holben (1986), using images from the

same satellite. The vegetative evolution of sugar cane can be understood by analyzing

MVC images of NDVI in the northeast of São Paulo. The growing season usually begins in

June and this aspect is represented by green and blue shades in the NDVI images. These

colors represent the low NDVI values, which indicate areas with exposed soil and sparse

vegetation. These colors also appear in the NDVI images from July to November. From

December, when sugar cane crops have more biomass, these regions acquire yellow, orange

and red shades in the images. The maximum NDVI is represented by a stronger red shade

when sugar cane crops reach their peak of development from February to May. Dark areas

represent regions covered by clouds. This phenomena occurs mostly in December, January

and February.
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2.4.3 Application of remote sensing in Agriculture

NOAA-AVHRR images are a source of spectral information about agricultural regions in

Brazil. In the literature, there are several papers analyzing NDVI time series to improve

agriculture monitoring. Wang et al. (2003) have obtained a meaningful value of cross-

correlation between NDVI and soil humidity, precipitation and temperature for different

kinds of vegetation, such as forest, grass and some agricultural crops from 1989 to 1997, in

Kansas. This research indicated a strong correlation between pluviometric precipitation

and NDVI. According to Lucas & Schuler (2007), NDVI behavior is similar to precipitation

trend. This study showed that precipitation of a preceding month is more relevant to

calculate NDVI values than rain values of the current month. The relationship between

pluviometric precipitation and spectral data from NDVI and EVI MODIS images were

studied by Fontana et al. (2005). This research showed that NDVI and EVI indexes

are indicators of Winter crops yield in Australia. Both indexes had similar behaviors in

temporal scale, being associated to pluviometric precipitation accumulated in the period

from April to June.

Sugar cane crops are cultivated on large fields and can be monitored by remote sensing

images of medium and low resolution, such as the NOAA-AVHRR. In recent years, several

studies have been developed to identify areas for sugar cane expansion, to assess its social

and economic impact, to predict its yield, to monitor diseases, among other applications.

Reflectance of crop canopies is a combination of reflectance of plants and soil (Guyot,

1990). Specifically, the spectral response of sugar cane depends on canopy architecture,

foliar chemistry, agronomic parameters and geometry of data acquisition and atmospheric

conditions. Abdel-Rahman & Ahmed (2008) have cited several works that discussed how

light interacts with the sugarcane canopies.

Another important contribution of remote sensing to sugar cane monitoring is the

identification of sugar cane areas and accurate forecast of the cultivated crop fields, which

are needed for crop yield estimation. Xavier et al. (2006) used an unsupervised method to

classify sugar cane crop in Brazil through EVI images from MODIS. The results showed

that sugar cane can be distinguished from natural and planted forests, peanuts, soybean,

water bodies and urban regions. However, it was difficult to distinguish sugar cane from

pasture, but the use of images from higher spatial resolution sensors could aid to minimize

this spectral mixture.

Nascimento et al. (2009) have used harmonic analysis applied to time series of NOAA-

AVHRR to identify sugar cane areas in the São Paulo state. They generated a decision

tree to search patterns that could represent sugar cane along the crop season of 2006/2007.

The application of both methods (harmonic analysis and decision tree) was able to identify
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sugar cane fields with 92% of confidence when compared to ground truth information from

the CANASAT project2.

Mapping of sugar cane varieties is extremely important for crop damage risk assessment

and yield prediction. Multispectral remotely sense data have been used to identify sugar

cane varieties (Fortes & Demattê, 2006). Remote sensing data have also been used in the

prediction of sugar cane yield. In Brazil, Rudorff & Batista (1990) used LandSat data

and agrometeorological model to predict yield. According to Nascimento et al. (2009) a

phenology-spectral model, such as the proposed by Pellegrino (2001), with a time series

of NOAA17-AVHRR images presented satisfactory results in the estimation of sugar cane

productivity with relative errors below 5% and anticipation of about 110 to 150 days

before the harvest.

Multi-temporal images are a useful source of information for monitoring agricultural

crops fields. Nevertheless, data acquired from satellite images have often missing or uncer-

tain radiometric values. Hajj et al. (2009) proposed an approach that addresses this issue

by combining time series of satellite images with information from crop growth modeling

and the expert’s knowledge. They used the fuzzy logic and modeled linguistic terms,

which helped them to build expert decision rules.

In recent years, the sugar cane crops have expanded due to several reasons, such as

biofuel production, potential benefits to the environment as a possible way of mitigation

of greenhouse gases, economic impact and others. Although there are traditional ways to

evaluate the sugar cane expansion, remote sensing images have been an important source

of information to evaluate the direct land conversion to sugar cane. Rudorff et al. (2009)

have used time series of EVI images from MODIS to identify the land use prior to the

conversion to sugar cane in Brazil. They observed that pasture land in 2000 were gradually

converted to annual crops until 2005 and then to sugar cane. In a recent study, Rudorff

et al. (2010) confirmed that remote sensing images have been efficient to aid at evaluating

important characteristics of the sugar cane cultivation, providing relevant results to the

debate of sustainable ethanol production from sugar cane in Brazil.

2.5 Summary

In this chapter, we detailed some important concepts about Climatology, Agrometeorology

and Remote Sensing to better understand the analyses and experiments that are presented

further in this work. We also discussed aspects concerning sugar cane crops and its

economic and social impacts. The importance of sugar cane production for Brazil as well

2http://www.dsr.inpe.br/canasat
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as the demand for new techniques and methods to analyze sugar cane data is one of the

motivations for the achievement of this research project. As it could be seen, few works

propose the use of data mining techniques to discover correlations, patterns and extremes

in these datasets.

In this doctorate project, we have used remote sensing images of NOAA-AVHRR due

to existence of long time series and global coverage. As it can be seem previously in this

chapter, several works have applied remote sensing images to monitor sugar cane fields.

The majority of these studies have used satellite of medium or high spatial resolution.

However, as sugar cane crops are cultivated in large and contiguous fields, satellites of

low spatial resolution, such as NOAA can be used with satisfactory results. Several

experiments that corroborate to this issue will be presented in the following chapters.

This chapter also points different problems that often occur with remote sensing images

that make difficult the use of this kind of image. For instance, it is very complicated to

deal with noise and cloud coverage in the images, as well as to extract time series from

multi-temporal images. We will show that some of these problems were satisfactorily

solved in this work, while others are still open problems. In the next chapter, we present

important concepts about the fractal theory, which was the first approach used to provide

a solution involving agrometeorological and remote sensing data in this thesis.
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Chapter 3

Fractal Theory

3.1 Introduction

Fractal is defined as an object that presents roughly the same characteristics regardless of

the scale where it is analyzed, i.e., it is a self-similar object. Therefore, parts of a fractal

(a mathematical structure, an object or a dataset) are similar, exact or statistically, to

the whole fractal. That is, small scale details are similar to large scale characteristics

(Schroeder, 1991; Traina Jr. et al., 2005).

For example, the Sierpinski triangle is a geometrical fractal. It is built by a recursive

iterative process, theoretically infinite. Given an equilateral triangle ABC, we first remove

the central triangle A′B′C ′; from each of the three remaining triangles whose sides have

length equal to half of the side of ABC, we withdraw again the central triangle, and so

on. Figure 3.1 shows the initial steps of the building process of a Sierpinski triangle. The

remaining triangle has “holes” regardless of the scale and each triangle inside the first one

is a “miniature” of the whole triangle.

Figure 3.1: Steps of the building process of Sierpinski triangle.

There are many other mathematical structures defined as fractal, such as the Koch

curve, the Cantor set, and the Mandelbrot set that are presented in Figure 3.2. There

are also examples of fractals in Nature, for example: clouds, mountains, vegetables, trees,

the coast of continents, islands and others (Mandelbrot, 1983).
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Figure 3.2: Some examples of fractals: (a and b) geometrical fractals and (c) algebraic fractal.

Fractal concepts have been applied to several tasks in data analyses and data mining.

One of them is the estimation of the intrinsic dimension (D) of the dataset, which is

related to the concept of embedding dimension (E ) (Faloutsos & Kamel, 1994).

Definition 3.1 Embedding dimension E: Given a finite dataset A, the embedding

dimension E ∈ N is the number of attributes that define A, i.e., E is the dimension of

the space in which the dataset is embedded.

Definition 3.2 Intrinsic dimension D: Given a finite dataset A, its intrinsic dimen-

sion D ∈ R+, is the dimensionality of the object represented by the data, regardless of the

dimension of the space in which it is embedded.

The intrinsic dimension (D) is a measure of the amount of information that the dataset

represents. For example, the intrinsic dimension of a set of points distributed along a

line is equal to one; if the set is embedded in a higher dimensional space, the intrinsic

dimensionality continues equal to one as illustrated in Figure 3.3.

Figure 3.3: A line embedded in two and three dimensions where D = 1.
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Faloutsos & Kamel (1994) proposed the use of the intrinsic dimension as a tool to

measure the non-uniform behavior of real datasets. Moreover, the authors presented

empirical studies to demonstrate that real data usually have self-similar behavior, which

is the fundamental characteristic of fractal objects. Therefore, the intrinsic dimension D

of a real dataset can be estimated by calculating its fractal dimension.

The intrinsic dimension based on the fractal dimension has been employed as a useful

tool for clustering analysis (Barbará & Chen, 2003), mining of temporal association rules

(Barbará et al., 2004), attribute selection (Traina Jr. et al., 2000, 2010), time series

forecasting (Chakrabarti & Faloutsos, 2002) and spatial data mining (Traina et al., 2001).

In this chapter, we present the main concepts related to the fractal theory that are

used in some of the methods proposed in this thesis. Section 3.2 shows different ways to

calculate the fractal dimension. The correlation computation indicated by the Correlation

Fractal Dimension is detailed in Section 3.3. The fractal theory employed to monitor data

stream is discussed in Section 3.4.

3.2 Fractal Dimension

Fractals usually have unusual characteristics that can be considered paradox. For in-

stance, the Sierpinski triangle has infinite perimeter (proportional to limi→∞(1 + 1/2)i)

and null area (proportional to limi→∞(3/4)i) since at each iteration of its building pro-

cess, which is theoretically infinite, its perimeter increases and its area decreases. Due

to these properties, this fractal can neither be considered a one-dimensional Euclidean

object (since its perimeter is not finite) nor a bi-dimensional Euclidean object (since its

area is null). Thus, it is possible to consider a fractionating dimensionality called fractal

dimension (Mandelbrot, 1983). Intuitively, the fractal dimension of Sierpinski triangle is

a value between 1 and 2. Mathematically, the precise value is 1.58.

There are several definitions for fractal dimension, which are briefly presented in this

section. The basic measurement of the fractal dimension is devoted to fractals denomi-

nated exactly self-similar. This kind of fractal is composed of M replicas being each one

a scaled-down version 1:s of the original fractal.

Definition 3.3 Fractal dimension D: Let M be the number of replicas and s the scale

factor by which each replica is reduced, the fractal dimension D of an exactly self-similar

fractal defined in an E-dimensional space is:

D ≡ logM

logs
(3.1)
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The Sierpinski triangle, for example, is an exactly self-similar fractal, because its rule

of construction generates three replicas in 1:2 scale for each iteration. Therefore, the

fractal dimension of Sierpinski is D = log3/log2 ≈ 1.58. Similarly, in Figure 3.2 the

Cantor set and the Koch curve are exactly self-similar fractals with the fractal dimension

D = log2/log3 ≈ 0.63 and D = log4/log3 ≈ 1.26, respectively.

This definition of fractal dimension D is suitable for mathematical exactly self-similar

fractals with well-defined recursive construction rules. However, for datasets called sta-

tistically self-similar fractals, which do not have well-defined rules of construction, it is

more appropriated to calculate the fractal dimension by using the Box-Counting method

(Schroeder, 1991), which defines the Correlation Fractal Dimension D2 as presented in

Equation 3.2.

Definition 3.4 Correlation Fractal Dimension D2: Given a dataset self-similar in

the range of scales [r1, r2], its Correlation Fractal Dimension D2 → R+ is measured as

D2 ≡
∂log(

∑
iC

2
r,i)

∂log(r)
r ∈ [r1, r2] (3.2)

where r is the side of the cells in a (hyper) cubic grid that divides the address space of the

dataset, and Cr,i is the count of points in the ith cell.

In a practical way, the derivate value that defines the fractal dimension D2 can

be obtained by the construction of the box-count plot, which represents the values of

log(
∑

iC
2
r,i) and log(r) in a graph. For fractal datasets, the resulting curve is linear in

an interval (r1, r2) and the fractal dimension D2 is estimated by the slope of the line that

best fits the analyzed interval. Figure 3.4 shows a set of 6561 points in the Sierpinski

triangle and the plot in log–log scale of the sum of squared occupancy
∑

iC
2
r,i versus the

grid cell size (radius) r.

Figure 3.4: The box-counting plot for Sierpinski triangle (adapted from (Sousa, 2006)).

The fractal dimension was calculated by the Liboc() algorithm (linear cost on the

number of elements in the dataset) presented in (Traina Jr. et al., 2000, 2010) and
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presented as follows. Consider the address space of a point-set in an E-dimensional space,

and impose an E-grid with grid-cells of side size r. Focusing on the i-th cell, let Cr,i be

the count (‘occupancies’) of points in each cell. Then, compute the value S(r) =
∑

iC
2
r,i.

The fractal dimension is the derivative of log(S(r)) with respect to the logarithm of the

radius. Thus, Liboc algorithm can obtain the fractal dimension D of a dataset plotting

S(r) in log-log scales for different values of the radius r, and calculating the slope of the

resulting line.

It is needed to process S(r) for a quantity R of values of r, so the algorithm can achieve

a suitable statistical approximation of the line. To avoid reading the dataset again for each

value of the radius, Traina Jr. et al. (2010) proposed to create a multi-level grid structure,

where each level has a radius the half of the size of the previous level (r = 1, 1/2, 1/4, 1/8,

etc.). Each level of the structure corresponds to a different radius, so the depth of the

structure is equal to the number of points in the resulting graph. The structure is created

in main memory, so the number of points in the graph is limited by the amount of main

memory available. If this graph is linear for a suitable range of radii, the dataset is a

fractal and its fractal dimension D is the slope of the fitting line of this graph.

For each given cell side r, only the cells having at least one already processed point

are maintained, counting the sum of occupancies Cr,i of this cell. In this way, each new

point is directly associated to a cell in each level, without the need to be compared with

the previously read points. Figure 3.5 shows the structure used in the algorithm for 2-

and 3-dimensional datasets.

Figure 3.5: Representation of grid-cells in 2- and 3-dimensional spaces (adapted from (Traina Jr. et al.,
2010)).

The largest cell side of the space of points generates 2n cells. In the next level, each

cell is split into other 2n cells, and so on. Given that the position of each cell in the
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space is always known, each cell is represented by: the sum of occupancies Cr,i in this

cell, and the pointers to the cells in the next level covered by this cell (see Figure 3.5).

This structure is a kind of a multidimensional “quad-tree” (oct-tree for a 3D space, or

E-dim-tree). Figure 3.6 shows an example of this structure for a dataset with five points

in three levels in a 2-dimensional space.

Figure 3.6: Example of the data structure used for calculating the Sum of Occupancies of a dataset
with 5 points (with three levels of resolution) (adapted from (Traina Jr. et al., 2010)).

Notice that new cells are added to the structure on demand. Thus, only cells occupied

by at least one point are created (Cr,i > 0). The algorithm processes the points set only

once, so it is indeed very fast. Algorithm 1 summarizes this computation process.

Algorithm 1 Compute the fractal dimension D of a dataset A (box-count approach).

Input: Normalized dataset A (N rows, with E dimensions/attributes each)
Output: Fractal dimension D

1: for each desirable grid-size r = 1/2j, j = 1, 2, ..., l do
2: for each point of the dataset do
3: Decide which grid cell it falls in (say, the i-th cell)
4: Increment the count Ci (occupancy’)
5: end for
6: Compute the sum of occupancies S(r) =

∑
C2

i

7: end for
8: Print the values of log(r) and log(S(r)), generating a plot;
9: Return the slope of the linear part of the plot (linear regression) as the fractal dimen-

sion D of the dataset A.

In the literature, there are several methods for the fractal dimension calculation

(Schroeder, 1991; Faloutsos & Kamel, 1994). However, the most suitable method for our

work is the box-counting method since we have only used real datasets. The correlation
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fractal dimension D2 stands out for its practical and theoretical relevance. Experimen-

tally, the calculation of D2 for statistically self-similar fractals is relatively simple, and

suitable primarily for the fractals formed by isolated points distributed over some regions

of space where they are immersed. In theory, D2 is related to the concept of correlation,

as described in the next section.

3.3 Correlation Detection: FD-ASE algorithm

The number of attributes in a dataset determines its embedded dimension E, but if

there are correlated attributes, its intrinsic dimension D is smaller than E (D < E)

(Faloutsos & Kamel, 1994). The intrinsic dimension estimated by the Correlation Fractal

Dimension D2 indicates the minimum number of attributes needed to represent a dataset.

The ceiling function of the intrinsic dimension (dDe) determines a superior threshold for

the necessary attributes quantity to represent the fundamental features of the dataset.

D can also be used to discover how many and which attributes may be employed to

reduce the data dimensionality. With this purpose, Sousa et al. (2007b) proposed the FD-

ASE (Fractal Dimension Attribute Significance Estimator) algorithm aimed at identifying

different types of correlations. This technique applies the forward attribute inclusion

approach and uses the intrinsic dimension as a criterion to identify groups of correlated

attributes and to select a relevant attribute subgroup to represent the essential data

characteristics. The following definitions are needed to better understand the technique.

Definition 3.5 Partial Intrinsic Dimension pD(): Given a finite dataset A =

{a1, a2, . . . , aE} with E attributes and a subset of attributes C ⊂ A, the Partial Intrinsic

Dimension pD(C) is the intrinsic dimension projecting the dataset on the subset C.

Definition 3.6 Individual Contribution iC(): Given a finite dataset A =

{a1, a2, . . . , aE} with E attributes, the Individual Contribution iC() of an attribute ak ∈ A
is the maximum potential contribution of ak to the intrinsic dimension of A, and it is

measured as iC(ak) = pD({ak})→ [0, 1].

Consider a dataset A and a subset of attributes C ⊂ A with partial intrinsic dimension

pD(C). An attribute ai ∈ (A − C) increases the partial intrinsic dimension of C by at

most its individual contribution iC(ai), according to the level of correlation between

ai and the attributes of C. If ai is completely uncorrelated to every attribute in C,

the partial intrinsic dimension will increase by the individual contribution iC(ai), i.e.,

pD(C ∪ {ai}) − pD(C) ∼= iC(ai). On the other hand, if ai is strongly correlated to the

attributes in C, the partial intrinsic dimension will increase by a value of almost zero,
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i.e., pD(C ∪ {ai})− pD(C) ∼= 0. Additionally, if ai is weakly correlated to the attributes

in C, the partial intrinsic dimension will increase by an amount between zero and the

individual contribution iC(ai), i.e., 0 ≤ pD(C ∪ ai)− pD(C) ≤ iC(ai).

Correlations mean that the value of an attribute can be approximated from other

attributes. Sousa et al. (2007b) defined the terms “strong correlation” and “weak correla-

tion”. The first one is used when the value of one attribute can be closely deduced from

a subset of other attributes, as in linear correlations. A weak correlation indicates that

an attribute can be only approximated from other attributes, as in fractal correlations.

In order to quantify the correlation among attributes, a threshold ξ ranges from zero –

meaning complete correlation – up to one, when the attributes are totally independent.

Definition 3.7 ξ-Correlation: Given a dataset defined on A = {a1, a2, . . . , aE}, a

subset B ⊂ A is said to be ξ-correlated to a subset C ⊂ A,B ∩C = � if each attribute ai

in B does not contribute more than ξ ∗ iC(ai) to the partial intrinsic dimension of C.

Definition 3.8 Attribute Set Core ξC: Given a dataset defined on A =

{a1, a2, . . . , aE} with intrinsic dimension D, an Attribute Set Core ξC is a subset of

attributes in A such that |pD(ξC)−D| <
∑
ξ ∗ iC(ai), ∀ai ∈ (A− ξC), and there is no

attribute ak ∈ ξC such that |pD(ξC)− pD(ξC − ak)| < ξ ∗ iC(ak).

Definition 3.9 Correlation base ξBp: Given a dataset defined on A = {a1, a2, . . . , aE}
and an Attribute Set Core ξC ⊆ A, a Correlation Base ξBp is a subset of attributes

ξBp ⊆ ξC such that either ∃ak ∈ (A − ξC)|∃Mk,Mk(ξBp) → ak or there are no ξ-

correlated attributes in the dataset and ξBp = ξC = A, where Mk is a mapping indicating

that ak is ξ-correlated to all the attributes in ξBp.

Definition 3.10 Correlation group ξGp: Given a dataset defined on A =

{a1, a2, . . . , aE} and a Correlation Base ξBp ⊆ A, a Correlation Group ξGp is the subset

of attributes ξGp ⊆ A, such that, ξGp = ξBp∪ ak ∈ (A−ξC)| |pD(ξGp)−pD(ξGp−ak)| <
ξ∗iC({ak}) and ∃Mk(ξBp)→ ak, where Mk is a mapping indicating that ak is ξ-correlated

to all the attributes in ξBp.

A correlation group ξGp includes the correlation base ξBp and every attribute ξ-

correlated to all attributes in ξBp, but excludes the attributes not ξ-correlated to the full

correlation base ξBp. In other words, attributes ξ-correlated to some attributes, but not

to all attributes in ξBp are not in ξGp.

For example, consider a dataset defined by five attributes A = {a1, a2, a3, a4, a5}
as illustrated in Figure 3.7(a). This dataset has the mappings M2({a1}) → a2 and

M5({a1}) → a5 as shown in Figure 3.7(b) (Definition 3.9). Then A has the correlation
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group: ξG1 = {a1, a2, a5}, with Correlation Base ξB1 = {a1}. Figure 3.7(c) shows the

mapping M4({a1, a3})→ a4. Then A has another Correlation Group: ξG2 = {a1, a3, a4},
with Correlation Base ξB2 = {a1, a3}. The Attribute Set Core ξC = {a1, a3} of A is

composed of ξB1 and ξB2 as it can be seen in Figure 3.7(d).

Figure 3.7: Example of correlation groups of a dataset with five attributes (adapted from (Romani
et al., 2010b)).

Notice that if a function exists that fk(ξBp)→ ak, ξBp ⊂ ξGp, ak ∈ A, then ak ∈ ξGp

and pD(ξGp) = pD(ξGp−ak). However, correlations are not limited to functions. In fact,

any mapping Mk(ξBp)→ ak such that |pD(ξBp ∪ ak)− pD(ξBp)| < ξ ∗ iC(ak) defined as

a ξ-correlation, so for every attribute ak ∈ Gp, ak /∈ ξBp we have:

|pD(ξGp)− pD(ξGp − ak)| < ξ ∗ iC(ak) (3.3)

Therefore, an attribute ai in a Correlation Group but not in the Correlation Base does

not increase the partial intrinsic dimension of the group by more than ξ ∗ iC(ai), that is

|pD(ξGp)− pD(ξBp)| <
∑
ξ ∗ iC(ai), ∀ai ∈ (ξGp − ξBp).

Intuitively, FD-ASE first calculates the intrinsic dimension of a dataset through the

LiBOC algorithm. Afterwards, FD-ASE measures the partial intrinsic dimension consid-

ering incremental sequences of variables. For instance, FD-ASE first calculates D consid-

ering only the first variable in the dataset. After, it calculates D considering the first and

the second variable in the dataset and so on. The FD-ASE algorithm uses the variation
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in the partial intrinsic dimension as a criterion to identify groups of correlated variable.

In addition, FD-ASE uses the partial intrinsic dimension to select a relevant attribute

subgroup to represent the essential data characteristics. For example, let be a dataset of

three attributes a1, a2 and a3 that represents a line. The embedding dimension of this

dataset is three (E = 3) and its intrinsic dimension is equal to one (D = 1). Executing

the FD-ASE algorithm, the Correlation Group ξG1 = {a1, a2, a3} and the Correlation

Base ξB1 = {a1} are found. It means that a1 is correlated to a2 and a1 is also correlated

to a3. FD-ASE also generates an Attribute Set Core ξC = {a1}, indicating that only the

attribute a1 is enough to represent the dataset.

This approach allows spotting the attributes that define others, as well as how strong

their correlations are. Therefore, the analyst of the database can drop the attributes that

are not meaningful and save memory space as well as time processing when managing and

querying the data. The detection of correlation groups is a powerful tool to understand the

relation among variables from meteorological stations and those extracted from remote

sensing images. In Chapter 5, we will demonstrate the applicability of the FD-ASE

method in the agrometeorologic domain.

3.4 Data Stream Monitoring through SID-meter

Intuitively, a data stream is a flow of data items ordered (explicitly by a time stamp or

implicitly by order of arrival to the system that handles it), potentially unbounded and

usually generated in real time.

Definition 3.11 Data stream is an ordered sequence of events (or items)

{ev1, ev2, . . . , evn, . . .} in which an event evj is defined by a set of E measured attributes

ai, such that each evj = (a1, . . . , aE) (Sousa et al., 2007a).

In general, data streams are characterized by large amounts of data generated in

synchronous or asynchronous processes potentially infinite. Another characteristic quite

common in applications involving data streams is the evolution, i.e., trends of the data

undergo significant changes over time.

These changes may mean temporary events (for example, a week of freezing tem-

peratures caused by an isolated wheather event) or relevant changes in the process of

generating the stream that result in variations in the distribution of data (for instance,

climate change caused by factors, such as global warming). The identification of these

tendency variations in evolving data streams is crucial in some types of applications, such

as monitoring of climate variations, monitoring of industrial processes, systems of fraud

detection in credit card, among others.
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The intrinsic dimension estimated by fractal dimension can be used in algorithms for

analyzing and processing data streams. The variation of the intrinsic dimension over time

into a data stream reflects changes in trends, such as changes in the distribution of the

data or in the correlations among attributes that define the stream. For example, in a

data stream defined by quotations of currencies based on U.S. dollars, changes in local or

international financial market and exchange policies may alter the correlations between

currencies, as well as increase and decrease the number of correlated currencies.

In the literature, several authors work on analysis of behavior changes of evolving

data (Aggarwal, 2003; Kifer et al., 2004; Papadimitriou et al., 2004), burst detection

(Kleinberg, 2003; Zhu & Shasha, 2003), classification (Aggarwal et al., 2004b; Gama

et al., 2005; Ferrer-Troyano et al., 2006; Aggarwal & Yu, 2008), clustering (Guha et al.,

2003; Aggarwal et al., 2004a; Rodrigues et al., 2008), frequent items identification, data

streams maintenance and processing (Jin et al., 2003; Manjhi et al., 2005; Sakurai et al.,

2007).

The general idea of using the intrinsic dimension as a tool to monitor evolving data

streams is to continuously measure D over time in order to detect significant variations

of successive values of D and, consequently, identify meaningful behavior changes. An

approach to measure the intrinsic dimension of data stream was proposed by Sousa et al.

(2007a). The authors presented the algorithm SID-meter (data Stream Intrinsic Dimen-

sion meter), which considers a data stream as a sequence of events {ev1, ev2, ..., evn}, each

of which represented by an array of E measurements. The events occurring within a time

interval are considered as a dimensional dataset of dimension E. The fractal dimension D2

is thus used to estimate the intrinsic dimension D of successive sub-sequences of events.

SID-meter applies an event-based sliding window divided into nc sequential periods,

named counting periods. Each period can process events arriving during a given time or

a predefined number of incoming events, i.e., ni events are processed in each counting

period. When a counting period is completed, the events of the oldest one are discarded.

Therefore, nc and ni respectively specify the length and the movement step of the mea-

suring window. Figures 3.8(a) and 3.8(b) illustrate successive sliding windows, divided

into four counting periods, through a data stream composed of the attributes a1, a2 and

a3.

When a counting period finishes, a new value of D is computed considering the events

in the current window. The value of D is based on the count of events inside the whole

window, following Equation 3.2. Thus, SID-meter continually measures D for successive

windows, tracking the stream behavior over time.
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Figure 3.8: Counting periods of a sliding window (adapted from (Romani et al., 2009a)).

3.5 Summary

In this chapter, we presented concepts from the fractal theory that have been explored

with promising results to analyze the behavior of real datasets. Several studies have shown

that, in general, real data have the property of self-similarity and thus can be modeled as

a fractal. In particular, the correlation fractal dimension has been successfully used as a

tool for analysis of data distribution in the space of attributes, especially in data mining.

We also described two methods that use the intrinsic dimension estimated by fractal

dimension: FD-ASE in Section 3.3 and SID-meter in Section 3.4. FD-ASE identifies

correlation groups that define which attributes are correlated and which of them best

represent each correlation found (correlation base). SID-meter allows the monitoring

process of data streams through measurement of intrinsic dimension in different windows

indicating changes in the data flow.

The atmospheric conditions represented in the meteorological measurements that com-

prise the historical series used in this work are complex dynamic systems whose analyses

can benefit from fractal theory. Thus, the methods briefly discussed in this chapter (FD-

ASE and SID-meter) were used as part of some proposed methods for analysis of the

climate and remote sensing series. These new methods and the experimental results are

presented in Chapter 5 of this thesis.
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Chapter 4

Data and Time Series Mining

4.1 Introduction

In recent years, improvements in the data acquisition technology have decreased the time

interval of data gathering, bursting the quantity of the produced data. In addition, storage

capacity of databases has also increased generating huge amounts of data that exceed our

human ability for comprehension without the support of data analysis tools. Therefore,

there is imminent and constant need for developing of new algorithms, techniques and

methods to aid specialists from different fields to analyze the enormous volume of data in

order to discover useful information and knowledge.

Consequently, several methods have been developed in order to mine large amounts of

data to discover data patterns contributing to knowledge bases, business strategies, and

scientific research. Data Mining is an interdisciplinary field that combines a set of disci-

plines including database systems, statistics, machine learning, visualization, information

retrieval, pattern recognition, image analysis, and others. Complementary, information

extracted through data mining techniques may be used in a variety of applications, such

as business analysis, production control, biomedical systems, climate change, and agricul-

ture. One topic of Data Mining field that focuses on discovering patterns, specifically in

historical series of data, is called Time Series Mining.

In this doctorate thesis, data mining techniques were employed to analyze climate data

and remote sensing images. First of all, data mining techniques were used to optimize

similarity searching in time series in an efficient and effective way. In a second step,

time series mining was employed to transform time series in a symbolic representation to

discover association patterns among heterogeneous series. Therefore, data mining is one

of the pillars of this thesis highlighting the association rule mining as the main task of data

mining that was explored in this work. Additionally, other tasks of data mining were also
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used, such as feature selection, discretization, data transformation, and clustering. An

overview of discretization and data transformation concepts is presented in this chapter.

This chapter is organized as follows. Section 4.2 presents the concept of Knowledge

Discovery in Databases (KDD) and the main Data Mining (DM) tasks. Section 4.3 shows

the steps of time series mining process. Some important methods of preprocessing phase

are detailed in Section 4.4. The association task is defined in Section 4.5. Finally, the

distance functions applied to similarity search in time series are discussed in Section 4.6.

4.2 The KDD process

Knowledge Discovery in Databases or simply KDD is an interactive sequence of steps

with the purpose of discovering useful information and knowledge from data. One of

the most used definitions for the KDD concept was proposed by Fayyad et al. (1996)

“KDD is the nontrivial process of identifying valid, novel, potentially useful, and ultimately

understandable patterns in data”.

The KDD process refers to steps in which knowledge is extracted from data, as it

can be seen in Figure 4.1. In the process, data mining corresponds to an essential step

where methods are applied in order to find data patterns. Due to the importance of this

step in the KDD process, the term Data Mining is actually used to summarize the whole

process (Han & Kamber, 2001). In general, the knowledge discovery process means finding

patterns in data, in an interactive and iterative way, through execution of algorithms

followed by analysis of their results.

Figure 4.1: An overview of the steps in the KDD process (adapted from (Han & Kamber, 2001)).

According to Fayyad et al. (1996), the major steps of KDD process are:

1. Data Cleaning : Real-world databases often have incomplete, noisy and inconsistent

data that can damage the data analysis hindering the patterns detection. Data

cleaning routines work to prepare the data to the next steps in a KDD process by

filling in missing values, smoothing noisy data, identifying and removing outliers,

and resolving inconsistencies.
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2. Data Integration: In some circumstances, data from multiple sources must be

merged and transformed into appropriate forms to be included in the same analysis.

Thus, this step involves techniques to correctly integrate multiple databases, data

cubes, or files in a data warehousing.

3. Data Selection: This step corresponds to the identification of relevant data to the

analysis task and their retrieving from the databases.

4. Data Transformation: In this step, data are transformed or consolidated into suit-

able forms for mining using operations, such as summarization, aggregation, gener-

alization, or normalization.

5. Data Mining : Core step in the KDD process, where computational techniques are

applied to extract unknown and useful patterns from the data.

6. Pattern Evaluation: In this step, interestingness measures are used to identify the

truly interesting patterns representing knowledge.

7. Knowledge Presentation: Visualization and knowledge representation techniques are

employed to present the mined knowledge to the users.

Data mining functionalities define the type of patterns to be discovered in data mining

tasks. These tasks consist of a set of techniques, procedures, and algorithms used to ex-

tract patterns from the data. Usually, data mining tasks are subdivided in two categories:

predictive and descriptive. Predictive mining tasks construct models on current data in

order to make predictions. Descriptive mining tasks reveal patterns and properties over

analyzed data. The major data mining tasks are:

• Association: Algorithms in this class are designed to find relationships among items

in a database.

• Classification: This task is composed of techniques to predict the class of a new

object.

• Clustering : Algorithms to group similar objects, following a given criterion.

• Summarization: In general, techniques based on statistics or aggregation are used

to summarize the data.

• Outliers detection: Algorithms that search for the objects that do not follow a

standard data/trend behavior.
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This thesis proposes to employ and to develop data mining techniques to discover

relevant patterns in climate and remote sensing data. As this kind of database is composed

of long historical series of data, methods and algorithms to mine time series were proposed.

In the next section, the time series mining process is detailed.

4.3 Time Series Mining

A time series is any set of observations ordered in a period of time. In other words, a time

series consists of a sequence of values changing with time. These measures are gathered at

equal time intervals. Time series have been used in several fields for instance agriculture,

economy, geo-physics, meteorology, etc. There are different reasons to study time series,

such as to investigate mechanisms responsible for generating this kind of data, to forecast

values in time series for a short and long time, to describe trends in series, and to search

for important periodicities in the data (Morettin & Toloi, 2006; Wei, 2006).

Time series mining brings the complexity of dealing with time series to the data mining

field. Important tasks of time series mining include trend analysis, similarity search, as

well as mining sequential and periodic patterns. The complexity can increase whenever

the original data must be pre-processed to build the times series. For example, time series

can be built from measurements taken from periodical satellite images. Moreover, different

tasks in data mining require the data to be in the frequency domain. Thus algorithms of

data transformation are essential to transform time series to a suitable format in order to

ease the use of data mining algorithms.

In general, a time series mining process involving climate and remote sensing data is

composed of a set of five steps, as illustrated in Figure 4.2 and described in Table 4.1.

Table 4.1: The steps of time series mining process.

Step Objective

Extraction extract time series from images and other kind of complex data
Pre-processing remove errors and noise, and transform the data
Integration integrate different time series from several sources
Mining apply algorithms to discover patterns and knowledge
Presentation present the mined knowledge

The most important phase in the time series mining process is the preprocessing, since

time series need to be converted into discrete intervals or symbolic sequences for some

mining tasks. In general, the same steps of KDD process can be defined in the time series

mining. However, the data mining tasks have some particularities in their definitions,

which are described as follows.
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Figure 4.2: An overview of the steps of time series mining process adapted to the context of this
doctorate thesis.

• Similarity Search: Algorithms to find the most similar time series considering a

query time series and some similarity measures.

• Rule discovery : Task related to the problem of finding rules relating patterns in a

time series or in different time series.

• Clustering : Task aimed at finding groups of time series according to some similarity

measure or criterion.

• Classification: Task that assigns an unlabeled time series to one or more predefined

classes.

• Summarization: Task that creates an approximation of a given time series that

retains its essential features.

• Anomaly Detection: Techniques to find parts of time series that contain anomalies

or unexpected/novel behavior.

4.4 Data Preprocessing

According to Zhang et al. (2005), 80% of the work in Knowledge Discovery process is

concentrated in the preprocessing phase, since real-world databases are susceptible to
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noisy, missing and inconsistent data. Incomplete data can occur for different reasons,

such as: attributes of interest are not always available, data may not be included because

they were not considered important when the database was created, relevant data may

not be registered due to misunderstanding or because of equipment malfunctions, and

other reasons (Han & Kamber, 2001).

In general, noisy data occurs mainly due to failures in data collection instruments,

human or computer errors during data entry, technology limitations, such as limited buffer

size for synchronized data transfer and consumption. Moreover, incorrect data may result

from inconsistencies in naming conventions and data codes used (Han & Kamber, 2001).

As a solution, data preprocessing techniques may be used. For instance, data cleaning

can be applied to correct inconsistencies and remove noise from the data. Data integration

is used to merge data from different sources into a consistent database. Data transforma-

tions, such as normalization methods, may improve the accuracy of mining algorithms.

Aggregating, eliminating redundant attributes or clustering to reduce the data size are

examples of data reduction techniques.

The main purpose of the preprocessing phase is improving the overall quality of the

mined patterns. In this doctorate work, different preprocessing techniques were used

to prepare data to be submitted to the proposed and extended mining methods. Some

techniques for data pre-processing, which were employed in this work are described in

details in the next sections.

4.4.1 Discretization techniques

The most common types of attributes used in data mining are nominal (categorical),

continuous, and discrete. The nominal attributes only assume a limited number of values

without a relationship of order among the values. An example of categorical attribute

is weather condition, such as: sunny, cloudy and rainy. On the other side, continuous

attributes are composed of an infinite number of values with a relation of order among

them. The value of maximum temperature is an example of a continuous attribute.

Discrete attributes have a reduced number of values when they are compared to continuous

attributes. These attributes also preserve the relation of order between values. The

mapping process of continuous attributes into discrete attributes is called discretization.

Discretization techniques are used to reduce the number of values for continuous at-

tributes by dividing the range of attributes into intervals that can be used to replace

data values (Han & Kamber, 2001). The objective of the discretization algorithms is to

determine the best set of cut points to be used to convert continuous into discrete data. A

cut point is a threshold in a real values interval. Occasionally, the discretization process
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is a mandatory step of a mining algorithm that only works with nominal or discrete data.

Thus, a discretization algorithm is necessary whether the real application needs to deal

with continuous data.

One disadvantage of using discretization algorithms is the loss of precision of values

and loss of information that occur during the discretization process that can lead the data

mining algorithms to have tortuous results. Despite the loss of information that is inherent

in the discretization process, several works report a meaningful increasing in accuracy and

execution time of the mining algorithms when a proper discretization technique is used

in the preprocessing phase (Kurgan & Cios, 2004).

The discretization methods can be supervised, i.e. using the class information of the

instances (examples) to promote discretization, and not-supervised when they do not use

this information. The simplest discretization methods are equal-width (ranges of values

with the same length) and equal-frequency (intervals with the same instances number).

The method 1R is an improvement from the equal-width method, where thresholds of

intervals (cut points) are adjusted according to information about instances class (Holte,

1993). Kerber (1992) proposed the ChiMerge algorithm that uses the statistical test χ2

to determine when consecutives intervals must be clustered. Algorithms that accomplish

both discretization and feature selection tasks have been proposed in the last years. One

example is the Chi2 algorithm (Liu & Setiono, 1995) that is an upgrading of the ChiMerge

algorithm.

Omega is a supervised algorithm for feature selection and discretization (Ribeiro et al.,

2008). First, Omega sorts the continuous values and defines the initial cut points, where

each cut point is a limit of an interval (bin) of real values. When a change in the class

label of the instances occurs, a cut point is created. Figure 4.3 shows a simple example

of Omega execution with eight real values.

Omega fixes the minimum frequency for a bin, avoiding a great number of cut points

in the second step. The algorithm eliminates the right cut points of the intervals that do

not satisfy the minimum frequency restriction given by an input parameter Hmin as it can

be seen in Figure 4.3. Thus, if the value of Hmin is high, the bins obtained in this step

are few.

In the third step, consecutive intervals with the same majority class and with an

inconsistency rate smaller than the maximum inconsistency threshold (ζmax) are fused.

The majority class is the most frequent class in an interval. An inconsistence is an

occurrence of a class different from the majority class in an interval. Let MTi
be the

majority class of an interval Ti. Equation 4.1 gives the inconsistence rate ζTi
of an interval

Ti.
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Figure 4.3: Example of the Omega execution. The letters A and B are the class information provided.

ζTi
=
|Ti| − |MTi

|
|Ti|

(4.1)

where |Ti| is the number of instances in the interval Ti and |MTi
| is the number of instances

of the majority class in Ti.

Figure 4.3 shows an example of the cut point that is removed in the third step using

ζ = 0.35. The inconsistence rates ζTi
correspondent to the second and third interval are

ζT2 = 0/2 and ζT3 = 1/3 = 0.33, respectively. As T2 and T3 have the same majority class,

i.e. MT2 = MT3 = “A” and ζT2 ≤ ζmax and ζT3 ≤ ζmax, the second and third intervals are

fused.

In the last step, Omega performs the feature selection. Let T be the set of intervals

in which a feature f is discretized. For each feature, the algorithm computes the global

inconsistence ζG, according to Equation 4.2.
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ζG =

∑
Ti ∈ T (|Ti| − |MTi

|)∑
Ti ∈ T (|Ti|)

(4.2)

Every attribute whose global inconsistence value is greater than an input threshold

ζGmax is removed from the set of attributes. Figure 4.3 shows the end cut points determined

by the Omega algorithm to the feature f . From eight instances, only two have classes

different from the majority class in their intervals. Thus, the global inconsistency of the

feature f is ζG = 2/8 = 0.25. If ζG ≤ ζGmax , the feature f is selected, otherwise it is

eliminated from the feature vector.

The Omega algorithm is used as a module in a new method proposed in this work

to mine association rules from time series, because this algorithm reached better results

when it was compared to the 1R, ChiMerge and Chi2 algorithms (Ribeiro et al., 2008).

This new method is presented in details in Chapter 5.

4.4.2 Time Series Representation

One reason to represent time series by symbolic data is to provide a more concise way to

spot the major characteristics of the data. In addition, other important aspects must be

considered, such as data compression, processing speed up, and noise removal. In general,

several techniques for time series analysis require data in a frequency domain. Distance-

preserving orthonormal transformations are often used to transform data from the time

domain to the frequency domain. However, the appropriate choice of representation is very

important since this process affects the efficiency of time series mining (Han & Kamber,

2001). Accordingly, a large number of time series representations have been proposed as

illustrated in Figure 4.4, that shows a hierarchy inspired by Lin et al. (2003). We can

classify these techniques in two groups: data adaptive and non data adaptive.

Some examples of non data adaptive techniques are Discrete Wavelet Transform (Chan

& Fu, 1999), Discrete Fourier Transform (Faloutsos et al., 1994), Discrete Cosine Trans-

form (Korn et al., 1997), Chebyshev polynomials (Cai & Ng, 2004), and Piecewise Aggre-

gate Approximation (Keogh et al., 2001a). Other techniques are data adaptive, such as

Piecewise Linear Approximation (Chen et al., 2007a), Adaptive Piecewise Constant Ap-

proximation (Keogh et al., 2001b), Single Value Decomposition (Faloutsos et al., 1994),

Symbolic Aggregate approXimation (Lin et al., 2007), and Multi-resolution Vector Quan-

tized (Wang et al., 2010). An overview of some techniques for data transformation, where

n is the original dimensionality of the data and N is the reduced dimensionality of the

data, is presented as follows.

The Discrete Fourier Transform (DFT) represents time series as a linear combination

of sine and cosine functions keeping only the first n/2 coefficients, because each sine
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Figure 4.4: A hierarchy of various time series representation, where the techniques are highlighted in
blue.

function requires two numbers for the phase (w) and amplitude (A,B) (Agrawal et al.,

1993a; Faloutsos et al., 1994). Figure 4.5(a) presents an example of the application of

DFT to transform a time series. DFT has an ability to compress most natural signals,

which is an advantage. Moreover, there is a fast algorithm, called Fast Fourier Transform

(FFT) (Winograd, 1976; Gonzalez & Woods, 1992), that calculates the DFT coefficients

in O(nlogn) time. However, this technique has some problems, such as its difficulty in

dealing with sequences of different lengths.

The Discrete Wavelet Transform (DWT) method represents time series as a linear

combination of Wavelet basis functions keeping the first N coefficients. There are many

types of wavelets (Chan & Fu, 1999; Popivanov & Miller, 2002). However, researchers in

indexing and time series mining usually use the Haar wavelets. In addition, Haar wavelets

is also simple to implement. An example of applying this technique can be seen in Figure

4.5(b). DWT has a good ability to compress stationary signals. Algorithms for DWT can

be executed in linear time that is also positive.

Although there are many different types of wavelets, researchers in time series min-
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ing/indexing generally use Haar wavelets.

Similarly to DFT and DWT, Singular Value Decomposition (SVD) represents time

series as linear combination of eigenwaves keeping the first N coefficients (Korn et al.,

1997; Keogh et al., 2001b). However, SVD differs from the other methods because the

eigenwaves are data dependent. An SVD example is shown in Figure 4.5(c). This is an

optimal technique for dimensionality reduction although computationally expensive.

Another method, Piecewise Linear Approximation (PLA) represents time series as a

sequence of straight lines that could be connected, and it is allowed N/2 line segments.

When lines are disconnected, it is allowed only N/3 lines (Shatkay & Zdonik, 1996; Mori-

naka et al., 2001). This technique is usually employed by either performing interpolation

or regression. Figure 4.5(d) presents an example of PLA transformation. There are fast

linear time algorithms for PLA, which have an ability to compress natural signals (Mori-

naka et al., 2001).

The Piecewise Aggregate Approximation (PAA) method represents a numeric time

series as a sequence of box basis functions, where each box has the same length. Given

the reduced dimensionality representation, it is possible to calculate the approximate

Euclidean distance (Yi & Faloutsos, 2000; Keogh et al., 2001a). An example of applying

this method can be seen in Figure 4.5(e). This technique is fast to calculate.

The Adaptive Piecewise Constant Approximation (APCA) is a generalization of PAA

that allows the piecewise constant segments to have arbitrary lengths (Geurts, 2001; Keogh

et al., 2001b). As time series have little details in some parts and high details in others,

APCA can fit itself to the data getting a better approximation. An APCA example is

presented in Figure 4.5(f). There is a fast algorithm for APCA with linear complexity

(Keogh et al., 2001b). However, the implementation of this technique is complex.

The Symbolic Aggregate approXimation (SAX) is a symbolic representation of time

series that allows time series of length n to be reduced to a string of length w where

w < n (Lin et al., 2003). The time series is transformed using the PAA representation

and after that the PAA representation allows to build a symbolic discrete string. The

major feature of this technique is the lower bounding approximation to the Euclidean

distance, which is useful for indexing.

The Multi-resolution Vector Quantized (MVQ) approximation is a representation for

time series similar to DWT, but it keeps both local and global information about the

data (Wang et al., 2010). The main characteristics of this method are: a “vocabulary”

of subsequences is discovered using time-tested “vector quantization” methods; it con-

siders multiple resolutions that improves the accuracy, and it uses text-based techniques

from information retrieval to weigh down uninteresting matches in order to provide a new

distance metric. The MVQ method maintains high-level feature information instead of
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Figure 4.5: Examples of the most used representations for time series mining where lines in red represent
the original signal and lines in blue correspond to the transformed signal (adapted from (Keogh, 2001)).

keeping low-level time series values. This aspect makes it easy to introduce more sig-

nificant similarity measures. MVQ uses a multi-resolution distance function and scales

linearly with the database size and dimensionality.

4.5 Association Rules

Association rule mining aims at finding association or correlation relationships among a

set of data items. The association task is largely used due to its applicability and easy

comprehension of patterns generated by this task. Association rules were first proposed
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by Agrawal et al. (1993b) to solve the problem of discovering which items occur together

in a transaction.

Let I = {i1, . . . , in} be a set of literals called items. A set X ∈ I is called itemset.

An itemset X with k elements is defined as itemset-k. Let R be a table with transactions

t involving elements that are subsets of I. The transaction t supports an itemset X, if

X ∈ t. An association rule is an expression of the form X → Y , where X and Y are

itemsets. X is called body or antecedent of the rule, and Y is called head or consequent

of the rule. An association rule X → Y can be translated as “if X then Y ” indicating

that when X occurs Y also occurs. Support sup and confidence conf measures, described

respectively in Equations 4.3 and 4.4, are used to determine the rules returned by the

mining process, where |R| is the number of transactions in relation R.

sup(X → Y ) =
|X ∪ Y |
|R|

(4.3)

conf(X → Y ) =
|X ∪ Y |
|X|

(4.4)

The problem of mining association rules, as it was first stated, involves finding rules

that satisfy the restrictions of minimum support and minimum confidence specified by

the user.

The support of an itemset X is the ratio between the number of transactions in R that

support X and the total number of transactions of R. Support is used as a restriction

over itemsets frequency to mine the rules. An itemset X is called frequent itemset if the

support of X is greater or equal to the minimum support specified by the user. Confidence

of a rule X → Y is the ratio between the number of transactions that contains X and Y ,

and the number of transactions that contains X.

A well-known example of association rule involving data from a market basket is “70%

of shopping that contains diaper also contains beer and 4% of all shopping contains both

items”. In this example, 70% is the rule confidence and 4% is the rule support. Typically,

association rules are considered strong and interesting when they satisfy both a minimum

support threshold and a minimum confidence threshold.

The support measure has the monotone property, which means that all nonempty

subsets of a frequent itemset must also be frequent. This property, also called Apriori

property, is used to reduce the search space improving the efficiency of the level-wise

generation of frequent itemsets.

When a database is composed of time series, the problem of association rules mining

may be divided into two categories: mining of single time series and multiple time series.

Multiple time series may be mined through traditional association rules algorithms. As-
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sociation rule mining for single time series is considered a problem of mining sequential

patterns or sequence mining. Algorithms for association rules mining as well as sequential

patterns mining are presented in the next sections.

4.5.1 Algorithms for association rules mining

Rules that satisfy both a minimum support threshold and a minimum confidence threshold

are called strong association. Association rule mining is a process divided in two steps

(Agrawal & Srikant, 1994):

• Find all frequent itemsets,

• Generate strong association rules from the frequent itemsets.

The critical phase of association rules mining is the determination of frequent itemsets.

The next phase of rules generation from the frequent itemsets is common for most of the

algorithms. The first algorithms to determine frequent itemsets were AIS (Agrawal et al.,

1993a) and SETM (Houtsma & Swami, 1993). The most used algorithm for association

rules mining is Apriori, which was proposed by Agrawal & Srikant (1994).

The Apriori algorithm

Apriori uses the monotone property to prune rules. The pseudo-code of Apriori is de-

scribed in Algorithm 2, where Lk is a set of frequent itemsets with length k (k-itemsets

that satisfy the minimum support threshold minsup). Ck is a set of candidates itemsets

of length k (k-itemsets potentially frequent).

Algorithm 2 Apriori Algorithm
Data: Table with transactions t, minimum support minsup
Result: Set of frequent itemsets
L1 = {frequent itens}1

for (k = 1; Lk 6= �;k + +) do2

Ck+1 = new candidates generated from Lk3

for each transaction t in database do4

Increase the count for all candidates in Ck+1 that are included in t.5

end6

Lk+1 = candidates in Ck+1 that satisfy minsup7

end8

return ∪kLk9

In the first interaction (line 1) the algorithm scans all transactions in order to count

the number of occurrences of each item and determines L1 (set of frequent 1-itemsets). In
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lines 2 to 8 is determined Lk (set of frequent k-itemsets). The set Lk is used to generate

Ck+1 (set of candidates k-itemsets). Thus, the itemset candidates Ck+1 are generated

through a join of Lk with itself according to the condition that k − 1 items from the

join data are the same data as it can be seen in line 4. Next, Apriori verifies for each

generated itemset if it has a subset of non-frequent itemsets. If it is true, the itemset is

excluded from the set of candidate itemsets, on contrary it is added to Ck+1. On lines 4-6

is computed the count of each candidate k-itemset, where the counter is incremented by

one for each transaction in which it appears. Finally, only the candidates k-itemset that

have support greater or equal than the minimum support threshold are added to Lk and

returned.

Figure 4.6 illustrates the Apriori algorithm for finding frequent itemsets in R. First,

each item is a member of the set of candidate 1-itemset, C1. The algorithm scans all

of the transactions to count the number of occurrences of each item. Suppose that the

minimum support required is 40% (2). Then, the set of frequent 1-itemset, L1, can be

determined, eliminating all candidate that not satisfy support ≥ min sup.

The algorithm generates a candidate of 2-itemsets, C2, applying the joint operation

in L1 (L1 on L1). Next, transactions in R are scanned and the algorithm accumulates

the support count of each candidate itemset in C2, as it can be seen in the second row of

Figure 4.6. The algorithm then generates the set of candidate 3-itemsets, C3, as detailed

in Figure 4.6. Based on the Apriori property that all subsets of a frequent itemset must

also be frequent, some candidates are eliminated a priori and they do not appear in table

of L3. As C4 = � due to the application of the Apriori property, the algorithm ends,

having found all of the frequent itemsets. Once the frequent itemsets from transactions

in the database R have been found, the association rules from them are generated since

they satisfy the minimum confidence.

The phase in data mining, which requires more processing is the determination of

frequent itemsets. New algorithms were developed to make this phase more efficient,

among them stand out the algorithms: Partition (Savarese et al., 1995), FP-Growth (Han

et al., 2000) and Eclat (Zaki et al., 1997).

A problem of association rules mining is the large number of rules generated. Ya-

mamoto et al. (2008) presented techniques of itemsets visualization, allowing visual anal-

ysis of the itemsets, granting the user to select the more interesting itemsets that appear

in the rules.

Another very important issue in association rules mining refers to the measure of

interest to be used. A measure of interest is the importance degree of a rule. It defines,

which rules will be returned by the mining algorithm. In addition to the most used

measures of interest - support and confidence - other measures of interest: all-confidence
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Figure 4.6: Generation of candidate itemsets by the Apriori algorithm, where the minimum support
count is 40%.

(Omiecinski, 2003), conviction (Brin et al., 1997), and lift (McNicholas et al., 2008) are

presented in Table 4.2.

4.5.2 Mining sequential patterns

A new category of data mining techniques called sequence mining or sequential patterns

mining was created to deal with the sequential nature of the data considering the time

or the relation of time of the events occurrence. The importance of this research topic is

justified by the number of potential applications areas where sequential patterns can be

mined, such as telecommunication, financial market, weather forecast, medicine, among

others.
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Table 4.2: Measures of interest used in the association rules mining.

Measure Calculus Meaning

all-confidence allconf(X) = sup(X)
max(sup(x∈X))

All rules generated from X have
confidence at least allconf(X).

conviction convi(X → Y ) = 1−sup(Y )
1−conf(X→Y )

Compares the probability of X
occurs without Y with its fre-
quency of occurrence.

lift lift(X → Y ) = conf(X→Y )
sup(X→Y )

Lift measures how much more fre-
quent X and Y occur together
than expected if they are statis-
tically independents.

In this context, sequential patterns can be described in the form: “when A occurs, B

also occurs within a certain time”. Basically, the difference to traditional association rules

is that in the sequential patterns the time information is included in the rule itself and

also in the mining process as time constraints (Ahola, 2001).

In general, the sequence data is defined by three columns: object, timestamp and

events. Events can be different types of alarm in telecommunications, low or high rainfall,

etc. Thus, each transaction in a database of sequence data corresponds to occurrences of

events on an object at a specific time (Ahola, 2001). The main task associated with this

type of data is to find sequential patterns in the data, which can be useful for forecasting

future events, for example.

Over the years, many different algorithms have been proposed with the purpose of

mining sequential patterns. However, these algorithms were designed to solve problems for

specific applications, which implies in different forms to represent sequence, patterns, and

rules discovered. According to Ahola (2001),“the process of discovering sequential patterns

involves two main issues: the structure of the patterns in terms of their representation

and constraints and the method by which a pattern’s strength is computed”.

The universal formulation of the sequential patterns defines the output of the mining

process as a set of frequent sequences or sequential patterns. In addition, a sequence

s denoted by < s1, s2, s3, . . . , sn > consists of elements si, which are events or sets of

events. The length of a sequence s is given by |s| = k where k is the number of events in

the sequence. For instance, considering the sequence < (A), (C,B), (D), (G,F,E) >, its

length is seven and s1 = A, s2 = (C,B), s3 = D and s4 = (G,F,E).

Algorithms for sequences mining allow users to define mechanisms that restrict the

sequential patterns of interest, besides the restriction imposed for the support measure.

Constraints are conditions imposed by the user. The sequential patterns to be mined

must satisfy the constraints, which can be classified into two categories: restrictions of

“generation”and restrictions of “validation”. The first type of restriction is imposed on the
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generation stage of mining algorithms to reduce the search space of patterns. The latter

are constraints that can only be verified in the validation phase of mining algorithms.

The validation constraint Min-Max is a pair of integers (m, M) where m is the min-

imum threshold and M is the maximum threshold (Srikant & Agrawal, 1996). Thus, a

client c supports the sequence pattern c = s < s1, . . . , sn > with the restriction ((m, M)

if there are instants t1, t2, . . . , tn such that (c, s1, t1), . . . , (c, sn, tn) constitutes the trans-

actions database and for all i = 1, . . . , n− 1, m ≤ |ti+1 − ti| ≤M .

A restriction of Time-Window is a number W ≥ 0 (Srikant & Agrawal, 1996). A

customer supports the sequential pattern c = s < s1, . . . , sn > with the constraint Time-

Window W if there are instants t1, . . . , tn such that for every item i ∈ sj exist tj0 ∈
[tj −W ; tj +W ] such that (c, i, tj0) composes the database of transactions.

Constraints of sets are restrictions imposed to the patterns in the generation phase,

such as: only generates patterns s =< s1, . . . , sn > where the itemsets si satisfy a certain

condition involving operations between sets. Restrictions of Regular Expression were

introduced by Garofalakis et al. (1999, 2002) to mine sequential patterns < s1, . . . , sn >

that satisfy a given regular expression.

Figure 4.7 illustrates some methods for sequential patterns mining developed along the

last years, such as WINEPI and MINEPI (Mannila et al., 1997), AprioriAll (Agrawal

& Srikant, 1995), GSP (Srikant & Agrawal, 1996), SPADE and cSPADE (Zaki, 2001),

SPIRIT (Garofalakis et al., 2002), MSDD (Oates et al., 1997), TAG (Bettini et al., 1998),

and PrefixSpan (Pei et al., 2001). Some of these algorithms are briefly presented in this

section.

Figure 4.7: Timeline diagram highlighting the most important sequential patterns methods.

WINEPI is a set of algorithms proposed for discovering frequent sequences from alarm

logs of telecommunication network (Mannila et al., 1997). This log consists of a single
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and long sequence of events (alarms). In WINEPI, there is the definition of episodes

that is a partially ordered collection of events occurring together. Although designed to

telecommunication network alarms, this algorithm may be applied to any single sequence

for different applications.

Sequences can be serial or parallel. The first one requires temporal order of events

while the latter does not have requisition of relative order. WINEPI uses a time window

to guarantee that events of sequences are close to each other. The time window slides

over the data and only the occurrences within the window are considered. The support

measure is calculated by counting the number of windows in which the sequence occurs.

Thus, episode α is frequent if fr(α, s, win) ≥ minfr, i.e, “if the frequency of α is greater

than the minimum frequency threshold in data sequence s and with window of width win”

(Mannila et al., 1997). The confidence measure is the conditional probability taken after

the occurrence of a whole episode in a window. A given window can hold a number of

episodes.

WINEPI rules are similar to association rules, but with a supplementary time aspect.

In order to search for minimal occurrences, Mannila et al. (1997) proposed an extension

of WINEPI, called MINEPI. It is similar to WINEPI giving the conditional probability

that a certain combination of events happens within some time bound, given that another

combination of events has occurred within a time bound.

The AprioriAll algorithm was proposed by Agrawal & Srikant (1995) to deal with

the problem of mining sequential patterns over databases of customer transactions. The

algorithm is executed in four phases. First, the database is sorted. Implicitly, the original

transaction database is converted into a database of customer sequences.

In the second phase, the algorithm finds the set of all litemsets, which are itemsets

with minimum support. Then, the litemsets is mapped to a set of contiguous integers in

order to compare two litemsets for equality in constant time, reducing the time required to

check if a sequence is contained in a customer sequence. In the next step, sequence phase,

AprioriAll uses the set of litemsets to find the desired sequences. Finally, in the maximal

phase, the algorithm finds the maximal sequences among the set of large sequences.

The GSP (Generalized Sequential Patterns) algorithm was proposed by Srikant &

Agrawal (1996) for transaction data, where each sequence is a list of transactions ordered

by time. Each transaction is defined as a set of items. GSP follows the same idea of

Apriori to generate the frequent k-sequences (sequence with k items). Each iteration

consists of the generation, pruning, and validation phases.

Initially, every item in the database is a candidate of length one. For each sequence

of length k, GSP scans the database to collect support count for each candidate sequence

and generates the candidate length of (k+ 1) sequences from length k-frequent sequences
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using Apriori. These steps are repeated until no frequent sequence or no candidate can

be found.

GSP presents better performance than the AprioriAll algorithm. GSP prunes more

candidates on the stage of pruning, and thus leads to the validation phase with much less

elements to be tested. Especially on real data, typically the minimum level of support is

very small, which leads to many candidates in later stages. Thus, eliminating the most

possible candidates in the pruning phase that are not potentially frequent, the mining

process is optimized. This is precisely the strategy used by the GSP algorithm.

SPADE (Sequential Pattern Discovery using Equivalence classes) was proposed by

Zaki (2001) to discover all frequent sequences in large databases. SPADE is a vertical

format sequential pattern mining method. Overall, the main features of the SPADE

algorithm are:

1. it uses a vertical database format, that is, the database is re-organized where the

rows of database are object-timestamp pairs associated with an event. Thus all

frequent sequences can be enumerated via simple temporal joins on id-lists.

2. a lattice-theoretic approach is used for decomposing the original search space into

smaller pieces that can be processed independently in main memory. Usually three

database scans are required, or only a single scan when some preprocessed informa-

tion is provided.

3. the problem decomposition is decoupled from the pattern search. Depth-first search

is the strategy adopted for enumerating the frequent sequences within each sublat-

tice.

An extension of the SPADE algorithm was proposed to mine constrained frequent se-

quences. This new algorithm is called cSPADE (constrained Sequential Pattern Discovery

using Equivalence classes). The algorithm involves constraints, such as length, width, and

time limitations on the sequences. Moreover, cSPADE considers minimum or maximum

gap constraints on consecutive sequence elements, applying a time window on allowable

sequences, incorporating item constraints, and finding sequences predictive of one or more

classes (Zaki, 2000).

SPIRIT (Sequential Pattern Mining Regular Expression Constraints) is a family of

algorithms for mining frequent sequential patterns that also satisfy user-specified regular

expression constraints (Garofalakis et al., 1999, 2002). The algorithm uses a less restric-

tive version of the constraint to push the constraining inside the mining process. The

constraints are imposed to prune the search space of patterns during computation. Basi-

cally, the algorithm is executed in several steps. First, it starts from the set of frequent
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events and then next steps result in the discovery of longer patterns. In the kth step, a

set of candidates sequences of length k is generated from a set of frequent sequences of

length k − 1 and pruned. Thus, the data is scanned and the support of the candidates is

counted, generating a set of frequent sequences of length k (Ahola, 2001).

4.6 Distance Functions

When comparing data elements, distance function or dissimilarity function are important

elements. A distance function must comply to the four following axioms to be considered

a metric:

1. d(s1, s2) >= 0 (positiveness)

2. d(s1, s2) = 0 when s1 = s2, otherwise d(s1, s2) > 0 (reflexiveness)

3. d(s1, s2) = d(s2, s1) (symmetric)

4. d(s1, s3) = d(s1, s2) + d(s2, s3) (triangle inequality) for any si pertaining to the data

domain.

There are distance functions that do not satisfy the four axioms. These distance

functions are called, in specific situations, pseudo-metrics or semi-metrics.

Figure 4.8 shows a classification for some distance functions commonly applied to

time series. Given two time series, a similarity function calculates the distance between

them. The diagram in Figure 4.8 refers to distance functions that compare the i-th point

of one time series to the i-th point of another time series as lock-step measures, such

as Lp norms (Yi & Faloutsos, 2000) and DISSIM (Frentzos et al., 2007). Figure 4.8

shows Elastic Measures that allow comparison of one-to-many points, such as Dynamic

Time Warping (DTW) (Berndt & Clifford, 1994) and Derivative Dynamic Time Warping

(DDTW) (Keogh & Pazzani, 2001). Moreover, Figure 4.8 also presents Edit Distance

Measures, such as Longest Common Subsequence Model (LCSS) (André-Jönsson & Badal,

1997), Edit Distance on Real sequence (EDR) (Chen et al., 2005), Edit Distance with Real

Penalty (ERP) (Chen & Ng, 2004), and Sequence Weighted Alignment model (Swale)

(Morse & Patel, 2007). Distance measures based on thresholds, for instance Threshold

Queries (TQuEST) (Aßfalg et al., 2006), and patterns, such as Spatial Assemble Distance

(SpADe) Chen et al. (2007b) are discussed as well.

The simplest similarity measure for time series is the Euclidean Distance (Faloutsos

et al., 1994) and its variants, also known as the Minkowski family or Lp norms (Yi &

Faloutsos, 2000). The Euclidean distance corresponds to L2, which is also commonly
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Figure 4.8: A hierarchy for distance functions (adapted from (Ding et al., 2008)).

used to calculate the distance between multi-dimensional arrays and vectors. Given two

time series Q and C, of length n, where:

Q = q1, q2, . . . , qn

C = c1, c2, . . . , cn

Equation 4.5 shows how to calculate the Euclidean Distance.

d(qi, ci) =

√√√√ n∑
i=1

(qi − ci)2 (4.5)

The Euclidean distance and its variants are intuitive, linear and easy to implement

and to index with metric access methods. According to Ding et al. (2008), the Euclidean

distance is competitive with other more complex approaches, particularly whether the

database size is relatively large. However, these distance functions are very sensitive to

noise and misalignment.

With the purpose of handling time warping in similarity computation, Berndt & Clif-

ford (1994) proposed the Dynamic Time Warping (DTW), which “stretches” or “com-

presses” one time series to provide a better match with another time series. Its main

objective is to keep close time series that have similar behavior, but are delayed or dis-

torted along the time axis. Thus, this technique has a good sensibility to warping because

the comparisons between corresponding points become more flexible. In this case, points

of a series can be compared to adjacent ones in other series, as illustrated in Figure 4.9.

To align two sequences using DTW, an n,m matrix is built where the (ith, jth) element

of the matrix contains the Euclidean distance d(qi, cj) between the two points qi and

cj. Each element of the matrix corresponds to the distance between the points that it
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Figure 4.9: Comparisons between time series: a) conventional method; b) using DTW

represents. A warping path W = (w1, w2, . . . , wk) is a contiguous set of matrix elements

that defines a mapping between Q and C. The adjustment route is defined by the following

rules:

• it starts at w1 = (1, 1) and finishes at wk = (m,n)

• the sequence of route must be to adjacent elements of the matrix (including diago-

nally adjacent cells)

• the points in W must be monotonically spaced in time, that is, the sequence must

not go back in the route.

There are many warping paths, but DTW is a sum of wk elements in the path that

minimizes the warping cost. DTW is calculated by Equation 4.6.

DTW (Q,C) = min


√∑K

k=1wk

K

 (4.6)

where wk is the kth element of the adjustment route and K is the number of elements of

the adjustment route.

In Equation 4.6, K in the denominator is used to compensate the size of the deviation

between the two time series, because the warping paths may have different lengths. Dy-

namic programming is an efficient way to find the path, which is employed in Equation

4.7.

γ(i, j) = d(qi, cj) +min {γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)} (4.7)

Improvements have been proposed to speed up similarity search using DTW intro-

ducing several lower bounding measures (Yi et al., 1998; Kim et al., 2001; Keogh &

Ratanamahatana, 2005). As a result, the cost for computing DTW on large datasets was

ameliorated becoming linear (Keogh & Ratanamahatana, 2005).

In this thesis, we have performed experiments with DTW to assess whether DTW

is a suitable similarity measure to be applied in analyses of time series extracted from
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satellite images. In this example, NDVI time series from ten sugar cane producing regions

(Araraquara, Araras, Jaboticabal, Jardinópolis, Jaú, Luis Antônio, Pitangueiras, Pontal,

Ribeirão Preto and Sertãozinho) of São Paulo state were used.

Similarity searches were computed for time series of the same region as well as distinct

ones. Queries using a specific harvest as center were employed to identify similar crop

seasons in the dataset. Figure 4.10 shows the graphics of the most similar time series

(2004/2005) that indicates the crop season 2004/2005 had a similar behavior to crop

season 2005/2006, considering Jaboticabal. The crop season 2003/2004 also had a similar

trend to 2005/2006, which indicates a pattern of spectral response by NDVI from 2003 to

2006, which coincides with the sugar cane production values obtained from IBGE.

Figure 4.10: Graphs showing the result of similarity search for NDVI time series of Jaboticabal

Another example shows similarity search using time series for seven-crop-season years

of all regions and had the purpose of analyzing which cities had a similar pattern of NDVI

along the series. Figure 4.11 graphically shows these results.

Accordingly, a DTW-based method is appropriate to perform similarity search in

NDVI time series from NOAA-AVHRR imagery. This approach makes the analysis of

time series easier, because it finds similar series to a specific pattern presented by an

automatic system. This technique has been used in time series mining in many areas, and

can also be successfully employed to multi-temporal satellite images.

The Longest Common Subsequence Model (LCSS) is a distance function for time series

based on the concept of the edit distance for strings (André-Jönsson & Badal, 1997;

Vlachos et al., 2002). A threshold parameter ε was introduced indicating that two points

from two time series are equivalent if the distance between them is less than ε. Vlachos
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Figure 4.11: Graphs showing results of similarity search for complete NDVI time series using DTW:
(a) Pintangueiras and (b) Sertãozinho.

et al. (2002) used a warping threshold to restrict the matching of points along the temporal

dimension.

The Edit Distance on Real sequence (EDR) is a similarity measure of the group of

edit distances (Chen et al., 2005). EDR also uses a threshold ε just as LCSS, though its

function is to quantify the distance between a pair of points to 0 or 1. Contrarily to LCSS,

EDR penalizes the gaps between two correspondent segments regarding to the lengths of

the gaps.

The Edit Distance with Real Penalty (ERP) combines advantages of DTW and EDR

through a constant reference point for calculating the distance between gaps of two time

series (Chen & Ng, 2004). Basically, ERP uses the distance value between one of those

points and the reference point if the distance between two points is too large.

A pattern-based distance function for time series, called Spatial Assemble Distance

(SpADe) was proposed by Chen et al. (2007b). The SpADe algorithm discovers corre-
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spondent segments (patterns) within the entire series, by allowing scaling and shifting in

amplitude and temporal dimensions. The algorithm deals with the problem of finding

the most similar set of matching patterns instead of computing the similarity value be-

tween time series. One difficulty related to the algorithm is the need to adjust various

parameters, such as a temporal scale factor, amplitude scale factor, pattern length, etc.

4.7 Summary

In this chapter we presented the Knowledge Discovery on Databases (KDD) concept

focusing on analysis of time series. Recently, given the growing importance of research

involving climate change and agriculture data, where the amount of data increases every

day, there is an opportunity for specialists in the data mining to develop new methods

capable of handling large volumes of data in linear time.

We also described some preprocessing techniques since this task is very important to

prepare time series to improve the performance of mining algorithms. Association rules

is one of the most used tasks of data mining. We discussed the major algorithm for

association rules (Apriori), which can be used to mine multiple time series that have been

discretized. Due to its importance, we also detailed algorithms for sequence mining, that

are more used to mine patterns in time series. The task of association is explored in this

doctorate work as a way to detect association patterns in climate and remote sensing time

series to contribute for the improvement of the monitoring process in agriculture crops,

as we will present in Chapter 8.

Finally, we briefly described several distance functions used to similarity search in

time series. DTW, also described in this chapter, is employed in this work to allow the

similarity search of multidimensional objects that will be detailed in Chapter 6.
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Chapter 5

Employing Fractal Dimension in

Time Series

5.1 Introduction

The proposition of new approaches and techniques to assist in the monitoring of agricul-

tural crops is one of the goals of this thesis. Although there are traditional statistical

methods that are widely used in the analysis of agrometeorological data, it is still neces-

sary to develop new methods for specific problems, such as correlation detection involving

several variables, joint analysis of multiple variables, and extreme events analysis. Fur-

thermore, computational techniques can increase the data processing capacity, since the

volume of data has increased in recent years due to improvements in sensor technology.

Certainly, the analysis process and knowledge discovery in large amounts of data is a

research challenge in different areas.

Consider, for example, datasets integrating climate data and remote sensing images

from some sugar cane fields. A feature selection algorithm can identify the most relevant

attributes of both datasets, which represent the majority of the information related to

the agricultural yield and the correlations among attributes. Moreover, it is interesting to

know which attributes can better approximate the values of others. In fact, detection of

correlated attributes, their importance and precedence can improve the agrometeorological

models for sugar cane monitoring and forecasting.

Additionally, in real climate applications, an impressive amount of time series is avail-

able, both generated by meteorological stations and interpolated over distributed grid

points. As the data distribution in this application domain usually changes over time, cli-

mate time series can be seamless considered as evolving data streams. Therefore, tracking

the behavior of evolving climate data can be very useful to agricultural monitoring, for
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example, to monitor precipitation, air temperature and soil water content.

In this chapter, we present three different approaches to discover and to analyze pat-

terns on time series of climatic data and remote sensing images. The described methods

are based on fractal theory and data mining. The first technique in Section 5.2 is the

FD-ASE algorithm, applied to identify sets of correlated attributes and to select relevant

attributes to represent the meaningful features in the data.

The second one combines three algorithms in order to find association rules in datasets

composed of climate and remote sensor data. We used the FD-ASE algorithm to select

the meaningful attributes in datasets and extended its presentation format, before submit

them to the Omega algorithm that transforms continuous data into discrete ones. The

last step consists in applying the Apriori algorithm to extract association rules from the

set of discrete data. This method called Apriori-FD is described in Section 5.3.

We also explore the fractal dimension as a tool to support a framework for data stream

monitoring in agrometeorological applications (Section 5.4). The suitability of the fractal-

based approach to monitor data streams is obtained by employing a statistical approach

to compare the data in consecutive time periods, pointing out the attributes that are

responsible for the trend changes and how they influence them.

5.2 Correlation Detection

In this section, we describe one case study that exemplifies the applicability of the ap-

proach we present in this chapter. We apply the FD-ASE algorithm (see Chapter 3 for

details) to analyze the SugarCaneRegion dataset, which is composed of rain, maximum

and minimum temperature, NDVI and WRSI values taken from the eight sugar cane

productive areas from the São Paulo state from 04/01/2001 to 03/31/2008. Figure 5.1

presents the geographical distribution of these regions in the São Paulo state map.

We divided the SugarCaneRegion dataset into eight subsets, one for each evaluated

region. The dataset attributes are presented in Table 5.1. Figure 5.2 shows a mapping in

a 3-dimensional space of Araras and Pitangueiras dataset used in the experiments.

Table 5.1: Attributes description

Attribute Meaning

a1 Rainfall

a2 Maximum Temperature

a3 Minimum Temperature

a4 NDVI

a5 WRSI
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Figure 5.1: São Paulo state, located at southeastern Brazil (54◦ 00’ to 43◦ 30’ W and 25◦ 30’ to 19◦

30’ S), where major sugar cane producers are found.

The intrinsic dimensions of the Araras and Pitangueiras datasets, measured through

LiBOC (Traina Jr. et al., 2000, 2010), are illustrated in Figures 5.3(a) and 5.3(c). We

applied the FD-ASE algorithm to the dataset and evaluated the threshold ξ values above

0.7 for weak correlations. The intrinsic dimension calculation presented dDe = 3 or

dDe = 4, depending on the dataset, as it can be seen in Table 5.2. The partial intrinsic

dimension (pD()) of the reduced dataset (see Figures 5.3(b) and 5.3(d)) is very close to the

intrinsic dimension of the full dataset. This value is lower than the embedded dimension

E = 5. This means that there are 3 to 4 relevant attributes in the datasets that represent

each of the eight cities studied, indicating that at least one of the attributes is correlated

to the others.

By analyzing the correlations found, we can observe some interesting relationships

between regions. It can be noted that the groups of correlated attributes (Correlation

Group), the relevant attributes in each group (Correlation Base) and the set of relevant

attributes considering the whole dataset (Attribute Set Core) are similar for different

regions, for instance Araraquara and Luis Antonio.

Table 5.2 presents the Fractal Dimension, the Attribute Set Core (ξC), Correlation

Groups (ξG) and their Correlation Bases (ξB) generated for each region. For instance,

FD-ASE found a Correlation Group ξG1 = {a4, a1} and ξB1 = {a4} for Jaboticabal city.

Thus, as ξB1 base contains NDVI (a4), we can affirm that rainfall (a1) is correlated to

NDVI. On the other hand, the algorithm generated ξG1 = {a3, a2, a1} and Correlation
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Figure 5.2: Representation of data in a 3-dimensional space. (a) Araras dataset; (b) Pitangueiras
dataset

Base ξB1 = {a2, a3} for Araras city, i.e. as the base ξB1 contains maximum temperature

(a2) and minimum temperature (a3), we can affirm that the rainfall (a1) is correlated to

the maximum and minimum temperatures for the ξ threshold employed.

Table 5.2: Results of FD-ASE execution for a threshold ξ indicating weak correlation

City Fractal ξ ≥ 0.7
Dimension

Araraquara 3.1705 ξG1 = {a3, a5} and ξB1 = {a3} ξC = {a4, a3, a1, a2}
Araras 3.6605 ξG1 = {a3, a2, a1} and ξB1 = {a2, a3} ξC = {a2, a3, a4, a5}

Jaboticabal 3.3286 ξG1 = {a4, a1} and ξB1 = {a4} ξC = {a3, a4, a2, a5}
Jau 3.8601 ξG1 = {a1, a5} and ξB1 = {a1} ξC = {a3, a2, a1, a4}

Luis Antonio 3.2222 ξG1 = {a3, a5} and ξB1 = {a3} ξC = {a4, a3, a1, a2}
Pitangueiras 3.6131 ξG1 = {a4, a5} and ξB1 = {a4} ξC = {a2, a3, a1, a4}

Pontal 3.1265 ξG1 = {a4, a1, a5} and ξB1 = {a4} ξC = {a3, a4, a2}
Sertaozinho 2.5071 ξG1 = {a2, a5} and ξB1 = {a2} ξC = {a4, a1, a3, a2}

All regions keep NDVI and the maximum temperature in the Attribute Set Core

(ξC), evidencing the importance of these variables in the datasets. Thereafter, by using

the method of fractal correlation, we discovered the existence of correlations between

74



5.2 Correlation Detection Employing Fractal Dimension in Time Series

Figure 5.3: Araras and Pitangueiras dataset: (a and c) intrinsic dimension; (b and d) attributes for
ξC ≥ 0.7

NDVI and precipitation, which is not identified when employing the Pearson’s correlation

technique (Pearson, 1896). The coefficient of the Pearson’s correlation is calculated by

Equation 5.1.

ρx,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2 ·
√∑n

i=1(yi − ȳ)2
(5.1)

where x1, x2, . . . , xn and y1, y2, . . . , yn are the measured values for both variables, and x̄

and ȳ are the arithmetical average for both variables.

It is worth to mention that the Pearson correlation is the technique usually employed

by agrometheorologists to find correlations among data. As the correlation found between

NDVI and precipitation is not linear, it cannot be detected by Pearson. The FD-ASE

method can also find correlation among more than two attributes, which is an advantage

when compared to the aforementioned well-known Pearson’s correlation.

Several meetings were conducted with agronomists (doctoral students) to assess the

potential use of the FD-ASE algorithm in their research. During these sessions, three

experts executed FD-ASE to find groups of correlated attributes in datasets involving

data from orbital sensors, agrometeorological indexes, measurements taken in the field

and meteorological data. Although we explained the method and followed the experi-
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ments helping whenever asked, specialists showed difficulty to interpret outputs of FD-

ASE. Thus, we proposed changes to FD-ASE in order to incorporate more semantics on

the method. One of the improvements is to divide groups generated by the FD-ASE

in subgroups. For example, if the result presented by FD-ASE is a Correlation Group

ξG1 = {a1, a2, a4, a5} with Correlation Base ξB1 = {a1, a2}, specialists have a tendency

to interpret the Correlation Group ξG1 as the only information about the correlation be-

tween attributes, disregarding the Correlation Base ξB1. In this example, the Correlation

Base ξB1 is composed of a1 and a2 what means that a1 and a2 are correlated with a4

as well as a1 and a2 are correlated with a5. However, we cannot affirm that a1 and a2

are correlated with a4 and a5 together. Thus, we proposed to present the subgroups of

correlated attributes as subgroups SubG1 = {a1, a2, a4} and SubG2 = {a1, a2, a5}.

Knowing how the attributes extracted from the raw data are correlated helps the

specialists during the analysis of the data gathered. Furthermore, since the amount of

data acquired and provided by satellites and meteorological stations is very large and

grows in a very fast pace, a tool that highlights where the specialists should pay more

attention is a valuable asset. According to these results, we proposed a method to mine

association rules combining FD-ASE algorithm with association rule mining, which is

detailed in the next section.

5.3 The Apriori-FD Method

According to results presented in the previous section, we showed that it is possible to take

advantage of the fractal dimension to select the most relevant attributes from datasets

composed of agroclimatic and remote sensing data. As the volume of this kind of data has

increased fast and continuously in recent decades, specialists have to spend much more

effort and resources to analyze them. This fact becomes a motivating opportunity to the

development of new data mining algorithms and methods, as they provide important tools

to identify relationships, patterns and correlations that are not previously known by the

users.

In this context, we propose the Apriori-FD method to mine rules from heterogeneous

time series, considering only the most relevant attributes, which are submitted to a pre-

processing stage before the association rules mining process. As it can be seen in Figure

5.4, Apriori-FD method is applied in three steps.
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Figure 5.4: Steps to mine rules from relevant time series selected by FD-ASE through Apriori-FD.

5.3.1 Step 1: Attribute Selection

In this step, the most relevant attributes are selected by the FD-ASE algorithm. By

applying FD-ASE in the beginning of the process, we reduce the number of potential

rules to be generated by the association rules algorithm. Thus, this first stage of our

method works as a filter that selects the main time series to be considered, making the

analyses process of the generated rules easier. Additionally, since only relevant attributes

are used as input to the next steps of the process, the processing time to mine rules

diminishes considerably.

First of all, the user provides a threshold value (ξ) to FD-ASE that is executed gen-

erating an Attribute Set Core with the most meaningful attributes. This output can be

assessed by the user before the second step starts.

5.3.2 Step 2: Discretization Process

The dataset of selected attributes is submitted to a supervised algorithm called Omega

(described in Chapter 4) to accomplish the discretization process transforming all cli-

matic, agrometeorological and remote sensing time series of continuous data into discrete

ones. This transformation is mandatory since the association rule algorithm (Apriori)

only accepts categorical or discrete data as input.

Omega first defines the initial cut points producing intervals that minimize the in-
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consistencies gotten with the discretization process. After, the algorithm restricts the

minimum frequency that an interval must present, avoiding a huge number of cut points.

Thus, Omega joins consecutive intervals controlling inconsistency rate and removes the

most inconsistent features. This last stage is not required since FD-ASE already selects

the relevant attributes without needing classification. The discrete data generated by

Omega are used as input to Apriori algorithm to mine association rules.

5.3.3 Step 3: Rules Mining

Apriori (Agrawal & Srikant, 1994) is a well-known algorithm for association rules mining

that was chosen to mine rules from discrete datasets generated by Omega. Support and

confidence measures must be defined to allow the rules generation in an appropriate way.

The algorithm (detailed in Chapter 4) first finds the frequent item-sets considering

the property of frequent item-set to restrict the search space. As a result, a report file

is generated with the rules that satisfy the minimum support and minimum confidence

measures established.

5.3.4 Experimental Results

Experiments were conducted with the SugarCaneRegion dataset described in Section 5.2.

It is composed of three time series of meteorological data (rain = a1, maximum tempera-

ture = a2 and minimum temperature = a3), one time series of remote sensing data (NDVI

= a4) and one time series of agrometeorological data (WRSI = a5).

According to the proposed method, eight datasets were submitted to FD-ASE al-

gorithm that initially calculated their intrinsic dimension using the LiBOC() algorithm

(details in Chapter 3). The value found for seven datasets is dDe = 4 and one of them is

dDe = 3. It indicates that at least 3 or 4 attributes are required to maintain the intrinsic

properties of the dataset. In the majority of the datasets, attribute a5 was discarded.

The datasets Araras and Jaboticabal presented the same Attribute Set Core composed

of attributes: a2, a3, a4 and a5. The others obtained attributes a1, a2, a3 and a4 in the

ξC. According to these results, datasets were submitted to Omega algorithm to the

discretization process considering only attributes in ξC.

The datasets with discrete data were used as input to Apriori algorithm using minimum

support = 5% and minimum confidence = 100%. Apriori generated around 50 to 100

rules for each dataset. For convention, we defined three different ranges for NDVI values:

minimum NDVI corresponds to (0.20 - 0.35), the range (0.36 - 0.56) is considered average

NDVI and extreme values are in the range (0.56 - 0.66).
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For Araras and Jaboticabal, rules have shown a direct relationship between the values

of WRSI and NDVI as observed in the identification of attributes correlated.

Meaningful rules were found regarding to minimum or maximum temperature for all

regions analyzed:

• minimum temperatures between 12◦C and 13◦C lead to average values of NDVI,

• higher minimum temperatures between 19◦C and 20◦C are associated with extreme

values of NDVI.

Rules that associate the maximum temperature (a2) with NDVI (a4) show a variation

in the range depending on the region. For example, for Jaboticabal, Jaú and Pitangueiras,

Apriori found rules such as a2[29-30]⇒ a4[0.56-0.63], which means that when attribute a2

is between [29-30] attribute a4 is between [0.56-0.63]. For Araraquara and Lúıs Antônio,

Apriori detected rules with a lower value for the maximum temperature, such as a2[24-25]

⇒ a4[0.56-0.66]. Similar behavior was observed in rules involving minimum temperature

(a3) and NDVI (a4). For instance, a rule such as a3[20.09 - 20.98] ⇒ a4[0.56 - 0.63] was

generated to Jaboticabal, Jaú and Pitangueiras, whereas a3[19 - 19.34] ⇒ a4[0.56 - 0.66]

was found for Araraquara and Lúıs Antônio.

According to these rules, maximum temperature between 20◦C and 30◦C are associ-

ated with maximum values of NDVI. Moreover, minimum temperature around 20◦C is

also linked with extreme values of NDVI. These patterns highlighted in the mined rules

coincide with earlier studies carried out by agrometeorologists who confirm that tempera-

tures between 22◦C to 30◦C are ideal for the optimum growth of sugar cane and minimum

temperature for strong growth is approximately 20◦C as aforementioned in Chapter 2

- Section 2.3. Therefore, this proposed method Apriori-FD allowed the mining of in-

teresting patterns for agrometeorology, an indication of value ranges for temperatures,

both maximum and minimum leading to a higher NDVI value, which is an indicator of

productivity.

However, rules containing the rainfall attribute (a1) showed lack of coherent association

since different ranges of rainfall lead to the same values of NDVI (a4). For example, all

intervals composed of discrete values of rainfall (mm) were associated to average values

of NDVI, such as a1[0 - 1] ⇒ a4[0.36 - 0.56] and a1[100 - 150] ⇒ a4[0.36 - 0.56]. That is,

for both ranges of rain between 0 and 1, as well as from 100 to 150 the same NDVI is

indicated. As the NDVI is an index that indicates the green biomass, the effect of rainfall

on the plant growth could be captured by NDVI after a period of time. Thus, rules that

consider time lag must be evaluated in order to discover more interesting patterns.

The experimental results of Apriori-FD method pointed to the necessity of new tech-

niques to identify patterns that consider the time in order to predict more accurately the
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phenomena. Furthermore, replacing Omega with another unsupervised algorithm could

improve the proposed method avoiding the previous role of classification.

5.4 Data Stream Monitoring

Improvements in the data acquisition technology have decreased the time interval of data

gathering, bursting the quantity of meteorological data. Moreover, since the behavior of

this kind of data may change over time, monitoring activities have become more important.

As applications in agrometeorology have generated continuous sequences of data over long

periods of time, these data can be seamlessly considered data streams, as previously defined

in Chapter 3.

In this section, we present a framework to monitor evolving climate data by employing

a fast and low-cost process based on the fractal dimension extracted from the collected

data. Significant changes in data trends are captured by the fractal-based monitoring

process. The changes are evaluated by employing a statistical test to compare the data

in consecutive time periods, revealing which data attributes are responsible for the trend

changes and how they influence them.

The proposed method combines the SID-meter method (discussed in Chapter 3) with

a Data Analysis module, as illustrated in Figure 5.5. When meaningful changes occur, the

fractal-based process (SID-meter) triggers the Data Analysis module in order to analyze

the data and to validate the variation of the fractal dimension, also identifying the changes

that have occurred in the distribution of attributes. The fractal dimension variation is

described in terms of mean and standard deviation of attribute values.

5.4.1 Step 1: SID-meter method

As new events (items) of the data stream are received, the SID-meter is executed to update

the measures of the intrinsic dimension D for recent events. For explanation purposes,

Dp represents the intrinsic dimension calculated over the current sliding window (p) and

Dp−1 denotes the intrinsic dimension computed over the preceding window (p− 1).

The values of Dp−1 and Dp are continually monitored and compared until a significant

difference between them is detected. We quantify the significance of the measurement

variations based on a user-defined parameter ε. Thus, | dDp−1e − dDpe | > ε is considered

a meaningful difference. The smaller the value of ε, the more sensitive the monitoring

process. When | dDp−1e − dDpe | > ε, the Data Analysis module is triggered, as it can be

seen in Figure 5.6.
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Figure 5.5: Integration of SID-meter and Data Analysis module.

Figure 5.6: Example of execution: SID-meter and Data Analysis module (adapted from (Romani et al.,
2009a))

5.4.2 Step 2: Data Analysis module

This module is employed to verify the attribute variations and to reveal which significant

differences have occurred between the preceding p − 1 and the current window p. Each

event evj of a data stream {ev1, ev2, ..., evn} is defined by a set of E measured attributes

ai, such that each evj = (a1, ..., aE).
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The set of ai attribute values in the current window p of ni ∗ nc events is given by

aip = {aip1 , aip2 , ..., aipn}. Similarly, the set of ai attribute values in the preceding window

p− 1 is given by aip−1 = {aip−11
, aip−12

, ..., a1p−1n
}.

The Data Analysis module runs Z hypothesis test that statistically analyzes data in

the current window. For each attribute ai, the Z hypothesis test is employed to compare

ai mean between the preceding window p− 1 and the current window p. Considers that

the mean of ai values in the current and preceding windows are given, respectively, by

µ(aip) and µ(aip−1).

The hypothesis H0 should be rejected with a significance αmin (the test’s probability of

incorrectly rejecting the null hypothesis), in favor of the hypothesis that the means µ(aip)

and µ(aip−1) are statistically different. Thus, H0 : µ(aip) = µ(aip−1) and H1 : µ(aip) 6=
µ(aip−1). αmin is an input parameter that indicates the minimum confidence to reject the

hypothesis H0. Rejecting H0 with the confidence αmin implies that the averages µ(aip)

and µ(aip−1) are statistically different.

If the hypothesis H0 is rejected, the mean (µ) and standard deviations (σ) of the

ai values are collected for the current(µ(aip), σ(aip)) and preceding windows (µ(aip−1),

σ(aip−1)) to describe the attribute changes in the data stream windows. Figure 5.6 presents

a table with µ and δ examples for the attribute a in windows p and p− 1.

The proposed method shows that it is possible to gather in a single graph the behavior

of several variables and parameters, which otherwise would have to be analyzed separately,

imposing to the specialist much more effort and time.

5.4.3 Experimental Results

Experiments on real and synthetic data streams were performed to evaluate and to validate

the proposed method. Table 5.3 presents a summary of the datasets used, giving the

number of attributes (E) and the number of events (N) in each one.

Table 5.3: Datasets definition

Dataset Description Source E N

Synt Attributes with similar distribution to climate data 5 18,000
ClimateCps Real data composed of measures of daily rain, 3 41,658

maximum and minimum temperature from Campinas IAC
collected from 01/01/1890 to 01/19/2009

ClimatePira Real data composed by measures of daily rain, 3 6,593
maximum and minimum temperature from Piracicaba ESALQ/USP

collected from 01/01/1991 to 01/18/2009

For all experiments, the significance αmin of the statistical test employed in the Data

Analysis module was 0.01.
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Experiment 1: The Synt dataset

The synthetic data (Synt dataset) is employed to demonstrate the results of the proposed

method. The Synt dataset simulates the trend of real agroclimatic datasets. It is com-

posed of five float attributes (a, b, c, d, e) and 18,000 events generated according to Table

5.4.

Table 5.4: Definition of synthetic dataset (Synt)

Attribute Meaning Range of Values

a maximum temperature 10..45

b minimum temperature -5..31

c daily rainfall 0..130

d vegetation index 0..1

e agrometeorological index 0..1

In this experiment we set the parameter of the monitoring process as ε = 0.5 and

defined a window with nc = 2 counting periods of ni = 365 events each, i.e., we created a

two-year sliding window with a movement step of one year, considering daily events. The

graph in Figure 5.7 shows the values of the intrinsic dimension measured over time for

the Synt dataset.

Figure 5.7: Monitoring process - Synt dataset, with dimension D highlighted for meaningful periods.

As shown in Figure 5.7, the highest variations in the intrinsic dimension are in the

counting periods p = 10 and p = 40. The first period of trend change is identified

when the significant difference between D9 and D10 is pointed out. Thus, at period

p = 10, the monitoring process triggers the Data Analysis module to analyze the attributes
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considering the events covered by two consecutive sliding windows, namely the current

window in period p = 10 and the preceding window in period p− 1 = 9. The hypothesis

test indicated that attributes a, b, d and e had significant changes in their values in these

consecutive periods. These changes are described in terms of mean and standard deviation

of the attributes values in the current (p) and in the precedent window (p− 1) presented

in Table 5.5.

Table 5.5: Attributes of Synt dataset revealed by Data Analysis module as presenting significant changes
in their values of mean and standard deviation for the windows p = 10 and p− 1 = 9.

Attribute µp µp−1 σp σp−1

a 35.51 19.25 0.28 7.95

b 11.09 16.49 8.74 9.21

d 0.49 0.46 0.17 0.17

e 0.41 0.30 0.15 0.16

As shown in Table 5.5, attribute a had the major significant variation in the windows

p = 10 and p − 1 = 9. The mean value increased from 19.25 in window p = 10 with a

standard deviation of 0.28 to a mean of 35.51 with a standard deviation of 7.95. In climate

data, this alteration may correspond to a variation between a very dry season and a wet

season with days without raining. As also shown in Table 5.5, despite being significant,

the d attribute had the least significant variation in the windows p = 10 and p− 1 = 9.

The monitoring process goes on until period 40, when a new significant change is

detected and the Data Analysis module is triggered to analyze the attributes considering

the events covered by two consecutive sliding windows p = 40 and p − 1 = 39. The

hypothesis test indicated that attributes a, b, and e had significant changes in their values

in these consecutive periods. These changes are described in terms of mean and standard

deviation of the attribute values in the current (p) and in the precedent windows (p− 1)

presented in Table 5.6.

Table 5.6: Attributes of Synt dataset revealed by Data Analysis module as presenting significant changes
in their values of mean and standard deviation for the windows p = 40 and p− 1 = 39

Attribute µp µp−1 σp σp−1

a 35.5 18.13 0.3 7.3

b 10.8 15.0 8.5 8.3

e 0.42 0.3 0.18 0.17

As in real climate data, after some seasons the climate tendency tends to repeat.

Thus the behavior change triggered at window p = 40 is similar to the behavior triggered

at p = 10. For instance, attribute a had the major significant variation in both cases.

However, attribute d, that had the least significant variation at window p = 10, now, at
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window p = 40, was not returned by Data Analysis module as an attribute that had a

significant trend variation.

Just for test purposes, we also executed the Data Analysis module for the windows

with the smallest variation in the intrinsic dimension, which are the windows starting at

periods p = 32 and p − 1 = 31. In this case, as the theory points out, no attribute was

revealed by the Data Analysis module as having a significant value change. This is what

a direct analysis from the raw data also shows.

Experiment 2: The ClimateCps dataset

The ClimateCps dataset has three attributes: the daily minimum (tmin) and maximum

(tmax) temperatures (◦ Celsius), and the amount of rainfall (rain) (mm) measured for a

period of 114 years in Campinas, at São Paulo state. To calculate the intrinsic dimension

of ClimateCps over time we used three counting periods (nc = 3) and 365 events per period

(ni = 365), that is, D is updated every 12 months in a three-year sliding window. The

parameter to trigger the Data Analysis module was empirically set as ε = 0.1, considering

that we were interested in tracking small variations.

The same process described for the Synt dataset was carried on. The graph of Figure

5.8 shows the values of the intrinsic dimension over time for the climate data from Camp-

inas. First, the Data Analysis module is triggered when the current window is p = 17.

The statistical tests employed in the Data Analysis module indicate that the attributes

tmax and rain had significant changes in their values in these consecutive windows. These

changes are described in terms of mean and standard deviation of the attributes values

in the current (p = 17) and in the precedent window (p− 1 = 16) presented in Table 5.7.

Table 5.7: Attributes of ClimateCps dataset revealed by Data Analysis module as presenting significant
changes in their values of mean and standard deviation for the windows p = 17 and p− 1 = 16

Attribute µp µp−1 σp σp−1

tmax (◦ Celsius) 25.6 24.8 3.3 3.8

rain (mm) 2.8 4.2 8.1 10.0

As shown in Table 5.7 the attribute with major significant variation was rain. The

mean value decreased 3.4 from period p− 1 = 16 to period p = 17. This fact corroborates

the domain specialist’s knowledge that the highest climate variation in the region was

caused by rain variations along the years.

As it can be seen in Figure 5.8, the window p = 63 is the period with the highest

variation in the intrinsic dimensionD. The Data Analysis module indicates that attributes

tmin and tmax had significant changes in their values in the preceding window starting at

85



Employing Fractal Dimension in Time Series 5.4 Data Stream Monitoring

Figure 5.8: Monitoring process - ClimateCps dataset

period p− 1 = 62 and the current window starting at period p = 63. The rain attribute

was kept without significant variation in these windows.

The large difference between D63 and D62 associated to the rain attribute stable

behavior indicates a meaningful change in climate conditions. This fact can be confirmed

by observing the graph in Figure 5.9 that illustrates the year 1951 with extreme rainfall

(above 100mm) while 1952 presented rainfall bellow average and months without rain in

the region of Campinas.

Figure 5.9: Daily Rain from 1950 to 1955

Moreover, Figure 5.10 shows the moving average of annual rain values where the lowest

values coincide with the monitoring points indicated by SID-meter.

As it can be seen in Figure 5.8, the most invariant interval of intrinsic dimension
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Figure 5.10: Moving Average for Rainfall (rain)

occurred between periods p = 90 and p = 93. Just for test purposes, we also executed the

Data Analysis module for the window p = 92 and, as expected, no attribute was revealed

by the Data Analysis module as having a significant value change.

Experiment 3: The ClimatePira dataset

The ClimatePira dataset has three attributes, being each one the value of the daily rainfall

(rain), maximum (tmax) and minimum (tmin) temperature measured for a period of 18

years at Piracicaba region, which is an important sugar cane producing region in Brazil.

To calculate the intrinsic dimension of the ClimatePira dataset we used 2 counting periods

(nc = 2) and 182 events per period (ni = 182), that is, D is updated every 6 months for the

climate measures in a one-year sliding window. The parameter to trigger the monitoring

process was empirically set as ε = 0.15, considering that we were interested in tracking

small variations. The same process described for the Synt and ClimateCps datasets was

employed. The graph of Figure 5.11 shows the intrinsic dimension along the time periods

of the climate data from Piracicaba.

According to Figure 5.11, the highest variations in intrinsic dimension occurred in

p = 9 and p = 22. The monitoring process activates the Data Analysis module for the

counting period 9 (first semester of year 1995), and pointed out that the attributes rain,

tmin and tmax had significant behavior changes. These changes are described in terms of

mean and standard deviation of the attributes values in the current (p = 9) and in the

precedent window (p− 1 = 8) presented in Table 5.8.
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Figure 5.11: Monitoring process - ClimatePira dataset

Table 5.8: Attributes of ClimatePira dataset revealed by Data Analysis module as presenting significant
changes in their values of mean and standard deviation for the windows p = 9 and p− 1 = 8

Attribute µp µp−1 σp σp−1

rain (mm) 2.7 6.6 7.9 12.9

tmin (◦ Celsius) 29.3 28.4 3.5 3.3

tmax (◦ Celsius) 14.2 14.5 4.2 3.8

As shown in Table 5.8, the attribute rain had the major significant variation in the

windows p = 9 and p−1 = 8. The mean rain has dropped 3.9 mm in the counting periods

p − 1 = 8 and p = 9. The analysis of climate data in this period indicates an alteration

in the rain distribution during 1994 and 1995, with a drought period (three months from

June to August) more severe than normal conditions.

For the period 22 (second semester of year 2001), the Data Analysis module pointed

that attributes rain, tmin and tmax had significant behavior change. This period indicates

an alteration in the data behavior during 2001 and 2002, with fewer days of rain during

the rainy season (three months from November to March).

When the intrinsic dimension does not significantly vary, the attributes also tend

to keep their tendency, as the experiments showed. Important climate variations were

discovered in the experiments, especially the ones involving large periods of abnormal

rain. Therefore, the intrinsic dimension monitoring process proposed in this section is an

important and well-suited tool to monitor streams of climate data. That is, instead of

spending hours analyzing many different graphs and charts, the specialists now have a

method that spots the regions of interest, where they should pay more attention during the
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decision making process. Moreover, the proposed method allows to gather the information

from all the attributes at once, instead of analyzing them separately.

5.5 Summary

In this chapter, we presented different methods that apply the fractal dimension to detect

correlations among attributes in a dataset, to select relevant attributes to represent the

meaningful features in the data and to support data stream monitoring. The experiments

performed to validate the proposed methods involved climatic, agrometorological and

remote sensing data.

The first approach applied to identify sets of correlated attributes indicated both

linear and non-linear correlations on the contrary of Pearson’s correlation method. In

addition, the FD-ASE algorithm allowed detecting sets with more than two correlated

attributes. Consequently, results showed that NDVI is correlated with rainfall and WRSI

concomitantly, what it is not shown by other classic correlation methods, as Pearson’s

correlation for example. Moreover, the Attribute Set Core generated for the majority

of the evaluated regions indicated that NDVI is a relevant attribute and must not be

discarded.

Results of the Apriori-FD method presented relevant rules involving maximum and

minimum temperatures. These association rules indicated ranges of temperatures that

lead to maximum values of NDVI corresponding to agrometeorologists’ expectations. The

assessment of generated rules also allowed detecting similarity among datasets of different

regions. However, outcomes relating rainfall pointed out to the need of new techniques

that consider time lag in the generation of rules. In order to address these problems, we

proposed two new algorithms that are detailed in Chapters 7 and 8.

The last method presented in this chapter allows monitoring data stream of climate

and remote sensing data efficiently. In addition, the statistical test applied to consecutive

windows revealed which attributes were responsible for tendency changes and how they

impact these changes. During the experiments, we observed that defining the window

size is not trivial for the agrometeorologists. There are several possible combinations for

the ni and nc parameters, making the assessment accomplished by experts quite difficult.

This method should be improved in order to become more independent from user defini-

tions. One alternative could be the automatic identification of windows size grouping the

generated graphs of fractal dimension according to similar patterns. Preliminary work to

solve this problem is presented in Appendix B.

In the next chapter we present new contributions of this work to similarity search
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involving climate and remote sensing time series.
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Chapter 6

Distance Functions for Multiple

Time Series

6.1 Introduction

As aforementioned, sugar cane has an important role in replacing fossil fuels, contributing

to reduce production of greenhouse gases. Moreover, this agricultural commodity is im-

portant to the country’s economy, becoming fundamental to improve models that assist

the crops monitoring process. With the advent of remote sensing imagery, it becomes

possible to monitor sugar cane fields on a regional scale by using vegetation indexes such

as NDVI.

Consider, for example, multi-temporal NDVI images regarding several crop seasons.

When we use time series of NDVI values to represent sugar cane fields, it is possible

to find similar regions comparing the time series that symbolize them. However, time

series are considered complex objects, which generally do not define a relation of total

order (=, 6=, >,≥, <,≤). Thus, finding similar patterns to classify or to analyze different

regions represented by time series is a non-trivial task.

As a solution, we can establish a relationship of similarity in complex objects, using

distance functions to find the most similar objects. Therefore, specialists can use an au-

tomatic method to analyze a huge volume of time series finding similarities and clustering

among them. Detection of similar regions aims at understanding the distribution of agri-

cultural crops in a certain region. Moreover, this functionality can improve the monitoring

process in a regional scale.

In this chapter, we present two new methods for finding similar regions represented by

time series of climatological data and indexes obtained from satellite images. First of all,

we propose a method called CV-DTW (Correlation and Variance weighting Dynamic Time
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Warping Distance) to similarity search considering two-dimensional objects, i.e. objects

represented by two different series, for instance NDVI and WRSI. This method takes

advantage of the well-known DTW distance extending it when the values are weighted

by the correlation between series and the variance of each one. This approach allows

specialists to compare regions considering distinct series that represent them, as well as

combining attributes of different types of sensors.

Finally, Section 6.3 details another proposed method, called FD-DTW (Fractal Di-

mension weighting Dynamic Time Warping Distance) that uses the fractal dimension to

weight DTW. This method allows comparison between multidimensional objects i.e. ob-

jects represented by n time series. The correlation fractal dimension measures the intrinsic

dimension of the object independently of the space in which the object is embedded.

6.2 The CV-DTW method

We propose a method to measure the similarity between two-dimensional objects

(datasets), i.e. objects represented by two different time series. This method weights

the DTW distance function with the correlation between series and the variance of each

one. The CV-DTW method is executed in six steps as presented by Algorithm 3.

Algorithm 3 The steps of the CV-DTW Method
Input: Two objects (datasets) A and B composed of two time series 1 and 2 each one.
Output: The CV-DTW distance value.

1: Execute the DTW distance between correspondent series for datasets A and B
2: Calculate the variance for time series 1 and 2 of datasets A and B
3: Compute the variance factors fV1(A,B) and fV2(A,B)
4: Execute the Pearson’s correlation between two time series of datasets A and B
5: Generate the correlation factor fC(A,B)
6: Weight DTW1(A,B) and DTW2(A,B) by variance factor and correlation factor

Let A be an object represented by two time series 1 and 2. Let B be another object

also represented by two time series 1 and 2. The CV-DTW method that calculates the

similarity between objects A and B is given by Equation 6.1, which was empirically

defined.

CV DTW (A,B) = ((DTW1(A,B) ∗ fV1(A,B))

+(DTW2(A,B) ∗ fV2(A,B)))

∗fC(A,B) (6.1)

where DTW1(A,B) is the distance between time series 1 of object A and time series 1 of
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object B, fV1(A,B) is the variance factor for both time series 1 in the objects A and B,

DTW2(A,B) is the distance between time series 2 of object A and time series 2 of object

B, fV2(A,B) is the variance factor for both time series 2 in the objects A and B, and

fC(A,B) is the correlation factor for objects A and B.

The CV-DTW algorithm first calculates DTW1(A,B) and DTW2(A,B) applying the

distance function DTW (line 1 of Alg. 3). Figure 6.1 shows a schematic representation

for both of them. In real applications, objects A and B can represent two distinct regions

of sugar cane crops, for example.

Figure 6.1: DTW calculus for two-dimensional objects A and B.

In order to consider different distributions of each time series, CV-DTW calculates

the variance for the time series 1 and 2 of objects A and B as VA1 , VB1 , VA2 and VB2 (line

2 of Alg. 3). Then, in the second step the algorithm uses these two variance values to

calculate two variance factors fV1(A,B) and fV2(A,B) (line 3 of Alg. 3) that are given by

Equations 6.2.

fV1(A,B) = (1− VA1) ∗ (1− VB1)

fV2(A,B) = (1− VA2) ∗ (1− VB2) (6.2)

where VA1 and VA2 are the variances for time series 1 and 2 of region A, and VB1 and VB2

are the variances for time series 1 and 2 of region B.

All variance values (VA1 , VB1 , VA2 and VB2) are subtracted from one to maintain the

ascending order when CV-DTW is used to rank objects in the similarity search. In order

to incorporate one measure that summarizes two time series 1 and 2 of each object, CV-

DTW calculates the correlation between time series in both objects A and B as CA and

CB, respectively (line 4 of Alg. 3). Figure 6.2 illustrates a schematic representation for

the correlation of an object. In the CV-DTW method, we used the Pearson’s correlation,

although depending on the time series used to represent each object, other measures of

correlation might also be considered.

CV-DTW calculates the correlation factor, using these two correlation values CA and
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Figure 6.2: Example of correlation (CA) between time series 1 and 2 of the object A.

CB. The calculus of the correlation factor fC(A,B) (line 5 of Alg. 3) is given by Equation

6.3. Finally, the last step corresponds to the calculus of CV-DTW that indicates the

similarity between objects A and B.

fC(A,B) = CA ∗ CB (6.3)

where CA is the correlation value between two time series (1 and 2) for object A and CB

is the correlation value between two time series (1 and 2) for object B.

The computational cost of the CV-DTW method basically depends on the complexity

of DTW. Although DTW has a time complexity of O(n2), there are codes that can effec-

tively make DTW run in O(n) (Keogh & Ratanamahatana, 2005). Thus, it is possible to

calculate the CV-DTW method in linear time.

To evaluate the feasibility of the CV-DTW method, we have used this distance calculus

with the kNN algorithm to measure the similarity of two objects. We consider the nearest-

neighbor query to find the closest element to a query center, that is, given an element

of interest (the center of the query), which are the elements of the dataset with smaller

distances (higher similarities) to this element? Thus, given a query object qq and the set

of data elements T , the nearest neighbor is the element of T such that NNQuery(qq) =

qn ∈ T |∀qi ∈ T, d(qq, qn) ≤ d(qq, qi). An example of a nearest neighbor query in a NDVI

time series database is: “find the time series in T that is the most similar to time series

A”. The experimental results are presented in the next section.

6.2.1 Experimental Results

Experiments were performed with 10 datasets containing two time series (NDVI and

WRSI) for regions of sugar cane fields in the São Paulo state (Araraquara, Araras, Jabot-

icabal, Jardinópolis, Jaú, Luis Antônio, Pitangueiras, Pontal, Ribeirão Preto and Sertãoz-

inho). Each dataset corresponds to a two-dimensional object where NDVI and WRSI time

series are related to a period from 2001 to 2008 with monthly measurements.

Three agrometeorologists individually classified the regions and ranked them consid-

ering one specific region as a query center. They generated a graph containing variables
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NDVI and WRSI for each region they wanted to compare. Thus, they visually analyzed

graphs to decide which regions were most similar to the query center. Finally, in a consen-

sus way they prepared one ranking that was used in these experiments. The specialist’s

ranking is shown in Table 6.1. This ranking made by specialists was used as (ground

truth) reference to access the fidelity provided by the automated result.

In order to validate the proposed method, we performed experiments employing two

approaches that use:

1. sumDTW : sum of the DTW distances calculated for each series in different regions,

2. CV-DTW : weighting the DTW distance using correlation and variance factors.

Jaboticabal as query center

The two approaches were used and generated a ranking with the most similar regions to

the query center. Table 6.1 shows the results for the region of Jaboticabal as a query

center. The methods sumDTW and CV-DTW presented different rankings for the same

query, as is shown in Table 6.1. The rank proposed by the experts also appears in the

same table.

Table 6.1: Comparative ranking using CV-DTW for similarity search in different regions (Jaboticabal
as query center)

Results for Jaboticabal as query center

Regions Specialists sumDTW CV-DTW
ranking ranking values ranking values

Araraquara 8 7 0.08680 8 0.02359

Araras 6 6 0.07875 6 0.02053

Jardinopolis 5 3 0.06788 4 0.01611

Jau 7 8 0.88589 7 0.02079

Luis Antonio 9 9 0.08899 9 0.02388

Pitangueiras 1 5 0.07071 5 0.01862

Pontal 2 1 0.01982 1 0.00609

Rib. Preto 4 2 0.06639 3 0.01484

Sertaozinho 3 4 0.06854 2 0.01370

In this experiments, CV-DTW presented more similar results to the ranking by the

specialists than the other method. Dividing the list of regions in two groups, it can be

seen that regions geographically closer to Jaboticabal appear in the top five ranking.

The regions appearing in the latest ranking positions are geographically more distant and

probably have small differences in climate that have been captured by the WRSI. The

proposed method is closer to the results provided by specialists with one lag position in

the ranking. When we just sum DTW values calculated for each series, the results do not
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follow the specialists’. Figure 6.3 shows the top five positions in the ranking compiled by

the specialist and by applying the CV-DTW distance function.

Figure 6.3: Visual presentation of the five top position of similarity search for Jaboticabal (query center)
applying CV-DTW.

According to the experts, regions that appear in the top positions in the ranking have

a climate more similar to Jaboticabal, the query center. Consequently, these regions

have the same methods of planting and possibly the same cut-off date of sugar cane to

the corresponding development stage of Jaboticabal. This explains the similarity among

series. Thus, a method that approximates the ranking done by specialists can help identify

similar regions in a given region with greater extentions, what can be difficult to do

manually.

Araraquara as query center

The two approaches were also used to generate a ranking to Araraquara as query center,

which is presented in Table 6.2. The methods sumDTW and CV-DTW delivered different

ranks for the same query, as is shown in Table 6.2. The ranking proposed by the experts

also appears in the same table.

Although both methods have presented results very similar to the specialists’ rank-

ing, three positions exactly coincide and other two are inverted (2 and 4) in the method

CV-DTW against only two coincident positions provided by the sumDTW method, con-

sidering the first five positions. Figure 6.4 shows the top five positions in the ranking

compiled by the specialist and by applying the CV-DTW distance function.

According to specialists, Jaú, Araras and Lúıs Antônio are more similar to the

Araraquara region due to climate conditions that define planting dates be more simi-

lar. Moreover, the values of sugar cane production released by IBGE for these regions are

quite similar.
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Table 6.2: Comparative ranking using CV-DTW for similarity search in different regions (Araraquara
as query center)

Results for Araraquara as query center

Regions Specialists sumDTW CV-DTW
ranking ranking values ranking values

Araras 2 3 0.09500 4 0.01658

Jaboticabal 6 7 0.08648 9 0.02424

Jardinopolis 7 8 0.09531 6 0.02046

Jau 3 2 0.08680 3 0.01481

Luis Antonio 1 1 0.06972 1 0.00552

Pitangueiras 9 6 0.08676 7 0.02098

Pontal 8 5 0.02197 8 0.02298

Ribeirão Preto 5 9 0.07365 5 0.01938

Sertãozinho 4 4 0.06921 2 0.01344

Figure 6.4: Visual presentation of the five top position of similarity search for Araraquara as query
center with CV-DTW method.

Regions far away from Araraquara, such as Pitangueiras, Pontal, Jaboticabal and

Jardinópolis have distinct climate characteristics with different amplitudes for tempera-

ture and dissimilar rainfall distribution. As a result, the first five positions indicated by

specialists and detected by CV-DTW method have grouped regions with climate condi-

tions more similar. As NDVI is directly influenced by climate, this variable did not change

the result.

6.3 The FD-DTW method

When regions are represented as multidimensional objects (datasets) with more than

two time series, the CV-DTW method becomes more complicated to be used due to the

increasing of the possible combinations to calculate the correlation factor. The Pearson

correlation method used in the previous proposal only calculates the correlation between
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pairs of variables which makes the calculation of CV-DTW more complex.

As a solution, we propose a new method that takes advantage of the concept of intrinsic

dimension. As explained in Chapter 3, the intrinsic dimension is related to the amount of

information that the dataset represents, what can be estimated by the correlation fractal

dimension from the dataset. In real applications, each sugar cane field can be modeled as

a multidimensional object composed of heterogeneous time series from climate and remote

sensing data. Thus, fractal dimension is an appropriate measurement to determine the

correlation among all dimensions (climate and remote sensing time series) as demonstrated

in Chapter 5 - Section 5.2.

The FD-DTW method combines DTW distance function with a factor based on frac-

tal dimension in order to allow the similarity measure on two multidimensional objects

(datasets) A and B. FD-DTW weights the smaller DTW distance function between pairs

of the same series in different objects by fractal dimension value calculated for each mul-

tidimensional object. The FD-DTW method is executed in five steps as presented by

Algorithm 4.

Algorithm 4 The steps of the FD-DTW Method
Input: Two objects (datasets) A and B composed of n time series each one.
Output: The FD-DTW distance value.

for each n pairs of time series for objects A and B do
2: Execute the DTW distance between correspondent series of datasets A and B

end for
4: Calculate the fractal dimension of datasets A and B (FDA and FDB)

Compute the fractal dimension factor fFD(A,B)
6: Identify the minimum value from DTW1(A,B) to DTWn(A,B)

Weight minimum DTW found by the fractal dimension factor

Let A be a multidimensional object (dataset) represented by n time series. Let B be

another multidimensional object also represented by n time series. The FD-DTW method

that calculates similarity between the objects A and B is given by Equation 6.4 that was

empirically defined.

FD DTW (A,B) = minn
i=1{DTWi(A,B)} ∗ fFD(A,B) (6.4)

where DTWi(A,B) is the distance between the same two time series i of object A and B,

fFD(A,B) is the fractal dimension factor for objects A and B.

First of all, the FD-DTW algorithm calculates DTWi(A,B) for all i = {1, . . . , n} time

series, applying the distance function DTW (line 1-3 of Alg. 4). In this step, n values

of DTW are generated: DTW1(A,B), DTW2(A,B), . . . , DTWn(A,B), where A and B
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refers to two multidimensional objects, as illustrated in Figure 6.5. For example, objects

A and B can represent two distinct regions of sugar cane crops in real applications.

Figure 6.5: DTW calculus for multidimensional objects A and B.

The second step corresponds to the computation of correlation fractal dimension be-

tween all series that represent a multidimensional object, as illustrated in Figure 6.6.

Figure 6.6: Example of fractal dimension (FDA) involving n time series of the object A.

In order to incorporate one measure that summarizes n time series of each object, FD-

DTW calculates the correlation fractal dimension among n time series in both objects A

and B as FDA and FDB, respectively (line 4 of Alg. 4). The correlation fractal dimension

indicates the real value that represents the object independent of the space in which the

object is embedded (details in Chapter 3). FD-DTW calculates the correlation factor,

using these two correlation fractal dimension values FDA and FDB. The calculus of the

correlation factor fFD(A,B) (line 5 of Alg. 4) is given by Equation 6.5.

fFD(A,B) = FDA + FDB (6.5)

where fFD(A,B) is the correlation factor, FDA is the correlation fractal dimension among

n time series of object A and FDB is the correlation fractal dimension among n time series

of object B.

The last step of the method consists in the detection of the minimum DTWi(A,B)

value to be multiplied by the correlation fractal dimension factor fFD(A,B) to generate

the minimum distance between two multidimensional objects A and B (line 6 and 7 of Alg.

4). The computational cost of the FD-DTW method basically depends on the complexity

of the fractal dimension estimation and the DTW calculation. Although DTW has a time
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complexity of O(n2), there are improvements in the algorithm that can effectively make

DTW run in O(n) (Keogh & Ratanamahatana, 2005). Thus, as the fractal dimension

was calculated by the Liboc() algorithm (linear cost on the number of elements in the

dataset), it is possible to calculate the FD-DTW method in linear time.

To evaluate the feasibility of the FD-DTW method, we used this distance calculus

with the kNN algorithm to measure the similarity of two objects, as aforementioned in

Section 6.2. The experimental results are presented in the next Section.

6.3.1 Experimental Results

Experiments were performed with the same 10-producing regions of sugar cane in the São

Paulo state in the same period, as previously described. However, in this experiment,

the dataset for each region is composed of four variables: rainfall, maximum temperature,

minimum temperature and NDVI. Experiments were accomplished considering two regions

as query centers: Jaboticabal and Araraquara.

The assessment of the FD-DTW method was made ranking the most similar regions to

the query center, which was compared to a ranking prepared by experts. The comparison

of different regions represented by several variables is so difficult to accomplish without

computational support. To classify the regions, experts have plotted all four series in a

single graph for the 10 regions and visually analyzed the graphs in order to define regions

with similar patterns. During this evaluation process, they consider different factors, such

as climate conditions of the regions and production values for each region in the period

of 2001-2008. This method used by experts is only feasible when the number of variables

is small, but becomes impractical when the number of variables increases greatly. This

ranking made by specialists was used as (ground truth) reference to access the accuracy

provided by the automatic result.

Jaboticabal as query center

Considering Jaboticabal as the query center, we have executed the FD-DTW method and

prepared a ranking that is presented in Table 6.3. We also show the ranking proposed by

experts for comparison in Table 6.3.

FD-DTW presented results similar to the ranking given by the specialists in this

experiment. The top five positions for both rankings is almost coincident, with a reversal

in two positions: first and third. Figure 6.7 shows the top five positions in the ranking

compiled by the specialist and by applying the FD-DTW distance function. These five

regions are geographically closer to Jaboticabal, as it can be seen in Figure 6.7. The regions

appearing in the latest ranking positions are more geographically distant and probably
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Table 6.3: Comparative ranking using FD-DTW for similarity search in different regions (Jaboticabal
as query center)

Results for Jaboticabal as query center

Regions Specialists FD-DTW
ranking ranking values

Araraquara 9 9 0.11815

Araras 7 6 0.08497

Jardinopolis 5 5 0.07388

Jau 6 8 0.09877

Luis Antonio 8 7 0.09187

Pitangueiras 1 2 0.05667

Pontal 2 1 0.00001

Ribeirão Preto 3 4 0.06700

Sertaozinho 4 3 0.06140

there are differences in rainfall distribution and in the amplitude of temperature.

Figure 6.7: Visual presentation of the five top position of similarity query using Jaboticabal as the
query center with FD-DTW.

According to specialists, the regions more similar to Jaboticabal have similar climatic

conditions what make favorable the planting of the same variety of sugar cane during the

same period of the year. Consequently, these regions have the same methods of planting

and possibly the same cut-off date of sugar cane to the corresponding development stage

of Jaboticabal (query center). This can explain the similarity among their series. Thus, a

method that approximates the ranking done by specialists can aid identify similar regions

in territories with great extensions what can be difficult to do manually.

Araraquara as query center

In this experiment, we have used the Araraquara region as query center. This region is

more geographically distant from Jaboticabal and is located in the center of the satellite
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scene from where was extracted all time series. The FD-DTW method was executed to

generate a ranking to be compared with the classification proposed by specialists. Both

rankings are presented in Table 6.4.

Table 6.4: Comparative ranking using FD-DTW for similarity search in different regions (Araraquara
as query center)

Results for Araraquara as query center

Regions Specialists FD-DTW
ranking ranking values

Araras 2 2 0.09887

Jaboticabal 6 8 0.11815

Jardinopolis 7 6 0.11151

Jau 3 3 0.10524

Luis Antonio 1 1 0.00001

Pitangueiras 9 9 0.13683

Pontal 8 7 0.11622

Ribeirão Preto 5 5 0.11137

Sertaozinho 4 4 0.10721

FD-DTW presented results very similar to the ranking given by the experts in this

experiment. The top five positions for both rankings is exactly the same. Figure 6.8

shows the top five positions in the ranking compiled by the specialist and by applying the

FD-DTW distance function.

Figure 6.8: Visual presentation of the five top position of similarity query using Araraquara as the
query center with FD-DTW.

The results indicated that Jaú, Araras and Lúıs Antônio are more similar to the

Araraquara region, which was used as the query center in the experiment. Analyzing

climate aspects of Araraquara and the other nine regions, the three regions that appear

in the top position have a climate pattern very similar to Araraquara. The other regions

geographically more distant present differences in characteristics of climate.
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Focusing the analysis over NDVI we perceive that sugar cane is planted in equal dates

using the same method of planting in all four regions (Jau, Araras, Lúıs Antônio and

Araraquara). Moreover, the value in tons per year of sugar cane production is quite

similar for these regions. Therefore, results of the proposed method are coherent and

according to specialists’ analysis.

Other regions are not similar to Araraquara since they are geographically more distant

with different climate conditions. These regions (far from Araraquara) reach higher values

of sugar cane production what corroborates that climate conditions should be carefully

considered for sugar cane planting.

6.4 Summary

In this chapter, we presented different approaches based on a distance function and an

algorithm to perform similarity search with the purpose of finding similar regions where

sugar cane fields are cultivated. The feature of each region is represented by time series ex-

tracted from satellite images, generated by agrometeorological indexes and meteorological

data.

The first method involves a weighting of DTW by correlation factor and variance since

each region is now considered a bi-dimensional object. In the experiments, indexes that are

used to show the spectral response of plants (NDVI) and the agrometeorological conditions

to the proper growing of crops (WRSI) were used to represent each region. Applying

the CV-DTW method, the results are similar to specialists’ expectations. However, if

the quantity of variables increases the calculus of the CV-DTW method becomes more

complex due to the number of possible combinations to calculate the correlation factor.

The FD-DTW method uses the fractal dimension to weight DTW distance function

in order to allow the similarity search of multidimensional objects. The fractal dimension

measures the correlation in multidimensional datasets since it approximates the intrinsic

dimension that represents the actual dimension of the object independent of its embedded

dimension. Experiments were performed with four variables representing the plant and

the climate of each region. Results are very similar (coinciding in many positions) to the

ranking elaborated by experts.

The proposed methods allow specialists to assess wider regions in order to find areas

of sugar cane with similar characteristics. Although it has achieved satisfactory results,

tests with a larger number of regions represented by more variables must be considered.
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Chapter 7

The CLIPSMiner Algorithm

7.1 Introduction

In the last decades, research in Climatology has indicated that climate is changing in the

whole World. Meteorologists have analyzed large volumes of sensor data and outputs from

global models in order to understand and to forecast extreme conditions and phenomena.

Recent studies have indicated a disturbing situation regarding the temperature and pre-

cipitation in the Planet. Specifically, results from several analyses have showed that some

extreme weather events have changed in frequency, duration and intensity over the last

years (Meehl & Tebaldi, 2004; Vincent et al., 2005; Groisman et al., 2005; Goswami et al.,

2006; Alexander et al., 2006; Ganguly & Steinhaeuser, 2008). Consequently, increased

temperatures and regional changes in precipitation patterns can have adverse effects on

natural and human systems.

Extreme precipitation events, such as heavy daily rainfall and many days with rainfall

above the daily average can cause floods, which often result in devastating rural and

metropolitan environments, as well as leading to loss of human lives. Thus, understanding

trends of extreme events is so important to governments and communities to learn and to

be prepared to mitigate the problem, and more importantly, to make decisions in a timely

manner. Additionally, analyses of temperature time series indicate that it is crucial to

define methods to reduce the emission of greenhouse gases and to adapt agricultural crops

to the new conditions of increasing temperatures.

Climate data from ground-based stations, remote sensors, weather radars or sensor

network have increased, yielding terabytes of data every week as mentioned earlier in

Chapter 2. In addition, climate change models have been processed for different scenarios

generating huge amounts of data. Consequently, experts need much more effort to analyze

and to detect relevant patterns. Massive data volumes and processing complexity bring up
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several problems and research challenges, such as forecasting of extreme events, correlation

between climate and remote sensing time series, among others. Therefore, developing

algorithms to retrieve relevant information for decision making and to extract interesting

patterns is a needed endeavor.

Thus, to analyze large amounts of climate data from real measures or model outputs

associated to remote sensing data and geographical information are important challenges

to develop new data mining algorithms tailored to climate and agrometeorological data. In

this context, we consider the problem of finding relevant patterns and extreme phenomena

from climate time series. Generally, time series are converted into symbolic representation

to simplify the analysis. However, we are interested in generating patterns considering

continuous data, i.e., convert time series to a string sequence without losing information

about data range.

As a solution, we present a new unsupervised algorithm, called CLIPSMiner (CLImate

PatternS Miner) to discover relevant and extreme patterns in heterogeneous climate and

remote sensing time series. This new algorithm works on multiple time series of continuous

data, identifying all defined patterns or the relevant ones according to a relevance factor,

which can be tuned by the user. To improve the analysis of long series, the CLIPSMiner

algorithm allows the generation of patterns for given periods of time (for instance, years,

months or days). Thus, meteorologists can examine and compare generated patterns in

each period, considering its tendency, i.e., whether there was an increase/decrease on the

number of patterns and/or if the maximum and minimum values in each pattern vary

between periods.

This chapter presents in Section 7.2 a problem formalization of pattern mining. Section

7.3 details the CLIPSMiner algorithm. Section 7.4 presents and analyzes experimental

results obtained by executing CLIPSMiner over synthetic data, as well as over real data.

Finally, section 7.5 summarizes the Chapter.

7.2 Problem Formalization

Our focus is to generate patterns as discrete intervals that represent phenomena on climate

time series. These patterns should be positive peaks, negative peaks or range of values with

low variation. These patterns allow a quantization of time series, keeping the embedded

semantic on data. Specifically, we address the following problems:

1. How to mine interesting climate patterns in time series of continuous data?

2. How to quantize time series retaining the temporal meaning of the patterns?
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3. How to discover relevant patterns in datasets that combine heterogeneous time se-

ries?

4. How to mine different time series and detect time delay between them?

To better understand the proposed method, we define some important concepts as

follows.

Definition 7.1 Time series S is defined as a sequence of pairs (vi, ti) with i = 1, . . . , n,

i.e. S = [(v1, t1), . . . , (vi, ti), . . . , (vn, tn)], such that (t1 < . . . < ti < . . . < tn), where each

vi is a data value and each ti is a time value in which vi occurs.

Each pair (v, t) is called an event e. A set of events contains n events of type (vi, ti)

for i = 1, . . . , n. Each vi is a continuous value. Each ti is a unit of time that can be given

in days, months or years. Given two sequences S1 and S2, the values ti of both must be

measured in the same time unit.

Definition 7.2 The event sequence Se is a set of consecutive events ei, i.e. Se =

(ei, ei+1, . . . , ek), where ei = (vi, ti) for i ≥ 1 and k ≤ n and k − i ≥ q, where q is the

minimum number of events in an event sequence.

We are interested in extracting event sequences from a given sequence where the

number of elements ei in the event sequence depends on the difference between events

given by di = (vi+1 − vi) and a given δ parameter whose default value is set by the

CLIPSMiner algorithm. The extracted event sequences comprise a period of events having

the tendency to rise or fall, when plotted as a graph.

The value of δ is usually very small, tending to zero (δ → 0). The value of delta can

also be defined by the user. Therefore, we define three exclusive types of event sequences.

Definition 7.3 The ascending event sequence Sea is a set of consecutive events ei,

such that Sea = (ei, ei+1, . . . , ek) where
∑k

i (di) > 0, such that ∀di, di > 0 and |dk−i| < δ

to (k − i) ≤ parameter defined by the user.

Definition 7.4 The descending event sequence Sed is a set of consecutive events ei,

such that Sed = (ei, ei+1, . . . , ek) where
∑k

i (di) < 0, such that ∀di, di < 0 or |dk−i| < δ to

(k − i) ≤ parameter defined by the user.

Definition 7.5 The stable event sequence Ses is a set of consecutive events ei, such

that Ses = (ei, ei+1, . . . , ek) where ∀di, |di| < δ.

107



The CLIPSMiner Algorithm 7.2 Problem Formalization

The combination of different types of event sequences generates patterns that resemble

peaks (negative and positive) and intervals with constant distribution.

A meaningful change or stability in the data distribution behavior should be monitored.

For example, a variation from 0mm to 120mm in a short period of time in a rain series

can mean an extreme phenomenon responsible for a flood at a given location. Thus, we

define three types of patterns used to quantize a time series S.

Definition 7.6 Valley patterns (V) are defined as the concatenation of a descending

event sequence and an ascending event sequence, i.e. V ⇒ SedSea.

Definition 7.7 Plateau patterns (P) are defined as a stable event sequence, i.e. P ⇒
Ses.

Definition 7.8 Mountain patterns (M) are defined as the concatenation of an as-

cending event sequence and a descending event sequence, i.e. M ⇒ SeaSed.

Figure 7.1(a) presents an example of a pattern V . In real data, a pattern V can be

observed when a sharp drop in the minimum temperature occurs, for example. For WRSI

time series, a pattern P can occur when vi has values closer to 1. This behavior in time

series corresponds to the maximum soil water content, after a long period of rainfall, for

example. In a real dataset, pattern M occurs when there is a significant variation in the

amplitude, such as a very heavy rain, for example. Figure 7.1(b) presents an interval in

a time series and highlights a pattern P . Finally, Figure 7.1(c) presents an interval in a

time series and highlights a pattern M .

Two thresholds (ρ and λ) are defined to identify only the relevant patterns, acting as

filters. The threshold ρ is the relevance factor and it depends on the amplitude measure.

The relevance factor is a measure for identifying whether a pattern M or V is relevant or

not. The threshold λ is the plateau length and is defined to identify relevant P patterns.

Both thresholds get a default value, that can be tuned by the user.

Definition 7.9 Amplitude (y) is defined as the difference between the maximum and

the minimum values of the time series, y = vmax − vmin.

Definition 7.10 Relevance factor (ρ) is a percentage of the amplitude value and is

used to evaluate the height of an ascending (Sea) and a descending (Sed) event sequence.

Definition 7.11 Plateau length (λ) defines the length of an stable event sequence

(Ses).
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Figure 7.1: Examples of patterns detected by CLIPSMiner are presented in graphical format where the
y axis represents attribute value and time is given in x axis. (a) Pattern of type V is similar to negative
peaks. (b) Pattern of type P implies an interval in the time series with small variation. (c) Pattern of
type M is equivalent to a positive peak.

For example, a pattern M of daily rainfall ranging among (0, 5, 0) is not represen-

tative because it has a very small variation (only 5 mm), considering a range from 0 to

around 150. However, an interval of daily rain that ranges from (0, 120, 0) is an extreme

phenomenon that may cause disasters. In this case, the relevance factor indicates which

patterns will be considered.

Definition 7.12 Time delay τ is the time interval between the beginning of the occur-

rence of a pattern in a time series and the beginning of the occurrence of a similar pattern

in another time series. The time delay is measured in units of time.

7.3 Description of the CLIPSminer algorithm

In this section, we present the CLIPSMiner algorithm that finds relevant and extreme

patterns on time series. CLIPSMiner tracks time series of continuous data and sets control

points as a quantization method. However, the algorithm considers the time occurrence

of the events, organizing the pieces quantized in patterns that have a semantic related to

weather events. Algorithm 5 summarizes the CLIPSMiner algorithm.

In the first step, it generates an array containing the differences between the previous

and current values of the series, as it can be seen in Figure 7.2. For each time period (p)
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Algorithm 5 CLIPSMiner Algorithm
Input: Time series S; thresholds δ, ρ, λ and p
Output: Patterns V , M , P and time delay τ

1: for each time period p of time series S do
2: for all vi do
3: calculate array of differences di = vi+1 − vi
4: end for
5: for all di values do
6: Find Sea = Set of ascending event sequences
7: Find Sed = Set of descending event sequences
8: Find Ses = Set of stable event sequences
9: end for

10: Prune Sea and Sed when
∑
di < ρ

11: Prune Ses when
∑
di < λ

12: for all Se not pruned do
13: V = concatenation of SedSea

14: M = concatenation of SeaSed

15: P = Ses

16: end for
17: Set of all patterns as [einit, ei, eend](tinit, tend)
18: for all Patterns V , M , P do
19: write vinit, vi, vend, tinit, tend
20: end for
21: for each pair of patterns array do
22: calculate time delay between patterns in different array
23: write time delay τ
24: end for
25: end for

of time series, CLIPSMiner first calculates an array composed of the differences between

previous and current values, i.e. di = vi+1 − vi (lines 2 to 4). Setting the parameter p,

CLIPSMiner divides the time series into p pieces and discovers patterns in accordance

with the relevance factor ρ for each period pi. Thus, it is possible to analyze the trend of

the series in each period separately.

Figure 7.2: First step of CLIPSMiner algorithm. The values of d1, d2, . . . are only for illustration
purposes (adapted from Romani et al. (2010d)).

Thus, by analyzing the array of di, it can be discovered if there is a tendency for rising

or falling in the time series, what facilitates discovering the sequence of events. In the

next step, the algorithm generates a set of sequences that can be ascending, descending

or stable (lines 5 to 9) according to what can be seen in Figure 7.3. Thus, CLIPSMiner
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prunes event sequences Sea and Sed smaller than ρ, and Ses smaller than λ (lines 10 and

11).

Figure 7.3: Second step of the CLIPSMiner algorithm, finding the ascending and descending patterns.
Only one example of each pattern is highlighted in the Figure (adapted from Romani et al. (2010d)).

For each event sequence Sei not pruned, the algorithm concatenates consecutive se-

quences Sea and Sed to generate an M pattern, Sed and Sea to generate a V pattern and

Ses to generate P patterns (lines 12 to 16) as in Figure 7.4. CLIPSMiner stores the mined

patterns in an array for each time series S. The format of the patterns is an event in-

terval, such as [vinit, vmid, vend], where mid is an intermediate value, and the time interval

[tinit, tend] where the event e occurs (line 17).

Figure 7.4: Third step of CLIPSMiner algorithm with examples of patterns M, V and P (adapted from
Romani et al. (2010d)).

The last step (lines 21 to 24) corresponds to the calculus of the time delay between two

time series Si. The algorithm compares the occurrence time of the several intermediate

values for the patterns M and V in two series, and calculates the difference between the

values. The time delay τ is the mean value found.

7.3.1 Time Complexity

CLIPSMiner reads each of the n events once, where n is the length of the time series. When

the events are read, an array of difference values are stored. Each of the n−1 values from

the differences array are read to discover M , V and P patterns. This process is performed
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on the k time series stored in the dataset. Thus, the algorithm time complexity is O(2nk)

or simply O(n).

7.4 Experimental Results

In this section, we discuss representative experiments performed on synthetic and real

datasets. In this work, the default value for the parameter was defined empirically and

corresponds to ρ = y ∗ 40/100. The default value of λ is 4 to allow discovering plateaus

composed of four consecutive events, which was also empirically defined. The experiments

were aimed at evaluating and validating the proposed algorithm. All experiments were

made on a computer with 4GB of RAM, an Intel(R) Core(TM)2 Duo 2.66 GHz processor

and the Microsoft Windows XP Professional.

7.4.1 Evaluating the results

The performance of the CLIPSMiner algorithm was evaluated based on measurements

of the time required to process datasets of different sizes. In addition, we assessed the

algorithm response to find patterns using several relevance factors.

To assess the quality of results, the CLIPSMiner algorithm was compared with two

well-known statistical techniques usually employed by climatologists to analyze climate

data: percentile and cross-correlation. Percentile is a measurement of the relative position

of one value regarding all other values. The pth percentile has at least p% of the values

below that point and at least (100− p)% of the values above.

Percentile is widely used in climatology to determine high, very high and extreme

values in climate time series. Therefore, this measure was used to compare results of

99th percentile with outputs of CLIPSMiner algorithm tuned to calculate extremes in

time series. Figure 7.5 shows a schematic diagram with a comparison between Percentile

method and CLIPSMiner algorithm. As it can be seen in Figure 7.5, when Percentile sorts

the array in the first step, the algorithm loses the information about time of occurrence.

At the end of the processing, Percentile detected only the extreme value. On the contrary,

CLIPSMiner finds the extreme with two details: time of occurrence and the context in

which this extreme event occurred.

The calculation of the time lag (τ) made by our algorithm was compared with results

presented by the cross-correlation method. This technique calculates the correlation be-

tween two time series, identifying how much one series must be shifted along the x-axis

to make it similar to other one. A qualitative analysis is also presented, and results are

analyzed for different values of the relevance factor ρ and length of plateau λ patterns.
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Figure 7.5: Comparison between Percentile and CLIPSMiner calculation through an example of execu-
tion.

7.4.2 Datasets Description (Synthetic and Real data)

We generated synthetic data (Synth) to simulate real climate datasets tendency. By

generating synthetic data it was possible to control trends in the time series, which would

not be possible if we have used outputs of climate forecasting models. Synth dataset is

composed of three float attributes: a1 that represents maximum temperature trend, a2

that represents values of minimum temperature and a3 that simulates daily rainfall values.

Each attribute varies as follows: a1 from 10 to 45, a2 from -5 to 31 and a3 from 0 to 150.

We have also used two real datasets (Cps and FiveRegions) composed of climate

measures and remote sensing data. Table 7.1 contains the description of datasets used in

the experiments.

Table 7.1: Datasets definition

Dataset Description Source E N

Synth Attributes with similar distribution to climate data 3 100,000
Cps Real dataset composed of measures of daily rainfall,

maximum and minimum temperature from Campinas city IAC 3 41,700
(SP, Brazil) collected from 01/01/1890 to 01/31/2009

FiveRegions Real data composed of NDVI and WRSI
values token from the 5 sugar cane productive areas of Cepagri 2 ∼= 500

São Paulo State (Brazil) from 04/01/2001 to 03/31/2008

In the Cps dataset the three attributes correspond to daily rainfall value (rain), max-

imum (tmax) and minimum (tmin) temperatures measured over a period of 118 years at

Campinas, Brazil. In the FiveRegions dataset each tuple corresponds to one NDVI mea-
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surement per month, for a period of 7 years. There are months in the year, such as

January, February and March, where there is no good images to analyze due to clouds

coverage in Brazil. In this case, when the data is missing, we interpolate the values using

the average. Thus, this dataset has approximately 500 events.

7.4.3 Results on the synthetic dataset

The Synth dataset was employed to show the results of our approach over reference data.

We have run CLIPSMiner on synthetic dataset to find relevant and extreme patterns.

Figure 7.6 shows the performance of the CLIPSMiner algorithm considering two aspects:

number of events found and variation of the relevance factor. The graph of Figure 7.6(a)

shows the execution time by the number of tuples that varies from 15,000 to 90,000 tuples.

The execution time grows linearly from 0.6 milliseconds (ms) to 2.5 ms.

As the relevance factor is increased from 10% to 90%, the execution time decreases,

as it can be seen in Figure 7.6(b). Similarly, the number of patterns decreases as the

relevance factor increases, as expected (Figure 7.6(c)). When the relevance factor and the

plateau length have higher values they make CLIPSMiner more sensitive. That is, the

CLIPSMiner algorithm finds only the extreme patterns as ρ and λ factors increase.

Figure 7.6: Performance of CLIPSMiner algorithm considering the number of patterns found and
variation of the relevance factor: (a) execution time by number of tuples (b) execution time by relevance
factor (c) number of patterns by relevance factor.

When parameters were set to ρ = y ∗ 70% and λ = 8, the detected patterns of

type P , M and V correspond to relevant patterns with a meaningful variation in the

amplitude. For example, Figure 7.7(a) shows a small part of time series considering

attribute a1. CLIPSMiner detected the V pattern [37.06; 10.0; 43.66], highlighted in Figure

7.7(a). These patterns are more representative than the negative peaks in the period (27

to 32) and (33 to 36).

In real datasets, these relevant patterns correspond to periods with abrupt decrease in

the maximum or the minimum temperature. Generally, small oscillations in temperature

are not important to be monitored. However, sudden changes can be interesting to cli-

mate researchers. When a variation occurs in a period distinct from the one where such
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variations usually occurs, it means that useful knowledge was mined.

When we increase the value of the relevance factor (ρ) to 95% of amplitude,

CLIPSMiner becomes more restrictive and only very extreme patterns are detected. Fig-

ure 7.7(b) presents a graph with a pattern M detected in the time series considering the

attribute a3. CLIPSMiner found a pattern M in the period from 9 to 11, which has an

amplitude greater than others in the time series. In real databases, this pattern is similar

to an increase in the amount of rainfall, for example.

Many days without rain especially during plant growth stages, which are sensitive to

water deficit can be worrying for farmers and government. Some agricultural crops can be

damaged by water deficit and occasionally, it is necessary to use irrigation. Other crops

may resist longer, but they also need monitoring. To monitor this pattern, agrometeorol-

ogists could find periods in which this phenomenon usually occurs, altering the λ (plateau

lenght) value. Increasing the λ value allows to find the most extreme phenomena. In time

series a3, for example, when we increased λ, the number of P patterns found decreased

from 31 to 7. Consequently, the option to filter the result, by dynamically setting the

parameters according to analysts needs is a big difference of the algorithm CLIPSMiner,

as compared to others from the literature.

The CLIPSMiner algorithm allows to analyze time series for specific periods when

the parameter p is set. Thus, we defined periods of 50 years that generated 5 different

periods. We executed CLIPSMiner with ρ = y ∗95% of amplitude to return only the most

extreme patterns. In the first two periods, patterns were generated with maximum values

above 122 for attribute a3. In the last two periods, the maximum values found in the M

patterns were above 120. Assuming that a3 represents rainfall in real data, we evaluated

the extreme daily rain for every 50-year period, and could perceive if changes occured in

the time series trend. Any period of time could be set.

Figure 7.7: Example of extreme patterns: (a) V pattern similar to a negative peak (period 17 to 22)
and (b) M pattern similar to a positive peak (9 to 11).

Comparing this result with the output generated by the percentile method, similarly

we defined periods of 50 years that generated 5 different periods. We set the Percentile
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algorithm to 99th to find extremes. This method detected only a value that represents

extremes in each 5 parts of the time series. The Percentile method efficiently finds ex-

tremes, but does not provide information on the period where the extreme event occured,

neither about preceding and subsequent events, as CLIPSMiner does.

The CLIPSMiner algorithm outputs showed that the majority of the extreme patterns

occured in the range from 0 to 120 and back to 0. In the case of real data, this would be

similar to the occurrence of heavy rain in a single day. In order to identify all possible

extremes in a series, we included an option −extreme to search beyond the standard M, P

and V, situations in which extreme events occur. For example, if an interval as [50, 130, 79]

occurs, the algorithm does not return this event as far as the relevance factor would be

higher than the difference found in this range. Thus, when we set −extreme parameter,

patterns equal to those of the example would also be returned as possible output.

Our algorithm also calculates the time delay between two time series, i.e., the time

correlation between them. For the synthetic dataset, the τ value ranged from 0 to 11 time

lags, because CLIPSMiner searches for lags in different parts of time series. Using the

cross-correlation algorithm, no lags were found between the two time series.

7.4.4 Results on Real Data - The Cps dataset

The same process described for the Synth dataset was employed. Two experiments were

executed assigning the default and maximum values for parameters ρ and λ, in order to

find the relevant and the extreme patterns from the time series. For both experiments,

the δ value was set to 0.9. Figures 7.8(a) and (b) show the number of patterns discovered

for the three time series of the Cps dataset when parameters were set to discover relevant

patterns. The parameters values to discover relevant patterns were:

• tmin: ρ = y ∗ 45% and λ = 10

• tmax: ρ = y ∗ 55% and λ = 20

• rain: ρ = y ∗ 60% and λ = 30

The parameters are different due to the range of variation of time series. Thereafter,

we have increased the value of the parameters by 10 to find extreme patterns.

Analyzing the results presented in Figure 7.8, we can observe a meaningful decrease of

patterns when ρ and λ values increase, i.e. they become more restrictive. Patterns of type

V in time series tmax drop from 11 to 3. This pattern represents variations in maximum

temperature in different periods of time. Table 7.2 shows the V patterns found in time

series tmax using ρ = y ∗ 55%.
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Table 7.2: V patterns found for tmax in Cps dataset considering relevance factor of 55%

# patterns tmax values date

1: [31.8; 13.6; 30.2] [08/27/1912-09/07/1912]
2: [27.0; 10.0; 26.3] [06/23/1918-07/01/1918]
3: [31.0; 14.5; 31.5] [09/28/1918-10/06/1918]
4: [32.2; 13.4; 31.4] [09/02/1933-09/13/1933]
5: [32.0; 15.6; 32.8] [09/09/1948-09/17/1948]
6: [26.7; 09.7; 27.4] [06/16/1952-06/24/1952]
7: [34.3; 16.1; 32.6] [10/27/1959-11/04/1959]
8: [33.0; 14.2; 32.2] [09/12/1990-09/19/1990]
9: [28.8; 12.8; 28.4] [07/29/1993-08/03/1993]
10: [34.4; 15.8; 31.4] [09/07/1999-09/14/1999]
11: [37.2; 19.2; 35.8] [10/21/2007-10/29/2007]

As it can be seen in Table 7.2, CLIPSMiner discovered relevant V patterns in time

series tmax, in the period between June to October, which is the Winter season and the

beginning of Spring in South America. In general, such fall in the maximum temperature

in Brazil is associated to cold fronts that come from the South. The proposed algorithm

aims at mining a huge amount of data evidencing patterns according to a threshold that

can be properly set by experts, in order to be more or less restrictive, depending on the

analysts’ intents.

Figure 7.8: Results for Cps dataset: y-axis represents the number of patterns and the type of patterns
are represented in x-axis. (a) number of relevant patterns and (b) quantity of extreme patterns.

Table 7.3 contains the M patterns found in time series rain using ρ = y ∗ 70%. The

results show a high increase in the rainfall volume in a short interval of time. This

extreme phenomenon causes serious problems such as floods. Researchers are interested
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Table 7.3: M patterns found for rain in Cps dataset

# patterns rain values date

1: [0.0; 103.0; 0.0] [24/01/1899-27/01/1899]
2: [0.0; 119.0; 0.0] [11/13/1923-11/15/1923]
3: [0.0; 142.4; 0.0] [12/23/1925-12/26/1925]
4: [0.0; 127.7; 1.6] [12/23/1949-12/25/1949]
5: [0.0; 107.0; 0.0] [11/23/1951-11/27/1951]
6: [0.0; 115.7; 0.0] [01/01/1982-01/04/1982]
7: [0.0; 108.3; 0.0] [03/07/1987-03/12/1987]
8: [8.0; 138.2; 0.0] [12/30/1989-01/04/1990]
9: [0.0; 107.6; 0.0] [12/24/1997-12/26/1997]
10: [0.0; 144.7; 0.0] [10/01/2001-10/04/2001]
11: [0.0; 138.5; 11.4] [01/18/2005-01/21/2005]

in finding out when such phenomena occurred in time series and the intensity of rainfall

that occurred in a few days. Nowadays, these extreme events have occurred with greater

frequency and seem to be associated to climate change (Alexander et al., 2006; Ganguly

& Steinhaeuser, 2008).

According to the results, extreme rainfall started to reach values above 115 mm from

1923, which coincides with previous statistical analysis made by meteorologists using the

Percentile method, as illustrated in Figure 7.9. This fact confirms the hypothesis of the

researchers that the distribution of rainfall has increased in a fast pace, in the last decades.

Figure 7.9: Graph with extreme rainfall per year in the Campinas region with 17 values above 100 mm.

Many P patterns were found in all time series, specially for rain. This dataset is

composed of daily values of temperature and rain. Thus, the algorithm detected periods

with low variation in temperature or days without rain. Changing the values of parameters

δ and λ, CLIPSMiner discovered prolonged droughts, that is a pattern studied by experts,

because of their consequences for agriculture. Especially, when droughts occur in periods
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when they are not expected. This type of pattern found by the CLIPSMiner algorithm

is not detected by the percentile method. Experts commonly use other techniques such

as the generation of indexes that determine extended dry periods and other extreme

phenomena.

In order to analyze the trend differences in the beginning and at the end of the precip-

itation series, we defined the parameter p. In this experiment, we set p to 10 years and ρ

to the maximum value (90%). Analyzing the results, we see that at the beginning of the

time series (1901 to 1908) the maximum precipitation reached values of approximately 80

mm. After the 90s, these extreme values are above 130 mm, as seen in Figure 7.10.

Figure 7.10: Extreme rain values for the beginning and the end of time series: (a) rainfall reached values
of 80 mm approximately in the beginning of time series (1901 to 1905), (b) rainfall values increased to
130 mm at the end of time series (1989 to 2005).

To compare this result with the output generated by the percentile method, similarly

we defined periods of 10 years. We set the Percentile algorithm to 99th to find extremes.

This method detected only a value that represents extremes in each period of 10 years,

as it can be seen in Figure 7.11. It found smaller rain values at the beginning of the time

series than at the end, which shows that extreme climate phenomena has become more

intense in recent decades.

Beyond getting the extreme events, the Percentile method does not provide information

on the period where the extreme event occurred neither about preceding and following

events, as CLIPSMiner does.

7.4.5 Results on Real Data - the FiveRegions Dataset

In this experiment, CLIPSMiner has detected more M and V patterns than plateaus (P ),

because the time interval was set to be monthly. Figures 7.12(a) and (b) summarize the

patterns detected when the parameters were set to be smaller (ρ = y ∗ 10% and λ = 3)

and more sensitive (ρ = y ∗ 70% and λ = 5), respectively.

CLIPSMiner found few M patterns using default values for parameters in NDVI time

series. The patterns detected were [0.24; 0.64; 0.30] in [09/2003−10/2004] for Jaboticabal,
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Figure 7.11: Extremes in each period of 10 years for rainfall in Campinas region (Cps dataset).

[0.29; 0.61; 0.23] in [10/2004 − 10/2005] and [0.23; 0.61; 0.26] in [10/2005 − 10/2006] for

Jaú and [0.26; 0.61; 0.26] in [10/2002− 09/2003] for Sertãozinho.

These M patterns are related to periods when the green biomass reaches its highest

values, before the sugar cane harvest that begins in April in the study area. P patterns

were found in WRSI time series. It corresponds to a small variation in the WRSI index,

such as [0.95; 1.0; 0.99] in [10/2001 − 03/2002] found in the Jaboticabal dataset. This

phenomenon occurs when the maximum soil water content is reached after a long period

of rainfall.

Figure 7.12: Results for FiveRegion dataset: y-axis represent the number of patterns and the type of
patterns are represented in x-axis. (a) number of relevant patterns and (b) quantity of extreme patterns.

The cross-correlation method was calculated for two time series (NDVI and WRSI)
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and presented two months of time lag. The CLIPSMiner algorithm showed that there are

different time lag values along time series, as it can be seen in Figure 7.13.

Figure 7.13: WRSI and NDVI time series from Luis Antônio with example of two different time lags
(τ = 1 and τ = 2).

CLIPSMiner found τ equals 1, 2 or 3 depending on the period. It means that there are

correlations between NDVI and WRSI with a delay of one, two or three months. The time

delay is a relevant asset that can be used to mine different occurrences of correlations,

spotting issues not expected by the specialists.

7.5 Summary

In this chapter, we presented CLIPSMiner, a new unsupervised algorithm to find rele-

vant and extreme patterns in climate time series, as well as correlations between time

series, showing the relationship between the series and when one affects the other. The

experiments results show that CLIPSMiner is a powerful technique to analyze long and

multidimensional climate time series. This algorithm works on multiple time series of

continuous data, identifying sequential patterns defined with time constraints that are

related to climate phenomena. The parameters can be dynamically tuned by the user,

allowing the specialist to set the size or scale of the pattern to be mined in order to find

extreme phenomena, or even to analyze parts of the series. Thus, CLIPSMiner gives more

freedom and control to the user to analyze more closely the dataset.

The patterns detected preserve the semantics of climate events. Thus, the patterns

M , V , P can summarize the series and be used to index and to detect correlations be-
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tween series, as well as to provide a simple way to discretize a long and continuous time

series, keeping the temporal meaning of the patterns. The correlation among time series

considering time windows are also provided by CLIPSMiner, what the traditional method

of cross-correlation fails in providing to the specialists.

In summary, the results showed that the algorithm detects patterns known in clima-

tology, which are manually detected by specialists and are time expensive. CLIPSMiner

does that automatically, in linear time regarding the size of the dataset. Moreover, pat-

terns detected using the highest relevance factor are coincident with extreme phenomena

as many days without rain or heavy rain. This feature allows CLIPSMiner be used to

compare real datasets with outputs of forecasting models in order to assist in climate

change research.
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Chapter 8

The CLEARMiner Algorithm

8.1 Introduction

In Chapter 5, we described the Apriori-FD method to find association rules in climate

and remote sensing time series. Although the method has generated satisfactory rules for

minimum and maximum temperatures, the rules generated for rainfall associated to the

NDVI did not present a coherent association. As NDVI is an index that is related to the

green biomass, the effect of rain on the crop growth could be detected by NDVI after a

period of time. This fact is supported by studies described in (Gonçalves et al., 2009;

Avila et al., 2009) that evidence the interest of agrometeorologists in associating remote

sensing and climate data to better understand the influence of climate in development of

agriculture crops. Statistical analysis performed by Gonçalves et al. (2009) showed that

there are correlations between NDVI and rainfall with a delay of one or two months.

In this context, we focus on the association of local patterns in time series pairs with the

purpose of improving yield forecasting of agricultural crops and increasing the sustainable

usage of soil. Accordingly, we consider the problem of finding rules that associate patterns

in a remote sensing time series to other patterns in climate series considering time delay.

Examples of rules relating two or more time series could be “a period of gradual increase

in the WRSI values is followed by an increase in NDVI values” or “in years when El Niño

is strong could occur rainfall above average in the Southern Brazilian region”.

As a solution, we propose a new unsupervised algorithm for mining association patterns

on heterogeneous time series integrated to a remote sensing information system. The time

series mining module was developed to generate rules considering a time lag. To do so,

we define the constraint of time-window to find association rules that are extracted in two

steps. First, the algorithm transforms multiple time series in a representation of patterns

(peaks, mountains and plateaus), with discrete intervals that maintain the time occurrence
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and represent phenomena on climate or remote sensing time series. In a second step, the

algorithm generates rules that associate patterns in multiple time series with qualitative

information.

This chapter is organized as follows. In Section 8.2 we present the information mining

system where the CLEARMiner (ClimatE Association patteRns Miner) algorithm is em-

bedded. Thus, we detail a theoretical formalization for association rules in Section 8.3.

Section 8.4 presents and discusses the experimental results. Finally, Section 8.5 contains

the conclusions.

8.2 Architecture of the RemoteAgri System

In order to support the mining of NOAA-AVHRR multi-temporal images associated to

climate series to contribute to the advancement in agriculture research at a regional scale,

we have developed the RemoteAgri system. Figure 8.1 shows a schematic diagram of the

system prototype consisting of three major components: image geo-referencing module,

time series extraction module, and time series mining method.

Figure 8.1: Schematic diagram of the multi-temporal image mining RemoteAgri system.

The first phase to be executed in the system corresponds to the image geo-referencing
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module, that is presented in Figure 8.1. This module is executed calling the subroutines

of NAV system (Emery et al., 1989; Esquerdo et al., 2006), in batch mode, to accomplish

necessary tasks to geo-reference NOAA-AVHRR images. The geo-referencing module al-

lows users to generate four different synthesis images: albedo, NDVI, surface temperature

and cloud coverage for a specific region, as is illustrated in Figure 8.1.

As the volume of images is huge, an extraction module (phase 2 in the Figure 8.1)

called SatImagExplorer was developed to automatically extract time series from images

(Chino et al., 2010b,a). This module extracts values or computes indexes from a given

image. Then, it generates a time series computing the index values for all images listed

in the interface using the same coordinate (latitude/longitude) of the selected region in

the original image. The user can select regions in the image through the mouse and/or

a coordinates file. If the user needs a time series that represents a specific region, the

system generates one time series for each pixel in the defined area and the average value

considering all pixels. All time series extracted from the images are stored in the database.

Details about the system are presented in Appendix A.

The last phase refers to time series mining module developed to associate climate data

with indexes extracted from NOAA-AVHRR images. In the next section, we describe in

details the three parts of this module.

8.3 Description of CLEARMiner

In this work, we present a new unsupervised algorithm, called CLEARMiner, to mine

association patterns from time series extracted from NOAA-AVHRR. The process of time

series mining was divided into three parts: quantization process, association patterns

generation, and rules presentation as it can be seen in Figure 8.1.

First, time series are re-written in a symbolic representation that is more succinct and

manageable than continuous data. We propose the use of patterns similar to positive

and negative peaks, as well as plateaus that maintain the information about continuous

data and time of occurrence, as was introduced in Chapter 7. The proposed algorithm

renders a quantization process that preserves the time series semantics. The second part

is related to the generation of rules from this symbolic representation. Finally, the third

part corresponds to the presentation of association patterns in two formats: short and

detailed.
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8.3.1 Quantization Process

This process is similar to those described in Chapter 7 - Section 7.2. Figure 8.2 presents

a summarization of the quantization process, which is divided in three steps in order to

transform time series in a symbolic representation without losing semantic and temporal

information.

As it can be seen in Figure 8.2, the V (valley) corresponds to a pattern defined as

the concatenation of a descending event sequence and an ascending event sequence (i.e.,

V = SedSea). P (plateau) represents a kind of pattern described as a stable event sequence

(i.e., P = Ses), while M (mountain) indicates a pattern generated by the concatenation

of an ascending event sequence and a descending event sequence (i.e., M = SeaSed).

Figure 8.2: Representation of the three steps of quantization process. (1) Calculation of differences
between previous and current values of time series, (2) Identification of ascending, descending and stable
event sequences and (3) Detection of patterns M, V and P.

8.3.2 Association Patterns Generation

After the quantization process, time series are converted into a set of patterns V, M and

P, but the complete format with data value and time is preserved. To understand the

relationship between several time series, we define an association rule as:

if one pattern occurs at period i in time series 1, then

another or the same pattern occurs at period j in time series 2.
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It means that a pattern in one time series can be associated to patterns in other time

series. We consider an association rule as an expression of the form Si[α]⇒ Sj[β], where

Si and Sj are different time series, α and β are frequent patterns.

The frequency of a pattern is the number of times the pattern occurs in the time series

and is denoted by fr(Si[< pattern >]). We have defined two metrics to assess the rules:

support and confidence. Support of Si[α]⇒ Sj[β] represents the frequency of occurrences

and is given by Equation 8.1.

support =
fr(Si[α] ∪ Sj[β])

T
(8.1)

where fr(Si[α] ∪ Sj[β]) corresponds to the total number of input-patterns in the dataset

that contains α ∪ β, and T is the total number of patterns in the dataset.

Differently from traditional algorithms of association rule mining that consider T as

the total number of transactions in a database, we define T as a function of the number

of patterns in the time series converted into a sequence of symbolic patterns. Thus, we

define T by Equation 8.2.

T =
m−1∑
i=0

(n− i) (8.2)

where m and n correspond to the size of the first time series and of the last one, respec-

tively, converted into a sequence of symbolic patterns, for all (n− i) > 0.

The rules can be generated for the complete series, which greatly increases the number

of generated rules or considering a sliding window of size w that is defined by the number

of patterns. This parameter can be changed by the user, depending on how far he/she

wants to analyze. In general, the value of w is small because specialists are more interested

in knowing the correlation between two series in a short period of time to understand the

correlation between specific episodes in different series. If rules are calculated for a window

of size w (same size for all series), we have T calculated by Equation 8.3.

T =
w−1∑
i=0

(n− i) ∗ m
w

(8.3)

where m and n correspond to the size of the first time series and the last one, respectively,

converted into a sequence of symbolic patterns, for all (n − i) > 0 and w is the size of

window defined by user.

For example, if a dataset contains 96 patterns and 45 patterns correspond to S1[V ] ∪
S2[M ], the support(S1[V ] ∪ S2[M ]) = 0.46 (46%). Given a minimum support (min sup)

specified by the user, we say that a pattern is frequent if it occurs more than min sup
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times. Thus, frequent patterns are used to generate rules as described.

The confidence measure indicates the chance of Sj[β] occurring if Si[α] also occurs.

The confidence for the rule Si[α]⇒ Sj[β] is given by Equation 8.4.

conf =
fr(Si[α] ∪ Sj[β])

fr(Si[α])
(8.4)

Given a user-specified minimum confidence (min conf ), rules are generated if they sat-

isfy the conditions support ≥ min sup to discover frequent patterns and conf ≥ min conf.

The CLEARMiner algorithm first converts time series into a sequence of three types

of patterns (V, M and P) that are relevant and meaningful to agrometeorological re-

searches. In the same time, the algorithm considers the occurrence time of events, orga-

nizing the pieces quantized in patterns that have a semantic related to weather events.

After, CLEARMiner generates rules for the full time series or by window of size w. Algo-

rithm 6 shows a pseudo-code for CLEARMiner.

Algorithm 6 CLEARMiner Algorithm
Input: Dataset A of k time series structured as {e1, e2, ..., en} where ei is an event of time series Si;

thresholds δ, ρ, λ and w
Output: The mined rules

1: Scan dataset A
2: for each time series Si do
3: PatternsFind(Si, δ, ρ, λ)
4: end for
5: F1 ={1-frequentPattern (Si[< pattern >])}
6: for p = 2; p ≤ m; p = p+ 1 do
7: Cp = Set of candidate p-frequentPattern
8: (Si[< pattern >]Sj [< pattern >] and so on)
9: for all input-frequentPatterns in the dataset do

10: increment count of all p-frequentPattern ∈ Cl

11: end for
12: Fp = {frequentPattern ∈ Cp|
13: sup(frequentPattern) ≥ min sup}
14: end for
15: for all w do
16: RuleGenerate(Fp, min conf)
17: end for

The PatternsFind module is called to find patterns and to generate an array of patterns

for all series. The pseudo-code for PatternsFind was already presented in Alg. 5 - Chapter

7.

The CLEARMiner algorithm calculates j-frequentPatterns for each time series. For

example, if a dataset contains three time series, a 2-frequentPattern time series can be

S1[P ]S2[V ] or S1[V ]S2[M ], i.e., a frequentPattern combines patterns of different time

series. The algorithm only stores j-frequentPatterns greater than the min sup threshold

defined by the user (lines 5 to 14 - Alg. 6). This step is illustrated in Figure 8.3(a).
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To calculate the support of the pattern S1[M ] ∪ S2[P ], we first calculate the frequency

of the pattern S1[M ] ∪ S2[P ], counting the number of times that S1[M ] is associated to

S2[P ], that is equal to 9. Then, we calculate T by Equation 8.2, where m = n = 8,

i.e. both time series S1 and S2 have the same number of patterns. As a consequence,

T =
∑8−1

i=0 (8− i) =
∑7

i=0(8− i) = 36. Using Equation 8.1, the support sup = fr(S1[M ]∪
S2[P ])/T = 9/36 = 0.25 = 25% to the pattern S1[M ] ∪ S2[P ]. As the sup ≥ min sup,

the pattern S1[M ] ∪ S2[P ] is selected as frequent.

Figure 8.3: Diagram illustrating the steps for rules generation (a) Example of the Frequent Patterns
Discovery Process. (b) Example of Association Rules Generation.

Algorithm 7 RuleGenerate Method
Input: Fp and min conf
Output: The mined rules

for all frequentPattern Si[α] and Sj [β] ∈ Fp do
2: conf = fr(Si[α] ∪ Sj [β])/fr(Si[α])

if conf ≥ min conf then
4: output the rule Si[α]⇒ Sj [β] and conf

end if
6: end for

For each frequent pattern in F , the algorithm calculates, via the RuleGenerate method,

the confidence value (line 2 - Alg. 7). If confidence is greater than min conf, it generates
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rules (lines 3 to 5 - Alg. 7), as it can be seen in Figure 8.3(b).

8.3.3 Rules Presentation

To better visualize the rules, the algorithm presents them in two formats: short (a simple

and succinct way to represent the rules) and extended (all the details are provided).

The short format is aimed at a fast and easy analysis of the series. However, it contains

no information about the context in which the phenomenon occurred. Examples of rules

that can be generated are:

S1[V ]⇒ S2[M ]

In the first example, the rule indicates that a decrease in the time series 1 is asso-

ciated to an increase in the other series (S2). In addition to the rules in short format,

the CLEARMiner algorithm generates association rules in extended format as well. An

example is:

S1[vi, vk, vn](tinit1 − tend1)⇒ S2[vj, vl, vm](tinit2 − tend2)

This rule indicates that the pattern [vi, vk, vn] occurred in the period (tinit1 − tend1) for

the time series S1, which is associated to the pattern [vj, vl, vm] occurred in the period

(tinit2 − tend2) for the series S2 with tinit1 ≤ tinit2 and tend1 ≤ tend2 . Thus, the user can

analyze rules in the short format to verify correlations between time series and use the

extended format to obtain more details. An example with real data is presented in Figure

8.4.

Figure 8.4: Examples of rules in short and extended format that represent a peak of rain from 0 to 45
and returning to 0 occurred between the period of 01/10/2010 and 01/12/2010, which is associated to
negative peak of temperature from 27◦C to 22◦C returning to 25◦C.
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8.3.4 Time Complexity

CLEARMiner reads each of the n events once, where n is the length of the time series.

When the events are read, an array of difference values are stored. Each of the n − 1

values from the differences array are read to discover M , V and P patterns. This process

is performed on the k time series stored in the dataset. Afterwards, the association rules

are generated for each two series, regarding the number of patterns (m < n) and window

size (w). Thus, the complexity of the algorithm is n multiplied by a small constant (kmw).

Consequently, the algorithm runs in linear time (O(n)).

8.4 Experimental Results

Experiments were performed on real datasets, and the results from two of them are detailed

as follows. The results from such experiments followed the specialists’ expectations and

helped on tuning the algorithms’ parameters. Table 8.1 presents a summary of the datasets

used, giving their dimensions (E) and the size of time series (N).

Table 8.1: Datasets definition

Name Description Source E N

Sugar Cane Real data composed of NDVI and WRSI values
token from 5 sugar cane productive areas of Cepagri 2 ∼= 500

Sao Paulo State, Brazil from 04/01/2001 to 03/31/2008
El Niño Real data composed of temperature and anomalies

for 4 regions in the Pacific Ocean CPTEC 9 500
and rainfall of Quaráı, Brazil

8.4.1 Experiment 1: Sugar Cane dataset

In this experiment, CLEARMiner has mined more M and V patterns than plateaus (P ),

because the time interval employed is monthly. The M patterns detected from NDVI time

series are given by their actual amplitude values, regarding the three regions analyzed,

Jaboticabal, Jaú and Sertãozinho, as follows:

• Jaboticabal: [0.24; 0.64; 0.30] in [09/2003-10/2004]

• Jaú: [0.29; 0.61; 0.23] in [10/2004-10/2005] and

[0.23; 0.61; 0.26] in [10/2005-10/2006]

• Sertãozinho: [0.264471; 0.611832; 0.269969] in [10/2002-09/2003]

The M patterns in NDVI are related to periods when green biomass reaches its high

values, before the sugar cane harvest that begins each May. P patterns were found
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in WRSI time series. It corresponds to a small variation in WRSI index, such as

[0.95; 1.0; 0.99] [10/2001−03/2002] found in the Jaboticabal time series. This phenomenon

occurs when the maximum soil water content is reached after a long rainy season.

We have used window of size 2 patterns (w = 2) because the values are monthly and

the number of patterns found was not very large. The thresholds min sup and min conf

were set to 20% and 90% respectively. Thus, the algorithm found the rules as follows:

Table 8.2: Rules generated from NDVI and WRSI time series

Examples of Association Rules

NDVI[V] ⇒ WRSI[V] WRSI[P] ⇒ NDVI[M]
WRSI[V] ⇒ NDVI[V] WRSI[V] ⇒ NDVI[M]
WRSI[M] ⇒ NDVI[M] WRSI[M] ⇒ NDVI[V]

The rules from Table 8.2 show that when a negative peak occurs in the WRSI time

series, the same pattern occurs in the NDVI time series, as for example the rule:

Example 1:

Short Format: WRSI[V] ⇒ NDVI[V]

Extended Format: WRSI[0.8; 0.27; 0.87](05/2002 - 09/2002) ⇒
NDVI[0.54; 0.27; 0.63](05/2002 - 02/2003)

However, observing the rules in extended format we can see that pattern V occurs in

NDVI time series with a time lag. This time lag calculated by the algorithm is 3 months,

considering the inflection point of the two curves (WRSI and NDVI). This information is

not evident in short format but it is important to better understand the context in which

the phenomenon occurs.

Moreover, when a plateau with maximum values for WRSI occurs, there is the default

type for the positive peak NDVI, as for example the rule:

Example 2:

Short Format: WRSI[P] ⇒ NDVI[M]

Extended Format: WRSI[1.0; 1.0; 0.99](10/2001 - 03/2002) ⇒
NDVI[0.37; 0.55; 0.32](10/2001 - 08/2002)

These rules indicate that there is a dependency (lagged correlation) between NDVI

and WRSI. They confirm the expectations of researchers in agrometeorology, because high

values of WRSI indicate that there was enough rain to make the soil wet. NDVI measures

the green biomass and the index increases if the plant has more green biomass.
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8.4.2 Experiment 2: El Niño dataset

We also have used the CLEARMiner algorithm for mining patterns in heterogeneous time

series of meteorological data (rainfall) and anomalies related to the El Niño phenomenon.

The El Niño dataset is composed of monthly temperatures and anomalies from four regions

in the Pacific Ocean from 1966 to 2008. The warming of the Pacific Ocean can occur in

three or four regions and the values of temperature were measured in these regions. Both

phenomena El Niño and La Niña influence the climate in South and Southeast of South

America (details in Chapter 2).

In this experiment, CLEARMiner has detected M and V patterns. No plateau pattern

was found in the El Niño dataset, probably because the data was measured monthly, and

the anomaly series has very small variation and amplitude. Here also, we have used a

window of size equal to two (patterns), because the values are monthly and the number

of patterns found was not very large. Thresholds min sup and min conf were also set to

20% and 90% respectively. Examples of mined rules from El Niño dataset are presented

in Table 8.3.

Table 8.3: Association Rules to El Niño dataset

Examples of Association Rules

Rain[V] ⇒ Temp[V] Rain[M] ⇒ Temp[V]
Rain[M] ⇒ Temp[M] Rain[V] ⇒ Temp[M]
Rain[V] ⇒ Anom[M] Rain[V] ⇒ Anom[V]
Rain[M] ⇒ Anom[M] Rain[M] ⇒ Anom[V]
Temp[M] ⇒ Anom[M] Anom[V] ⇒ Temp[V]
Anom[M] ⇒ Temp[V] Anom[M] ⇒ Temp[M]

These association patterns indicate that an increase in a series (Rain, Temp, Anom)

led to an increase in the other series (Temp, Anom) in previous or subsequent time. It also

found that a decrease in the values observed in a series (Rain, Anom) led to a decrease in

another series (Temp, Anom). It was also observed that an increase in a series can lead

to a decrease in the other series analyzed, or vice versa. CLEARMiner detected several

practical rules, exemplified as follows.

Example 1:

Short Format: Anom[M] ⇒ Rain[M]

Extended Format: Anom[-1.27; -0.55; -0.84] (01/05/1966 - 01/09/1966) ⇒
Rain[43.0; 241.6; 18.8](01/05/1966 - 01/08/1966)

When an increase occurred in anomalies [-1.27, -1.03, -0.84] in the period between

(05/01/1966 and 09/01/1966), the rain increased in South region of Brazil [43.0, 241.6,

18.8] in the period between (01/05/1966 and 01/08/1966).
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Example 2:

Short Format: Rain[M] ⇒ Anom[M]

Extended Format: Rain[44.8; 355.2; 70.0](12/01/1982 - 04/01/1983) ⇒
Anom[-1.15; 3.33; 2.13](03/01/1982 - 02/01/1983)

This result is a useful rule that was found by the algorithm: when an increase occurred

in anomalies series, rain increased during Spring/Summer in the South Region of Brazil.

This association pattern highlights a strong El Niño occurred in 1983 as it can be seen in

Figure 2.4 of Chapter 2 - Section 2.2.

8.4.3 Performance Evaluation

In this section we show results by comparing the CLEARMiner algorithm with two classi-

cal and baseline algorithms, Apriori (Agrawal et al., 1993a) and the Generalized Sequential

Pattern (GSP) algorithm (Srikant & Agrawal, 1996). Both algorithms were performed in

the Weka platform1 and CLEARMiner was developed in Java.

As the two algorithms (Apriori and GSP) work only with discrete data, we were

only able to compare the rules generation. The datasets used to run Apriori and GSP

were quantized by CLEARMiner to avoid distortions that could be caused by different

quantization processes.

The Apriori algorithm mined few rules and did not consider time of occurrences.

Setting confidence to 0.8, the Apriori algorithm generated only three rules from the dataset

with NDVI and WRSI values for Jaú region as follows:

1. WRSI = V ⇒ NDVI = V conf:(1)

2. WRSI = M ⇒ NDVI = M conf:(1)

3. NDVI = V ⇒ WRSI = V conf:(0.86)

The GSP algorithm scans the database several times to generate a set of candidate k-

sequences and to calculate their support. We executed the GSP algorithm withmin sup =

0.2, which generated the sequences presented in Table 8.4 for the dataset of NDVI and

WRSI values for Jaú region. For min sup values above 0.2, the GSP algorithm in Weka

did not work properly.

The sequences mined by GSP are similar to rules generated by CLEARMiner. How-

ever, both algorithms (Apriori and GSP) do not keep information about the occurrence

1http://www.cs.waikato.ac.nz/ml/weka/

134



8.5 Summary The CLEARMiner Algorithm

Table 8.4: Sequences generated by GSP

1-sequences 2-sequences

{NDVI[V],WRSI[V]} {NDVI[M],WRSI[P]}{NDVI[V],WRSI[V]}
{NDVI[M],WRSI[P]} {NDVI[M],WRSI[M]}{NDVI[V],WRSI[V]}
{NDVI[M],WRSI[M]} {NDVI[V],WRSI[P]}{NDVI[V],WRSI[V]}
{NDVI[V],WRSI[P]}

time of the events. CLEARMiner generates rules in an extended format, which can be

used to obtain more details about the correlation between time series.

Another advantage of our method is the quantization process that is executed as a

first part. This quantization generates a representation that encompasses the semantics

meaningful for climate and agroclimate time series. The criteria to quantize time series

is based on phenomena that are observed by meteorologists and agrometeorologists and

impacts the environment.

8.5 Summary

In this chapter, we presented a new unsupervised algorithm to mine association patterns in

climate and remote sensing time series, integrated in a remote sensing information system

produced to improve the monitoring of sugar cane fields. CLEARMiner presents rules in

two formats: short and extended. Short rules are easier to understand, but they are not

sufficient to visualize the peak amplitudes and the length of the plateaus. Therefore, the

algorithm also presents rules in extended format including details of the values variation

and time intervals.

The mined rules for the relevance patterns indicate a relation between series, allowing

these patterns (phenomena) happen in different intervals of time. Summarizing, the main

contributions of our algorithm are:

1. Include a process of discretization that preserves the semantic meaning of data

regarding time;

2. Keep the discretized continuous intervals with their respective times of occurrence

to generate the rules;

3. Consider the time lag when it generates rules that associate different time series.

Then, this new method can be used by agrometeorologists to mine and discover knowl-

edge from their long time series of past and forecasting data, being a valuable tool to

support their decision making process. In the next chapter, we present the conclusions,

main contributions and further work.
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Chapter 9

Conclusions and Further Work

9.1 Introduction

After decades of gathering and storing data, many historical series were generated and

can be studied in several areas of knowledge, such as economy, health, telecommuni-

cation, weather, geoscience and more recently in remote sensing. Time series provide

valuable information to comprehend different phenomena along time. Statisticians have

contributed to time series analysis proposing innumerous methods for forecasting, moni-

toring and extreme detections. Recently, time series begins to be studied by researchers

in Data Mining proposing several techniques of indexing time series, querying time series,

discovering sequential patterns and mining association rules from them.

Analyses of historical series from different countries contribute to understand natural

phenomena, which are connected to global warming. Consequently, the measured increase

in the average temperature has impelled researches for collaborative development involving

meteorologists, mathematicians, statisticians and computer scientists, in order to assess

the real impact of such increases as well as on how to deal with it. Understanding what

are the main sources for this phenomenon and what are its consequences to the life and to

the earth environment is a great challenge for researchers in the whole World. Computer

science has an important opportunity to contribute with solutions that use techniques

from temporal, spatial and spatio-temporal data mining, for instance.

In this thesis, techniques from data mining were extended and new ones proposed

to support analyses of climate and remote sensing time series to collaborate in the un-

derstanding of agricultural crops, such as sugar cane, which are used as an important

source of renewable energy in Brazil. The experiments accomplished with time series

from producing regions of sugar cane in São Paulo state spotted correlations between

climate conditions and vegetative indexes obtained from satellite with time lag. Results
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presented in this thesis confirm Ganguly’s observations (Ganguly & Steinhaeuser, 2008)

about relatively simple data mining methods properly employed can result in scientific

insight with social impacts.

9.2 Main Contributions

In this thesis, we proposed methods based on fractal theory and time series mining. These

methods help climatologists and agrometeorologists during the analysis process of the data

gathered through ground-based stations and remote sensing images. It improves research

in Agriculture, especially in a country of great territorial extensions, such as Brazil.

In order to monitor evolving climate data and to highlight where the specialists should

pay more attention during the analysis process, we proposed a fractal-based method as-

sociated to a statistical analysis module (Romani et al., 2009a). The method measures

the fractal dimension along time spotting trend changes and the attributes responsible for

the change behavior.

To aid comparing different sugar cane regions represented by multiple time series

we proposed two methods based on weighting the DTW distance function by correlation

factors (Romani et al., 2009d, 2010a), where one of them takes advantage of the correlation

fractal dimension.

Collaborating in the detection of high and extreme phenomena on climate data without

loss of semantical information about time and context of occurrence, we proposed the

CLIPSMiner algorithm (Romani et al., 2009c, 2010d). CLIPSMiner is a new unsupervised

algorithm to find relevant and extreme patterns in time series, as well as correlations

between time series, showing the relationship between the series and when one affects the

other.

Finally, we used two approaches to mine rules from time series. The first one is the

Apriori-FD method (Romani et al., 2008) that combines techniques of feature selection,

discretization and association rules to discover patterns and knowledge from climate data

and remote sensing images. As Apriori-FD is not able to deal with the time lag in the

generation of rules, we proposed the CLEARMiner algorithm (Romani et al., 2010c).

CLEARMiner is a unsupervised algorithm to mine rules, which associates patterns in a

time series to patterns in other series considering a time lag. CLEARMiner first converts

time series into a symbolic representation and in the second step discovers association

patterns between series. The algorithm considers a time-window constraint to reduce the

search space and the number of generated rules.

The proposed methods were compared with other similar techniques and assessed by
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a group composed of meteorologists, agrometeorologists and remote sensing specialists.

All methods reached satisfactory results as declared by the specialists. The development

of this thesis also allowed the accomplishment of research in subjects correlated to this

thesis:

• creation and organization of the NOAA-AVHRR database, which was employed for

the experiments and is being used in the CEPAGRI-UNICAMP;

• collaboration in the development of SatImagExplorer system to automatically ex-

tract time series from multiple images from satellites (details in Appendix A);

• development of a new unsupervised discretizer to preprocess climate series through

a non-fixed statistical discretization that takes in account the mean and standard

deviation values and the Chebyshev’s Inequality (Traina et al., 2010);

• designing an environment that allows users to browse a dataset in its tabular format,

visualize such data, select query centers, perform similarity queries and have the

results of the queries drawn into visualization workspaces that co-exist in the system

(Rodrigues Jr. et al., 2010);

• contributing to the proposition of a research project (number 09/53153-3) to Mi-

crosoft Research Institute - FAPESP, called “AgroDataMine: Development of Al-

gorithms and Methods of Data Mining to Support Research on Climate Changes

Regarding Agrometeorology.”

Therefore, we consider that the main contribution of this doctorate program was

the proof that well-tailored fractal correlation and data mining techniques can be em-

ployed in a satisfactory way to improve the agriculture monitoring, helping agricultural

entrepreneurs on decision making.

9.3 Publications

Papers published during the doctorate period are also considered as a valuable contribu-

tion of this thesis. The list of these publications is presented as follows:

International Journal

[1] Gonçalves, R. R. V.; Zullo Jr., J.; Romani, L. A. S.; Nascimento, C. R. and Traina,

A. J. M. - “Analysis of NDVI time series using cross-correlation and forecasting methods

for monitoring sugar cane fields in Brazil”. International Journal of Remote Sensing, 20p.

(to appear in 2011)
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National Journal

[1] Chino, D. Y. T.; Romani, L. A. S. and Traina, A. J. M. - “Construindo Séries

Temporais de Imagens de Satélite para Sumarização de Dados Climáticos e Monitora-

mento de Safras Agŕıcolas”. Revista Eletrônica de Iniciação Cient́ıfica - REIC (Online),

v. 10, p. 1-16, 2010.

[2] Romani, L. A. S.; Ávila, A. M. H.; Zullo Jr., J.; Traina Jr., C. and Traina, A. J.

M. - “Mining Relevant and Extreme Patterns on Climate Time Series with CLIPSMiner”.

Journal of Information and Data Management, v. 1(2), June 2010, p. 245-260, 2010.

International Book Chapter

[1] Romani, L. A. S.; Sousa, E. P.; Ribeiro, M. X.; Ávila, A. M. H.; Zullo Jr., J.;

Traina Jr., C. and Traina, A. J. M. - “Mining Climate and Remote Sensing Time Series

to Improve Monitoring of Sugar Cane Fields”. In: Prado, H. A.; Luiz, A. J. B.; Chaib

Filho, H. (Org.). Computational Methods Applied to Agricultural Research: Advances and

Applications. 1 ed. Hershey: IGI Global, p. 1-25, 2010.

International Conferences - Full papers

[1] Romani, L. A. S.; Ávila, A. M. H.; Zullo Jr., J.; Chbeir, R.; Traina Jr., C. and

Traina, A. J. M. - “CLEARMiner: a new algorithm for mining association patterns on

heterogeneous time series from climate data”. In: 25th ACM Symposium on Applied

Computing (SAC), 2010, Sierre. Proceedings of the SAC 2010. New York: ACM Press,

v. 1, p. 901-906, 2010.

[2] Romani, L. A. S.; Gonçalves, R. R. V.; Zullo Jr., J.; Traina Jr., C. and Traina, A. J.

M. - “New DTW-based Method to Similarity Search in Sugar Cane Regions Represented

by Climate and Remote Sensing Time Series”. In: IEEE International Geoscience

and Remote Sensing Symposium (IGARSS 2010), 2010, Honolulu. Proceedings of the

IGARSS 2010. Los Alamitos: IEEE Society, v. 1, p. 355-358, 2010.

[3] Rodrigues Jr., J. F.; Romani, L. A. S.; Traina, A. J. M. and Traina Jr., C. - “Com-

bining Visual Analytics and Content Based Data Retrieval Technology for Efficient Data

Analysis”. In: 14th International Conference Information Visualisation, 2010, London,

UK. Proceedings of the IV 2010, v. 1, p. 61-67, 2010.

International Conferences - Extended short papers

[1] Traina, A. J. M.; Ribeiro, M. X.; Cordeiro, R.; Romani, L. A. S.; Sousa, E. P.; Ávila,
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A. M. H.; Zullo Jr., J.; Traina Jr., C. and Rodrigues Jr., J. F. - “How to Find Relevant

Patterns in Climate Data: An Efficient and Effective Framework to Mine Climate Time

Series and Remote Sensing Images”. In: SIAM Annual Meeting, 2010, Pittsburg, USA.

Proceedings of the SIAM-AN 2010. New York : SIAM, v. 1, p. 124-125, 2010.

International Workshops - Full papers

[1] Romani, L. A. S.; Sousa, E. P.; Ribeiro, M. X.; Zullo Jr., J.; Traina Jr., C.

and Traina, A. J. M. - “Employing Fractal Dimension to Analyze Climate and Remote

Sensing Data Streams”. In: SIAM Multimedia Data Mining Workshop 2009 - SDM 2009,

2009, Sparks, Nevada. Proceedings of the MDM/SDM 2009, v. 1, p. 1-15, 2009.

[2] Romani, L. A. S.; Zullo Jr., J.; Nascimento, C. R.; Gonçalves, R. R. V.; Traina Jr.,

C. and Traina, A. J. M. - “Monitoring sugar cane crops through DTW-based method for

similarity search in NDVI time series”. In: Fifth International Workshop on the Analysis

of Multi-temporal Remote Sensing Images, 2009, Groton, Connecticut, USA. Proceedings

of Multitemp 2009, v. 1, p. 171-178, 2009.

National Conferences - Full papers

[1] Chino, D. Y. T.; Romani, L. A. S. and Traina, A. J. M. - “Extração de Séries

Temporais de Imagens de Satélite para Monitoramento de Safras Agŕıcolas e de Dados

Climáticos”. In: XXIX Concurso de Trabalhos de Iniciação Cient́ıfica da SBC, 2010, Belo

Horizonte. Anais do CTIC’2010. Porto Alegre: Sociedade Brasileira de Computação -

SBC, v. 1, p. 137-144, 2010. (Work awarded as the second best paper of the event.)

[2] Romani, L. A. S.; Ávila, A. M. H.; Zullo Jr., J.; Traina Jr., C. and Traina, A. J.

M. - “Mining Climate and Remote Sensing Time Series to Discover the Most Relevant

Climate Patterns”. In: XXIV Brazilian Symposium on Databases, 2009, Fortaleza, CE.

Proceedings of the SBBD 2009. Porto Alegre: Sociedade Brasileira de Computação, v. 1,

p. 181-195, 2009.

[3] Romani, L. A. S.; Ávila, A. M. H.; Traina Jr., C. and Traina, A. J. M. - “Detecting

Extreme in Climate Time Series using Data Mining Techniques”. In: III Simpósio

Internacional de Climatologia, 2009, Canela - RS. Anais do III SIC. Rio de Janeiro:

SBMET, 2009. v. 1. p. 1-6.

[4] Romani, L. A. S.; Traina, A. J. M.; Sousa, E. P.; Zullo Jr., J.; Ávila, A. M.

H.; Rodrigues Jr., J. F. and Traina Jr., C. - “Computational framework to analyze
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agrometeorological, climate and remote sensing data: challenges and perspectives”. In:

XXXVI Seminário Integrado de Software e Hardware (in XXIX Congresso da Sociedade

Brasileira de Computação), 2009, Bento Gonçalves - RS. Anais do SEMISH 2009. Porto

Alegre: SBC, p. 323-337, 2009.

[5] Romani, L. A. S.; Sousa, E. P.; Traina Jr., C.; Zullo Jr., J.; Traina, A. J. M. -

“Aplicação de Método Baseado em Fractais para Detecção de Correlações entre Imagens

AVHRR-NOAA e Dados Climáticos para Regiões Produtoras de Cana-de-açúcar”. In:

XIV Simpósio Brasileiro de Sensoreamento Remoto (SBSR), 2009, Natal, RN. Anais do

XIV SBSR. São José dos Campos: Editora do INPE, v. 1, p. 403-410, 2009.

National Conference - Short paper

[1] Nunes, S. A.; Romani, L. A. S.; Ávila, A. M. H.; Traina Jr., C.; Sousa, E. P.

and Traina, A. J. M. - “Análise baseada em fractais para identificação de mudanças de

tendências em múltiplas séries climáticas”. In: XXV Brazilian Symposium on Databases,

2010, Belo Horizonte - MG. Proceedings of the SBBD 2010 - Short Paper Session. Porto

Alegre: SBC, p. 65-72, 2010.

National Workshops - Full paper

[1] Romani, L. A. S.; Traina, A. J. M.; Ribeiro, M. X.; Sousa, E. P.; Zullo Jr., J. and

Traina Jr., C. - “Aplicação de Técnicas de Mineração em Dados Climáticos e de Satélite

para Auxiliar no Acompanhamento das Safras de Cana-de-Áçucar”. In: IV Workshop em

Algoritmos e Aplicações de Mineração de Dados, 2008, Campinas. Anais do WAAMD

2008. Porto Alegre: Sociedade Brasileira de Computação, v. 1, p. 87-92, 2008.

9.4 Further Work

Knowledge discovery in agricultural data has a wide variety of subjects still to be explored,

especially with regard to the analysis of climate data associated to remote sensing data.

Although this thesis has contributed with new methods in this direction, some further

works to complement this research can be:

• Development of techniques to find correlations between attributes from datasets

characterized by the presence of clusters;

• Definition of methods to associate time series in different time scales with seman-

tic information obtained from experts to improve the analysis process considering
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distinct information source;

• Assessment of similarity measures proposed in this work with algorithms of cluster-

ing, aimed at extending the applicability of the methods;

• Methods to analyze forecasting data, aimed at discovering possible model errors that

can be analyzed and employed in order to tune climate change forecasting models;

• Exploration of broader correlations between data elements that can lead to more

refined outliers detection;

• Inclusion of methods to spatial-temporal data mining in order to support spatial

analysis;

• Development of classification methods for satellite images using clustering to auto-

matically define classes;

• Development of visual analytics methods to detect missing data, outliers and pat-

terns in heterogeneous time series.

Therefore, we argue that the research started in this thesis can be the basis to a large

research field. This can also motivate new researchers into this fascinating and thought-

provoking area, integrating computer science and agrometheorology.
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v. 1, pp. 42–55. Fundação Cargill, Campinas.
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istrada nas imagens dos satélites AVHRR/NOAA, em São Paulo, e dados agroclimáti-
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Blücher Ltda., São Paulo, SP, Brasil, 2a edição edition.

Morinaka, Y., Yoshikawa, M., Amagasa, T., and Uemura, S. (2001). The l-index: An
indexing structure for efficient subsequence matching in time sequence databases. In
Proceedings of the Workshop on Mining Spatial and Temporal data (5th Pacific-Asia
Conference on Knowledge Discovery and Data Mining), pp. 51–60, Hong Kong, China.

Morse, M. D. and Patel, J. M. (2007). An efficient and accurate method for evaluating
time series similarity. In Proceedings of the International Conference on Management
of Data (SIGMOD’2007), pp. 569–580, Beijing, China.

Nascimento, C. R., Zullo Jr., J., Romani, L. A. S., and Rodrigues, L. H. A. (2009). Iden-
tification of sugar cane fields in the state of sao paulo using a time series of avhrr/noaa
satellite images. In Proceedings of the The 5th International Workshop on the Analy-
sis of Multi-temporal Remote Sensing images (Multitemp’2009), pp. 104–111, Groton,
Connecticut, USA.

Nass, L. L., Pereira, P. A. A., and Ellis, D. (2007). Biofuels in brazil: An overview. Crop
Science, 47(Nov-Dec):2228–2237.

155



Novo, E. M. L. M. (1992). Sensoriamento remoto: prinćıpios e aplicações. Edgard
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Appendix A

The SatImagExplorer System

A.1 Introduction

Nowadays, data recorded by satellites are more accessible and there are appropriate tech-
nology (software and hardware) to receive, distribute, manipulate and process long time
series of images. However, the majority of this technology is for commercial use and
is not suitable for processing long series of images. Examples of software developed to
manipulate remote sensing images are Erdas1, Idrisi2 and Spring3.

The development of the NavPro system (described in Chapter 2) allowed to enlarge
the scope of research that involves NOAA/AVHRR multi-temporal images. However, the
process of extraction, storage and visualization of time series from these images is very
costly to be done manually, as previously mentioned. Thus, it is crucial the development of
a new technique to perform these tasks automatically in order to allow the accomplishment
of new research activities by the remote sensing specialists.

In general, time series are built by extracting measurements or performing calculations
on data from regions of interest (ROIs) from the images that were gathered sequentially
along a period of time. The possibility of automatically extracting time series was much
desired by experts, but was not available on commercial systems, as the ENVI4 (The
Environment for Visualizing Images) system, whose module IDL (Interactive Data Lan-
guage) allows to build time series from images. However, IDL is a script language not
trivial to use. Remote sensing specialists have two alternatives to deal with the problem
of extracting time series from multi-temporal images: learn how to develop scripts in IDL
or request the support of an expert in IDL language. In fact, this task is very difficult to
be executed without an automatic process.

As a contribution of this work, it was proposed the development of the SatImagExplorer
system that handles sequences of images automatically, extrapolating the values extraction
from each pixel to all images of the same sequence. Consequently, this system makes the
task of obtaining time series of a huge number of multi-temporal images more agile and
efficient. SatImagExplorer has been implemented by an undergraduate student5 as part
of his initiation in research program in the scope of this doctorate project.

1http://www.erdas.com/
2http://www.clarklabs.org/
3http://www.dpi.inpe.br/spring/portugues/index.html
4http://www.ittvis.com/ProductServices/ENVI.aspx
5Daniel Y. T. Chino, that is supported by AgroDataMine project - number 09/53153-3

165



The SatImagExplorer system was developed using open source software what allows
broader contributions to its improvement in the future. The system was coded in C++
language with the open source library GDAL6 (Geospatial Data Abstraction Library) for
the manipulation of images in GeoTIFF7 format. The GeoTIFF format is an extension
of TIFF images (Tagged Image File Format) for geospatial imagery. Images in GeoTIFF
format have information about the image itself, such as dimension, color depth, etc.,
geographic/cartographic information and values measured by sensors on board satellites.

A.2 Description of the SatImagExplorer system

The SatImagExplorer user interface is simple and intuitive. Through the mouse inter-
action, the user defines any polygonal region, which will be used for the analysis of the
image series. The system architecture is modular, as it can be seen in Figure A.1.

Figure A.1: Architecture schema of the SatImagExplorer system (adapted from (Chino et al., 2010a)).

A.2.1 Interaction Module

The SatImagExplorer interface is composed of windows, icons, menus, and a pointing
device which allows direct manipulation. The user opens a list of image files from which
are extracted values of the same pixel, or region, of all images generating time series.
Dragging the mouse, the user indicates a polygonal region which will be used to extract
time series per pixel and receives visual feedback as an indication of the marked region.

Alternatively, the system has option for determining the region of interest through
a list of coordinates (latitude and longitude) in text files. Thus, it can be pointed out

6http://gdal.org/
7http://trac.osgeo.org/geotiff

166



precisely the regions of interest that will be analyzed, for example the exact locations
where there is sugar cane crop fields. That is, if specialists want to track the performance
of a specific planting from a farm or business, they can use a coordinates file, which
provides exactly the region of interest.

A.2.2 Processing Module

SatImagExplorer extracts values associated to pixels in all images opened in the system,
generating a time series for each pixel for the region of interest defined by user. Time
series are stored in a database allowing users to process further analyses.

Thus, the user, or the specialist in the field, can manipulate images and time series
extracted from them in order to acquire knowledge that assists him/her in the analysis
task. The SatImagExplorer system allows simultaneously opening several satellite images
in GeoTIFF format. In general, these images have already been submitted to the georef-
erencing process. SatImagExplorer opens several format of images, such as: raw, NDVI,
surface temperature and GOES satellite, which are low and medium resolution images.
Figure A.2 shows a screenshot of the SatImagExplorer system.

Figure A.2: SatImagExplorer interface where 1 corresponds to an area that lists the names of images,
2 is the area of the interface in which the image is presented and 3 shows the status bar.

Once the images are opened they are displayed in the list located in the left side of the
screen. Then, the user can select which image will be presented in the right side of the
screen. In the status bar, the system presents information about latitude and longitude
coordinates of a specific point or region that had been indicated by the mouse position
and its value.

Figure A.3 (a) shows an area selected by the user through the mouse. In Figure A.3
(b), the marked area was selected using a coordinates file, which highlights sugar cane

167



fields in São Paulo state.

Figure A.3: Images with regions selected by users using two approaches: (a) selection through mouse;
(b) selection through coordinates file.

A.3 Extraction and Inclusion of Indexes

First, the user defines coordinates in the images using both approaches: mouse or file.
Thus, SatImagExplorer reads the matrix of pixels to generate time series from each pixel
in the region of interest for all images opened. The system also allows visualizing time
series in the usual graphical format. In the abscissa axis is represented the time scale.
Indexes or raw values of each pixel are plotted in the ordinate axis. When an area is
selected, charts display the values for all selected coordinates, represented by lines in gray
and the average values for region are represented by the solid line in blue as illustrated in
Figure A.4.

Figure A.4: Graphs show NDVI time series of sugar cane region in the São Paulo state. (a) series of 8
years, (b) series corresponds to year/season of 2006/2007 from April to March.

Figures A.4(a) and A.4(b) show the time series graphs of the same region. In both
graphs, the abscissa axis represents time measured in months and the ordinate axis indi-
cates NDVI values. As it can be seen in Figure A.4(a), there are multi-temporal images
that correspond to eight years of sugar cane crop seasons (April 2001 to March 2009),
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generating a large amount of data whose indexes are very difficult to be manually ex-
tracted. Thus, the development of a system that is able to automatically manipulate
multi-temporal satellite images is decisive to improve the specialists’ job.

Figure A.4(b) shows an example of the standard curve of the sugar cane crop for the
crop season of 2006/2007. The NDVI values have increased in November when sugar
cane crops are in the beginning of the vegetative development. From December to April,
NDVI values have been higher than in other months because sugar cane crops are on top
of development and present more biomass. When sugar cane crops begin the senescence
phase in May until maturation phase in July, NDVI values decrease.

This analysis can aid improving regional systems of crop season forecasting, since they
can be used to confirm (with certain limitations) the beginning and end of crop growing
in some predetermined areas.

Through both charts, we can notice that most of coordinates measures are close to
average values, but there are outliers in the graph. Values that are outside the range
of common value were probably generated by errors in measurements caused by noise or
even belong to pixels that do not correspond to sugar cane fields.

Users can type mathematical formulas in the SatImagExplorer system in order to cal-
culate and to extract indexes from raw images. These formulas can already be developed
as NDVI or be under development/testing to generate new indexes using the channels
present in a raw satellite image. The formulas are calculated at runtime and can be
changed according to the expert needs.

To avoid typographical errors and mistakes in formulating, the formulas are validated
considering a grammar G = ((< exp >,< term >< factor >,< op1 >,< op2 >
,< opun >)(number, band, variable, (, ),+,−, ∗, /,, sin, cos, exp, log, sqrt), P,< exp >),
where the set of production rules P are described in Figure A.5 as Backus-Naur extended
normal form.

Figure A.5: Grammar used to produce formulas for the indexes calculation.

The mathematical formulas are verified through a descending parser encoded by re-
cursive procedures. After verification, the formulas are converted from infix notation of
input to an intermediate format in Reverse Polish Notation and are solved using a heap
structure and respecting the precedence of operators. With this procedure, the system
ensures that the equation types by user in the system is complete.

The specialist can define variables using the channels in each image, numbers, the four
arithmetic basic operations, as well as unary and power operands. These user-defined
variables can also be used in other variables, as illustrated in Figure A.6(a).

The ability to add new indexes and measures in an automated and simple way brings
flexibility to the process of analyzing and understanding the behavior of regions of interest
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in a specific time period. This characteristic makes the SatImagExplorer powerful enough
to aid in understanding different phenomena and to support decision making.

Figure A.6: Option of inputing new indexes in the SatImagExplorer system: (a) definition of formulas
by users, (b) NDVI time series extracted from raw the NOAA/AVHRR images.

Figure A.6(a) presents the NDVI equation defined by expert to be submitted to raw
NOAA/AVHRR images for sugar cane crop fields. Figure A.6(b) shows the NDVI trend
in a dataset of multi-temporal images of 2005, from January to December. Equations in
conventional notation is typed by users directly in the pop-up window of SatImagExplorer.

The outlier value exhibited in September (ninth value on the horizontal axis) of Figure
A.6(b) was caused due to lack of data in the region of interest, as presented in Figure
A.7. This failure occurs when the satellite is not positioned on the nadir for the receiving
antenna at the time of image capture.
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Figure A.7: Image of São Paulo state with noise caused by the positioning of satellite.

A.4 Validation Process

In order to validate the extraction process performed by SatImagExplorer we compared
the outputs of our system with a traditional method employed by specialists. In general,
they write a set of scripts in IDL language of Envi software to extract values that are
associated to pixels in NOAA/AVHRR images.

Figure A.8 shows the data extracted from an eight-year time series of sugar cane crops
(April 2001 to March 2009). The blue curve represents the data taken with the ENVI
system and the curves in red and green refer to data extracted through SatImagExplorer.
The data show noise in the periods of January 2002 and March 2008, because this time
interval corresponds to a period of considerable rainfall in the São Paulo state. Thus,
many NDVI images are discarded during periods with large amounts of clouds since is
impossible to obtain correct measurements of NDVI indice.

Both systems (ENVI and SatImagExplorer) show similar curves of sugar cane crops
with gaps around 20% in the values (January, 2007). These disparities occur due to
differences in methods used to accomplish the calculations on different systems, which
will be more carefully examined in future work.

Another difference between the systems is the value assigned in the case of noise or
lack of data in the image. The ENVI software assigns null values and SatImagExplorer
uses an invalid negative value.

SatImagExplorer also allows that data be submitted to a process of linear interpolation,
which gives the specialist a more homogeneous view of the NDVI average values extracted
from the images, as it can be seen in Figure A.8.

A.5 Further Work

In this Section we presented the SatImagExplorer system that is being developed to manip-
ulate heterogeneous remote sensing images. The system extracts information associated
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Figure A.8: Time series extracted through IDL scripts of ENVI software in blue and SatImagExplorer
in red and green.

to each pixel for multi-temporal images generating time series of different indexes.
As further work, we intend to incorporate time series mining techniques in the system,

such as association rules and clustering. In addition, the system will be linked to an
information visualization system to facilitate and increase the working capacity of the
users.
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Appendix B

Fractal-based analysis of multiple
time series

B.1 Introduction

In general, meteorological data are useful only if associated with a geographic system
that allows identifying and relating them to characteristics of the region from where
they are collected. Thus, considering the major goal of geographic information systems
of providing subsidies for analysts to determine the spatial and temporal evolution of
geographic phenomena and their inter-relationship, the information provided by these
systems can be a useful tool to be associated with climate data analysis.

For years, meteorologists have studied historical data to understand and characterize
the planet’s climate and predict possible future scenarios in different regions of the planet.
IPCC suggests an increase in the average global temperature what may lead to acceleration
of the hydrological cycle and consequent intensification of extreme events (IPCC, 2007).

In this scenario, it is important to understand the trends of extreme phenomena in
order to be prepared for such adverse situations, creating conditions to mitigate the prob-
lems and make decisions. In this context, the following tasks can be highlighted:

1. Efficient analysis of multiple climate time series to find patterns and trend changes,

2. Identification of climate extremes that indicate regional or global climate changes.

In order to help the domain specialists to perform these tasks, we propose a process for
climate time series analysis as an initial improvement of the method described in Chapter
5 - Section 5.4. The implementation of the adjustments in the method has been made by
an undergraduate student1 as part of his initiation in research program in the scope of
this doctorate project.

Our approach deals with multiple time series as a multidimensional data stream, such
that each time series defines an attribute of the stream. Thus, it is possible to integrate
multiple climate variables in a unified process.

The analysis process we propose combines:

1. fractal data stream monitoring for pattern discovery and behavior changes detection,

1Santiago Augusto Nunes, that is supported by AgroDataMine project - number 09/53153-3
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2. clustering to find similar (or distinct) patterns revealed when data are analyzed with
different time granularities and,

3. statistical analysis to identify individual variable changes associated with significant
overall behavior variations.

Experimental studies carried out on real climate time series from different regions of
Brazil indicate that our approach can be a useful tool to assist specialists in analyzing
large amounts of climate data.

B.2 Proposed Analysis Process

This section presents an analysis process to detect patterns of interest in multiple time
series by applying a combination of different techniques, namely fractal data stream mon-
itoring, data clustering and statistical analysis.

Figure B.1 illustrates the whole process. The first step is to associate multiple (geo-
referenced) climate time series to compose a multidimensional data stream, i.e., each time
series determines a stream attribute. For instance, temperature and rainfall time series
can be aggregated into a bi-dimensional data stream. This approach allows an integrated
analysis of different climate variables in order to discover overall behavior changes over
time. In other words, it makes possible to evaluate how the variables are correlated and
how these correlations vary, especially when significant behavior changes are identified.

Figure B.1: Analysis process of multiple time series.

The second step is the fractal analysis of the data stream, applying the SID-meter
approach. The SID-meter algorithm was originally proposed to work with a single sliding
window of a predetermined size (details in Section 3.4). An extension of the SID-meter
(Nunes et al., 2010) was designed to handle simultaneous multiple-sized windows over
a data stream in a single-read processing. As a result, we can find similar or distinct
temporal patterns occurring in different time granularities, e.g., monthly or annually.
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The extended SID-meter generates sliding windows of different sizes based on initial-
ization parameters. Mainly, the narrowest and the widest windows must be determined
by setting:

• the minimum and the maximum values of nc (counting periods) and ni (number of
events per period);

• increment values of nc and ni.

For instance, consider a data stream composed of daily measures: by setting nc to
vary from 3 to 6 with an increment of 1, and ni to vary from 30 (1 month per counting
period, approximately) to 365 (1 year per counting period), we define windows ranging
from 3 ∗ 30 = 3 months to 6 ∗ 365 = 6 years. These parameters should be determined
considering the temporal granularity of the data and the purposes of the analysis to be
carried out. Thus, domain specialists can be very helpful on this task.

The output of the extended SID-meter is a set of D2 (Correlation Fractal dimension)
graphs generated for windows of different sizes. Thus, in the third step of the analysis
process, we map each graph into a time series of D2 measures. The set of D2 time series
is then clustered in order to find similar patterns appearing in different time granularities
and distinct patterns, which are detected only in some specific time windows. Moreover,
the centroids of the clusters provide some additional information to the domain specialists
on how to choose windows of interest for further analysis, i.e., a centroid represents the
general pattern of the cluster and therefore the corresponding time window (with a specific
time granularity) can be analyzed in more details. The clustering task combines K-
Medoids (Kaufman & Rousseeuw, 1990), which is a partition-based clustering method,
with Dynamic Time Warping (DTW) to measure the similarity among the D2 time series.
They are both simple and widely used techniques and presented satisfactory results on
our initial empirical studies.

The last step of the process is the statistical analysis, which can be applied considering
only the time windows represented by the centroids of the clusters. Basic statistical
measures, such as mean and standard deviation, can indicate the variation of individual
climate variables in periods of significant alterations in the fractal dimension. The main
goal is to discover how each climate variable influences correlation changes, in particular
those related to extreme climate events.

We applied this whole process to long, georeferenced climate time series collected from
different regions of Brazil, aimed at identifying meaningful behavior changes on the data
over time and to associate them with relevant and extreme climate events. The results
are presented in Section B.3.

B.3 Experimental Results

We have performed several experiments on real time series to validate our approach. Two
datasets from different regions of Brazil were used to conduct the studies:

1. South: real climate series, provided by Agritempo2, consisting of daily measurements
of rainfall and average temperature measured by 19 meteorological stations in the
period from 1994 to 2008.

2www.agritempo.gov.br/
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2. Southeastern: real climate series, also provided by Agritempo, consisting of daily
measurements of rainfall and average temperature measured by 10 meteorological
stations of the São Paulo state, in the period from 1995 to 2009.

The time series analyzed in the experiments are georeferenced, as the geographical
position of the source meteorological stations affects the results significantly. In general,
the climate exhibits different characteristics in geographically distinct regions. Figure B.2
shows the location of the meteorological stations in the South and in São Paulo. It is worth
mentioning that the São Paulo state has a significant number of stations when compared
to the other states of the Southeastern region and therefore it is analyzed separately.

Figure B.2: Geographical coordinates of the meteorological stations in South region and in São Paulo
state.

From each dataset we create a bi-dimensional data stream composed of the attributes
rainfall and average temperature. As initial parameters of the extended SID-meter we set
the number of count periods (nc) in the range 2-5 and the movement step (ni) of 1 month
to 1 year. In other words, we defined windows ranging from two months to five years.

The graphs depicting the fractal dimension D2 measured over time by the extended
SID-meter for the two data streams have significantly different trends, although they are
related to the same two climate variables and the same time interval. The differences in
patterns observed in the graphs evidence the distinct climate characteristics of the two
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corresponding regions. Also notice that, for both datasets, the value of D2 remained
around 1, which indicates that the average temperature and rainfall variables are corre-
lated. This behavior is consistent with the experts’ expectations, since the correlation
between these variables ranges from a stronger correlation in a given period to a weaker
correlation in others.

Figure B.3: Variation of D2 for the South region of Brazil. The patterns found show the occurrence of
El Niño (green) and La Niña (blue): (a) one-year window with 6 months of movement step; (b) two-year
window with one year of moment step.

Figure B.3 shows two D2 graphs for the South region, considering two time windows
of different sizes. We can see that, although the graphs are related to different time
granularities, there is a similar pattern of D2 variation. Both graphs show a peak in
1998 and a decline in the value of fractal dimension around the year 2000. By assessing
the fluctuation of mean and standard deviation for the variables rainfall and temperature
during the 1997/1998 and 2000/2001, we can observe higher values of standard deviation
in precipitation (varying from 14.7 to 19.8) in the first period and higher values of standard
deviation in temperature (varying from 6.2 to 8.9) in the second period. According to
specialists and temperature data records, the winters of 2000 and 2001 were marked by low
temperatures, very cold weather and snowfall in both years (2000/2001) in Rio Grande
do Sul (a state in the South region). Additionally, the 1999/2001 period coincides with
the occurrence of La Niña.

The period from 1997 to 1998 suffered the occurrence of a very strong El Niño. More-
over, the Meso-scale Convective Complexes (MCCs) strongly influence the maximum rain-
fall over northwestern of Rio Grande do Sul during the spring (Velasco & Fritsch, 1987).
These systems are a result of the interaction between the subtropical high-level jet during
this season and the low-level jet coming from the north. They move towards the east
of Southern Brazil after they are originated over the west (Grimm & Tedeschi, 2008).
During El Niño phenomenon, extreme events may move to the south or to the north, but
both indicate the importance of the western part of Southern Brazil in the increase of
extreme events during El Niño years. MCCs are frequent in this area and these systems
take advantage of the circulation anomalies during El Niño episodes (Grimm & Tedeschi,
2008)).

Figure B.4 shows two D2 graphs for the São Paulo state, considering two time windows
of different sizes. They also present the variation of D2 with a similar pattern of behavior.

Figure B.4 (a) corresponds to a two-year window for which the value of fractal dimen-
sion is updated every year (one-year of movement step). We can observe that the value
of D2 decreases in the period 2000 to 2002, which coincides with the occurrence of La
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Figure B.4: Variation of D2 for the São Paulo state. Patterns found show the occurrence of La Niña
(blue): (a) two-year window with one year of movement step; (b) four-year window with one year of
moment step.

Niña. In this period (2000/2001), there was a warning in São Paulo with the possibility
of electricity rationing in South Central, probably due to a rainfall decrease in the cen-
tral region of Brazil. In the Southeast, the years 2000 and 2001 were characterized by a
pronounced dry season. In 2000, the months of April, May and June were very dry and
the rainy season was delayed.

Both graphs in Figures B.4(a) and (b) show a trend change between 2004 and 2009.
Our analysis indicates that the year 2007 shows a wide variation in the values of both
mean and standard deviation for the variables temperature and rainfall. In 2007, the
region had a hot and rainy Summer, and a wetter and slightly warmer Fall. According
to the specialists, in El Niño years there is an increase in the occurrences of heavy rains
between October and February, with a break in January. However, in the case of total
monthly precipitation, the signal is less pronounced, occurring in some regions and not in
others.

In general, we observed that, for both regions we analyzed, El Niño years are related
to a decrease in the correlation between temperature and rainfall (higher D2). On the
other hand, La Niña occurrences are related to an increase in this correlation (lower
D2). According to meteorologists, in years of La Niña rainfalls are caused by Convective
Complexes of Meso-scale, which are heavy rains, severe thunderstorms, and it can cause
a discontinuity in the relationship between variables.

Our analysis process also includes a clustering task, which groups the graphs generated
by the extended SID-meter. The main goal, in these experiments, is to find similar
patterns that are revealed even if data is analyzed under different time granularities,
such as the relevant D2 variations identified in Figures B.3(a) and B.3(b). Furthermore,
the specialist also receives as output the graphs selected as centroids of the clusters.
Thus, she/he can determine the suitable window sizes to be used to highlight the climatic
phenomena that are being evaluated.

For example, Figure B.5 shows the centroids of five clusters generated to group the
graphs of São Paulo. With the centroid information experts can have a general picture of
the set of graphs within each cluster and define which clusters could be used to further
analyses. This approach can make the analysis task easier, as the number of possible
combinations of window configurations (counting periods and movement step) can be
considerably high.
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Figure B.5: Clusters of D2 graphs for the state of São Paulo (C - clusters and O - outliers).

B.4 Future Work

The time series analysis of precipitation and temperature together through the fractal
theory shows that there is a rhythmic pattern in time between the variables. When a trend
change occurs, the approach presented in this work is able to identify the change and the
variables responsible for the pattern variation. Thus, it was possible to correlate those
variations with changes in global weather patterns, such as El Niño-Southern Oscillation.

These results indicate that time series studies with more than one variable at a time
may allow the identification of patterns in more details than using just one variable. Fur-
thermore, our approach can aid to understand the interdependence among meteorological
variables. Additionally, analysis performed directly on the data of weather stations allows
identifying the individual contribution of different stations, detecting extreme events in
each region.

Future work includes trend change forecasting based on the analysis of general climate
data behavior associated with semantic information provided by domain specialists.
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