

A contribution to the fault-based testing of
aspect-oriented software

Fabiano Cutigi Ferrari

A contribution to the fault-based testing of
aspect-oriented software

Fabiano Cutigi Ferrari

Orientador: Prof. Dr. José Carlos Maldonado

Tese apresentada ao Instituto de Ciências Matemáticas e de
Computação - ICMC-USP, como parte dos requisitos para
obtenção do título de Doutor em Ciências - Ciências de
Computação e Matemática Computacional.

USP – São Carlos

Outubro de 2010

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito: 22 de Outubro de 2010

Assinatura:________________________

Acknowledgements

Initially, I would like to thank the Instituto de Ciências Matemáticas e de Computação
and its members for having supported me to conclude my PhD research. A also thank my
supervisor, Professor José Carlos Maldonado, for his perspicacity during the whole course
of my work, always pointing out key issues and directions that should be followed.

Thanks to Professor Awais Rashid, from the University of Lancaster, for his supervi-
sion and financial support during my visit to that university, and to Yvonne Rigby for
her cordial welcome and support as well.

I specially thank Professor Alessandro Garcia for the motivation and strong collabo-
ration that has started at Lancaster and lasts until nowadays.

Lovely thanks to Valéria, my source of inspiration, who has comprehended my absence
specially during the final episodes and highest pressure times. To my parents Ivani and
Antônio, and to my brother Cristiano, for their unconditional support and for having
welcomed me amongst all my adventures across the world.

I am thankful for my friends and competent contributors: Otávio Lemos and Rachel
Burrows (several nights awake near submission deadlines!), Marco Graciotto, Rodrigo
Fraxino, André Endo, Vinicius Durelli, Eduardo Figueiredo, Nelio Cacho, Roberta Coelho,
Elisa Nakagawa and Paulo Masiero.

I would also like to say thanks to my friends from LabES and ICMC, who have borne
a few bad mood days along all these years ,; some friends of very short term, others
much more “insistent”; some already professionals in the market, others still in the fight.
I will not write a list of names otherwise I would certainly be unfair. Therefore, thank
you all!

Thanks also to my friends from Lancaster and PUC-Rio, for the warm welcome and
pleasant stay during my visits. Again, thank you all!

Finally, I would like to thank the financial support received from the Fundação de Am-
paro à Pesquisa do Estado de São Paulo (FAPESP), from the Coordenação de Aperfeiçoa-
mento de Pessoal de Nı́vel Superior (CAPES), and from the AOSD-Europe Project.

i

Agradecimentos

Inicialmente, agradeço ao Instituto de Ciências Matemáticas e de Computação e seus
membros por terem possibilitado a conclusão deste trabalho de doutorado. Agradeço
também ao meu orientador, Prof. José Carlos Maldonado, por sua perspicácia ao longo de
todo o trabalho, sempre destacando pontos-chave e apontando direções a serem seguidas.

Agradeço ao Professor Awais Rashid, da Universidade de Lancaster, pela supervisão
e apoio financeiro durante a minha visita a essa universidade. E à Yvonne Rigby, pela
cordial recepção em Lancaster e apoio durante minha visita.

Faço aqui um agradecimento especial ao Professor Alessandro Garcia, pela motivação
e intensa colaboração iniciada em Lancaster e que se estendeu até os dias atuais.

Agradeço à Valéria, minha fonte de inspiração, que soube compreender os momentos
de ausência, principalmente nas fases finais e de maior pressão do trabalho. Aos meus
pais, Ivani e Antônio, e ao meu irmão, Cristiano, pelo constante apoio e por sempre me
acolherem entre minhas várias aventuras pelo mundo afora.

Aos amigos e competente colaboradores: Otávio Lemos e Rachel Burrows (várias
noites em claro em dias de submissão!), Marco Graciotto, Rodrigo Fraxino, André Endo,
Vinicius Durelli, Eduardo Figueiredo, Nelio Cacho, Roberta Coelho, Elisa Nakagawa e
Paulo Masiero.

Aos meus amigos do LabES e do ICMC, que agüentaram alguns poucos dias de mau
humor durante esses anos ,; alguns de rápida passagem, outros bem mais “insistentes”;
alguns já profissionais em atividade, outros ainda na luta. Não citarei nomes, pois certa-
mente cometeria a injustiça do esquecimento. Portanto, obrigado a todos!

Aos amigos de Lancaster e da PUC-Rio, que me receberam muito bem durante minhas
visitas. Novamente, obrigado a todos!

Por fim, agradeço pelo apoio financeiro recebido da Fundação de Amparo à Pesquisa
do Estado de São Paulo (FAPESP), da Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior (CAPES). e do Projeto AOSD-Europe.

iii

Declaration of Original Authorship
and List of Publications

I confirm that this dissertation has not been submitted in support of an application for
another degree at this or any other teaching or research institution. It is the result of
my own work and the use of all material from other sources has been properly and fully
acknowledged. Research done in collaboration is also clearly indicated.

Excerpts of this dissertation have been either published or submitted for the appreci-
ation of editorial boards of journals, conferences and workshops, according to the list of
publications presented below. My contributions to each publication are noted. Acceptance
rates of conferences are also indicated.

Journal and Conference Papers

• Ferrari, F. C.; Rashid, A.; and Maldonado, J. C.: “Towards the Practical Mutation
Testing of Aspect-Oriented Java Programs”, (currently under evaluation).

Journal: Science of Computer Programming.

Level of contribution: High – the PhD candidate is the main investigator and con-
ducted the work together with his contributors.

• Ferrari, F. C.; Burrows, R.; Lemos, O. A. L.; Garcia, A.; Figueiredo, E.; Cacho,
N.; Lopes, F.; Temudo, N.; Silva, L.; Soares, S.; Rashid, A.; Masiero, P.; Batista,
T.; and Maldonado, J. C.: “An Exploratory Study of Fault-Proneness in Evolving
Aspect-Oriented Programs”.

Event: 32nd International Conference on Software Engineering (ICSE’10).

Acceptance rate: 14%

Level of contribution: High – the PhD candidate is the main investigator and led a
large team of contributors during all phases of the work.

v

• Ferrari, F. C.; Burrows, R.; Lemos, O. A. L.; Garcia, A.; and Maldonado, J. C.:
“Characterising Faults in Aspect-Oriented Programs: Towards Filling the Gap between
Theory and Practice”.

Event: 24th Brazilian Symposium on Software Engineering (SBES’10).

Acceptance rate: 22%

Level of contribution: High – the PhD candidate is the main investigator and led
the data collection and analysis as well as the paper writing.

• Ferrari, F. C.; Maldonado, J. C.; and Rashid, A.: “Mutation Testing for Aspect-
Oriented Programs”.

Event: 1st International Conference on Software Testing, Verification and Validation
(ICST’08).

Acceptance rate: 25%

Level of contribution: High – the PhD candidate is the main investigator and con-
ducted the work together with his contributors.

• Coelho, R.; Rashid, A.; Garcia, A.; Ferrari, F. C.; Cacho, N.; Kulesza, U.; von
Staa, A.; and Lucena, C.: “Assessing the Impact of Aspects on Exception Flows: An
Exploratory Study”.

Event: 22nd European Conference on Object-Oriented Programming (ECOOP’08).

Acceptance rate: 20%

Level of contribution: Medium – the PhD candidate helped in the data collection
and analysis as well as in the paper writing.

• Nakagawa, E. Y.; Simão, A. S.; Ferrari, F. C.; and Maldonado, J. C.: “Towards a
Reference Architecture for Software Testing Tools”.

Event: 19th International Conference on Software Engineering and Knowledge Engi-
neering (SEKE’07).

Acceptance rate: 43%

Level of contribution: Low – the PhD candidate helped in the definition of the core
architecture concepts and in the elaboration of parts of the text.

Workshop Papers

• Ferrari, F. C.; Nakagawa, E. Y.; Rashid, A.; and Maldonado, J. C.: “Automating
the Mutation Testing of Aspect-Oriented Java Programs”.

Event: 5th ICSE International Workshop Automation of Software Test (AST’10).

vi

Level of contribution: High – the PhD candidate developed the tool with support
from his contributors, specially regarding the definition of requirements and architec-
ture. He also led the paper writing.

• Ferrari, F. C.; Höhn, E. N.; and Maldonado, J. C.: “Testing Aspect-Oriented Soft-
ware: Evolution and Collaboration through the Years”.

Event: 3rd Latin American Workshop on Aspect-Oriented Software Development
(LAWASP’09) – held in conjunction with SBES’09.

Level of contribution: High – the PhD candidate is the main investigator and led
the work and the paper writing.

• Ferrari, F. C.; and Maldonado, J. C.: “Experimenting with a Multi-Iteration Sys-
tematic Review in Software Engineering”.

Event: 5th Experimental Software Engineering Latin America Workshop (ESELAW’08).

Level of contribution: High – the PhD candidate is the main investigator and con-
ducted the work together with his adviser.

• Lemos, O. A. L.; Ferrari, F. C.; Masiero, P. C.; and Lopes, C. V.: “Testing Aspect-
Oriented Programming Pointcut Descriptors”.

Event: 2nd Workshop on Testing Aspect Oriented Programs (WTAOP’06) - held in
conjunction with ISSTA’06.

Level of contribution: Medium – the PhD candidate helped in the approach definition
(in particular, the mutation-based testing phase) as well as in the paper writing.

• Ferrari, F. C.; and Maldonado, J. C.: “A Systematic Review on Aspect-Oriented
Software Testing” (in Portuguese).

Event: 3rd Brazilian Workshop on Aspect-Oriented Software Development (WASP’06)
- held in conjunction with SBES’06.

Level of contribution: High – the PhD candidate is the main investigator and con-
ducted the work together with his adviser.

Book Chapter

• Masiero, P. C.; Lemos, O. A. L.; Ferrari, F. C.; and Maldonado, J. C.: “Testing
Object and Aspect-Oriented Programs: Theory and Practice” (in Portuguese).

Book: Atualizações em Informática. Breitman, K. and Anido, R., eds. Editora
PUC-Rio, Rio de Janeiro, Brazil, 2006.

vii

Level of contribution: High – the PhD candidate helped in the text writing and
structuring, as well as in identifying sound examples to demonstrate the application of
the selected testing approaches.

Technical Report

• Ferrari, F. C.; and Maldonado, J. C.: “Aspect-Oriented Software Testing: A System-
atic Review” (in Portuguese).

Institution: ICMC/USP, 2007.

Level of contribution: High – the PhD candidate is the main investigator and con-
ducted the work together with his adviser.

Other Related Publications

• Burrows, R.; Ferrari, F. C.; Lemos, O. A. L.; Garcia, A.; and Täıani, F.: “The
Impact of Coupling on the Fault-Proneness of Aspect-Oriented Programs: An Empirical
Study”.

Event: 21st International Symposium on Software Reliability Engineering (ISSRE’10).

Acceptance rate: 32%

Level of contribution: Medium – the PhD candidate helped in the data collection
and analysis as well as in the paper writing.

• Burrows, R.; Ferrari, F. C.; Garcia, A.; and Täıani, F.: “An Empirical Evaluation of
Coupling Metrics on Aspect-Oriented Programs”.

Event: ICSE Workshop on Emerging Trends in Software Metrics (WETSoM’10).

Level of contribution: Medium – the PhD candidate helped in the data collection
and analysis as well as in the paper writing.

• Coelho, R.; Lemos, O. A. L.; Ferrari, F. C.; Masiero, P. C.; and von Staa, A.: “On
the Robustness Assessment of Aspect-Oriented Programs”.

Event: 3rd Workshop on Assessment of Contemporary Modularization Techniques
(ACoM) - held in conjunction with OOPSLA’09.

Level of contribution: Medium – the PhD candidate helped in the definition of a
testing approach as well as in the paper writing.

viii

• Figueiredo, E.; Cacho, N.; SantAnna, C.; Monteiro, M.; Kulesza, U.; Garcia, A.; Soares,
S.; Ferrari, F. C.; Khan, S.; Castor Filho, F.; and Dantas, F.: “Evolving Software
Product Lines with Aspects: An Empirical Study on Design Stability”.

Event: 30th International Conference on Software Engineering (ICSE’08).

Acceptance rate: 15%

Level of contribution: Low – the PhD candidate helped in the data collection and
in the elaboration of parts of the text.

ix

Abstract

Aspect-Oriented Programming (AOP) is a contemporary software develop-
ment technique that strongly relies on the Separation of Concerns principle.
It aims to tackle software modularisation problems by introducing the as-
pect as a new implementation unit to encapsulate behaviour required to
realise the so-called crosscutting concerns. Despite the benefits that may
be achieved with AOP, its implementation mechanisms represent new po-
tential sources of faults that should be handled during the testing phase.
In this context, mutation testing is a widely investigated fault-based test
selection criterion that can help to demonstrate the absence of prespecified
faults in the software. It is believed to be an adequate tool to deal with
testing-related specificities of contemporary programming techniques such
as AOP. However, to date, the few initiatives for customising the mutation
testing for aspect-oriented (AO) programs show either limited coverage with
respect to the types of simulated faults, or a need for both adequate tool sup-
port and proper evaluation. This thesis tackles these limitations by defining
a comprehensive mutation-based testing approach for AO programs written
in the AspectJ language. It starts with a fault-proneness investigation in
order to define a fault taxonomy for AO software. Such taxonomy encom-
passes a range of fault types and underlay the definition of a set of mutation
operators for AO programs. Automated tool support is also provided. A
series of quantitative studies show that the proposed fault taxonomy is able
to categorise faults identified from several available AO systems. Moreover,
the studies show that the mutation operators are able to simulate faults
that may not be revealed by pre-existing, non-mutation-based test suites.
Furthermore, the effort required to augment the test suites to provide ad-
equate coverage of mutants does not tend to overwhelm the testers. This
provides evidence of the feasibility of the proposed approach and represents
a step towards the practical fault-based testing of AO programs.

Keywords: Software testing, Aspect-Oriented Programming, mutation
testing, fault taxonomy, fault characterisation.

xi

Resumo

A Programação Orientada a Aspectos (POA) é uma técnica contemporânea
de desenvolvimento de software fortemente baseada no prinćıpio da sepa-
ração de interesses. Ela tem como objetivo tratar de problemas de mod-
ularização de software por meio da introdução do aspecto como uma nova
unidade de implementação que encapsula comportamento relacionado aos
interesses transversais do software. A despeito dos benef́ıcios que podem ser
alcançados com o uso da POA, seus mecanismos de implementação repre-
sentam novas potenciais fontes de defeitos que devem ser tratados durante a
fase de teste de software. Nesse contexto, o teste de mutação consiste em um
critério de seleção de testes baseado em defeitos que tem sido bastante inves-
tigado para demonstrar a ausência de defeitos pré-especificados no software.
Acredita-se que o teste de mutação seja uma ferramenta adequada para lidar
com as particularidades de técnicas de programação contemporâneas como a
POA. Entretanto, até o presente momento, as poucas iniciativas para adap-
tar o teste de mutação para o contexto de programas orientados a aspectos
(OA) apresentam cobertura limitada em relação aos tipos de defeitos simu-
lados, ou ainda requerem adequado apoio automatizado e avaliações. Esta
tese visa a mitigar essas limitações por meio da definição de uma abordagem
abrangente de teste de mutação para programas OA escritos na linguagem
AspectJ. A tese inicia como uma investigação da propensão a defeitos de
programas OA e define uma taxonomia de defeitos para tais programas. A
taxonomia inclui uma variedade de tipos de defeitos e serviu como base para
a definição de um conjunto de operadores de mutação para programas OA.
Suporte automatizado para a aplicação dos operadores também foi disponi-
bilizado. Uma série de estudos quantitativos mostra que a taxonomia de
defeitos proposta é suficiente para classificar defeitos encontrados em vários
sistemas OA. Os estudos também mostram que os operadores de mutação
propostos são capazes de simular defeitos que podem não ser relevados por
conjuntos de teste pré-existentes, não derivados para cobrir mutantes. Além
disso, observou-se que o esforço requerido para evoluir tais conjuntos de teste
de forma a torná-los adequados para os requisitos gerados pelos operadores

xiii

de mutação não tendem a sobrecarregar os testadores envolvidos. Dessa
forma, geraram-se evidências de que o teste de mutação é fact́ıvel para pro-
gramas OA, representando um passo no sentido da sua aplicação prática
nesse contexto.

Palavras-chave: Teste de software, Programação Orientada a Aspec-
tos, teste de mutação, taxonomia de defeitos, caracterização de defeitos.

xiv

Table of Contents

1 Introduction 1

1.1 Problem Statement and Justification for the Research 3

1.2 Objectives and Research Methodology . 4

1.3 Thesis Outline and Summary of Contributions 5

2 Background 9

2.1 Foundations of Aspect-Oriented Programming 9

2.1.1 Programming Languages and other Supporting Technologies 14

2.2 Foundations of Software Testing . 20

2.2.1 Basic Terminology . 21

2.2.2 Testing Techniques and Criteria . 23

2.2.3 Test Evaluation and Comparison amongst Criteria 30

2.2.4 Test Automation . 32

2.3 Testing of Aspect-Oriented Software . 33

2.3.1 The Systematic Mapping Study Protocol and Process 33

2.3.2 The Systematic Mapping Study Results 35

2.3.3 Fault Taxonomies for AO Software 36

2.3.4 AO Testing Approaches . 40

2.3.5 Tool Support for AO Testing . 49

2.4 Final Remarks . 56

3 Evaluating the Fault-Proneness of Aspect-Oriented Programs 57

3.1 A Study of the Fault-Proneness of AO Programs 58

3.1.1 Goals and Method . 59

3.1.2 Results . 60

3.2 Defining and Evaluating a Fault Taxonomy for AO Programs 63

3.2.1 Goals and Method . 64

3.2.2 Results . 64

3.3 Summary of Contributions and Limitations 68

xv

4 Designing Mutation Operators for Aspect-Oriented Programs 71
4.1 Mutation Operators for AspectJ Programs 72

4.1.1 Mutation Operators versus Fault Types 72
4.1.2 Preliminary Cost Analysis . 74

4.2 Generalisation of the Fault Taxonomy . 75
4.3 Summary of Contributions and Limitations 76

5 Automating the Mutation Testing of Aspect-Oriented Programs 79
5.1 Requirements for Mutation Tools . 80
5.2 The Architecture of Proteum/AJ . 81
5.3 The Main Functionalities of Proteum/AJ 83
5.4 Implementation Details . 84

5.4.1 Core Modules . 85
5.5 Summary of Contributions and Limitations 87

6 Evaluating the Proposed Mutation Testing Approach 89
6.1 First Study: Evaluating the Usefulness and Required Effort 90

6.1.1 Target Applications . 91
6.1.2 Building the Initial Test Sets . 93
6.1.3 Applying Mutant Analysis to the Target Applications 95
6.1.4 Analysis of the Results . 97
6.1.5 Additional Comments on the Mutant Analysis Step 99

6.2 Second Study: Estimating the Cost of the Approach with Larger Systems . 100
6.2.1 Target Systems . 100
6.2.2 Generating Mutants for the Target Systems 101
6.2.3 Contrasting the Results with the First Study 102

6.3 Study Limitations . 104
6.4 Final Remarks . 105

7 Conclusions 107
7.1 Revisiting the Thesis Contributions . 108

7.1.1 Theoretical Definitions . 108
7.1.2 Implementation of Automated Support 109
7.1.3 Evaluation Studies . 109

7.2 Limitations and Future Work . 110
7.2.1 Possible Research Directions . 111

References 113

A Paper: An Exploratory Study of Fault-Proneness in
Evolving Aspect-Oriented Programs 135

B Paper: Characterising Faults in Aspect-Oriented Programs:
Towards Filling the Gap between Theory and Practice 147

C Paper: Mutation Testing for Aspect-Oriented Programs 159

xvi

D Paper: Automating the Mutation Testing of Aspect-Oriented
Java Programs 171

E Paper: Towards the Practical Mutation Testing of Aspect-
Oriented Java Programs 181

xvii

List of Figures

2.1 Example of crosscutting concern . 11
2.2 Basic elements of an AOP supporting system 12
2.3 A simple graphical editor written in AspectJ 17
2.4 Example of context exposure in AspectJ. 19
2.5 Example of static crosscutting in AspectJ 20
2.6 Example of a DUG . 26
2.7 Subsume relation amongst structural-based test selection criteria 31
2.8 The process for systematic literature review updates 35
2.9 Lemos et al.’s PCD-related fault types . 39
2.10 Example of an AODU graph . 42
2.11 Examples of PWDU and PCDU graphs . 44
2.12 Example of an ASM before and after weaving the aspects into the base

application . 46
2.13 Example of mutants generated by Anbalagan and Xie’s framework 48
2.14 The test generation process implemented in the Aspectra framework 50
2.15 The test process supported by JaBUTi/AJ 51
2.16 An AODU graph generated by JaBUTi/AJ 52
2.17 A JaBUTi/AJ coverage report screen . 53
2.18 A JaBUTi/AJ pairwise-based test requirement selection screen 53
2.19 The test process supported by AjMutator 54

3.1 Fault distribution according to the fault taxonomy for AO software 67
3.2 Example of fault related to arbitrary advice execution order 68

5.1 Proteum/AJ architecture . 82
5.2 Proteum/AJ execution flow . 83
5.3 Proteum/AJ core modules . 86

6.1 Source code of the debit method (AccountSimpleImpl class). 94
6.2 Coverage yielded by SFT test sets. 98
6.3 Effort required to derive the TM test sets. 99
6.4 Example of an equivalent mutant of the MusicOnline application. 100

xix

6.5 Percentages of equivalent and anomalous mutants for the target systems. . 104

xx

List of Tables

2.1 Advice types in AspectJ . 18
2.2 Main constructs for static crosscutting in AspectJ 19
2.3 Advice precedence rules in AspectJ . 20
2.4 Systematic Mapping Study of AO testing: final selection. 37
2.5 Systematic Mapping Study of AO testing: overlapping results. 38
2.6 Summary of features present in tools for AO testing. 55

3.1 Fault distribution per system . 61
3.2 Faults associated with obliviousness . 61
3.3 Correlation between AOP mechanism usage and faults per concern/release 63
3.4 Faults related to PCDs . 65
3.5 Faults related to ITDs and declare-like expressions 65
3.6 Faults related to advices . 66
3.7 Faults related to the base program . 66

4.1 Mutation operators for PCDs . 73
4.2 Mutation operators for ITDs and declare-like expressions 73
4.3 Mutation operators advices . 73
4.4 Relationship between mutation operators and fault types for AO software . 74
4.5 TSD and HW mutants . 75
4.6 Mutant average per element type . 75
4.7 Relationship between AOP technologies and fault types 76

5.1 Requirements fulfilled by tools for mutation testing of AO programs 80
5.2 Proteum/AJ implementation effort . 85

6.1 Values of metrics for the selected applications (first study). 91
6.2 Equivalence classes and boundary values for the debit method. 94
6.3 Functional-based test requirements and respective adequate test sets. . . . 95
6.4 Mutants generated for the 12 target applications. 96
6.5 Mutation testing results for the 12 target applications. 97
6.6 Values of metrics for the selected applications (second study). 101

xxi

6.7 Percentages of equivalent mutants generated for the target systems. 102
6.8 Percentages of anomalous mutants generated for the target systems. 103

xxii

Abbreviations and Acronyms

AO - Aspect-Oriented
AODU - Aspect-Oriented Def-Use

AOP - Aspect-Oriented Programming
AOSD - Aspect-Oriented Software Development

ASM - Aspectual State Model
CFG - Control Flow Graph
DUG - Def-Use Graph

FREE - Flattened Regular Expression
FSM - Finite State Machine
EJP - Explicit Join Point
ITD - Intertype declaration

JP - Join point
JVM - Java Virtual Machine

OO - Object-oriented
PCD - Pointcut descriptor

PCDU - PointCut-based Def-Use
PWDU - PairWise Def-Use

SFT - Systematic Functional Testing
SLR - Systematic Literature Review
SMS - Systematic Mapping Study
SoC - Separation of concerns

SQA - Software Quality Assurance
V&V - Verification and Validation
XPI - Crosscut Programming Interface

xxiii

Chapter

1
Introduction

Producing high quality software has become a pursuit of the industry since software

started playing a central role in the last decades, irrespective of the application domain. To

obtain high quality products, Software Quality Assurance (SQA) activities are undertaken

along the development process (Sommerville, 2007, p. 642-644). Under the SQA umbrella,

Verification and Validation (V&V) activities are carried out to assure the software behaves

as it was specified to. In this context, software testing – which consists in one of the V&V

activities – is fundamental in order to reveal faults that, despite the adoption of rigorous

development practices, still remain in the products.

When we consider the advances in the Software Engineering field, we can notice that a

possible mean of improving software quality regards the application of contemporary de-

velopment approaches that are intended to cope with the increasing software complexity.

For example, the object-oriented (OO) paradigm benefits from the object-based prob-

lem decomposition (Booch, 1994, p. 16-20) in order to handle complex software design

and implementation. It is expected to enhance external software quality attributes (e.g.

evolvability and extensibility) and, in turn, to make software more reusable. In general,

reusing a piece of software that has already been tested within its original context will con-

sequently result in less faults being introduced in a newly derived software, as empirically

demonstrated in previous research (Mohagheghi et al., 2004).

1

In spite of the benefits that can be achieved with the adoption of the OO paradigm, its

typical implementation units – i.e. the classes – may not properly modularise some stake-

holders’ concerns and non-functional requirements that appear either interwoven with

other concerns or requirements, or scattered over several modules in the software (El-

rad et al., 2001a). Typical examples of such concerns1 – the so-called crosscutting con-

cerns (Kiczales et al., 1997) – are distribution, caching, concurrency, business rules and

certain design patterns.

Aspect-Oriented Programming (AOP) is a contemporary development technique that

aims to tackle this software modularisation issue (Kiczales et al., 1997). It introduced the

aspect as a new conceptual implementation unit that ideally encapsulates all behaviour

required to realise a given crosscutting concern. Once the aspects are implemented, they

are combined with the other system modules – the base modules or base code – in a

process called aspect weaving (Kiczales et al., 1997). This combination process produces

the executable system that fully realises the expected behaviour. The benefits that are

likely to be observed in aspect-oriented (AO) programs range from improved modularity

itself to enhanced maintainability (Mortensen et al., 2010), higher reusability (Laddad,

2003a) and facilitated software evolution (Coady and Kiczales, 2003).

As of the proposition of innovative software development techniques, however, new

challenges with respect to software testing are also introduced. As a consequence, re-

searchers and practitioners continuously endeavour to figure out means of reducing the

number of faults in the resulting products. For example, underlying OO concepts such as

information hiding, class hierarchies and polymorphism pose new challenges for the test-

ing activity (Binder, 1999, p. 69-97). Hence, specific approaches have been proposed to

support the testing of OO program accordingly (Chen et al., 1998; Harrold and Rothermel,

1994; Ma et al., 2002; Turner and Robson, 1993; Vincenzi et al., 2006a).

When AOP is concerned, its underlying concepts such as quantification and oblivi-

ousness (Filman and Friedman, 2004) as well as its basic programming constructs like

pointcuts and advices (Kiczales et al., 2001b) also represent new potential sources of soft-

ware faults (Alexander et al., 2004). Furthermore, the combination of aspects and base

code yields new subtle interactions amongst the software modules, which can lead to a

higher number of faults in the resulting programs (Burrows et al., 2010b).

Similarly to OO programming, once again it is necessary to investigate the existing

testing approaches and spot the required adaptations and innovations to provide adequate

1Without loss of generality, we henceforth use the term concern to refer to any stakeholders’ concern
and functional/non-functional requirement that can impact on the design and maintenance of program
modules (Robillard and Murphy, 2007).

2

Chapter 1. Introduction

support for the testing of AO software. This thesis addresses this problem, evaluating the

fault-proneness of AO programs and proposing a fault-based testing approach for this kind

of programs. The remaining of this introductory chapter characterises the investigated

problem (Section 1.1), defines the research objectives and methodology (Section 1.2), and

summarises the achieved contributions and the document organisation (Section 1.3).

1.1 Problem Statement and Justification for the Research

Software faults have been widely studied by researchers over the years (Basili and Perri-

cone, 1984; Endress, 1978; Offutt et al., 2001; Ostrand and Weyuker, 1984; Voas et al.,

1991). Both theoretical and empirical characterisation of faults are important because

they are the basis for the definition of fault taxonomies that can be used, for instance, for

the evaluation of existing testing approaches with respect to their ability in revealing the

faults described in the taxonomy. Furthermore, they provide guidance for the definition

of testing approaches that can support fault detection within specific software application

domains.

In this context, the Mutant Analysis (DeMillo et al., 1978), also known as mutation

testing, has been largely explored as a fault-based test selection criterion that relies on

recurring mistakes made by programmers during the software development. It develops

upon well-characterised fault taxonomies and simulates faults by means of mutation oper-

ators (DeMillo et al., 1978). Mutation testing enables the evaluation of the software itself

(when faults are revealed during the test process) (Mathur, 2007, p. 533-536) as well as

the test data (whether it is sensitive enough to reveal the simulated faults) (DeMillo et

al., 1978; Mathur, 2007, p. 512). Furthermore, mutation testing has been shown to be

an important tool for the assessment of other testing approaches within the Experimental

Software Engineering context (Andrews et al., 2005; Do and Rothermel, 2006).

When it comes to AOP, the results of a systematic mapping study2 (Ferrari et al.,

2009) reveal that considerable research effort has been spent in AOP-specific fault char-

acterisation (Alexander et al., 2004; Bækken, 2006; Ceccato et al., 2005; Coelho et al.,

2008a; Eaddy et al., 2007; Ferrari et al., 2008; Lemos et al., 2006; van Deursen et al., 2005;

Zhang and Zhao, 2007) and some testing approaches for AO software based on mutation

testing (Anbalagan and Xie, 2008; Delamare et al., 2009a; Lemos et al., 2006; Mortensen

and Alexander, 2005). However, existing research on fault characterisation is either mostly

based on programming language features and researchers’ expertise or limited to specific

2More details can be found in Chapter 2, Section 2.3.

3

1.2. Objectives and Research Methodology

programming mechanisms. Moreover, it still lacks evaluation with respect to their ability

in classifying faults uncovered in real software development scenarios.

The current mutation-based testing approaches for AO software suffer from similar

limitations as does research on fault taxonomies. In general, the approaches do not fully

cover the set of main AOP mechanisms neither support an ordinary testing process that

goes from the derivation of test requirements up to the evaluation of the achieved results

after the test execution. Besides that, such approaches have not been properly evaluated

regarding, for instance, application costs, effectiveness and provided tool support.

To conclude, it is noticeable that more research is needed towards the practical

fault-based testing of AO programs and, consequently, to help it evolve from the state

of the art to the state of the practice. Developing well-founded and practical testing

approaches and demonstrating their effectiveness are essential to promote the technology

transfer to the industry, as emphasised by Harrold around one decade ago (Harrold, 2000).

1.2 Objectives and Research Methodology

According to the research gap characterised in the previous section, the general research

question to be investigated in this thesis is that whether or not one can apply fault-based

testing to AO software in an effective way and at practicable costs. Based on this general

research question, we defined the following main objectives:

• Definition of a comprehensive fault taxonomy for AO software: we aim to investigate

the fault-proneness of Aspect-Oriented Programming with respect to its underly-

ing properties, harmful implementation mechanisms and recurring faulty scenarios.

Based on our observations as well as on characteristics of the available AOP support-

ing technologies, we aim to define a comprehensive fault taxonomy which shall be

able to categorise the variety of faults that can occur in AO software.

• Definition of a fault-based testing approach for AO programs : mutation testing has

been empirically shown to be one of the strongest test selection criteria when com-

pared to other widely investigated approaches like control flow- and data flow-based

testing (Frankl et al., 1997; Mathur and Wong, 1994; Mathur, 2007, p. 503; Li et al.,

2009). Therefore, we aim to explore the mutation testing to devise a fault-based test-

ing approach for AO software. The fault taxonomy for AO software is going to guide

the design of mutation operators for program written in AspectJ (Kiczales et al.,

2001b), which is the most representative AOP supporting language currently avail-

able. We highlight that mutation operators are strongly dependent on the software

4

Chapter 1. Introduction

technology they are designed for (e.g. specification and implementation languages),

fact that has motivated us to select AspectJ as our target language.

• Automation of the proposed testing approach: software testing strongly relies on au-

tomated support to enable its systematic application in real software projects (Har-

rold, 2000). Without this, testing may be costly, error-prone and limited to small

programs (Vincenzi et al., 2006a). Therefore, we aim at automating the proposed

mutation operators, hence providing a tool that supports a mutation-based testing

approach for AO programs. To implement such a tool, we can leverage previous

knowledge of our research group at University of São Paulo, Brazil, on developing

a family of tools that support specification and program testing based on muta-

tion (Maldonado et al., 2000).

• Evaluation of the proposed fault taxonomy and testing approach: we intend to evaluate

the proposed fault taxonomy and the mutation operators for AO software based on

data gathered from varied sources. These goals can be accomplished by documenting

and categorising faults from representative AO applications with respect to the range

of employed AOP mechanisms. Furthermore, these applications shall allow us to

evaluate the proposed mutation operators with respect to their usefulness, application

cost and effort required to cover the derived test requirements.

The next section summarises the contributions of this thesis according to the aforemen-

tioned objectives. It also presents the organisation of this doctoral dissertation according

to its chapter structuring.

1.3 Thesis Outline and Summary of Contributions

The contributions of this thesis are organised as a collection of papers either published

or under current evaluation. Chapter 2 is an exception to this, given that it brings the

necessary background information and characterises the state of the art with respect to

testing of AO software. Each of the remaining chapters presents an overview of the

objectives and contributions of the respective paper. The full contents of the papers

are reproduced in Appendices A–E. We call the readers’ attention to the fact that there

are occurrences of duplicated text excerpts specially in regard to the introductory and

background sections of the papers. However, the main benefit is that the contributions are

reproduced exactly as they have been published or submitted for evaluation. Therefore,

we organised this dissertation as following described.

5

1.3. Thesis Outline and Summary of Contributions

Chapter 2 brings an overview of the background theory and concepts required for the

comprehension of the research presented herein. The chapter describes the fundamentals

of AOP and the basic concepts of software testing, including the commonly used ter-

minology. The chapter also summarises the results of a systematic mapping study that

characterises the state of the art with respect to research on testing of AO software. This

study has been updated several times over the last few years (Ferrari et al., 2009; Ferrari

and Maldonado, 2006, 2007) and the results presented in Chapter 2 include the most

recent developments in the field.

Chapter 3 describes the results of two studies that investigate the fault-proneness and

fault characterisation of AO programs. The first study was published in the Proceedings

of the 32nd International Conference on Software Engineering (Ferrari et al., 2010a) and its

full contents are presented in Appendix A. It analyses (i) the impact of the obliviousness

property (Filman and Friedman, 2004) on the fault-proneness of evolving AO programs;

and (ii) the differences amongst the fault-proneness of the main AOP mechanisms in the

context of such programs. The key results show that obliviousness did impact the cor-

rectness of the evaluated AO systems, therefore corroborating with recent trends on AOP

approaches that reduce obliviousness in favour of higher program comprehension (Gris-

wold et al., 2006; Hoffman and Eugster, 2007; Kiczales and Mezini, 2005). Moreover,

we found out that the main AOP mechanisms present similar fault-proneness when we

consider both the overall system and concern-specific implementations. These results

motivate the investigation of testing approaches that focus on other AOP mechanisms

beyond pointcut expressions.

The second study described in Chapter 3 was published in the Proceedings of the 24th

Brazilian Symposium on Software Engineering (Ferrari et al., 2010b) and is reproduced in

Appendix B. It extends our previous research on fault-proneness of AO programs (Ferrari

et al., 2010a) in three different ways: (i) it describes a fault taxonomy for AO software

which was initially introduced in our previous work (Ferrari et al., 2008); (ii) it evaluates

the fault taxonomy through the categorisation of the fault set analysed in our previous

paper (Ferrari et al., 2010a); and (iii) it characterises the most recurring faulty imple-

mentation scenarios observed in the analysed systems. The results confirm the ability of

the fault taxonomy in categorising faults identified in the analysed systems. Moreover,

they provide hints on harmful implementation scenarios that should be either avoided or

verified by developers during the development phase.

Chapter 4 defines a set of mutation operators that underlie the fault-based testing of

AspectJ programs. The operators address a variety of AOP mechanisms by simulating

a range of fault types included in the fault taxonomy for AO software. Chapter 4 also

6

Chapter 1. Introduction

evaluates the generalisation of the fault taxonomy to other AOP supporting technologies

beyond AspectJ. We noticed that most of the fault types can occur in programs developed

with the investigated technologies, thus enabling the reuse of knowledge embodied into

our mutation-based testing approach. The paper that includes the results described in

Chapter 4 was published in the Proceedings of the 1st International Conference on Software

Testing, Verification and Validation (Ferrari et al., 2008) and its full contents are presented

in Appendix C.

A tool named Proteum/AJ that automates the mutation testing of AspectJ programs

is described in Chapter 5. Proteum/AJ supports the required steps of mutation test-

ing, namely program execution, mutant generation, mutant execution and mutant anal-

ysis (DeMillo et al., 1978). It is also able to automatically identify equivalent mutants

produced by a subset of the mutation operators. The paper that describes the tool was

published in the Proceedings of the 5th International Workshop on Automation of Software

Test (Ferrari et al., 2010c). The paper can be found in Appendix D.

Chapter 6 presents the results of two studies that involve the application of the muta-

tion testing approach proposed along this doctoral work. The studies aim to demonstrate

the feasibility of applying mutation testing to AO systems of varied sizes and complexity.

The results show that the mutation operators can be applied to AO programs at a feasi-

ble cost, not requiring large effort with respect to the number of additional test cases in

order to build adequate test suites to cover the produced mutants. This chapter partially

reproduces a paper submitted to the Science of Computer Programming journal. More

specifically, it reproduces Sections 7, 8 and 9 of the referred paper, which describe the

evaluation studies. The full paper can be found in Appendix E.

Finally, Chapter 7 concludes this dissertation. It revisits the investigated problem and

summarises the achieved contributions, limitations and future work.

7

Chapter

2
Background

This chapter brings a literature review of the subjects that underlie the research devel-

oped in this thesis. It starts describing the core concepts of Aspect-Oriented Program-

ming in Section 2.1. In the sequence, Section 2.2 introduces the basic terminology of

software testing along with an overview of the main testing techniques and criteria for

test case selection. Section 2.3 characterises the state of the art with respect to testing

of aspect-oriented software according to the results of a systematic survey of the topic.

Section 2.4 concludes this chapter identifying the research opportunities and outlining the

contributions that are described in the subsequent chapters and appendices.

2.1 Foundations of Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) (Kiczales et al., 1997) arose in the late 90’s as a

possible solution to problems regarding software modularisation. Its was mainly moti-

vated by the fact that traditional software development approaches, like procedural and

object-oriented programming, could not satisfactorily cope with concerns that are spread

across or tangled with other concerns in the software. Classical examples of such concerns,

the so-called crosscutting concerns (Kiczales et al., 1997), are logging, exception handling,

concurrency and certain design patterns.

9

2.1. Foundations of Aspect-Oriented Programming

AOP is strongly based on the idea of separation of concerns (SoC), which claims that

computer systems are better developed if their several concerns are specified and imple-

mented separately. This idea was already supported by Dijkstra (1976, p. 211-212) in

the 70’s, who stated that tasks are better accomplished when they are handled indepen-

dently. These tasks can be mapped to software concerns in general, and can address

both functional requirements (e.g. business rules) and non-functional requirements (e.g.

synchronisation or transaction management) (Baniassad and Clarke, 2004).

Despite the initial emphasis on the implementation phase, AOP concepts have been

lifted up to higher levels of software abstraction, originating the Aspect-Oriented Software

Development (AOSD) approach (Filman et al., 2004). Aspects have started being consid-

ered in varied phases of the software life cycle, from requirements engineering (Araújo and

Moreira, 2003; Araújo et al., 2002; Chitchyan et al., 2007; Rashid et al., 2002) to analysis

and design (Baniassad and Clarke, 2004; Chavez, 2004).

Amongst the main concepts related to AOP, we can highlight the idea of base code and

crosscutting concerns (Kiczales et al., 1997), the weaving process (Kiczales et al., 1997),

obliviousness and quantification (Filman and Friedman, 2004), and aspects themselves

together with their internal elements (Kiczales et al., 2001b, 1997). Each of them is

described in the sequence.

Base Code and Crosscutting Concerns

Robillard and Murphy (2007) define a concern as “anything a stakeholder may want to

consider as a conceptual unit, including features, non-functional requirements, and design

idioms”. In this way, a concern may be any consideration that can impact the implemen-

tation of a program, ranging from a single variable within a program to coarse-grained

features like business rules or data persistence. In the context of AOP, a concern is typi-

cally handled as a coarse-grained feature that can be modularised within well-defined im-

plementation units. In this way, concerns are split into two categories: non-crosscutting

concerns and crosscutting concerns. The non-crosscutting concerns compose the base

code of an application and comprise the set of functionalities that can be modularised

within conventional implementation units (e.g. classes and data structures). Base mod-

ules, base classes and core functionalities are used as synonyms of base code.

Crosscutting concerns, on the other hand, are concerns that cannot be properly

modularised within conventional units (Kiczales et al., 1997). As a consequence, code

that realises a crosscutting concern usually appears scattered over several modules in a

system. Moreover, such code tends to be tangled with other concern implementations,

thus hardening software evolution and maintenance.

10

Chapter 2. Background

Figure 2.1 shows an example of a crosscutting concern. The class diagram on the

left-hand side represents an OO solution for a simple editor for graphical elements, which

enables the user to draw points and lines on a computer display. The Point and Line

classes implement methods for retrieving point coordinates (e.g. getX and getP1) as well

for updating them (e.g. setY and moveBy). Every time an updating-related method is

invoked, the system needs to update the objects shown on the display. We can observe

that the Display updating concern crosscuts other elements in the system, i.e. the Point

and Line classes. Using AOP, we can have a solution as depicted in the right-hand side of

Figure 2.1; instead of inserting code related to the Display updating concern into Point

and Line, such code can be encapsulated into an independent unit – the DisplayUpdating

aspect – so that it will be activated by the aspect when required, i.e. when the display

needs to be updated1.

Display updating

«interface»
FigureElement

moveBy(int,int)

Display

update()

Point

getX():int
getY():int
setX(int)
setY(int)
moveBy(int,int)

Line

getP1():Point
getP2():Point
setP1(Point)
setP2(Point)
moveBy(int,int)

«interface»
FigureElement

moveBy(int,int)

Display

update()

Point

getX():int
getY():int
setX(int)
setY(int)
moveBy(int,int)

Line

getP1():Point
getP2():Point
setP1(Point)
setP2(Point)
moveBy(int,int)

«aspect»
DisplayUpdate

«crosscuts»

(a) OO solution(a) OO solution (b) AO solution

Figure 2.1: Example of crosscutting concern – partially adapted from Kiczales et al.
(2001a).

Aspects, Join Points, Pointcuts and Advices

While describing the example of an editor for graphical elements (Figure 2.1), we stated

that the display updating concern can be modularised within an independent unit and

executed at appropriate times. To enable this, AOP introduced the aspect as a new

conceptual implementation unit to modularise crosscutting concerns.

1In Figure 2.1(b), the �crosscuts� stereotype is used to indicate the modules affected by the
DisplayUpdate aspect.

11

2.1. Foundations of Aspect-Oriented Programming

Aspects have the ability of implicitly modifying the behaviour of a program at specific

points during its execution. Each of these points is called a join point (JP) (Kiczales et

al., 2001b), and is characterised as a well-defined point in a program execution in which

aspects can insert additional behaviour as well as replacing the existing one.

An important matter in AOP regards the identification of join points in a program.

According to Elrad et al. (2001b), AOP supporting technologies must implement a model

that enables the software engineer to precisely identify join points in which aspect-related

behaviour will be executed. This join point model is realised by means of pointcut de-

scriptors (PCD), or simply pointcuts (Kiczales et al., 2001b). A pointcut is a semantics-

or language-based matching expression that identifies a set of join points that share some

common characteristic (e.g. based on properties or naming conventions).

Once a join point is identified using a PCD during the program execution, behaviour

that is encapsulated within method-like constructs named advices starts to run. Advices

can be of different types depending on the supporting technology. In general, advices can

be defined to run at three different moments when a join point is reached: before, after

or in place of it, as implemented in the AspectJ language (Kiczales et al., 2001b) (more

details in Section 2.1.1).

The Weaving Process

AOP enhances the modularisation of crosscutting concerns through the use of aspects

that are implemented separately from the base code. However, base code and aspects need

to be combined in order to work together to fulfil the requirements they are intended to.

This combination step is called weaving process (Kiczales et al., 1997) and is performed

by a tool called aspect weaver. This process is depicted by Figure 2.2. The aspect weaver

receives the base code and aspects as input, and produces as output the woven application

that includes both the base code functionalities and the aspectual behaviour.

Base Code

Aspect Weaver

Aspects

Woven Application
(base code + aspects)

input

output

Figure 2.2: Basic elements of an AOP supporting system – adapted from Kiczales et al.
(1997).

12

Chapter 2. Background

In general, three different approaches can be employed in the weaving process (Popovici

et al., 2002): (i) compile-time weaving, in which base code and aspects are merged together

to generate a new application that includes all functionalities; (ii) load-time weaving, which

weaves based code and aspects at the moment the base modules (e.g. classes) are loaded

into the executing environment (e.g. a Java Virtual Machine); and (iii) runtime weaving,

also called dynamic weaving, in which aspects are dynamically invoked during the system

execution. AspectJ, which is further described in Section 2.1.1 , implements the two first

weaving approaches, i.e. compile-time and load-time weaving.

Quantification and Obliviousness

Filman and Friedman (2004), two pioneers in AOP research, advocate that quantifica-

tion and obliviousness are two fundamental properties of AOP. Quantification refers

to the ability of declaratively selecting sets of points via pointcuts in the execution of a

program. Obliviousness, on the other hand, implies that the developers of core func-

tionality need not be aware of, anticipate or design code to be advised by aspects. The

relationship between these two properties is defined by Filman and Friedman (2004) as

follows: “AOP can be understood as the desire to make quantified statements about the

behaviour of programs, and to have these quantifications hold over programs written by

oblivious programmers”.

These two properties are realised by the join point models. In general, such models

enables the software engineer to quantify join points using PCDs at different levels of

abstraction (e.g. design- or source code-level), and to execute aspectual behaviour that

the base code has no previous knowledge.

A relevant note regarding the obliviousness property is that, in the early phases of

research on AOP, it was considered to be a mandatory property for AO software devel-

opment (Filman and Friedman, 2000). However, Sullivan et al. (2005) show the results of

a case study where the oblivious implementation suffers from several problems regarding

software evolution. Indeed, recent results show that obliviousness may negatively impact

the fault-proneness of AO programs (Ferrari et al., 2010a). In this sense, recent methods

and languages for AOP can help to ameliorate this problem. Examples of such approaches

are aspect-aware interfaces (Kiczales and Mezini, 2005), Crosscut Programming Interfaces

(XPIs) (Griswold et al., 2006) and Explicit Join Points (EJPs) (Hoffman and Eugster,

2007). Although they reduce the obliviousness among system modules, these approaches

help to improve the program comprehension by making aspect-base interaction more ex-

plicit.

13

2.1. Foundations of Aspect-Oriented Programming

2.1.1 Programming Languages and other Supporting Technologies

AOP has motivated the development of several supporting technologies. In particular,

languages and frameworks have received special attention, providing AOP capabilities for

existing languages such as Java, C, C++, C#, Smalltalk and PHP. In general, AOP lan-

guages and frameworks implement the four basic elements required for an AOP supporting

system (Elrad et al., 2001b): a join point model, a pointcut language, an implementation

unit that encapsulates the pointcuts and advices, and a weaver.

We next provide a brief overview of some of these languages. Considering the generally

higher focus on Java-based AOP than on other languages, the overview is split into two

categories: AOP in Java and AOP in other languages.

AOP in Java

AspectWerkz (Bonér and Vasseur, 2005), JBossAOP (Burke and Brock, 2003) and

SpringAOP (Johnson et al., 2007) are examples of frameworks that support AOP in

Java. In AspectWerkz, aspects can be implemented as regular Java classes as well as

within XML files. In both cases, join points are identified using XML-based specifications,

and the AspectWerkz API provides means for base code and aspect weaving at either

compile-time, load-time or runtime.

Similarly to AspectWerkz, JBossAOP supports the implementation of crosscutting

behaviour as regular Java classes that must implement a specific interface, and join points

are selected via XML specifications. SpringAOP, on the other hand, is part of the Spring

Framework (Johnson et al., 2007) and supports the implementation of advices as well as

pointcuts in regular Java classes, without requiring any additional compilation step (i.e.

the weaving process).

AspectJ (Kiczales et al., 2001b) is a Java-based general purpose language to support

AOP. It was developed by the AOP proponents and is currently maintained by the Eclipse

Foundation (The Eclipse Foundation, 2010a). In this thesis, special emphasis is given to

AspectJ due to two main reasons: firstly, it is the most investigated and used AOP

language and has been the basis for the development of several other AOP languages.

Secondly, together with Java, AspectJ underlies our research, whose results are presented

in the remaining chapters of this dissertation. Therefore, AspectJ is more extensively

described in Section 2.1.1.1.

CaesarJ (Mezini and Ostermann, 2003) is a Java-like language that focuses on software

reuse. The language combines AspectJ-like AOP constructs with enhanced object-oriented

modularisation mechanisms (Aracic et al., 2006; Mezini and Ostermann, 2003). In partic-

14

Chapter 2. Background

ular, CaesarJ’s join point and advice models are very similar to the models implemented

in AspectJ.

AOP in other Languages

Several other programming languages have been extended in order to support AOP,

either object-oriented, procedural or script-based. We next list some of them, but the set

of available languages is certainly larger than the one presented in the sequence.

In regard to C-like languages, Gal et al. (2001) proposed the AspectC++ language

in extension to C++. It implements join point and advice models that are very similar

to AspectJ, however with limitations with regard to primitive pointcut designators (see

Section 2.1.1.1 for more details about AspectJ pointcut designators). Likewise C and

C# languages were extended to support AOP, resulting in the extensions AspectC (Gong

et al., 2006) and AspectC# (Kim, 2002), respectively. In all cases, a language-specific

weaver is responsible for combining the base code and aspects into an executable system.

Other language extension initiatives can also be identified. Hirschfeld (2001) designed

AspectS to support AOP in Smalltalk within the Squeak environment2. Another example

is the AOPHP language (Stamey et al., 2005) that supports AOP in PHP. Both languages’

join point and advice models are similar to the ones AspectJ implements.

2.1.1.1 The AspectJ Language

AspectJ is a general purpose AOP language that extends Java by introducing a series of

novel constructs. It was originally developed in the Xerox Palo Alto Research Center and

is currently maintained by the Eclipse Foundation (The Eclipse Foundation, 2010a). Note

that AspectJ is defined as superset of Java, which means that any Java program can be

compiled using a standard AspectJ compiler (The AspectJ Team, 2005b).

The documentation of AspectJ release 1.2.1 was used as a basis for the language de-

scription presented in this section (The AspectJ Team, 2003). Such version is Java 2

compliant. Additional details of AspectJ that address Java 5 features (e.g. generics,

annotations and enumerated types) can be obtained in the AspectJ 5 Developers Note-

book (The AspectJ Team, 2005a).

In AspectJ programs, crosscutting code can be implemented in either static or dynamic

ways (Kiczales et al., 2001b). Dynamic crosscutting, on the one hand, is realised by the

use of pointcuts and advices, which activate aspectual behaviour when join points are

reached during the program execution. On the other hand, static crosscutting consists

2Available at http://www.squeak.org/ - last accessed on 17/03/2010.

15

http://www.squeak.org/

2.1. Foundations of Aspect-Oriented Programming

of structural modifications of modules that compose the base code. These modifications

are achieved by the so-called intertype declarations (ITDs) or simply introductions (The

AspectJ Team, 2003). Examples of intertype declarations are the introduction of a new

member (e.g. an attribute or a method) into a base module or a change in the class’

inheritance (e.g. a newly declared superclass).

Join point shadows: The compilation of an AspectJ program results in standard Java

bytecodes (Hilsdale and Hugunin, 2004). Each aspect is converted into a Java class at

bytecode level. Advices implemented within an aspect result in static methods (also

known as advice-methods) in the respective class file. Their parameter lists are formed by

information obtained from the join points that activate the advice executions. In regard

to the base code, this is modified in order to introduce the static join point shadows, which

consist of the sets of implicit calls to advice-methods (Hilsdale and Hugunin, 2004). Such

calls are inserted into the base code during the compilation process. The advice execution

itself may only be resolved at runtime, that is, not all join points included in a joint point

static shadow will in fact trigger the advice execution.

Figure 2.3 shows an example of AspectJ code. It consists in a possible implementation

for the simple graphical editor early introduced in Figure 2.1. This example is used in the

sequence to describe some of the main programming constructs available in AspectJ.

AspectJ PCDs: As explained earlier in Section 2.1, a join point is a well-defined point

in a program execution. In the AspectJ join point model, candidate join points can be,

for example, a method call, a method execution, an attribute value update, an object

initialisation or an exception handler. An advice execution is also a candidate join point.

An AspectJ PCD is an expression that matches certain characteristics of the base

program, thus selecting a (possibly empty) set of join points. For example, in Figure 2.3, a

PCD named update is defined in lines 39–41. The right-hand side of the PCD expression

defines the set of intended join points to be selected. For this, AspectJ offers a set of

predefined pointcuts, called primitive pointcut designators (The AspectJ Team, 2003).

Besides, the developer can benefit from a set of special characters named wildcards. The

wildcards can be used for defining pattern-based PCDs that may select sets of join points

with common characteristics.

The update PCD defined in lines 39–41 includes two call primitive pointcut des-

ignators and the “*”, “+” and “..” wildcards. The join points captured by this PCD

include: (i) calls to the moveBy method that belongs to the Point class; and (ii) calls to

methods whose names start with set and are implemented by the FigureElement as well

16

Chapter 2. Background

1 interface FigureElement {
2 public void moveBy(int x , int y) ;
3 }
4

5 class Point implements FigureElement {
6 private int x , y ;
7 public Point (int x , int y) { this . x = x ; this . y = y ; }
8 public void setX (int x) { this . x = x ; }
9 public void setY (int y) { this . y = y ; }

10 public int getX () { return this . x ; }
11 public int getY () { return this . y ; }
12

13 public void moveBy(int x , int y) {
14 this . x += x ; this . y += y ;
15 }
16 }
17

18 class Line implements FigureElement {
19 private Point p1 , p2 ;
20 public Line (Point p1 , Point p2) { this . p1 = p1 ; this . p2 = p2 ; }
21 public void setP1 (Point p1) { this . p1 = p1 ; }
22 public void setP2 (Point p2) { this . p2 = p2 ; }
23 public Point getP1 () { return this . p1 ; }
24 public Point getP2 () { return this . p2 ; }
25

26 public void moveBy(int x , int y) {
27 this . p1 . moveBy(x , y) ;
28 this . p2 . moveBy(x , y) ;
29 }
30 }
31

32 class Display {
33 public stat ic void update () {
34 /∗ commands to update the screen ∗/
35 }
36 }
37

38 aspect DiplayUpdate {
39 public pointcut update () :
40 ca l l (public void Point . moveBy(int , int)) | |
41 ca l l (public void FigureElement+. s e t ∗ (. .)) ;
42 a f t e r () returning : update () {
43 Display . update () ;
44 }
45 }
46

47 public class MainEditor {
48 public stat ic void main (St r ing [] args) {
49 Point po int1 = new Point (1 , 2) ;
50 Point po int2 = new Point (6 , 7) ;
51 Line l i n e = new Line (point1 , po int2) ;
52 l i n e . moveBy (5 , 5) ;
53 }
54 }

Figure 2.3: A simple graphical editor written in AspectJ.

as by any of its subclasses. In the latter case, “*” enables the generalisation of method

names, whereas the “+” wildcard defines that subclasses of FigureElement should also

be included in the set of analysed classes. Besides, the “..” wildcard states any matched

method call should be included, regardless its number of parameters and their types. Note

17

2.1. Foundations of Aspect-Oriented Programming

that logical operators (i.e. AND (“&&”), OR (“||”) and NOT (“!”)) can be used to build

compound PCDs, as we can observe in the update PCD.

AspectJ Advices: AspectJ provides three different types of advices: before, after

and around. While the two first have self-explanatory names, around advices wrap the

execution of the original join points when these are reached during the program execution.

around gives the developer the option of also running the behaviour implemented in the

join point by providing the proceed command.

The three types of advices are summarised in Table 2.1. Note that after has two

additional forms – after returning and after throwing– which are also described in

the table.

Table 2.1: Advice types in AspectJ.

Advice type Description

before Runs before the normal execution of the join point.

after Runs after the normal execution of the join point.

after returning Runs after the normal execution of the join point, that is, when the execu-

tion of the join point does not throw any exception.

after throwing Runs after the abnormal execution of the join point, that is, when an ex-

ception is thrown but not handled during the join point execution.

around Runs in place of the join point. Optionally, it can trigger the execution of

the join point with the proceed command.

Context Exposure in AspectJ: In addition to selecting join points in the base program,

a PCD can also capture context information and make it available to be handled inside the

advices. For example, the DiplayUpdateExposingContext aspect presented in Figure 2.4

is a slightly modified version of the DisplayUpdate shown in Figure 2.3. The update PCD

now includes the target primitive pointcut designator, which captures join points where

the target object (e.g. in a method call) is of the same type as declared in the PCD’s

left-hand side.

In the example displayed in Figure 2.4, objects of type FigureElement are bound

to the fig variable, which can be handled inside the advice that runs after the selected

join points. Other examples of context information that can be exposed are method

parameters, the caller object and return values.

18

Chapter 2. Background

1 aspect DiplayUpdateExposingContext {
2 public pointcut update (FigureElement f i g) :
3 (ca l l (public void Point . moveBy(int , int)) | |
4 ca l l (public void FigureElement+. s e t ∗ (. .))) && target (f i g) ;
5 after (FigureElement f i g) returning : update (f i g) {
6 Display . update () ;
7 // commands to handle the t a r g e t o b j e c t
8 }
9 }

Figure 2.4: Example of context exposure in AspectJ.

Static Crosscutting in AspectJ: Static crosscutting in AspectJ programs is supported

by ITDs and other declare-like constructs (The AspectJ Team, 2003). They are sum-

marised in Table 2.2.

Table 2.2: Main constructs for static crosscutting in AspectJ.

Construct Description

ITDs Allow the insertion of members (attributes and methods) into the

base modules.

declare parents Changes the type hierarchy of the system by specifying that a

base class extends another one or implements a specific interface.

declare soft Specifies that an exception, if thrown at a join point, is converted

to an unchecked exception.

declare precedence Defines the advice execution order when a join point is advised

by two or more advices.

declare error/warning Signals error or warning messages when specific join points are

matched by a PCD.

The code printed in Figure 2.5 is an example of static crosscutting implemented in

AspectJ. In the TransformationsAspect, line 6 states that FigureElement objects must

implement the IRotate interface, which declares the rotate method’s signature. In the

sequence, lines 8–10 and 12–14 introduce the rotate method into the two subclasses of

FigureElement, i.e. Point and Line. In this way, the required interface implementation

for FigureElement objects is fulfilled by means of ITD members.

The arbitrary execution order of advices that share common join points is pointed

out as one of the fault sources in AO programs (Alexander et al., 2004). In AspectJ,

the execution order can be defined with the declare precedence expression. We use an

example to describe how the language handles the execution of two advices implemented

in different aspects but that share a common join point. Be A and B two aspects whose

precedence is defined as:

declare precedence: A, B;

19

2.2. Foundations of Software Testing

1 interface IRotate {
2 public void r o t a t e (int axis , int degree s) ;
3 }
4

5 aspect TransformationsAspect {
6 de c l a r e parents : FigureElement implements IRotate ;
7

8 public void Point . r o t a t e (int axis , int degree s) {
9 // commands fo r r o t a t i n g a Point o b j e c t

10 }
11

12 public void Line . r o t a t e (int axis , int degree s) {
13 // commands fo r r o t a t i n g a Line o b j e c t
14 }
15 }

Figure 2.5: Example of static crosscutting in AspectJ.

Be adviceA and adviceB two advices of the same type implemented in A and B,

respectively. The execution precedence rules for adviceA and adviceB are summarised

in Table 2.3.

Table 2.3: Advice precedence rules in AspectJ.

Advice type Execution order

before adviceA runs before adviceB.

after adviceA runs after adviceB.

around adviceA runs and, if it invokes the proceed command, then adviceB runs.

2.2 Foundations of Software Testing

The main goal of software testing is revealing faults in software products. According to

Myers et al. (2004, p. 1-2, p. 18), software testers should not only make sure a program

in fact does what is was designed to do, but also make sure the program does not do what

it is not expected to do. They define testing as “the process of executing a program with

the intent of finding errors”. Therefore, a test is considered successful when it reveals one

or more faults in the analysed program.

In general, it is not possible to prove a program is correct due to the absence of

faults (Myers et al., 2004, p. 43). However, when tests are performed in a systematic

and rigorous fashion, it helps to increase the stakeholders’ confidence that the software

behaves as expected (Harrold, 2000; Weyuker, 1996).

In the remaining of this section, we introduce the basic terminology and concepts re-

lated to software testing. Besides, we describe the more widely investigated techniques

20

Chapter 2. Background

that are typically applied to programming paradigms such as procedural and OO pro-

gramming.

2.2.1 Basic Terminology

Fault, error and failure: In this dissertation, we adopted definitions for fault, error and

failure that are aligned with the IEEE 610.12-1990 standard (IEEE, 1990), as follows:

• A fault is a difference between the actually implemented software product and the

product that is assumed to be correct. An example of a fault is an incorrect step,

process or data definition.

• An error is characterised by an internal state of the software product that differs

from the correct state, usually due to the execution of a fault in such product; and

• A failure is the external manifestation of an error, that is, it is an error that goes

across the system boundaries and becomes visible to the users.

Testing phases: The testing activity is traditionally divided into the four phases that

are presented in the sequence (Myers et al., 2004, p. 91-118, p. 129-130; Pressman, 2005,

p. 362-379). Note that other alternative classifications may split these phases into two or

more sub-phases, or even group two or more of them into a single phase (Beizer, 1990, p.

21-22; Sommerville, 2007, p. 538).

• Unit testing: the main goal of this phase is to test each software unit in isolation,

with the intent of revealing faults related to the implemented logic.

• Integration testing: this phase aims to identify problems related to the interface

amongst the units of a piece of software. For example, it tests the elements involved

in the communication between two units that have been previously tested in isolation

at the unit testing phase.

• Validation testing: it is performed after the integration testing and aims to reveal

faults related to coarse-grained functions and performance that do not conform to

the specification.

• System testing: in this phase, tests take into account all elements involved in the

software execution (e.g. hardware, stakeholders and database). The main goal is to

assess the software in terms of its general functionalities and performance.

21

2.2. Foundations of Software Testing

In this dissertation, a unit is considered a software portion that cannot be subdivided

into smaller parts, in accordance with the IEEE 610.12-1990 standard (IEEE, 1990).

For instance, a unit can be a function in a procedural program, a method in an OO

program or an advice in an AO program. A module , on the other hand, is a collection of

inter-related units (e.g. a class or an aspect) that interact through well-defined interfaces

(e.g. a method call) or through indirect invocations (e.g. an advice triggering).

Note that the adopted definition for unit may impact on the definition of the testing

phases. For example, Vincenzi (2004) also assumes the method as the smaller portion of

code in his approach for testing OO programs. In doing so, he defines that the unit test-

ing phase includes only intra-method evaluations, and that integration testing includes

inter-method, intra-class and inter-class levels. However, if he had taken the classes

as the units of an OO system, the unit testing phase would encompass intra-method,

inter-method and intra-class levels, whilst integration testing would include only the

inter-class level. Nevertheless, the following basic tasks need to be carried out in each

testing phase (Sommerville, 2007, p. 539; Myers et al., 2004, p. 145-147): (1) test

planning; (2) test case design; (3) test execution; and (4) test evaluation. These tasks

should be performed along the full software development process, from the planning to

the maintenance phase (Sommerville, 2007, p. 81; Pressman, 2005, p. 356).

Test case, testing criterion, testing technique: Formally, a test case t can be defined

as a tuple (d, O(d)), where d represents an element from a specific input domain D, d ∈ D,

and O(d) is the expected output when the software is executed having d as the input. In

other words, a test case consists of a value (or range of values) that should be provided

to the software and the output that is expected after the software execution on that

value or range of values (Myers et al., 2004, p. 14). Once a test case is executed, one

needs to observe the program behaviour to decide whether it is correct or not. The

entity that performs such check, be it the tester or an automated tool, is known as the

oracle (Mathur, 2007, p. 27).

With respect to the input domain D, dealing with its size poses a great challenge

for researchers and practitioners. The difficulty resides in the fact that the number of

elements in D, if considered as a whole, may be very large or even infinite for certain

scenarios. Therefore, one needs to find ways of systematically defining subsets of D,

hence reducing the number of test cases required to achieve adequate test quality. A

solution for this is the definition of testing criteria , which consist of sets of rules for

defining subsets of D (Frankl and Weyuker, 2000). A test criterion defines elements from

a program (or any other software product) that should be exercised during the software

22

Chapter 2. Background

execution, thus guiding the software engineer throughout the test case designing process.

The elements that are required to be exercised according to a testing criterion are called

test requirements. A test requirement can be, for example, a specific path in the logic

of a unit, or a functionality obtained from the software specification. Note that some

test requirements may be impossible to be exercised, e.g. when the program semantics

hinders the design of a test case to cover some associated test requirement (Offutt and

Pan, 1997). Such test requirements are considered unfeasible and may incur additional

effort to be identified during the testing activity.

Each software criterion is associated with a particular testing technique . The several

existing techniques differ from each other based on the underlying software artefacts they

require to derive the test requirements. The testing criteria, on the other hand, are used

as guidelines that constrain the amount of test requirements. The main testing techniques

and their associated criteria are described in the next section.

2.2.2 Testing Techniques and Criteria

One or more testing techniques can be applied in a given testing phase. Amongst

the most widely investigated techniques, we can highlight functional testing, structural

testing, state-based testing3 and fault-based testing. Each of them relies on underlying

artefacts upon which the associated criteria define the test requirements. For example,

functional testing requires specification documents (e.g. user requirements), state-based

testing requires state models (e.g. UML Statecharts) and fault-based testing requires

well-characterised fault types (e.g. fault taxonomies). Besides that, these techniques have

been explored in the context of testing of formal software specifications such as Finite

State Machines (Fabbri et al., 1994), Statecharts (Fabbri et al., 1999), SDL Specifica-

tions (Sugeta et al., 2004) and Coloured Petri Nets (Simão et al., 2003).

2.2.2.1 Functional Testing

The functional testing technique is based on software specification documents to derive

the test requirements. It is also known as black-box testing (Myers et al., 2004, p. 9), since

it does not take into account internal implementation details to be applied; basically, only

functional requirements are considered. It is traditionally used to demonstrate that the

3Due to the behavioural property of objects in OO systems, the state-based testing can be classified as
a testing technique (Binder, 1999), despite the possibility of applying different techniques to state-based
system representations (e.g. fault-based testing (Fabbri et al., 1994, 1999)).

23

2.2. Foundations of Software Testing

software behaves accordingly by observing that the inputs are accepted by the software

and the outputs are produced as specified.

Performing functional testing comprises two main steps: (1) identifying the functions

the software should perform; and (2) designing test cases that check whether such func-

tions are accomplished accordingly or not. These steps can be carried out by applying

the following criteria:

• Equivalence Partitioning: it consists of splitting the input and output domains

into classes of data, both valid and invalid, according to the specification of the tar-

geted functionality (Myers et al., 2004, p. 52). Each class is said to be an equivalence

class. In the sequence, a minimum set of test cases is designed containing at least

one representative element for each equivalence class.

• Boundary-Value Analysis: it extends the Equivalence Partitioning criterion by

requiring test cases composed by elements that are at the boundaries of each equiva-

lence class (Myers et al., 2004, p. 59). It is motivated by the fact that several faults

are related to the boundary input or output values of equivalence classes.

• Systematic Functional Testing: it aggregates Equivalence Partitioning and

Boundary-Value Analysis into a single criterion (Linkman et al., 2003). In general

terms, it requires that two test cases be created to exercise each equivalence class in

order to uncover faults that might keep “hidden” with the execution of a single test

case for a given equivalence class.

2.2.2.2 Structural Testing

Differently from the functional testing technique, structural testing is based on internal

implementation details of the software. This technique – also called white-box testing –

is concerned with the coverage degree of the program logic yielded by the tests (Myers et

al., 2004, p. 44).

Usually, structural-based testing criteria utilise a program representation called control

flow graph (CFG), or program graph, to derive the test requirements. An example4 of CFG

is presented in Figure 2.6. Each node in a CFG represents a disjoint block of sequential

statements. The execution of the first statement in a block implies the execution of all

subsequent ones in that block. Besides, each statement has a single predecessor as well as a

4Note that the information added to nodes and edges of the CFG depicted in Figure 2.6 is used to
build the Def-Use Graph which is described in the sequence. The CFG itself is composed only by nodes
and edges.

24

Chapter 2. Background

single successor, except the first, which can possibly have more than one predecessor, and

the last node, which may have more than one successor (Rapps and Weyuker, 1982). In a

CFG node, the label represents its first statement, e.g. the line of code of this statement

in the source code.

The example depicted in Figure 2.6 was extracted from Masiero et al. (2006b). On

the left-hand side, we can observe a Java method for validating some language-specific

identifiers. The CFG that represents this method is shown on the right-hand side. We

can observe that a CFG can have additional information about each variable being defined

and/or used in each graph element. In this case, the graph is also known as Def-Use

Graph (Rapps and Weyuker, 1982), or simply DUG. In a DUG, variables have two different

use-related notations: computation-use (c-use) or predicate-use (p-use). While a c-use of

a variable is associated with a node in a DUG, p-uses are associated with edges.

For example, the node #3 in Figure 2.6 includes the definition of the achar and

valid_id variables. This node also includes the c-use of the achar and s variables. On

the other hand, the s and valid_id variables are used in a predicate within the node

#3 (statement “if (s.length() == 1 && valid_id)”), thus being associated with its

outgoing edges.

Several testing criteria based on the CFG and on the DUG have been proposed to date.

Examples of such criteria are briefly described as follows:

Control Flow-based Criteria

• All-nodes: it requires the execution of every node of a unit represented in a

CFG (Myers et al., 2004, p. 44-45; Rapps and Weyuker, 1982).

• All-edges: it requires the traversal of all edges represented in a CFG (Myers et al.,

2004, p. 45-52; Rapps and Weyuker, 1982).

• All-paths: it requires the traversal of all paths in a given CFG (Myers et al., 2004, p.

11; Rapps and Weyuker, 1982). According to Myers et al. (2004, p. 13), this criteria

is impracticable since it may be impossible to achieve adequate test sets.

Data Flow-based Criteria

• All-defs: it requires that each variable defined in a DUG be exercised by at least one

test case that reaches either a c-use or a p-use of this variable before it is redefined

(Rapps and Weyuker, 1982).

25

2.2. Foundations of Software Testing

public stat ic boolean v e r i f y (S t r ing s)
{

/∗ 01 ∗/ i f (s == null | | s . l ength () == 0)
/∗ 02 ∗/ return fa lse ;
/∗ 03 ∗/ char achar ;
/∗ 03 ∗/ boolean v a l i d i d ;
/∗ 03 ∗/ v a l i d i d = true ;
/∗ 03 ∗/ achar = s . charAt (0) ;
/∗ 03 ∗/ v a l i d i d = va l i d s (achar) ;
/∗ 03 ∗/ i f (s . l ength () == 1 && va l i d i d)
/∗ 04 ∗/ return true ;
/∗ 05 ∗/ int i = 1 ;
/∗ 06 ∗/ while (i < s . l ength ()) {
/∗ 07 ∗/ achar = s . charAt (i) ;
/∗ 07 ∗/ i f (! v a l i d f (achar))
/∗ 08 ∗/ v a l i d i d = fa l se ;
/∗ 09 ∗/ i++;
/∗ 09 ∗/ }
/∗ 10 ∗/ i f (v a l i d i d && (s . l ength () <= 6))
/∗ 11 ∗/ return true ;
/∗ 12 ∗/ return fa lse ;
/∗ 12 ∗/ }

a. Source code b. Def-Use Graph

Figure 2.6: Example of a DUG– adapted from Masiero et al. (2006b).

• All-uses: it requires that all c-uses and p-uses of each variable defined in the DUG

be exercised by test cases that reach such uses, always through paths where the

variable is not redefined (Rapps and Weyuker, 1982). All-c-uses and All-p-uses

are variants of the All-uses criterion (Rapps and Weyuker, 1982).

• All-potential-uses: it requires that all paths between a variable definition and the

other reachable nodes in the DUG be exercised by test cases, always through paths

where the variable is not redefined (Maldonado, 1991).

Complexity-based Criteria

• McCabe criterion : builds on the cyclomatic complexity of the CFG to derive the

test requirements. It requires that each linearly independent path in the CFG be

exercised by the test set (McCabe, 1976).

26

Chapter 2. Background

2.2.2.3 State-Based Testing

State-based testing consists in deriving test requirements based on the dynamic be-

haviour of the software. It is typically applied in testing of OO systems, which represents

the dynamic behaviour of classes that compose the system using Finite State Machines

(FSM) (Turner and Robson, 1993). In state-based testing, a FSM is used to represent

the possible states an object can take. The state of an object is generally characterised

by its set of attribute values at a given moment during the software execution. Domain

partitioning techniques can be employed to reduce both the amount of values and the

combination among them.

A FSM can include either a single class or a set of inter-related classes. Once the

state model is available, a transition tree can be derived from it in order to represent all

possible transitions among states. Testing criteria, which are based on specific subsets of

transitions, can then be applied in order to systematically guide the creation of test cases.

Examples of criteria proposed by Offutt et al. (2003) are:

• Transition coverage: it requires that all transitions among states in a FSM be

exercised by the test set.

• Full predicate coverage: it requires that every transition that depends on a pred-

icate to be taken in the FSM be evaluated true and false by the test set.

• Transition-pair coverage: it requires that every pair of adjacent transitions in a

FSM be exercised in sequence by at least one test in the test set.

• Complete sequence: it requires that every meaningful sequence of transitions in

a FSM be exercised by the test set. Such sequences should be chosen based on the

expertise of the testing engineer.

The state-based testing technique has also been investigated in the context of AO

software (Badri et al., 2005; Xie and Zhao, 2006; Xu and Xu, 2006a,b). Several testing

criteria have been proposed, focusing particularly on state transitions that are affected by

aspectual behaviour. Some of these approaches are described later in this chapter.

2.2.2.4 Fault-Based Testing

The fault-based testing technique derives test requirements based on information about

recurring errors made by programmers during the software development process. It focuses

on types of faults which designers and programmers are likely to insert into the software,

27

2.2. Foundations of Software Testing

and on how to deal with this issue in order to demonstrate the absence of such prespecified

faults (Morell, 1990). Two examples of fault-based testing criteria are Error Seeding and

Mutant Analysis, which are following described.

• Error Seeding: it consists in randomly inserting (i.e. seeding) a pre-defined number

of faults into the software. In the sequence, the faulty program is run on the test

data in order to reveal faults, from which the rate of real and artificial faults is

calculated (Mills, 1972) apud (Budd, 1980).

• Mutant Analysis: originally proposed by DeMillo et al. (1978), it consists in

creating several slightly modified versions of a program. The intent is to simulate

faults commonly introduced into the programs and to check if the test data is sensitive

enough to reveal these faults. Due to its relevance to this thesis, the Mutant Analysis

criterion is better described in the sequence.

The Mutant Analysis Criterion

A recent survey undertaken by Jia and Harman (2010) showed that the Mutant Analysis

criterion – or simply mutation testing – has been extensively and increasingly investigated

in the last three decades. Several approaches address mutation testing at several levels of

software abstraction, ranging for formal specification to source code level testing.

The basic idea behind mutation testing consists in creating several versions of the

original program, each one containing a simple fault. These modified versions are called

mutants and are all expected to behave differently from the original program (DeMillo

et al., 1978). In other words, any mutant that is executed against the test data should

produce a different output when compared to the execution of the original program.

Mutation testing is underlain by the Competent Programmer and the Coupling Effect

hypotheses (DeMillo et al., 1978). The first states that any program P that is ready to

be tested is correct or nearly correct. Therefore, it assumes that any fault artificially

introduced into P should be detected by the current test set. The second hypothesis, on

the other hand, states that test data which distinguishes P from its variant P ′ containing

a simple fault is also able to distinguish variants of P that include complex faults. In

other words, complex faults are coupled to simple faults, according to empirical princi-

ples (DeMillo et al., 1978). Together, these hypotheses state that a program under test

contains only small syntactic faults and that complex faults result from the combination

of them. Consequently, fixing the small faults will probably solve the complex ones.

In mutation testing, mutation operators encapsulate the modification rules applied

to P . The criterion requires the creation of a set M of mutants of P , resulting from the

28

Chapter 2. Background

application of mutation operators to it. Then, for each mutant m, (m ∈ M), the tester

runs a test suite T originally designed for P . If ∃t, (t ∈ T) | m(t) 6= P (t), this mutant

is considered killed. If not, the tester should enhance T with a test case that reveals the

difference between m and P . If m and P are equivalent, then P (t) = m(t) for all test

cases that can be derived from P ’s input domain.

Mutation testing can be applied with two goals: (i) evaluation of the program under

test (i.e. P); or (ii) evaluation of the test data (i.e. T). In the first case, faults in P are

uncovered when fault-revealing mutants are identified. Given that S is the specification of

P , a mutant is said to be fault-revealing when it leads to the creation of a test case that

shows that P (t) 6= S(t), (t ∈ T) (Mathur, 2007, p. 536). In the second case, mutation

testing evaluates how sensitive the test set is in order to identify as many faults simulated

by mutants as possible.

Mutation testing is usually performed in four steps (DeMillo et al., 1978): (1) execution

of the original program; (2) generation of mutants; (3) execution of the mutants; and

(4) analysis of the mutants. After each cycle of mutation testing, the current result is

calculated through the following formula:

ms(P, t) =
DM(P, T)

M(P)− EM(P)

where:

ms(P,T) is the mutation score;

DM(P,T) is the number of mutants killed by T ;

M(P) is the total number of mutants created from p; and

EM(P) is the number of mutants of P that are equivalent to P .

The mutation score is a value in the interval [0, 1] that reflects the quality of the test

set with respect to the produced mutants. The closer to 1 the mutant set is, the higher

the quality of the test set (Mathur, 2007, p. 519).

Mutation analysis beyond unit testing of programs: Originally proposed for the unit

testing of programs, mutation testing has also been investigated in the context of inte-

gration testing (Delamaro et al., 2001). Moreover, it has been applied to several other

software specification models such as Finite State Machines (Fabbri et al., 1994), State-

charts (Fabbri et al., 1999), Estelle (Souza et al., 1999) and coloured Petri Nets (Simão

et al., 2003). As highlighted by Vincenzi et al. (2006b), this is possible because mutation

testing only requires an executable software artefact to be applied.

29

2.2. Foundations of Software Testing

Alternative mutation testing approaches and cost reduction techniques: several

variants of the Mutant Analysis criterion have been proposed along the years. They

aim to either reduce its application complexity or decrease its application cost. For ex-

ample, as originally proposed by DeMillo et al. (1978), mutation testing requires the

complete execution of the program and its mutants in order to decide whether the mutant

is killed or not. This “conservative” approach is known as strong mutation (Marick,

1991). Weak mutation (Howden, 1982), on the other hand, requires the evaluation of

the mutant state right after the execution of the modified portion of code; if the state

of the original program differs from state of the mutant at the same point, the mutant

is set as dead. Another variant of the criterion is the firm mutation (Woodward and

Halewood, 1988), which requires the evaluation of the original program’ and its mutants’

state at some moment after the execution of the mutated code. Both approaches – weak

and firm mutation – tend to reduce the complexity by means of simplified test case design

and execution; moreover, they tend to decrease costs since complete program and mutant

executions are no longer required.

Other cost reduction techniques for mutation testing focus on reducing the number

of employed mutation operators. Examples are the Constrained Mutation (Mathur

and Wong, 1993) and Selective Mutation (Offutt et al., 1993). They both focus on

reducing the number of mutants by applying a subset of the mutation operators, although

still keeping the efficacy of the criterion in regard to the quality of the derived test suites.

2.2.3 Test Evaluation and Comparison amongst Criteria

The evaluation and comparison of testing criteria can be undertaken in several different

ways. These activities are useful for establishing the cost-benefit relationship of a given

criterion, hence having impact on the definition of testing strategies that might be ade-

quate within certain contexts. According to Wong (1993), three properties may be taken

into consideration in theoretical and empirical studies that compare different criteria:

(i) cost, which can be measured in several ways (e.g. the number of test requirements or

the number of test cases required to cover the test requirements); (ii) effectiveness, which

regards the fault discovery ability of a criterion given an adequate test set is available for

it; and (iii) strength, which consists in the likelihood of satisfying a criterion C2 using a

test set that is adequate (i.e. satisfies) another criterion C1.

The strength of a criterion can be investigated in terms of the subsume relation among

adequacy criteria (Zhu et al., 1997). This relation can be defined as follows: Let C1 and

C2 be two testing criteria, and let T be a test set that is C1-adequate, that is, T is a test

30

Chapter 2. Background

set that covers all test requirements produced by C1. We can state that C1 subsumes C2

if and only if T is C2-adequate for all cases, i.e. all possible programs to which C1 and C2

can be applied.

Theoretical studies performed by Maldonado (1991) resulted in the subsume relation

depicted in Figure 2.7. It extends a previous study from Rapps and Weyuker (1982)

in order to include the Potential-Uses family criteria. The relation presented in the

figure includes the structural-based criteria presented in Section 2.2.2, also considering

some variants of them, e.g. all-c-uses/some-p-uses (Rapps and Weyuker, 1982) and

all-potential-du-paths (Maldonado, 1991). Note that this relation considers that the CFG

includes only feasible paths, otherwise the subsume relation does not hold, as observed

by Frankl and Weyuker (1988).

all-paths

all-potential-du-paths

all-du-paths

all-uses

all-c-uses/some-p-uses

all-defs

all-p-uses/some-c-uses

all-p-uses

all-edges

all-nodes

all-potential-uses/du

all-potential-uses

Figure 2.7: Subsume relation amongst structural-based test selection criteria – adapted
from Maldonado (1991) and Rapps and Weyuker (1982).

The subsume relation amongst criteria derived from different testing techniques (e.g.

structural- and fault-based) cannot be theoretically defined (Delamaro, 1997; Wong, 1993).

However, empirical evidence has shown that, amongst the most investigated criteria, Mu-

31

2.2. Foundations of Software Testing

tant Analysis seems to be the strongest one (Mathur and Wong, 1994; Offutt et al., 1996b;

Wong, 1993) as well as the most effective criterion (Li et al., 2009; Wong and Mathur,

1995). For example, Wong (1993) and Mathur and Wong (1994) concluded that mu-

tation testing is stronger than the all-uses criterion (Rapps and Weyuker, 1982), given

that test sets that were adequate to Mutant Analysis have also shown to be adequate for

all-uses. Note that it did not hold when they considered the other way around. Addi-

tional evidence in regard to it was provided by Li et al. (2009), Wong and Mathur (1995)

and Offutt et al. (1996b). In another study, Souza (1996) showed that Mutant Analysis

and all-potential-uses (Maldonado, 1991) are not comparable with respect to the strength

property.

2.2.4 Test Automation

Software testing needs to be performed following a systematic and rigorous process in order

to enhance the users’ confidence that the software behaves as expected. Moreover, testing

helps to demonstrate the software achieves expected quality attributes such as reliability

and correctness (Harrold, 2000; Weyuker, 1996). To achieve these goals, however, software

testing strongly relies on automated tool support. Without adequate support, testing may

be costly, error-prone and limited to small programs (Vincenzi et al., 2006a).

Harrold (2000) suggests that the development of practical methods and tools to sup-

port software testing can help software engineers to create high quality products. In order

to achieve this, it is required that research comprising new testing approaches with asso-

ciated tool support be extensively carried out. According to Harrold, the achievements

would facilitate the technology transfer to the industry.

Harrold also highlights that testing should be automated as much as possible, which

would contribute to intensify its adoption throughout the software development process.

Moreover, testing tools are invaluable resources for research and education, as highlighted

by Horgan and Mathur (1992). However, even with current developments in the area,

there is still a long way towards the systematic, real adoption of testing by the industry.

Based on the above discussion, we conclude that the quality of the tests depends not

only on the availability of appropriate testing techniques and criteria, but also on auto-

mated tools that support testing along the whole development process. Moreover, testing

tools also facilitate the conduction of experimental studies that enables the technology

evolution and transfer to the industry.

32

Chapter 2. Background

2.3 Testing of Aspect-Oriented Software

In spite of the claimed benefits that can be achieved with the adoption of AOP, such as

enhanced software modularity and maintainability (Laddad, 2003a), it poses new chal-

lenges for the SQA activities. For example, AOP-specific constructs like PCDs and advices

may represent new sources of faults within programs (Alexander et al., 2004), so may the

implicit interactions between aspects and base modules (Burrows et al., 2010b). These

new challenges have motivated the proposal of several approaches for the testing of AO

software (hereafter called AO testing) in the last years.

In order to characterise the state of the art in AO testing, we have been regularly

updating a systematic mapping study5 of this topic. By the time this dissertation was

written, we had performed five complete search cycles and performed all steps defined in

the process for such kind of study, whose details and results are presented in the following

sections.

2.3.1 The Systematic Mapping Study Protocol and Process

According to Petersen et al. (2008), a systematic mapping study (SMS) provides an

overview of a research area by identifying and quantifying the related available research

and results. A systematic literature review (SLR), on the other hand, is defined as a

rigorous, well-established approach for identifying, evaluating and interpreting all avail-

able evidence in regard to a particular topic of interest (Kitchenham, 2004). In both

cases, research gaps are identified and the pieces of work of interest are called primary

studies6. Obviously, the SMS stakeholders can go further and also provide qualitative

analysis based on the selected set of primary studies, however the absence of such kind of

analysis should not invalidate the final results.

Our SMS on AO testing has two main goals: (i) identifying testing approaches that

researchers and practitioners have been investigating for AO software; and (ii) identifying

fault types that are specific to AO software. We defined the following primary research

5 The term“systematic mapping study”(Petersen et al., 2008) has been recently used to characterise the
kind of study we present in this section, due to the limited statistical meta-analysis that is allowed with the
achieved results. The original“systematic literature review” (SLR) term (Kitchenham, 2004), on the other
hand, used to replace “systematic mapping study”; however, SLRs are expected to go through existing
primary reports and to employ in-depth analysis usually with significant statistical rigour (Petersen et
al., 2008).

6The term “primary study” has so far been used in the Evidence-based Software Engineering domain
(Kitchenham et al., 2004) to describe a variety of research results, from well-founded experimental pro-
cedures to incipient research approaches. SLRs and systematic maps, on the other hand, are treated as
“secondary studies”. Note that a secondary study may also include other secondary studies of interest.

33

2.3. Testing of Aspect-Oriented Software

question (PQ1) and secondary questions (SQ1, SQ2 and SQ3). For each of them, associate

inclusion and exclusion criteria were also defined.

• PQ1: Which testing techniques/criteria have been applied to AO software to date?

• SQ1: Which of these techniques/criteria are specific to AO software?

• SQ2: Which AOP-specific fault types have been described to date?

• SQ3: Which kinds of experimental studies have been performed in order to validate

AO software testing approaches?

Defining an adequate search string is crucial for a SMS to succeed. It relies on the

expertise of the involved researchers and should be as comprehensive as possible in order

to match all primary studies of interest. According to our research interests, we defined

the following string:

(aspect-oriented software OR aspect-oriented application OR

aspect-oriented app OR aspect-oriented program OR aop) AND

(testing OR fault OR defect OR error OR incorrect OR failure)

The selected sources of primary studies range from indexed repositories (IEEE Xplore,

ACM Digital Library, ScienceDirect and SpringerLink) to general purpose search engines

(Google and Scirus). The general SMS procedures (i.e. preliminary selection, final selec-

tion, data extraction and documentation) followed the Biolchini et al.’s template for SLRs

(Biolchini et al., 2005). We highlight that a major difference between a SMS and a SLR

is that the search for primary studies in the former is usually broader than in the latter

(i.e. a larger field can be characterised), while the in-depth focus of a SLR requires more

refined, evidence-based search, thus posing more restrictions for the selection of primary

studies (Petersen et al., 2008). Nonetheless, we find that the general procedures earlier

suggested by Biolchini et al. can be legitimately applicable for SMSs since they do not

conflict with the guidelines for SMS proposed by Petersen et al.

The general procedures are summarised as follows: the preliminary selection consists

of the researchers going through specific parts of the primary studies retrieved from the

repositories to check whether they should be selected for full reading. In the final selection

step, the researchers fully read each primary study and make the final decision of selecting

or discarding it, according to the inclusion and exclusion criteria. Data of interest is then

extracted and stored in customised forms. During the whole process, documentation

34

Chapter 2. Background

tasks are undertaken in order to enable auditability and replicability (Biolchini et al.,

2005; Kitchenham, 2004).

While planning our first update on the original iteration, we realised that we would

need to adapt the original process proposed by Biolchini et al. (2005) in order to succeed.

The adaptation resulted in the process shown at the bottom part of Figure 2.8 (Ferrari

and Maldonado, 2008), whereas the original process is depicted in the top part of the

same figure. The adaptation mainly concerned the Planning Update, Filtering Results

and Merging Results activities, i.e. the three rounded boxes with white background in the

adapted process. In short, the adapted activities focus on adjusting the selection criteria,

creating filters (e.g. year of publication) to reduce overlapping during the preliminary

selection and merging the extracted data into the original dataset. Note that the remaining

activities are the same as defined in the original Biolchini et al.’s process and appear with

grey background.

Original Process
(Biolchini et al., 2005)

Planning Execution
Result

Analysis

Packaging

Legend:

 1. [protocol disapproved]
 2. [protocol approved]
 3. [execution disapproved]
 4. [execution approved]

Execution Result Analysis

Planning
Update

Running
Searches

Filtering
Results

Preliminary
Selection

Study
Evaluation

Final
Selection

Merging
Results

Data Extraction
and Synthesis

Packaging

1

2

3

4

1

2

3

4

Adaptation

Figure 2.8: The process for systematic literature review updates – adapted from Ferrari
and Maldonado (2008).

2.3.2 The Systematic Mapping Study Results

Table 2.4 summarises the final study selection after the five iterations of our SMS. It

includes 34 primary studies. Note that our previous research has already documented

partial results of the first four iterations (Ferrari et al., 2009; Ferrari and Maldonado,

35

2.3. Testing of Aspect-Oriented Software

2006, 2007). Each iteration took place with a medium interval of 12 months, having the

original round taken place in July, 2006 (Ferrari and Maldonado, 2006).

According to Kitchenham (2004), the final set of selected studies should avoid over-

lapping of primary studies. For example, if we identify two or more pieces of work that

describe the same testing approach (e.g. the latter as the evolution of the former), the fi-

nal selection should include only the more recent one. This is handled during the Merging

Results activity in the Result Analysis phase (see Figure 2.8). Taking this into consid-

eration, Table 2.5 lists all overlapping results we identified along the five iterations. It

results in a total of 53 studies of interest which, after the Merging Results step, turned to

the final set of 34 items listed in Table 2.4.

We can observe that every selected study fits at least one of the research questions

defined in Section 2.3.1. We highlight that even though we might consider that every

testing approach which defines associated criteria should focus on at least one testing

technique, Table 2.4 shows that this does not hold for all selected studies. For example,

Alexander et al. (2004) and Ceccato et al. (2005) similarly define criteria that focus on

testing all precedence order of concurring advices, which cannot be directly classified

according to the traditional testing techniques. Nevertheless, these studies were assigned

a yes in the “Define criteria” column.

The next sections describe the results of our SMS with focus on two of our research

questions: the characterisation of fault types for AO software and the definition of AO

testing approaches based on the traditional testing techniques. Such description represents

relevant background for the context of this thesis and allowed us to identify the research

opportunities which we explore in our research.

2.3.3 Fault Taxonomies for AO Software

As previously discussed in this chapter, the concepts and elements introduced by AOP

represent new potential sources of software faults, hence posing new challenges for SQA

activities such as testing and debugging. In general, software faults are artefacts that

have been widely studied over the years. Among other types of study, some researchers

have analysed how specific programming features can be sources of faults in software

systems (Alexander et al., 2004; Coelho et al., 2008b; DeMillo and Mathur, 1995; Offutt

et al., 2001). Others have empirically studied how different types of faults appear in

the context of real software development projects (Basili and Perricone, 1984; Endress,

1978; Ostrand and Weyuker, 1984). Note that identifying potential sources of faults and

characterising how they can occur in practice represent an important step towards the

36

Chapter 2. Background

Table 2.4: Systematic Mapping Study of AO testing: final selection.

Author(s) Year Round Source Testing Define Evaluation Characterise

technique(s) criteria fault types

Zhao 2003 1 IEEE structural-based no n/a no

Alexander et al. 2004 1 Google n/a yes n/a yes

Zhou et al. 2004 1 Google n/a yes case study no

Xu et al. 2004 1 Google structural- and no n/a no

state models-based

Lemos et al. 2004a 1 Specialist structural-based yes n/a no

van Deursen et al. 2005 1 Google functional- and no case study yes

structural-based

Ceccato et al. 2005 1 Google n/a yes n/a yes

Lesiecki 2005 1 Google n/a no n/a no

McEachen and Alexander 2005 1 ACM n/a no n/a yes

Badri et al. 2005 1 IEEE state models-based yes n/a no

Mortensen and Alexander 2005 1 Google structural- and yes case study no

fault-based

Bækken 2006 2 Google n/a no n/a yes

Xu and Xu 2006a 1 ACM state models-based yes n/a yes

Xu and Xu 2006b 1 ACM state models-based no case study yes

Xie and Zhao 2006 1 ACM structural- and yes case study no

state models-based

Lemos et al. 2006 1 Specialist structural- and no n/a yes

fault-based

Mortensen et al. 2006 2 Google structural-based yes n/a yes

Eaddy et al. 2007 2 Google n/a no n/a yes

Zhang and Zhao 2007 2 Google n/a no n/a yes

Lemos et al. 2007 2 Elsevier structural-based yes case study no

Massicotte et al. 2007 2 Google UML models-based yes n/a yes

Xu and He 2007 2 ACM UML models-based yes n/a no

Anbalagan and Xie 2008 4 IEEE fault-based no case study no

Ferrari et al. 2008 3 IEEE fault-based yes case study yes

Coelho et al. 2008a 3 Springer n/a no exploratory study yes

Liu and Chang 2008 3 Google state models-based no n/a no

Bernardi and Di Lucca 2008 3 Google structural-based yes case study yes

Xu et al. 2008 4 Google UML models-based no case study no

Delamare et al. 2009a 4 IEEE functional- and no case study no

fault-based

Babu and Krishnan 2009 4 ACM UML models-based no n/a yes

Kumar et al. 2009 4 ACM n/a no n/a yes

Lemos et al. 2009 4 Elsevier structural-based yes case study yes

Xu and Ding 2010 5 IEEE state models-based no case study yes

Lemos and Masiero 2010 5 Elsevier structural-based yes case study no

37

2.3. Testing of Aspect-Oriented Software

Table 2.5: Systematic Mapping Study of AO testing: overlapping results.

Final Selection Round Subsumed studies Round

(Zhao, 2003) 1 (Zhao, 2002) 1

(Mortensen and Alexander, 2005) 1 (Mortensen and Alexander, 2004) 1

(Lemos et al., 2007) 2 (Lemos et al., 2004b) 1

(Lemos et al., 2005) 1

(Xu and Xu, 2006a) 1 (Xu et al., 2005) 1

(Xu et al., 2004)1 1

(Xie and Zhao, 2006) 1 (Xie et al., 2005) 1

(Massicotte et al., 2007) 2 (Massicotte et al., 2005) 1

(Massicotte et al., 2006) 1

(Xu et al., 2008) 4 (Xu and Xu, 2005) 1

(Anbalagan and Xie, 2008) 4 (Anbalagan and Xie, 2006) 2

(Anbalagan, 2006) 2

(Bækken, 2006) 2 (Bækken and Alexander, 2006b) 1

(Bækken and Alexander, 2006a) 3

(Bernardi and Di Lucca, 2008) 3 (Bernardi and Lucca, 2007) 3

(Bernardi, 2008) 3

(Lemos et al., 2009) 4 (Franchin et al., 2007) 3

(Coelho et al., 2008a) 3 (Coelho et al., 2008b) 4

(Lemos and Masiero, 2010) 5 (Lemos and Masiero, 2008a) 4

(Lemos and Masiero, 2008b) 4

(Lemos et al., 2006)2 2
1 Xu et al.’s approach (2004) is only partially included by Xu and Xu (2006a) since the former

also considers structural-based coverage measurements.
2 Lemos et al.’s approach (2006) is only partially included by Lemos and Masiero (2010) since

the former also considers mutation-based coverage measurements.

definition of fault models. Such fault models, in turn, may underlie the establishment of

testing strategies that can be applied in particular software application domains.

Specifically for AOP, we identified a number of candidate fault taxonomies and bug

pattern catalogues for AO software (Alexander et al., 2004; Bækken, 2006; Ceccato et al.,

2005; Coelho et al., 2008a; Eaddy et al., 2007; Ferrari et al., 2008; Lemos et al., 2006; van

Deursen et al., 2005; Zhang and Zhao, 2007). Note that they typically rely on program-

ming features and languages constructs (Ferrari et al., 2008), however they still require

empirical evaluation based on real software development data. Moreover, these candidate

fault taxonomies are described in varied levels of details, ranging from coarse-grained

characterisation (Alexander et al., 2004; Ceccato et al., 2005) to construct-specific fault

type definitions (Bækken, 2006; Coelho et al., 2008a; Lemos et al., 2006).

The first initiative to define a candidate fault taxonomy for AO software was presented

by Alexander et al. (2004). Initially, the authors identified possible sources of faults in

AO programs. For instance, a fault may reside in a portion of the base program not af-

fected by an aspect, or it may be related to an emergent property created by aspect-base

38

Chapter 2. Background

program interactions. Based on these sources, they proposed a high-level fault taxon-

omy for AspectJ-like programs that includes six types of faults: (i) incorrect strength in

PCD patterns; (ii) incorrect aspect precedence; (iii) failure to establish post-conditions;

(iv) failure to preserve state invariants; (v) incorrect focus on control flow; and (vi) incor-

rect changes in control dependencies. Alexander et al. exemplify how these fault types

can occur based on a simple AspectJ application; besides, they propose high-level testing

criteria to address them.

Several refinements and amendments to Alexander et al.’s taxonomy have been pro-

posed ever since. For example, Ceccato et al. (2005) added three new fault type de-

scriptions: (i) incorrect changes in exceptional control flow; (ii) failures due to intertype

declarations; and (iii) incorrect changes in polymorphic calls. Besides that, the authors

discussed how hard testing AO code is when compared to testing OO code. They suggest

some adaptations to existing OO-based testing approaches to make them applicable to

AO software as well, particularly when the fault types described in their taxonomy are

taken into account.

Lemos et al. (2006) refined the incorrect strength in PCD patterns fault type into four

categories of incorrect PCD: (i) selection of a superset of intended join points; (ii) selection

of a subset of intended join points; (iii) selection of a wrong set of join points, which

includes both intended and unintended items; and (iv) selection of a wrong set of join

points, which includes only unintended items. This four PCD-related fault types are

graphically represented in Figure 2.9.

 Selected JPs
 Intended JPs

(i) (ii) (iii) (iv)

full JP set individual JP

Figure 2.9: PCD-related fault types – adapted from Lemos et al. (2006).

Bækken (2006) proposed a fine-grained fault taxonomy for PCDs and advices in As-

pectJ programs. The author also presented a set of examples of how a faulty PCD or

39

2.3. Testing of Aspect-Oriented Software

advice may affect control and data dependencies in a program execution. According to

his analysis of the AspectJ language, Bækken identified three kinds of errors that may

result from the execution of PCD faults: (i) positive selection error, which consists of

the selection of unintended join points; (ii) negative selection error, which occurs when

intended join points are not picked up; and (iii) context exposure error, which occurs

when a formal parameter on the left-hand side of a PCD or in an advice definition has

an incorrect value, i.e., the formal parameter is bound to an incorrect variable reference

or to a variable that has an incorrect value. For advice faults, on the other hand, errors

are more directly related to faults that affect control and data dependencies. When some

faulty statement is executed, it may result in an infection which may propagate to the

output due to a change in control or data flow dependencies.

Other authors (McEachen and Alexander, 2005; van Deursen et al., 2005; Zhang and

Zhao, 2007) also defined AOP-specific fault types which partially overlap Alexander et al.’s

taxonomy, although also characterising additional fault types. More recently, Coelho et al.

(2008a) performed an exploratory study of the impact of aspects on the flow of exceptions

in AO systems. In addition, they introduced a catalogue of nine bug patterns for exception

handling in AspectJ. The bug patterns are classified into three categories, according to the

role aspects play in exceptional scenarios: (i) aspects as handlers; (ii) aspects as signallers;

and (iii) aspects as exception softeners. All bug patterns have representatives in at least

one of the AO systems subject of the study.

2.3.4 AO Testing Approaches

This section describes the AO testing approaches that have shown substantial evolution

along the years. A general discussion about the evolution of AO testing and the collabo-

ration amongst researchers was presented in previous research (Ferrari et al., 2009). The

evolving approaches we next present have been documented by the authors as series of pa-

pers and articles published in relevant scientific vehicles such as international conferences

and workshops as well as high quality journals.

2.3.4.1 Structural-based Testing by Lemos et al.

Unit Testing Level

Lemos et al. (2005, 2004b, 2007) developed a structural-based unit testing approach

for AspectJ programs. It extends previous work undertaken within the authors’ research

group (Vincenzi et al., 2006a) in order to enable unit testing (methods and advices) in

40

Chapter 2. Background

isolation. The approach relies on Java bytecode analysis, thus allowing the evaluation of

applications without requiring the source code.

In this unit testing approach, Lemos et al. defined the AODU (Aspect-Oriented

Def-Use) graph for each unit that belongs to the modules under test (classes and as-

pects, in this case). The AODU graph extends the traditional DUG (Def-Use Graph) to

include the crosscutting nodes, which consist in graph nodes that encompass control flow

and data flow information about the advised join points in the base code. Given a unit

under test (e.g. a class method), the crosscutting nodes indicate the join points of that

unit that are affected by advices.

An example of an AODU graph is depicted in Figure 2.10. The top left part partially

lists the code7 of a Java class named Call and an AspectJ aspect named Billing that

crosscuts Call. The AODU graph of the Call’s constructor method is depicted in the

bottom of Figure 2.10, while the respective set of Java bytecode instructions for this

constructor is listed on the right-hand side. The numbers displayed in some lines of the

Call constructor’s Java code (i.e. “4”, “33-72” and so on) refer to the node labels in the

graph. We can observe that the AODU is composed by the control flow structure (i.e.

nodes and edges) as well data flow information. In particular, the crosscutting nodes are

depicted in a customised notation: a dashed ellipse tagged with information that regards

the advice that affects that point. Besides that, the uses of variables within these nodes

are computed (e.g. caller, receiver and IM variables in nodes 33 and 78).

Based on the AODU graph as well as on the traditional All-nodes, All-edges and

All-uses criteria described in Section 2.2, Lemos et al. proposed the following control and

data flow-based criteria:

• all-crosscutting-nodes (All-nodesc): requires that each crosscutting node of the

AODU of a given unit be exercised at least once by the test set.

• all-crosscutting-edges (All-edgesc): requires that each edge that includes a cross-

cutting node in the AODU of a given unit be exercised at least once by the test

set.

• all-crosscutting-uses (All-usesc): requires that each def-use association for which

the use occurs within a crosscutting node be exercised at least once by the test set.

For instance, based on the example presented in Figure 2.10, the All-edgesc criterion

requires a test set that exercises the edges (4,33) and (4,78) of the graph in order to be

considered adequate with respect to this criterion for this method.

7This example was extracted from a system that simulates telephone calls named Telecom, which
comes along with the AspectJ distribution (The Eclipse Foundation, 2010b).

41

2.3. Testing of Aspect-Oriented Software

public class Cal l {
private Customer c a l l e r , r e c e i v e r ;
private Vector connect i ons = new Vector () ;

0 public Cal l (Customer c a l l e r ,
Customer r e c e i v e r , boolean iM) {

4 this . c a l l e r = c a l l e r ;
4 this . r e c e i v e r = r e c e i v e r ;
4 Connection c ;
4 i f (r e c e i v e r . loca lTo (c a l l e r)) {
33−72 c = new Local (c a l l e r , r e c e i v e r , iM) ;

} else {
78−117 c = new LongDistance (c a l l e r , r e c e i v e r , iM) ;

}
120 connect i ons . addElement (c) ;
120 }

. . .
} // end c l a s s

public aspect B i l l i n g {
private Customer Connection . payer ;

pointcut createConnect ion (Customer c a l l e r ,
Customer r e c e i v e r , boolean iM) :

args (c a l l e r , r e c e i v e r , iM) &&
ca l l (Connection+.new (. .)) ;

after (Customer c a l l e r , Customer r e c e i v e r ,
boolean iM) returning (Connection c) :

c reateConnect ion (c a l l e r , r e c e i v e r , iM) {

i f (r e c e i v e r . getPhoneNumber () .
indexOf ("0800")==0)

c . payer = r e c e i v e r ;
else

c . payer = c a l l e r ;
c . payer . numPayingCalls += 1 ;

}
. . .

} // end aspec t

0 aload_0

1 invokespecial #15 <Method Object()>

4 aload_0

...

27 invokevirtual #30 <Method boolean

localTo(telecom.Customer)>

30 ifeq 78

33 aload_1

...

52 invokespecial #34 <Method

Local(telecom.Customer,

telecom.Customer, boolean)>

...

69 invokevirtual #110 <Method void

ajc$afterReturning$telecom_Billing$

1$8a338795(

telecom.Customer, telecom.Customer,

boolean, telecom.Connection)>

72 nop

73 astore 4

75 goto 120

78 aload_1

...

97 invokespecial #37 <Method

LongDistance(telecom.Customer,

telecom.Customer, boolean)>

...

114 invokevirtual #110 <Method void

ajc$afterReturning$telecom_Billing$

1$8a338795(

telecom.Customer, telecom.Customer,

boolean, telecom.Connection)>

117 nop

118 astore 4

120 aload_0

121 getfield #20 <Field java.util.

Vector connections>

124 aload 4

126 invokevirtual #41 <Method void

addElement(java.lang.Object)>

129 return

 Legend

 d = definition
 uc = c-use

0

4

72 117

120

33
«afterReturning.telecom.Billing»

78
«afterReturning.telecom.Billing»

uc = {caller, receiver, IM} uc = {caller, receiver, IM}

d = {caller, receiver, IM}

Figure 2.10: Example of an AODU graph – adapted from Lemos et al. (2007).

42

Chapter 2. Background

Pairwise- and Pointcut-based Integration Testing Levels

Franchin et al. (2007) and Lemos et al. (2009) extended their previous approach for

unit testing (Lemos et al., 2007) in order to support testing at the integration level. In

short, the extension consists in a pairwise-based approach in which the AODU graphs

of two communicating units are combined into a single graph named PWDU (PairWise

Def-Use). Similarly to the unit testing approach, it also relies on Java bytecode analysis

to enable the graph generation.

The left-hand side of Figure 2.11 brings an example of a PWDU. The graph represents

the pairwise integration of two units presented in Figure 2.10: the Call class’ construc-

tor method and the after returning advice listed for the Billing aspect. In fact,

this advice crosscuts the constructor in two join points, where instances of Local and

LongDistance classes are created. Figure 2.11 depicts the integration when the first join

point is reached, i.e. when a Local instance is created.

Note that the PWDU graph also includes double-circled nodes to represent the call

sites (e.g. method and advice calls). Besides, the prefix “i” is used to distinguish between

nodes in the integrated graph. In this case, nodes prefixed with i belong to the integrated

unit (i.e. the after returning advice in the example), while the non-prefixed nodes

belong to the base unit (i.e. the class’ constructor method in the same example).

Franchin et al. (2007) and Lemos et al. (2009) defined a set of control flow- and data

flow-based testing criteria based on the PWDU graph which are described as follows:

• all-pairwise-integrated-nodes (All-PW-Nodesi): requires that each integrated

node in a PWDU graph be exercised at least once by the test set.

• all-pairwise-integrated-edges (All-PW-Edgesi): requires that each integrated edge

of a PWDU graph be exercised at least once by the test set.

• all-pairwise-integrated-uses (All-PW-Usesi): in a PWDU, it requires that each

def-use association with respect to a communication variable, and whose definition

occurs within the base unit while the use happens in the integrated unit and vice

versa, be exercised at least once by the test set.

Note that the All-PW-Usesi criterion focuses on the set of communication variables,

which is composed by variables that are related to the interface of the units under test

(e.g. a method parameter or a global variable). Therefore, this criterion reinforces the

importance of testing the integration between interacting units, after internal elements

have been tested in the unit phase.

43

2.3. Testing of Aspect-Oriented Software

0

120

106
«afterReturning.telecom.Billing»

4

78

30

100

i.0

i.4

i.12 i.21

i.27

i.32

i.36

i.41

117

61
«afterReturning.telecom.Billing»

33

55

72

0

120

106
«afterReturning.telecom.Billing»

4

78

30

100

2:0

2:4

2:12 2:21

2:27

2:32

2:36

2:41

117

61
«afterReturning.telecom.Billing»

33

55

72

1:0

1:4

1:12 1:21

1:27

1:32

1:36

1:41

PCD Entry

PCD Entry

Figure 2.11: Examples of PWDU (Lemos et al., 2009) and PCDU (Lemos and Masiero,
2010) graphs.

Finally, Lemos and Masiero (2010) proposed another extension to their original unit

testing approach (Lemos et al., 2007). At this time, the PCDU (PointCut-based Def-Use)

graph is built in order to represent the whole execution context for a given piece of advice.

This new graph is composed by all AODU graphs of the units affected by an advice together

with the AODU of the advice repeated at each join point of the affected units. This model

44

Chapter 2. Background

provides the tester with an overall view of the advice application context and supports

the design of a test set that addresses such whole context.

The right-hand side of Figure 2.11 brings an example of a PCDU. It includes the

composition of the AODU graph of after returning advice listed in Figure 2.10 with

the AODU graphs of the affected unit. Note that the AODU graph of the Call class’

constructor method is included twice since this unit is affected in two different join points.

In a PCDU graph, numbered prefixes are used to label nodes that are owned by the

advice graph and the graphs of the affected units. In the example presented in Figure 2.11,

the dashed regions highlight the AODU graph of the after returning advice, whose

nodes are prefixed with “1” and “2” since this advice crosscuts the method in two distinct

join points. The remaining nodes represent the AODU graphs of the affected units (in this

example, a single unit is affected in two distinct join points).

Based on the PCDU graph, Lemos and Masiero (2010) defined three additional criteria

which are described as follows:

• all-pointcut-based-advice-nodes (all-pc-nodes): requires that each node that be-

longs to the advice in the AODU graph be exercised at least once by the test set, for

all occurrences of this advice in the AODU graph.

• all-pointcut-based-advice-edges (all-pc-edges): requires that each edge that be-

longs to the advice in the AODU graph be exercised at least once by the test set, for

all occurrences of this advice in the AODU graph.

• all-pointcut-based-uses (all-pc-uses): in a PCDU, it requires that each def-use

association with respect to a communication variable, and whose definition occurs

within the affected unit while the use happens in the advice and vice versa, be

exercised at least once by the test set.

Note that the control flow-related criteria focus on testing the advice logic instead of

the whole set of PCDU graph elements. The data flow-based criterion, on the other hand,

focuses on communication variables, similarly to the integration testing approach earlier

proposed by Lemos et al. (2009).

2.3.4.2 State Models-based Testing by Xu and Xu

Xu and Xu (2006a) formally defined a state model for AO systems which includes states

that originate from base application and also takes into account the possible modifica-

tions of the base state model (i.e. modified and added states) that result from aspectual

45

2.3. Testing of Aspect-Oriented Software

behaviour. The FREE (Flattened Regular Expression) model (Binder, 1999, p. 204-228) is

used to define the Aspectual State Model (ASM) proposed by Xu and Xu, who defined a

customised notation to represent the state transitions that can be used to derive the test

requirements.

To demonstrate their approach, the authors utilise a banking management system,

which is partially depicted in Figure 2.12. This figure includes: (a) the state model of the

BankAccount class; (b) the state model that results from the Overdraft aspect affecting

the BankAccount behaviour, hence yielding the additional Overdrawn state; and (c) the

final ASM, which represents the woven state model that includes all states.

Open

getBalance

Frozen

Closed
close

freeze

unfreeze

new

withdraw[b-amt>=0]

deposit

getBalance

(a) State model of the BankAccount class.

Open

Overdrawn

get

credit

debit[b-x>=0]
credit[b+x>=0]

debit[b+x>=0]

credit[b+x<0]

get

(b) Impact of the Overdraft aspect on BankAc-
count.

Open

getBalance

Frozen

Closed
close

freeze

unfreeze

new

withdraw[b-amt>=0]

deposit

getBalance

Overdrawn

deposit[b+amt<0]

getBalance

deposit[b+amt>=0]withdraw[b-amt>=0
and

b-amt>=-1000]

(c) ASM of BankAccount combined with Overdraft.

Figure 2.12: Example of an ASM before (a) and after (b, c) weaving the aspects into
the base application (Xu and Xu, 2006a).

46

Chapter 2. Background

A variable mapping schema that involves methods and PCDs is employed in the ASM

generation. Such schema encompasses contextual information that regards the method

and PCD signatures and is used to map variables amongst the several partial state models

that compose the ASM. In the example presented in Figure 2.12, we can observe that

a PCD named credit (Figure 2.12(b)) is mapped to the method named deposit of

BankAccount (Figure 2.12(a)). Another example regards the amt variable (Figure 2.12(a))

which is mapped to the x variable in Figure 2.12(b).

Once the ASM is created, formal expressions that represent state sequence transitions

can be used to derive the test requirements. Note that these requirements consist of state

transition paths and should include both valid and invalid sequences. As an example of a

negative sequence, let us consider the following expression:

<new, Open, withdraw[b-amt<-1000], Open>

This negative sequence can be realised through the following test case description: “A

new account is created so there is an attempt to perform a withdraw that would result in

a balance lower than -1000, however the account status would be kept as Open”. In this

case, after the withdraw, the “b-amt<-1000” condition holds and the account state should

change to Overdrawn, differently from the negative test case description.

Xu and Xu proposed an 8-step procedure for test case generation based on the ASM.

It starts from the base state model (i.e. only base classes are considered) then evolves

towards the full ASM. In all cases, test cases are created to traverse a state transition tree

that is derived from the ASM. An associated criterion requires both positive and negative

paths, and can be complemented with additional criteria (e.g. Equivalence Partitioning

and Boundary-Value Analysis).

2.3.4.3 Mutation-based Testing by Anbalagan and Xie

Anbalagan and Xie (2008) implemented a framework that generates and automatically

detects equivalent mutant PCDs. The framework implements two mutation operators

proposed by Mortensen and Alexander (2005): PCS (Pointcut Strengthening) and PCW

(Pointcut Weakening). While the former narrows the PCD scope, the latter leads to a

broader join point selection by the PCD.

In the Anbalagan and Xie’s framework, mutants are generated in two different ways:

(i) by inserting (removing) AspectJ wildcards into (from) the PCD; and (ii) by identifying

and reusing naming parts of the original PCD and join points in the base code. Initially,

the framework scans the base code in order to identify every possible candidate join

47

2.3. Testing of Aspect-Oriented Software

point. This task is supported by a third-party framework named AJTE (Yamazaki et

al., 2005), which enables the evaluation of AspectJ programs before the weaving process.

AJTE provides an API that allows one to represent PCDs and join points as regular Java

objects. Consequently, information can be extracted from these objects, for example, the

individual naming parts of a PCD or a method signature.

The next step is the generation of the mutants according to the two aforementioned

ways: by inserting/removing wildcards into/from the original PCD and by building new

PCDs that are composed by the naming parts identified by the AJTE framework. An

example of the first case is shown in Figure 2.13. It includes mutants that can be pro-

duced by the PCW operator through the insertion of wildcards. We can see that mu-

tants are exhaustively produced, for example, by replacing parts of the method pattern

(Connection.new in the figure) with wildcards.

Original PCD:

pointcut createConnect ion (Customer c a l l e r , Customer r e c e i v e r , boolean iM) :
args (c a l l e r , r e c e i v e r , iM) && ca l l (Connection+.new (. .)) ;

Mutants:

po intcut createConnect ion (Customer c a l l e r , Customer r e c e i v e r , boolean iM) :
args (c a l l e r , r e c e i v e r , iM) && ca l l (∗ onnect ion+.new (. .)) ;

po intcut createConnect ion (Customer c a l l e r , Customer r e c e i v e r , boolean iM) :
args (c a l l e r , r e c e i v e r , iM) && ca l l (∗ nnect ion +.new (. .)) ;

po intcut createConnect ion (Customer c a l l e r , Customer r e c e i v e r , boolean iM) :
args (c a l l e r , r e c e i v e r , iM) && ca l l (∗ nect i on +.new (. .)) ;

po intcut createConnect ion (Customer c a l l e r , Customer r e c e i v e r , boolean iM) :
args (c a l l e r , r e c e i v e r , iM) && ca l l (∗ e c t i on +.new (. .)) ;

po intcut createConnect ion (Customer c a l l e r , Customer r e c e i v e r , boolean iM) :
args (c a l l e r , r e c e i v e r , iM) && ca l l (∗ c t i on +.new (. .)) ;

po intcut createConnect ion (Customer c a l l e r , Customer r e c e i v e r , boolean iM) :
args (c a l l e r , r e c e i v e r , iM) && ca l l (∗ t i on +.new (. .)) ;

// . . . and so on

Figure 2.13: Example of mutants generated by Anbalagan and Xie (2008)’s framework.

The next step supported by the framework is the automatic identification of equivalent

mutants. If a mutant PCD selects the same set of join point as does the original expression,

it is automatically classified as equivalent. At this stage, the framework applies some

heuristics that automatically rank the most representative mutant PCDs. If two or more

mutants select the same set of join points, the one that more closely resembles the original

PCD is lifted to the top of the rank. This “similarity relationship” relies on lexicographical

analyses of the PCDs, given that the authors argue that effective mutant PCDs should

resemble closely to the original PCD. The final output is a list of the ranked mutants.

48

Chapter 2. Background

2.3.5 Tool Support for AO Testing

In spite of the large number of AO testing approaches we identified in the systematic map-

ping study, they still lack adequate tool support. Several factors might contribute for this,

from which we can highlight: (i) the high cost to develop robust testing tools; and (ii) the

claimed benefits of AOP which are still seem with scepticism by practitioners, hence re-

sulting in the cautious adoption of AOP by the industry (Muñoz et al., 2009). However,

this sounds paradoxical given the importance of testing tools as teaching and research in-

struments, consequently for the real adoption of a newly introduced technology (Horgan

and Mathur, 1992).

This section describes tools which automate testing approaches that rely on three

different techniques: mixed state- and structural-based testing (Xie and Zhao, 2006),

structural-based testing (Lemos et al., 2009; Lemos and Masiero, 2010; Lemos et al., 2007)

and fault-based testing (Delamare et al., 2009b). Our choice for describing these tools was

motivated by two main reasons: (i) they have been used in the most robust case studies

amongst the ones identified in our systematic mapping study (Delamare et al., 2009a;

Lemos et al., 2009; Lemos and Masiero, 2010; Xie and Zhao, 2006); and (ii) in general,

they support the basic testing steps: derivation of test requirements, test execution and

results reporting.

2.3.5.1 The Aspectra Framework for State- and Structural-based Test Generation

Xie and Zhao (2006) developed a framework called Aspectra that automatically generates

test cases for AspectJ programs. In short, test cases are created based on state variables –

i.e. class attributes – and their quality is evaluated by Aspectra according to two coverage

measures defined by the authors. The framework classifies the execution of four types of

methods within an AspectJ program: advised methods from the base modules, advices,

intertype methods and public methods defined in the aspects. Aspectra focuses on testing

the last three types, i.e. it targets behaviour that is implemented within aspects.

Aspectra implements a wrapper synthesis strategy that leverages existing tools for

test case generation such as JTest (Parasoft, 2010) and Rostra (Xie et al., 2004), which

produce standard JUnit tests that are fed to the framework. The process of test generation

is depicted in Figure 2.14. In step 1, the ajc compiler weaves together the base classes

and aspects and produces the respective bytecode classes. Then, in step 2 wrapper classes

are created for the public and intertype methods in the base classes as well as for public,

non-advice methods in the aspect classes. Advices, on the other hand, are indirectly

exercised through the advised methods. In the sequence, everything (i.e. base classes,

49

2.3. Testing of Aspect-Oriented Software

aspects and wrappers) are woven together again in step 3 in order to ensure call join

points are also taken into account by the test generation mechanism. Step 4 cleans-up

unwanted bytecode in the wrapper classes (e.g. duplicated advice invocation due to the

repeated weaving step). The clean wrapper classes are provided to test generation tools

(step 5), which produce JUnit tests that are compiled using a standard Java compiler in

step 6.

3
Base class,

wrapper and
aspect weaving

Base class
and aspect
bytecodes

1
Base class
and aspect

weaving

AspectJ
application

2
Base class
wrapper
synthesis

Wrappers
for the base

classes

Base class,
wrapper

and aspect
bytecodes

4
Bytecode
clean-up

Clean
wrapper

bytecodes

5
Test case

generation

Junit
test cases

6
Test case

compilation

Test case
bytecodes

Figure 2.14: The test generation process implemented in the Aspectra framework.

The test case generation (step 5 in Figure 2.14) is based on the possible current object

states as well as on the list of arguments that are passed to a method. The JTest tool uses

symbolic execution to generate method arguments that will achieve structural coverage.

In the sequence, the Rostra tool uses these values and, based on combinatorial testing,

explores the state space of the receiver objects.

The two coverage criteria proposed by Xie and Zhao (2006) are Aspectual Branch

Coverage and Interaction Coverage. The former requires that all branches within the

aspect be exercised by the generated test set. The measurement occurs at bytecode level,

therefore covering a single around advice8 does not ensure all places in which this advice

is activated are covered by the test set. The Interaction Coverage criterion increases the

8The weaving strategy implemented in the AspectJ ajc compiler allows the around advice code to
be inlined in the selected join points; therefore, at the bytecode level multiple copies of the advice may
appear across the woven application.

50

Chapter 2. Background

confidence on the test set given it requires that all interactions between aspect methods

and advised methods be exercised by the test set. As the final output of the test execution,

Aspectra reports the percentage of covered branches and aspect-class interactions.

2.3.5.2 The JaBUTi/AJ Series of Tools for Structural-based Testing

Lemos et al. implemented a series of tools named JaBUTi/AJ to support their evolving

structural-based testing approach (Franchin et al., 2007; Lemos et al., 2009; Lemos and

Masiero, 2010; Lemos et al., 2007). It consists of a sequence of extensions to the JaBUTi

tool (Vincenzi et al., 2003), which was originally developed to support the evaluation of

Java programs.

In general, all versions of JaBUTi/AJ support the several steps of a typical test

session: (1) creating a test project, which includes instrumenting the program under

test and computing the test requirements; (2) importing and executing test cases; and

(3) calculating the test coverage. This process is depicted in Figure 2.15. It is important

to highlight that JaBUTi/AJ computes all test requirements based on the Java bytecode

information. Thus, it allows one to evaluate the test coverage obtained by a test set even

if the source code of the program under test is not available during that stage.

Figure 2.15: The test process supported by JaBUTi/AJ – adapted from Vincenzi et al.
(2005) and Lemos et al. (2007).

51

2.3. Testing of Aspect-Oriented Software

The first version of JaBUTi/AJ supports the unit testing approach proposed by Lemos

et al. (2007). Figure 2.16 shows a screenshot taken from the JaBUTi/AJ ’s graphical

interface. It represents an example of an AODU graph produced by the tool. The reader

can notice that this is the AODU graph of the Call class’ constructor method, which

was earlier presented in Section 2.3.4.1 (Figure 2.10). The information displayed in the

squared box regards the definition and use of variables in a pointed node of the graph

(e.g. the node labelled with “78” as depicted in Figure 2.16).

Figure 2.16: An AODU graph generated by JaBUTi/AJ .

Both JaBUTi and its extensions JaBUTi/AJ provide the tester with hints about which

test requirements are harder to be fulfilled. This is achieved through the application of

dominator and super block analysis (Agrawal, 1994), which may speed-up the definition

of adequate test sets with respect to a given criterion. In short, the dominator and super

block analysis enables the definition of weights for test requirements such that covering

requirements with higher weights will possibly result in covering several other requirements

with lower weights. In JaBUTi/AJ , different colours are used to represent the weight of

the requirements, as we can see in Figure 2.16.

Figure 2.17 shows as example of a coverage report produced by the tool. In this

example, the all-crosscutting-nodes (All-Nodes-c) is selected, which results in two test

requirements for the Billing aspect and five requirements for the Call class. As long as

JUnit tests are imported into the current test project, the tester can keep track of the

increases in the test coverage.

52

Chapter 2. Background

Figure 2.17: A JaBUTi/AJ coverage report screen.

Other JaBUTi/AJ extensions (Franchin et al., 2007; Lemos and Masiero, 2008a) sup-

port the pairwise- and pointcut-based testing approaches proposed by the authors. For

example, Figure 2.17 shows a JaBUTi/AJ screen that lists the pairwise relationship be-

tween some modules that belong to an application under test. It allows the tester to select

the pairs of interest, then the tool derives the test requirements based on the implemented

testing criteria (see Section 2.3.4.1 for more details about the proposed criteria).

The most recent JaBUTi/AJ updates support the structural testing of AspectJ pro-

grams at multiple integration levels (Cafeo and Masiero, 2010; Neves et al., 2009) . They

automate the creation of composed AODU graphs for a given unit and all units that are

directly (Neves et al., 2009) or indirectly (Cafeo and Masiero, 2010) invoked by it. Based

on these graphs, test requirements are derived according to a series of structural-based

integration testing criteria.

Figure 2.18: A JaBUTi/AJ pairwise-based test requirement selection screen.

53

2.3. Testing of Aspect-Oriented Software

2.3.5.3 The AjMutator Tool for Mutation Testing

Delamare et al. (2009b) developed a tool named AjMutator that automates the mutation

testing of AspectJ programs. It focuses on the mutation of PCDs, and supports the

generation of mutants, automatic identification of equivalent mutants, and test execution

and reporting.

The AjMutator ’s functionalities and execution flow are depicted in Figure 2.19. The

tool initially parses PCDs from aspects individually and performs the mutations over their

abstract syntax trees. The modified expressions are reinserted into the code, generating

the mutants in the pretty-printing step. The mutants are compiled with the abc com-

piler (Avgustinov et al., 2005), an alternative compiler for AspectJ programs, and then

stored into JAR9 files.

Pretty-
printing
mutants

Abstract Syntax
Trees (AST)

of PCDs

PCD
Parsing

AspectJ
source files

Mutant
generation

Mutant
PCD ASTs

Mutant
AspectJ

source files

Mutant
compilation

Compiled
Mutants

Matched
JPs

Mutant
classification

Classified
Mutants

Test case
execution

Test
results

JUnit
test cases

Figure 2.19: The test process supported by AjMutator– adapted from Delamare et al.
(2009b).

The mutant compilation step also produces a list of join points that are matched

by each mutant PCD. This enables the automatic identification of equivalent mutants,

which is implemented in AjMutator based on a mutant classification schema that relies

on a fault model for PCDs defined by Lemos et al. (2006). Mutants that are classified as

9JAR is an acronym for Java ARchive, which is a file the aggregates several files into a single one;
it may include regular Java bytecode files, source code files and any other files for which the JAR file is
intended to. JAR files are typically used for distribution of APIs and user applications.

54

Chapter 2. Background

non-equivalent are executed on the test set. AjMutator allows the tester to run JUnit test

cases and identifies non-compilable and dead mutants. The tool is executed in command

line mode and outputs an XML file that contains information about every mutant handled

(e.g. mutant status, PCD ID and aspect ID).

We highlight here that AjMutator implements a set of mutation operators that consists

in one of the contributions of this thesis (Ferrari et al., 2008). Such mutation operators

are described further in Chapter 4 and Appendix C. We also discuss the limitations of

AjMutator and present a tool that overcomes some of them in Chapter 5 and Appendix D.

2.3.5.4 Summary of AO Testing Tool Features

Table 2.6 summarises the main features of the tools described in this section. The list of

features is based on a previous list created by Horgan and Mathur (1992) for characterising

tools that support structural and mutation testing of C and Fortran programs.

Table 2.6: Summary of features present in tools for AO testing.

Feature Aspectra JaBUTi/AJ AjMutator

Supported language AspectJ AspectJ AspectJ
Test-case generation yes no no

Interface command line GUI command line

Automatic test execution yes yes yes

Automatic test evaluation yes yes yes

Recording of unfeasible requirements no yes (manually) yes (partially automated)

Supported testing phase unit and unit and unit and

integration1 integration integration2

1 Aspectra generates test requirements that involve integrated units (e.g. requirements derived from
the Interaction Coverage criterion (Xie and Zhao, 2006)).
2 The PCD-related mutations supported by AjMutator affect the number of aspect-base code interac-
tions, that is, they affect the integration of units across the system under test.

As stated in the beginning of this section, we can observe that these tools support

the basic steps of software testing. Apart from deriving test requirements according to

the automated criteria, they all support automatic test execution and evaluation (i.e. the

achieved test coverage). We can also notice that all tools target AspectJ programs and

support both unit and integration testing phases. Note that Chapter 5 of this dissertation

describes some limitations of AjMutator with respect to the mutation testing steps, and

presents the Proteum/AJ tool (Ferrari et al., 2010c) that overcomes some of them.

55

2.4. Final Remarks

2.4 Final Remarks

This chapter described the underlying theory and concepts that are approached in this

thesis, which included the fundamentals of AOP and software testing. Furthermore, it

characterised the state of the art in AO testing approaches, fault taxonomies and auto-

mated tool support. This allowed us to identify some limitations on the current research

on AO testing, which are following described:

• Despite the existence of several fault taxonomies for AO software, we noticed they

are either described in a high-level, imprecise fashion or generally do not address all

main AOP constructs such as PCDs, advices and ITDs. For example, Alexander

et al. (2004)’s taxonomy does not include faults related to intertype declarations,

while van Deursen et al. (2005) mix more than one fault type into a single item (e.g.

“Wrong advice specification (using before instead of after, using after with the wrong

argument, etc.)”). Finally, the existing taxonomies still lack empirical evaluation,

which may represent a hindrance for the definition of testing strategies on top of

them as well as their adoption in real software development projects.

• To date, the few fault-based testing approaches for AO software, along with the

associated tool support, face similar limitations as faced by fault taxonomies: they

focus on a subset of AOP constructs – pointcut descriptors, in particular – and have

not been properly evaluated with respect to properties like relevance, required effort

and effectiveness.

The contributions we present in the next chapters aim at overcoming some of these

limitations. They include an empirical evaluation of the fault-proneness of AO programs

based on a coarse-grained fault classification, and a subsequent refinement of this classi-

fication in order to define a comprehensive fault taxonomy for AO software (Chapter 3).

We also define (Chapter 4), automate (Chapter 5) and evaluate (Chapter 6) a set of mu-

tation operators that model varied instances of the fault types that are described in the

taxonomy.

56

Chapter

3
Evaluating the Fault-Proneness of

Aspect-Oriented Programs

As earlier discussed in Chapter 1, AOP has as its main goal enhancing the modularisa-

tion of crosscutting concerns that are implemented in the software. Despite the claimed

benefits achieved with AOP, previous research has highlighted that its complementary set

of concepts and programming mechanisms represents potential sources of faults, thereby

requiring specific testing approaches to deal with them (Alexander et al., 2004; Lemos et

al., 2007; McEachen and Alexander, 2005; Zhao, 2003).

In Chapter 2 (Section 2.3) we summarised relevant research that concerns testing

techniques and fault characterisation for AO software. Our summary was based on the

results of a systematic mapping study we have been regularly updating in the last few

years (Ferrari et al., 2009; Ferrari and Maldonado, 2006, 2007). It shows that a number of

fault taxonomies for AO software have been proposed to date, mostly based on language

features and researchers’ expertise. However, such taxonomies have not been evaluated

with respect to their ability in classifying faults uncovered in real software development

scenarios. They seem not to be comprehensive enough to classify the several fault types

that may appear in software projects, given that when considered individually, those

taxonomies do not fully address the commonly used AOP mechanisms.

57

3.1. A Study of the Fault-Proneness of AO Programs

In this chapter we present the results of two studies that address the evaluation of

the fault-proneness of the main AOP properties and elements as well as the definition of

a comprehensive fault taxonomy for AO software. We start with the study presented in

Section 3.1, which focuses on collecting and categorising faults from several releases of

AO applications according to a coarse-grained fault classification for AO software. Such

classification comprises the four main elements we can identify in an AO system: (i) point-

cut expressions (PCDs); (ii) intertype declarations (ITDs) and declare-like expressions1;

(iii) advices; and (iv) the base program. This first study also evaluates the impact of the

obliviousness property (Filman and Friedman, 2004) on the fault-proneness of evolving

AO programs. The overall results motivates a revision of the claimed benefits provided

by obliviousness as well as more intensive research on testing of other AOP-specific mech-

anisms beyond PCDs.

The second study is presented in Section 3.2. It extends the study presented in Sec-

tion 3.1 in three different ways: (i) it refines the coarse-grained fault classification in order

to compose a comprehensive fault taxonomy for AO software; (ii) it quantifies the fault

occurrences according to the proposed fault taxonomy; and (iii) it characterises recurring

faulty implementation scenarios based on the analysed set of faults. The results confirm

the ability of the fault taxonomy in classifying all faults uncovered from the evaluated

systems. Besides that, they provide hints on fault-prone implementation scenarios that

should be either avoided or double-checked by developers during the development phase.

3.1 A Study of the Fault-Proneness of AO Programs

The establishment of testing approaches that deal with newly introduced programming

technologies should rely on existing knowledge of fault-prone mechanisms and harmful im-

plementation scenarios. Clearly, this also holds for the complementary set of mechanisms

and properties that enable AOP in any development paradigm, given that varying AOP

approaches are expected to share common characteristics such as quantification, oblivi-

ousness and aspect-base code composition (Filman et al., 2004; Kiczales et al., 1997).

Despite the claimed benefits that can be achieved with the adoption of AOP, scepticism

about the quality of the derived products still remain. One of the contributing factors for

this uncertainty regards the lack of empirical evaluation of how the AOP-specific properties

and mechanisms lead to the insertion of faults into the software. This, in turn, hinders the

development of adequate testing approaches that help to promote the adoption of AOP

1For the sake of simplicity, we hereafter refer to either an intertype declaration or a declare-like
expression as an ITD.

58

Chapter 3. Evaluating the Fault-Proneness of Aspect-Oriented Programs

by the industry, specially in the context of increasingly incremental software development

processes which we can find nowadays.

This section summarises the results of an exploratory study that tackles the afore-

mentioned issues. It develops in terms of two hypotheses that address (i) the impact

of an AOP underlying property – the obliviousness – on the correctness of evolving AO

programs and (ii) the differences amongst the fault-proneness of the main AOP mecha-

nisms in the context of such programs. An overview of the study objectives, employed

procedures and achieved results is presented in the sequence. The full contents of this

study are presented in Appendix A together with a copyright notice from the Association

for Computing Machinery (ACM).

3.1.1 Goals and Method

This study aims at evaluating the fault-proneness of AOP properties and mechanisms

when they are applied to evolving AO programs. In particular, we are interested in

identifying the underlying factors that lead to the introduction of faults. Our analysis

develops in terms of two hypotheses, whose null and alternative variants are as follows:

Hypothesis 1 (H1)

• H1-0: Obliviousness does not exert impact on the fault-proneness of evolving AO

programs.

• H1-1: Obliviousness exerts impact on the fault-proneness of evolving AO programs.

Hypothesis 2 (H2)

• H2-0: There is no difference among the fault-proneness of the main AOP mechanisms.

• H2-1: There are differences among the fault-proneness of the main AOP mechanisms.

To achieve our goals, we applied a number of evaluation procedures that include test-

ing, static analysis, debugging, and fault documentation and classification. We analysed

faults that were collected from three evolving AO systems, which come from three different

domains. The first is iBATIS, a Java-based open source framework for object-relational

data mapping (iBATIS Development Team, 2009). The AO versions of iBATIS have

some functional and non-functional concerns modularised within aspects (e.g. exception

handling, concurrency and type mapping) (Ferrari et al., 2010a). The second is Health-

Watcher (HW), which consists in a Web-based application that allows citizens to register

59

3.1. A Study of the Fault-Proneness of AO Programs

complaints regarding health issues (Greenwood et al., 2007; Soares et al., 2006). Some as-

pectised concerns in HealthWatcher are distribution, persistence and exception handling.

The third is MobileMedia (MM), which consists in a software product line for mobile de-

vices that allows users to manipulate image files in different mobile devices (Figueiredo

et al., 2008). In MM, aspects are used to configure the product line instances, enabling

the selection of alternative and optional features.

The analysis with respect to the H1 hypothesis developed from two main viewpoints:

the fragile pointcut problem (Stoerzer and Graf, 2005) and a categorisation of oblivious-

ness listed by Sullivan et al. (2005). The former concerns how software evolution causes

PCDs to break, i.e. whether or not PCDs mismatch the intended join points while the

programmers perform changes in the base code. The latter addresses different levels of

obliviousness that can be present throughout the software life cycle, starting from low-level

(language-based) obliviousness and moving to higher levels such as feature obliviousness

and perfect (or pure) obliviousness (Sullivan et al., 2005).

The analysis regarding the H2 hypothesis started with the overall evaluation of the

fault-proneness of the main AOP mechanisms, namely PCDs, advices and ITDs. In the

sequence, we analysed the correlation between such mechanisms and the associated fault

counts when concern-specific implementations are individually considered. This analysis

took into account only crosscutting concerns that have been modularised within aspects

in the evaluated systems. It was motivated by the fact that AOP mechanisms may have

individual impact on the fault-proneness of a module, a cluster of modules (e.g. modules

that implement a given concern) or the full system.

3.1.2 Results

Table 3.1 presents the number of faults identified in the three evaluated systems according

the main AOP-related elements: PCDs, ITDs, advices and the base program. Table 3.2,

on the other hand, summarises the number of faults that were related to two of the obliv-

iousness levels listed by Sullivan et al. (2005): language-level and feature obliviousness.

The former kind of obliviousness is present when there is no local notation in the code

about aspect behaviour that may be inserted at possibly selected join points. Differ-

ently, feature obliviousness is present when the developer is unaware of the features or

the in-depth semantics of an aspect that is advising the base code. While establishing

the relationship between each fault with a specific level of obliviousness, we answered the

following question: Could this fault have been avoided if such level of obliviousness was

60

Chapter 3. Evaluating the Fault-Proneness of Aspect-Oriented Programs

not present in this implementation scenario? This allowed us to reason about the impact

of such property on the presence of particular faults in the evaluated systems.

Table 3.1: Fault distribution per system – adapted from Ferrari et al. (2010a).

Fault Type System Total

iBATIS MobileMedia HealthWatcher

PCD-related 18 1 0 19

ITD-related 14 4 6 24

Advice-related 15 4 4 23

Base program-related 36 0 2 38

Total 83 9 12 104

Table 3.2: Faults associated with obliviousness – adapted from Ferrari et al. (2010a).

System Obliviousness Category

Language Feature Both Language only Feature only Total

iBATIS 31 4 4 27 0 31

HealthWatcher 0 3 0 0 3 3

MobileMedia 8 4 4 4 0 8

Total 8 31 3 42

Results for the H1 hypothesis: in our analysis we noticed that 27 out of 36 base

program-related faults identified in the iBATIS system (see Table 3.1) were caused by

either perfective or evolutionary changes within the base code, which led PCDs to break.

This number corresponds to 33% of the faults revealed for that system, or 26% of the

overall number of faults considering all systems. This high occurrence of broken PCDs

is known as the fragile pointcut problem (Stoerzer and Graf, 2005) and is closely related

to the quantification and, more concerning still, the obliviousness models implemented in

AspectJ-like languages. We found that this problem is magnified in realistic development

scenarios as the one observed in iBATIS, for which several developers worked in parallel,

each of them refactoring and evolving different crosscutting concerns into aspects. Ac-

cording to Gybels and Brichau (2003), program changes requires revisions of the crosscut

enumerations (i.e. the PCDs), which conflicts with the idea of programs being oblivious

to the aspects applied to them.

When we consider the figures presented in Table 3.2, we can observe that a total of

42 faults could be directly associated with at least one of the two levels of obliviousness

61

3.1. A Study of the Fault-Proneness of AO Programs

considered in this study. This number represents 40% of the total number of faults across

the three evaluated systems.

These results provided us with evidence that support the H1 alternative hypothesis

(i.e. H1-1), since a large amount of faults could be directly associated with the base code

being oblivious to aspects or even aspects being oblivious to other aspects. This corrobo-

rates recent trends in research on AOP approaches like aspect-aware interfaces (Kiczales

and Mezini, 2005), Crosscut Programming Interfaces (XPIs) (Griswold et al., 2006) and

Explicit Join Points (EJPs) (Hoffman and Eugster, 2007). Such approaches tend to re-

duce the language-level obliviousness in favour of better program comprehension by mak-

ing aspect-base interactions more explicit. Not surprisingly, language-level obliviousness

happened to be the category associated with the largest number of faults in our study.

Results for the H2 hypothesis: the results presented in Table 3.1 go against the general

assumption that PCD is the most fault-prone AOP mechanism. The distribution of faults

is very similar with respect to the three main AOP mechanisms, varying from 19 to 24

amongst PCDs, ITDs and advices.

Our additional analysis addressed individual concern implementations, as described

in the previous section. Table 3.3 lists the results of the Spearman’s rank correlation

test when considering the fault counts associated with each concern and the maximum

and average number of AOP elements used to implement that concern. We can observe

that the correlation between PCD and advice usage (both maximum and average) and

the average number of faults per concern is significant (lines highlighted in grey in Ta-

ble 3.3). For ITDs, the correlation coefficient varies between 0.5 and 0.6, what means

moderate-to-large correlation on average if we consider a confidence level of ∼85%.

We compared these achieved results with two metrics that have been reported as good

fault-proneness indicators in studies that comprise OO programs (Gyimóthy et al., 2005;

Subramanyam and Krishnan, 2003): lines of code (LOC) and weighted operations per

module (WOM2). The values obtained for such metrics – also listed in Table 3.3 – showed

non-significant correlation with fault counts in our study. This indicates that when we

consider the set of modules involved in AO implementations of crosscutting concerns, the

internal number of AOP-specific mechanisms (i.e. PCDs, advices and ITDs) are better

fault-proneness indicators than OO-based metrics.

2WOM (Ceccato and Tonella, 2004) adapts the original weighted methods per class (WMC) met-
ric (Chidamber and Kemerer, 1994) to count methods inside classes as well as aspect operations (i.e.
advices, methods and intertype methods).

62

Chapter 3. Evaluating the Fault-Proneness of Aspect-Oriented Programs

Table 3.3: Correlation between maximum and average AOP mechanism usage and the
average number of faults per concern/release. – adapted from Ferrari et al.
(2010a).

Metric Coefficient P-value

MAX-PCDs 0.8809524** 0.0072420

MAX-ADVICES 0.8742672** 0.0045120

MAX-ITDs 0.5509081 0.1570000

MAX-LOC 0.1904762 0.6646000

MAX-WOM 0.1666667 0.7033000

AVG-PCDs 0.8571429* 0.0107100

AVG-ADVICES 0.8571429* 0.0107100

AVG-ITDs 0.5714286 0.1511000

AVG-LOC 0.1904762 0.6646000

AVG-WOM 0.1666667 0.7033000

** correlation is significant at the 0.01 level

* correlation is significant at the 0.05 level

To conclude, our findings support the H2 null hypothesis (i.e. H2.0) since (i) the

overall fault distribution per main AOP mechanism is similar; and (ii) the usage rate of

each mechanism does not vary independently. Instead, it depends on the set of concerns

aspectised within a system and tends to be directly proportional to the number of faults

associated with that concern.

3.2 Defining and Evaluating a Fault Taxonomy for AO

Programs

The characterisation of software faults is important because it provides empirical evidence

on how they occur in practice, as opposed to fault descriptions that are based solely on the

characteristics of programming languages or development approaches. This phenomenon

has been widely investigated by researchers over the years. It includes analyses of how

specific programming features can be sources of faults in software systems (Offutt et al.,

2001) and empirical observations of how different types of faults appear in the context of

real software development projects (Basili and Perricone, 1984; Endress, 1978; Ostrand

and Weyuker, 1984).

When it comes to AOP, however, most of related research on software faults has tar-

geted the classification of faults based on programming features, but not on empirical

analysis of real software development data. This section describes the results of a study

63

3.2. Defining and Evaluating a Fault Taxonomy for AO Programs

that contributes to fill this gap, as an extension of the study presented in Section 3.1.

It includes the definition of a comprehensive fault taxonomy that leverages previously

described taxonomies which we identified in our systematic mapping study on AO testing

(see Chapter 2, Section 2.3 for more details). To evaluate the ability of our taxonomy

in classifying varied instances of fault types, we categorised all faults that compose the

fault set identified for the study we described in Section 3.1. Besides that, we identified

and characterised recurring faulty scenarios in order to provide hints for the establish-

ment of AOP-specific testing approaches. A summary of the study objectives, employed

procedures and achieved results is presented in the sequence. The full study contents are

presented in Appendix B together with a copyright notice from the Institute of Electrical

and Electronics Engineers (IEEE).

3.2.1 Goals and Method

The goals of this study are three-fold: (i) defining a fault taxonomy for AO programs which

includes fault types that are distributed across the four categories earlier identified (i.e.

PCD-, ITD-, advice- and base program-related faults); (ii) quantifying and categorising

faults in AO programs according to the proposed fault taxonomy; and (iii) characterising

recurring faulty scenarios of AOP.

To achieve these goals, we initially identified and grouped together several fault types

for AO software that have been described by other researchers (the pieces of work that

describe fault types for AO software can be identified in Chapter 2, Table 2.4). Addition-

ally, we included new fault types that can occur in programs written in AspectJ, which

represents a mainstream AOP supporting technology.

We performed a preliminary evaluation of the taxonomy using the fault set obtained

in our previous study about fault-proneness of AO programs (Ferrari et al., 2010a). In

doing so, we were able to check whether the taxonomy is complete enough to allow for the

classification of all faults revealed from the target systems. Finally, we went through the

classified fault set in order to spot recurring problems. This last procedure allowed us to

characterise the most fault-prone implementation scenarios, which includes code excerpts

extracted from the evaluated systems and the steps that might have led to the insertion

of the faults. In this way, developers are provided with hints about harmful scenarios and

can take the appropriate actions in order to mitigate the risks.

3.2.2 Results

The proposed fault taxonomy encompasses 26 different fault types distributed over four

main categories, which are listed in Tables 3.4–3.7. Category F1 (Table 3.4) includes

64

Chapter 3. Evaluating the Fault-Proneness of Aspect-Oriented Programs

eight PCD-related fault types that address, for instance, incorrect join point quantifi-

cation, misuse of primitive pointcut designators and incorrect PCD composition rules.

Category F2 (Table 3.5) includes nine fault types that regard ITD- and declare-like expres-

sions. Examples of fault types in this category are improper class member introduction,

incorrect changes in exception-dependent control flow and incorrect aspect instantiation

rules. Category F3 (Table 3.6) describes six types of faults related to advice definition

and implementation, for example, improper advice type specification, incorrect advice

logic and incorrect advice-PCD binding. Finally, category F4 (Table 3.7) includes three

faults types whose root causes can be assigned to the base program. For instance, code

evolution that causes PCDs to break and duplicated crosscutting code due to improper

concern refactoring.

Table 3.4: Faults related to PCDs – adapted from Ferrari et al. (2010b).

ID Description

F1.1 Selection of a superset of intended JPs.
F1.2 Selection of a subset of intended JPs.
F1.3 Selection of a wrong set of JPs, which includes both intended and unintended items.
F1.4 Selection of a wrong set of JPs, which includes only unintended items.
F1.5 Incorrect use of a primitive PCD1.
F1.6 Incorrect PCD composition rules.
F1.7 Incorrect JP matching based on exception throwing patterns.
F1.8 Incorrect JP matching based on dynamic circumstances.
1 Primitive PCDs are predefined PCDs available in AOP languages (e.g. in AspectJ (The Eclipse Foundation, 2010b)).

Table 3.5: Faults related to ITDs and declare-like expressions – adapted from Ferrari et
al. (2010b).

ID Description

F2.1 Improper method introduction, resulting in unanticipated method overriding or not re-
sulting in anticipated method overriding.

F2.2 Introduction of a method into an incorrect class.
F2.3 Incorrect change in class hierarchy through parent declaration clauses V (e.g. declare

parents statements), resulting in unintended inherited behaviour for a given class.
F2.4 Incorrect method introduction, resulting in unexpected method overriding.
F2.5 Omitted declared interface or introduced interface which breaks object identity.
F2.6 Incorrect changes in exception-dependent control flow, resulting from aspect-class in-

teractions or from clauses that alter exception severity.
F2.7 Incorrect or omitted aspect precedence expression.
F2.8 Incorrect aspect instantiation rules and deployment, resulting in unintended aspect in-

stances.
F2.9 Incorrect policy enforcement rules supported by warning and error declarations.

65

3.2. Defining and Evaluating a Fault Taxonomy for AO Programs

Table 3.6: Faults related to advices – adapted from Ferrari et al. (2010b).

ID Description

F3.1 Incorrect advice type specification.
F3.2 Incorrect control or data flow due to incorrect aspect-class interactions.
F3.3 Incorrect advice logic, resulting in invariants violations or failures to establish expected

postconditions.
F3.4 Infinite loops resulting from interactions among pieces of advice.
F3.5 Incorrect access to JP static information.
F3.6 Advice bound to incorrect PCD.

Table 3.7: Faults related to the base program – adapted from Ferrari et al. (2010b).

ID Description

F4.1 The base program does not offer required JPs in which one or more foreign aspects were
designed to be applied.

F4.2 The software evolution causes PCDs to break.
F4.3 Other problems related do base programs such as inconsistent refactoring or duplicated

crosscutting code.

We classified the 1043 faults identified from the three evaluated systems according to

the fault types defined in the taxonomy. Figure 3.1 presents the resulting fault distri-

bution. Note that we intentionally omitted the “F” from each fault type listed in the

chart in order to improve its readability. Therefore, in Figure 3.1, a fault of type F1.1 is

represented as 1.1, F1.2 as 1.2 and so on.

Remarks on the fault distribution: Looking at Figure 3.1, we can notice that some fault

types present higher occurrence than the remaining types within each individual category.

For example, while some fault types within the F3 category (i.e. advice-related faults)

show totals of 15 (F3.3) and 5 (F3.1), other types from the same group vary between 0 and

1 (e.g. F3.4, F3.5 and F3.6). Apart from the individual fault types that stood out within

each category, we identified three other particularities that yielded worthwhile discussions:

(i) the PCD fragility problem; (ii) static crosscutting versus dynamic crosscutting and

(iii) advice execution order. The fragile PCD issue has already been discussed in our

previous study (see Section 3.1 for more details). The other two issues are discussed in

the sequence.

The static crosscutting versus dynamic crosscutting matter regards the significant

differences between the fault counts associated with elements that implement the two

3The numbers of faults per type slightly differ from the original totals (Ferrari et al., 2010a). The
changes resulted from a revision of the fault documentation/classification. Nevertheless, these differences
have no significant impact on the achieved results and conclusions of our previous study, which was
presented in Section 3.1.

66

Chapter 3. Evaluating the Fault-Proneness of Aspect-Oriented Programs

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.1 3.2 3.3 3.4 3.5 3.6 4.1 4.2 4.3
0

5

10

15

20

25

30

Fault types

N
u

m
b

er
 o

f
fa

u
lts

Figure 3.1: Fault distribution according to the fault taxonomy for AO software – ex-
tracted from Ferrari et al. (2010b).

models of crosscutting in the analysed systems: static and dynamic (The AspectJ Team,

2003). In general, faults related to static crosscutting resulting from the use of ITDs

– more specifically, F2.1, F2.2, F2.3 and F2.4 – can generally be detected at compilation

time. On the other hand, faults related to mechanisms that enable dynamic crosscutting –

i.e. the advices – can mainly be detected during the software execution, thereby resulting

in more occurrences during the testing phase.

In regard to the advice execution order issue, the problem was mainly observed when

advices from two independent – or orthogonal (Kienzle et al., 2003) – functionalities share

a common join point. This problem can be associated with the level of obliviousness

present in code, given that even though two concerns may be aware of each other at

source code level (i.e. language-based obliviousness is not present), uncertainty about the

in-depth semantics of implemented features (i.e. feature obliviousness) may result in more

faults of this nature.

Characterisation of recurring problems: we selected and described representative ex-

amples of faults for the four coarse-grained categories defined in our taxonomy, i.e. PCD-,

ITD-, advice- and base program-related faults. The selection was based on the most

recurring faulty scenarios within each category.

Figure 3.2 depicts an example of a recurring fault of the F2 category. It shows a case

in which two different aspects – SMSAspect and PhotoAndMusicAspect – are advising the

67

3.3. Summary of Contributions and Limitations

same join point, whose matching is defined by the PCDs shadowed in grey. However, no

precedence order is defined for these two aspects. This arbitrary execution order impacts

future error recovery actions in case one of the advices presents abnormal behaviour.

public privileged aspect SMSAspect {
 ...
 pointcut startApplication(MainUIMidlet middlet):

execution(public void MainUIMidlet.startApp())
&& this(middlet);

 after(MainUIMidlet middlet): startApplication(middlet) {
 ...
 }
 ...
}

public aspect PhotoAndMusicAspect {
 ...
 pointcut startApp(MainUIMidlet midlet):

execution(public void MainUIMidlet.startApp())
&& this(midlet);

 after(MainUIMidlet midlet): startApp(midlet) {
 ...
 }
 ...
}

Figure 3.2: Example of fault related to arbitrary advice execution order – extracted
from Ferrari et al. (2010b).

Additionally, for each described faulty scenario, we enumerated the main steps that

might have led to the introduction of the fault. For instance, considering the example

described in Figure 3.2, the steps are: (1) Two PCDs p1 and p2 are defined to match a

common join point; (2) The advices that are bound to p1 and p2 are implemented and the

affected join points are possibly verified within each aspect; (3) The affected join points

are not verified from the base program side, thus they are advised in arbitrary order. Such

steps should be double-checked in order to reduce the risks of new fault introductions.

3.3 Summary of Contributions and Limitations

The studies summarised in this chapter bring the following contributions:

• Evaluation of the fault-proneness of the main AOP mechanisms. Differently from

previous research on this topic, our evaluation was not solely based on language and

programming features but on quantitative data. The data was obtained through ex-

tensive evaluation of several releases of AO applications, all having respective OO

68

Chapter 3. Evaluating the Fault-Proneness of Aspect-Oriented Programs

counterparts that were used as baselines for implementation assessment. Our re-

sults showed that the main AOP mechanisms pose similar risk to the correctness of

a program, therefore contradicting the common wisdom of considering that PCDs

represent the main source of faults in AOP.

• Evaluation of the impact of the obliviousness property on the fault-proneness of AO

programs. The benefits and drawbacks of obliviousness have yielded several dis-

cussions within the AOP community. However, due to the lack of available data

extracted from real software projects, the arguments have been more or less informed

speculation. Our study provided evidence suggesting that: (i) aspect-based code in-

teractions should be given more attention during the software evolution in order to

reduce the number of faults introduced at those points; and (ii) more investigation of

AOP approaches that make interactions between aspects and base code more explicit

is required.

• Definition of a comprehensive fault taxonomy for AO software. The taxonomy over-

comes limitations of previous taxonomies in terms of completeness, detailing of fault

type descriptions, and evaluation based on data extracted from varied AO appli-

cations. A preliminary evaluation demonstrates the taxonomy’s general ability in

categorising a set of faults that have been documented from several releases of AO

applications.

• Characterisation of recurring faulty scenarios in AO programs. We identified and

described fault-prone implementation scenarios based on the documented fault set.

Within each main fault category, we selected examples of the most recurring faults

and highlighted their location using source code excerpts. In addition, we enumerated

the steps the might have led to introduction of the fault, therefore provide guidance

for code inspection and debugging during the software development and maintenance

phases.

The main limitations of the studies described in this chapter concern the generali-

sation of the achieved results. Firstly, we recognise that the AspectJ-like programming

style cannot be assumed as the ultimate or unique AOP approach. In fact, as observed

by Filman and Friedman (2004) in the early stages of research on AOP, several other

programming techniques (e.g. Intentional Programming, Meta-Programming and Gener-

ative Programming) are able to realise the concepts of AOP. Oh the other hand, AspectJ

has been far the most investigated AOP language, upon which several facets of AOP

have been developed and evaluated. Moreover, the AOP model supported by AspectJ

69

3.3. Summary of Contributions and Limitations

has been implemented in several other language extensions and frameworks that support

AOP. Examples are the JBossAOP (Burke and Brock, 2003) and SpringAOP (Johnson et

al., 2007) frameworks, and the CaesarJ (Mezini and Ostermann, 2003), AspectC++ (Gal

et al., 2001) and AspectC# (Kim, 2002) languages.

Another factor that can limit the generalisation of our results regards the represen-

tativeness of the applications we analysed in our studies. The size of these applica-

tions varies between 3,000 to 11,000 lines of code, thus possibly not properly reflecting

industry-strength system complexities. Moreover, all systems have been derived from OO

implementations in the academic context. However, we should have in mind that AOP is

yet a maturing area that still requires considerable effort to make it become the state of

the practice in the industry. Its cautious and slow adoption is demonstrated in the results

of a survey of the usage of AOP undertaken by Muñoz et al. (2009). Therefore, evaluating

the small- and medium-sized AO systems currently available provides insights and evi-

dence that can support larger experimental studies as well as further developments in the

area. From a general viewpoint, it can help researchers and practitioners work towards

mature and robust AOP and its consequent adoption in the industrial scenario.

70

Chapter

4
Designing Mutation Operators for

Aspect-Oriented Programs

Fault-based testing is a technique that relies on information about recurring mistakes

made by programmers during the software development. It can be used, for example,

to demonstrate the absence of prespecified faults in the software (Morell, 1990). As

previously described in Chapter 2, this goal can be accomplished through mutation test-

ing, which consists in a test selection criterion that systematically simulates faults into

the software and evaluates if the current test data is sensitive enough to reveal those

faults (DeMillo et al., 1978).

The definition of a mutation-based testing approach should rely on well-founded fault

characterisation for the target software development technology. For example, fault tax-

onomies, fault models and bug pattern catalogues represent suitable means for charac-

terising faults that are likely to be introduced into the software along its development.

Once the set of prespecified faults is chosen, mutation operators are designed in order to

introduce these faults into the piece of software under evaluation.

This chapter describes a set of mutation operators for AspectJ programs which can be

applied in a fault-based testing approach for such programs. We use the following sources

of information upon which we design the operators: (i) the fault taxonomy described in

Chapter 3 and Appendix B; and (ii) the programming structures and their varied alterna-

71

4.1. Mutation Operators for AspectJ Programs

tives allowed by the AspectJ language. In using these two sources, we are addressing two

basic issues for the design of mutation operators: (1) the need for a well-established fault

characterisation, through the use of the fault taxonomy for AO software; and (2) the de-

pendence of mutation operators on the target technology (Delamaro et al., 2001), through

the analysis of the AspectJ language syntax. We additionally perform an analysis of to

what extent fault types described in the taxonomy can be generalised to AOP approaches

and supporting technologies other than AspectJ.

This chapter is a summary of a paper published in the Proceedings of the 1st Interna-

tional Conference on Software Testing, Verification and Validation (ICST). The full paper

contents can be found in Appendix C together with a copyright notice from the Institute

of Electrical and Electronics Engineers (IEEE).

4.1 Mutation Operators for AspectJ Programs

Tables 4.1, 4.2 and 4.3 summarise the set of mutation operators for AspectJ programs

we propose in this chapter. The operators are grouped according to the main AOP

mechanisms they target (namely PCDs, declare-like expressions, and advices), thus corre-

sponding to the F1, F2 and F3 fault type categories defined in our fault taxonomy for AO

software (see Chapter 3 for further information). Note that this set of mutation operators

does not address base program-related faults (i.e. category F4 in the taxonomy) given

that these faults can be simulated by existing mutation operators (e.g. for unit (Agrawal

et al., 1989), interface (Delamaro et al., 2001) and class (Ma et al., 2002) levels).

Group 1 (Table 4.1) includes 15 operators which model faults related to PCDs. These

faults usually result in incorrect join point matchings or undue execution contexts. Group 2

(Table 4.2) contains five operators that model faults related to AspectJ declare-like expres-

sions. Faults that are modelled by them may lead to unintended control flow executions,

possibly resulting in erroneous object/aspect state. Note that ITD-specific faults, which

also compose the F2 fault category, can be mostly detected at compilation time (Ferrari et

al., 2010b, 2008). Therefore, Group 2 does not include operators that alter such elements.

Finally, Group 3 includes six operators related to advice definition and implementation.

4.1.1 Mutation Operators versus Fault Types

Table 4.4 shows the relation between AOP-specific fault types and the proposed mutation

operators. The table only includes direct effects of operators in relation to the target

elements and resulting mutants. Note that we do not focus on indirect effects of each

72

Chapter 4. Designing Mutation Operators for Aspect-Oriented Programs

Table 4.1: Group 1: Mutation operators for PCDs – adapted from Ferrari et al. (2008).

Operator Description/Consequences

PWSR PCD weakening by replacing a type with its immediate supertypes.
PWIW PCD weakening by inserting wildcards into it.
PWAR PCD weakening by removing annotation tags from type, field, method and con-

structor patterns.
PSSR PCD strengthening by replacing a type with its immediate subtype.
PSWR PCD strengthening by removing wildcards from it.
PSDR PCD strengthening by removing “declare @” statements from the aspect code.
POPL PCD weakening or strengthening by modifying parameter lists of primitive PCDs.
POAC PCD weakening or strengthening by modifying“after [retuning| throwing]”

advice clauses.
POEC PCD weakening or strengthening modifying exception throwing clauses.
PCTT PCD changing by replacing “this” PCDs with “target” ones and vice versa.
PCCE Context changing by switching “call/execution/initialization/ preini-

tialization” PCDs.
PCGS PCD changing by replacing “get” PCDs with “set” ones and vice versa.
PCCR PCD changing by replacing individual parts of a PCD composition.
PCLO PCD changing by varying logical operators present in type and PCD compositions.
PCCC PCD changing by replacing“cflow”PCDs with“cflowbelow”ones and vice versa.

Table 4.2: Group 2: Mutation operators for ITDs and declare-like expressions – adapted
from Ferrari et al. (2008).

Operator Description/Consequences

DAPC Aspect precedence changing by alternating the order of aspects involved in de-
clare precedence expressions.

DAPO Arbitrary aspect precedence by removing “declare precedence” expressions.
DSSR Unintended exception handling by removing “declare soft” expressions.
DEWC Unintended control flow execution by changing “declare error/warning” ex-

pressions.
DAIC Unintended aspect instantiation by changing “perthis/pertarget/ per-

cflow/percflowbelow” deployment clauses.

Table 4.3: Group 3: Mutation operators advices – adapted from Ferrari et al. (2008).

Operator Description/Consequences

ABAR Advice kind changing by replacing a before clause with an after [retun-
ing|throwing] one and vice versa.

APSR Advice logic changing by removing invocations to “proceed” statement.
APER Advice logic changing by removing guard conditions which surround “proceed”

statements.
AJSC Static information source changing by replacing a “thisJoinPoint- Static-

Part” reference with a “thisEnclosingJoinPointStaticPart” one and vice
versa.

ABHA Behaviour hindering by removing implemented advices.
ABPR Changing PCD-advice binding by replacing PCDs which are bound to advices.

73

4.1. Mutation Operators for AspectJ Programs

operator regarding to faults they model. For example, we defined a relationship between

the PCTT operator and the F1.1–F1.5 fault types. This operator replaces a this primitive

PCD with a target one and vice versa, possibly modifying the set of selected join points.

If we considered indirect effects, we could also establish a relationship between PCTT and

F1.8, since the matching of this primitive PCDs may be based on types which can be

redefined at runtime. This observation also holds for the remaining operators.

Table 4.4: Relationship between mutation operators and fault types for AO software –
adapted from Ferrari et al. (2008).

Fault Types
F1 F2 F3

Operator 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6

PWSR X
PWIW X
PWAR X
PSSR X
PSWR X
PSDR X
POPL X X
POAC X X X X
POEC X X X X X
PCTT X X X X X
PCCE X
PCGS X X
PCCR X X X X X X
PCLO X X X X X
PCCC X X X

DAPC X
DAPO X
DSSR X
DEWC X
DAIC X

ABAR X
APSR X X
APER X X
AJSC X
ABHA X
ABPR X

4.1.2 Preliminary Cost Analysis

We performed a preliminary cost analysis based on the number of mutants generated for

two AspectJ applications from two different domains. The first is the TollSystemDemon-

strator (TSD) system, which includes a subset of requirements of a real-world tolling sys-

tem. It has been developed in the context of the AOSD-Europe Project (AOSD Europe,

74

Chapter 4. Designing Mutation Operators for Aspect-Oriented Programs

2010) and contains functional and non-functional concerns implemented within aspects

(e.g. charging variabilities, distribution and logging). The second application is Health-

Watcher (HW), which was already described in Chapter 3 and consists in a Web-based

system that allows citizens to register complaints regarding health issues (Greenwood et

al., 2007; Soares et al., 2006).

Tables 4.5 and 4.6 display the obtained cost analysis results. The figures listed in

Table 4.5 regard the total numbers of mutants per group. Mutants have been manually

created for each of the systems. Operators from Group 1 yielded the largest number of

mutants (more than 80% for both systems), whereas operators from Group 2 produced

less than 2% of the total.

Table 4.5: TSD and HW mutants – adapted from Ferrari et al. (2008).

System Total Group 1 % Group 2 % Group 3 %

TSD 981 847 86 8 1 126 13

HW 388 342 88 8 1.5 121 10.5

The average number of mutants generated for each main AOP element is presented

in Table 4.6. For groups which result in the largest numbers of mutants (i.e. PCDs

and advices - see Table 4.5), the average per element is similar for both applications. The

apparently high number of mutants generated for PCDs and the implications with respect

to mutant analysis costs can be mitigated by equivalent mutant detection strategies. An

example of such strategy will be presented in Chapter 5, which describes a tool that

automates the majority of the mutation operators proposed herein.

Table 4.6: Mutant average per element type – adapted from Ferrari et al. (2008).

System Aspect PCD declare-like Advice

TSD 39 23 4 3

HW 35 21 1 3

4.2 Generalisation of the Fault Taxonomy

In addition to the defined set of mutation operators, we analysed to what extent the

fault taxonomy for AO software can be generalised. For this analysis, we considered four

AO technologies: AspectJ, JBossAOP (The JBoss Team, 2010) and SpringAOP (Johnson

et al., 2007), which represent technologies that have a significant user base; and Cae-

75

4.3. Summary of Contributions and Limitations

sarJ (Mezini and Ostermann, 2003), which is another language that provides a number of

features to enable AOP.

Table 4.7: Relationship between AOP technologies and fault types – adapted from Fer-
rari et al. (2008).

Fault Types
F1 F2 F3 F4

Technology 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 1 2 3

AspectJ X
SpringAOP X
JBossAOP X
CaesarJ X

The results of our analysis are summarised in Table 4.7. Our observations show that

most fault types, initially characterised upon AspectJ features, actually may occur in

general AOP implementations and approaches. Considering that the proposed mutation

operators for AspectJ programs cover a wide range of faults described in the taxonomy,

adapting them for other AspectJ-like languages sounds an interesting approach to support

the fault-based testing of other AOP implementations.

4.3 Summary of Contributions and Limitations

The key contributions of this chapter are:

• Definition of a set of mutation operators for AspectJ-like programs. The proposed

mutation operators address the majority of the fault types described in the fault

taxonomy for AO software. Their definition has in fact been guided by the taxonomy

as well as by the syntactic alternatives allowed by the AspectJ language, therefore

fulfilling the requirements for the establishing of a fault-based testing approach for

AO programs.

• Preliminary cost analysis for the application of the mutation operators. The operators

have been manually applied to two AO applications that encompass a wide range of

mechanisms often used to implement different categories of crosscutting concerns.

The average number of generated mutants for each group – i.e. PCDs, declare-like

expressions and advices – provides a preliminary cost estimate for the application

that can be double-checked once the operators are fully automated.

• Evaluation of the possible generalisations of the fault taxonomy. To date, research

on fault characterisation for AO software has mainly developed in terms of the As-

76

Chapter 4. Designing Mutation Operators for Aspect-Oriented Programs

pectJ language. In spite of that, our analysis showed that most of the fault types

can actually occur in other AOP supporting technologies, according to the range of

programming constructs they provide. As a consequence, the testing of programs

developed with such technologies can leverage existing knowledge on testing AspectJ

programs.

The main limitations of the work presented in this chapter concern: (i) the lack of

a complexity analysis for each defined mutation operator; (ii) the effort estimation for

producing adequate test sets with respect to the generated mutants; and (iii) the lack of

automated support for the application of the mutation operators

In regard to limitations (i) and (ii), so far we performed a preliminary cost estima-

tion based on the manual application of the operators in two medium-sized AO systems

(Section 4.1.2). It comprises a single measure: the number of derived test requirements

which, in particular, is represented by the number of mutants created for the target sys-

tems. However, we have not evaluated the complexity of applying individual mutation

operators based on the worst case, i.e. based on the maximum number of mutants each

operator may produce for a given aspect under test. Such kind of analysis, for instance,

was undertaken by Delamaro (1997) for interface mutation operators. Furthermore, other

cost-related measures (e.g. the number of equivalent mutants, the number of required test

cases to kill the mutants and the effort required for analysing live mutants) should also

be taken into consideration. In fact, some of these cost-related attributes are evaluated

in Chapter 6. In regard to limitation (iii), it is addressed in the next chapter.

77

Chapter

5
Automating the Mutation Testing of

Aspect-Oriented Programs

As previously discussed in Chapter 2, software testing depends on adequate tool support

to be undertaken in a systematic and rigorous fashion, therefore helping to enhance the

users’ confidence that the software behaves as expected (Harrold, 2000; Weyuker, 1996).

When it comes to automating AO testing, we have observed in the systematic mapping

study presented in Chapter 2 that initiatives on providing tool support to testing are

still limited when contrasted to the large number of proposed approaches. Particularly

regarding mutation-based testing, none of the identified tools (Anbalagan and Xie, 2008;

Delamare et al., 2009b) provide adequate support for its basic steps, namely original

program execution, mutation generation, mutant execution and mutant analysis (DeMillo

et al., 1978).

This chapter presents a tool named Proteum/AJ , which automates the mutation test-

ing of AO programs written in AspectJ. Proteum/AJ implements the set of mutation

operators described in Chapter 4, and provides support for the main steps required by

the Mutant Analysis criterion. It leverages previous knowledge on developing Proteum, a

family of tools for mutation testing developed by the Software Engineering group at the

University of São Paulo, Brazil (Maldonado et al., 2000). Proteum/AJ overcomes some

limitations of other existing tools that support mutation testing of AO programs (Anbal-

79

5.1. Requirements for Mutation Tools

agan and Xie, 2008; Delamare et al., 2009b). These limitations can be checked against

a set of requirements for such kind of tools, as discussed in Section 5.1. Proteum/AJ ’s

functionalities and its implementation details are described in Sections 5.3 and 5.4, re-

spectively.

This chapter is a summary of a paper published in the Proceedings of the 5th ICSE

International Workshop on Automation of Software Test (AST). The full paper contents

can be found in Appendix D together with a copyright notice from the Association for

Computing Machinery (ACM). Note that some additional information about the tool

implementation is presented in Section 5.4.

5.1 Requirements for Mutation Tools

We identified a set of requirements for mutation-based testing tools according to a min-

imal set of requirements listed by Delamaro and Maldonado (1996) and some common

features observed by Horgan and Mathur (1992). Besides that, we also identified some

requirements that regard experimentation in software testing (Vincenzi et al., 2006b) and

testing of modern software systems such as AO software. The final list is presented in

Table 5.1.

Table 5.1: Requirements fulfilled by tools for mutation testing of AO programs – adapted
from Ferrari et al. (2010c).

Requirement Proteum/AJ AjMutator Anbalagan and Xie (2008)’s

(Delamare et al., 2009b) tool

1. Test case handling∗ partial partial no

2. Mutant handling∗ yes partial partial

3. Adequacy analysis∗ partial partial partial

4. Reducing test costs† no no no

5. Unrestricted program size† yes n/a n/a

6. Support for testing strategies� partial no no

7. Independent test configuration yes yes no

∗From Delamaro and Maldonado (1996) †From Horgan and Mathur (1992) �From Vincenzi et al. (2006b)

Limitations of current tools and improvements implemented in Proteum/AJ: From

Table 5.1, we can observe how Proteum/AJ and the two other tools for mutation testing

of AO programs address the listed requirements. Anbalagan and Xie (2008)’s tool is lim-

ited to the creation and classification of mutants based on a very small set of mutation

operators. No support for test case and mutant handling is provided. AjMutator , on the

80

Chapter 5. Automating the Mutation Testing of Aspect-Oriented Programs

other hand, provides better support than Anbalagan and Xie’s tool, however it still misses

some basic functionalities such as mutation operator selection and proper mutant execu-

tion and analysis support (e.g. individual mutant execution and manual classification of

mutants).

Contrasting Proteum/AJ with the other previous tools, we highlight that it improves

test case handling features (e.g. importing and executing test cases into the running test

project), enables mutant handling (e.g. individual mutant execution) and supports testing

strategies (e.g. incremental selection of mutation operators and target aspects).

Proteum/AJ allows the tester to manage mutants in several ways. For example,

mutants can be created, recreated and individually selected for execution. The execution

can also be restricted to live mutants only, and these can be manually set as equivalent

and vice versa, that is, equivalent mutants can be reset as alive. The tool also enables the

tester to import and execute new test cases within an existing test project. The mutation

score can be computed at any time after the first tests have been executed.

The size of the application under test is not constrained by Proteum/AJ . Decompres-

sion and compilation tasks are delegated to third-party tools configured through Ant (The

Apache Software Foundation, 2009) tasks. The test setup is also fully configurable through

Ant tasks that are invoked by the tool. In this way, there are only minor dependencies

between the test execution configuration and the tool.

5.2 The Architecture of Proteum/AJ

Figure 5.1 depicts the architecture of Proteum/AJ . The architecture is based on a ref-

erence architecture for software testing tools called RefTEST (Nakagawa et al., 2007).

RefTEST is based on separation of concerns (SoC) principles, the Model-View-Controller

(MVC) and three tier architectural patterns, and the ISO/IEC 12207 standard for In-

formation Technology. RefTEST encourages the use of aspects as the mechanism for

integrating the core activities of a testing tool with tools that automates supporting and

organisational software engineering activities defined in ISO/IEC 12207 (e.g. planning,

configuration management and documentation tools). Moreover, aspects are also encour-

aged for integrating services such as persistence and access control. Proteum/AJ benefited

mainly from the reuse of domain knowledge contained in RefTEST . The instantiation of

the architecture provided us with guidance on how we could structure the tool in terms

of functionalities and module interactions.

81

5.2. The Architecture of Proteum/AJ

PRESENTATION
LAYER

APPLICATION LAYER

controller

view

Proteum/AJ core

service tools

supporting
activities

organisational
activities

S
E

R
V

E
R

 S
ID

E

DATABASE LAYER
Database

C
L

IE
N

T
 S

I D
E

command line interface

persistence

artifact

criterion

testcase

requirement

Figure 5.1: Proteum/AJ architecture – adapted from Ferrari et al. (2010c).

The modules currently implemented in Proteum/AJ are shown as UML packages in

Figure 5.1. The core of the tool comprises the four main concepts that should be han-

dled by testing tools, as proposed in RefTEST (Nakagawa et al., 2007): testing criterion,

artifact, test requirement and test case. Some of them map directly to the requirements

presented in Table 5.1. For instance, testcase maps to the “test case handling” require-

ment; and criterion maps to both“mutant handling”and“adequacy analysis” requirements.

The former provides functionalities for running and managing test cases in Proteum/AJ ,

while the latter is responsible for handling tasks related to testing criterion itself (e.g.

generating, compiling and analysing mutants).

The artifact and requirement modules comprise, respectively, the artefacts under test

(i.e. the AspectJ source code files) and the test requirements (i.e. the generated mutants).

The controller module is in charge of receiving requests from the client and properly

invoking the modules present in the application layer, which include core functionalities

and database-related procedures. The controller is also responsible for updating the view

that is presented to the client. In Proteum/AJ , the view is basically formed by test

execution feedback that is displayed to the users. More details about Proteum/AJ ’s

functionalities and core modules are provided in the next sections.

82

Chapter 5. Automating the Mutation Testing of Aspect-Oriented Programs

5.3 The Main Functionalities of Proteum/AJ

This section provides an overview of the main functionalities implemented in Proteum/AJ .

The description that follows is based on the four basic steps of the mutation-based testing

and on the tool’s execution flow depicted in Figure 5.2.

Non-
Equivalent
Mutants

Target
aspects

Application
Handler

Unzipped
application

Mutation
Engine

MutantsZipped
target

application

Test
Runner

Junit
Test Cases

Mutant
Compiler

Mutant
Analyser

Equivalent
Mutants

Equivalent
MutantsMutant

Test
Results

Original
Test

Results

Live
Mutants

Live
Mutants

Dead
Mutants

Dead
Mutants

Anomalous
Mutants

Anomalous
Mutants

Compilable
Mutants

Test
Evaluator

Mutation
Operators

process/module

entity

collection of entities

external input

Legend:

Figure 5.2: Proteum/AJ execution flow – adapted from Ferrari et al. (2010c).

Original program execution: Proteum/AJ initially receives a compressed file which

includes the application under test and an initial test set. The application is pre-processed

by the Application Handler module and forwarded to be executed by the Test Runner

module. These combined steps create a test project and store the execution results into

the Proteum/AJ database.

83

5.4. Implementation Details

Mutant generation: The Application Handler module also sends the identified aspects

to the Mutation Engine module, which is responsible for generating the mutants. The

mutations are performed according to a list of mutation operators previously selected by

the tester when the test project is created.

Mutant execution: Initially, the Mutant Compiler module compiles the mutants and

detects non-compilable (i.e. anomalous) mutants. For compilable mutants, the weav-

ing information produced by the AspectJ weaver is collected and further used by the

Mutant Analyser module (see the Mutant analysis step next described). The compilable,

non-equivalent mutants are executed by the Test Runner module, and the results are stored

to be evaluated by the Test Evaluator module.

Mutant analysis: This step is handled in two phases by Proteum/AJ : (1) automatic

detection of equivalent mutants after the mutant compilation performed by the Mutant

Analyser module; and (2) manual analysis carried out by the tester, after the test eval-

uation performed by the Test Evaluator module. The automatic phase is restricted to

PCD-related mutants and relies on the aspect-base code weaving information produced

by the AspectJ compiler. The manual phase consists in the typical analysis of live mutants

after the execution of tests and evaluation of results.

Note that testers can update test projects during subsequent test sessions. For exam-

ple, they can add or remove mutation operators and target aspects, as well as import new

test cases in order to augment the test coverage. The tool also produces mutant analysis

reports that show the current mutation score and the mutated parts of the code for each

mutant.

5.4 Implementation Details

Table 5.2 summarises some metrics1 collected from the current version of Proteum/AJ . In

total, the tool includes approximately 8,800 LOC, from which∼700 consists of XML-based

scripts implemented to map object-related data to tables in the database. It took around

eight months to have an operational version of the tool, which was released in January,

2010, containing the the set of functionalities described in this chapter.

From the main tool packages (i.e. packages that have the “core” suffix), criterion is

the largest one and is responsible for manipulating the source code in order to generate

1Metrics for Java code have been collected using the Metrics Eclipse plugin (The Eclipse Foundation,
2010c). LOC of iBATIS mapping scripts have been counted by hand.

84

Chapter 5. Automating the Mutation Testing of Aspect-Oriented Programs

the mutants. controller and ui.cmdtool are responsible for receiving and handling

user requests (e.g. creating a new test project or running test cases). The tests package

contains a set of JUnit test cases that exercise several parts of the tool, belonging both

from the core and the utility classes.

Table 5.2: Proteum/AJ implementation effort.

Package LOC # of classes # of methods # of attributes

core 124 2 29 12

core.criterion 620 7 51 14

core.criterion.operators 2,024 25 117 5

core.requirement 91 1 18 6

core.testcase 578 4 38 12

core.artifact 140 1 21 11

controller 1,099 7 31 0

ui.cmdtool 1,093 9 9 0

utils 875 12 40 166

lib.exceptions 248 14 62 28

persistence 79 2 20 7

tests 1,126 29 95 2

iBATIS scripts ∼700 – – –

Total 8,797 113 531 263

Proteum/AJ utilises third-party software applications such as the AspectJ-front toolkit

(Stratego Community, 2009), the iBATIS data mapper framework (iBATIS Development

Team, 2009) and the Ant tool (The Apache Software Foundation, 2009). More details

about the supporting technologies employed in Proteum/AJ can be found in Appendix D.

5.4.1 Core Modules

The main modules implemented in Proteum/AJ are depicted in Figure 5.3. These modules

correspond to the core concepts – criterion, requirement, artifact and testcase – identified

during the establishment of RefTEST (Nakagawa et al., 2007).

In Proteum/AJ , the criterion module encompasses functionalities for generating, com-

piling and analysing mutants. These functionalities are implemented within three main

classes, namely MutationEngine, MutantCompiler and MutantAnalyser, whose execu-

tion flow was presented in the previous section. The MutationEngine class is responsible

for generating mutants from AspectJ source code by controlling the application of the

85

5.4. Implementation Details

criterioncriterion

testcasetestcase

MutantCompiler

<<interface>>
IMutationOperator

applyOperator()

MutationOperator

PWIW DAIC ...

<<external tool>>
Aspectj Compiler

<<external tool>>
Parser

<<external tool>>
Pretty Printer

 invokes

applies

invokes

invokes

MutantAnalyser

generates

analyses

compiles

uses

TestRunner

TestEvaluator

runs

evaluates

requirementrequirement

Mutant

artifactartifact

SourceCode

MutationEngine

Note: Some dependencies are not
exhibited in order to improve the
diagram's readability.

Figure 5.3: Proteum/AJ core modules – adapted from Ferrari et al. (2010c).

mutation operators. It automates 24 out of the 26 mutation operators2 proposed in

Chapter 4. The MutationEngine class parses the AspectJ source code into an abstract

syntax tree, performs the mutations and invokes the pretty-printer tool to build AspectJ

code for every generated mutant. After that, the MutationCompiler class invokes the

AspectJ compiler, whose output is used by the MutantAnalyser class to compare the

weaving information that results from the compilation of the original program and the

mutants.

The testcase module manages the test execution and evaluation. Its TestRunner

class implements test runner methods for the original application and the mutant. The

TestEvaluator class evaluates the test results obtained from the execution of the original

application and the mutants. It contrasts test case outputs, identifies the differences and

decides whether a given mutant should be killed or not.

2The PWSR and PSSR operators (Ferrari et al., 2008) are not implemented in the current version of
Proteum/AJ (Ferrari et al., 2010c). The modification rules proposed for these operators requires static,
reflexive analysis of the application under test and are planed for the next releases of the tool.

86

Chapter 5. Automating the Mutation Testing of Aspect-Oriented Programs

5.5 Summary of Contributions and Limitations

The contributions of this chapter consist of the design and the implementation of a tool

named Proteum/AJ that supports the mutation testing of AO programs. The tool au-

tomates the set of mutation operators defined in our previous research – described in

Chapter 4 – and supports the basic steps of mutation testing, thus overcoming some

limitations of other similar tools (Anbalagan and Xie, 2008; Delamare et al., 2009b).

Proteum/AJ is able to automatically identify equivalent PCD-related mutants based

on the weaving information produced by the standard AspectJ compiler. It also supports

incremental testing strategies by allowing the tester to manage – i.e. adding or removing –

mutation operators, target aspects and test cases. All produced information is stored into

a relational database, therefore the creation of statistical reports is also possible.

The main limitations of Proteum/AJ concern the supported mutation approach, the

implementation of mutation operators and the mutant compilation step. Proteum/AJ

relies on JUnit test cases (Beck and Gamma, 2010) to evaluate the mutants. Given that

JUnit tests have the ability of configuring partial program runs (e.g. a single method

execution), the evaluation of mutants based such kind of tests characterises the firm

mutation approach defined by Woodward and Halewood (1988). This, however, might

not be seen as a limitation as long as JUnit tests can be designed to address complete

program executions, thus configuring a strong mutation test scenario (Marick, 1991).

Ideally, each mutation should result in a syntactically correct version of the program,

since syntactic faults are very likely to be revealed during the compilation process. That is,

a mutation should introduce a semantic fault into the programs under test. However, some

operators proposed in Chapter 4 and implemented in Proteum/AJ are likely to produce

non-compilable mutants (e.g. POAC, DSSR, ABAR and ABPR). Similar limitation has

been faced by Offutt et al. (1996c) in a mutation system developed for Ada programs.

In regard to the compilation of mutants, the process supported by ajc, the standard As-

pectJ compiler, requires full weaving of classes and aspects in the occurrence of ITDs (The

Eclipse Foundation, 2010b). Since ITDs are typically used in complex AO systems (Fer-

rari et al., 2010a), the mutant compilation step may become a bottleneck for the use of

Proteum/AJ with large systems, in spite of possible optimisations allowed by ajc such as

the weaving of existing class files. Consequently, reducing the compilation time is one of

the enhancements that should be handled during the evolution of Proteum/AJ .

87

Chapter

6
Evaluating the Proposed Mutation

Testing Approach

Devising well-founded and practical testing approaches is essential towards high quality

software products. Such approaches provide means by which software engineers can reduce

the number of faults present in the products, hence increasing the confidence that the

software behaves as expected. Equally important, demonstrating their feasibility and

effectiveness is fundamental to promote the technology transfer to the industry (Harrold,

2000). This can be achieved through studies that evaluate several properties of a testing

approach like cost, effectiveness and strength (Wong, 1993).

Evaluation studies may help, for example, software practitioners to choose between one

technique or another, according to budget constraints and the criticality of the ongoing

software project. Despite the importance of performing this kind of studies, we can notice

that most of the several AO testing approaches have not been properly evaluated to date.

Only a few studies concerning evaluation of properties like cost and usefulness can be

found in the literature (Lemos et al., 2009; Xie and Zhao, 2006).

This chapter describes two evaluation studies that involve the application of the muta-

tion testing approach we proposed in this dissertation. The general goal is to demonstrate

the feasibility of applying the approach to AO systems of varied size and complexity. The

evaluation is based on the three following viewpoints: (i) the usefulness of the mutation

89

6.1. First Study: Evaluating the Usefulness and Required Effort

operators for simulating non-trivial faults; (ii) the effort required to produce adequate

test sets; and (iii) the cost for applying the operators based on estimates.

The first two analyses, described in Section 6.1, comprise the evaluation of a set of

small AO applications for which we designed and evolved test suites in order to obtain

full coverage of mutants. The second study, described in Section 6.2, addresses the third

viewpoint by estimating the cost for applying the approach to larger AO systems. Besides

the aforementioned goals, the studies also show the feasibility of using the Proteum/AJ

tool, earlier described in Chapter 5.

This chapter partially reproduces a paper submitted to the Elsevier’s Science of Com-

puter Programming journal. More specifically, it reproduces Sections 7, 8 and 9 of the

referred paper, which also recapitulates the mutation testing approach defined in this

dissertation. The full paper contents can be found in Appendix E.

6.1 First Study: Evaluating the Usefulness and Required

Effort of the Proposed Approach

This section describes a study that evaluates the mutation-based testing approach pro-

posed in Chapter 4 of this dissertation. The main goal of this study is checking the

feasibility of the approach in terms or its usefulness and required effort. The evalua-

tion procedures were planned and conducted in order to answer the two following ques-

tions: (i) do the operators have the ability of simulating faults that cannot be detected

by pre-existing, systematically derived test suites? and (ii) can the proposed mutation

operators be applied at a feasible cost 1?

To answer these questions, we selected and thoroughly tested a set of AO applications

based on a well-established functional-based testing approach. We evaluated the coverage

obtained with this functional-based test data in regard to the generated mutants for each

application. This initial phase addressed the first defined question. We then evolved

the test sets to make them adequate to cover all non-equivalent mutants of the selected

applications, thus addressing our second question. All procedures are described in the

sequence, starting from an overview of the evaluated AO applications.

1Note that the cost of applying a testing criterion can include several variables such as the number of
test requirements (e.g. mutants), the number of required test cases, and the effort required to compute
unfeasible requirements (e.g. equivalent mutants). In this study, we evaluate the cost based on the
number of derived test requirements and the number o required test cases do produce adequate test sets.

90

Chapter 6. Evaluating the Proposed Mutation Testing Approach

6.1.1 Target Applications

We selected 12 small AO applications upon which we performed our evaluation. All

applications were identified from previous papers that describe AO testing approaches

and evaluation. A short description of each of them is following presented. A summary

of the size-related metrics of the selected applications is shown in Table 6.1.

Table 6.1: Values of metrics for the selected applications (first study).

Application LOC1 Classes2 Aspects PCDs Advices declare

1. BankingSystem 199 9 6 11 7 1

2. Telecom 251 6 3 6 7 1

3. ProdLine 537 8 8 10 10 4

4. FactorialOptimiser 39 1 1 2 3 0

5. MusicOnline 150 7 2 4 3 0

6. VendingMachine 64 1 3 6 6 1

7. PointBoundsChecker 44 1 1 4 4 0

8. StackManager 77 4 3 3 3 0

9. PointShadowManager 66 2 1 3 3 0

10. Math 53 1 1 1 1 0

11. AuthSystem 89 3 2 2 2 0

12. SeqGen 205 8 4 3 3 2

TOTAL 1774 51 35 55 52 9

1It considers only real lines of code, excluding comments and blank lines.

2It considers only relevant classes, excluding the driver ones.

The BankingSystem application manages transactions for bank accounts (Laddad,

2003b). Aspects in BankingSystem implement logging, minimum balance control and

overdraft operations.

Telecom is a telephony system simulator which is originally distributed with As-

pectJ (The Eclipse Foundation, 2010b). In Telecom, timing and billing of phone calls

are handled by aspects. The version evaluated in this section extends the original imple-

mentation in order to support a different type of charging for mobile calls (Lemos et al.,

2007).

ProdLine consists in a software product line for graph applications that includes a set

of common functionalities of the graph domain (Lopez-Herrejon and Batory, 2002). Typ-

ical algorithms for graph manipulation are included, e.g. shortest-path between vertices,

identification of strongly connected components and cycle checking. Aspects are used

91

6.1. First Study: Evaluating the Usefulness and Required Effort

in this application to introduce the features selected for a specific SPL instance. Each

feature is implemented through one ore more aspects. AspectJ ITDs are intensively used

together with a few PCD-advice pairs.

FactorialOptimiser is a math utility application that implements optimised factorial

calculation (Alexander et al., 2004). The calculation is managed by an aspect; if the

factorial for a given number has already been calculated, the aspects retrieve it to reduce

overhead. Every calculated factorial is cached for reuse purposes.

The MusicOnline application manages an online music store that allows customers to

play songs and playlists (Lemos et al., 2009). A customer needs to pay for each played

song or playlist. Aspects in this application manage the customer’s accounts and the

billing system. Once a customer exceeds his credit limit, his account is suspended until

he or she proceeds either a total or a partial payment.

VendingMachine consists in an application for a vending machine into which the cus-

tomer inserts coins in order to get drinks (Liu and Chang, 2008). The aspects are re-

sponsible for controlling the sales operations (e.g. number of inserted coins and number

of available drinks).

PointBoundsChecker is a two-dimension point constraint checker (Mortensen and

Alexander, 2005). An aspect checks if the point coordinates conform to a specific range

of values. If not, exceptions are raised.

StackManager implements a simple stack that provides the basic push and pop opera-

tions, which are supervised by aspects (Xie et al., 2005). The aspects avoid the insertion

of negative values into the stack, perform audit on the stored elements and count the

number of push operations.

PointShadowManager is an application for managing two-dimension point coordi-

nates (Zhao, 2003). An aspect creates and manages shadows for point objects. When

a point is created, its shadow has exactly the same coordinates. When a point coordi-

nated is updated, the respective shadow’s coordinate is added by a fixed offset.

Math is a math utility application that calculates the probability of successes in a

sequence of n independent yes/no experiments (Bernoulli trial), each yielding success with

probability p (Lemos et al., 2009). The aspect logs exponentiation operations, identifying

the type of the exponent (integer or real).

AuthSystem is a simplified version of a banking system that requires user authentica-

tion before the execution of certain operations like debit and balance retrieval (Zhou et al.,

2004). Furthermore, it monitors amount transfer between accounts by means of atomic

transactions. The aspects are responsible for authentications and transaction manage-

ment.

92

Chapter 6. Evaluating the Proposed Mutation Testing Approach

SeqGen implements a sequence generator of integers and chars values (Bernardi and

Lucca, 2007). It includes two aspects that modularise the generation policy (random and

Fibonacci sequences) and the logging concerns. Similarly to the ProdLine application,

AspectJ ITDs are intensively used in SeqGen.

6.1.2 Building the Initial Test Sets

We applied the Systematic Functional Testing (SFT) criterion (Linkman et al., 2003)

to build initial test sets for each selected application. The choice for the SFT criterion

was motivated by the significant results reported in previous research (Linkman et al.,

2003): test sets that covered all SFT-derived requirements – hereafter called SFT-adequate

test sets or simply TSFT – yielded high coverage of mutants generated with conventional

mutation operators for C programs (Agrawal et al., 1989).

SFT combines two widely used functional-based testing criteria: Equivalence Parti-

tioning and Boundary-Value Analysis (Myers et al., 2004, p. 52, p. 59). Basically, the

main difference between SFT and the other two is that SFT requires two test cases for

each equivalence class. In this way, one can avoid coincidental correctness possibly ob-

served for a test input which “masks” a fault that could be uncovered by another test

input from the same domain partition (Linkman et al., 2003).

For each of the target applications, we developed a test plan that specifies the equiv-

alence classes and boundaries that should be covered at this initial testing phase. We

defined the test requirements for every public operation from the classes that compose

the application. Moreover, we defined test requirements for aspectual behaviour according

to the description of the systems available in the original papers and reports (Alexander

et al., 2004; Bernardi and Lucca, 2007; Laddad, 2003b; Lemos et al., 2009, 2007; Liu and

Chang, 2008; Lopez-Herrejon and Batory, 2002; Mortensen and Alexander, 2005; Xie et

al., 2005; Zhao, 2003; Zhou et al., 2004).

Figure 6.1 and Table 6.2 illustrate the definition of the equivalence classes and bound-

ary values for a method extracted from the BankingSystem application. The debit method

belongs to the AccountSimpleImpl class and is intended to perform debit operations in

bank accounts, having as a constraint the current account balance that should never be

lower than zero.

Building SFT-adequate test sets requires designing at least two test cases to cover

each of the equivalence classes, as well as at least one test case that covers each of the

boundary values. As suggested by Myers et al. (2004, p. 55), tests for valid classes can

cover one or more of such classes, whereas individual tests should be created for each

93

6.1. First Study: Evaluating the Usefulness and Required Effort

1 p u b l i c void debit (f l o a t amount) throws Insuff icientBalanceException {
2 i f (balance < amount) {
3 throw new Insuff icientBalanceException (”Total balance not su f f i c i en t ”) ;
4 }
5 e l s e {
6 balance = balance − amount ;
7 }
8 }

Figure 6.1: Source code of the debit method (AccountSimpleImpl class).

Table 6.2: Equivalence classes and boundary values for the debit method.

Input Condition Valid class Invalid Class

amount parameter (C1) amount <= current balance (C2) amount > current bal-

ance

Output Condition Valid class Invalid Class

Resulting balance (o1) balance = previous balance − deb-

ited amount

n/a

(o2) balance = previous balance n/a

Boundary values

(C1) amount = current balance

(C2) amount = current balance + 0.01

invalid class. Considering the test plan for the debit method presented in Table 6.2, a

SFT-adequate test set w.r.t. such method requires at least six test cases: four2 test cases

to cover the equivalence classes and two others to cover the boundary values. The results

obtained with the execution of the SFT-adequate test sets in this study are detailed in

the sequence.

Table 6.3 summarises the results achieved during this initial phase. Column 2 lists

the number of test requirements derived for each application according to the Equivalence

Partitioning criterion, and likewise does column 3 for Boundary-Value Analysis. Columns

labelled with |TEB| and |TSFT | list the size of test sets which are adequate w.r.t., respec-

tively, the two aforementioned traditional functional-based criteria and the SFT criterion

(i.e. SFT-adequate test sets). Column 6 lists the increase percentage w.r.t. the size of the

test sets when we evolved TEB to TSFT . Finally, Column 7 shows the number of faults

revealed in each application. Such faults are related to either ordinary code (e.g. incorrect

implemented logic) or AOP constructs (e.g. incorrect PCD definition) and have been all

fixed before we started the mutation testing phase that is next described.

2Note that a single test case can cover classes C1 and o1, while another test case can cover classes C2
and o2. Therefore, two other test cases are sufficient to fulfil the SFT criterion w.r.t. the equivalence
classes.

94

Chapter 6. Evaluating the Proposed Mutation Testing Approach

Table 6.3: Functional-based test requirements and respective adequate test sets.

Equivalence TEB →
Application Classes Boundaries |TEB| |TSFT | TSFT Faults

1. BankingSystem 36 10 34 58 71% 1

2. Telecom 49 2 37 63 70% 6

3. ProdLine 23 6 20 36 80% 0

4. FactorialOptimiser 10 6 15 19 27% 0

5. MusicOnline 43 2 25 46 84% 0

6. VendingMachine 13 5 12 18 50% 1

7. PointBoundsChecker 10 6 9 14 56% 0

8. StackManager 12 3 9 15 67% 2

9. PointShadowManager 12 2 6 12 100% 0

10. Math 26 38 41 53 29% 1

11. AuthSystem 16 6 12 17 42% 1

12. SeqGen 46 15 22 39 77% 0

TOTAL 296 101 242 390 61% 12

6.1.3 Applying Mutant Analysis to the Target Applications

We applied the 24 mutation operators implemented in the Proteum/AJ tool to the 12

applications of our study. The summary of the mutant generation step is displayed in

Table 6.4. Columns 2–4 represent the three groups of mutation operators, namely G1

(related to PCDs), G2 (related to declare-like expressions) and G3 (related to advices),

together with the associated number of mutants per application. Table 6.4 also includes

the number of equivalent mutants that have been automatically identified by Proteum/AJ

(column 6), the number of anomalous – i.e. non-compilable – mutants (column 7) and

the number of mutants that remained alive (column 8).

Note that Proteum/AJ allows the tester to enable or disable the option for automatic

detection of equivalent mutants. The mutation operators that are eligible for such au-

tomatic procedure are all listed in Section 6.2 of this chapter (see Table 6.7). They are

related to PCDs and are expected to yield the largest mutant set amongst the three groups

of operators (Ferrari et al., 2008), from which a high percentage represent equivalent ones3.

Indeed, the figures presented in Table 6.4 reveal that nearly 67% of the mutants produced

by operators from G1 were automatically detected as equivalent. Besides that, around

9% of mutants are anomalous. We can also observe a very small number of mutants

3High percentages of PCD-related equivalent mutants have been observed by Delamare et al. (2009a).

95

6.1. First Study: Evaluating the Usefulness and Required Effort

Table 6.4: Mutants generated for the 12 target applications.

Mut. Mut. Mut. Autom.

Application G1 G2 G3 Total Equiv. Anom. Alive

1. BankingSystem 108 2 26 136 68 18 50

2. Telecom 82 2 27 111 46 12 53

3. ProdLine 158 0 41 199 125 16 58

4. FactorialOptimiser 14 0 15 29 8 6 15

5. MusicOnline 47 0 10 57 25 5 27

6. VendingMachine 82 2 29 113 58 8 47

7. PointBoundsChecker 46 0 24 70 32 10 28

8. StackManager 34 0 11 45 24 0 21

9. PointShadowManager 38 0 12 50 25 4 21

10. Math 16 0 4 20 13 0 7

11. AuthSystem 45 0 7 52 28 3 21

12. SeqGen 33 0 7 40 19 3 18

TOTAL 703 6 213 922 471 85 366

produced by operators from G2, mainly due to the rare use of declare-like expressions

in the selected applications.

In order to evaluate the mutant coverage yielded by the TSFT test sets and augment

such coverage, for each application we performed the following sequence of steps: (1) ex-

ecution of the live mutants on the respective TSFT test set; (2) calculation of the initial

mutation score; (3) manual identification of equivalent mutants; (4) calculation of the in-

termediate mutation score; (5) design of new test cases to kill the remaining live mutants,

producing the mutation-adequate (TM) test sets (i.e. mutation score of value 1.0).

The obtained results after performing the six steps just described are summarised in

Table 6.5. In this table, columns 2–5 list, respectively, the initial number of live mutants,

the number of mutants killed with the execution of TSFT , the remaining number of live

mutants after the execution of TSFT , and the initially achieved mutation score. For those

applications whose achieved mutation score was lower than one (i.e. at least one mutant

was still alive), columns 6 and 7 show the number of equivalent mutants identified by

hand and the updated mutation score. Finally, columns 8–10 present, respectively, the

number of test cases added to TSFT in order to obtain the TM test set, the size of TM

and the final mutation score. Note that mutation scores of value 1.0 are not repeated in

subsequent columns of the table. The results are analysed in the sequence.

96

Chapter 6. Evaluating the Proposed Mutation Testing Approach

Table 6.5: Mutation testing results for the 12 target applications.

Initial Killed by Remain Initial Man. Interm. Added Final

Application Alive TSFT Alive MS Equiv. MS Tests |TM | MS

1.BankingSystem 50 50 0 1.00 – – – 58 –

2.Telecom 53 31 22 0.58 10 0.72 4 67 1.00

3.ProdLine 58 58 0 1.00 – – – 36 –

4.FactorialOptimiser 15 14 1 0.93 1 1.00 – 19 –

5.MusicOnline 27 22 5 0.81 2 0.88 2 48 1.00

6.VendingMachine 47 23 24 0.49 13 0.68 5 23 1.00

7.PointBoundsChecker 28 28 0 1.00 – – – 14 –

8.StackManager 21 21 0 1.00 – – – 15 –

9.PointShadowManager 21 13 8 0.62 5 0.81 2 14 1.00

10.Math 7 4 3 0.57 2 0.80 1 54 1.00

11.AuthSystem 21 17 4 0.81 1 0.85 2 19 1.00

12.SeqGen 18 4 14 0.22 8 0.40 3 42 1.00

TOTAL 366 285 81 0.78 42 0.88 19 409 1.00

6.1.4 Analysis of the Results

Comparing SFT with mutation testing: According to the results presented in the

previous section, in particular in Table 6.5, the TSFT test sets have yielded high4 mutant

coverage for five applications: MS = 1.00 for BankingSystem, ProdLine, PointBound-

sChecker and StackManager, and MS = 0.93 for FactorialOptimiser.

The mutation scores yielded by the TSFT test sets can be observed in Figure 6.2. The

chart depicts the achieved mutant coverage at two different moments: before and after the

manual identification of equivalent mutants. The column labelled with Initial represents

the first case, i.e. the achieved coverage right after the execution of the TSFT test sets. The

All Equiv column represents the coverage after we performed the analysis of live mutants

and classified all the equivalent ones. The chart also includes a column to represent the

goal, i.e. the full mutant coverage.

These obtained results provide evidence on the relevance of the mutation operators’

ability in simulating faults that cannot be easily revealed by existing, non-mutation-based

test sets. In this study, we applied the SFT criterion, which combines widely used

4Note that the definition of a threshold value for the goodness of the mutation score (e.g. high or low)
depends on the criticality of the program under evaluation. Nevertheless, mutation score values above
0.95 have typically been considered high in previous research (Barbosa et al., 2001; Offutt et al., 1996a).
In this study, we use a threshold value of 0.9; therefore, MS ≥ 0.9 is considered high.

97

6.1. First Study: Evaluating the Usefulness and Required Effort

1.
 B

an
ki

ng

2.
 T

el
ec

o
m

3.
 P

ro
dL

in
e

4.
 F

ac
to

ria
l

5.
 M

us
ic

6
. V

e
nd

in
g

7.
 P

oi
nt

B
ou

nd
s

8.
 S

ta
ck

9.
 P

oi
nt

S
ha

do
w

10
. M

at
h

11
. A

ut
hS

ys
te

m

12
. S

eq
G

en

0%

20%

40%

60%

80%

100%

Initial All Equiv Full (the goal)

Applications

M
u

ta
n

t
c

o
v

e
ra

g
e

Figure 6.2: Coverage yielded by SFT test sets.

functional-based testing criteria and has shown to be strong w.r.t mutant detection

rate (Linkman et al., 2003). However, the SFT-adequate test sets were able to achieve

high mutation score for only 5 out of 12 evaluated applications.

Effort required to achieve mutation-adequate test sets: In regard to the effort

required to obtain the TM test sets (i.e. test sets that result in mutation scores of 1.0),

apart from the FactorialOptimiser application, whose mutation score reached the value of

1.0 after the manual equivalent mutant detection step, the other 7 applications required

test set increments. This is depicted in Figure 6.3, which shows the differences in size of

TSFT and TM test sets for all evaluated applications.

Considering the initial and final test set cardinalities (i.e. |TSFT | and |TM |) (see Ta-

bles 6.3 and 6.5), in total, 19 test cases were designed to kill the mutants that remained

alive after the mutant execution and identification of equivalent mutants steps. It means

that, on average, the increase to produce the |TM | test sets was nearly 5%. From this

viewpoint, we can conclude that the application of the proposed mutation operators does

not overwhelm the testers while enhancing the existing, systematically derived test sets

to achieve high mutant coverage.

98

Chapter 6. Evaluating the Proposed Mutation Testing Approach

1.
 B

an
ki

ng

2.
 T

el
ec

om

3.
 P

ro
dL

in
e

4.
 F

ac
to

ria
l

5.
 M

us
ic

6.
 V

en
di

ng

7.
 P

oi
nt

B
ou

nd
s

8.
 S

ta
ck

9.
 P

oi
nt

S
ha

do
w

10
. M

at
h

11
. A

ut
hS

ys
te

m

12
. S

eq
G

en

0

10

20

30

40

50

60

70

TSFT

TSFT TM

Applications

#
 o

f
te

s
t

c
a

s
e

s

Figure 6.3: Effort required to derive the TM test sets.

6.1.5 Additional Comments on the Mutant Analysis Step

In an AO system, a simple mutation can have wide impact on the woven application.

Consequently, many times analysing a mutant required us to scan several modules of

the application in order to realise the real impact of the mutation on the application.

However, even though a mutation can impact on the quantification of JPs, the behaviour

of the woven application may remain the same.

For example, Figure 6.4 shows a mutant produced by the PWIW for the MusicOnline

application. The mutation consisted in replacing a naming part of the PCD (i.e. the owed

attribute) with the “*” wildcard. This modification results in an additional JP selection

in the based code, hence this mutant has not been automatically classified as equivalent

by Proteum/AJ . Nonetheless, during the mutant analysis step, we noticed that the final

behaviour of MusicOnline was not altered so that this mutant was manually classified as

equivalent.

Note that the analysis of live mutants depends on the current configuration of the

application under test (Lemos et al., 2006). That is, while a PCD p may be correct w.r.t.

to a given base program P1, p may “misbehave” (i.e. match a different set of JPs) when

it is applied into a different base program P2. This observation also holds for advices as

well as for PCD-advice pairs.

99

6.2. Second Study: Estimating the Cost of the Approach with Larger Systems

a f t e r (Account account) return ing : set (i n t Account .owed) && t h i s (account) {

> a f t e r (Account account) return ing : set (i n t Account .∗) && t h i s (account) {

Figure 6.4: Example of an equivalent mutant of the MusicOnline application.

6.2 Second Study: Estimating the Cost of the Approach

with Larger Systems

This section presents a second study that aims to estimate the cost of applying the AspectJ

mutation operators in systems larger than the ones presented in the previous section.

This second study comprises four medium-sized AO systems from different application

domains, and the achieved results are compared to the results presented in Section 6.1 of

this chapter. We start by describing the four analysed systems. The results are presented

in the sequence.

6.2.1 Target Systems

The four systems we evaluated in this study are called iBATIS, TollSystemDemonstrator,

HealthWatcher and MobileMedia. These systems have already been evaluated within the

academic and industrial context (AOSD Europe, 2010; Ferrari et al., 2010a; Figueiredo et

al., 2008; Greenwood et al., 2007; Soares et al., 2006) and employ mainstream industrial

technologies in their implementations. Table 6.6 lists some size-related metric values

for the four systems. Note that these implementations are significantly larger than the

applications evaluated in Section 6.1. This allows us to better estimate the cost of applying

the mutation operators, in particular w.r.t. the number of generated mutants, including

equivalent and anomalous ones. A short description of each system is following presented.

iBATIS (iBATIS Development Team, 2009) is a Java-based open source framework

for object-relational data mapping. The iBATIS AO versions (Ferrari et al., 2010a) have

some functional and non-functional concerns modularised within aspects (e.g. exception

handling, concurrency and type mapping). The TollSystemDemonstrator (TSD) system in-

cludes a subset of requirements of a real-world tolling system. It has been developed in the

context of the AOSD-Europe Project (AOSD Europe, 2010) and contains functional and

non-functional concerns implemented within aspects (e.g. charging variabilities, distribu-

tion and logging). HealthWatcher (HW) is a Web-based application that allows citizens to

register complaints regarding health issues (Greenwood et al., 2007; Soares et al., 2006).

100

Chapter 6. Evaluating the Proposed Mutation Testing Approach

Table 6.6: Values of metrics for the selected applications (second study).

Aprox.

Application KLOC1 Classes Aspects PCDs Advices declare

iBATIS 11 207 41 97 95 69

TollSystemDemonstrator 4 98 25 37 37 6

HealthWatcher 7 137 26 57 47 14

MobileMedia 3 45 22 65 60 26

TOTAL 24 487 114 256 239 115

1It considers only real lines of code, excluding comments and blank lines.

Some aspectised concerns in HealthWatcher are distribution, persistence and exception

handling. Finally, MobileMedia (MM) (Figueiredo et al., 2008) is a software product line

for mobile devices that allows users to manipulate image files in different mobile devices.

In MM, aspects are used to configure the product line instances, enabling the selection of

alternative and optional features.

Apart from TollSystemDemonstrator, which has a single release, the other three systems

have several releases available for evaluation. In this study, we selected versions 01, 10

and 06 of iBATIS, HealthWatcher and MobileMedia, respectively. For more information

about each of them, the reader may refer to the respective placeholder websites or to

previous reports of these systems (AOSD Europe, 2010; Ferrari et al., 2010a; Figueiredo

et al., 2008; Greenwood et al., 2007).

6.2.2 Generating Mutants for the Target Systems

Applying the 24 mutation operators implemented in Proteum/AJ resulted in the num-

bers of mutants presented in Tables 6.7 and 6.8. Such tables focus on, respectively, the

numbers of equivalent and anomalous mutants produced per operator. The two rightmost

columns of the tables show the total number of generated mutants for all systems and

the respective percentages of equivalent and anomalous mutants. Note that Table 6.7

only includes mutation operators which are eligible in regard to automatic detection of

equivalent mutants. Furthermore, a blank cell in any of the tables means that no value

could be assigned to that category since no mutant has been generated by the respective

operator.

When we consider the overall number of mutants produced per operator, we can see in

Table 6.8 that three mutation operators (namely PSDR, DEWC and AJSC) generated no

mutants for any of the systems. This indicates that AspectJ constructs targeted by these

101

6.2. Second Study: Estimating the Cost of the Approach with Larger Systems

Table 6.7: Percentages of equivalent mutants generated for the target systems.

iBatis AO01 TollSystem HW AO10 MM AO06 All Apps

Operator Total Equiv. Total Equiv. Total Equiv. Total Equiv. Total Equiv.

PWIW 1976 92% 449 92% 646 87% 1075 96% 4146 92%

PWAR 0 – 4 0% 0 – 0 – 4 0%

PSWR 4 0% 5 20% 37 68% 0 – 46 57%

PSDR 0 – 0 – 0 – 0 – 0 –

POPL 193 63% 60 77% 70 74% 117 91% 440 74%

POAC 185 0% 41 0% 63 0% 75 9% 364 2%

POEC 19 58% 0 – 0 – 0 – 19 58%

PCTT 15 100% 21 81% 21 86% 39 85% 96 86%

PCGS 1 0% 1 0% 0 – 0 – 2 0%

PCCR 121 2% 17 0% 43 0% 120 32% 301 13%

PCLO 222 0% 30 37% 24 0% 21 29% 297 6%

PCCC 0 – 8 100% 1 100% 0 – 9 100%

TOTAL 2736 72% 636 78% 905 72% 1447 84% 5724 76%

operators are not present in any of the evaluated versions of those systems. In regard to

mutants produced by the PCCC operator, all were automatically classified as equivalent.

However, such mutants should be manually revised given that the JP selections by the

cflow and cflowbelow PCDs are evaluated at runtime in order to decide whether every

specific JP selection holds of not within the running control flow context.

In the next section, we compare the obtained numbers of equivalent and anomalous

mutants with the results obtained in our first study earlier presented in Section 6.1. We

also estimate the effort required for developing mutation-adequate test sets based on the

previously observed results.

6.2.3 Contrasting the Results with the First Study

From Tables 6.7 and 6.8, we can observe that for all systems the obtained numbers of

equivalent and anomalous mutants exceed the averages in our first study. This is graphi-

cally shown in Figure 6.5.

Considering the applications evaluated in Section 6.1, the average number of equivalent

mutants was 67%, while this value for the four larger systems analysed in this section

represents 76% of the total. When it comes to anomalous mutants, the average amount

for the larger systems is 19% against 9% for the smaller applications.

102

Chapter 6. Evaluating the Proposed Mutation Testing Approach

Table 6.8: Percentages of anomalous mutants generated for the target systems.

iBatis AO01 TollSystem HW AO10 MM AO06 All Apps

Operator Total Anom. Total Anom. Total Anom. Total Anom. Total Anom.

PWIW 1976 1% 449 1% 646 4% 1075 2% 4146 2%

PWAR 0 – 4 0% 0 – 0 – 4 0%

PSWR 4 25% 5 0% 37 5% 0 – 46 7%

PSDR 0 – 0 – 0 – 0 – 0 –

POPL 193 22% 60 3% 70 3% 117 6% 440 12%

POAC 185 96% 41 7% 63 5% 75 44% 364 59%

POEC 19 0% 0 – 0 – 0 – 19 0%

PCTT 15 0% 21 0% 21 0% 39 0% 96 0%

PCCE 153 50% 66 0% 52 23% 94 27% 365 31%

PCGS 1 0% 1 0% 0 – 0 – 2 0%

PCCR 121 7% 17 0% 43 5% 120 43% 301 21%

PCLO 222 40% 30 57% 24 17% 21 48% 297 40%

PCCC 0 – 8 0% 1 0% 0 – 9 0%

DAPC 0 – 0 – 1 0% 176 89% 177 88%

DAPO 0 – 0 – 1 0% 6 0% 7 0%

DSSR 69 81% 0 – 14 100% 20 100% 103 87%

DEWC 0 – 0 – 0 – 0 – 0 –

DAIC 8 0% 8 0% 0 – 0 – 16 0%

ABAR 123 48% 23 4% 52 4% 48 23% 246 30%

APSR 16 13% 25 24% 10 0% 41 32% 92 23%

APER 0 – 4 75% 0 – 4 0% 8 38%

AJSC 0 – 0 – 0 – 0 – 0 –

ABHA 95 0% 40 0% 47 0% 60 0% 242 0%

ABPR 405 37% 68 91% 146 52% 250 80% 869 56%

TOTAL 3605 19% 870 11% 1228 12% 2146 25% 7849 19%

Let us consider a test set TC that is adequate to an AO system as large as the ones

evaluated in this study. Moreover, TC is adequate w.r.t. to a given criterion C other than

Mutant Analysis (e.g. TC is derived from either a functional-based or structural-based

test selection criterion). Let us also consider (i) the observed number of equivalent and

anomalous mutants listed in Tables 6.7 and 6.8, and; (ii) the effort required to create the

TM test sets in our previous study. We can therefore assume that the effort testers need

103

6.3. Study Limitations

iBATIS TollSystem HealthWatcher MobileMedia
0%

20%

40%

60%

80%

100%

Equivalent Avg. of CS-01

Applications

%
 o

f
e

q
u

iv
a l

e
n

t
m

u
ta

n
ts

iBATIS TollSystem HealthWatcher MobileMedia
0%

20%

40%

60%

80%

100%

Anomalous Avg. of CS-01

Applications

%
 o

f
e

q
u

iv
a l

e
n

t
m

u
ta

n
ts

Figure 6.5: Percentages of equivalent and anomalous mutants for the target systems.

to dedicate to evolve TC to cover all remaining live mutants after the execution of TC shall

be equal or less than 5% of |TC |.
The above estimate relies on the fact that the systems evaluated in this section have

a smaller proportion of live mutants to be handled than the systems evaluated in the

previous study. Even though this a rough estimate, according to the results observed in

our first study we argue that well-designed test suites are able to reveal most of the faults

simulated by the mutation operators. Nevertheless, a small but not less important test

set increment is still needed in order to yield trustworthy results in regard to the Mutant

Analysis criterion.

6.3 Study Limitations

The main threat to the validity of our evaluation studies – and, consequently, to the

achieved results – regards the representativeness of the selected applications, specially in

our first study (described in Section 6.1). Such study comprised a set of small AO appli-

cations upon which we performed the evaluation procedures and drew our conclusions. It

required us to undertake a full – thus time consuming – test process, starting from the

test plan design and ending up with the creation of adequate test suites that yielded full

mutant coverage for all applications. The limited size of the applications allowed us to

produce detailed analysis of the systems, comprehensive test plans and subsequent test

data. Note that performing such a number of tasks from scratch for larger systems might

have been prohibitive specially due to time constraints. Besides that, similar studies in

regard to the size and the number of selected applications have been performed in order

to evaluate other testing approaches for AO software (Lemos et al., 2009; Xie and Zhao,

2006; Xu and Rountev, 2007).

104

Chapter 6. Evaluating the Proposed Mutation Testing Approach

Another possible threat to the validity of our first study concerns the way we developed

the initial test suites. Functional-based testing, as a black-box technique (Myers et al.,

2004, p. 9), relies on specification documents to derive the test requirements. However,

the lack of detailed specifications for the applications evaluated in that study led us to

follow a“reverse”process to derive the SFT-adequate test sets. Instead of building our test

plans and the respective test sets based exclusively on the specifications, we were forced

to analyse the source code in order to comprehend the functionalities of each application.

Therefore, the design of some test cases has also been guided by internal (structural)

elements of the code rather than solely by functional requirements. As a consequence,

the produced test sets may have led to higher mutant coverage given that, traditionally,

structural-based (i.e. white-box) test suites tend to outperform black-box ones (Mathur,

2007, p. 482-483).

In regard to our second study (described in Section 6.2), our conclusions are based on

estimates derived from the set of generated mutants and on the results achieved in the

previous study. In spite of the observed trend regarding the number of generated mutants

and on the estimated effort, more definite conclusions are only possible after running

similar procedures with a larger set of applications. Exercising such applications with

concrete test data will also help us draw more well-founded conclusions on the required

effort to fulfil our testing approach requirements.

6.4 Final Remarks

Considering that Aspect-Oriented Programming is still a developing research topic, to

date we can only find limited evidence with respect to the evaluation and assessment of

related testing approaches. In the systematic mapping study described in Chapter 2, we

were able to identify a few pieces of work that regard the evaluation of AO testing, all

based on small sets of AO applications (Lemos et al., 2009; Lemos and Masiero, 2010;

Xie and Zhao, 2006). This chapter contributed in this context, describing the results of

two studies that evaluated the set of mutation operators proposed in this dissertation.

The studies also enabled us to demonstrate the feasibility of using the Proteum/AJ tool,

earlier described in Chapter 5.

In regard to the evaluation of test selection techniques, studies that compare the

strength of varied testing criteria can be commonly found in the literature, for both pro-

cedural and object-oriented programs. For example, we can find studies that compare mu-

tation testing with other test selection criteria such control flow- and data flow-based (Li

et al., 2009; Mathur and Wong, 1994), and functional-based testing (Linkman et al., 2003).

105

6.4. Final Remarks

However, to the best of our knowledge, in the context of AO testing, the study presented

in Section 6.1 is the first initiative to compare the strength of two testing criteria derived

from different testing techniques (i.e. functional and fault-based testing). In spite of

that, there is still a need for other similar studies in order to either confirm or eventually

contradict the achieved results.

106

Chapter

7
Conclusions

Innovative software development approaches such as Aspect-Oriented Program-

ming (AOP) claim to bring several advantages in regard to both internal and external

software quality attributes. Even so, software practitioners cannot indeed benefit from

such advantages if one cannot guarantee the software fulfils the minimum quality standards

that lead to its successful execution. Verification and Validation activities, in particular

software testing, play a fundamental role in this context, helping to reduce the number of

faults present in the software throughout the development and maintenance processes.

In order to deal with testing-related specificities of contemporary programming tech-

niques, at first the software engineers need to realise the impact of such techniques on the

correctness of the produced software. In other words, the engineers need to understand

how software faults can occur in practice so that they can be either avoided or rapidly

localised within the software. In this context, mutation testing is a widely explored test

selection criterion that focuses on recurring faults observed in the software. Starting from

a well-characterised set of fault types, mutation testing helps to demonstrate the absence

of such faults in the evaluated software products.

When it comes to AOP, we can identify a variety of testing approaches tailored for

aspect-oriented (AO) software, as well as a number of reports on fault characterisation. To

date, however, the few initiatives for customising the mutation testing for AO programs

show either limited coverage with respect to the range of simulated faults or a need for

107

7.1. Revisiting the Thesis Contributions

proper evaluation in regard to attributes like application cost and effectiveness. Likewise

the fault characterisation reports neither cover the full range of mechanisms that support

AOP nor have been evaluated regarding their ability in categorising faults.

This thesis contributed in this sense, proposing a mutation-based testing approach for

AO programs. The achievements include the definition and evaluation of a fault taxonomy

for AO software, the customisation of the criterion for the context of AO programs, the

development of adequate tool support, and the evaluation of the approach. The achieved

results support an affirmative answer to the general research question defined in Chapter 1,

that is, fault-based testing can be applied to AO software in a systematically way and at a

practicable cost.

The set of contributions that allowed us to answer our research question are revisited

in the next section. In the sequence, Section 7.2 summarises the limitations of the work

presented along this dissertation and how we plan to overcome these limitations in our

future research.

7.1 Revisiting the Thesis Contributions

This section revisits the achievements of this thesis in terms of three kinds of contribu-

tions: (i) theoretical definitions; (ii) implementation of automated support; and (iii) eval-

uation studies. Each category is following summarised. Note that the contributions next

described help to overcome the research limitations highlighted in the final remarks of

Chapter 2 with respect to fault taxonomies and fault-based testing of AO software.

7.1.1 Theoretical Definitions

Definition of a fault taxonomy for AO software: we defined a fault taxonomy that

encompasses 26 different fault types distributed over four main categories, namely

PCD-related, ITD-related, advice-related and base program-related (Chapter 3, Sec-

tion 3.2). The taxonomy overcomes limitations of previous taxonomies in terms of

completeness and detailing of fault type descriptions, and has been further evalu-

ated based on a fault set extracted from several available AO systems (more details

in Section 7.1.3).

Definition of mutation operators for AO programs: we defined a set of mutation

operators for AspectJ programs to simulate instances of the fault types described

in the taxonomy (Chapter 4, Section 4.1). The operators are grouped according

to three categories of target elements: PCDs, AspectJ declare-like expressions and

108

Chapter 7. Conclusions

advices. They avoid modelling faults that result in errors at compilation time (e.g.

incorrect class member introductions). A preliminary analysis showed that the oper-

ators tend to generate a manageable amount of mutants, which has been confirmed

in a further evaluation study (more details in Section 7.1.3).

7.1.2 Implementation of Automated Support

Design and implementation of a mutation testing tool for AO programs: we

specified and implemented a tool named Proteum/AJ that supports the mutation

testing of AspectJ programs (Chapter 5). Proteum/AJ automates our proposed

set of operators and enables the incremental execution of test sessions, hence

providing support for varied testing strategies. The output produced by the tool –

i.e. the mutant set, test comparison results and analysis reports – is stored into a

database, which facilitates the creation of statistical reports. Results achieved with

the support of Proteum/AJ are described in the next section.

7.1.3 Evaluation Studies

Evaluation of the fault-proneness of AO programs: we performed an evaluation of

the fault-proneness of AO programs based on fault-related data gathered from sev-

eral releases of evolving AO systems (Chapter 3, Section 3.1). This data supported

the evaluation of two hypotheses that concerned the obliviousness property and

the main AOP mechanisms. The results show that the controversial obliviousness

property has negative impact on the correctness of AO programs. Furthermore, the

major AOP constructs (namely PCDs, advices and ITDs) pose similar risk in regard

to introduction of faults into the programs.

Evaluation of the fault taxonomy for AO software: we categorised the fault set

extracted from evolving AO systems according to the fault taxonomy proposed in

this thesis (Chapter 3, Section 3.2). The results provide evidence on the taxonomy’s

completeness and allowed us to spot and characterise recurring faulty implementa-

tion scenarios that should be either avoided or verified during the development of

AO software.

Analysis of the fault taxonomy generalisation: we analysed to which extent the

fault taxonomy proposed in this thesis can be generalised to other mainstream AOP

technologies beyond AspectJ (Chapter 4, Section 4.2). The conclusion is that they

are similarly prone to occurrences of most of the described fault types. Therefore,

109

7.2. Limitations and Future Work

existing testing approaches for AspectJ programs may be adapted to fit specific

needs with respect to those technologies.

Evaluation of the proposed mutation operators: supported by the Proteum/AJ

tool, we applied the mutation operators to two distinct sets of AO systems (Chap-

ter 6, Sections 6.1 and 6.2). The achieved results show that applying the mutation

operators to AO programs does not impose high costs, even though it is likely to

require increases of 5% in the test suites in order to achieve full mutant coverage.

These studies helped to demonstrate the feasibility of fault-based testing for AO

programs with adequate tool support.

Systematic Mapping Study of AO testing approaches: we presented an up-to-

date systematic map of the research on AO testing (Chapter 2, Section 2.3). The

results underlay the definition of the fault taxonomy and, in turn, the design of the

mutation operators for AspectJ programs. Moreover, the results helped us to keep

aware of the latest developments in the field.

7.2 Limitations and Future Work

This section describes limitations of this thesis’ contributions and how we plan to tackle

them in the future. Note that every previous chapter of this dissertation has already

discussed pertinent limitations. Therefore, we hereby focus on more general limitations

that should be overcome as well as possible improvements to be handled during our

short and medium term planned research. We conclude pointing out future directions for

developments in the field of testing of AO programs.

Evaluation of the fault taxonomy: the evaluation of the fault taxonomy defined in

Chapter 3 consisted in the categorisation of a fault set gathered from several releases

of three AO systems. This limited number of sources threats the generalisation of

the achieved results. Therefore, as long as more fault-related data from other AO

systems becomes available, be it gathered by ourselves or by third-party researchers,

we plan to re-run our evaluation. This will help us to revisit and re-evaluate the

taxonomy with the aim of gaining more confidence in regard to its completeness, in

turn promoting its adoption in other software production contexts, both academic

and industrial.

The proposed set of mutation operators: the set of mutation operators described

in Chapter 4 covers a range of fault types included in the taxonomy. However,

110

Chapter 7. Conclusions

according to the nature of the target systems, new operators may be required in

order to reflect possible domain-specific faults. In this context, we plan to go through

every fault reported in the studies presented in Chapter 3 with the goal of realising if

new mutation operators can be devised from recurring faulty scenarios. Additionally,

running other evaluation studies similar to the ones presented in Chapter 6 shall

help us pinpoint refinements to the mutation operator set and draw more general

conclusions about the mutation operators’ effectiveness and efficacy.

Alternative mutation testing approaches: the evaluation studies presented in Chap-

ter 6 involved the application of all mutation operators implemented in Proteum/AJ .

Even though the number of produced mutants has shown to be manageable, in those

studies we have not explored cost reduction techniques for mutation testing. Exam-

ples of such techniques are the Constrained Mutation (Mathur and Wong, 1993) and

Selective Mutation (Offutt et al., 1993). They all focus on reducing the number of

mutants by applying a subset of the mutation operators, although still keeping the

efficacy of the criterion in regard to the quality of the derived test suites. We aim to

explore these cost reduction techniques in our future research. In doing so, we shall

be able to identify sufficient mutation operator sets (Barbosa et al., 2001; Offutt et

al., 1996a), therefore making our approach even more applicable in practice.

Tool support: the Proteum/AJ tool, described in Chapter 5, does not implement two

mutation operators proposed in Chapter 4. Such operators – namely PWSR and

PSSR – require reflexive analysis of the target application’s class hierarchy in order

to produce the intended mutants. We still need to adapt such task in the tool’s

execution flow, thus achieving support for the whole set of proposed operators.

Furthermore, we plan to evolve Proteum/AJ to provide support for traditional mu-

tation operators at unit (Agrawal et al., 1989), interface (Delamaro et al., 2001) and

class (Ma et al., 2002) levels. Once we have these new features available, we will be

able to perform a wide range of experiments, which may address comparative stud-

ies regarding OO and AO systems and shall underlie the definition of incremental

testing strategies.

7.2.1 Possible Research Directions

As discussed in the final remarks of Chapter 3, AOP is yet a maturing area, whose several

facets in regard to the assessment of derived products still require substantial effort to

become the state of the practice in the industry. This thesis contributed in this direction,

111

7.2. Limitations and Future Work

presenting a fault-based testing approach that can be systematically applied at a feasible

cost. In this closing section, we list two possible research topics whose outcomes should

ameliorate two major difficulties we faced while developing our research: (i) the lack of

well-established benchmarks to support the evaluation of our approach, and (ii) the little

availability of shared knowledge and supporting tools for AO testing. They are briefly

discussed in the sequence.

Building test benchmarks: building a benchmark of applications for the evaluation of

existing and upcoming AO testing approaches would contribute for the development

of AOP in general. Although building benchmarks should be handled according

to specific usage contexts (e.g. based on the kind of question that should be an-

swered) (Runeson et al., 2008), this would anyway help to fill the current gap related

to the lack of evaluations of AO testing approaches. The outcomes of such evalu-

ations would support software practitioners to figure out the most suitable testing

approaches to be applied in specific software development scenarios.

Development of a common testing framework: creating a framework that inte-

grates several testing approaches and provides adequate tool support seems to be

another interesting research opportunity. Obviously, this would depend on the com-

munity making available the individual contributions (e.g. tools, documentation

and expertise) in order to synergically compose this framework. For example, the

reference architecture upon which the Proteum/AJ tool relies – the RefTEST : Ref-

erence Architecture for Software Testing Tools (Nakagawa et al., 2007) – promotes

the integration of software engineering tools by means of standardised interfaces and

functionalities. Therefore, RefTEST sounds to be a good candidate to provide the

needed basis for creating the suggested framework.

112

References

Agrawal, H. Dominators, super blocks, and program coverage. In: Proceedings of

the 1st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL), Portland/Oregon - USA: ACM Press, p. 25–34, 1994.

Agrawal, H.; DeMillo, R. A.; Hathaway, R.; Hsu, W.; Hsu, W.; Krauser,

E. W.; Martin, R. J.; Mathur, A. P.; Spafford, E. H. Design of mutant

operators for the C programming language. Technical Report SERC-TR41-P, Software

Engineering Research Center, Purdue University, West Lafayette/IN - USA, 1989.

Alexander, R. T.; Bieman, J. M.; Andrews, A. A. Towards the systematic testing

of aspect-oriented programs. Tech. Report CS-04-105, Dept. of Computer Science,

Colorado State University, Fort Collins/Colorado - USA, 2004.

Anbalagan, P. Automated testing of pointcuts in aspectj programs. In: Dynamic

Languages Symposium (DLS) - held in conjunction with the ACM SIGPLAN Sympo-

sium on Object-Oriented Programming Systems, Languages, and Applications (OOP-

SLA), Portland/OR - USA: ACM Press, p. 758–759, 2006.

Anbalagan, P.; Xie, T. Efficient mutant generation for mutation testing of pointcuts

in aspect-oriented programs. In: Proceedings of the 2nd Workshop on Mutation Analy-

sis (Mutation) - held in conjunction with ISSRE, Raleigh/NC -USA: Kluwer Academic

Publishers, p. 51–56, 2006.

Anbalagan, P.; Xie, T. Automated generation of pointcut mutants for testing point-

cuts in AspectJ programs. In: Proceedings of the 19th International Symposium on

Software Reliability Engineering (ISSRE), Seattle/WA - USA: IEEE Computer Society,

p. 239–248, 2008.

113

References

Andrews, J. H.; Briand, L. C.; Labiche, Y. Is mutation an appropriate tool for

testing experiments? In: Proceedings of the 27th International Conference on Software

Engineering (ICSE), St. Louis/MO - USA: ACM Press, p. 402–411, 2005.

AOSD Europe Project Home Page. http://www.aosd-europe.net/ - last accessed

on 21/09/2010, 2010.

Aracic, I.; Gasiunas, V.; Mezini, M.; Ostermann, K. An overview of Cae-

sarJ. In: Rashid, A.; Akşit, M., eds. Transactions on Aspect-Oriented Software

Development I, chapter 5, Springer-Verlag, p. 135–173 (LNCS v.3880), 2006.

Araújo, J.; Moreira, A. An aspectual use-case driven approach. In: VIII Jornadas

de Ingenieŕıa de Software y Bases de Datos (JISBD), Alicante - Spain: Thompson

(Spain), p. 12–14, 2003.

Araújo, J.; Moreira, A.; Brito, I.; Rashid, A. Aspect-oriented requirements

with UML. In: Workshop on Aspect-oriented Modeling with UML (UML), Dresden -

Germany, 2002.

Avgustinov, P.; Christensen, A. S.; Hendren, L.; Kuzins, S.; Lhoták, J.;

Lhoták, O.; de Moor, O.; Sereni, D.; Sittampalam, G.; Tibble, J. abc:

an extensible AspectJ compiler. In: Proceedings of the 4th International Conference

on Aspect-Oriented Software Development (AOSD), Chicago/IL - USA: ACM Press, p.

87–98, 2005.

Babu, C.; Krishnan, H. R. Fault model and test-case generation for the composition

of aspects. SIGSOFT Software Engineering Notes, v. 34, n. 1, p. 1–6, 2009.

Badri, M.; Badri, L.; Bourque-Fortin, M. Generating unit test sequences for

aspect-oriented programs: Towards a formal approach using UML state diagrams. In:

Enabling Technologies for the New Knowledge Society: Proceedings of the ITI 3rd In-

ternational Conference on Information & Communications Technology (ICICT), Cairo

- Egypt: IEEE Computer Society, p. 237–253, 2005.

Bækken, J. S. A fault model for pointcuts and advice in AspectJ programs. MSc

Dissertation, School of Electrical Engineering and Computer Science, Washington State

University, Pullman/WA - USA, 2006.

Bækken, J. S.; Alexander, R. T. A candidate fault model for aspectj pointcuts.

In: Proceedings of the 17th International Symposium on Software Reliability Engineering

(ISSRE), Raleigh/NC - USA: IEEE Computer Society, p. 169–178, 2006a.

114

http://www.aosd-europe.net/

References

Bækken, J. S.; Alexander, R. T. Towards a fault model for AspectJ programs: Step

1 - pointcut faults. In: Proceedings of the 2nd Workshop on Testing Aspect Oriented

Programs (WTAOP) - held in conjunction with ISSTA, p. 1–6, 2006b.

Baniassad, E.; Clarke, S. Theme: An approach for aspect-oriented analysis and

design. In: Proceedings of the 26th International Conference on Software Engineering

(ICSE), Edinburgh - UK: IEEE Computer Society, p. 158–167, 2004.

Barbosa, E. F.; Maldonado, J. C.; Vincenzi, A. M. R. Toward the determination

of sufficient mutant operators for C. The Journal of Software Testing, Verification and

Reliability, v. 11, n. 2, p. 113–136, 2001.

Basili, V. R.; Perricone, B. T. Software errors and complexity: An empirical

investigation. Communications of the ACM, v. 27, n. 1, p. 42–52, 1984.

Beck, K.; Gamma, E. JUnit cookbook. Online, http://junit.sourceforge.net/

doc/cookbook/cookbook.htm - last accessed on 18/10/2010, 2010.

Beizer, B. Software testing techniques. 2nd ed. New York/NY - USA: Van Nostrand

Reinhold, 1990.

Bernardi, M. Reverse engineering of aspect oriented systems to support their compre-

hension, evolution, testing and assessment. In: Proceedings of the Doctoral Symposium

of 12th European Conference on Software Maintenance and Reengineering (CSMR),

Athens - Greece: IEEE Computer Society, p. 290–293, 2008.

Bernardi, M. L.; Di Lucca, G. A. Testing coverage criteria for aspect-oriented

programs. Software Quality Professional, v. 10, n. 4, p. 27–38, 2008.

Bernardi, M. L.; Lucca, G. A. D. Testing aspect oriented programs: an approach

based on the coverage of the interactions among advices and methods. In: Proceedings

of the 6th International Conference on Quality of Information and Communications

Technology (QUATIC), Lisbon - Portugal: IEEE Computer Society, p. 65–76, 2007.

Binder, R. V. Testing object-oriented systems: Models, patterns and tools. 1st ed.

Reading/MA - USA: Addison Wesley, 1999.

Biolchini, J.; Mian, P. G.; Natali, A. C. C.; Travassos, G. H. Systematic

review in software engineering. Tech. Report RT-ES 679/05, Systems Engineering and

Computer Science Dept., COPPE/UFRJ, Rio de Janeiro/RJ - Brazil, 2005.

115

http://junit.sourceforge.net/doc/cookbook/cookbook.htm
http://junit.sourceforge.net/doc/cookbook/cookbook.htm

References

Bonér, J.; Vasseur, A. Aspectwerkz - plain Java AOP. Online, eclipseCon 2005:

http://aspectwerkz.codehaus.org/ - last accessed on 21/09/2010, 2005.

Booch, G. Object-oriented analysis and design with applications. 2nd. ed. Redwood

City/CA - USA: Addison Wesley, 1994.

Budd, T. A. Mutation analysis of program test data. PhD Thesis, Graduate School,

Yale University, New Haven, CT - USA, 1980.

Burke, B.; Brock, A. Aspect-Oriented Programming and JBoss. Online,

http://onjava.com/pub/a/onjava/2003/05/28/aop_jboss.html - last accessed on

21/09/2010, 2003.

Burrows, R.; Ferrari, F. C.; Garcia, A.; Täıani, F. An empirical evaluation

of coupling metrics on aspect-oriented programs. In: ICSE Workshop on Emerging

Trends in Software Metrics (WETSoM), Cape Town - South Africa: ACM Press, p.

53–58, 2010a.

Burrows, R.; Ferrari, F. C.; Lemos, O. A. L.; Garcia, A.; Täıani, F. The

impact of coupling on the fault-proneness of aspect-oriented programs: An empirical

study. In: Proceedings of the 21th International Symposium on Software Reliability

Engineering (ISSRE), San Jose/CA - USA, (to appear), 2010b.

Cafeo, B.; Masiero, P. C. Teste estrutural de integração contextual de programas

orientados a objetos e a aspectos. In: Proceedings of the 4th Latin American Workshop

on Aspect-Oriented Software Development (LAWASP), Salvador/BA - Brazil: Brazilian

Computer Society, (in Portuguese), p. 25–30, 2010.

Ceccato, M.; Tonella, P. Measuring the effects of software aspectization. In:

Proceedings of the 1st Workshop on Aspect Reverse Engineering (WARE), Delft - The

Netherlands, 2004.

Ceccato, M.; Tonella, P.; Ricca, F. Is AOP code easier or harder to test than

OOP code? In: Proceedings of the 1st Workshop on Testing Aspect Oriented Programs

(WTAOP) - held in conjunction with AOSD, Chicago/IL - USA, 2005.

Chavez, C. V. F. G. A model-driven approach for aspect-oriented design. PhD Thesis,

Informatics Department, Pontifical Catholic University (PUC-Rio), 2004.

116

http://aspectwerkz.codehaus.org/
http://onjava.com/pub/a/onjava/2003/05/28/aop_jboss.html

References

Chen, H. Y.; Tse, T. H.; Chan, F. T.; Chen, T. Y. In black and white: An inte-

grated approach to class-level testing of object-oriented programs. ACM Transactions

on Software Engineering and Methodololgy (TOSEM), v. 7, n. 3, p. 250–295, 1998.

Chidamber, S. R.; Kemerer, C. F. A metrics suite for object oriented design. IEEE

Transactions on Software Engineering, v. 20, n. 6, p. 476–493, 1994.

Chitchyan, R.; Rashid, A.; Rayson, P.; Waters, R. Semantics-based composition

for aspect-oriented requirements engineering. In: Proceedings of the 6th International

Conference on Aspect-Oriented Software Development (AOSD), Vancouver - Canada:

ACM Press, p. 36–48, 2007.

Coady, Y.; Kiczales, G. Back to the future: A retroactive study of aspect evolution

in operating system code. In: Proceedings of the 2nd International Conference on

Aspect-Oriented Software Development (AOSD), Boston/MA - USA: ACM Press, p.

50–59, 2003.

Coelho, R.; Lemos, O. A. L.; Ferrari, F. C.; Masiero, P. C.; von Staa, A.

On the robustness assessment of aspect-oriented programs. In: Proceedings of the 3rd

Workshop on Assessment of Contemporary Modularization Techniques (ACoM) - held

in conjunction with OOPSLA, Orlando/FL - USA, 2009.

Coelho, R.; Rashid, A.; Garcia, A.; Ferrari, F.; Cacho, N.; Kulesza, U.;

von Staa, A.; Lucena, C. Assessing the impact of aspects on exception flows: An

exploratory study. In: Proceedings of the 22nd European Conference on Object-Oriented

Programming (ECOOP), Paphos - Cyprus: Springer-Verlag, p. 207–234 (LNCS v.5142),

2008a.

Coelho, R.; Rashid, A.; Kulesza, U.; von Staa, A.; Lucena, C.; Noble, J.

Exception handling bug patterns in aspect-oriented programs. In: Proceedings of the

15th Conference on Pattern Languages of Programs (PLoP), Chicago/IL - USA, 2008b.

Delamare, R.; Baudry, B.; Ghosh, S.; Le Traon, Y. A test-driven approach

to developing pointcut descriptors in aspectj. In: Proceedings of the 2nd Interna-

tional Conference on Software Testing, Verification and Validation (ICST), Denver/CO

- USA: IEEE Computer Society, p. 376–385, 2009a.

Delamare, R.; Baudry, B.; Le Traon, Y. AjMutator: A tool for the mutation

analysis of aspectj pointcut descriptors. In: Proceedings of the 4th International Work-

117

References

shop on Mutation Analysis (Mutation), Denver/CO - USA: IEEE Computer Society, p.

200–204, 2009b.

Delamaro, M. E. Interface mutation: An interprocedural adequacy criterion for inte-

gration testing. PhD Thesis, Physics Institute of São Carlos (IFSC), University of São

Paulo, (in Portuguese), 1997.

Delamaro, M. E.; Maldonado, J. C. Proteum: A tool for the assessment of test

adequacy for C programs. In: Conference on Performability in Computing Systems

(PCS), New Brunswick/NJ - USA, p. 79–95, 1996.

Delamaro, M. E.; Maldonado, J. C.; Mathur, A. P. Interface Mutation: An

approach for integration testing. IEEE Transactions on Software Engineering, v. 27,

n. 3, p. 228–247, 2001.

DeMillo, R. A.; Lipton, R. J.; Sayward, F. G. Hints on test data selection: Help

for the practicing programmer. IEEE Computer, v. 11, n. 4, p. 34–43, 1978.

DeMillo, R. A.; Mathur, A. P. A grammar based fault classification scheme and its

application to the classification of the errors of TEX. Technical report, Software En-

gineering Research Center and Department of Computer Sciences - Purdue University,

1995.

Dijkstra, E. W. A discipline of programming. Englewood Cliffs/NJ - USA:

Prentice-Hall, 1976.

Do, H.; Rothermel, G. On the use of mutation faults in empirical assessments of

test case prioritization techniques. IEEE Transactions on Software Engineering, v. 32,

n. 9, p. 733–752, 2006.

Eaddy, M.; Aho, A.; Hu, W.; McDonald, P.; ; Burger, J. Debugging

aspect-enabled programs. In: Proceedings of the 6th International Symposium on

Software Composition (SC), Braga - Portugal, 2007.

Elrad, T.; Filman, R. E.; Bader, A. Aspect-oriented programming: Introduction.

Communications of the ACM, v. 44, n. 10, p. 29–32, 2001a.

Elrad, T.; Kiczales, G.; Akşit, M.; Lieberher, K.; Ossher, H. Discussing

aspects of AOP. Communications of the ACM, v. 44, n. 10, p. 33–38, 2001b.

118

References

Endress, A. An analysis of errors and their causes in systems programs. IEEE

Transactions on Software Engineering, v. 2, p. 140–149, 1978.

Fabbri, S. C. P. F.; Maldonado, J. C.; Masiero, P. C.; Delamaro, M. E.

Mutation analysis testing for finite state machines. In: Proceedings of 5th International

Symposium on Software Reliability Engineering (ISSRE), Monterey/CA - USA: IEEE

Computer Society, p. 220–229, 1994.

Fabbri, S. C. P. F.; Maldonado, J. C.; Sugeta, T.; Masiero, P. C. Mutation

testing applied to validate specifications based on statecharts. In: Proceedings of 10th

International Symposium on Software Reliability Engineering (ISSRE), Boca Raton/FL

- USA: IEEE Computer Society, p. 210–219, 1999.

Ferrari, F. C.; Burrows, R.; Lemos, O. A. L.; Garcia, A.; Figueiredo,

E.; Cacho, N.; Lopes, F.; Temudo, N.; Silva, L.; Soares, S.; Rashid,

A.; Masiero, P.; Batista, T.; Maldonado, J. C. An exploratory study of

fault-proneness in evolving aspect-oriented programs. In: Proceedings of the 32nd In-

ternational Conference on Software Engineering (ICSE), Cape Town - South Africa:

ACM Press, p. 65–74, 2010a.

Ferrari, F. C.; Burrows, R.; Lemos, O. A. L.; Garcia, A.; Maldonado, J. C.

Characterising faults in aspect-oriented programs: Towards filling the gap between

theory and practice. In: Proceedings of the 24th Brazilian Symposium on Software

Engineering (SBES), Salvador/BA - Brazil: IEEE Computer Society, p. 50–59, 2010b.

Ferrari, F. C.; Höhn, E. N.; Maldonado, J. C. Testing aspect-oriented software:

Evolution and collaboration through the years. In: Proceedings of the 3rd Latin Amer-

ican Workshop on Aspect-Oriented Software Development (LAWASP), Fortaleza/CE

- Brazil: Brazilian Computer Society, http://www.cin.ufpe.br/~lawasp09/papers_

aceitos.htm, p. 24–30, 2009.

Ferrari, F. C.; Maldonado, J. C. Uma revisão sistemática sobre teste de software

orientado a aspectos. In: Proceedings of the 3rd Brazilian Workshop on Aspect-Oriented

Software Development (WASP) - in conjunction with SBES, Florianópolis/SC - Brasil,

(in Portuguese), p. 101–110, 2006.

Ferrari, F. C.; Maldonado, J. C. Teste de software orientado a aspectos: Uma

revisão sistemática. Technical Report 291, ICMC/USP, São Carlos/SP - Brasil, (in

Portuguese), 2007.

119

http://www.cin.ufpe.br/~lawasp09/papers_aceitos.htm
http://www.cin.ufpe.br/~lawasp09/papers_aceitos.htm

References

Ferrari, F. C.; Maldonado, J. C. Experimenting with a multi-iteration system-

atic review in software engineering. In: Proceedings of the 5th Experimental Software

Engineering Latin American Workshop (ESELAW), Salvador/BA - Brazil, 2008.

Ferrari, F. C.; Maldonado, J. C.; Rashid, A. Mutation testing for aspect-oriented

programs. In: Proceedings of the 1st International Conference on Software Testing,

Verification and Validation (ICST), Lillehammer - Norway: IEEE Computer Society,

p. 52–61, 2008.

Ferrari, F. C.; Nakagawa, E. Y.; Rashid, A.; Maldonado, J. C. Automating

the mutation testing of aspect-oriented Java programs. In: Proceedings of the 5th ICSE

International Workshop on Automation of Software Test (AST), Cape Town - South

Africa: ACM Press, p. 51–58, 2010c.

Figueiredo, E.; Cacho, N.; Sant’Anna, C.; Monteiro, M.; Kulesza, U.; Gar-

cia, A.; Soares, S.; Ferrari, F.; Khan, S.; Castor Filho, F.; Dantas, F.

Evolving software product lines with aspects: An empirical study on design stability.

In: Proceedings of the 30th International Conference on Software Engineering (ICSE),

Leipzig - Germany: ACM Press, p. 261–270, 2008.

Filman, R. E.; Elrad, T.; Clarke, S.; Akşit, M. Introduction. In: Filman,

R. E.; Elrad, T.; Clarke, S.; Akşit, M., eds. Aspect-Oriented Software Develop-

ment, chapter 1, Boston: Addison-Wesley, p. 21–35, 2004.

Filman, R. E.; Friedman, D. Aspect-oriented programming is quantification and

obliviousness. In: Workshop on Advanced Separation of Concerns - held in conjunction

with OOPSLA, Minneapolis - USA, p. 21–35, 2000.

Filman, R. E.; Friedman, D. Aspect-oriented programming is quantification and

obliviousness. In: Filman, R. E.; Elrad, T.; Clarke, S.; Akşit, M., eds.

Aspect-Oriented Software Development, chapter 2, Boston: Addison-Wesley, p. 21–35,

2004.

Franchin, I. G.; Lemos, O. A. L.; Masiero, P. C. Pairwise structural testing of

object and aspect-oriented Java programs. In: Proceedings of the 21st Brazilian Sym-

posium on Software Engineering (SBES), Gramado/RS - Brazil: Brazilian Computer

Society, 2007.

120

References

Frankl, P. G.; Weiss, S. N.; Hu, C. All-uses vs mutation testing: an experimental

comparison of effectiveness. Journal of Systems and Software, v. 38, n. 3, p. 235–253,

1997.

Frankl, P. G.; Weyuker, E. J. An applicable family of data flow testing criteria.

IEEE Trans. Softw. Eng., v. 14, n. 10, p. 1483–1498, 1988.

Frankl, P. G.; Weyuker, E. J. Testing software to detect and reduce risk. Journal

of Systems and Software, v. 53, n. 3, p. 275–286, 2000.

Gal, A.; Schröder-Preikschat, W.; Spinczyk, O. AspectC++: Language pro-

posal and prototype implementation. In: Proceedings of the Workshop on Advanced

Separation of Concerns in Object-Oriented Systems, Tampa Bay/Florida - USA, 2001.

Gong, M.; Muthusamy, V.; Jacobsen, H. AspeCt-Oriented C tutorial. Online,

http://research.msrg.utoronto.ca/ACC/Tutorial - last accessed on 21/09/2010,

2006.

Greenwood, P.; Bartolomei, T.; Figueiredo, E.; Dosea, M.; Garcia, A.;

Cacho, N.; Sant’Anna, C.; Soares, S.; Borba, P.; Kulesza, U.; Rashid,

A. On the impact of aspectual decompositions on design stability: An empirical

study. In: Proceedings of the 21st European Conference on Object-Oriented Program-

ming (ECOOP), Berlin - Germany: Springer Berlin, p. 176–200 (LNCS v.4609), 2007.

Griswold, W. G.; Sullivan, K.; Song, Y.; Shonle, M.; Tewari, N.; Cai, Y.;

Rajan, H. Modular software design with crosscutting interfaces. IEEE Software,

v. 23, n. 1, p. 51–60, 2006.

Gybels, K.; Brichau, J. Arranging language features for more robust pattern-based

crosscuts. In: Proceedings of the 2nd International Conference on Aspect-Oriented

Software Development (AOSD), Boston/MA - USA: ACM Press, p. 60–69, 2003.

Gyimóthy, T.; Ferenc, R.; Siket, I. Empirical validation of object-oriented met-

rics on open source software for fault prediction. IEEE Transactions on Software

Engineering, v. 31, n. 10, p. 897–910, 2005.

Harrold, M. J. Testing: A roadmap. In: Proceedings of the Conference on the

Future of Software Engineering - held in conjunction with ICSE, Limerick - Ireland:

ACM Press, p. 61–72, 2000.

121

http://research.msrg.utoronto.ca/ACC/Tutorial

References

Harrold, M. J.; Rothermel, G. Performing data flow testing on classes. In: Pro-

ceedings of the 2nd ACM SIGSOFT Symposium on Foundations of Software Engineering

(FSE), New York, NY: ACM Press, p. 154–163, 1994.

Hilsdale, E.; Hugunin, J. Advice weaving in AspectJ. In: Proceedings of the 3rd

International Conference on Aspect-Oriented Software Development (AOSD), Lancaster

- UK: ACM Press, p. 26–35, 2004.

Hirschfeld, R. AspectS - AOP with Squeak. In: Workshop on Advanced Separation

of Concerns in Object-Oriented Systems (Position Paper) - held in conjunction with

OOPSLA, Tampa Bay/Florida - USA, 2001.

Hoffman, K.; Eugster, P. Bridging Java and AspectJ through explicit join points.

In: Proceedings of the 5th International Symposium on Principles and Practice of Pro-

gramming in Java (PPPJ), Lisbon - Portugal: ACM Press, p. 63–72, 2007.

Horgan, J. R.; Mathur, A. P. Assessing testing tools in research and education.

IEEE Software, v. 9, n. 3, p. 61–69, 1992.

Howden, W. E. Weak mutation testing and completeness of test sets. IEEE Trans-

actions on Software Engineering, v. 8, n. 4, p. 371–379, 1982.

iBATIS Development Team Apache iBATIS home page. Online, http://attic.

apache.org/projects/ibatis.html - last accessed on 21/09/2010, 2009.

IEEE IEEE standard glossary of software engineering terminology. Standard 610.12,

Institute of Electric and Electronic Engineers, New York/NY - USA, 1990.

Jia, Y.; Harman, M. An analysis and survey of the development of mutation testing.

IEEE Transactions on Software Engineering, (in press), 2010.

Johnson, R.; Hoeller, J.; Arendsen, A.; Sampaleanu, C.; Harrop, R.; Ris-

berg, T.; Davison, D.; Kopylenko, D.; Pollack, M.; Templier, T.; Ver-

vaet, E.; Tung, P.; Hale, B.; Colyer, A.; Lewis, J.; Leau, C.; Evans, R.

Spring - Java/J2EE application framework. Reference Manual Version 2.0.6, Inter-

face21 Ltd., 2007.

Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm, J.; Griswold,

W. G. Getting started with AspectJ. Communications of the ACM, v. 44, n. 10,

p. 59–65, 2001a.

122

http://attic.apache.org/projects/ibatis.html
http://attic.apache.org/projects/ibatis.html

References

Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm, J.; Griswold,

W. G. An overview of AspectJ. In: Proceedings of the 15th European Conference

on Object-Oriented Programming (ECOOP), Budapest - Hungary: Springer-Verlag, p.

327–353 (LNCS v.2072), 2001b.

Kiczales, G.; Irwin, J.; Lamping, J.; Loingtier, J.-M.; Lopes, C.; Maeda,

C.; Menhdhekar, A. Aspect-oriented programming. In: Proceedings of the 11th

European Conference on Object-Oriented Programming (ECOOP), Jyväskylä - Finland:

Springer-Verlag, p. 220–242 (LNCS v.1241), 1997.

Kiczales, G.; Mezini, M. Aspect-oriented programming and modular reasoning.

In: Proceedings of the 27th International Conference on Software Engineering (ICSE),

ACM Press, p. 49–58, 2005.

Kienzle, J.; Yu, Y.; Xiong, J. On composition and reuse of aspects. In: Proceed-

ings of the 2nd Foundations of Aspect-Oriented Languages Workshop (FOAL) - held in

conjunction with AOSD, Boston/MA - USA: ACM Press, 2003.

Kim, H. AspectC#: An AOSD implementation for C#. MSc Dissertation, Department

of Computer Science - Trinity College/The University of Dublin, Dublin - Ireland, 2002.

Kitchenham, B. Procedures for performing systematic reviews. Joint Technical Report

TR/SE-0401 (Keele) - 0400011T.1 (NICTA), Software Engineering Group - Department

of Computer Science - Keele University and Empirical Software Engineering - National

ICT Australia Ltd, Keele/Staffs-UK and Eversleigh-Australia, 2004.

Kitchenham, B. A.; Dyb̊a, T.; Jørgensen, M. Evidence-based software engineer-

ing. In: Proceedings of the 26th International Conference on Software Engineering

(ICSE), Edinburgh - Scotland: IEEE Computer Society, p. 273–281, 2004.

Kumar, N.; Sosale, D.; Konuganti, S. N.; Rathi, A. Enabling the adoption of

aspects - testing aspects: A risk model, fault model and patterns. In: Proceedings of

the 8th International Conference on Aspect-Oriented Software Development (AOSD),

Charlottesville/VA - USA: ACM Press, p. 197–206, 2009.

Laddad, R. Aspect-oriented programming will improve quality. IEEE Software, v. 20,

n. 6, p. 90–91, 2003a.

Laddad, R. AspectJ in action. Greenwich/CT - USA: Manning Publications, 2003b.

123

References

Lemos, O. A. L.; Ferrari, F. C.; Masiero, P. C.; Lopes, C. V. Testing

aspect-oriented programming pointcut descriptors. In: Proceedings of the 2nd Work-

shop on Testing Aspect Oriented Programs (WTAOP) - held in conjunction with ISSTA,

Portland/Maine - USA: ACM Press, p. 33–38, 2006.

Lemos, O. A. L.; Franchin, I. G.; Masiero, P. C. Integration testing of

object-oriented and aspect-oriented programs: A structural pairwise approach for Java.

Science of Computer Programming, v. 74, n. 10, p. 861–878, 2009.

Lemos, O. A. L.; Maldonado, J. C.; Masiero, P. C. Data flow integration testing

criteria for aspect-oriented programs. In: Proceeding of the 1st Brazilian Workshop on

Aspect-Oriented Software Development (WASP), Braśılia/DF - Brazil, 2004a.

Lemos, O. A. L.; Maldonado, J. C.; Masiero, P. C. Structural unit testing of

AspectJ programs. In: Proceedings of the 1st Workshop on Testing Aspect Oriented

Programs (WTAOP) - held in conjunction with AOSD, Chicago/IL - USA, 2005.

Lemos, O. A. L.; Masiero, P. C. Integration testing of aspect-oriented programs: a

structural pointcut-based approach. In: Proceedings of the 22nd Brazilian Symposium

on Software Engineering (SBES), Campinas/SP - Brazil: Brazilian Computer Society,

p. 49–64, 2008a.

Lemos, O. A. L.; Masiero, P. C. Using structural testing to identify unintended

join points selected by pointcuts in aspect-oriented programs. In: Proceedings of the

2008 32nd Annual IEEE Software Engineering Workshop (SEW), Kassandra - Greece:

IEEE Computer Society, p. 84–93, 2008b.

Lemos, O. A. L.; Masiero, P. C. A pointcut-based coverage analysis approach for

aspect-oriented programs. Information Sciences, p. (in press), 2010.

Lemos, O. A. L.; Vincenzi, A. M. R.; Maldonado, J. C.; Masiero, P. C. Unit

testing of aspect-oriented programs. In: Proceedings of the 18th Brazilian Symposium

on Software Engineering (SBES), Braśılia/DF - Brazil, p. 55–70, 2004b.

Lemos, O. A. L.; Vincenzi, A. M. R.; Maldonado, J. C.; Masiero, P. C.

Control and data flow structural testing criteria for aspect-oriented programs. Journal

of Systems and Software, v. 80, n. 6, p. 862–882, 2007.

Lesiecki, N. Unit test your aspects. IBM developerWorks Homepage, http:

//www.ibm.com/developerworks/java/library/j-aopwork11/ - last accessed on

21/09/2010, 2005.

124

http://www.ibm.com/developerworks/java/library/j-aopwork11/
http://www.ibm.com/developerworks/java/library/j-aopwork11/

References

Li, N.; Praphamontripong, U.; Offutt, J. An experimental comparison of four

unit test criteria: Mutation, edge-pair, all-uses and prime path coverage. In: Pro-

ceedings of the 4th International Workshop on Mutation Analysis (Mutation) - held in

conjunction with ICST, Denver/CO - USA: IEEE Computer Society, p. 220–229, 2009.

Linkman, S.; Vincenzi, A. M. R.; Maldonado, J. C. An evaluation of systematic

functional testing using mutation testing. In: Proceedings of the 7th International

Conference on Empirical Assessment in Software Engineering (EASE), Keele - UK, p.

1–15, 2003.

Liu, C.-H.; Chang, C.-W. A state-based testing approach for aspect-oriented pro-

gramming. Journal of Information Science and Engineering, v. 24, n. 1, p. 11–31,

2008.

Lopez-Herrejon, R. E.; Batory, D. Using AspectJ to implement product-lines: A

case study. Technical report, Department of Computer Sciences, The University of

Texas, Austin, Texas- USA, 2002.

Ma, Y. S.; Kwon, Y. R.; Offutt, J. Inter-class mutation operators for Java. In:

Proceedings of the 13th International Symposium on Software Reliability Engineering

(ISSRE), Annapolis/MD - USA: IEEE Computer Society Press, p. 352–366, 2002.

Maldonado, J. C. Critérios potenciais usos: Uma contribuição ao teste estrutural

de software. PhD Thesis, DCA/FEE, State University of Campinas (UNICAMP),

Campinas, SP - Brazil, (in Portuguese), 1991.

Maldonado, J. C.; Delamaro, M. E.; Fabbri, S. C. P. F.; Simão, A. S.; Sug-

eta, T.; Masiero, P. C. Proteum: A family of tools to support specification and

program testing based on mutation. In: Mutation 2000 Symposium - Tool Session,

San Jose/CA - USA: Kluwer Academic Publishers, p. 113–116, 2000.

Marick, B. The weak mutation hypothesis. In: Proceedings of the Symposium on

Testing, Analysis, and Verification, Victoria/British Columbia - Canada: ACM Press,

p. 190–199, 1991.

Masiero, P. C.; Lemos, O. A. L.; Ferrari, F. C.; Maldonado, J. C. Teste

de software orientado a objetos e a aspectos: Teoria e prática. In: Breitman, K.;

Anido, R., eds. Atualizações em Informática, chapter 1, Rio de Janeiro/RJ - Brasil:

Editora PUC-Rio, p. 13–71, 2006a.

125

References

Masiero, P. C.; Lemos, O. A. L.; Ferrari, F. C.; Maldonado, J. C. Teste

de software orientado a objetos e a aspectos: Teoria e prática. In: Breitman, K.;

Anido, R., eds. Atualizações em Informática, chapter 1, Rio de Janeiro/RJ - Brazil:

PUC-Rio, p. 13–71, (in Portuguese), 2006b.

Massicotte, P.; Badri, L.; Badri, M. Aspects-classes integration testing strat-

egy: An incremental approach. In: Proceedings of the 2nd International Workshop on

Rapid Integration of Software Engineering Techniques (RISE) - Revised Selected Paper,

Heraklion/Crete - Greece: Springer-Verlag, p. 158–173 (LNCS v.3943), 2006.

Massicotte, P.; Badri, L.; Badri, M. Towards a tool supporting integration testing

of aspect-oriented programs. Journal of Object Technology (JOT), v. 6, n. 1, p. 67–89,

2007.

Massicotte, P.; Badri, M.; Badri, L. Generating aspects-classes integration testing

sequences: A collaboration diagram based strategy. In: Proceedings of the 3rd Inter-

national Conference on Software Engineering Research, Management and Applications

(ACIS), Mt. Pleasant/MI - USA: IEEE Computer Society, p. 30–37, 2005.

Mathur, A. P. Foundations of software testing. Canada: Addison-Wesley Profes-

sional, 2007.

Mathur, A. P.; Wong, W. E. Evaluation of the cost of alternative mutation strate-

gies. In: Proceedings of the 7th Brazilian Symposium on Software Engineering (SBES),

João Pessoa/PB - Brazil, p. 320–335, 1993.

Mathur, A. P.; Wong, W. E. An empirical comparison of data flow and muta-

tion based test adequacy criteria. The Journal of Software Testing, Verification, and

Reliability, v. 4, n. 1, p. 9–31, 1994.

McCabe, T. J. A complexity measure. IEEE Transactions on Software Engineering,

v. SE-2, n. 4, p. 308–320, 1976.

McEachen, N.; Alexander, R. T. Distributing classes with woven concerns: An

exploration of potential fault scenarios. In: Proceedings of the 4th International Con-

ference on Aspect-oriented Software Development (AOSD), Chicago/IL - USA: ACM

Press, p. 192–200, 2005.

Mezini, M.; Ostermann, K. Conquering aspects with Caesar. In: Proceedings of

the 2nd International Conference on Aspect-Oriented Software Development (AOSD),

Boston/MA - USA: ACM Press, p. 90–99, 2003.

126

References

Mills, H. D. On the statistical validation of computer programs. Technical Report

FSC-72-6015, IBM Federal Systems Division, Gaithersburg, MD - USA, 1972.

Mohagheghi, P.; Conradi, R.; Killi, O. M.; Schwarz, H. An empirical study of

software reuse vs. defect-density and stability. In: Proceedings of the 26th International

Conference on Software Engineering (ICSE), Edinburgh - UK: IEEE Computer Society,

p. 282–292, 2004.

Morell, L. J. A theory of fault-based testing. IEEE Transactions on Software

Engineering, v. 16, n. 8, p. 844–857, 1990.

Mortensen, M.; Alexander, R. T. Adequate testing of aspect-oriented programs.

Technical Report CS 01-110, Department of Computer Science, Colorado State Univer-

sity, Fort Collins/Colorado - USA, 2004.

Mortensen, M.; Alexander, R. T. An approach for adequate testing of AspectJ

programs. In: Proceedings of the 1st Workshop on Testing Aspect Oriented Programs

(WTAOP) - held in conjunction with AOSD, Chicago/IL - USA, 2005.

Mortensen, M.; Ghosh, S.; Bieman, J. M. Testing during refactoring: Adding

aspects to legacy systems. In: Proceedings of the 17th International Symposium on

Software Reliability Engineering (ISSRE), Raleigh/NC - USA: IEEE Computer Society,

p. 221–230, 2006.

Mortensen, M.; Ghosh, S.; Bieman, J. M. Aspect-oriented refactoring of legacy

applications: An evaluation. IEEE Transactions on Software Engineering, (in press),

2010.

Muñoz, F.; Baudry, B.; Delamare, R.; Traon, Y. L. Inquiring the usage of

aspect-oriented programming: An empirical study. In: Proceedings of the 25th Inter-

national Conference on Software Maintenance (ICSM), Edmonton/AB - Canada: IEEE

Computer Society, p. 137–146, 2009.

Myers, G. J.; Sandler, C.; Badgett, T.; Thomas, T. M. The art of software

testing. 2nd ed. Hoboken/NJ - USA: John Wiley & Sons, 2004.

Nakagawa, E. Y.; Simão, A. S.; Ferrari, F. C.; Maldonado, J. C. Towards

a reference architecture for software testing tools. In: Proceedings of the 19th In-

ternational Conference on Software Engineering and Knowledge Engineering (SEKE),

Boston/MA - USA, p. 157–162, 2007.

127

References

Neves, V.; Lemos, O. A. L.; Masiero, P. C. Structural integration testing at level

1 of object- and aspect-oriented programs. In: Proceedings of the 3rd Latin Ameri-

can Workshop on Aspect-Oriented Software Development (LAWASP), Fortaleza/CE -

Brazil: Brazilian Computer Society, (in Portuguese), p. 31–38, 2009.

Offutt, A. J.; Lee, A.; Rothermel, G.; Untch, R. H.; Zapf, C. An experi-

mental determination of sufficient mutant operators. ACM Transactions on Software

Engineering and Methodology (TOSEM), v. 5, n. 2, p. 99–118, 1996a.

Offutt, A. J.; Pan, J. Automatically detecting equivalent mutants and infeasible

paths. Journal of Software Testing, Verification, and Reliability, v. 7, n. 3, p. 165–192,

1997.

Offutt, A. J.; Pan, J.; Tewary, K.; Zhang, T. An experimental evaluation of data

flow and mutation testing. Software Practice and Experience, v. 26, n. 2, p. 165–176,

1996b.

Offutt, A. J.; Rothermel, G.; Zapf, C. An experimental evaluation of selective

mutation. In: Proceedings of the 15th International Conference on Software Engineer-

ing (ICSE), Baltimore/MD - USA: IEEE Computer Society, p. 100–107, 1993.

Offutt, A. J.; Voas, J.; Payne, J. Mutation operators for Ada. Technical Report

ISSE-TR-96-06, Department of Information and Software Systems Engineering, George

Mason Universit, Fairfax/VA - USA, 1996c.

Offutt, J.; Alexander, R.; Wu, Y.; Xiao, Q.; Hutchinson, C. A fault model

for subtype inheritance and polymorphism. In: Proceedings of the 12th International

Symposium on Software Reliability Engineering (ISSRE), Hong Kong - China: IEEE

Computer Society Press, p. 84–93, 2001.

Offutt, J.; Liu, S.; Abdurazik, A.; Ammann, P. Generating test data from

state-based specifications. The Journal of Software Testing, Verification and Reliabil-

ity, v. 13, n. 1, p. 25–53, 2003.

Ostrand, T. J.; Weyuker, E. J. Collecting and categorizing software error data in

an industrial environment. Journal of Systems and Software, v. 4, n. 4, p. 289–300,

1984.

Parasoft Jtest: Java testing, static analysis, code review. Online, http://www.

parasoft.com/jtest - last accessed on 21/09/2010, 2010.

128

http://www.parasoft.com/jtest
http://www.parasoft.com/jtest

References

Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. Systematic mapping

studies in software engineering. In: Proceedings of the 12th International Conference

on Evaluation and Assessment in Software Engineering (EASE), Bari - Italy: The

British Computer Society, p. 1–10, 2008.

Popovici, A.; Gross, T.; Alonso, G. Dynamic weaving for aspectoriented program-

ming. In: Proceedings of the 1st International Conference on Aspect-Oriented Software

Development (AOSD), Enschede - The Netherlands: ACM Press, p. 141–147, 2002.

Pressman, R. S. Software engineering - a practitioner’s approach. 6th. ed. New

York/NY - USA: McGraw-Hill, 2005.

Rapps, S.; Weyuker, E. J. Data flow analysis techniques for program test data

selection. In: Proceedings of the 6th International Conference on Software Engineering

(ICSE), Tokio - Japan: IEEE Computer Society, p. 272–278, 1982.

Rashid, A.; Sawyer, P.; Moreira, A.; Araújo, J. Early aspects: A model for

aspect-oriented requirements engineering. In: Proceedings of the 10th Anniversary

IEEE Joint International Conference on Requirements Engineering (RE), Essen - Ger-

many: IEEE Computer Society, p. 199–202, 2002.

Robillard, M. P.; Murphy, G. C. Representing concerns in source code. ACM

Transactions on Software Engineering and Methodology (TOSEM), v. 16, n. 1, 2007.

Runeson, P.; Skoglund, M.; Engström, E. Test benchmarks - what is the ques-

tion? In: Proceedings of the 1st Testing Benchmark Workshop (TESTBENCH) - held

in conjunction with ICST, Lillehammer - Norway, 2008.

Simão, A. S.; Souza, S. R. S.; Maldonado, J. C. A family of coverage testing

criteria for coloured Petri nets. In: Proceedings of the 17th Brazilian Symposium of

Software Engineering (SBES), Manaus/AM - Brasil: Brazilian Computer Society, p.

209–224, 2003.

Soares, S.; Borba, P.; Laureano, E. Distribution and persistence as aspects.

Software - Practice & Experience, v. 36, n. 7, p. 711–759, 2006.

Sommerville, I. Software engineering. 8th ed. Harlow - England: Addison-Wesley,

2007.

Souza, S. R. S. Evaluation of cost and efficacy of the mutant analysis criterion in the

program testing activity. MSc Dissertation, ICMC/USP, São Carlos/SP - Brazil, 1996.

129

References

Souza, S. R. S.; Maldonado, J. C.; Fabbri, S. C. P. F.; Souza, W. L. Mutation

testing applied to estelle specifications. Software Quality Control, v. 8, n. 4, p. 285–301,

1999.

Stamey, J.; Saunders, B.; Cameron, M. Aspect-Oriented PHP. Online, http:

//www.aophp.net/ - last accessed on 17/03/2010, 2005.

Stoerzer, M.; Graf, J. Using pointcut delta analysis to support evolution of

aspect-oriented software. In: Proceedings of the 21st IEEE International Conference

on Software Maintenance (ICSM), Budapest - Hungary: IEEE Computer Society, p.

653–656, 2005.

Stratego Community AspectJ-front project home page. Online, http://

strategoxt.org/Stratego/AspectJFront - last accessed on 09/12/2009, 2009.

Subramanyam, R.; Krishnan, M. Empirical analysis of CK metrics for

object-oriented design complexity: Implications for software defects. IEEE Trans-

actions on Software Engineering, v. 29, n. 4, p. 297–310, 2003.

Sugeta, T.; Maldonado, J. C.; Wong, W. E. Mutation testing applied to validate

sdl specifications. In: Proceedings of the 16th IFIP International Conference on Testing

of Communicating Systems, Oxford - UK: Springer-Verlag, p. 193–208 (LNCS v.2978),

2004.

Sullivan, K.; Griswold, W. G.; Song, Y.; Cai, Y.; Shonle, M.; Tewari, N.;

Rajan, H. Information hiding interfaces for aspect-oriented design. In: Proceedings

of the 10th European Software Engineering Conference - held jointly with 13th ACM SIG-

SOFT International Symposium on Foundations of Software Sngineering (ESEC/FSE),

Lisbon - Portugal: ACM, p. 166–175, 2005.

The Apache Software Foundation Ant project home page. Online, http://ant.

apache.org/ - last accessed on 18/10/2010, 2009.

The AspectJ Team The AspectJ programming guide. Online, http://www.eclipse.

org/aspectj/doc/released/progguide/index.html - last accessed on 18/10/2010,

2003.

The AspectJ Team The AspectJ 5 development kit developer’s notebook.

Online, http://www.eclipse.org/aspectj/doc/released/adk15notebook/index.

html - last accessed on 21/09/2010, 2005a.

130

http://www.aophp.net/
http://www.aophp.net/
http://strategoxt.org/Stratego/AspectJFront
http://strategoxt.org/Stratego/AspectJFront
http://ant.apache.org/
http://ant.apache.org/
http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html
http://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html

References

The AspectJ Team The AspectJ development environment guide. Online,

http://www.eclipse.org/aspectj/doc/next/devguide/index.html - last accessed

on 21/09/2010, 2005b.

The Eclipse Foundation AspectJ - crosscutting objects for better modularity. On-

line, http://www.eclipse.org/aspectj/ - last accessed on 21/09/2010, 2010a.

The Eclipse Foundation AspectJ documentation. Online, http://www.eclipse.

org/aspectj/docs.php - last accessed on 21/09/2010, 2010b.

The Eclipse Foundation Metrics Eclipse plugin. Online, http://metrics.

sourceforge.net/ - last accessed on 08/09/2010, 2010c.

The JBoss Team JBoss AOP Reference Documentation V2.0. Online, http://docs.

jboss.org/jbossaop/docs/index.html - last accessed 21/09/2010, 2010.

Turner, C. D.; Robson, D. J. The state-based testing of object-oriented programs.

In: Proceedings of the Conference on Software Maintenance (ICSM), Montreal/Que -

Canada: IEEE Computer Society, p. 302–310, 1993.

van Deursen, A.; Marin, M.; Moonen, L. A systematic aspect-oriented refactor-

ing and testing strategy, and its application to JHotDraw. Tech.Report SEN-R0507,

Stichting Centrum voor Wiskundeen Informatica, Amsterdam - The Netherlands, 2005.

Vincenzi, A. M. R. Object-oriented: Definition, implementation and analysis of val-

idation and testing resources. PhD Thesis, ICMC/USP, São Carlos, SP - Brazil, (in

Portuguese), 2004.

Vincenzi, A. M. R.; Delamaro, M. E.; Maldonado, J. C.; Wong, W. E. Estab-

lishing structural testing criteria for java bytecode. Software: Practice and Experience,

v. 36, n. 14, p. 1513–1541, 2006a.

Vincenzi, A. M. R.; Maldonado, J. C.; Wong, W. E.; Delamaro, M. E. Cov-

erage testing of java programs and components. Science of Computer Programming,

v. 56, n. 1-2, p. 211–230, 2005.

Vincenzi, A. M. R.; Simão, A. S.; Delamaro, M. E.; Maldonado, J. C.

Muta-Pro: Towards the definition of a mutation testing process. Journal of the Brazil-

ian Computer Society, v. 12, n. 2, p. 49–61, 2006b.

131

http://www.eclipse.org/aspectj/doc/next/devguide/index.html
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/docs.php
http://www.eclipse.org/aspectj/docs.php
http://metrics.sourceforge.net/
http://metrics.sourceforge.net/
http://docs.jboss.org/jbossaop/docs/index.html
http://docs.jboss.org/jbossaop/docs/index.html

References

Vincenzi, A. M. R.; Wong, W. E.; Delamaro, M. E.; Maldonado, J. C. Jabuti:

A coverage analysis tool for java programs. In: Proceedings of the 17th Brazilian Sym-

posium on Software Engineering (SBES), Manaus/AM - Brazil: Brazilian Computer

Society, p. 79–84, 2003.

Voas, J.; Morrel, L.; Miller, K. Predicting where faults can hide from testing.

IEEE Software, v. 8, n. 2, p. 41–48, 1991.

Weyuker, E. J. Using failure cost information for testing and reliability assessment.

ACM Transactions on Software Engineering and Methodology (TOSEM), v. 5, n. 2,

p. 87–98, 1996.

Wong, W. E. On mutation and data flow. PhD Thesis, Department of Computer

Science, Purdue University, West Lafayette/IN - USA, 1993.

Wong, W. E.; Mathur, A. P. Fault detection effectiveness of mutation and data

flow testing. Software Quality Journal, v. 4, n. 1, p. 69–83, 1995.

Woodward, M.; Halewood, K. From weak to strong, dead or alive? An analysis

of some mutation testing issues. In: Proceedings of the 2nd Workshop on Software

Testing, Verification, and Analysis, Banff/AB - Canada: IEEE Computer Society, p.

152–158, 1988.

Xie, T.; Marinov, D.; Notkin, D. Rostra: A framework for detecting redundant

object-oriented unit tests. In: Proceedings of the 19th International Conference on

Automated Software Engineering (ASE), Linz - Austria: IEEE Computer Society, p.

196–205, 2004.

Xie, T.; Zhao, J. A framework and tool supports for generating test inputs of AspectJ

programs. In: Proceedings of the 5th International Conference on Aspect-Oriented

Software Development (AOSD), Bonn - Germany: ACM Press, p. 190–201, 2006.

Xie, T.; Zhao, J.; Marinov, D.; Notkin, D. Automated test generation for AspectJ

programs. In: Proceedings of the 1st Workshop on Testing Aspect Oriented Programs

(WTAOP) - held in conjunction with AOSD, Chicago/IL - USA, 2005.

Xu, D.; Ding, J. Prioritizing state-based aspect tests. In: Proceedings of the 3rd In-

ternational Conference on Software Testing, Verification and Validation (ICST), Paris

- France: IEEE Computer Society, p. 265–274, 2010.

132

References

Xu, D.; He, X. Generation of test requirements from aspectual use cases. In: Pro-

ceedings of the 3rd Workshop on Testing Aspect Oriented Programs (WTAOP) - held

in conjunction with AOSD, Vancouver/BC - Canada: ACM Press, p. 17–22, 2007.

Xu, D.; Xu, W. State-based incremental testing of aspect-oriented programs. In: Pro-

ceedings of the 5th International Conference on Aspect-Oriented Software Development

(AOSD), Bonn - Germany: ACM Press, p. 180–189, 2006a.

Xu, D.; Xu, W.; Nygard, K. A state-based approach to testing aspect-oriented

programs. Technical Report NDSU-CS-TR04-XU03, Department of Computer Science,

North Dakota State University, Fargo/ND - USA, 2004.

Xu, D.; Xu, W.; Nygard, K. A state-based approach to testing aspect-oriented pro-

grams. In: Proceedings of the 17th International Conference on Software Engineering

and Knowledge Engineering (SEKE), Taiwan, 2005.

Xu, D.; Xu, W.; WONG, W. E. Testing aspect-oriented programs with UML models.

International Journal of Software Engineering and Knowledge Engineering (IJSEKE),

v. 18, n. 3, p. 413–437, 2008.

Available at http://www.worldscinet.com/ijseke/18/1803/S0218194008003672.

html

Xu, G.; Rountev, A. Regression test selection for AspectJ software. In: Proceedings

of the 29th International Conference on Software Engineering (ICSE), Minneapolis/MN

- USA: IEEE Computer Society, p. 65–74, 2007.

Xu, W.; Xu, D. A model-based approach to test generation for aspect-oriented pro-

grams. In: Proceedings of the 1st Workshop on Testing Aspect Oriented Programs

(WTAOP) - held in conjunction with AOSD, Chicago/IL - USA, 2005.

Xu, W.; Xu, D. State-based testing of integration aspects. In: Proceedings of the 2nd

Workshop on Testing Aspect Oriented Programs (WTAOP) - held in conjunction with

ISSTA, Portland/Maine - USA: ACM Press, p. 7–14, 2006b.

Yamazaki, Y.; Sakurai, K.; Matsuura, S.; Masuhara, H.; Hashiura, H.;

Komiya, S. A unit testing framework for aspects without weaving. In: Proceed-

ings of the 1st Workshop on Testing Aspect Oriented Programs (WTAOP) - held in

conjunction with AOSD, Chicago/IL - USA, 2005.

133

http://www.worldscinet.com/ijseke/18/1803/S0218194008003672.html
http://www.worldscinet.com/ijseke/18/1803/S0218194008003672.html

References

Zhang, S.; Zhao, J. On identifying bug patterns in aspect-oriented programs. In:

Proceedings of the 31st Annual International Computer Software and Applications Con-

ference (COMPSAC), Beijing - China, p. 431–438, 2007.

Zhao, J. Tool support for unit testing of aspect-oriented software. In: Workshop on

Tools for Aspect-Oriented Software Development - held in conjunction with OOPSLA,

Seattle/WA - USA, 2002.

Zhao, J. Data-flow-based unit testing of aspect-oriented programs. In: Proceedings of

the 27th Annual IEEE International Computer Software and Applications Conference

(COMPSAC), Dallas/Texas - USA: IEEE Computer Society, p. 188–197, 2003.

Zhou, Y.; Richardson, D. J.; Ziv, H. Towards a practical approach to test

aspect-oriented software. In: Proceedings of the Net.ObjectiveDays 2004 Workshop

on Testing Component-based Systems (TECOS), Germany, p. 1–16, 2004.

Zhu, H.; Hall, P.; May, J. Software unit test coverage and adequacy. ACM

Computing Surveys, v. 29, n. 4, p. 366–427, 1997.

134

Appendix

A
Paper: An Exploratory Study of

Fault-Proneness in Evolving

Aspect-Oriented Programs

This appendix presents the full contents of a paper published in the Proceedings of the

32nd International Conference on Software Engineering (ICSE’10). An overview of this

work was provided in Chapter 3 of this dissertation. A copyright notice in regard to it is

next shown.

ACM COPYRIGHT NOTICE1: “ c©ACM, 2010. This is the author’s version

of the work. It is posted here by permission of ACM for your personal use. Not for

redistribution. The definitive version was published in the Proceedings of the 32nd Inter-

national Conference on Software Engineering, http://doi.acm.org/10.1145/1806799.

1806813.”

1http://www.acm.org/publications/policies/copyright_policy#Retained - last accessed on
06/07/2010.

135

http://doi.acm.org/10.1145/1806799.1806813
http://doi.acm.org/10.1145/1806799.1806813
http://www.acm.org/publications/policies/copyright_policy#Retained

An Exploratory Study of Fault-Proneness in
Evolving Aspect-Oriented Programs

Fabiano Ferrari1, Rachel Burrows2,3, Otávio Lemos4, Alessandro Garcia2, Eduardo Figueiredo3,
Nelio Cacho5, Frederico Lopes6, Nathalia Temudo7, Liana Silva7,

Sergio Soares8, Awais Rashid3, Paulo Masiero1, Thais Batista6, José Maldonado1

1 Computer Systems Department, University of São Paulo – USP, São Carlos, Brazil
2 Informatics Department, Pontifical Catholic University of Rio de Janeiro – PUC-Rio, Rio de Janeiro, Brazil

3 Computing Department, Lancaster University, Lancaster, United Kingdom
4 Department of Science and Technology, Federal University of São Paulo – UNIFESP, S.J. Campos, Brazil

5 School of Science and Technology, Federal University of Rio Grande do Norte – UFRN, Natal, Brazil
6 Computer Science Department, Federal University of Rio Grande do Norte – UFRN, Natal, Brazil

7 Department of Computing and Systems, University of Pernambuco – UPE, Recife, Brazil
8 Informatics Centre, Federal University of Pernambuco – UFPE, Recife, Brazil

{ferrari,masiero,jcmaldon}@icmc.usp.br, {rachel.burrows,e.figueiredo,marash}@comp.lancs.ac.uk, otavio.lemos@unifesp.br
afgarcia@inf.puc-rio.br, neliocacho@ect.ufrn.br, {nmt,lsos}@dsc.upe.br, scbs@cin.ufpe.br, {fred.lopes,thais}@ufrnet.br

ABSTRACT

This paper presents the results of an exploratory study on the
fault-proneness of aspect-oriented programs. We analysed the
faults collected from three evolving aspect-oriented systems, all
from different application domains. The analysis develops from
two different angles. Firstly, we measured the impact of the
obliviousness property on the fault-proneness of the evaluated
systems. The results show that 40% of reported faults were due to
the lack of awareness among base code and aspects. The second
analysis regarded the fault-proneness of the main aspect-oriented
programming (AOP) mechanisms, namely pointcuts, advices and
intertype declarations. The results indicate that these mechanisms
present similar fault-proneness when we consider both the overall
system and concern-specific implementations. Our findings are
reinforced by means of statistical tests. In general, this result
contradicts the common intuition stating that the use of pointcut
languages is the main source of faults in AOP.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging –

Diagnostics, Code Inspections; D.3.3 [Programming

Languages]: Language Constructs and Features.

General Terms

Measurement, Experimentation, Languages, Verification.

Keywords

Aspect-oriented programming, fault-proneness, software testing.

1. INTRODUCTION
With software development becoming increasingly incremental,
programmers should be aware of contemporary implementation
mechanisms that are fault-prone in the presence of changes. In

particular, the recent adoption of aspect-oriented programming
(AOP) languages and frameworks, such as AspectJ [32] and
Spring [23], requires a better understanding of the fault causes in
AOP. AOP [25] is a programming technique that aims to improve
the modularisation and robust implementation of concerns that cut
across multiple software modules. Classical examples of
crosscutting concerns usually implemented as aspects are logging,
exception handling, concurrency, and certain design patterns.

The modularisation of crosscutting concerns in AOP is achieved
through a complementary set of programming mechanisms, such
as pointcut, advice, and intertype declaration (ITD) [32]. In
addition, a basic property associated with AOP is obliviousness.
This property implies that the developers of core functionality
need not be aware of, anticipate or design code to be advised by
aspects [15]. Obliviousness is also influenced by quantification,
i.e. the ability to declaratively select sets of points via pointcuts in
the execution of a program. The more expressive a pointcut
language is, the more support for obliviousness it provides [31].

New AOP models, frameworks and language extensions are
constantly emerging, in some cases leveraging different degrees
of obliviousness [17, 20, 26, 35]. While some researchers have
been optimistic about the benefits of AOP [26], others have
shown scepticism [1, 2, 28]. For example, previous research has
indicated that the use of certain AOP mechanisms can violate
module encapsulation [1] and even introduce new types of faults
[2]. In particular, some researchers claim these faults are likely to
be amplified in the presence of evolutionary changes [24].
However, the empirical knowledge about the actual impact of
AOP on fault-proneness remains very limited even for core
programming mechanisms, such as pointcuts and intertype
declarations.

Concerned with these issues, we present a first exploratory
analysis on the fault-proneness of AOP properties and
mechanisms. Our analysis develops in terms of the three
following questions: (1) How does obliviousness influence the
presence of faults in aspect-oriented (AO) programs? (2) What is
the impact of specific AOP mechanisms on fault-proneness? and
(3) Whether and how do certain characteristics of concern
implementations correlate with the introduction of faults? To the
best of our knowledge, this is the first initiative that systematically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE '10, May 2-8, 2010, Cape Town, South Africa
Copyright © 2010 ACM 978-1-60558-719-6/10/05 ... $10.00

137

tackles these questions based on the exploratory analysis of real-
world AO systems. Previous research has mainly focused on
defining fault taxonomies and testing approaches based on AOP
main concepts and current technologies [2, 3, 4, 10, 12, 34, 36].
However, we can only find limited empirical evidence on how
such faults occur in practice.

To achieve our goals, we selected three AO systems from
different application domains. We analysed fault-prone AOP
mechanisms by means of various testing and static analysis.
Throughout the study, faults were reported by two means: (1) by
developers during system development and evolution; then
afterwards (2) by independent testers who reported post-releases
faults. The main findings of our study are:

• Obliviousness has been a controversial software property since

the early research in AOP [28, 31]. Our analysis confirms that

the lack of awareness between base and aspectual modules

tends to lead to incorrect implementations. Despite the modern

support provided by AOP-specific IDEs, uncertainty about

module interactions still remains in the presence of aspects

within the system.

• Interestingly, our findings contradict the common intuition

stating that the use of pointcut languages is the main source of

faults in AOP [10, 12, 29]. The main AOP mechanisms

currently available in AspectJ-like languages – namely,

pointcuts, advices and intertype declarations (ITDs) – present

similar fault-proneness when the overall system is considered.

• The numbers of internal AOP mechanisms showed to be good

fault indicators when considering the sets of modules within

each concern1 implementation separately. In this case the

number of faults associated with a concern was directly

proportional to the number of AOP mechanisms used to

implement that concern.

In addition, the gathered results in our study support these
findings with statistical significance. The remainder of this paper
is organised as follows: Section 2 summarises the related research.
Section 3 describes the study configuration. It includes our
research hypotheses and a description of the target systems and
evaluation procedures. Following, Section 4 brings the collected
data. This data is analysed and discussed in Section 5. Section 6
discusses the limitations of this work. Finally, Section 7 presents
our conclusion and future research.

2. RELATED WORK
The difficulty of performing fault-proneness evaluation in AOP is
mainly twofold: (i) there are not yet several releases and
documented faults for AO software projects available for
analyses, and (ii) AOP has introduced new properties, such as
obliviousness and quantification, and a wide range of mechanisms
often used to implement different categories of crosscutting
concerns. Previous research was limited to evaluate the benefits
and drawbacks of aspects from different angles, such as design
stability [13, 16] and system robustness [5, 9, 14]. However, the
fault-proneness of AO programs is not yet a well-understood
phenomenon.

To date, there is limited empirical knowledge of the impact of
AOP on software correctness. In spite of that, we present pieces of

1 From hereafter, we use the term “concerns” to refer to crosscutting

concerns in general, as defined by Kiczales et al. [25].

work that we believe are mostly related to our own. They are
basically distributed in two categories discussed in the following:

Fault taxonomies and fault-proneness of AO programs: A

number of fault taxonomies and bug patterns for AO programs

can be found in the recent literature [2, 4, 9, 12, 36]. Alexander et

al. [2] proposed the first study on AOP-specific faults. Their main

contribution is a characterisation of possible sources of faults that

are specific to AO programs. Based on these sources, Alexander

et al. also defined a high-level fault taxonomy for AO software,

mainly focusing on features of AspectJ-like languages. Further

fault taxonomies were built on top of it [4, 36]. They either

include new fault types or refine the already existing ones.

However, none of them have been empirically evaluated to date.

Ferrari et al. [12] summarised these and other taxonomies in a

broader fault categorisation for AO software. The study presented

in this paper uses such categorisation for classifying the AOP-

related faults found in the target systems.

So far, we have identified a single attempt to evaluate the fault-

proneness of AOP programs. Coelho et al. [9] present an

exploratory study of the robustness of AspectJ-based systems. The

study analyses the flow of exceptions in five medium-sized OO

systems from different domains and their AO counterparts, whose

exception-handling code have been aspectised. The results show

that in all AO systems there was an increase in the number of

uncaught exceptions (i.e. exceptions that cross the system

boundaries without being handled) and also in the number of

unexpected handler actions. Differently from our work, Coelho et

al. only focus their analysis on exception handling mechanisms,

while we focus on AOP mechanisms in general.

Fault-proneness of crosscutting concerns: Eaddy et al. [11]
performed an empirical study which provides evidence suggesting
that crosscutting concerns cause defects. The authors examined
the concerns of three medium-sized open-source Java projects and
found that the more scattered the implementation of a concern is,
the more likely it is to have defects. Their findings recommend the
use of AOP techniques to modularise crosscutting concerns in
order to reduce the number of faults potentially caused by them.
However, Eaddy et al. have not investigated the fault-proneness of
AOP mechanisms as we do in this study. In our study, we also
analyse crosscutting concerns, although from a different angle.
We aim to evaluate the impact of the specific characteristics of
AO concern implementations on the system fault-proneness. We
also highlight that we do not contrast AO implementations with
OO counterparts in order to find out which approach results in
more or less faults related to crosscutting concerns.

3. STUDY SETTING
This section describes our study configuration. Section 3.1
presents our goals and hypotheses. Section 3.2 provides an
overview of the target systems. Section 3.3 explains the
evaluation procedures we applied to each selected system and the
associated tooling support.

3.1 Goal Statement and Research Hypotheses
Our objective is to evaluate the fault-proneness of AOP properties
and mechanisms when they are applied to evolving programs. We
are particularly interested in observing the underlying reasons of
the introduction of faults. First, we analyse whether a key property
of AOP, obliviousness, facilitates the emergence of faults under
software evolution conditions. Moreover, we aim at analysing
how specific characteristics of concerns being aspectised impact
on the fault-proneness of AO programs. For example, we

138

investigate how the internal implementation details of a concern,
such as lines of code and use of specific AOP mechanisms, are
correlated with the presence of faults. Based on these goals, we
defined two research hypotheses. For each of them, the null and
the alternative hypotheses are as follows:

Hypothesis 1 (H1)

• H1-0: Obliviousness does not exert impact on the fault-

proneness of evolving AO programs;

• H1-1: Obliviousness exerts impact on the fault-proneness of

evolving AO programs;

Hypothesis 2 (H2)

• H2-0: There is no difference among the fault-proneness of the

main AOP mechanisms;

• H2-1: There are differences among the fault-proneness of the

main AOP mechanisms;

To achieve our goals, we needed to apply a number of evaluation
procedures. Our analysis embraced 12 releases of three AO
systems from different application domains. Such systems include
a wide range of heterogeneous concerns implemented as aspects.
The systems and evaluation procedures are following described.

3.2 The Target Systems
The three medium-sized applications used in this study are from
significantly different application domains. The first one, called
iBATIS [22], is a Java-based open source framework for object-
relational data mapping. It was originally developed in 2002 and
over 60 releases are available at SourceForge.net2 and
Apache.org3 repositories. The second application is
HealthWatcher (HW) [16, 27], a typical Java web-based
information system. HW was first released in 2001 and allows
citizens to register complaints about health issues. The third
evaluated system is a software product line for mobile devices,
called MobileMedia (MM) [13]. MM was originally developed in
2005 to allow users to manipulate image files in different mobile
devices. It has then evolved to support the manipulation of
additional media files, such as videos and MP3 files.

Every AO release of a given system has an OO counterpart. In
particular, iBATIS had its AO releases derived from OO builds
available at SourceForge.net, which were used as baselines for
implementation alignment. HW and MM, on the other hand, have
evolved based on a sequence of planned changes, and both OO
and AO versions of given release were developed concurrently
[13, 16]. All releases have experienced exhaustive assessment
procedures – code revision and testing (Section 3.3) – by
independent developers in order to achieve functionalities well
aligned with the original Java system.

From hereafter, we refer to the AO versions4 of the target systems
by their simple names or abbreviations, i.e. iBATIS, HW and
MM. Four releases of iBATIS were considered in our evaluation,
namely iBATIS5 01, 01.3, 01.5 and 02. We also analysed four
HW releases – HW 01, 04, 07 and 10 – and four MM releases –
MM 01, 02, 03 and 06. These releases were chosen because they
encompass a wide range of different fine-grained and coarse-

2 http:// sourceforge.net/projects/ibatisdb/files/ (03/02/2010)
3 http://archive.apache.org/dist/ibatis/binaries/ibatis.java/ (03/02/2010)
4 References to OO counterparts will be made explicit throughout the text.
5 Such releases correspond to the original builds #150, #174, #203 and

#243 found in SourceForge.net, respectively.

grained changes, such as refactorings and functionality increments
or removals. Table 1 shows some general characteristics of the
three target systems. For more information about each of them,
the reader may refer to the respective placeholder websites or to
previous reports of these systems [13, 16, 22].

Table 1. Key characteristics of the target applications.

iBATIS Health Watcher MobileMedia

Application Type
data mapper

framework

health vigillance

application

product line

for mobile data

Code Availability Java/AspectJ Java/AspectJ Java/AspectJ

of Releases 60 / 4 10 / 10 10 / 10

Selected Releases 4 4 4

Avg. KLOC 11 6 3

Avg. # of Aspects (only AspectJ) 46 23 10

Evaluation Procedure testing testing
interference

analysis

We selected iBATIS as the main subject of illustrative examples
in this paper in order to promote coherence in the discussions.
This is the most complex target system from which we derived the
largest data set (e.g. number of faults) and on which we mostly
draw our analyses. However, we also refer to examples of the
other systems in order to highlight recurring observations across
the three systems. The highest number of faults in iBATIS was
expected. The already-stable implementation of the other two
systems yielded less fault-related data than iBATIS. Their
implementations are more mature as they have been originally
released for four years or more and underwent more corrective
and perfective changes. HW and MM have also been targeted by a
number of previous studies focusing in other equally-important
quality attributes [9, 13, 14, 16, 27]. Therefore, as the AO
implementations have different degrees of stability, the results
originated from these systems will provide support for drawing
more general findings.

3.3 The Evaluation Procedures
We followed different approaches to evaluate each target system.
The evaluation procedures were defined according to the system
characteristics and information available at the moment this study
started. In short, we aimed at identifying as many faults as
possible given time and resource constraints, while systematically
avoiding bias while evaluating the three systems.

3.3.1 iBATIS Evaluation
Evaluation strategy: The iBATIS system has experienced two
testing phases: pre-release and post-release testing. Pre-release
testing aimed at producing defect-free code to be committed to a
CVS repository. The test sets provided with the original OO
implementations were used as baselines in this phase. Any
abnormal behaviour when regressively testing the AO version of a
given release was investigated. When a fault was uncovered, it
should be documented in an appropriate detailed report (Section
3.3.4). Post-release testing, on the other hand, aimed at assessing
the implementation through enhancement of the original test sets.
The enhanced tests were executed against both OO and AO
versions of a given release. A fault should only be reported if it
was noticed in the AO version but not in the OO counterpart. This
procedure ensured that only faults introduced during the
aspectisation process would be reported for further analysis.

Tooling support: For test case design and execution, we used
JUnit6 and GroboUtils7, a JUnit extension that enables multi-

6 http://www.junit.org/ (03/02/2010)
7 http://groboutils.sourceforge.net/ (03/02/2010)

139

threaded tests. To measure test coverage, we used Cobertura8, a
tool that allows for fast code instrumentation and test execution.

3.3.2 HW Evaluation
Evaluation strategy: HW was tested in a single phase in our study
as initial testing was already performed during its development
time. Such initial tests involved people who were unaware of
evaluations that would be further performed. Hence, the testing of
the HW system was extended in this study to cover the assessment
phase, thereby improving the degree of test coverage. Differently
from iBATIS, however, no original test set was made available.
Thus a full test set was built from scratch based on the system
specification and code documentation. In order to reduce test
effort and avoid systematic bias during test creation, test cases
were automatically generated with adequate tool support. As well
as for iBATIS, a fault should only be reported if it was noticed in
the AO version but not in the OO counterpart, and all uncovered
faults were similarly reported.

Tooling support: We used CodePro9, an Eclipse plugin for
automatic JUnit test case generation for Java programs. We also
used Mockrunner10, a lightweight framework for testing web-
based applications. It extends JUnit and provides the necessary
facilities to test the servlets implemented within the HW system.
Finally, we used Cobertura to measure the test coverage.

3.3.3 MM Evaluation
Evaluation strategy: As well as HW, MM has not been developed
with awareness of further fault-based evaluation. Moreover, post-
release tests during system evolution and maintenance only
revealed faults related to robustness (e.g. data input validation),
however not necessarily being related to AOP mechanisms.
Despite this, we have evaluated MM using the Composition
Integrity Framework (CIF) [6]. CIF helped us identify problems in
aspect interactions established either between aspects and base
code or among multiple aspects. Since MM is a software product
line and includes mandatory, optional and alternative features,
CIF was applied in varied configurations of MM. In doing so, we
were able to derive a set of faults that resulted from a broad range
of aspect-oriented compositions.

Tooling support: We used the CIF framework, which performs
static analysis of join point shadows. CIF is able to: (i) report the
join point shadows that are involved in a specific composition,
and (ii) report aspect interactions which are not governed by an
explicit dependency, e.g. via the use of the declare precedence
statement.

3.3.4 Fault Reporting
Every fault identified either during development (iBATIS only),
during the assessment phase (iBATIS and HW), or during static
analysis (MM) was documented in a customised report form.
During the assessment or static analysis phases, the testers
provided information as much as possible, with special attention
to the test case(s) that revealed the fault (if applicable) and the
fault symptom. In addition, the tester provided some hints about
the fault location. Then, the reports were forwarded to the original
developers, who were in charge of concluding the fault
documentation.

8 http://cobertura.sourceforge.net/ (03/02/2010)
9 http://www.instantiations.com/ (03/02/2010)
10 http://mockrunner.sourceforge.net/ (03/02/2010)

3.3.5 Fault Classification
After the fault documentation step, each fault was classified
according to a fault taxonomy for AO software proposed in our
previous research [12]. This taxonomy includes four high-level
categories of faults that comprise the core mechanisms of AOP:
(1) pointcuts; (2) introductions (or intertype declarations – ITDs)
and other declare-like structures; (3) advices; and (4) the base
program. In order to systematically classify every fault, it was
took into account the fault origin and not only its side-effects. The
classification based on the first three categories above was
straightforward. For instance, it was relatively trivial to identify
mismatching pointcuts, misuse of declare-like structures or
wrong advice types. However, base program-related faults
required extended analysis and reasoning about them. For
example, base code changes that result in broken pointcuts should
be classified as base program-related although their side-effects
might be unmatched join points in the code. Section 5 analyses the
impact of each fault category on the overall fault distribution
considering all targeted systems.

4. DATA COLLECTION
This section presents the results obtained for each target system.
Section 4.1 describes the results of test execution in iBATIS and
HW releases, and the number of aspect interaction problems
identified in the MM configurations. Section 4.2 presents the fault
distribution per fault category and the fault distribution per
concern.

4.1 Test Execution Results
Figure 1 shows the test execution results for iBATIS (on the left-
hand side) and HW (on the right-hand side). The iBATIS original
test sets comprise 100, 103, 108 and 130 test cases for each
release, respectively. The final, improved test sets include 246 test
cases for iBATIS 01, 01.3 and 01.5, and 256 tests for release 02.
For a given release, new test cases were either mined from the
successive releases in the SourceForge repository or designed
from scratch. According to Figure 1, the number of successful test
cases increased across the releases, what might mean code
enhancement. However, as discussed in the next sections, this not
necessarily means reduction in number of faults.

HW test sets were entirely designed for this study, with support
from CodePro. Additionally, a few tests were manually
implemented based on functional requirements. In total, 925, 981,
998 and 998 tests were generated for releases 01, 04, 07 and 10,
respectively. We can observe in Figure 1 that the number of tests
that failed plus the tests that raised exceptions (labelled as error in
the legend) increased across the releases. This suggests that the
number of faults increased during the system evolution. However,
as we will see in Section 4.2, this not necessarily means larger
number of faults in successive releases.

Figure 2 presents the coverage achieved for each release of
iBATIS and HW. For iBATIS in particular, the figure shows the
coverage obtained with the original and enhanced test sets. In
spite of HW test sets being significantly larger than the iBATIS
ones, the yielded coverage in HW is lower than in iBATIS. This is
due to automatically-generated redundant tests that exercise
common parts of the code. Nevertheless, for both systems, we
focused on the creation of tests that exercise parts of the code
affected by the aspectual behaviour. Following this strategy, we
were able to uncover faults not yet revealed in previous system
evaluations.

140

Figure 1. Test case execution in iBATIS (left) and HW (right)

releases.

Figure 2. Test coverage in iBATIS (left) and HW (right)

releases.

As described in Section 3.3, the MM system was evaluated

through static analysis using the CIF framework [6]. This activity

yielded a list of potential faults related to aspect interactions

regarding advices that share common join points. In MM, such list

included 16 potential faults for the varied configurations of the

four evaluated releases. Further analysis enabled us to identify and

classify the real faults. The results are presented in the next

section.

4.2 Fault Distribution
This section summarises all faults we identified along our study.

Faults are grouped per category (Section 4.2.1) and per concern

(Section 4.2.2). The fault categorisation is in accordance to the

fault taxonomy for AO programs [12].

4.2.1 Fault Distribution per Fault Category
Tables 2 and 3 respectively present the number of reported faults

for iBATIS and for all the systems. The reported faults are

grouped per category. The lower number of faults uncovered for

HW and MM can be explained by their size – they are smaller

than iBATIS – and by these systems having experienced only

post-release evaluation. A total of 83 faults in iBATIS (20.8 faults

on average per release) and 104 considering all systems have been

documented. In-depth analyses of the reported faults drive the

discussion presented in Section 5.

.

Table 2. Fault distribution per category in iBATIS.

01 01.3 01.5 02

Pointcut-related 10 2 1 5 18 4.5

ITD-related 5 2 1 6 14 3.5

Advice-related 6 4 1 4 15 3.8

Base-program related 2 1 10 23 36 9.0

Total 23 9 13 38 83 20.8

iBATIS releases
Fault Category Total Average

Table 3. Fault distribution per category in all systems.

Fault Category iBATIS MM HW Total

Pointcut-related 18 1 0 19

ITD-related 14 4 6 24

Advice-related 15 4 4 23

Base-program related 36 0 2 38

Total 83 9 12 104

4.2.2 Fault Distribution per Concern in iBATIS
Table 5 presents the fault distribution per concern in iBATIS. To
analyse this distribution, we considered only the iBATIS data set
because it contains the largest amount of faults. Moreover,
iBATIS is the only system where faults appear distributed over all
the aspectised concerns. Data sets collected for the other two
applications, on the other hand, were limited to post-release
evaluations only and are not considered in this section. The
concerns listed in Table 5 are briefly described in Table 4. Notice
that some concerns are aspectised only in releases 01.5 and 02.
Section 5.2 discusses how certain implementation characteristics
of a concern (e.g. required AOP mechanisms) may impact on the
fault-proneness of that specific concern.

66 64 64 61

0

10

20

30

40

50

60

70

80

90

100

01 04 07 10

HW releases

Generated test set

64 63 65 65

18 19 16 17

0

10

20

30

40

50

60

70

80

90

100

01 01.3 01.5 02
iBATIS releases

%
 o

f
c

o
v

e
ra

g
e

 .

Original test set Improved test set

868

893
908

885

57

63

82

98

25

8 15

800

820

840

860

880

900

920

940

960

980

1000

01 04 07 10
HW releases

225
228 231 233

9
9

7
9

12
9 8

14

200

210

220

230

240

250

260

01 01.3 01.5 02

iBATIS releases

#
 o

f
te

s
t

c
a

s
e
s

 .

pass fail error

Table 4. Concerns implemented with aspects in iBATIS.

Concern Description Release

Concurrency Ensures multiple activities and requests could be executed within the framework in a consistent manner. all

Type Mapping
Deals with the mapping of data into different formats. E.g. when data is retrieved and stored in the database, the application

checks to see if the data content is not null before proceeding with the transaction.
all

Design Patterns Subset of the Gang-of-Four design patterns such as Singleton, Observer, Adapter, and Strategy all

Error Context
ErrorContext object stores data about executing activities. This data is used and sometimes printed as an event trace in the

event of an exception.
all

Exception Handling Mechanisms that deal with to an erroneous execution flows (In Java this includes try/catch/throws and finally clauses). all

Connection, Session

& Transaction

Detected as three separate concerns, regards mechanisms that allow for database access and control. E.g. transaction

managers and SQL query runners.
01.5 and 02

141

Table 5. Fault distribution per concern in iBATIS.

01 01.3 01.5 02

CC - Concurrency 0 0 0 1 1 0.25

TM - Type Mapping 2 0 0 1 3 0.75

DP - Design Patterns 2 0 0 0 2 0.5

EC - Error Context 13 5 1 2 21 5.25

EH - Exception Handling 6 4 2 16 28 7

CN - Connection -- -- 7 10 17 8.5

SS - Session -- -- 3 3 6 3

TR - Transaction -- -- 0 3 3 1.5

OT - Others 0 0 0 2 2 0.5

Total 23 9 13 38 83 20.8

AverageConcern
iBATIS releases

Total

5. DATA ANALYSIS AND DISCUSSION
This section performs exploratory and statistical analyses of the
measures presented in Section 4. We aim at identifying AOP
properties and mechanisms that tend to yield faulty
implementations. Section 5.1 evaluates the H1 hypothesis, i.e.
how the obliviousness property impacts the correctness of AO
programs in the presence of code evolution. Section 5.2 evaluates
the H2 hypothesis in order to identify the fault-proneness of
specific AOP mechanisms. We evaluate H2 from two points of
view: considering the overall system implementation, and the
implementations of specific concerns. Both analyses for H2 are
supported by statistical tests.

For the statistical tests performed along section 5.2, we used the R
language and environment11. We use the Pearson’s chi-square
test to check whether or not there is a statistically significant
difference between the fault counts. We assume the commonly
used confidence level of 95% (that is, p-value threshold = 0.05).
The Spearman's rank correlation test is used to check how the
fault counts correlate with AOP mechanism counts. This test is
used because in our analysis the used metrics (i.e. number of
faults) are nonparametric. For evaluating the results of the
correlation tests, we adopted the Hopkins criteria to judge the
goodness of a correlation coefficient [21]: < 0.1 means trivial, 0.1-
0.3 means minor, 0.3-0.5 means moderate, 0.5-0.7 means large,
0.7-0.9 means very large, and 0.9-1 means almost perfect.

5.1 H1: The Impact of Obliviousness
Obliviousness plays a central role in AOP, but there is little

empirical knowledge on how this property actually affects the

fault-proneness under usual development settings. We then

analysed its impact on the fault-proneness of AO systems from

two viewpoints: (i) obliviousness and software evolution; and (ii)

a categorisation of obliviousness listed by Sullivan et al. [31]. The

results are following presented.

5.1.1 Obliviousness and Software Evolution
Considering the fault distribution per fault category (Tables 2 and

3) for iBATIS, the total number of faults related to the base code

was 36, what is at least twice as large as any other number of

faults within the other three categories. From these, 27 faults were

caused by either perfective or evolutionary changes within the

base code, what led pointcuts to break. They represent the largest

number amongst all fault types reported for the iBATIS system,

which in turn corresponds to 33% of the total number of faults.

This problem, usually referred to as the fragile pointcuts problem
[29], is closely related to the quantification and obliviousness

11 http://www.r-project.org/ (03/02/2010)

models implemented in AspectJ-like languages. Changing a
program requires a review of the crosscut enumerations (i.e. the
pointcuts) which conflicts with the idea of programs being
oblivious to the aspects applied to them [18]. We found that this
problem is magnified in realistic development scenarios as the one
observed in iBATIS. Several developers worked in parallel in the
iBATIS project, each of them refactoring and evolving different
crosscutting concerns into aspects. This means that obliviousness
was present not only between base code and aspects. The aspect
implementations were oblivious to each other as well. For
example, an aspect that advises a set of join points might not be
aware of other aspects inserting behaviour into the same join
points, hence rising the risk of either misbehaviour or pointcut
mismatching in the event of any code change. Partial aid currently
provided by AOP IDEs increases the developers' awareness of the
aspect effects in the base code. However, uncertainty about how
aspects indirectly interfere in the base code still remains.

We noticed this problem occurred mainly in the iBATIS system as
faults were reported during both development and assessment
phases (Section 3.3.4). Evolving some functionality necessarily
required fixing faults identified in the existing base or aspect
code. On the other hand, HW and MM implementations were
more stable and were extensively evaluated in previous research
[9, 13, 14, 16, 27]. For example, since HW had been first released,
a number of incremental and perfective changes took place [16],
what resulted in both base and crosscutting code being more
stable than in iBATIS code. Due to these refinements, HW and
MM had proportionally fewer faults in this category, most likely
due to the robustness of the code. Nonetheless, none of the three
systems have been evaluated in terms of fault-proneness, as
presented in this paper.

We further analysed the MM system this using the CIF framework
[6], and the results reinforce our findings. The majority of faults
here were sourced from areas of code where aspect interactions
occurred at runtime. For example, in 45% of cases (4 out of 9),
faults were caused due to missing declare precedence
statements. These faults resulted in arbitrary execution order of
advices that share the same join point. Obliviousness was clearly
the main reason for the introduction of faults in these cases, where
aspects were successively introduced along the development
cycles. Considering the same scenario in Java, the developers
were naturally enforced to make an explicit design decision on the
order of respective pieces of behaviour within a method.

5.1.2 Obliviousness Categories
We classified all documented faults according to the four
categories of obliviousness listed by Sullivan et al. [31]. The
summary of this categorisation is presented in Table 6. The goal
was to gather further evidence about the impact of obliviousness
on the correctness of the evaluated systems. The obliviousness
categories represent different types of information hiding. We
focused on two types of obliviousness that are relevant for the
purposes of this analysis, briefly described as follows: (i)
Language-level obliviousness is present when there is no local
notation in the code about aspect behaviour that may be inserted
at this point; and (ii) Feature obliviousness, which is present when
the base code developer is unaware of the features or the in-depth
semantics of an aspect that is advising the base code.

Even though it is impossible to be entirely sure of the true causes
of faults, we followed a set of guidelines to decide if the collected
faults were likely to have been caused by language-level and/or
feature obliviousness. In short, when behaviour is inserted at join
points via advice, we can claim that language-level obliviousness

142

is present. This is because there is no explicit call or notation of
this extra behaviour within the base code. We categorised a fault
as caused by language-level obliviousness if the fault was likely to
be avoided in case such an explicit local notation was present.
Now, let us consider a base code developer who has followed
specific design rules to expose certain join points or create hooks
for an aspect developer without full knowledge of the
implementation details of this aspect. In this case, language-level
obliviousness is not present, but feature obliviousness is. We
classify a fault as being related to feature obliviousness if, in order
for the fault to have been avoided, further attention would need to
be given to the aspect semantics.

Table 6. Faults associated with obliviousness.

Language Feature Both Language only Feature only Total

iBATIS 31 4 4 27 0 31

HW 0 3 0 0 3 3

MM 8 4 4 4 0 8

Total 8 31 3 42

System
Obliviousness Category

The results of this categorisation show that most of the faults
related to obliviousness were categorised as language-level. They
represent around 70% of all base program-related faults (i.e. 26
out of 38 – see Total column in Table 3). In regard to faults
related to feature obliviousness, they were mostly found in cases
where aspects either directly interact within the same module or
share common join points. This indicates that evolving code that
is oblivious to aspects has varying impacts on the fault-proneness
of the system. This problem was mainly observed in iBATIS, in
which faults have been reported during the evolution of the
releases. MM and HW, on the other hand, experienced only post-
release tests. Nevertheless, 11 out of 21 faults revealed for HW
and MM were assigned to obliviousness at either language-level,
feature or both (see Total column in Table 6).

To conclude, analysing the impact of obliviousness on the fault-
proneness of the evaluated systems provided us with evidences
that support the H1 alternative hypothesis (H1-1). That is,
“Obliviousness exerts impact on the fault-proneness of evolving
AO programs”. In our study, a large amount of faults (40%) could
be directly associated with the base code being oblivious to
aspects. Their majority was observed in the iBATIS evolution.
Many faults observed were also related to aspects being oblivious
to other aspects. Missing declare precedence statements were
responsible for 45% of the faults found in MM. Considering all
faults (Table 3), 11% were categorised as feature obliviousness-
related, although a much larger proportion were related to
language-level (i.e. 38%). This result is interesting because it
might further reinforce the motivation for AOP models based on
explicit class-aspect interfaces, such as XPIs [17] and EJPs [20].

5.2 H2: Fault-proneness of AOP Mechanisms
There is often an assumption that the use of pointcut languages is
the main source of faults in aspect-oriented programs [10, 12, 29].
However, there is limited understanding of the real magnitude of
pointcut faults with respect to other AOP mechanisms. The
analysis of our second hypothesis is drawn in terms of the fault
categorisation presented in Section 4. The null hypothesis (H2-0)
states that there is no significant difference amongst the fault-
proneness of core AOP mechanisms.

5.2.1 Analysing the overall fault distribution
Initially, we analyse the values presented in Table 2. Examination
of this data indicates that there is a similarity among the total

number of faults found in iBATIS, considering the first three
categories (pointcut-, advice- and ITD-related). These results
suggest these mechanisms present similar fault-proneness; that is,
none of them stands out with respect to the number of faults. To
further analyse this observation statistically, we first applied a
Pearson's chi-square test. This test checks the probability of
sample data coming from a population with a specific distribution.
If we reach a probability (p-value) higher than, say, 0.05, we can
assert with 95% confidence level that there is no reason to reject
the hypothesis that the observed data fits the given distribution. In
our case, at a confidence level of 95%, the result confirms the
uniformity of the fault frequencies among each fault category: the
p-value is evaluated to 0.7584, significantly higher than 0.05. This
is easy to see since fault counts were 18, 14, and 15; very close to
the fitted model where each category is expected to have
approximately the same number of faults (15.67 in this case). We
then applied the chi-square test to the overall fault set, considering
all target systems (i.e. the total of 104 faults presented in Table 3).
Again, assuming the confidence level of 95%, the result
corroborates the previous finding, i.e. the faults are uniformly
distributed over the three main AOP mechanisms, with p-value
being evaluated to 0.7275, again significantly higher than 0.05.

Contradicting the conventional wisdom, we have first evidence
that supports the H2 null hypothesis (H2-0) that “there is no
difference among the fault-proneness of the main AOP
mechanisms”. This is also an interesting result as many
researchers have strictly focused on improving the design of
pointcut languages (e.g. providing support for more expressive
pointcuts [5, 18, 20]). Less attention has been given to support
more robust programming with other classical AOP mechanisms.
The next section presents a more refined analysis that brings
additional evidence on the fault-proneness of such mechanisms
from a different point of view.

5.2.2 Analysing the fault distribution per concern
The analysis of fault distribution per fault category only took into
account the overall number of faults per category. This section
provides a more refined analysis about fault-proneness of AOP
mechanisms. For this, we considered certain internal details in the
implementation of each concern. We performed a correlation
analysis to gather empirical evidence of a cause-effect relationship
between the number of AOP mechanisms and defects. This is
motivated by the fact that AOP mechanisms may have individual
impact on the fault-proneness of a module, a cluster of modules
(e.g. modules that implement a given concern) or the full system.
For this analysis, we considered only the set of faults identified in
iBATIS, since it includes representatives distributed over all the
aspectised concerns (Table 4). Moreover, we also considered base
program-related faults in order to measure the impact of AOP
mechanisms in the system as a whole.

Initially, we applied the Spearman's rank correlation to check how
the overall number of AOP mechanisms (pointcuts, advices and
ITDs) per release in iBATIS (Table 7) correlates with the number
of faults in the same release. The results are presented in Table 8.
The correlation is generally low, considering all AOP
mechanisms, thus contradicting the results that regard fault
distribution per fault category (Section 5.2.1).

Table 7. Number of AOP mechanisms and faults in iBATIS.

iBATIS release Pointcuts Advices ITDs Faults

 01 97 94 79 23

 01.3 121 118 86 9

 01.5 244 240 238 13

 02 244 238 237 38

143

However, while performing such an analysis based in internal
properties of the systems, we should take into account concern-
specific characteristics. This is due to the nature of concern
implementations, which usually require subsets of AOP
mechanisms to be used together. For example, aspectising an
exception handler usually requires three coding structures in
AspectJ: a pointcut expression, a declare soft statement and
an advice. In other words, we can investigate whether the number
of pointcuts, advices and ITDs (including declare-like
mechanisms) implemented for the purposes of a concern impact
on the number of faults it presents.

Table 8. Correlation between number of faults and number of

AOP mechanisms in iBATIS releases.

Metric Coefficient P-value

POINTCUTS 0.2108185 0.7892000

ADVICES 0.0000000 1.0000000

DECLARATIONS 0.0000000 1.0000000

Hence, we checked how the number of AOP mechanisms used to
implement a concern correlates with the fault distribution per
concern. We measured the maximum and the average number of
each AOP mechanism per concern across all iBATIS releases.
Note that, for a given concern, we considered all modules (aspects
and classes) that were involved in its implementation. We applied
again the Spearman's rank correlation to the total and average
number of faults per concern across the releases. We compared
these numbers against the maximum and average number of
advices, pointcuts, and ITDs per concern across releases. With
such an analysis we can observe whether and how the usage
frequency of each AOP mechanism seems to impact on the fault
distribution per concern. We used the maximum and average
number of mechanisms across releases because they might repeat
from release to release. That is, the same pointcut implemented in
an exception handling aspect in one release may be present in the
same aspect in another release

We also chose two metrics typically applied to OO and AO
programs in order to compare the results obtained in this analysis.
These metrics are lines of code (LOC) and weighted operations
per module (WOM) [7]. WOM adapts the original weighted
methods per class (WMC) metric [8] to count methods inside
classes as well as aspect operations (i.e. advices, methods and
intertype methods). These metrics have been reported as good
fault-proneness indicators in studies that comprised OO programs
[19, 30]. Again, we considered their maximum and average values
across releases for the clusters of modules required for the
implementation of each concern.

Table 9 shows the statistics for the AOP mechanisms, LOC and
WOM metrics in iBATIS. We again adopted the confidence level
of 95%. Tables 10 and 11 present the results of the Spearman's
correlation rank run against: (i) the maximum and average number
of mechanisms across releases, and (ii) the total and average
number of faults per concern across releases. The values and
results comprising LOC and WOM metrics are also presented in
these tables.

Note that the correlation coefficient is very large for all
correlations that take into account the maximum and the average
number of pointcuts and advices. In fact, we can observe that the
correlation between the maximum number of pointcuts and advice
and the average number of faults per concern is significant. We
observed a 99% level of confidence (Table 10). For ITDs, the
correlation coefficient varies between 0.5 and 0.6, what means
moderate-to-large correlation on average if we consider a
confidence level to 85%.

Table 10. Correlation with average number of faults per

concern/release.

Metric Coefficient P-value

MAX-POINTCUTS 0.8809524** 0.0072420

MAX-ADVICES 0.8742672** 0.0045120

MAX-ITDs 0.5509081 0.1570000

MAX-LOC 0.1904762 0.6646000

MAX-WOM 0.1666667 0.7033000

AVG-POINTCUTS 0.8571429* 0.0107100

AVG-ADVICES 0.8571429* 0.0107100

AVG-ITDs 0.5714286 0.1511000

AVG-LOC 0.1904762 0.6646000

AVG-WOM 0.1666667 0.7033000

** correlation is significant at the 0.01 level

* correlation is significant at the 0.05 level

Differently from results of previous studies comprising OO
programs [19, 30], LOC and WOM metrics show non-significant
correlation with both average and maximum number of faults in
our study. These results indicate that when we consider the set of
modules involved in AO implementations of crosscutting
concerns, the internal number of AOP-specific mechanisms (i.e.
pointcuts, advices and ITDs) are good fault-proneness indicators.
Moreover, they seem to be better indicators than the traditional
LOC and WOM metrics.

While performing the analysis presented in this section, we
noticed that: (i) concern-specific characteristics define the set of
AOP mechanisms that must be used in conjunction to implement
such a concern, and (ii) given a specific concern implementation,
the usage rate of each mechanism tends to be directly proportional

Table 9. Number of AOP mechanisms, LOC and faults per concern in iBATIS.

Max Avg Max Avg Max Avg Max Avg Max Avg Total Avg

Concurrency 7 6.75 5 4.5 3 2.75 1,605 1,435 395 373 1 0.25

Type Mapping 2 2 2 2 3 3 496 496 298 298 3 0.75

Design Patterns 9 6 5 3.5 14 9.5 1,725 1,566 448 391 2 0.5

Error Context 42 26.75 45 29.75 1 0.5 2,109 1,926 450 404 21 5.25

Exception Handling 77 70.25 75 69 82 74.75 4,761 4,490 1,159 994 28 7

Connection 64 64 64 32 61 60.5 901 890 359 358 17 8.5

Session 46 45.5 46 22.75 25 25 331 325 208 203 6 3

Transaction 20 20 20 10 54 53.5 686 684 223 221 3 1.5

LOC WOM FaultsPointcuts Advices ITDs

144

to the number of faults associated with that concern, what is
supported by the correlation test results. These findings support
the H2 null hypothesis (H2-0) because the overall fault
distribution per main AOP mechanism showed to be uniform. In
addition, the usage rate of each mechanism does not vary
independently. That is, it depends on the set of concerns
aspectised within a system.

Table 11. Correlation with total number of faults per concern.

Metric Coefficient P-value

MAX-POINTCUTS 0.8263621* 0.0114400

MAX-ADVICES 0.8192771* 0.0128300

MAX-ITDs 0.3915663 0.3374000

MAX-LOC 0.3473116 0.3993000

MAX-WOM 0.3473116 0.3993000

AVG-POINTCUTS 0.8024096* 0.0165400

AVG-ADVICES 0.8024096* 0.0165400

AVG-ITDs 0.4191692 0.3013000

AVG-LOC 0.3473116 0.3993000

AVG-WOM 0.3473116 0.3993000

* correlation is significant at the 0.05 level

6. STUDY LIMITATIONS
This section discusses the study limitations based on the four
categories of validity threats described by Wohlin et al. [33]. Each
category includes a set of possible threats for an empirical study.
We identified the items within each category that might threat our
study, which are discussed in the following. For each category, we
list possible threats and the measures we took to reduce each risk.

Conclusion validity. We identified two categories in this case: (i)
reliability of measures: subjective decisions were made during the
fault classification steps, specially regarding obliviousness levels
(Section 5.1); besides, one of the target systems was evaluated
with auto-generated test cases (Section 3.3.2), what might have
risked the reliability of test results; and (ii) random heterogeneity
of subjects: evaluated systems came from different application
domains. To reduce risk (i), we designed detailed fault report
forms and defined a set of guidelines that were followed in order
to systematically classify each fault (Section 3.3.5). In regard to
the evaluation based on auto-generated tests, this technique has
previously yielded relevant results [37, 38], so it should not be
seen as a major issue. Regarding risk (ii), although the
applications’ heterogeneity is considered a threat to the conclusion
validity, it helps to promote the external validity of the study.

Internal validity. We detected two possible risks: (i) ambiguity
about direction of causal influence: the complexity of the
aspectised concerns might have made a system release more
faulty than the others; and (ii) history and maturation: HW and
MM systems have been extensively evaluated and continuously
improved through the last years, what reduced the number of
uncovered faults in such systems. Risk (i) cannot be completely
avoided as each functionality differs from the others w.r.t.
complexity. However, it was reduced because all systems were
developed and revised by experienced programmers. They used
implementation guides, design patterns or specific AOP idioms,
where applicable. Moreover, systematic regression testing helped
developers preserve the semantics of the OO counterparts. In
order to reduce risk (ii), we focused our analyses on iBATIS,
which consists in the most recent from all target systems and
yielded the largest data set to be analysed.

Construct validity. We identified the following construct validity
threats: (i) inadequate operational explanation of constructs:
unclear procedures that should be followed in the event of a fault
being uncovered might have biased the results (e.g. should the
fault be fixed? How should this fault be classified?); (ii)
confounding constructs and levels of constructs: different maturity
levels of the investigated systems impacted the number of
uncovered faults; and (iii) interaction of testing and treatment:
iBATIS developers were aware of further system evaluation. To
reduce risks (i) and (iii), we defined clear procedures and roles
that were applied throughout all study steps. In particular, iBATIS
development was strongly based on regression testing in order to
make only error-free code available in the CVS repository.
Although this approach made developers aware of the system
evaluation procedures, it was important since it enabled
developers to collect data since the early development phases.
Risk (ii), on the other hand, could not be avoided due to the few
options of medium-sized AO systems currently available for
evaluation. Such systems present different levels of maturity, what
includes varied fault rates.

External validity. The major risk here is related to the interaction
of setting and treatment: the evaluated systems might not be
representative of the industrial practice. To reduce this risk, we
evaluated systems that come from heterogeneous application
domains and are implemented with AspectJ, which is one of the
representatives in the state of AOP practice. The iBATIS system
is a widely-used open source project for object-relational
mapping. Even though HW and MM are smaller applications,
they are also heavily based on industry-strength technologies. In
addition, both systems have been extensively used and evaluated
in previous research [9, 13, 14, 16, 27]. To conclude, the
characteristics of the selected systems, when contrasted with the
state of practice in AO software development, represent a first
step towards the generalisation of the achieved results.

7. CONCLUSIONS
This paper presented an exploratory study of the fault-proneness
of AOP mechanisms used in the implementation of evolving AO
programs. We analysed three systems from different application
domains, from which we collected fault-related data upon which
we performed our analyses. The results revealed the negative
impact of obliviousness on the fault-proneness of programs
implemented with AspectJ (H1 hypothesis). More recent methods
and languages for AOP can help to ameliorate this problem.
Examples of such approaches are aspect-aware interfaces [26],
Crosscut Programming Interfaces (XPIs) [17] and Explicit Join
Points (EJPs) [20]. Although they reduce the obliviousness among
system modules, these approaches help to improve program
comprehension by making aspect-base interaction more explicit.
In particular, they tend to reduce the language-level obliviousness,
which happened to be the category with the largest number of
faults in our study.

As far as the H2 hypothesis is concerned, we did not confirm the
common intuition that defining pointcuts is the most fault-prone
scenario in AOP. There was no AOP mechanism that stood out as
the main responsible for the detected faults. We also argue that
this correlational study provides a good lead for more probing
controlled experiments to investigate this issue further.
Nevertheless, recent research on fault taxonomies and testing
approaches for AO software has mainly focused on pointcuts as
the key bottleneck in AOP [3, 4, 10, 12]. However, the results
obtained for the H2 hypothesis motivate more intensive research
on the testing support for other AOP mechanisms beyond pointcut
expressions, such as intertype declarations and advice.

145

We believe that these study outcomes are helpful in several ways,
such as: (i) providing information about harmful AOP
mechanisms; (ii) supporting testing processes by pinpointing
recurring faulty scenarios; and (iii) enhancing the general
understanding towards robust AOP, so that other controlled
experiments can be derived in our future research.

8. ACKNOWLEDGMENTS
We would like to thank the iBATIS AO developers Elliackin
Figueiredo, Diego Araujo, Marcelo Moura and Mário Monteiro.
We also thank Andrew Camilleri for his valuable help while
analysing the MobileMedia system with the CIF framework.

The authors received full of partial funding from the following
agencies and projects: Fabiano Ferrari: FAPESP (grant
05/55403-6), CAPES (grant 0653/07-1) and EC Grant AOSD-
Europe (IST-2-004349); Alessandro Garcia: FAPERJ (distin-
guished scientist grant E-26/102.211/2009), CNPq (productivity
grant 305526/2009-0 and Universal Project grant 483882/2009-7)
and PUC-Rio (productivity grant); Rachel Burrows: UK EPSRC
grant; Otávio Lemos: FAPESP (grant 2008/10300-3); Sergio
Soares: CNPq (grant 309234/2007-7) and FACEPE (grant APQ-
0093-1.03/08); José Maldonado: EC Grant QualiPSo (IST-FP6-
IP-034763) and CNPq; Other authors: CAPES and CNPq, Brazil.

9. REFERENCES
[1] Aldrich, J. 2004. Open Modules: Reconciling Extensibility

and Information Hiding. In: SPLAT AOSD’04 Workshop.

[2] Alexander, R. T., et al. 2004. Towards the Systematic

Testing of Aspect-Oriented Programs. Report CS-04-105,

Colorado State University, Fort Collins-USA.

[3] Anbalagan, P., and Xie, T. 2008. Automated Generation of

Pointcut Mutants for Testing Pointcuts in AspectJ Programs.

In: ISSRE’08. 239-248.

[4] Bækken, J. S., and Alexander, R. T. 2006. A Candidate

Fault Model for AspectJ Pointcuts. In: ISSRE’06. 169-178.

[5] Cacho, N., Filho, F. C., Garcia, A., and Figueiredo, E. 2008.

EJFlow: Taming Exceptional Control Flows in Aspect-

Oriented Programming. In: AOSD’08. 72-83.

[6] Camilleri, A., Coulson, G., Blair, L. 2009. CIF: A

Framework for Managing Integrity in Aspect-Oriented

Composition. In: TOOLS’09. 16-26.

[7] Ceccato, M., and Tonella, P. 2004 Measuring the Effects of

Software Aspectization. In: 1st Workshop on Aspect Reverse

Engineering (ARE).

[8] Chidamber, S.R., and Kemerer, C.F. 1994. A Metrics Suite

for Object-Oriented Design. IEEE Transactions on Software

Engineering 20 (6). 476-493.

[9] Coelho, R., et al. 2008. Assessing the Impact of Aspects on

Exception Flows: An Exploratory Study. In: ECOOP’08.

(LNCS, vol. 5142). 207-234.

[10] Delamare, R., Baudry, B., Ghosh, S., Le Traon, Y. 2009. A

Test-Driven Approach to Developing Pointcut Descriptors in

AspectJ. In: ICST’09. 376-385.

[11] Eaddy, M., et al. 2008. Do Crosscutting Concerns Cause

Defects? IEEE Transactions on Software Engineering 34 (4).

497-515.

[12] Ferrari, F., Maldonado, J., and Rashid, A. 2008. Mutation

Testing for Aspect-Oriented Programs. In: ICST’08. 52-61.

[13] Figueiredo, E., et al. 2008. Evolving Software Product Lines

with Aspects: An Empirical Study on Design Stability. In:

ICSE’08. 261-270.

[14] Filho, F. C., et al. 2006. Exceptions and Aspects: The Devil

is in the Details. In: FSE’06. 152-162.

[15] Filman, R. E., and Friedman, D. 2004. Aspect-Oriented

Programming is Quantification and Obliviousness. In:

Aspect-Oriented Software Development. Addison-Wesley.

[16] Greenwood, P., et al. 2007. On the Impact of Aspectual

Decompositions on Design Stability: An Empirical Study. In:

ECOOP’07 (LNCS, vol.4609). 176-200.

[17] Griswold, W. G., et al. 2006. Modular Software Design with

Crosscutting Interfaces. In: IEEE Software 23(1). 51-60.

[18] Gybels, K., and Brichau, J. 2003. Arranging Language

Features for More Robust Pattern-Based Crosscuts. In:

AOSD’03. 60-69.

[19] Gyimóthy, T., Ferenc, R., and Siket, I. 2005. Empirical

Validation of Object-Oriented Metrics on Open Source

Software for Fault Prediction. IEEE Transactions on

Software Engineering 31 (10). 897-910.

[20] Hoffman, K., and Eugster, P. 2007. Bridging Java and

AspectJ through Explicit Join Points. In: PPPJ’07. 63-72.

[21] Hopkins, W. G. 2003. A New View of Statistics. Sport

Science, http://www.sportsci.org/resource/stats (01/09/2009)

[22] iBATIS Data Mapper - http://ibatis.apache.org/ (01/09/2009).

[23] Johnson, R., et al. 2007. Spring - Java/J2EE application

framework. Ref, Manual Version 2.0.6, Interface21 Ltd.

[24] Kastner, C., Apel, S., and Batory, D. 2007. A Case Study

Implementing Features Using AspectJ. In: SPLC’07. 223-

232.

[25] Kiczales, G., et al. 1997. Aspect-Oriented Programming. In:

ECOOP’97 (LNCS, vol. 1241). 220-242.

[26] Kiczales, G., and Mezini, M. 2005. Aspect-Oriented

Programming and Modular Reasoning. In: ICSE’05. 49-58.

[27] Soares, S., Laureano, E., and Borba, P. 2002. Implementing

Distribution and Persistence Aspects with AspectJ. In:

OOPSLA’02. 174-190.

[28] Steimann, F. 2006. The Paradoxical Success of Aspect-

Oriented Programming. In: OOPSLA’06. 481-497.

[29] Stoerzer, M., and Graf, J. 2005. Using Pointcut Delta

Analysis to Support Evolution of Aspect-Oriented Software.

In: ICSM’05. 653-656.

[30] Subramanyam, R., and Krishnan, M. S. 2003. Empirical

Analysis of CK Metrics for Object-Oriented Design

Complexity: Implications for Software Defects. IEEE

Transactions on Software Engineering. 29 (4). 297-310.

[31] Sullivan, K., et al. 2005. Information Hiding Interfaces for

Aspect-Oriented Design. In: ESEC/FSE’05. 166-175.

[32] The AspectJ Project. http://www.eclipse.org/aspectj/

[33] Wohlin, C., et al. 2000. Experimentation in Software

Engineering - An Introduction. Kluwer Academic Publishers.

[34] Xie, T., and Zhao, J. 2006. A Framework and Tool Supports

for Generating Test Inputs of AspectJ Programs. In:

AOSD’06. 190-201

[35] Huang, S. S., Smaragdakis, Y. 2006. Easy Language

Extension with Meta-AspectJ. In: ICSE’06. 865-868

[36] Zhang, S., and Zhao, J. 2007. On Identifying Bug Patterns in

Aspect-Oriented Programs. In: COMPSAC’07. 431-438.

[37] Csallner, C., and Smaragdakis, Y. 2005. Check 'n' crash:

combining static checking and testing. In: ICSE’05, 422-431.

[38] Harman, M., et. al. 2009. Automated test data generation for

aspect-oriented programs. In: AOSD’09. 185-196.

146

Appendix

B
Paper: Characterising Faults in Aspect-

Oriented Programs: Towards Filling the

Gap between Theory and Practice

This appendix presents the full contents of a paper published in the Proceedings of the

24th Brazilian Symposium on Software Engineering (SBES’10). An overview of this work

was provided in Chapter 3 of this dissertation. A copyright notice in regard to it is next

shown.

IEEE COPYRIGHT NOTICE1:“Personal use of this material is permitted. How-

ever, permission to reprint/republish this material for advertising or promotional purposes

or for creating new collective works for resale or redistribution to servers or lists or to

reuse any copyrighted component of this work in other works must be obtained from the

IEEE.”

1http://www.ieee.org/portal/cms_docs/pubs/transactions/auinfo03.pdf - last accessed on
17/08/2010.

147

http://www.ieee.org/portal/cms_docs/pubs/transactions/auinfo03.pdf

Characterising Faults in Aspect-Oriented Programs:
Towards Filling the Gap between

Theory and Practice
Fabiano C. Ferrari∗, Rachel Burrows†�, Otávio A. L. Lemos‡, Alessandro Garcia† and José C. Maldonado∗

∗Computer Systems Department – University of São Paulo (ICMC-USP) – São Carlos – Brazil
Email: {ferrari,jcmaldon}@icmc.usp.br

†Informatics Department – Pontifical Catholic University of Rio de Janeiro (PUC-Rio) – Rio de Janeiro – Brazil
Email: r.burrows@comp.lancs.ac.uk, afgarcia@inf.puc-rio.br

‡Department of Science and Technology – Federal University of São Paulo (UNIFESP) – S. J. Campos – Brazil
Email: otavio.lemos@unifesp.br

Abstract—Since the proposal of Aspect-Oriented Program-
ming, several candidate fault taxonomies for aspect-oriented
(AO) software have been proposed. Such taxonomies, however,
generally rely on language features, hence still requiring practical
evaluation based on realistic implementation scenarios. The
current lack of available AO systems for evaluation as well as
historical data are the two major obstacles for this kind of study.
This paper quantifies, documents and classifies faults uncovered
in several releases of three AO systems, all from different applica-
tion domains. Our empirical analysis naturally led us to revisit
and refine a previously defined fault taxonomy. We identified
particular fault types that stood out amongst the categories
defined in the taxonomy. Besides this, we illustrate recurring
faulty scenarios extracted from the analysed systems. We believe
such scenarios should be considered for the establishment of
testing strategies along the software development process.

I. INTRODUCTION

Software faults are artefacts that have been widely studied
by researchers over the years. Among other types of study,
some authors have analysed how specific programming fea-
tures can be sources of faults in software systems [1]. Others
have empirically studied how different types of faults appear
in the context of real software development projects [2, 3, 4].
This type of fault characterisation is important because it
provides empirical evidence on how software faults actually
occur, as opposed to theoretical fault taxonomies that are based
solely on the characteristics of programming languages or
development approaches.

Specifically for Aspect-Oriented Programming (AOP) [5],
which is a contemporary software development approach,
most of research related to software faults has targeted the
classification of faults based on programming features [6], but
not on empirical analysis of real software development data.
Consequently, there is an open research question related to
the characterisation of real faults in AOP. So far, the several
candidate fault taxonomies, [7, 8, 9, 10, 11, 6, 12] and bug
pattern catalogues [13, 14] are either only based on language
features or limited to specific programming mechanisms. Thus,
there is still a lack of studies that quantify and, equally
importantly, characterise faulty implementation scenarios in
AO programs. Results of such kind of studies could motivate
�Also affiliated with Lancaster University, UK.

the definition of fault models for AO software as well as the
adoption of AOP in real-world software projects.

Although a number of industry-strength frameworks that
support or employ AOP are emerging, such as JBoss AOP
and Demoiselle [15], we can still notice some scepticism of
practitioners; this results in the cautious adoption of AOP by
the industry [16]. Therefore, it is still hard to find AOP-based
software projects with systematic documentation of faults.
Nevertheless, building a body of knowledge about recurring
mistakes programmers make while developing AO software
is an important matter that would enable, mainly: (i) a better
understanding of harmful AO implementation scenarios; and
(ii) the definition of testing strategies with focus on recurring
faulty scenarios.

Concerned with the aforementioned issues, this paper
presents the results of a study of faults in AO programs which
has the following main goals: (i) quantifying and categoris-
ing faults in AO programs according to a fine-grained fault
taxonomy; and (ii) characterising recurring faulty scenarios of
AOP. Our empirical analysis naturally resulted in a refinement
a previously defined taxonomy [6] based on recurring observed
fault scenarios. To achieve these goals, we analysed several
releases of three available AO systems and, by means of
testing and code analysis, we quantified and reported faults
during varied evaluation phases. Each analysed system comes
from a different application domain and has been extensively
analysed in previous research [17, 18, 14, 19, 20, 21]. We
classified the faults uncovered from these systems according
to the proposed fault taxonomy. The fault types included in
the taxonomy are split into four categories, which encompass
faults that are likely to result from the inherent complexity
and consequent misuse of the main AOP mechanisms.

The results revealed that a subset of fault types stood
out when compared to faults within a given category. We
also identified and described implementation scenarios that
are representatives for them. We believe these results can
be of help for the definition of testing strategies that focus
on particular implementation scenarios. In a more general
perspective, these results represent a step towards enhancing
the general understanding about robust AOP, from which
controlled experiments can be derived.

149

The remainder of this paper is organised as follows: Section
II presents the background for the research. Section III brings
details of the fault taxonomy for AO software. The study
setup is described in Section IV. The results of the fault
quantification and characterisation are presented in Sections
V and VI, respectively. The limitations of this study and a
summary of related research come in Section VII. Finally,
Section VIII brings our conclusions and future work.

II. BACKGROUND

A. AOP and AspectJ

Aspect-Oriented Programming (AOP) [5] arose in the late
90’s as a possible solution to enhance software modularisation.
It was mainly motivated by the fact that traditional approaches
(e.g. procedural and object-oriented programming) could not
satisfactorily cope with crosscutting concerns (hereafter called
cc-concerns). Non-cc-concerns, on the other hand, compose
the base code of an application and comprise the set of
functionalities that can be modularised within conventional
implementation units (e.g. classes and data structures).

AOP is strongly based on the idea of separation of concerns
(SoC), which claims that computer systems are better devel-
oped if their several concerns are specified and implemented
separately [22]. Such separation is achieved by means of
new conceptual1 modular units called aspects [5], which
encapsulate code that usually appears either scattered over
several modules in a system or tangled with code that realise
other concerns – i.e. aspects encapsulate the cc-concerns.

In an AOP system, the behaviour implemented within an
aspect runs when specific events – the joint points (JPs) –
occur during the program execution. Typical examples of JPs
are a method call, a method execution or a field access. In
AspectJ [23], which is the most popular Java-based AOP lan-
guage, a pointcut expression (or pointcut designator – PCD)
selects a set of JPs by means of declarative expressions. A
PCD is generally formed by patterns (e.g. method signatures)
and predicates. The JP model together with the PCD im-
plement a quantification mechanism that enables crosscutting
behaviour to run at several JPs during the software execution.
The PCDs are bound to advices, which consist of method-
like portions of code that implement crosscutting behaviour.
AspectJ also allows static modifications of class structure and
hierarchy through inter-type declarations (ITDs) and other
declare-like expressions. For a complete list of AspectJ
features, the reader may refer to the AspectJ project website2.

B. Fault Taxonomies for AO Software

The concepts and elements introduced by AOP represent
new potential sources of faults [7], hence posing new chal-
lenges for software quality assurance activities such as testing
and debugging. For example, faults can arise from crosscutting
behaviour or from aspects–base program interactions. Con-
cerned with these issues, several authors have proposed AOP-
specific fault taxonomies during the last years.

1An aspect can be a conceptual unit since symmetric AOP approaches ide-
ally do not require new software entities to implement crosscutting behaviour.

2http://www.eclipse.org/aspectj/ - accessed on 28/07/2010

The first initiative was presented by Alexander et al. [7],
who identified possible sources of faults in AO programs. For
instance, a fault may reside in a portion of the base program
not affected by an aspect, or it may be related to an emergent
property created by aspect-base program interactions. Besides,
the authors proposed a high-level fault taxonomy for AspectJ-
like programs. For instance, incorrect strength of PCD patterns
may lead to faulty PCDs that select unintended sets of JPs.
Other types of faults include the arbitrary execution order
of advices that share common JPs and failures to establish
expected post-conditions and invariants, when an aspect break
contracts established in the software specification. Other au-
thors [11, 13, 24] also defined AOP-specific fault types which
partially overlap Alexander et al.’s taxonomy [7], although
also characterising additional fault types.

In the next section, we present a comprehensive fault
taxonomy for AO software that is based on an extensive
survey of AOP-specific fault types. We briefly introduced this
taxonomy in our previous research [6] and discussed possible
generalisations for varied AOP supporting technologies. In the
next section we provide more details of each fault type and
generic examples of how they can appear in AO programs.
This taxonomy is used in the remaining sections of this
paper to support quantitative and descriptive analysis or faults
extracted from real-world AO systems.

III. A FAULT TAXONOMY FOR AO SOFTWARE

In our previous research [6], we introduced a fault tax-
onomy for AO software that was built upon the results of
a systematic literature review of AO testing [25, 26]. The
taxonomy includes fault types that have been characterised by
several authors along with some types identified by ourselves.
They are distributed across four main categories which were
defined based on the main elements involved in an AO
software, namely: (1) pointcut expressions; (2) ITDs and other
declarations; (3) advice definitions and implementations; and
(4) the base program.

In this section we refine the description of each fault type
along with simple examples of how the faults can occur in
AO programs. Real examples that we extracted from AspectJ
systems and classified according to the taxonomy are presented
further in Section VI. We call the reader’s attention to the fact
that, to date, research on fault taxonomies for AO software
has mostly been based on researchers’ expertise and relies
on mechanisms and characteristics of AspectJ-like languages.
Nevertheless, we could observe that AO software implemented
with support of other AOP technologies (e.g. Spring AOP and
JBoss AOP) is also prone to the majority of the characterised
fault types. More information about the generalisation of the
taxonomy can be found elsewhere [6].

Group F1 – Faults related to PCDs: faults of this type are
mostly related to sentences that define PCDs. For instance, a
fault may occur due to the misuse of a wildcard or due to an
incorrect pattern definition, resulting in incorrect JP matchings.
The following fault types belong to this group:

F1.1: Selection of a superset of intended JPs. Example: a
PCD is defined to pick JPs from a type A, however
the intended type is a specific subtype of A. In this

150

case, other subtypes of A that also offer similar JPs
are affected as well.

F1.2: Selection of a subset of intended JPs. Example: a
PCD is expected to match all executions of methods
of a type A, however the PCD is incorrectly defined
thus matching only some of A’s method executions
(e.g. due to a missing “*” wildcard).

F1.3: Selection of a wrong set of JPs, which includes both
intended and unintended items. Example: a PCD is
defined to pick JPs from two types A and B, however
only JPs of A should be selected.

F1.4: Selection of a wrong set of JPs, which includes only
unintended items. Example: a PCD is defined to pick
JPs from a type B, however only JPs from a different
type (let us say A) should be selected.

F1.5: Incorrect use of a primitive PCD. Example: the
execution primitive PCD should have been used in
place of a call, thus resulting in undesired execution
context.

F1.6: Incorrect PCD composition rules. Example: A com-
pound PCD P1 is formed by two other PCDs P2

and P3, however P1 should be composed by P2 and
another PCD P4.

F1.7: Incorrect JP matching based on exception throwing
patterns. Example: The signature of an advice in-
cludes exceptions of types Ex1 and Ex2 that might be
thrown by that advice. However, the intended advised
JPs only throw exceptions of type Ex3. The side-
effect of this fault is a selection of a subset of JPs
(i.e. F1.2).

F1.8: Incorrect JP matching based on dynamic circum-
stances. Example: a PCD contains an if primitive
PCD whose predicate is incorrectly defined, thus
resulting in incorrect JP matching during the system
execution.

Group F2 – Faults related to ITDs or other declare-like
expressions: in general, faults of this group may occur due
to incorrect static modifications of the base code made by
aspects. They might result from the lack of knowledge about
the structure of the base program (e.g. its class hierarchy) and
might be detected through static analysis of the code. The
following fault types belong to this group:

F2.1: Improper method introduction, resulting in unantic-
ipated method overriding or not resulting in antic-
ipated method overriding. Example: a method with
incorrect name m is introduced into a class C, thus
overriding an original method within C.

F2.2: Introduction of a method into an incorrect class.
Example: a method m is unexpectedly introduced into
a class C, thus resulting in undesired functionality
available from C and possibly for its children.

F2.3: Incorrect change in class hierarchy through parent
declaration clauses V (e.g. “declare parents”
statements), resulting in unintended inherited be-
haviour for a given class. Example: a class C1 is
incorrectly declared as child of a class C2.

F2.4: Incorrect method introduction, resulting in unex-
pected method overriding. Example: differently from

fault F2.1, a method m has the correct name, however
m is introduced into an unexpected class C, thus
incorrectly overriding the C’s original method.

F2.5: Omitted declared interface or introduced interface
which breaks object identity. Example: an aspect A
misses a declare parents statement that would
specify an interface that should be implemented by
a given class.

F2.6: Incorrect changes in exception-dependent control
flow, resulting from aspect-class interactions or from
clauses that alter exception severity. Example: An
exception e, which may be thrown at a specific JP,
is softened (e.g. by a declare soft statement) and
no specific handler is defined for it, thus e becomes
uncaught.

F2.7: Incorrect or omitted aspect precedence declaration.
Example: a JP is advised by two advices a1 and a2,
however a1 and a2 run in arbitrary order.

F2.8: Incorrect aspect instantiation rules and deployment,
resulting in unintended aspect instances. Example: a
new instance of an aspect A is incorrectly created
for every JP selected by a PCD (e.g. by a perthis
clause).

F2.9: Incorrect policy enforcement rules supported by
warning and error declarations. Example: a compi-
lation warning message is shown when specific JPs
are matched in the base program (e.g. by a declare
warning clause).

Group F3 – Faults related to advice definition and im-
plementation: faults of this type may occur due to misunder-
standings of system requirements or due to incorrect definition
of advices. The following fault types belong to this group:

F3.1: Incorrect advice type specification Example: an ad-
vice which should run before a JP is actually running
after the JP.

F3.2: Incorrect control or data flow due to incorrect aspect-
class interactions. Example: incorrect execution of
the base program behaviour through the invocation
of the proceed statement.

F3.3: Incorrect advice logic, resulting in invariants viola-
tions or failures to establish expected postconditions.
Example: portions of the base program code are
refactored out to an advice a, however a fails to
behave as expected.

F3.4: Infinite loops resulting from interactions among ad-
vices. Example: a circular dependency between two
advices a1 and a2 is created, thus resulting in infinite
loops.

F3.5: Incorrect access to JP static information. Example:
unintended static information is extracted from a JP
(e.g. by accessing the thisJoinPointStaticPart
special variable) and used within the advice.

F3.6: Advice bound to incorrect PCD. Example: an advice
a is bound to a PCD p1 instead of the intended PCD
p2, thus a runs at unintended JPs.

Group F4 – Faults related to the base program: faults
of this type may occur due to the lack of knowledge about
aspects which will be woven into the base program or due to

151

the software evolution process.
F4.1: The base program does not offer required JPs in

which one or more foreign aspects were designed
to be applied. Example: an aspect A is expected to
be applied to a class C that extends the base program,
however C does not offer the intended JPs.

F4.2: The software evolution causes PCDs to break. Ex-
ample: an AO system evolves and a PCD defined in
an aspect A becomes obsolete, no longer picking out
JPs that A should advise.

F4.3: Other problems related do base programs such as
inconsistent refactoring or duplicated crosscutting
code. Example: an exception handler is refactored
out to an aspect, however it is also left (i.e. dupli-
cated) in the base program, thus the original handler
becomes obsolete (i.e. unreachable).

Additional Notes: Recently, some authors [14, 27] have pro-
posed additional fault taxonomies and bug pattern catalogues
that were not available by the time we defined the above
fault categories and types. Nevertheless, the fault types charac-
terised by them either can be directly mapped to our taxonomy
or consist in complex faulty implementation scenarios that
can be decomposed into simpler faults that belong to one of
the aforementioned groups. For example, Coelho et al. [14]
defined a set of bug patterns related to exception handling
in AO systems. One of these patterns, the Inactive Aspect
Handler, has as its main cause an incorrect pointcut definition
that can be mapped to the faults F1.3 or F1.4. Another bug
pattern, the Obsolete (or Outdated) Handler in the Base Code,
consists in a typical inconsistent refactoring, thus mapped to
the fault F4.3.

IV. COLLECTING FAULTS FROM AO PROGRAMS

A. Target Systems

The three medium-sized applications used in this study
are from significantly different application domains. The first
application used in this study, iBATIS [28], is a Java-based
open source framework for object-relational data mapping.
The second application is HealthWatcher (HW) [21], a typical
Java web-based information system. The third is MobileMedia
(MM) [20], a software product line for mobile devices that
allows users to manipulate image files in different mobile
devices. The choice for these applications was motivated by
the wide range of different fine-grained and coarse-grained
changes (e.g. refactorings and functionality increments or
removals) found across the selected releases.

Along the evolution of these applications, a subset of
cc-concerns, both functional and non-functional, was aspec-
tised [19, 20, 21]. Examples of such concerns include certain
design patterns, persistence, exception handling (all applica-
tions); concurrency (HW and iBATIS) and other application-
specific concerns such as error context (iBATIS) or copy media
(MM). Besides, the three systems are rich in kinds of non-cc-
concerns and cc-concerns.

From hereafter, we refer to the AO versions of the target
systems by their simple names or abbreviations, i.e. iBATIS,
HW and MM. Four releases of iBATIS were considered in

TABLE I
TARGET SYSTEMS

iBATIS HealthWatcher MobileMedia

Application type data mapper health vigilance product line
framework application for mobile data

Code availability Java/AspectJ Java/AspectJ Java/AspectJ

of releases 60 / 4 10 / 10 10 / 10
Selected releases 4 4 4
Avg. KLOC 11 6 3
Avg. # of modules∗ 264 132 39
Avg. # of aspects 46 23 10
Evaluation testing testing interference

procedure analysis
∗Interfaces, classes and aspects.

our evaluation, namely iBATIS 01, 01.3, 01.5 and 02. We also
analysed four HW releases – HW 01, 04, 07 and 10 – and
four MM releases – MM 01, 02, 03 and 06. Table I shows
some general characteristics of the three target applications.
For more information about each of them, the reader may refer
to the respective placeholder websites or to previous reports
of these systems [19, 20, 21].

The evaluation procedures were defined according to the
system characteristics and available information as follows:

1) iBATIS Evaluation: The iBATIS system has experienced
two testing phases: pre-release and post-release testing. De-
velopers aimed at producing defect-free code to be committed
to a CVS repository. Pre-release testing was performed by
executing original OO JUnit tests available with the appli-
cation. Any abnormal behaviour when regressively testing
the AO version of a given release was investigated. When
a fault was discovered, it was documented in an appropriate
detailed report. Post-release testing, on the other hand, aimed
at assessing the implementation through the enhancement of
the original test sets. The enhanced tests were executed against
both OO and AO versions of a given release. A fault should
only be reported if it was noticed in the AO version but not
in the OO counterpart. This procedure ensured that only faults
introduced during the aspectisation process would be reported
for further analysis.

2) HW Evaluation: HW was tested in a single phase in
our study given that initial tests have already been performed
during its development. However, people who were involved
in the original tests were unaware of further analyses as the
one performed in this paper, thus faults have not been properly
documented. Hence, the testing of HW was extended to cover
the assessment (post-release) phase, thereby improving the
degree of test coverage. Differently from iBATIS, however,
no original test set was made available. Thus a full test
set was built from scratch based on the system specification
and code documentation. In order to reduce test effort and
avoid systematic bias during test creation, test cases were
automatically generated with adequate tooling support. As well
as for iBATIS, a fault should only be reported if it was noticed
in the AO version but not in the OO counterpart, and all
uncovered faults were similarly reported.

3) MM Evaluation: As well as HW, MM has not been
developed with awareness of further fault-based evaluation.
Moreover, post-release tests during the system evolution and

152

maintenance only revealed faults related to robustness (e.g.
data input validation), however not necessarily being related to
AOP mechanisms. Despite this, we have evaluated MM using
the Composition Integrity Framework (CIF) [29]. CIF helped
us identify problems in aspect interactions established either
between aspects and base code or among multiple aspects.
Since MM is a software product line and includes mandatory,
optional and alternative features, CIF was applied in varied
configurations of MM. In doing so, we were able to derive a
set of faults that resulted from a broad range of aspect-oriented
compositions.

Every fault identified during pre-release or post-release test-
ing was documented in a customised report form. During the
assessment phase, the testers provided as much information as
possible, with special attention to the test case(s) that revealed
the fault (if applicable) and the fault symptom. In addition, the
tester provided some hints about the fault location. Then, this
report was forwarded to the original developers, who were
responsible for concluding the fault documentation.

B. Fault Classification Procedures
After the fault documentation step, each fault was classified

according to the fault taxonomy for AO software proposed
in Section III. The customised fault report form included
appropriate fields for this step.

In order to systematically classify every fault, we took
into account the fault origin (or root cause) and not only
consequent side-effects. The classification based on the first
three categories (i.e. PCD-, ITD- and advice-related) was
generally straightforward. For instance, it was relatively easy
to identify mismatching PCDs (e.g. fault types F1.1 and F1.2),
misuse of declare-like expressions (e.g. fault types F2.6 and
F2.7) and incorrect advice types (e.g. fault type F3.1). Base
program-related faults, on the other hand, required more in-
depth analysis and reasoning about them. For example, base
code changes that result in broken PCDs should be classified
as base program-related (i.e. Group 4) although their side-
effects consists in unmatched JPs, what might lead to such
faults being classified within Group 1, i.e. PCD-related faults.

V. QUANTIFYING FAULTS IN AO PROGRAMS

Performing the data collection procedures described in the
Section IV allowed us to identify a total of 104 faults from
the three target systems. Note that the highest number of
faults in iBATIS was expected because the other two systems
have already-stable, more mature implementations. They have
been available for more than four years and underwent several
corrective and perfective changes.

HW and MM have also been targeted by previous assess-
ments of other equally-important quality attributes [14, 20,
30, 21]. Thus, as the AO versions have different degrees of
stability, the results obtained from them provided support for
drawing more general findings.

The general fault distribution is displayed in Table II3 and
depicted in Figure 1. We can see that when we consider

3The total numbers of faults displayed for iBATIS and HW slightly differ
from the original totals [19]. The changes resulted from a revision of the fault
documentation/classification. Nevertheless, these differences has no significant
impact on the achieved results and conclusions.

TABLE II
FAULT DISTRIBUTION IN ALL SYSTEMS

System TotaliBATIS HW MM
PCD-related 18 2 1 21
ITD-related 12 7 4 23
Advice-related 15 5 4 23
Base program-related 35 1 0 36
Total 80 15 9 104

a coarse-grained fault categorisation – in this case based
on the main AOP mechanisms (highlighted in Table II) –
we can conclude that the mechanisms similarly impact the
correctness of evolving AO programs. This was demonstrated
with statistical significance for the analysed systems [19].
We next present the results of a refinement of this fault
classification, which consists in one of the contributions of
this paper. For that, we apply the full fine-grained taxonomy
described in Section III.

PCD-related ITD-related Advice-related
0

5

10

15

20

25

30

Fault categories

N
u

m
b

er
 o

f
fa

ul
ts

Fig. 1. Fault distribution per main AOP mechanism.

A. Fine-Grained Fault Classification
We applied our fine-grained fault taxonomy to the faults

earlier classified according to the main AOP mechanisms. The
obtained fault distribution is presented in Table III and is
depicted in Figure 24. Despite the similar fault distribution
across the main AOP constructs observed in Figure 1, we
can observe in Figure 2 that the fault counts are not evenly
distributed across the several types included in the taxonomy.
However, we can observe that the main elements are used
in similar amounts in the systems. For example, the average
number of PCDs, ITDs and advices in iBATIS is 177, 173 and
160, respectively.

Even when we look at a particular group we can notice
large differences in the amounts. For example, while some
fault types within Group 3 (i.e. advice-related faults) show
totals of 15 (F3.3) and 5 (F3.1), other types from the same
group vary between 0 and 1 (e.g. F3.4, F3.5 and F3.6).

This suggests that, even though the coarse-grained AOP
mechanisms present similar fault-proneness [19], they may
negatively impact the correctness of an AO system in particular
usage scenarios. In the remaining of this section, we point out
and analyse some key differences we observed in the fault dis-
tribution. The analysis develops from four specific viewpoints:
(i) the fault counts that stood out; (ii) the fragile pointcut
problem; (iii) static versus dynamic crosscutting behaviour;
and (iv) advice execution order.

4Note that in Figure 2 we omitted the ”F” from each fault type label in
order to improve the chart’s readability.

153

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.1 3.2 3.3 3.4 3.5 3.6 4.1 4.2 4.3
0

5

10

15

20

25

30

Fault types

N
u

m
b

er
 o

f
fa

u
lts

Fig. 2. Fault distribution per type.

TABLE III
FAULTS UNCOVERED IN THE 3 TARGET SYSTEMS.

Fault type System Total
iBATIS HW MM

PCD-related

F1.1 4 – – 4
F1.2 4 – – 4
F1.3 – – – 0
F1.4 1 – 1 2
F1.5 2 – – 2
F1.6 – – – 0
F1.7 7 – – 7
F1.8 – 2 – 2

Subtotal 18 2 1 21

ITD-related

F2.1 – – – 0
F2.2 – – – 0
F2.3 – – – 0
F2.4 – – – 0
F2.5 2 – – 2
F2.6 8 7 – 15
F2.7 – – 4 4
F2.8 2 – – 2
F2.9 – – – 0

Subtotal 12 7 4 23

Advice-related

F3.1 1 – 4 5
F3.2 – 2 – 2
F3.3 12 3 – 15
F3.4 – – – 0
F3.5 1 – – 1
F3.6 1 – – 1

Subtotal 15 5 4 24
Base program- F4.1 – – – 0
related F4.2 27 – – 27

F4.3 8 1 – 9
Subtotal 35 1 0 36
Overall total 80 15 9 104

Fault types that stood out: Within each category, some
individual fault counts stood out. In particular, faults types
F1.7, F2.6, F3.3 and F4.2 showed the highest number of
occurrences when we consider the three analysed systems.
Together, they account for 61% of all faults reported in our
study. The three first types are analysed in the sequence, while
F4.2 is discussed further in this subsection.

Aspectising concerns such as exception handling (iBATIS,
HW and MM) and error context (iBATIS) required several
portions of code being moved from classes to aspects as well

as the definition of PCDs and advices to properly deal with
exceptional scenarios. Identifying JPs that include exception
flow information resulted in several faults in the AO versions
of iBATIS. For example, faults of type F1.7, which represent
7% of the total number of identified faults, regard JP selection
based on exception throwing patterns. Mistakes in the pattern
definition resulted in inappropriate JP matchings and conse-
quent malfunction of the system under abnormal execution
circumstances (e.g. activation of advices that should help the
system recover in the event of erroneous execution).

Another recurring problem identified in iBATIS and HW
regards to use of the exception softening constructs available
in AspectJ. The misuse of these constructs is the root cause
of faults of type F2.6, what represents 14% of all faults.

We highlight that, according to previous reports of these
systems [19, 20, 21], the aspectisation of exception handlers
has as far as possible followed good practices described in
a cookbook for error handling with aspects [31]. However,
in spite of the difficulty of testing exception handling-related
code, it is typically overlooked by testing approaches, therefore
developers can fail in assuring that such code is fault-free
even with the availability of cookbooks. As a consequence,
using such constructs has been pointed out as a problematic
side-effect of aspects affecting exception-dependent code. For
example, Coelho et al. [14] characterised a bug pattern named
“Unstable Exception Interface” which states that aspect have
the “ability” of destabilising the exception interface of advised
methods. Therefore, even considering the benefits possibly
achieved with the use of aspects for exception handling
scenarios, specially regarding separation of concerns [30], we
noticed that aspects as exception handlers harm the robustness
of a system because: (i) several faults were associated with the
related constructs (see Table III); and (ii) previous research has
pointed out a large number of uncaught exceptions crosses the
system’s boundaries of AOP implementations [14].

In regard to faults of type F3,3, they also represent 14% of
all faults collected from the three systems. In iBATIS, similarly
to types F1.7 and F2.6, they are mostly associated with a
specific concern: error context. This concern has as its main
characteristic the high interactivity between base program and

154

aspects, what includes the exposure of context variables and
their manipulation. One particular characteristic of faults of
type F3.3 is that their isolation in both systems (iBATIS and
HW) required more in-depth analysis than faults of types F1.7
and F2.6. While some faults of these last two types could be
detected through static analysis of the code (e.g. to identify JP
matchings), F3.3 instances could only be detected by means
of testing and debugging.

The fragile pointcut problem: Faults of type F4.2 represent
26% of all faults documented in our study. They were mainly
caused by evolutionary changes within the base program, what
resulted in mismatching PCDs. This problem is known as the
fragile pointcut problem [32], which leads to faults during
software maintenance activities. It was particularly noticed
in the iBATIS system due to one specific reason: iBATIS
was the only system which experienced pre-release testing;
its development strategy required that every noticed fault
should be fixed before the code was committed to the CVS
repository. These faults were identified in releases 01.5 and 02
of iBATIS due to the intensive code refactoring required for the
aspectisation of persistence-related concerns, which in iBATIS
represent a set of database-related functional requirements.

One might argue that faults related to fragile PCDs should
be assigned to Group 1 (i.e. PCD-related faults). However,
given that a PCD p is correctly defined according to the spec-
ification, any modification of the base program that breaks p’s
functionality should also imply a revision of p. If this revision
is not carried out, a fault may arise in the system. However, it
should not be “blamed” on p but on the base program itself,
since p still conforms to the original specification.

Static versus dynamic crosscutting: We noticed significant
differences between the fault counts associated with elements
that implement the two models of crosscutting in the analysed
systems: static and dynamic crosscutting [33]. While the
former is generally realised through ITDs (e.g. class member
introductions), the latter is implemented within advices that
are triggered at runtime.

Faults related to static crosscutting range from types F2.1
to F2.5. Only 2 occurrences were identified in the iBATIS
system. Such low number can be explained by the fact that, in
general, those fault types can be detected at compilation time
(e.g. a missing class member that should have been introduced
by an aspect). Advice-related faults, on the other hand, account
for 23% of the total (24 out of 104 faults). Differently from
faults related to static crosscutting, they can mainly be detected
during the software execution.

Advice execution order: The aspect interference analysis
performed in the MM system revealed 4 faults of type F2.7 and
4 of type F3.1. They are all related to the advice execution
order. One characteristic of this system is that independent
features implemented within aspects (e.g. photo and SMS)
share common JPs in the base program. In iBATIS and HW,
on the other hand, despite the occurrences of shared JPs, they
are usually shared between aspects that implement inter-related
concerns, e.g. exception handling and error context in iBATIS,
and design patterns in HW. These awareness among concerns

might have reduced the frequency of faults of this nature.

VI. RECURRING FAULTY SCENARIOS AND EXAMPLES

This section presents examples of recurring faults we identi-
fied during the course of this study. We selected representatives
of all fault groups defined in Section III, extracted from the
three analysed systems. Additionally, we enumerate the main
steps that might have led to such faults and, therefore, should
be double-checked in order to reduce the risks of new fault
introductions.

A. Pointcut-Related Faults
As described in Section III, PCD-related faults typically

come from unintended JPs matchings. Despite the visual aid
provided by existing IDEs w.r.t. this (e.g. AJDT5), the accuracy
of the displayed information is not fully reliable thus requiring
developer’s interference (e.g. frequent “refresh” actions and
manual inspection). As a consequence, faults can still remain
in the code. Some PCD-based testing approaches have been
recently proposed [6, 34, 35], however they still require proper
evaluation.

Figure 3 shows a F1.7 instance that was identified in
iBATIS. The declare soft statement in line 5 softens6

Exception instances that may be thrown at JPs selected by
the PCD defined in lines 2-3. However, the after throwing
advice still expects to advise JPs where Exception instances
may be thrown, hence this advice is never triggered.

 1 public pointcut afterPropertyAccessPlanSetProperties():
 2 execution(public void
 3 PropertyAccessPlan.setProperties(Object, Object[]));
 4

 5 declare soft : Exception :
 6 afterPropertyAccessPlanSetProperties();
 7

 8 after() throwing(Exception e) throws NestedRuntimeException:
 9 afterPropertyAccessPlanSetProperties(){
10 throw new NestedRuntimeException(
11 "Error setting properties. Cause: " + e, e);
12 }

Fig. 3. Example of a faulty PCD-related implementation scenario.

Fault-leading steps: (1) a PCD p is defined; (2) an exception
softening is implemented and bound to p; (3) an exception-
handling advice is defined and bound to p, however it relies
on an inaccurate list of possibly thrown exceptions.

B. ITD-Related Faults
Figure 4 shows an example of fault classified as F2.6,

extracted from the HW system. It consists in a typical mistake
made by programmers while aspectising exception handlers.
The HWTransactionManagement aspect softens exceptions
(lines 7-10) that might be thrown by itself (method calls in
lines 13, 17 and 21). However, no handler is defined for the
softened exceptions, neither within the same aspect nor in
some higher-level class in the method call chain.

Fault-leading steps: (1) a PCD p is defined; (2) an exception
softening is implemented and bound to p; (3) an exception-
handling advice is expected to handle the softened exception
though it is not implemented.

5http://www.eclipse.org/ajdt/ - accessed on 28/07/2010
6In AspectJ, softening an exception means that it is converted into an

unchecked, SoftException instance.

155

 1 public aspect HWTransactionManagement {
 2

 3 pointcut transactionalMethods(): execution(*
 4 HealthWatcherFacade.*(..)) &&
 5 ! execution(static * *.*(..));
 6
 7 declare soft: TransactionException :
 8 call(void IPersistenceMechanism.beginTransaction()) ||
 9 call(void IPersistenceMechanism.rollbackTransaction()) ||
10 call(void IPersistenceMechanism.commitTransaction());
11
12 before(): transactionalMethods() {
13 getPm().beginTransaction();
14 }
15
16 after() returning: transactionalMethods() {
17 getPm().commitTransaction();
18 }
19
20 after() throwing: transactionalMethods() {
21 getPm().rollbackTransaction();
22 }
23
24 public IPersistenceMechanism getPm() {
25 return HWPersistence.aspectOf().getPm();
26 }
27 }

Fig. 4. Example of a faulty exception softening implementation scenario.

Figure 5 shows another example of fault from Group
2 (type 2.7), now extracted from the MM system. In
this case, two different aspects (namely, SMSAspect and
PhotoAndMusicAspect) are advising the same JP (shadowed
in grey), however no precedence order is defined. This arbi-
trary execution order may impact future error recovery actions
in case one of the advices presents abnormal behaviour.
public privileged aspect SMSAspect {
 ...
 pointcut startApplication(MainUIMidlet middlet):

execution(public void MainUIMidlet.startApp())
&& this(middlet);

 after(MainUIMidlet middlet): startApplication(middlet) {
 ...
 }
 ...
}

public aspect PhotoAndMusicAspect {
 ...
 pointcut startApp(MainUIMidlet midlet):

execution(public void MainUIMidlet.startApp())
&& this(midlet);

 after(MainUIMidlet midlet): startApp(midlet) {
 ...
 }
 ...
}

Fig. 5. Example of unintended advice execution order .

Fault-leading steps: (1) Two PCDs p1 and p2 are defined to
match a common JP; (2) The advices that are bound to p1 and
p2 are implemented and the affected JPs are possibly verified
within each aspect; (3) The affected JPs are not verified from
the base-program side, thus they are advised in arbitrary order.

C. Advice-Related Faults

Figure 6 shows an example of fault type 3.3, which
accounts for the highest fault count within Group 3
(i.e. advice-related faults). The example was extracted
from iBATIS. The executeQueryWithCallback
method (lines 1-26) is affected by the advice listed
in lines 35-37. This advice implements Error Context
behaviour and affects executeQueryWithCallback at

several points (e.g. lines 7-8, 9 and 13-14). The two
variables highlighted in grey (i.e. errorContext and
executeUpdateErrorContext) are used inside the affected
class and the aspect, respectively, to together store the
execution trace of the executeQueryWithCallback
method. Note that executeUpdateErrorContext is
initialised with errorContext’s value in a previous class-
aspect interaction (not listed in the figure). However, an
exception is thrown at line 9 and all execution context
information stored in the executeUpdateErrorContext
variable is lost.

 1 protected List executeQueryWithCallback(parameter list)
 2 throws SQLException {
 3 ErrorContext errorContext = request.getErrorContext();
 4 try {
 5 validateParameter(parameterObject);
 6 Sql sql = getSql();
 7 ParameterMap parameterMap =
 8 sql.getParameterMap(arguments);
 9 ResultMap resultMap = sql.getResultMap(arguments);
10 request.setResultMap(arguments);
11 request.setParameterMap(arguments);
12 List resultList = new ArrayList();
13 Object[] parameters =
14 parameterMap.getParameterObjectValues(arguments);
15 ... some other code also affected by the aspect below
16 return resultList;
17 } catch (SQLException e) {
18 errorContext.setCause(e);
19 throw new NestedSQLException(errorContext.toString(),
20 e.getSQLState(), e.getErrorCode(), e);
21 } catch (Exception e) {
22 errorContext.setCause(e);
23 throw new NestedSQLException(
24 errorContext.toString(), e);
25 }
26 }
27

28 privileged aspect ErrorContextAspect
29 perthis(pointcut name) {
30 ...
31 ErrorContext executeUpdateErrorContext;
32 ...
33 pointcut callGetResultMap(): pointcut expression ;
34

35 before(): callGetResultMap(){
36 executeUpdateErrorContext.setMoreInfo(info);
37 }
38 ...
39 }

Fig. 6. Example of a faulty advice-related implementation scenario.

Fault-leading steps: (1) context information is shared between
and updated by the base code and advices; (2) the joint
execution (base program - advice behaviour) is broken in the
event of an exception and no error recovery action prevents
the partial loss of shared, updated information

D. Base Program-Related Faults
We identified F4.2 as the most representative fault type from

Group 4, i.e. base program-related faults. Figure 7 shows a
typical scenario for this problem, which was extracted from
iBATIS. The callSqlExecuteUpdate PCD picks out calls
to the sqlExecuteUpdate method that occur inside the
executeUpdate or executeQueryWithCallback methods.
Therefore, the call to sqlExecuteUpdate in the original
method (highlighted in grey) is matched by this PCD. How-
ever, sqlExecuteUpdate was refactored to expose a JP
during the aspectisation of the Connection concern. As a
result, a call to the executeUpdatePrepend replaced the
original method call, thus breaking the PCD and hence the
Error Context functionality.

156

Pointcut (ErrorContextAspect aspect)

public pointcut callSqlExecuteUpdate():
 call(protected int sqlExecuteUpdate(..)) &&
 (withincode(public int GeneralStatement.executeUpdate(..)) ||
 withincode(protected List
 GeneralStatement.executeQueryWithCallback(..)));

Original method (GeneralStatement class)

public int executeUpdate(parameters) throws SQLException {
 ...
 rows = sqlExecuteUpdate(request,
 conn, sqlString, parameters);
 ...
}

Modified method (refactored):

public int executeUpdate(parameters) throws SQLException {
 ...
 rows = executeUpdatePrepend(request,
 conn, parameters, sqlString);
 ...
}

Fig. 7. Example of a broken pointcut scenario.

Fault-leading steps: (1) a maintenance task (e.g. evolutionary
or perfective) is performed in the base code that is matched
by a PCD p; (2) no revision of p’s JP matching is performed.

VII. STUDY LIMITATIONS AND RELATED WORK

The refactoring-driven approach adopted for the develop-
ment of the analysed systems is a possible limitation of
this study. However, this has been a common practice for
the majority of AO systems developed and investigated so
far [20, 21, 36, 37], what may have acted in favour of the AO
version (i.e. less introduced faults) as it was being developed
from an already-stable architecture. On the other hand, it may
also have acted against, as the architecture in the Java version
may have restricted the AO solution as found in a case study
that refactored a legacy application from Java to AspectJ [38].

Another threat to the validity of this study regards the
size and representativeness of the evaluated systems, hence
limiting the generalisation of the results. However, they come
from heterogeneous domains and are all implemented in
AspectJ, which is the most representative language in the
state of AOP practice. iBATIS is a widely-used framework.
Moreover, despite the size of HW and MM (i.e. smaller
applications), they are also heavily based on industry-strength
technologies. Therefore, the characteristics of these systems,
when contrasted with the state of practice, represent a first
step towards the generalisation of the achieved results.

In regarding to the testing strategy applied to the systems, in
particular to iBATIS and HW, it consisted in regression testing
due to the fact that during the development, each AO release
should include exactly the same set of functionalities of its
OO counterpart. Therefore, we assumed there would not be
necessary extra tests once we achieved a good coverage for
the OO versions.

As introduced in Section V, this paper extends our pre-
vious research [19] that investigated the fault-proneness of
the major AOP mechanisms. The main difference between
the two investigations is: when considering a coarse-grained
fault classification (i.e. based on the major mechanisms), we
came up with similar fault counts for the three groups of

faults [19]. However, in this paper we considered the fine-
grained classification presented in Section III, thus looking at
particular fault types that stood out w.r.t the fault frequency.

So far, we could identify a single other quantitative study of
faulty behaviour in AO programs [14]. The authors evaluated
a set of AO systems – which includes some releases of HW
and MM – and quantified exception-dependent paths that are
likely to be problematic (e.g. resulting either in uncaught or
swallowed exceptions). In their study, a single implementation
fault may lead to several problematic exception flows. In our
study, on the other hand, we quantified the root causes of prob-
lems (e.g. a missing handler) instead of their consequences
(e.g. several uncaught exceptions).

When fault characterisation is concerned, we can identify a
few attempts in the context of AO programs. For instance,
Alexander et al. [7] were the first authors who defined a
candidate fault taxonomy for AO programs. They used simple
examples to illustrate how the fault types included in their
taxonomy can occur in AO programs. Similar work has been
done by Zhang and Zhao [13], also based on small examples.
Finally, Coelho et al. [14] defined a set of bug patterns
specific for exception handlers implemented in AspectJ. Their
discussion was supported by some examples extracted from
the HW and MM systems.

Most of the reported studies on the characterisation of
software faults are based on the C language (and previous
technologies), and are therefore built upon the procedural
development approach (i.e. it does not take into account AOP
or even OO programming). For instance, Endress [2] was
one of the first authors to classify software faults occurring
in real software projects. The fault classification is based on
primary activities of designing and implementing algorithms in
an operating system. Ostrand and Weyuker [3], on the other
hand, collected and categorised software fault data from an
interactive, special-purpose editor system. Basili and Perricone
[4] analysed a medium scale system to provide a classification
of fault data.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented the results of a study that quantified
and categorised faults in AO programs according to a fine-
grained fault taxonomy that accounts for the main AOP
mechanisms. The faults were extracted from several releases
of three AO systems and then classified according to the
varied fault types that are described in the taxonomy. The
fault taxonomy itself is also a contribution of this work. I was
introduced in our previous research [6] and refined herein. The
refinement consisted of a more detailed description of each
fault type together with the description of generic examples.

The results show that a subset of fault types stood out
within each coarse-grained fault category (e.g. pointcut- or
advice-related faults). For instance, faults that are caused by
incorrect join point matchings based on exception throwing
patterns were the most recurrent type of faults inside the
pointcut-related category. Another example regards pointcuts
that are broken due to the evolution of the base program,
therefore classified as base program-related faults. For each
fault category, we presented real examples extracted from

157

the analysed systems. They are representatives of the most
recurring fault types and illustrate the steps that led the
developer to introduce the faults into the code.

The results of this study can support the definition of testing
strategies that enforce the testing of parts of the code that are
involved in particular fault-prone scenarios, described herein.
We intend to tackle this issue in our upcoming research. In
a more general view, the results can be useful for program-
ming language designers, who can further investigate how to
improve AOP features.

ACKNOWLEDGEMENTS
We would like to thank Andrew Camilleri from Lancaster

University (UK) and Eduardo Figueiredo from UFMG (Brazil)
for their help while analysing the MobileMedia system with
the CIF framework. We also thank Nélio Cacho from UFRN
(Brazil) for his support in the HealthWatcher system analysis.

The authors received full of partial funding from the
following agencies and projects: Fabiano Ferrari: FAPESP
(grant 05/55403-6), CAPES (grant 0653/07-1) and EC Grant
AOSD-Europe (IST-2-004349); Rachel Burrows: UK EP-
SRC grant; Otávio Lemos: FAPESP (grant 2008/10300-3);
Alessandro Garcia: FAPERJ (distinguished scientist grant E-
26/102.211/2009), CNPq (productivity grant 305526/2009-
0 and Universal Project grant number 483882/2009-7), and
PUC-Rio (productivity grant) ; José Maldonado: EC Grant
QualiPSo (IST-FP6-IP-034763), FAPESP, CAPES and CNPq.

REFERENCES

[1] J. Offutt, R. Alexander, Y. Wu, Q. Xiao, and C. Hutchinson,
“A fault model for subtype inheritance and polymorphism,” in
ISSRE’01. IEEE Computer Society Press, 2001, pp. 84–93.

[2] A. Endress, “An analysis of errors and their causes in systems
programs,” IEEE Transactions on Software Engineering, vol. 2, pp.
140–149, 1978.

[3] T. J. Ostrand and E. J. Weyuker, “Collecting and categorizing soft-
ware error data in an industrial environment,” Journal of Systems
and Software, vol. 4, no. 4, pp. 289–300, 1984.

[4] V. R. Basili and B. T. Perricone, “Software errors and complexity:
An empirical investigation,” Communications of the ACM, vol. 27,
no. 1, pp. 42–52, 1984.

[5] G. Kiczales et al., “Aspect-oriented programming,” in ECOOP’97.
Springer, 1997, pp. 220–242 (LNCS 1241).

[6] F. C. Ferrari, J. C. Maldonado, and A. Rashid, “Mutation testing for
aspect-oriented programs,” in ICST’08. IEEE Computer Society,
2008, pp. 52–61.

[7] R. T. Alexander, J. M. Bieman, and A. A. Andrews, “Towards the
systematic testing of aspect-oriented programs,” Dept. of Comp,
Science, Colorado State Univ., Report CS-04-105, 2004.

[8] J. S. Bækken, “A fault model for pointcuts and advice in AspectJ
programs,” Master’s thesis, School of Electrical Engineering and
Computer Science, Washington State Univ., USA, 2006.

[9] M. Ceccato, P. Tonella, and F. Ricca, “Is AOP code easier or harder
to test than OOP code?” in WTAOP’05, 2005.

[10] M. Eaddy, A. Aho, W. Hu, P. McDonald, , and J. Burger, “Debug-
ging aspect-enabled programs,” in SC’07, 2007.

[11] O. A. L. Lemos, F. C. Ferrari, P. C. Masiero, and C. V. Lopes,
“Testing aspect-oriented programming pointcut descriptors,” in
WTAOP’06. ACM Press, 2006, pp. 33–38.

[12] A. van Deursen, M. Marin, and L. Moonen, “A systematic aspect-
oriented refactoring and testing strategy, and its application to
JHotDraw,” Stichting Centrum voor Wiskundeen Informatica, The
Netherlands, Report SEN-R0507, 2005.

[13] S. Zhang and J. Zhao, “On identifying bug patterns in aspect-
oriented programs,” in COMPSAC’07, 2007, pp. 431–438.

[14] R. Coelho et al., “Assessing the impact of aspects on exception
flows: An exploratory study,” in ECOOP’08. Springer, 2008, pp.
207–234 (LNCS v.5142).

[15] “Demoiselle framework,” Online, http://www.frameworkdemoi-
selle.gov.br/.

[16] F. Munoz, B. Baudry, R. Delamare, and Y. L. Traon, “Inquiring
the usage of aspect-oriented programming: An empirical study,” in
ICSM’09. IEEE Computer Society, 2009, pp. 137–146.

[17] R. Burrows, F. Ferrari, A. Garcia, and F. Taı̈ani, “An empirical
evaluation of coupling metrics on aspect-oriented programs,” in
ICSE WETSoM Workshop, 2010, pp. 53–58.

[18] N. Cacho, F. Dantas, A. Garcia, and F. Castor Filho, “Exception
flows made explicit: An exploratory study,” in SBES’09. IEEE
Computer Society, 2009, pp. 43–53.

[19] F. C. Ferrari et al., “An exploratory study of fault-proneness in
evolving aspect-oriented programs,” in ICSE’10. ACM Press,
2010, pp. 51–58.

[20] E. Figueiredo et al., “Evolving software product lines with aspects:
An empirical study on design stability,” in ICSE’08. ACM Press,
2008, pp. 261–270.

[21] P. Greenwood et al., “On the impact of aspectual decompositions
on design stability: An empirical study,” in ECOOP’07. Springer,
2007, pp. 176–200 (LNCS 4609).

[22] E. Dijkstra, A Discipline of Programming. Prentice-Hall, 1976.
[23] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and

W. G. Griswold, “An overview of AspectJ,” in ECOOP’01.
Springer-Verlag, 2001, pp. 327–353 (LNCS v.2072).

[24] N. McEachen and R. T. Alexander, “Distributing classes with
woven concerns: An exploration of potential fault scenarios,” in
AOSD’05. ACM Press, 2005, pp. 192–200.

[25] F. C. Ferrari and J. C. Maldonado, “A systematic review on aspect-
oriented software testing,” in WASP’06. Brazilian Computer
Society, 2006, pp. 101–110, (in Portuguese).

[26] F. C. Ferrari, E. N. Höhn, and J. C. Maldonado, “Testing aspect-
oriented software: Evolution and collaboration through the years,”
in LAWASP’09. Brazilian Computer Society, 2009, pp. 24–30.

[27] M. L. Bernardi and G. A. D. Lucca, “Testing aspect oriented
programs: an approach based on the coverage of the interactions
among advices and methods,” in QUATIC’07. IEEE Computer
Society, 2007, pp. 65–76.

[28] “iBATIS data mapper,” Online, http://ibatis.apache.org/.
[29] A. Camilleri, G. Coulson, and L. Blair, “CIF: A framework for

managing integrity in aspect-oriented composition,” in TOOLS’09.
Springer-Verlag, 2009, pp. 18–26 (LNBIP v.33).

[30] F. Castor Filho, N. Cacho, E. Figueiredo, R. Maranhão, A. Garcia,
and C. M. F. Rubira, “Exceptions and aspects: The devil is in the
details,” in FSE’06. ACM Press, 2006, pp. 152–162.

[31] F. Castor Filho, A. Garcia, and C. M. F. Rubira, “Extracting error
handling to aspects: A cookbook,” in ICSM’07. IEEE Computer
Society, 2007, pp. 134–143.

[32] M. Stoerzer and J. Graf, “Using pointcut delta analysis to support
evolution of aspect-oriented software,” in ICSM’05. IEEE Com-
puter Society, 2005, pp. 653–656.

[33] “The AspectJ programming guide,” Online, http://www.eclipse.
org/aspectj/doc/released/progguide/index.html - (27/04/2010).

[34] O. A. L. Lemos and P. C. Masiero, “Using structural testing to
identify unintended join points selected by pointcuts in aspect-
oriented programs,” in SEW’08. IEEE Computer Society, 2008.

[35] P. Anbalagan and T. Xie, “Automated generation of pointcut mu-
tants for testing pointcuts in AspectJ programs,” in ISSRE’08.
IEEE Computer Society, 2008, pp. 239–248.

[36] M. Marin, L. Moonen, and A. van Deursen, “An integrated cross-
cutting concern migration strategy and its application to JHot-
Draw,” in SCAM’07. IEEE Computer Society, 2007, pp. 101–110.

[37] M. Mortensen, S. Ghosh, and J. M. Bieman, “Testing during refac-
toring: Adding aspects to legacy systems,” in ISSRE’06. IEEE
Computer Society, 2006, pp. 221–230.

[38] C. Kastner, S. Apel, and D. Batory, “A case study implementing
features using AspectJ,” in Proceedings of the 11th International
Software Product Line Conference (SPLC). IEEE Computer
Society, 2007, pp. 223–232.

158

Appendix

C
Paper: Mutation Testing for

Aspect-Oriented Programs

This appendix presents the full contents of a paper published in the Proceedings of the 1st

International Conference on Software Testing, Verification and Validation (ICST’08). An

overview of this work was provided in Chapter 4 of this dissertation. A copyright notice

in regard to it is next shown.

IEEE COPYRIGHT NOTICE1:“Personal use of this material is permitted. How-

ever, permission to reprint/republish this material for advertising or promotional purposes

or for creating new collective works for resale or redistribution to servers or lists or to

reuse any copyrighted component of this work in other works must be obtained from the

IEEE.”

1http://www.ieee.org/portal/cms_docs/pubs/transactions/auinfo03.pdf - last accessed on
17/08/2010.

159

http://www.ieee.org/portal/cms_docs/pubs/transactions/auinfo03.pdf

Mutation Testing for Aspect-Oriented Programs

Fabiano Cutigi Ferrari∗, José Carlos Maldonado
University of São Paulo - São Carlos/SP, Brazil

Computing Systems Department
{ferrari,jcmaldon}@icmc.usp.br

Awais Rashid
Lancaster University - Lancaster, UK

Computing Department
marash@comp.lancs.ac.uk

Abstract

Mutation testing has been shown to be one of the
strongest testing criteria for the evaluation of both pro-
grams and test suites. Comprehensive sets of mutants re-
quire strong test sets to achieve acceptable testing coverage.
Moreover, mutation operators are valuable for the evalua-
tion of other testing approaches. Although its importance
has been highlighted for Aspect-Oriented (AO) programs,
there is still a need for a suitable set of mutation operators
for AO languages. The quality of the mutation testing itself
relies on the quality of such operators. This paper presents
the design of a set of mutation operators for AspectJ-based
programs. These operators model instances of fault types
identified in an extensive survey. The fault types and re-
spective operators are grouped according to the related lan-
guage features. We also discuss the generalisation of the
fault types to AO approaches other than AspectJ and the
coverage that may be achieved with the application of the
proposed operators. In addition, a cost analysis based on
two case studies involving real-world applications has pro-
vided us feedback on the most expensive operators, which
will support the definition of further testing strategies.

1. Introduction

Aspect-Oriented Programming (AOP) [19] has intro-
duced new concepts and technologies into the software life
cycle. Despite the claimed benefits AOP brings, it poses
new challenges for software quality assurance [5], motivat-
ing the proposal of several approaches for aspect-oriented
(AO) software testing in the last years [5, 21, 32, 33, 35].

Although mutation testing has been empirically shown
to be one of the strongest testing criteria [24, 31], it has not
been deeply explored in the context of AO software. Some
incipient work has been proposed [6, 20, 26]. However, no
comprehensive set of mutation operators for AO implemen-
tations has been proposed to date.

∗He is currently a visiting student at Lancaster University.

Mutation testing is a valuable resource for the evaluation
of software artefacts at different levels of abstraction (e.g.
specification and source-code) and also test suites. In ad-
dition, the faults modelled by mutation operators may be
useful in order to evaluate how sensitive general testing ap-
proaches are in order to reveal these faults. In this sense,
identifying a set of fault types which cover most of the AO
features and modelling these fault types within mutation op-
erators represent a step forward in improving the quality of
AO software and related testing approaches. In this context,
this paper makes the following contributions:
• Identification of a comprehensive set of AO fault types

based on previous works on AO testing;
• Design of a set of mutation operators for the AspectJ

language [3], based on the identified fault types, also
applicable to other similar languages;

• Analysis of identified fault types for generalisation to
AO implementations other than AspectJ; and

• Application of the proposed operators and a cost esti-
mate comprising two real-world case studies, demon-
strating the potential cost of the operators.

Considering that usually research comprising AO faults
types and testing approaches is somehow related to AspectJ
features, we have analysed to what extent candidate fault
models may be generalised to well disseminated or even
general AO approaches. We have found that most of charac-
terised fault types may also occur in other AO implementa-
tions (e.g. JBoss AOP [2] and CaesarJ [25]). We have also
found that the proposed mutation operators cover a wide
range of these fault types. In addition, our cost analysis
shows that the most expensive operators are related to the
quantification features of AspectJ. Such information is es-
sential when defining testing strategies.

This paper is organised as follows: Section 2 presents a
brief overview of AOP, AspectJ and mutation testing. Sec-
tion 3 summarises the AO fault types we have identified and
the proposed set of mutation operators. In Section 4, we dis-
cuss the generalisation of AO fault types beyond AspectJ
and issues related to the proposed operators. Section 5 de-
scribes a cost analysis for application of the operators based

161

on two case studies. Related work is discussed in Section 6.
Finally, Section 7 presents our conclusion and future work.

2. Background

2.1. Mutation testing

Mutation testing [13] is a fault-based testing criterion
which relies on the Competent Programmer and the Cou-
pling Effect hypotheses. These hypotheses state that a pro-
gram under test contains only small syntactic faults and that
complex faults result from the combination of them. Fixing
the small faults will probably solve the complex ones.

Given an original program P , the criterion requires the
creation of a set M of mutants, consisting of slightly mod-
ified versions of P . Mutation operators encapsulate the
modification rules applied to P . Then, for each mutant
m, (m ∈ M), the tester runs the test suite T originally de-
signed for P . If m(t) 6= P (t), (t ∈ T), this mutant is
considered killed. If not, the tester should improve T with a
test case that reveals the difference between m and P . If m
and P are equivalent, then P (t) = m(t) for all test cases.

Mutation testing has been shown to be strong amongst
several other testing adequacy criteria, such as data flow
based criteria [24, 31]. However, the quality of the muta-
tion testing relies on the quality of the mutation operators,
which must reflect realistic fault types. Considering this, in
Section 3 we present of a set of AspectJ mutation operators
designed according to several identified AO fault models.
The next section briefly introduces AOP and AspectJ.

2.2. AOP and AspectJ

Aspect-Oriented Programming (AOP) [19] has arisen as
a possible solution to improve software modularity. Its
adoption is motivated by the fact that traditional software
development approaches do not satisfactorily cope with
crosscutting concerns; these are typically spread across or
tangled with other concerns or even among themselves.

AOP provides means for modularising crosscutting con-
cerns within new conceptual1 software entities called as-
pects. The aspects are further woven into the base applica-
tion supported by a quantification mechanism. This mecha-
nism allows a simple piece of crosscutting behaviour to be
executed in several well-defined points during software ex-
ecution, called join points. Examples of join points are a
method call, a method execution and a field access.

In AspectJ [3], which is currently the most consolidated
Java-based AOP language, a pointcut expression selects a
set of join points. It is generally formed by patterns (e.g.
method signatures) and predicates. Pointcuts are bound to

1Conceptual since symmetric AOP approaches ideally do not require
new software entities to implement crosscutting behaviour.

advices, which consist of portions of Java code implement-
ing crosscutting behaviour. AspectJ also allows static mod-
ifications of class structure and hierarchy through inter-type
declarations (ITDs). For a complete list of AspectJ features,
the reader may refer to the AspectJ project Web site [3].

The concepts and elements introduced by AOP technolo-
gies result in new potential fault sources [5], hence posing
new challenges for testing activities. For example, faults
can arise from crosscutting behaviour or from the interac-
tions between aspects and the base application. Regarding
this, the next section introduces a set of mutation operators
for AspectJ, based on a set of characterised AO fault types.

3. Mutation testing for AspectJ programs

This section initially presents a set of AO-specific fault
types. Next, we introduce a set of mutation operators for
the AspectJ language based on these fault types.

3.1. AO Fault Types

Tables 1–4 present a set of AO fault types identified dur-
ing our extensive survey on AO testing. Our analysis has
drawn on AO candidate fault models [5, 7, 9, 15, 30], fault
classifications [20] and bug patterns [34]. The faults are dis-
tributed in four groups related to: (F1) pointcut expressions;
(F2) ITDs and other declarations; (F3) advice definition and
implementation; and (F4) the base program. We refer to a
specific fault type by its group plus its number (e.g. F1.4).
We have added three new fault types which have not been
included by previous works (italicised in tables 2 and 3).

Table 1. Pointcut related faults (F1)
Description
1 Selection of a superset of join points
2 Selection of a subset of join points
3 Selection of a wrong set of join points, including intended

and unintended ones
4 Selection of a wrong set of join points, including only unin-

tended ones
5 Incorrect use of primitive pointcut designators
6 Incorrect pointcut composition rules
7 Incorrect matching based on exception throwing patterns
8 Incorrect matching based on dynamic values and events

We state this set of fault types is as comprehensive as
possible since it relies on the expertise of researchers and
practitioners and also on our own experience on AOP. How-
ever, to date, it is not possible to find historical data re-
garding AO fault types from real projects. Further feedback
from such projects may elicit new fault types to be included
in the presented set. In addition, analysis of the inclusion
relation amongst fault types and experimental studies may
help us to minimise the set.

162

Table 2. ITD related faults (F2)
Description
1 Improper method introduction, resulting in inconsistencies

in method overriding
2 Introduction of a method into an incorrect class
3 Incorrect changes in class hierarchy
4 Incorrect method introduction, resulting in unexpected

method overriding
5 Omitted declared parent interface or introduced interface

which breaks object identity
6 Incorrect changes in exception dependent control flow
7 Incorrect or omitted aspect precedence declaration
8 Incorrect aspect instantiation rules and deployment
9 Incorrect policy enforcement rules supported by warning

and error declarations

Table 3. Advice related faults (F3)
Description
1 Incorrect advice type specification
2 Incorrect control or data flow due to execution of the origi-

nal join point
3 Incorrect advice logic, violating invariants and failing to es-

tablish expected postconditions
4 Infinite loops resulting from interactions among advices
5 Incorrect access to join point static information
6 Advice bound to incorrect pointcut

Table 4. Base program related faults (F4)
Description
1 Base program does not offer required join points
2 Software evolution causes pointcut to break
3 Other problems related to maintenance of the base program

(e.g. inconsistencies and duplicated crosscutting code)

Except from Bækken [7], none of the authors present de-
tails of possible instances of each fault type. We call fault
instance a specific occurrence of a fault type. For example,
an incorrect use of a wildcard in a pointcut expression is an
instance of “Selection of a superset of join points” (F1.1).
Most of such fault types focus on specific AspectJ struc-
tures and characteristics. Possible generalisations to other
AO implementations are discussed in Section 4.1.

3.2. Mutation operators for AspectJ

This section introduces a set of mutation operators for
AspectJ programs based on the set of AO fault types pre-
sented in Section 3.1. The operators model possible fault in-
stances according to syntactic constructions allowed in As-
pectJ and similar languages. They are organised into three
groups, summarised in tables 5, 6 and 7. Due to space lim-
itations, for each group we only present a short description
and examples of operator application.

The application of some operators is straightforward
from their descriptions. For example, the application of an
operator which simply removes declare precedence

clauses is straight (or trivial). On the other hand, an opera-
tor which removes proceed statement calls must consider
how such statement appears inside an advice (e.g. in a
variable definition or in a return expression). The examples
we next show consist of non-trivial operator applications.
In the examples, the © and ∆ symbols indicate the original
and the mutated code, respectively. The > symbol indicates
a mutated line and each occurrence usually represents a
different mutant (some operators require more than one
mutated line). Notice that in the examples we use generic
element names like a pointcut “p”, a class “C”, a method
“m”, an attribute type “A” and a return type “R”.

3.2.1. Group 1 - Operators for pointcut expressions.
Group 1 contains 15 mutation operators which model faults
related to pointcut expressions. Such faults usually result
in incorrect join point matchings or undue execution con-
texts. This group, shown in Table 5, is divided into four
categories, according to the results obtained from the appli-
cation of the respective operators:

(i) Pointcut Weakening operators: This group is com-
pounded by the PWSR, PWIW and PWAR operators (see
Table 5). The resulting mutants possibly increase the num-
ber of selected join points if compared to the original point-
cut expression. Following is an example of how the PWIW
operator inserts the “*” and “+” wildcards into the original
expression call(public R C.m(A)).

© pointcut p () : c a l l (public R C.m(A)) ;

∆

> pointcut p () : c a l l (public ∗ C.m(A)) ;
> pointcut p () : c a l l (public R ∗ .m(A)) ;
> pointcut p () : c a l l (public R C.∗ (A)) ;
> pointcut p () : c a l l (∗ C.m(A)) ;
> pointcut p () : c a l l (public R C.m(∗)) ;
> pointcut p () : c a l l (public R∗ C.m(A)) ;
> pointcut p () : c a l l (public R C∗ .m(A)) ;
> pointcut p () : c a l l (public R C.m∗(A)) ;
> pointcut p () : c a l l (public R C.m(A∗)) ;
> pointcut p () : c a l l (public ∗R C.m(A)) ;
> . . . / / and so on

(ii) Pointcut Strengthening operators: Operators of this
group perform modifications to decrease the number of se-
lected join points if compared to the original pointcut ex-
pression. The PSSR, PSWR and PSDR operators comprise
this group (see Table 5). The following example shows how
the PSSR operator replaces types present in the expression
call(* C.m(TypeA)) with their immediate subtypes.

© pointcut p () : c a l l (∗ C.m(A)) ;

∆ > pointcut p () : c a l l (∗ SubtypeOfC .m(A)) ;
> pointcut p () : c a l l (∗ C.m(SubtypeOfA)) ;

(iii) Pointcut Weakening or Strengthening operators:
These operators produce mutants that may either increase
or decrease the number of selected join points. They are the
POPL, POAC and POEC operators (see Table 5). Next is an
example where the POPL operator replaces items from the
list (TypeA,..,TypeB) with the “..” wildcard.

163

Table 5. Mutation operators for pointcut expressions (Group 1).
Operator Description/Consequences
PWSR Pointcut weakening by replacing a type with its immediate supertype in pointcut expressions
PWIW Pointcut weakening by inserting wildcards into pointcut expressions
PWAR Pointcut weakening by removing annotation tags from type, field, method and constructor patterns
PSSR Pointcut strengthening by replacing a type with its immediate subtype in pointcut expressions
PSWR Pointcut strengthening by removing wildcards from pointcut expressions
PSDR Pointcut strengthening by removing declare @ statements, used to insert annotations into base code elements
POPL Pointcut weakening or strengthening by changing parameter lists of primitive pointcut designators
POAC Pointcut weakening or strengthening by changing after [retuning|throwing] advice clauses
POEC Pointcut weakening or strengthening by changing exception throwing clauses
PCTT Pointcut changing by replacing a this pointcut designator with a target one and vice versa
PCCE Context changing by switching call/execution/initialization/preinitialization pointcuts designators
PCGS Pointcut changing by replacing a get pointcut designator with a set one and vice versa
PCCR Pointcut changing by replacing individual parts of a pointcut composition
PCLO Pointcut changing by changing logical operators present in type and pointcut compositions
PCCC Pointcut changing by replacing a cflow pointcut designator with a cflowbelow one and vice versa

Table 6. Mutation operators for AspectJ declarations (Group 2).
Operator Description/Consequences
DAPC Aspect precedence changing by alternating the order of aspects involved in declare precedence statements
DAPO Arbitrary aspect precedence by removing declare precedence statements
DSSR Unintended exception handling by removing declare soft statements
DEWC Unintended control flow execution by changing declare error/warning statements
DAIC Unintended aspect instantiation by changing perthis/pertarget/percflow/percflowbelow deployment clauses

Table 7. Mutation operators for advice definitions and implementations (Group 3).
Operator Description/Consequences
ABAR Advice kind changing by replacing a before clause with an after [retuning|throwing] one and vice versa
APSR Advice logic changing by removing invocations to proceed statement
APER Advice logic changing by removing guard conditions which surround proceed statements
AJSC Static information source changing by replacing a thisJoinPointStaticPart reference with a

thisEnclosingJoinPointStaticPart one and vice versa
ABHA Behaviour hindering by removing implemented advices
ABPR Changing pointcut-advice binding by replacing pointcuts which are bound to advices

© pointcut p () : c a l l (∗ C.m(TypeA , . . , TypeB)) ;

∆
> pointcut p () : c a l l (∗ C.m(TypeA , TypeB)) ;
> pointcut p () : c a l l (∗ C.m(. . , . . , TypeB)) ;
> pointcut p () : c a l l (∗ C.m(TypeA , . . , . .)) ;

(iv) Pointcut Changing operators: Operators from this
group perform a variety of changes in pointcut expression,
as shown in Table 5. As a result, we have: (i) partial or com-
plete changes in the number of selected join points with the
PCTT, PCGS, PCCR and PCLO operators; (ii) changes in
execution context with the PCCE operator; and (iii) changes
in the number of advice executions with the PCCC opera-
tor. The following example shows how the PCLO operator
changes logical operators in a pointcut composition.

© p o i n t c u t composite () : pA () | | pB () ;

∆
> pointcut composite () : pA () && pB () ;
> pointcut composite () : ! pA () | | pB () ;
> pointcut composite () : pA () | | ! pB () ;

3.2.2. Group 2 - Operators for general declarations.
Group 2, summarised in Table 6, contains five operators
that model faults related to general AspectJ declarations.
Related faults lead to unintended control flow executions
and object/aspect state. For example, the DAPC opera-
tor modifies aspect precedence declarations, varying among
all possible precedences for involved aspects. The DAPO
operator is applied to omit declare precedence state-
ments. Other declarations targeted by operators of Group
2 are declare error, declare warning, declare

soft and aspect instantiation rules. Next is an example of
how the DEWC operator suppresses the declare error

statement and replaces it with a declare warning one.

© dec lare e r r o r : p () : ” a message . . . ” ;

∆ > / / dec lare e r r o r : p () : ” a message . . . ” ;
> dec lare warning : p () : ” a message . . . ” ;

164

3.2.3. Group 3 - Operators for advice definitions and
implementations. Table 7 summarises a set of six opera-
tors related to advice definition and implementation. Faults
modelled by operators from this group comprise incorrect
advice kind (ABAR operator), incorrect advice logic (APSR,
APER and AJSC operators) and incorrect advice execution
(ABHA and ABPR operators). In the following example, the
APER operator removes the guard conditions that surround
the proceed statement in three different situations: when it
is guarded by an if, an else or a switch-case condition.

©
i f (pred icateA)

i f (pred icateB)
proceed () ;

∆
i f (p red ica te)

> i f (true)
proceed () ;

©
i f (p red ica te) {}
else {

proceed () ;
}

∆
i f (p red ica te) {}

> / / e lse {
proceed () ;

> / / }

©
switch (a) {

case someValue :
proceed () ;
break ;

case otherValue :
. . . }

∆

switch (a) {
case someValue :

> / / proceed () ;
break ;

case otherValue :
. . . }

> proceed () ;

4. Discussion

This section first addresses issues related to generalisa-
tion of AO fault types, i.e. if they are either specific for As-
pectJ programs or may be extended to other AO implemen-
tations. Following this, we discuss some limitations and
implications for the proposed mutation operators.

4.1. May AO fault types be generalised?

AspectJ, JBoss AOP [2] and Spring AOP [18] are AO
technologies which have a significant user base. CaesarJ
[25] is another recent language which provides a number
of features to enable AOP. Our discussion, summarised in
Table 8, is focused on these technologies, but not restricted
to them. However, a full and refined analysis regarding all
AO implementations is out of the scope of this paper.

Group 1 - Pointcut related faults: Many pointcut faults
are directly related to the quantification mechanism, which
must somehow be present in all AO implementations.
Specifically, these faults are related to pointcut definition
and composition rules (F1.1, F1.2, F1.3, F1.4 and F1.6 in
our grouping).

Faults arising from incorrect use of primitive pointcut
designators (F1.5) (e.g. a method call or execution) oc-
cur in most, even all AO implementations, considering that
they usually provide underlying join point models. These
models enable the selection of desired join points usually
through a set primitive pointcut designators, and misuses of
these designators result in software faults.

Faults related to incorrect matching based on exception
throwing patterns (F1.7) depend on the availability of spe-
cific supporting mechanisms. For example, while AspectJ
provides the handler pointcut designator and the after
throwing advice type, JBoss AOP may handle exception
throwing scenarios through its interceptor advice model.

Finally, all AO implementations that perform some kind
of runtime type checking (e.g. for binding or advice execu-
tion purposes) are prone to faults related to matching based
on dynamic circumstances (F1.8). These faults may also
occur due to runtime checking of control flow context, as
implemented in AspectJ, JBoss AOP and Spring AOP.

Group 2 - ITD related faults: Many AO implementa-
tions allow modifications of both structure and hierarchy
of the base application. A modification may consist of a
member introduction (method or attribute), an inheritance
change or new requested interface.

Fault instances of types F2.1 to F2.5 rely on the avail-
ability of mechanisms that support these modifications. For
example, AspectJ allows static changes in class structures
by the insertion of members and by the redefinition of class
hierarchy and required interfaces. JBoss AOP and Spring
AOP only support the introduction of new required inter-
faces, which can be realised through specific annotations
and XML tags. In CaesarJ, support for member introduc-
tion is provided by virtual classes, collaborating classes
and mixins composition. All these specific features are po-
tential fault sources like AspectJ ITDs.

AspectJ provides the declare soft statement which
converts a checked exception into a runtime one. Fault type
F2.6 comprises this kind of scenario. We have not iden-
tified a similar mechanism in other AO implementations.
However, the wrapping approach used to control join point
executions, which is present in several of them, may be used
to catch and rethrow checked and runtime exceptions.

Incorrect execution order of aspects may be present in
most AO artefacts. Thus, faults related to aspect precedence
order (F2.7) occur in any AO implementation. AspectJ and
CaesarJ, for example, allow aspect precedence definition
through declare precedence clauses. Other implemen-
tations provide specific clauses for the same purpose.

A number of options are available for aspect deployment
in AO implementations, which may result in faults related
to aspect instantiation (F2.8). For example, in AspectJ and
JBoss AOP, aspects may be deployed as singleton, per tar-
get or this object and so on. CaesarJ, on the other hand,
requires explicit aspect instantiation during execution flow.

Fault type F2.9 depends exclusively on error and warn-
ing declaration mechanisms, as provided by AspectJ and
JBoss AOP. If incorrectly used (e.g. the compiler signalling
a warning instead of an error message), they may result in
faults related to policy enforcement rules.

165

Table 8. Relationship between AO implementations and fault types.
Fault Types

F1 F2 F3 F4
AO Implem. 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 1 2 3

AspectJ X
Spring AOP X
JBoss AOP X

CaesarJ X

Group 3 - Advice related faults: After a pointcut has
selected a set of join points, one or more advices are set
to run usually before, after or around them, supported by
some kind of weaving mechanism [19]. Thus, faults related
to advice type (F3.1), which defines the moment when a
crosscutting behaviour should run, may occur in any AO
supporting technology.

Around advice usually wraps the execution of the orig-
inal join point, which may or may not be activated. This
feature may lead to incorrect control or data flow due to the
execution of unintended behaviour (F3.2). AspectJ, CaesarJ
and Spring AOP provide the proceed statement to enable
the execution of the original join point. In JBoss AOP, on
the other hand, all advice is around (called advice methods),
which is used to simulate before and after advices.

Regarding faults related to incorrect logic implemented
in advices (F3.3), we might consider these faults as non AO-
specific, since they are independent of paradigm and tech-
nology. However, after weaving, they may lead to violations
of state invariants and failures to accomplish postconditions
which were not present before weaving.

Faults related to infinite loops resulting from interac-
tions among advices (F3.4) may rely on mechanisms which
enable the crosscutting of advice execution. AspectJ and
CaesarJ provide the adviceexecution pointcut desig-
nator. Other AO implementations support the definition of
crosscutting behaviour as advice methods. Therefore, they
are also prone to similar problems, given the possibility of
cyclic interaction among advice methods.

Faults related to incorrect access to static information of
join points (F3.5) depend on the availability of specific in-
frastructure. For example, some Java-based AO implemen-
tations, like AspectJ, Spring AOP and CaesarJ, have specific
reflection APIs to provide access to static join point infor-
mation during program execution.

Finally, we consider that all AO implementations are
prone to faults related to incorrect binding between point-
cut and advice (F3.6). Even if both pointcut definition and
advice implementation are correct, the rules that define the
binding among these elements may be incorrectly defined.

Group 4 - Base program related faults: Fault types F4.1
and F4.2 are related to software reuse and maintenance, re-
spectively. These fault types arise due to reliance on naming
conventions and pointcut fragility [29]. In AspectJ-like ap-

proaches, for example, pointcuts explicitly select join points
by matching elements in the base application through their
names (e.g. a class or a method name). This high cou-
pling results in pointcut fragility and a simple method re-
naming may cause pointcuts to break. These fault types
may be generalised to AO implementations for paradigms
other than OO (e.g. procedural and functional languages
[11, 16]), which make use of naming conventions to iden-
tify join points. Similar faults are present even in query
languages2 of general composition mechanisms as the one
proposed by Harrison et al. [17].

The remaining fault type is related to duplicated code
after refactoring activities and inconsistencies between as-
pects and base program (F4.3). These faults may occur in
products resulting from general AO implementations.

4.2. Mutation operator issues

Differently from traditional mutation, an ordinary mu-
tation of a pointcut expression may directly affect many
points in the woven application. In addition, a mutation
in an advice may imply similar but indirect effect, since
this advice may run many times during software execution.
However, the underlying concepts of the mutant analysis
are the same, i.e. one must observe the behaviour of the
mutated code against the provided test cases and decide if
a mutant is dead or alive. Regarding equivalent mutants, a
mutant pointcut expression may be considered equivalent to
the original one when both match the same set of join points
[6]. In general, a mutant must be set as equivalent when the
observed behaviour is the same for all executions.

Three conditions must be considered for the design of ef-
fective mutation operators: reachability, necessity and suf-
ficiency [14]. Given an original product P and a mutant M
of P which contains a fault f inserted by a mutation op-
erator: (i) f must be reached and executed (reachability);
(ii) the state of M must be infected after the execution of
f (necessity); and (iii) the difference between the states of
P and M after the execution of the mutated portion of code
must propagate to the end of P and M (sufficiency).

Bækken [7] defines the necessity condition for a faulty
pointcut as the difference between the sets of the intended

2A query language is used in AOP implementations to formulate ex-
pressions for identifying sets of correspondences in the base application
(i.e. join points) in which specific behaviour will execute [17].

166

and the actually captured join points. The activation of an
advice at an unintended join point represents the sufficiency
condition. For advice faults, the execution of a fault which
implies differences in subsequent control or data flow (and
propagates to the end of the execution) represents the neces-
sity and sufficiency conditions. Finally, for other fault types
related to general declarations, the infection may be seen as
a side-effect of faulty elements. For example, an incorrect
aspect precedence may lead to incorrect order of advice ex-
ecution, with in turn may lead to observable failures at the
end of the execution. Some issues involved in the design
and application of the operators are next discussed.

Non-modelled fault types: Table 9 shows the relation
between AO fault types and the proposed mutation oper-
ators. The table only includes direct effects of operators
in relation to the target elements and resulting mutants.
We can observe that some fault types of groups 2 and 4
have not been modelled. Regarding the former, ITD mu-
tations would probably result in non-compilable mutants
since the expected introduced member would be invoked
or accessed in some part of the woven code. Regarding
fault types of Group 4, the base program is commonly
implemented using OO or procedural approaches. There-
fore, traditional mutation operators for unit [4], interface
[12] and class [22] levels might be employed on the base
program. These operators may also be employed to im-
prove testing quality of advice logic. In addition, consider-
ing some AspectJ-specific statements and object references
(e.g. proceed and thisJoinPointStaticPart) we pro-
posed the APSR, AJSC and APER operators.

Finally, we did not propose any mutation operator to
switch elements in parameter lists in a similar fashion to
Interface Mutation operators [12]. These operators may be
adapted to model faults related to incorrect order of param-
eters identified by Bækken [7].

Inconsistency of object and aspect states: We can con-
sider that all proposed operators influence aspect and object
states, from the point of view of the necessity property [14].
For example, operators that change the selected join points
may indirectly lead to incorrect or inconsistent states, since
extra behaviour will be executed where it should not or
some behaviour will not be executed where it should. How-
ever, we consider that operators like DAIC, ABAR, APSR
and APER are more directly related to incorrect state issues.

Exception throwing problems: Some operators may
produce mutants that always throw exceptions when the
mutated code runs. One could argue that these kinds
of mutants are not representative since they are con-
sidered as trivial ones [27]. However, the examples
presented in Figures 1-a and 1-b show a case where
mutants generated by the PCLO may either throw an

©
pointcut p1 () :

c a l l (∗ Poin t . ∗ (. .)) ;
p o i n t c u t p2 () :

c a l l (∗ Line . ∗ (. .)) ;
p o i n t c u t comp () :
p1 () | | p2 () ;

©
pointcut p1 () :

c a l l (∗ Poin t . ∗ (. .)) ;
p o i n t c u t p3 () :

within (L ine) ;
pointcut comp () :
p1 () && p3 () ;

∆
pointcut comp () :

> ! p1 () | | p2 () ;
pointcut comp () :

> p1 () | | ! p2 () ;

∆ pointcut comp () :
> p1 () && ! p3 () ;

(a) (b)

Figure 1. Trivial and non-trivial mutants.

ExceptionInInitializerError exception for any exe-
cution (1-a) or generate significant mutants (1-b), i.e. which
do not throw such exception when they run.

Non-compilable mutants: According to the Competent
Programmer Hypothesis [13], a program that is under test
is correct or almost correct. Thus, probably each modifica-
tion performed on this program would insert a single fault
in it. Besides, such modification should consist of a seman-
tic fault and not a syntactic one, since syntactic faults are
revealed at compile time. Some operators proposed in this
work are prone to generating non-compilable mutants. In
particular, this is the case for the POAC, DSSR, DEWC,
ABAR and ABPR operators, which mutate structures that
may involve context exposure, exception softening and er-
ror and warning declarations.

Approaches to dealing with non-compilable mutants
vary among: (i) generating all possible mutants and fur-
ther marking non-compilable ones as anomalous or stillborn
[27]; (ii) generating only compilable mutants (conservative
approach); or (iii) generating mutants after a fine-grained
analysis to detect compilation problems. Moreover, this is-
sue may be tackled during the automation phase, as done in
the Proteum/IM [12] and µJava [23] tools for C and Java
programs mutation testing, respectively.

Mutation applied to anonymous pointcuts: AspectJ al-
lows the definition of anonymous pointcuts, which are di-
rectly bound to advices. However, they cannot be reused
by other pointcut or advice expressions. Mutation operators
for named pointcuts can also be applied to anonymous ones,
with similar limitations when applied to named pointcuts.

Mutation applied to annotation-based pointcuts: As-
pectJ 5 allows matchings based on Java annotated code [3],
and some specific primitive pointcuts are provided, namely:
@args, @this, @target, @within, @withincode and
@annotation. In this context, the mutation operators re-
lated to pointcuts may also be applied to expressions that
include annotation-based pointcut designators, as well as in
patterns that include annotated elements. The PWAR and
PSDR act specifically over annotation-related code. Figure
2 shows examples of mutants obtained from the PCTT (a)
and PCCE (b) operators.

167

Table 9. Relationship between proposed AspectJ mutation operators and AO fault types.
Fault Types

F1 F2 F3 F4
Operator 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 1 2 3

PWSR X
PWIW X
PWAR X
PSSR X
PSWR X
PSDR X
POPL X X
POAC X X X X
POEC X X X X X
PCTT X X X X X
PCCE X
PCGS X X
PCCR X X X X X X
PCLO X X X X X
PCCC X X X
DAPC X
DAPO X
DSSR X
DEWC X
DAIC X
ABAR X
APSR X X
APER X X
AJSC X
ABHA X
ABPR X

©
pointcut b () :

c a l l (∗ ∗ . p r i n t ())
&&
@this (Employee) ;

©
pointcut a () :

c a l l (
@Ann ∗ . se t ∗ (. .)) ;

∆
pointcut b () :

c a l l (∗ ∗ . p r i n t ())
&&

> @target (Employee) ;

∆
pointcut a () :

> execution (
@Ann ∗ . se t ∗ (. .)) ;

(a) (b)

Figure 2. Mutations applied to annotation-
based pointcuts.

5. Cost analysis

This section presents a cost analysis for the application
of the proposed set of mutation operators. Although the
costs might be estimated based on the number of test cases
required to achieve a certain mutant coverage, different
complexities of test cases impact directly on the estimates.
Therefore, the following analysis is based on the number
of mutants generated from two AspectJ applications, which
are following briefly described.

Target applications: The first application, called Toll
System Demonstrator (TSD), includes a subset of require-
ments of a real-world tolling system. TSD was developed
in the context of the AOSD-Europe Project [1] and con-
tains functional and non-functional concerns (e.g. charging
variabilities, distribution and logging) implemented within

aspects. The TSD implementation includes 25 aspects, 37
compound pointcuts (i.e. pointcut expressions formed by
one or more simple expressions), 37 advices and 2 aspect
deployment clauses. The second, called Health Watcher
(HW) [28], is a Web-based application that allows citizens
to register complaints regarding health issues. Some aspec-
tised concerns in HW are distribution, persistence and ex-
ception handling. HW code includes 11 aspects, 16 com-
pound pointcuts, 14 advices and 6 declare clauses.

Obtained results: We have applied all operators manu-
ally, totalling to 981 TSD mutants and 388 HW mutants,
as shown in Table 10. As expected, operators from Group
1 (third column) resulted in the largest number of mutants
(86% for TSD and 88% for HW). These numbers mainly
result from the PWIW operator due to the number of possi-
bilities for wildcard insertions into a pointcut expression.

Table 10. TSD and HW mutants.
App Total Gr. 1 % Gr. 2 % Gr. 3 %
TSD 981 847 86 8 1 126 13
HW 388 342 88 8 1.5 121 10.5

The PCLO and PSSR also contributed to the large num-
ber of mutants obtained for Group 1. This was due to: (i)
the frequent use of primitive pointcut expression to build
compound expressions; and (ii) the extensive use of class
hierarchies in both applications (e.g. a simple interface that
is implemented by several classes).

168

We can also observe from Table 10 that operators from
Group 2 result in a small number of mutants due to the low
use of declare statements in both applications. Specifi-
cally, only the DAIC and DSSR operators produced mutants
for TSD and HW, respectively.

Regarding operators from Group 3 (see Table 10), the
ABAR, ABHA and ABPR operators together contributed for
80% and 90% of TSD and HW mutants, respectively. How-
ever, the number of mutants for each of them is close to the
number of implemented advices.

Table 11. Mutants average per element type.
App. Aspect Pointcut Declaration Advice
TSD 39 23 4 3
HW 35 21 1 3

Table 11 shows the average of mutants obtained from
each group of operators in relation to the targeted elements.
For groups which result in the largest numbers of mutants
(i.e. pointcuts and advices - see Table 10), the average
per element are similar for both applications. For exam-
ple, while for TSD we have 23 mutants per pointcut and 3
per advice, we have 21 and 3 for the same elements in HW.

The achieved results may be considered as reasonable
cost estimates for the proposed operators, since they have
been obtained from two real-world applications. Regarding
operators for pointcut expressions, despite the large num-
bers of mutants, they offer a wide coverage of related fault
types, systematically but not exhaustively generating mu-
tants for these elements. Moreover, the identification of
equivalent mutants may reduce testing efforts, which will
be addressed in our forthcoming research.

6. Related work

Mortensen and Alexander [26] propose a hybrid AO
testing approach combining coverage and mutation testing,
based on a candidate AO fault model [5]. They define three
mutation operators based on AspectJ constructs, which in-
volve pointcut expressions (namely PCS-pointcut strength-
ening and PCW-pointcut weakening) and aspect precedence
declarations (namely PRC-precedence changing). How-
ever, they do not provide details of syntactic changes and
implications of each operator as we present in this paper.

Anbalagan and Xie [6] implement the PCS and PCW
operators in an automated tool which exhaustively gener-
ates mutants for AspectJ pointcut expressions. The tool also
helps the tester to identify the most representative mutants
and the equivalent ones through some heuristics. Our set of
operators produces a lower number of mutant pointcuts and
covers a broader set of AspectJ features.

Lemos et al. [20] present another hybrid approach which
involves structural and mutation testing of pointcut expres-
sions. The former consists of composing control flow

graphs in order to detect unintended join point selection,
while the latter is used to increase the sets of matched join
points. However, the authors only highlight the need for
a comprehensive set of mutation operators to make the ap-
proach more effective. This paper addresses the design of
such mutation operators.

The problem of fragile pointcuts [29] leads to faults dur-
ing software maintenance activities. Some approaches try to
deal with this problem, for example, by the application of
delta analysis in refactored code [29]. However, even with
approaches like that, the problem is not completely solved,
since references to elements in the base program still re-
main in some software artefacts. Chitchyan et al. [10] pro-
pose the definition of semantics-based composition at the
requirements level, based on the grammatical semantics of
the natural language aided by natural language processing
tools. This approach, if extended to later stages of the soft-
ware life cycle, might reduce the coupling between aspects
and base concerns and hence pointcut fragility, possibly re-
ducing the number of related faults.

7. Conclusion and future work

The increasing interest in aspect-oriented programming
both in academy and industry demands specific testing ap-
proaches in order to improve the quality of resulting prod-
ucts. Although mutation testing has been claimed to be
important for AO programs evaluation [7, 20, 26], a com-
prehensive set of mutation operators that model realistic in-
stances of AO fault types has been missing to date.

This paper addressed this issue by proposing a set of mu-
tation operators for AspectJ, which is currently the most
consolidated Java-based AOP language. These operators
model fault instances devised from a set of fault types we
have identified from previous works on AO testing, mainly
regarding AO fault models. We have found that most AO
fault types, initially characterised upon AspectJ features,
actually may occur in general AO implementations and ap-
proaches other than AspectJ. In addition, the proposed oper-
ators cover many AO fault types for AspectJ-like programs,
except faults related to incorrect changes in class structures.

We have also estimated the costs for the application of
the proposed operators through two case studies. The tar-
geted systems have been developed in the context of aca-
demic and industrial research [1, 28]. We have found that
operators for pointcut expressions result in a large number
of mutants if compared with operators for other AspectJ fea-
tures. However, these operators cover a wide but not ex-
haustive range of pointcut faults with a reasonable cost if
compared to a previous mutation generation approach [6].

Our forthcoming research comprises the assessment of
test sets considering different testing criteria (e.g. white-
box criteria) and the proposed mutation operators. We aim

169

at assessing the effectiveness of these operators in simulat-
ing faults which cannot be revealed by previously proposed
AO testing approaches. Moreover, previous results obtained
from studies comprising cost reduction techniques (e.g. the
identification of sufficient mutation operator sets [8]) may
serve as a basis for the definition of cost reduction strate-
gies. Such studies depend on automated tools which are
also targeted in our future work.

Acknowledgements: Thanks for the financial support
received from the AOSD-Europe Project [1], CAPES (Pro-
cess 0653/07-1) and FAPESP (Process 05/55403-6).

References

[1] AOSD-Europe Project Home Page, 2007. http://www.aosd-
europe.net/ (accessed 08/10/2007).

[2] JBoss AOP Reference Documentation, 2007. http://labs.
jboss.com/jbossaop/docs/index.html (accessed 08/10/2007).

[3] The AspectJ Project, 2007. http://www.eclipse.org/aspectj/
(accessed 06/09/2007).

[4] R. Agrawal et al. Design of mutant operators for the C pro-
gramming language. Report SERC-TR41-P, S.E. Research
Center, Purdue University, West Lafayette-USA, 1989.

[5] R. T. Alexander, J. M. Bieman, and A. A. Andrews. Towards
the systematic testing of aspect-oriented programs. Report
CS-04-105, Dept. of Computer Science, Colorado State Uni-
versity, Fort Collins-USA, 2004.

[6] P. Anbalagan and T. Xie. Efficient mutant generation for
mutation testing of pointcuts in aspect-oriented programs.
In Mutation’2006, pages 51–56. Kluwer, 2006.

[7] J. S. Bækken. A fault model for pointcuts and advice in
AspectJ programs. Master’s thesis, School of Electrical En-
gineering and Computer Science, Washington State Univer-
sity, Pullman-USA, 2006.

[8] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi. To-
ward the determination of sufficient mutant operators for C.
Soft. Testing, Verif. and Reliability, 11(2):113–136, 2001.

[9] M. Ceccato, P. Tonella, and F. Ricca. Is AOP code easier or
harder to test than OOP code? In WTAOP’2005, 2005.

[10] R. Chitchyan, A. Rashid, P. Rayson, and R. Waters.
Semantics-based composition for aspect-oriented require-
ments engineering. In AOSD’2007, pages 36–48. ACM
Press, 2007.

[11] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich.
PolyAML: A polymorphic aspect-oriented functional pro-
gramming language. In ICFP’2005, pages 306–319. ACM
Press, 2005.

[12] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Inter-
face Mutation: An approach for integration testing. IEEE
Transactions on Soft. Eng., 27(3):228–247, 2001.

[13] R. A. DeMillo. Hints on test data selection:Help for the prac-
ticing programmer. IEEE Computer, 11(4):34–43, 1978.

[14] R. A. DeMillo and A. J. Offutt. Constraint-based auto-
matic test data generation. IEEE Transactions on Soft. Eng.,
17(9):900–910, 1991.

[15] M. Eaddy, A. Aho, W. Hu, P. McDonald, and J. Burger.
Debugging aspect-enabled programs. In Software Compo-
sition’2007, 2007.

[16] M. Gong, V. Muthusamy, and H. Jacobsen. AspeCt-Oriented
C tutorial, 2006. http://research.msrg.utoronto.ca/ACC/ Tu-
torial (accessed 23/08/2007).

[17] W. Harrison, H. Ossher, and P. L. Tarr. General composition
of software artifacts. In Software Composition’2005, pages
194–210 (LNCS v.4089). Springer-Verlag, 2006.

[18] R. Johnson et al. Spring - Java/J2EE application framework.
Reference Manual Version 2.0.6, Interface21 Ltd., 2007.

[19] G. Kiczales et al. Aspect-oriented programming. In
ECOOP’1997, pages 220–242 (LNCS v.1241). Springer-
Verlag, 1997.

[20] O. A. L. Lemos, F. C. Ferrari, P. C. Masiero, and C. V. Lopes.
Testing aspect-oriented programming pointcut descriptors.
In WTAOP’2006, pages 33–38. ACM Press, 2006.

[21] O. A. L. Lemos, A. M. R. Vincenzi, J. C. Maldonado, and
P. C. Masiero. Control and data flow structural testing cri-
teria for aspect-oriented programs. Journal of Systems and
Software, 80(6):862–882, 2007.

[22] Y. S. Ma, Y. R. Kwon, and J. Offutt. Inter-class mutation
operators for Java. In ISSRE’2002, pages 352–366. IEEE
Computer Society, 2002.

[23] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. µJava: A mutation
system for java. In ICSE’2006, p.827-830, ACM Press 2006.

[24] A. P. Mathur and W. E. Wong. An empirical comparison of
data flow and mutation based test adequacy criteria. Soft.
Testing, Verif. and Reliability, 4(1):9–31, 1994.

[25] M. Mezini and K. Ostermann. Conquering aspects with Cae-
sar. In AOSD’2003, pages 90–99. ACM Press, 2003.

[26] M. Mortensen and R. T. Alexander. An approach for ade-
quate testing of AspectJ programs. In WTAOP’2005, 2005.

[27] A. J. Offutt, J. Voas, and J. Payne. Mutation operators for
Ada. Report ISSE-TR-96-06, Dept. Inf. and Soft. Systems
Eng., George Mason Universit, Fairfax-USA, 1996.

[28] S. Soares, P. Borba, and E. Laureano. Distribution and
persistence as aspects. Software - Practice & Experience,
36(7):711–759, 2006.

[29] M. Stoerzer and J. Graf. Using pointcut delta analysis to sup-
port evolution of aspect-oriented software. In ICSM’2005,
pages 653–656. IEEE Computer Society, 2005.

[30] A. van Deursen, M. Marin, and L. Moonen. A systematic
aspect-oriented refactoring and testing strategy, and its ap-
plication to JHotDraw. Report SEN-R0507, Stichting Cen-
trum voor Wiskundeen Informatica, Netherlands, 2005.

[31] W. E. Wong. On Mutation and Data Flow. PhD thesis, Dept.
of Computer Science, Purdue University, USA, 1993.

[32] T. Xie and J. Zhao. A framework and tool supports for gener-
ating test inputs of AspectJ programs. In AOSD’2006, pages
190–201. ACM Press, March 2006.

[33] D. Xu and W. Xu. State-based incremental testing of aspect-
oriented programs. In AOSD’2006, pages 180–189. ACM
Press, 2006.

[34] S. Zhang and J. Zhao. On identifying bug patterns in aspect-
oriented programs. In COMPSAC’2007, pages 431–438.
IEEE Computer Society, 2007.

[35] J. Zhao. Data-flow-based unit testing of aspect-oriented pro-
grams. In COMPSAC’2003, pages 188–197. IEEE Com-
puter Society, 2003.

170

Appendix

D
Paper: Automating the Mutation

Testing of Aspect-Oriented Java

Programs

This appendix presents the full contents of a paper published in the Proceedings of the

5th International Workshop on Automation of Software Test (AST’10). An overview of

this work was provided in Chapter 5 of this dissertation. A copyright notice in regard to

it is next shown.

ACM COPYRIGHT NOTICE1: “ c©ACM, 2010. This is the author’s version

of the work. It is posted here by permission of ACM for your personal use. Not for

redistribution. The definitive version was published in the Proceedings of the 5th In-

ternational Workshop on Automation of Software Test, http://doi.acm.org/10.1145/

1808266.1808274.”

1http://www.acm.org/publications/policies/copyright_policy#Retained - last accessed on
06/07/2010.

171

http://doi.acm.org/10.1145/1808266.1808274
http://doi.acm.org/10.1145/1808266.1808274
http://www.acm.org/publications/policies/copyright_policy#Retained

Automating the Mutation Testing of
Aspect-Oriented Java Programs

Fabiano Cutigi Ferrari
Computer Systems Department
University of São Paulo - Brazil

ferrari@icmc.usp.br

Elisa Yumi Nakagawa
Computer Systems Department
University of São Paulo - Brazil

elisa@icmc.usp.br
Awais Rashid

Computing Department
Lancaster University - UK

marash@comp.lancs.ac.uk

José Carlos Maldonado
Computer Systems Department
University of São Paulo - Brazil

jcmaldon@icmc.usp.br

ABSTRACT
Aspect-Oriented Programming has introduced new types of
software faults that may be systematically tackled with mu-
tation testing. However, such testing approach requires ad-
equate tooling support in order to be properly performed.
This paper addresses this issue, introducing a novel tool
named Proteum/AJ . Proteum/AJ realises a set of require-
ments for mutation-based testing tools and overcomes some
limitations identified in previous tools for aspect-oriented
programs. Through an example, we show how Proteum/AJ
was designed to support the main steps of mutation testing.
This preliminary use of the tool in a full test cycle provided
evidences of the feasibility of using it in real software devel-
opment processes and helped us to reason about the current
functionalities and to identify future needs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Reliability, Verification, Measurement

Keywords
Mutation testing, Aspect-Oriented Programming, test au-
tomation, testing tools.

1. INTRODUCTION
In the last years, Aspect-Oriented Programming (AOP)

[18] has been widely investigated as an approach for enhanc-
ing software modularity. It has introduced new concepts
and programming mechanisms that allow software develop-
ers to implement different system functionalities separately.
Once implemented, they can be combined together to pro-
duce a single executable system that is expected to present
enhanced modularity and maintainability [19].

Despite the benefits claimed by the AOP community, the
associated programming mechanisms lead to specific types

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AST ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-970-1/10/05 ...$10.00.

of faults [13, 14]. In this context, mutation testing [12] is a
fault-based testing criterion that can systematically explore
common mistakes made by aspect-oriented (AO) software
developers. It has been widely investigated in several devel-
opment phases and technologies [17] and recently in AOP
field [8, 10, 13].

Mutation testing strongly relies on automated testing tools
in order to be introduced in real software development envi-
ronments. Moreover, testing tools are invaluable resources
for research and education, as highlighted by Horgan and
Mathur [16]. Examples of mutation-based testing tools that
have been used with success by software practitioners in
both industry and academia are the Mothra [9] and Pro-
teum [11] tools. In regard to AO software, we can also iden-
tify some attempts to provide tooling support for mutation
testing [8, 10]. They all focus on programs written in As-
pectJ [7], which is the most widely adopted AOP language.
Despite that, none of these tools currently provide adequate
support to the basic steps performed in mutation testing.

In our previous research we investigated how fault types
may occur in AO software and how this can be addressed
with mutation testing [13]. In this paper we present Pro-
teum/AJ , a novel tool for mutation testing of AspectJ AO
programs. Proteum/AJ automates a set of AO-specific mu-
tation operators [13] and supports the basic steps of muta-
tion testing [12]. It leverages previous knowledge on develop-
ing Proteum (Program Testing Using Mutants) [21], a fam-
ily of tools for mutation testing developed by the Software
Engineering group at the University of São Paulo, Brazil.

Proteum/AJ aims at filling the gap of limited support
for mutation testing of AO programs by providing a set of
functionalities not yet available in current tools. The devel-
opment of Proteum/AJ was guided by a set of basic require-
ments for mutation tools mostly identified from previous re-
search (Section 2). For instance, it allows the tester to per-
form incremental testing by evolving the selection of muta-
tion operators, target aspects and the test suite. Equivalent
mutants can be automatically identified, and live mutants
can be individually executed and analysed.

The tool implements a reference architecture for software
testing tools named RefTEST [22], from which the main
functional modules were derived (Section 3). The prelimi-
nary use of the tool (Section 4) evinces the feasibility of using
Proteum/AJ in real-world software development processes.
Moreover, using the tool provided us with valuable feedback
with respect to the implemented functionalities and issues
to be addressed in our future research (Sections 5 and 6).

173

Table 1: Requirements for mutation-based testing tools.

Requirement Description

1. Test case handling∗ Execution, inclusion/exclusion, activation/deactivation of test cases.
2. Mutant handling∗ Creation, selection, execution and analysis of mutants.
3. Adequacy analysis∗ Computation of mutation score generation of statistical reports.
4. Reducing test costs† Auto-generation of test cases and minimisation of test sets.
5. Unrestricted program size† Size of the target application should not be restricted by the tool.
6. Support for testing strategies� Different testing strategies (e.g. ordered application of mutation operators)

should be supported by the tool.
7. Independent test configuration The test configuration (e.g. test inputs, outputs and executing environment)

should not be restricted by the tool.
∗From Delamaro and Maldonado [11]. �From Vincenzi et al. [23]. †From Horgan and Mathur [16].

2. BACKGROUND AND RELATED WORK
Mutation testing is a fault-based testing criterion which

relies on common mistakes practitioners make during soft-
ware development [12]. Such mistakes are modelled into
mutation operators as a set of transformation rules. Given
an original product1 P , the criterion requires the creation
of a set M of mutants of P , resulting from the applica-
tion of the mutation operators to it. Then, for each mutant
m, (m ∈ M), the tester runs a test suite T originally de-
signed for P . If ∃t, (t ∈ T) | m(t) 6= P (t), this mutant is
considered killed. If not, the tester should improve T with a
test case that reveals the difference between m and P . If m
and P are equivalent, then P (t) = m(t) for all test cases.

A recent survey undertaken by Jia and Harman [17]
showed that mutation testing has been extensively and in-
creasingly investigated in the last three decades. According
to their survey, over 30 tools have been implemented to auto-
mate mutation testing at several levels of software abstrac-
tion, ranging for formal specification to source code level
testing. Specifically regarding source code testing, Mothra
[9] for Fortran programs and Proteum [11] for C programs
are the two most widely investigated and used tools.

From the experience in developing and using Proteum,
Delamaro and Maldonado [11] listed a minimal set of re-
quirements that should be provided by mutation-based test-
ing tools. Basically, their list regards test case handling,
mutant handling and adequacy analysis. We enhanced this
list of requirements with some common features observed by
Horgan and Mathur [16] in a suite of testing tools used in
their experiments, including Mothra. The resulting list is
shown in Table 1.

Recently, Vincenzi et al. [23] proposed the Muta-Pro pro-
cess to support mutation-based testing. It aims at synergi-
cally integrating several approaches to reduce the high cost
of mutant execution and analysis tasks. The process was
designed to support experimentation in software testing, for
instance, supporting incremental testing strategies along the
process. From Muta-Pro we identified an extra requirement
that is listed in Table 1. Moreover, we included the Inde-
pendent test configuration feature, which we consider fun-
damental for testing modern software systems. For such
systems (e.g. enterprise information systems, frameworks
and software product lines), the tool should not restrict, for
instance, the test input and test output formats, neither the
configuration of the executing environment. Such properties
should be delegated for specific test execution mechanisms
whose outputs (e.g. results and reports) could be extracted
and analysed by the testing tool.

1
P can be a program specification, source code or any other exe-

cutable software artefact [23].

2.1 Current Mutation Tools for AO Programs
We identified two implementations of mutation tools for

AO software, both for AspectJ programs. Anbalagan and
Xie [8] implemented a tool that performs mutations of point-
cut expressions. Mutants are produced through the use of
wildcards as well as by using naming parts of original point-
cuts and join points identified from the base code. Based
on heuristics, the tool automatically ranks the most repre-
sentative mutants pointcuts, which are the ones that more
closely resemble the original pointcuts. If a mutant selects
the same set of join point as does the original expression, it
is automatically classified as equivalent. The final output is
a list of the ranked mutants.

Anbalagan and Xie [8]’s tool has some limitations2 with
respect to the requirements presented in Table 1. It does
not support all steps of mutation testing. Basically, the tool
is limited to the creation and classification of mutants based
on a very small set of mutation operators. No support for
test case and mutant handling is provided. Other particular
limitation regards the equivalent mutant detection. In As-
pectJ, pointcuts can be reused in different modules, hence
several join point matchings across the system may be af-
fected by a single pointcut mutation. However, the tool
analyses pointcuts individually, potentially overlooking the
impact of a mutation on other modules.

More recently, Delamare et al. [10] presented the AjMu-
tator tool that implements a subset of the operators for
pointcut expressions proposed in our previous research [13].
AjMutator parses pointcut expressions from aspects indi-
vidually and performs the mutations. The modified expres-
sions are reinserted into the code, generating the mutants.
The automatic detection of equivalent mutants relies on join
point matching information provided by the abc compiler [1],
an alternative compiler for AspectJ programs. AjMutator
allows the tester to run JUnit test cases and identifies non-
compilable and dead mutants. The tool outputs an XML
file that contains information about every mutant handled
(e.g. mutant status, pointcut ID and aspect ID).

Although AjMutator tackles some of the limitations ob-
served in Anbalagan and Xie’s tool [8], it still misses some
basic functionalities to properly support mutation testing.
For instance, it does not allow for mutation operator selec-
tion, hence hindering testers to apply different strategies.
The mutant analysis itself is limited to the automatic detec-
tion of equivalent mutants; other mutant handling features
such as individual mutant execution and manual classifica-
tion of mutants are not available. Specific implementation
issues include the lack of support to Java 5 features [6] in the

2
Since the tool is not available for download, our analysis is based on

the description provided by the authors [8].

174

Table 2: Limitations of current tools for mutation testing of AO programs.
Req. AjMutator [10] Anbalagan and Xie’s tool [8]

#1 Supports test case execution. However, tests cannot be incrementally
added, activated or deactivated.

No support for test case management and execution.

#2 All implemented operators are applied at once. Does not support manual
mutant inspection and individual mutant execution.

All implemented operators are applied at once. No support for mutant
handling is provided.

#3 Equivalent mutants are automatically identified. Calculates mutation
score but does not create statistical reports.

Equivalent mutants are automatically identified. Does not compute
mutation score neither creates statistical reports.

#4 No support for test case generation or minimisation of test suites. No support for test case generation or minimisation of test suites.
#5 n/a n/a
#6 No support for testing strategies (e.g. incremental use of operators or

addition of test cases).
No support for testing strategies (e.g. incremental use of operators or
addition of test cases).

#7 Test execution is configured through Ant tasks (i.e. it is delegated
to external tools).

No support for test execution.

abc compiler, as well as the lack of support for incremental
testing since the results are reset in every test run.

A summary of the addressed requirements and limitations
of these tools is presented in Table 2. The requirement num-
bers are presented in the first column and “n/a” means that
we could not find such information in the original work.
In the next sections we describe how we designed the Pro-
teum/AJ tool to overcome some of the current limitations.

3. THE PROTEUM/AJ TOOL
Proteum/AJ is a tool for mutation testing of AO Java

programs written in AspectJ. Table 3 summarises up front
how Proteum/AJ addresses the requirements for mutation
tools listed in Section 2. It also compares our tool with the
two previous tools described in Section 2.1. In short, Pro-
teum/AJ supports the four main steps of mutation testing,
as originally described by DeMillo et al. [12]: (i) the orig-
inal program is executed on the current test set and test
results are stored; (ii) the mutants are created based on a
mutation operator selection that may evolve in new test cy-
cle iterations; (iii) the mutants can be executed all at once
or individually, as well as the test set can be augmented or
reduced based on specific strategies; and (iv) the test re-
sults are evaluated so that mutants may be set as dead or
equivalent, or mutants may remain alive.

Table 3: Addressed requirements.
Requirement Proteum/AJ AjMutator Anbalagan

1. Test case handling partial partial no
2. Mutant handling yes partial partial
3. Adequacy analysis partial partial partial
4. Reducing test costs no no no
5. Unrestricted program size yes n/a n/a
6. Support for testing strategies partial no no
7. Independent test configuration yes yes no

More details about how requirements are fully or partially
addressed by Proteum/AJ are further discussed in Section 5.
Next we present an overview of the tool architecture (Section
3.1) and its data model (Section 3.2). The main support-
ing technologies and implementation details are presented
in Sections 3.3 and 3.4, respectively.

3.1 Architecture
Figure 1 depicts the architecture of Proteum/AJ . The ar-

chitecture is based on a reference architecture for software
testing tools called RefTEST [22]. RefTEST is based on
separation of concerns (SoC) principles, the Model-View-
Controller (MVC) and three tier architectural patterns, and
the ISO/IEC 12207 standard for Information Technology.
RefTEST encourages the use of aspects as the mechanism

for integrating the core activities of a testing tool with tools
that automates supporting and organisational software en-
gineering activities defined in ISO/IEC 12207 (e.g. plan-
ning, configuration management and documentation tools).
Moreover, aspects are also encouraged for integrating ser-
vices such as persistence and access control. Proteum/AJ
benefited mainly from the reuse of domain knowledge con-
tained in RefTEST . The instantiation of the architecture
provided us with guidance on how we could structure the
tool in terms of functionalities and module interactions.

PRESENTATION
LAYER

APPLICATION LAYER

controller

view

Proteum/AJ core

service tools

supporting
activities

organisational
activities

S
E

R
V

E
R

 S
ID

E

DATABASE LAYER
Database

C
L

IE
N

T
 S

I D
E

command line interface

persistence

artifact

criterion

testcase

requirement

Figure 1: Proteum/AJ architecture.

The modules currently implemented in Proteum/AJ are
shown as UML packages in Figure 1. The core of the tool
comprises the four main concepts that should be handled
by testing tools, as proposed in RefTEST [22]: testing cri-
terion, artifact, test requirement and test case. Some of
them map directly to the requirements presented in Table
1. For instance, testcase maps to the “test case handling”
requirement; and criterion maps to both “mutant handling”
and “adequacy analysis” requirements. The former provides
functionalities for running and managing test cases in Pro-
teum/AJ , while the latter is responsible for handling tasks
related to testing criterion itself (e.g. generating, compiling
and analysing mutants).

The artifact and requirement modules comprise, respec-
tively, the artefacts under test (i.e. the AspectJ source
code files) and the test requirements (i.e. the generated
mutants). The controller module is in charge of receiving
requests from the client and properly invoking the modules
present in the application layer, which include core func-
tionalities and database-related procedures. The controller

175

is also responsible for updating the view that is presented to
the client. In Proteum/AJ , the view is basically formed by
test execution feedback that is displayed to the users.

3.2 Data Model
Figure 2 shows the data model of Proteum/AJ using the

Extended Entity-Relationship notation. In the Proteum/AJ
database, a TestProject element represents a test project and
belongs to a user (a User element in Figure 2). Each Test-
Project selects one or more AspectJ source code files (rep-
resented by the SourceCode) that are the targets of one or
more mutation operators (MutationOperatorBean element).
The mutations implemented by the mutant operators are
performed on the SourceCode elements, resulting in a set of
mutants (Mutant element). Each TestProject also executes
a set of test cases (AntTestCase element), which are also
executed against the mutants within the same test project.

yields MutantSourceCode

MutationOperatorBean

TestProject

AntTestCase

User

owns

selects

runsruns

selects

 1

N N

 M

 1

 N

1 N

 M

NN

 1

Figure 2: Proteum/AJ data model.

3.3 Supporting Technologies
We employed a set of technologies to implement Pro-

teum/AJ functionalities. The main ones are:
AspectJ-front: In Proteum/AJ , parsing and pretty-printing

of AspectJ source code are supported by the AspectJ-front
tools suite [3]. The AspectJ-front parser converts AspectJ
code into an abstract syntax tree (AST) represented in aterm
notation. aterm is a format for exchanging structured data
between tools [4]. Figure 3 exemplifies how an after re-

turning AspectJ advice (top part) is represented in aterm
notation (bottom part).

Original advice in AspectJ

after (Customer caller , Customer receiver , boolean iM)

returning(Connection c) : createConnection(caller , receiver , iM) {
. . .

}

The same advice in aterm notation

AdviceDec ([] ,

After ([Param([] , ClassOrInterfaceType(TypeName(

Id (”Customer”)) ,None()) , Id (”caller”)) ,

Param([] , ClassOrInterfaceType(TypeName(

Id (”Customer”)) ,None()) , Id (”receiver”)) ,

Param([] ,Boolean() , Id (”iM”))] ,

Some(Returning(Param([] , ClassOrInterfaceType(

TypeName(Id (”Connection”)) ,None()) , Id (”c”))))) ,

None() ,

NamedPointcut(PointcutName(Id (”createConnection”)) , [. . .]) ,

Block ([. . .])
)

Figure 3: Example of aterm representation.

iBATIS: We used the iBATIS data mapper framework [5]
in Proteum/AJ to handle data storage. With iBATIS, per-
sistent objects are mapped to database table by means of
XML-based procedures that can be invoked with pure Java
code. The framework also provides full support for database
connection pooling, caching and transactions.

Ant: The Ant tool [2] provides facilities for compiling
and manipulating files in build processes through a set of
XML-based procedures called tasks. Such tasks can be pro-
grammatically invoked, what facilitates the integration of
Ant with customised tools such as Proteum/AJ . Examples
of Ant tasks used within Proteum/AJ are AspectJ source
code compilation (iajc task), test case execution (junit task)
and file decompression (unzip task).

3.4 Implementation Details
This section describes the main modules of the Proteum/AJ

core: the criterion and the testcase modules. A simplified
class diagram of these modules is depicted in Figure 4. De-
tails are provided in the sequence.

criterioncriterion

testcasetestcase

MutantCompiler

<<interface>>
IMutationOperator

applyOperator()

MutationOperator

PWIW DAIC ...

<<external tool>>
Aspectj Compiler

<<external tool>>
Parser

<<external tool>>
Pretty Printer

 invokes

applies

invokes

invokes

MutantAnalyser

generates

analyses

compiles

uses

TestRunner

TestEvaluator

runs

evaluates

requirementrequirement

Mutant

artifactartifact

SourceCode

MutationEngine

Note: Some dependencies are not
exhibited in order to improve the
diagram's readability.

Figure 4: Proteum/AJ core.

3.4.1 The criterion Module
The criterion module includes functionalities for generat-

ing, compiling and analysing mutants. These functionalities
are implemented within three main classes: MutationEngine,
MutantCompiler and MutantAnalyser.

The MutationEngine class is responsible for generating mu-
tants from AspectJ source code by controlling the applica-
tion of the mutation operators. The operators implemented
in Proteum/AJ were proposed in our previous research [13].
They model faults that are likely to occur in AspectJ-like
programs. These operators are summarised in Table 4. They
are split into three groups, according to the main AOP con-
structs3 they are related to, namely: Group G1 – pointcut-
related operators; Group G2 – declare-like-related opera-
tors; and Group G3 – advice-related operators. All mutation
operators implement the IMutationOperator interface, what
facilitates the inclusion of new mutation operators into the
tool. Mutations are performed in the aterm representation of
source code elements, which are manipulated as Java String

3
More information about the main AOP constructs can be found in

the AspectJ documentation [7]

176

Table 4: Mutation operators implemented in Proteum/AJ (adapted from [13]).
Operator Description/Consequences

G1

PWSR† Pointcut weakening by replacing a type with its immediate supertype in pointcut expressions
PWIW? Pointcut weakening by inserting wildcards into pointcut expressions
PWAR? Pointcut weakening by removing annotation tags from type, field, method and constructor patterns
PSSR† Pointcut strengthening by replacing a type with its immediate subtype in pointcut expressions
PSWR? Pointcut strengthening by removing wildcards from pointcut expressions
PSDR? Pointcut strengthening by removing declare @ statements, used to insert annotations into base code elements
POPL?? Pointcut weakening or strengthening by changing parameter lists of primitive pointcut designators
POAC?? Pointcut weakening or strengthening by changing after [retuning|throwing] advice clauses
POEC? Pointcut weakening or strengthening by changing exception throwing clauses
PCTT?? Pointcut changing by replacing a this pointcut designator with a target one and vice versa
PCCE Context changing by switching call/execution/initialization/preinitialization pointcuts designators
PCGS? Pointcut changing by replacing a get pointcut designator with a set one and vice versa
PCCR?? Pointcut changing by replacing individual parts of a pointcut composition
PCLO? Pointcut changing by changing logical operators present in type and pointcut compositions
PCCC?? Pointcut changing by replacing a cflow pointcut designator with a cflowbelow one and vice versa

G2

DAPC Aspect precedence changing by alternating the order of aspects involved in declare precedence statements
DAPO Arbitrary aspect precedence by removing declare precedence statements
DSSR Unintended exception handling by removing declare soft statements
DEWC Unintended control flow execution by changing declare error/warning statements
DAIC Unintended aspect instantiation by changing perthis/pertarget/percflow/percflowbelow deployment clauses

G3

ABAR Advice kind changing by replacing a before clause with an after [retuning|throwing] one and vice versa
APSR Advice logic changing by removing invocations to proceed statement
APER Advice logic changing by removing guard conditions which surround proceed statements
AJSC Static information source changing by replacing a thisJoinPointStaticPart reference with a thisEnclosingJoin-

PointStaticPart one and vice versa
ABHA Behaviour hindering by removing implemented advices
ABPR Changing pointcut-advice binding by replacing pointcuts which are bound to advices

†Not implemented in the current version of Proteum/AJ.
?Considered for automatic detection of equivalent mutants. ?Impacts quantification of join point with dynamic residues.

objects by the MutationEngine class. The engine uses a set of
tailor-made string handlers that enables such manipulation
(e.g. code offset localising and replacement).

The MutationEngine class also invokes the AspectJ-front
pretty-printer tool to build AspectJ code. This tool per-
forms a first check that ensures each mutant code is syn-
tactically correct when considered in isolation, i.e. before
the aspect is woven into the base code. However, it can-
not guarantee that base code and the mutant aspect can be
successfully woven together. Such verification can only be
performed by an AspectJ compiler such as ajc [7].

Invoking the ajc compiler is assigned to the MutantCompiler

class. It is achieved through the iajc Ant task provided with
the AspectJ API. Non-compilable mutants are identified at
this step. Such mutants are classified as anomalous and are
further discarded when the mutation score is calculated.

Finally, the MutantAnalyser class compares the original
and the mutated code. More specifically, it automatically
identifies equivalent mutants for some pointcut-related oper-
ators based in the weaving output produced by the compiler.
This output is a valuable information that includes details
of all matching between aspects and base code [7]. The Mu-

tantAnalyser also generates reports that show the modified
portions of code for each mutant, for each target aspect.
These reports are necessary to help the testers identify ei-
ther equivalent mutants or the need for additional test cases.

3.4.2 The testcase Module
The role of the testcase module is managing test execution

and evaluation. Within it, the TestRunner class implements
test runner methods for the original and the mutant applica-
tions. In particular, it calls the MutantCompiler class to pro-
duce the executable mutant application. If the compilation
succeeds, the automatic detection of equivalent mutants is

performed by the MutantAnalyser class4. If the original ap-
plication and the mutant are not equivalent, the tests are
executed and the results are stored for further evaluation.

The TestEvaluator class evaluates the test results obtained
from the execution of the original application and the mu-
tants. It contrasts test case outputs, identifies the differences
and decides whether a given mutant should be killed or not.

4. EXAMPLE
This section describes the use of Proteum/AJ based on the

modules presented in the previous section. It starts present-
ing an example (Section 4.1) that is used along the section
to exemplify the main steps performed with Proteum/AJ .
In the sequence, we show the results obtained with this ex-
ample along a full test session.

4.1 The Telecom Application
To introduce the Proteum/AJ functionalities, we selected

an AspectJ application called Telecom. It is a telephony sys-
tem simulator which is originally distributed with AspectJ
[7]. In Telecom, timing and billing of phone calls are han-
dled by aspects. The version we use in this example includes
six classes and three aspects. It extends the original version
to support a different type of charging for mobile calls [20].

Figure 5 shows the partial implementation of the three
aspects present in Telecom. The Timing aspect measures
the duration of the calls, which are logged by the TimerLog

aspect. Billing implements the billing concern and ensures
calls are charged accordingly. Note that Figure 5 only shows
AspectJ code that is relevant for the mutation operators im-
plemented in Proteum/AJ , i.e. pointcuts, advices and de-

clare-like statements. The full implementation can be found
at http://www.labes.icmc.usp.br/~ferrari/proteumaj/.

4
More details about equivalent mutant detection in Section 4.

177

public aspect Timing {
. . .

after (Connection c) returning : target(c) &&

call (void Connection .complete()) {
getTimer(c) . start () ;

}

pointcut endTiming (Connection c) : target(c) &&

call (void Connection .drop ()) ;

after (Connection c) returning : endTiming(c) {
getTimer(c) . stop () ;

c . getCaller () .totalConnectTime += getTimer(c) .getTime() ;

c . getReceiver () .totalConnectTime += getTimer(c) .getTime() ;
}

}

public aspect TimerLog {
after (Timer t) returning : target(t) && call(∗ Timer. start ()) {

System. err . println (”Timer started: ” + t .startTime) ;
}

after (Timer t) returning : target(t) && call(∗ Timer. stop ()) {
System. err . println (”Timer stopped: ” + t .stopTime) ;

}
}

public aspect Billing {
declare precedence : Billing , Timing ;
. . .

pointcut createConnection (Customer caller , Customer receiver ,

boolean iM) :

args(caller , receiver , iM) && call (Connection+.new(. .)) ;

after (Customer caller , Customer receiver , boolean iM) returning(Connection c) :

createConnection(caller , receiver , iM) {
i f (receiver .getPhoneNumber() . indexOf(”0800”) == 0)

c .payer = receiver ;

else
c .payer = caller ;

c .payer .numPayingCalls += 1 ;
}
. . .

after (Connection conn) returning : Timing.endTiming(conn) {
long time = Timing.aspectOf () .getTimer(conn) .getTime() ;

long rate = conn . callRate () ;

long cost = rate ∗ time ;

i f (conn . isMobile ()) {
i f (conn instanceof LongDistance) {

long receiverCost = MOBILELDRECEIVERRATE ∗ time ;

conn . getReceiver () .addCharge(receiverCost) ;
}

}
getPayer(conn) .addCharge(cost) ;

}
. . .

void around(boolean isMobile) : execution(Connection .new(. . , boolean)) &&

args (. . , isMobile) {
System. err . println (”The established Connection includes a mobile device”) ;

i f (isMobile)

proceed(isMobile) ;

else {
proceed(isMobile) ;

}
}

} // end of Billing

Figure 5: Partial code of the Telecom application.

4.2 Testing with Proteum/AJ
As introduced early in Section 1 as well in this section,

Proteum/AJ supports the main steps performed in a typical
mutation-based testing process. Figure 6 depicts how this is
achieved with the tool. It shows the execution sequence of
the main modules and the inputs/outputs of each of them.
The modules are invoked through parameterised scripts that
are executed via command line in a shell console.

Pre-processing the original application
As shown in Figure 6, the target application must be a com-
pressed file that is submitted to Proteum/AJ . This file con-
tains all modules (classes, aspects and libraries) of the appli-
cation under test. The Application Handler module then runs
a pre-processing step, whose outputs are the decompressed
original application and a list of target aspects. This step
creates the test projects in the Proteum/AJ database, ac-
cording to the schema presented in Figure 2. Such data is
handled along the test process. The Application Handler also
compiles the original application through the iajc Ant task.

Execution of the original application
The decompressed application is sent to the Test Runner
module together with the test case files. The Test Runner
executes the application on the available test set by invok-
ing the junit Ant task. The results are stored for further
evaluation of mutants.

We designed an initial test set that includes 18 test cases
that target all modules of the Telecom system. This test
set covers all control flow- and data flow-based requirements
computed according to the approach for structural testing
of AO programs proposed by Lemos et al. [20]. It took
∼1.6 second to execute the 18 tests in Proteum/AJ .

Generation of mutants
The Mutation Engine receives as input the list of target as-
pects identified by the Application Handler and the set of
mutation operators selected by the tester. It produces the

set of mutants that are passed to the Mutant Compiler.
The 24 operators implemented in Proteum/AJ produced

a total of 111 mutants for the three aspects of Telecom in
∼1.8 second. Table 5 summarises the results. The mutants
are grouped according to the nature of the mutation opera-
tors (see Table 4).

Table 5: Telecom mutants.
Group G1 Group G2 Group G3 Total

Billing 30 2 15 47
TimerLog 26 0 6 32
Timing 26 0 6 32

Total 82 2 27 111

Execution of mutants
The execution of mutants requires a series of steps in Pro-
teum/AJ . Initially, each mutant is sent to the Mutant Com-
piler module. This module invokes the ajc compiler through
the iajc Ant task provided with the AspectJ API [7]. The
Mutant Compiler detects non-compilable mutants which are
classified as anomalous. For compilable mutants, the weav-
ing information produced by the ajc compiler is collected at
this stage and further used by the Mutant Analyser module.

The Mutant Analyser compares the ajc weaving output of
the original application and the mutants. Proteum/AJ uses
such information to decide whether mutants created by a
subset of operators from Group G1 (tagged with the symbol
“?” in Table 4) are equivalent to the original aspects. The
join point quantification yielded by these operators can be
checked at compilation time so that equivalence can be au-
tomatically obtained. However, some pointcut designators
(e.g. if and cflow) results in dynamic tests being inserted
into the affected join points during the weaving process.
These tests, also called dynamic residues [15], imply that
final join point matching can only be resolved at runtime.

We identified mutation operators that are likely to im-
pact the quantification of join points that contain dynamic
residues (tagged with the symbol “?” in Table 4). Pro-

178

Non-
Equivalent
Mutants

Target
aspects

Application
Handler

Unzipped
application

Mutation
Engine

MutantsZipped
target

application

Test
Runner

Junit
Test Cases

Mutant
Compiler

Mutant
Analyser

Equivalent
Mutants

Equivalent
MutantsMutant

Test
Results

Original
Test

Results

Live
Mutants

Live
Mutants

Dead
Mutants

Dead
Mutants

Anomalous
Mutants

Anomalous
Mutants

Compilable
Mutants

Test
Evaluator

Mutation
Operators

process

entity

collection of entities

external input

Legend:

Figure 6: Proteum/AJ execution flow.

teum/AJ , in turn, gives the tester the option of deactivating
the automatic equivalence detection by setting a flag sent to
the Mutant Compiler module. In doing so, the tester be-
comes in charge of manually analysing the mutants created
by those operators during the Analysis of mutants step.

As for the original application, the Test Runner module
runs all compilable, non-equivalent mutants on the current
test set using the iajc Ant task. The results are stored and
sent to the Test Evaluator module. The evaluator contrasts
the results with the original results and identifies which mu-
tants should be killed. Mutants can also be killed by exe-
cution timeout. In this case, the timeout is parameterised
either within the junit Ant task or via console script.

Table 6: Results for Telecom after running the tests.
Alive Dead Equivalent∗ Anomalous Total

Billing 8 13 14 12 47
TimerLog 16 0 16 0 32
Timing 10 6 16 0 32

Total 34 19 46 12 111
∗automatically identified.

According to the numbers presented in Table 6, 99 mu-
tants of Telecom compiled with success and 12 were classi-
fied as anomalous. The execution of the original test set took
∼3 minutes (or ∼1.62 second per mutant), resulting in 19
dead mutants and 46 automatically identified as equivalent.
Analysis of mutants
This is the most costly step performed in mutation testing
since it requires manual intervention from the tester. To
support it, the Mutant Analyser module creates a set of plain
text reports that show the differences between the original
and mutated code. These reports show the modified parts of
the code for each mutant, hence providing guidance for the
tester while analysing the changes. The tester then decides
which mutants should be set as equivalent and updates their
status through the Mutant Analyser module.

The Mutant Analyser also computes the mutation score
using the formula below, where dm is the number of dead

mutants, cm is the number of compilable mutants and em
is the number of equivalent mutants:

MS = (dm)/(cm− em)

The initial tests yielded in a mutation score of 0.3585. We
analysed the 34 live mutants, what resulted in 12 mutants
identified as equivalent. The remaining ones were killed by
five extra test cases that we added to the initial test set.
The final results are shown in Table 7. The final test set
includes 23 test cases that lead to a mutation score of 1.0.

Table 7: Final results for Telecom.
Alive Dead Equivalent Anomalous Total

Billing 0 19 16 12 47
TimerLog 0 12 20 0 32
Timing 0 12 20 0 32

Total 0 43 56 12 111

5. DISCUSSION
This section analyses how Proteum/AJ addresses the re-

quirements presented in Section 2. We also discuss limita-
tions and issues related to the implementation of the tool.

How does Proteum/AJ fulfil the requirements?
Proteum/AJ allows the tester to manage mutants in several
ways. For example, mutants can be created, recreated and
individually selected for execution. The execution can also
be restricted to live mutants only, and these can be manually
set as equivalent and vice versa, that is, equivalent mutants
can be reset as alive.

The size of the application under test is not constrained
by the tool. Decompression and compilation tasks are dele-
gated to third-party tools configured through Ant tasks. We
have been experimenting Proteum/AJ with larger applica-
tions (e.g. nearly 200 classes and 40 aspects [14]) and the
tool has shown to be able to handle larger sets of mutants
(∼3,600 in total), despite the compilation issues discussed
in the sequence. The test setup is also fully configurable
through junit Ant tasks that are invoked by Proteum/AJ .
In this way, there are only minor dependencies between the
test execution configuration and the tool.

Proteum/AJ also enables the tester to import and exe-
cute new test cases within an existing test project, although
it does not support test case activation/deactivation. De-
spite that, the Proteum/AJ database was designed to sup-
port such features in the future. The mutation score can
be computed at any time after the first tests have been exe-
cuted; however, the creation of statistical reports is another
functionality that is planned for the upcoming releases.

Proteum/AJ implementation issues and limitations
Since Proteum/AJ runs JUnit test cases to evaluate the mu-
tants, we can consider the tool implements the firm muta-
tion approach. JUnit test cases have the ability of config-
uring partial program runs (e.g. a single method execution)
and performing assertions in the course of the execution.
Firm mutation is defined by Woodward and Halewood [24]
as “the situation where a simple error is introduced into a
program and which persists for one or more executions, but
not for the entire program execution”. Thus, similarly to
the AjMutator tool [10], the evaluation of mutants based
on partial program executions implemented in JUnit tests
characterises firm mutation in Proteum/AJ .

Regarding the mutant compilation step, the ajc compiler
allows for two types of weaving [7]: compile-time and post-

179

compile weaving5. The former is the simplest approach and
is performed when the source code is available. The latter,
on the other hand, is carried out for existing class files. In
Proteum/AJ , the compiler directives are provided by the
tester through the iajc Ant task. That is, the Ant task de-
fines how the application will be compiled. So far we have
only experienced Proteum/AJ with applications configured
for weaving based on source code (compile-time). However,
the compilation time may become a bottleneck for larger
systems. Therefore, reducing the compilation time (e.g.
through post-compile weaving) is one of the enhancements
we planned for the next releases of the tool. Nevertheless,
full weaving would still be required in the occurrence of inter-
type declarations in the system [7], what is a very recurring
situation we have noticed in complex AO systems [14].

To run Proteum/AJ , the compressed file submitted to
Proteum/AJ is expected to include an Ant build file named
build.xml. This build file must include three tasks that will
be used by Proteum/AJ : (i) compile, which specifies how to
compile the application; (ii) full-test, which specifies how to
run the full test set (possibly) included with the application;
and (iii) single-test, which specifies how to run a single JUnit
test file. The tester can also provide a file named targets.lst
within the compressed file. It contains a list of target as-
pects that is parsed by the Application Handler module (see
Section 4). Optionally, target aspects and test case files can
be added to the test project after it has been created.

6. FINAL REMARKS
In this paper we presented Proteum/AJ , a tool that auto-

mates the mutation testing of aspect-oriented AspectJ pro-
grams. The tool was planned to address some limitations of
previous tools with the same intent [8, 10]. Its development
was guided by a reference architecture for software testing
tools [22] and by a set of requirements mostly identified from
previous research on test automation [11, 16, 23]. The ref-
erence architecture established the main modules that com-
pose the tool. On the other hand, the requirements defined
the set of functionalities implemented within those modules.

We described Proteum/AJ ’s characteristics through an
example of use. The tool implements a set of mutation op-
erators [13] that subsumes previous implementations [8, 10].
Proteum/AJ is able to generate and manage mutants for
multiple aspects within a single test project. The mutant
sets can be augmented or reduced along the test cycles, as
well as the test suites that can be evolved in order to achieve
higher test coverages (i.e. enhanced mutation scores). The
example of use showed that employing Proteum/AJ in real
software development processes is an achievable goal.

Our next research steps include the conduction of extra
case studies that will comprise larger aspect-oriented sys-
tems. We also intend to fulfil the requirements not yet ad-
dressed in Proteum/AJ , specially the ones that regards test
case handling and adequacy analysis. Besides, considering
the complementary nature of testing approaches, we also
aim to investigate how the tool can be integrated with other
testing tools in order to share common resources such as test
projects and test suites.

Acknowledgments
We would like to thank Martin Bravenboer from the Strat-
ego/XT Team for the ready replies to doubts and required

5
A third type, the load-time weaving, is basically the post-compile

weaving postponed to the moment classes are loaded to the JVM [7].

fixes in the AspectJ-front toolset. We also thank the fi-
nancial support received from FAPESP (grant 05/55403-6),
CAPES (grant 0653/07-1), EC Grant AOSD-Europe (IST-
2-004349), and CPNq - Brazil.

References
[1] abc: The aspectbench compiler for AspectJ. http://abc.

comlab.ox.ac.uk/ - accessed on 01/03/2010.
[2] Ant. http://ant.apache.org/ - accessed on 01/03/2010.
[3] AspectJ-front. http://strategoxt.org/Stratego/Aspe

ctJFront - accessed on 01/03/2010.
[4] ATerm format. http://www.program-transformation.

org/Tools/ATermFormat - accessed on 01/03/2010.
[5] iBATIS data mapper. http://ibatis.apache.org/ - ac-

cessed on 01/03/2010.
[6] J2SE 5.0: New features and enhancements, 2004.

http://java.sun.com/j2se/1.5.0/docs/relnotes/
features.html - accessed on 01/03/2010.

[7] AspectJ documentation, 2010. http://www.eclipse.org/
aspectj/docs.php - accessed on 01/03/2010.

[8] P. Anbalagan and T. Xie. Automated generation of point-
cut mutants for testing pointcuts in AspectJ programs. In
ISSRE’08, pages 239–248. IEEE Computer Society, 2008.

[9] B. J. Choi et al. The Mothra tool set. In HICSS’89,
volume 2, pages 275–284, 1989.

[10] R. Delamare, B. Baudry, and Y. Le Traon. AjMutator:
A tool for the mutation analysis of aspectj pointcut de-
scriptors. In Mutation’09 Workshop, pages 200–204. IEEE
Computer Society, 2009.

[11] M. E. Delamaro and J. C. Maldonado. Proteum: A tool
for the assessment of test adequacy for C programs. In
PCS’96, pages 79–95, 1996.

[12] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on
test data selection: Help for the practicing programmer.
IEEE Computer, 11(4):34–43, 1978.

[13] F. C. Ferrari, J. C. Maldonado, and A. Rashid. Mutation
testing for aspect-oriented programs. In ICST’08, pages
52–61. IEEE Computer Society, 2008.

[14] F. C. Ferrari et al. An exploratory study of fault-proneness
in evolving aspect-oriented programs. In ICSE’10. ACM
Press, 2010. (to appear).

[15] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ.
In AOSD’04, pages 26–35. ACM Press, 2004.

[16] J. Horgan and A. Mathur. Assessing testing tools in re-
search and education. IEEE Software, 9(3):61–69, 1992.

[17] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. Tech.Report TR-09-06,
CREST Centre, King’s College, London - UK, 2009.

[18] G. Kiczales et al. Aspect-oriented programming. In
ECOOP’97, pages 220–242 (LNCS v.1241). Springer-
Verlag, 1997.

[19] R. Laddad. Aspect-oriented programming will improve
quality. IEEE Software, 20(6):90–91, 2003.

[20] O. A. L. Lemos, A. M. R. Vincenzi, J. C. Maldonado, and
P. C. Masiero. Control and data flow structural testing
criteria for aspect-oriented programs. Journal of Systems
and Software, 80(6):862–882, 2007.

[21] J. C. Maldonado et al. Proteum: A family of tools to
support specification and program testing based on muta-
tion. In Mutation 2000 Symposium (Tool Session), pages
113–116. Kluwer, 2000.

[22] E. Y. Nakagawa, A. S. Simão, F. C. Ferrari, and J. C.
Maldonado. Towards a reference architecture for software
testing tools. In SEKE’07, pages 157–162, 2007.

[23] A. M. R. Vincenzi, A. S. Simão, M. E. Delamaro, and J. C.
Maldonado. Muta-Pro: Towards the definition of a muta-
tion testing process. Journal of the Brazilian Computer
Society, 12(2):49–61, 2006.

[24] M. Woodward and K. Halewood. From weak to strong,
dead or alive? An analysis of some mutation testing issues.
In Workshop on Soft. Testing, Verification, and Analysis,
pages 152–158. IEEE Computer Society, 1988.

180

Appendix

E
Paper: Towards the Practical

Mutation Testing of

Aspect-Oriented Java Programs

This appendix presents the full contents of a paper submitted to the Science of Computer

Programming journal. The sections that describe the two case studies were replicated in

Chapter 6 of this dissertation.

181

Towards the Practical Mutation Testing of

Aspect-Oriented Java Programs

Fabiano Cutigi Ferraria,∗, Awais Rashidb, José Carlos Maldonadoa

aDepartamento de Sistemas de Computação, Universidade de São Paulo (ICMC/USP)
São Carlos - SP - Brazil

bComputing Department, Lancaster University
Lancaster - United Kingdom

Abstract

Mutation testing is a widely explored test selection criterion that focuses on
recurring faults observed in the software. It helps to demonstrate the ab-
sence of prespecified faults and sounds to be an adequate mean to deal with
testing-related specificities of contemporary programming techniques such as
Aspect-Oriented Programming. However, to date the few initiatives for cus-
tomising the mutation testing for aspect-oriented (AO) programs show either
limited coverage with respect to the range of simulated faults, or a need for
both adequate tool support and proper evaluation in regard to properties
like application cost and effectiveness. This paper tackles these limitations
by describing a comprehensive mutation-based testing approach for AO pro-
grams. The approach encompass the definition of a set of mutation operators
for programs written in AspectJ and the implementation of a tool that au-
tomates the approach. The results of two evaluation studies with different
sets of AO applications show that the mutation operators are able to simu-
late faults that may not be revealed by pre-existing, non-mutation-based test
suites. Furthermore, the effort required to augment the test suites to provide
adequate coverage of mutants does not tend to overwhelm the testers. This
demonstrates the feasibility of the proposed approach and represents a step
towards the practical fault-based testing of AO programs.

∗Corresponding author
Email addresses: ferrari@icmc.usp.br (Fabiano Cutigi Ferrari),

marash@comp.lancs.ac.uk (Awais Rashid), jcmaldon@icmc.usp.br (José Carlos
Maldonado)

Preprint submitted to Science of Computer Programming October 22, 2010

183

Keywords: software testing, mutation testing, aspect-oriented
programming, testing aspect-oriented programs, test evaluation

1. Introduction

Aspect-Oriented Programming (AOP) [1] is a contemporary software de-
velopment technique that aims to tackle modularisation issues faced by tra-
ditional approaches such as object-oriented and procedural programming. It
has introduced the aspect as a new conceptual implementation unit that ide-
ally encapsulates all behaviour required to realise the so-called crosscutting
concerns. Such a concern may regard either a stakeholder’s need or a non-
functional requirement that appears either interwoven with other concerns
or requirements, or scattered over several modules in the software. Once the
aspects are implemented, they are combined with the other system modules –
the base modules or base code – in order to produce the final, executable sys-
tem. Classical examples of such crosscutting concerns are logging, exception
handling, concurrency and certain design patterns.

The benefits that are likely to be achieved in aspect-oriented (AO) soft-
ware comprise, for instance, enhanced maintainability [2, 3], augmented
reusability [4] and facilitated software evolution [5]. In spite of such benefits,
new challenges with respect to (w.r.t.) testing of AO software (or simply AO
testing) have also been introduced [6, 7]. Recent empirical evaluations have
indeed shown that AO implementations may have some drawbacks such as
undesired effects on the event on changes [8, 9] and unintended flow of excep-
tions across the system and its boundaries [10]. That is, AOP together with
its implementation mechanisms represent new potential sources of software
faults that should be taken into consideration by existing and upcoming AO
testing approaches.

In this context, mutation testing – originally named Mutant Analysis [11]
– represents a useful mean to explore potential faulty scenarios within the
AOP context. Mutation testing relies on recurring mistakes made by pro-
grammers and develops upon well-characterised faults which are simulated
through mutation operators [11]. Furthermore, mutation testing has been
shown to be an important tool for the assessment of other testing approaches
within the experimental Software Engineering context [12, 13]. In spite of
that, recent surveys [14, 15] reveal that mutation testing has not been prop-
erly investigated in the context of AO software. To date, the few approaches

184

to support mutation testing of AO programs are either not comprehensive
enough w.r.t. the range of mechanisms introduced by AOP or still lack proper
automated support and assessment studies.

This paper presents a comprehensive approach for mutation testing of
AO programs. It tackles the aforementioned limitations by describing a set
of mutation operators [16] for programs written in AspectJ, which happens
to be the most investigated and used AOP language [17]. The design of the
mutation operators is based on the characterisation of possible faults in AO
software, all summarised in a fault taxonomy [16, 18]. We also present a
tool that automates the application of the mutation operators and provides
adequate support for the mutation testing of AspectJ programs [19].

We also perform two case studies in order to evaluate the proposed mu-
tation testing approach. The goal of the first case study is to compare the
mutant-related coverage provided by adequate test suites w.r.t. widely used
functional-based test derivation criteria. Besides that, it measures the effort
required to evolve such test suites to fully cover the generated mutants. The
second case study, on the other hand, aims to estimate the cost for applying
the mutation operators in larger AO systems. The estimation is based on
both the generated set of mutants and the results of the first case study.

The results show that the mutation operators are able to simulate faults
that may not be revealed by pre-existing, non-mutation-based test suites.
Furthermore, the effort required to augment the test suites to provide ad-
equate coverage of mutants does not tend to overwhelm the testers. This
demonstrates the feasibility of the proposed approach and represents a con-
tribution towards the practical application of fault-based testing to AO pro-
grams.

The remainder of this paper is organised as follows: Section 2 presents
the background for the research. Section 3 describes an example of an AO
application that is used throughout the paper. Section 4 summarises the
fault taxonomy for AO software upon which we proposed our mutation test-
ing approach. The set of mutation operators that underlies the approach is
described in Section 5. Section 6 brings an overview of the provided tool
support. The two case studies are described in Sections 7 and 8. A sum-
mary of the limitations of the conducted studies and the related research are
presented in Sections 9 and 10, respectively. Finally, Section 11 brings our
conclusions and future work.

185

2. Background

2.1. Mutation testing

The basic idea behind mutation testing [11] consists in creating several
versions of the original program (i.e. the program under test), each one
containing a simple fault. These modified versions are called mutants and
are all expected to behave differently from the original program. In this way,
any mutant that is executed against the test data should produce a different
output when compared to the execution of the original program.

In mutation testing, given an original program P , mutation operators
encapsulate a set of modification rules applied to P in order to create a set
of mutants M . Then, for each mutant m, (m ∈ M), the tester runs a test
suite T originally designed for P . If ∃t, (t ∈ T) | m(t) 6= P (t), this mutant
is considered killed. If not, the tester should enhance T with a test case that
reveals the difference between m and P . If m and P are equivalent, then
P (t) = m(t) for all test cases that can be derived from P ’s input domain.

Mutation testing can be applied with two goals: (i) evaluation of the
program under test (i.e. P); or (ii) evaluation of the test data (i.e. T). In
the first case, a fault in P is uncovered when fault-revealing mutants are
identified. Given that S is the specification of P , a mutant is said to be
fault-revealing when it leads to the creation of a test case that shows that
P (t) 6= S(t), (t ∈ T) [20]. In other words, t shows that the original program
does not conform to the specification.

In the second case, mutation testing evaluates how sensitive T is in order
to identify the faults simulated by mutants. In this case, the quality of T
is measured by the achieved mutation score (MS), which shows the rate of
mutants that have been killed by T w.r.t. to the total of non-equivalent
mutants [20].

We next introduce the basic concepts of Aspect-Oriented Programming
and the AspectJ language. Then, in the subsequent sections, we investigate
mutation testing in the context of AO programs, starting from the defini-
tion of a fault taxonomy for AO software, then moving to the definition of
mutation operators, tool support and practical evaluation.

2.2. Aspect-Oriented Programming and AspectJ

Aspect-Oriented Programming (AOP) [1] is strongly based on the idea
of separation of concerns (SoC), which claims that computer systems are

186

better developed if their several concerns are specified and implemented sep-
arately [21]. Concerns, in general, can address both functional requirements
(e.g. business rules) and non-functional requirements (e.g. synchronisation
or transaction management) [22]. They can be defined as “anything a stake-
holder may want to consider as a conceptual unit, including features, non-
functional requirements, and design idioms” [23].

In the context of AOP, a concern is typically handled as a coarse-grained
feature that can be modularised within well-defined implementation units.
They are split into two categories: non-crosscutting concerns and crosscut-
ting concerns (or simply cc-concerns). The non-crosscutting concerns com-
pose the base code of an application and comprise the set of functionali-
ties that can be modularised within conventional implementation units (e.g.
classes and data structures). Cc-concerns, on the other hand, cannot be
properly modularised within conventional units [1]. As a consequence, in
traditional programming approaches such as procedural and object-oriented
programming (OOP), code that realises a cc-concern usually appears scat-
tered over several modules and/or tangled with other concern-specific code,
thus hardening software evolution and maintenance.

To deal with cc-concerns, AOP has introduced the aspects . An aspect can
be either a conceptual programming unit represented as an ordinary class
(as in industry-strength AOP frameworks like Spring AOP [24] and JBoss
AOP [25]) or a concrete, specific unit named aspect (as in widely investigated
languages such as AspectJ [17] and CaesarJ [26]). Once both aspects and
base code are developed, they are combined together through a process called
weaving [1] in order to produce the final, executable system.

Dynamic crosscutting: In AspectJ, which is the most investigated
AOP language and whose implementation model has inspired the proposi-
tion of several other languages, aspects have the ability of implicitly modify-
ing the behaviour of a program at specific points during its execution. This
is known as dynamic crosscutting [17]. Each of the points at which aspec-
tual behaviour is activated is called join point (JP). They are characterised
as well-defined points in a program execution in which aspects can insert
additional functionalities as well as replacing the existing ones.

A set of JPs is identified by means of a pointcut descriptor (PCD), or
simply pointcut [17]. A PCD is typically a language-based matching expres-
sion that identifies a set of JPs that share some common characteristic (e.g.
based on properties or naming conventions). This selection ability is called

187

quantification and is a fundamental concept of AOP [27].
Once a JP is identified using a PCD during the program execution, be-

haviour that is encapsulated within method-like constructs named advices
starts to run. Advices can be of different types depending on the supporting
technology. They can generally be defined to run at three different moments
when a JP is reached: before, after or in place of (around) it, as implemented
in AspectJ [17].

Static crosscutting: AspectJ can also perform structural modifications
of modules that compose the base code. This is known as static crosscut-
ting [28]. These modifications are achieved by the so-called intertype declara-
tions (ITDs) or simply introductions [28]. Examples of intertype declarations
are the introduction of a new member (e.g. an attribute or a method) into a
base module or a change in the class’ inheritance (e.g. a newly implemented
interface).

Other static modifications result from the use of AspectJ declare-like ex-
pressions [28]. Examples of such expressions are declare precedence, which
alters the execution order of aspects that share common JPs, and declare

soft, which specifies that an exception, if thrown at a JP, is converted to an
unchecked exception.

The next section introduces an example of an AO application which is
going to be used in the remaining of this paper. It shows how the main AOP
concepts and programming constructs are realised in AspectJ.

3. Running example: An AO banking system

This section describes an example application we are going to use along
this paper. The example was first presented by Laddad in his book about
AOP with AspectJ [29]. It consists in a banking application – hereafter
called BankingSystem – that includes aspects to manage business rules and
logging-related functionalities.

The class diagram of the system is depicted in Figure 1. We used
the �aspect� stereotype to represent that aspects in the system and
�crosscuts� to represent the aspect-class dependencies. Such dependencies
indicate which base modules are affected by aspects.

The LogInsufficientBalanceException aspect is responsible for log-
ging exceptions that might raise during account debit operations. The
IndentedLogging abstract aspect defines generic logging behaviour (e.g. in-
dentation) that can be made concrete by aspects that extend it. An example

188

-_customer

«interface»
Account

+ getAccountNumber() : int
+ credit(amount : float)
+ debit(amount : float)
+ getBallance() : float
+ getCustomer() : Customer

CheckClearanceSystem
+ credit(account : Account, amount : float)
+ debit(account : Account, amount : float)

1

1

<<crosscuts>>

AccountSimpleImpl

InsufficientBalanceException

Customer
+ addAccount(account : Account)
+ addOverdraftAccount(overdraftAccount : Account)

<<crosscuts>>

<<crosscuts>>

SavingsAccountSimpleImpl
+ toString() : String

<<crosscuts>>

CheckingAccountSimpleImpl
+ toString() : String

«interface»
CheckingAccount

«aspect»
MinimumBalanceRuleAspect

«aspect»
AbstractDebitRulesAspect

<<crosscuts>>

«aspect»
OverdraftProtectionRuleAspect

<<crosscuts>>

«interface»
SavingsAccount

<<crosscuts>>

<<crosscuts>>

«aspect»
LogAccountActivities

«aspect»
IndentedLogging

«aspect»
LogInsufficientBalanceException

Figure 1: BankingSystem class diagram.

is the LogAccountActivities aspect, which logs information about the execu-
tion of debit and credit operations. Basically, LogAccountActivities displays
the account balance before and after each requested operation.

The business rules are realised by the AbstractDebitRulesAspect,
MinimumBalanceRuleAspect and OverdraftProtectionRuleAspect as-
pects. AbstractDebitRulesAspect defines a PCD that matches ex-
ecutions of account debit operations. This aspect is extended by
MinimumBalanceRuleAspect, which implements a rule that enforces a min-
imum balance for savings accounts. The OverdraftProtectionRuleAspect

aspect also extends AbstractDebitRulesAspect and performs overdraft
checkings. If there is a debit request for a specific checking account and such
account has no sufficient funds, OverdraftProtectionRuleAspect will look
for funds in other accounts registered for the current customer.

Figures 2, 3 and 4 display the AspectJ implementation of two logging
and a business rule aspects which compose the BankingSystem application.

189

They include representatives of the main AOP constructs. For instance,
PCD definitions can bee seen at Figures 2 (line 101), 3 (lines 5–7 and 92)
and 4 (lines 9–103), while advice are found in lines 10–13, 11–17 and 12–
17 of the three figures, respectively. Furthermore, we can observe that
the MinimumBalanceRuleAspect aspect introduces the getAvailableBalance

method into the SavingsAccount class (lines 5–7 in Figure 4). Note that
these aspect implementations are also used in the Section 5 to exemplify the
use of some mutation operators.

1 public abstract aspect IndentedLogging {
2 protected int _indentationLevel = 0;
3

4 protected abstract pointcut loggedOperations ();
5

6 before () : loggedOperations () { _indentationLevel ++; }
7

8 after() : loggedOperations () { _indentationLevel --; }
9

10 before () : call(* java.io.PrintStream.println (..)) && within(IndentedLogging +) {
11 for (int i = 0, spaces = _indentationLevel * 4; i < spaces; ++i)
12 System.out.print(" ");
13 }
14 }

Figure 2: The IndentedLogging aspect.

4. AOP-specific fault types

This section investigates types of faults that are specific to AO software.
We start defining a set of conditions that must be satisfied in order to pro-
duce effective mutants of AO programs (Section 4.1). Such conditions aim to
ensure that a fault introduced by a mutation operator can be executed and
its effect can be noticed after the program execution [30]. In the sequence,
Section 4.2 presents a fault taxonomy for AO software. The taxonomy was
developed in terms of researchers’ expertise [16] as well as practical observa-
tions of AO programs [18].

4.1. Reachability, necessity and sufficiency conditions for AOP-specific faults

The design of effective mutation operators must take into consideration
three fundamental conditions: reachability, necessity and sufficiency [30, 31].

1This is an example of an anonymous, non-reusable PCD allowed in AspectJ.
2It realises the loggedOperations abstract PCD defined within IndentedLogging.
3It realises the debitExecution abstract PCD defined within the AbstractDebit-

RulesAspect aspect, which was not listed due to space limitations.

190

1 public aspect LogAccountActivities extends IndentedLogging {
2

3 declare precedence : LogAccountActivities , *;
4

5 pointcut accountActivity(Account account , float amount) :
6 ((execution(void Account.credit(float)) || execution(void Account.debit(float

))) && this(account) && args(amount))
7 || (execution(void CheckClearanceSystem .*(Account , float)) && args(account ,

amount));
8

9 protected pointcut loggedOperations () : accountActivity(Account , float);
10

11 void around(Account account , float amount) : accountActivity(account , amount) {
12 try {
13 System.out.println("[" + thisJoinPointStaticPart.getSignature ().
14 toShortString () + "] " + account + " " + amount);
15 System.out.println("Before: " + account.getBalance ());
16 proceed(account , amount);
17 } finally { System.out.println("After: " + account.getBalance ()); }
18 }
19 }

Figure 3: The LogAccountActivities aspect.

1 public aspect MinimumBalanceRuleAspect extends AbstractDebitRulesAspect{
2

3 private static final float MINIMUM_BALANCE_REQD = 25;
4

5 public float SavingsAccount.getAvailableBalance () {
6 return getBalance () - MINIMUM_BALANCE_REQD;
7 }
8

9 pointcut savingsDebitExecution(Account account , float withdrawalAmount) :
10 debitExecution(account , withdrawalAmount) && this(SavingsAccount);
11

12 before(Account account , float withdrawalAmount) throws
InsufficientBalanceException:

13 savingsDebitExecution(account , withdrawalAmount) {
14

15 if (account.getAvailableBalance () < withdrawalAmount)
16 throw new InsufficientBalanceException("Minimum balance condition not met"

);
17 }
18 }

Figure 4: The MinimumBalanceRuleAspect aspect.

Given an original product P and a mutant m of P which contains a fault f :
(i) the reachability condition requires that f must be reachable and exe-
cutable; (ii) the necessity condition requires that the state of m must be
incorrect after the execution of f when compared to the execution of P at
the same point (i.e. the original statement); finally, (iii) the sufficiency con-
dition requires that the difference between the states of P and m after the
execution of the mutated portion of code must propagate to the end of the
execution of P and m.

Defining and checking these conditions for AO programs slightly differs

191

from programs developed in traditional approaches such as OO and procedu-
ral programming (hereafter called conventional programs). Mutation opera-
tors are typically applied to executable statements in conventional programs
(e.g. a variable definition, an object instantiation or a language-specific state-
ment [32, 33, 34]). Therefore, identifying the modified parts of the code is
straightforward in order to collect and check information at runtime or even
through symbolic evaluation [35].

However, mutations that are specific to AO programs can be performed,
for example, in PCDs, ITDs and declare-like expressions, which consist in
“atypical” executable entities. We can consider that a PCD is “executed”
at weaving time since it is responsible for identifying the JPs at which the
base code is advised by aspects. Similarly, mutations of ITDs and declare-
like expressions impact the static structure of the system. Differently from
declare-like expressions, ITD-specific faults can be mostly detected at com-
pilation time, as discussed in our previous research [16, 18].

Given the aforementioned particularities of AO programs, we following
define the reachability, necessity and sufficiency conditions for the three main
groups of AOP constructs, namely: (i) PCDs; (ii) ITDs and declare-like
expressions; and (iii) advices:

PCD-related faults: Similarly to Bækken [36], we define the reacha-
bility and necessity conditions for a faulty PCD as the difference between
the sets of intended and actually selected JPs after the aspects are woven
into the base code. The activation (or non-activation) of an advice at an
unintended (or intended) JP that results in unexpected output at the end of
the program execution satisfies the sufficiency condition.

ITD- and declare-like expression-related faults: For incorrect
ITDs (e.g. an incorrect method overriding which resulted from a method
introduction), the original definitions for the three conditions [30, 31] are
applicable: the fault can be reached (e.g. the overriding method can be exe-
cuted) and can produce an incorrect state that can propagate until the end
of the system execution. Similarly, for declare-like expressions the necessity
condition may be seen as a side-effect of faulty elements. For example, an
incorrect aspect precedence may lead to incorrect order of advice execution,
with in turn may lead to observable failures at the end of the execution.

Advice-related faults: Faults in advice may occur either in the advice
body or in its signature. The former occurrence consists in typical faults

192

that can also be present method bodies in OO programs. The latter, on
the other hand, as AOP-specific so that we define the three conditions as
follows: the fault is reachable if there is at least one feasible path in the
program execution which leads to the advice activation; the advice execution
itself satisfies the necessity condition, since at this point unexpected control
flow would be running; and sufficiency is satisfied when an incorrect state
due to the execution of the advice propagates until the end of the system
execution.

For all cases described above, according to Offutt and Pan’s defini-
tion [30], a test case is said to be effective w.r.t. killing a mutant if and
only if it shows that the execution of the affected code results in abnor-
mal behaviour. In other words, effective test cases have the ability to show
that the introduced fault satisfies the reachability, necessity and sufficiency
conditions.

4.2. AOP-specific fault taxonomy

We herein present the fault taxonomy for AO software we defined and
further refined in our previous research [16, 18]. A preliminary quantitative
evaluation showed that the taxonomy was comprehensive enough in order to
classify faults that have been documented from real-world AO systems [18].

Tables 1–4 summarise the list all fault types and gives a short description
for each of them. The fault types are distributed across four main categories
which were defined based on the main elements involved in an AO software,
namely: (1) pointcut expressions; (2) ITDs and declare-like expressions;
(3) advice definitions and implementations; and (4) the base program. More
details and generalisations to mainstream AO technologies can be found else-
where [16, 18].

5. Mutation operators for AspectJ programs

This section introduces a set of mutation operators for AspectJ programs.
The design of the operators was based on the set of AO fault types presented
in the previous section [16]. The syntactic changes modelled by the opera-
tors aim to reproduce mistakes that are likely to be made by programmers.
With minor adaptations, they may become applicable to AOP languages
that follow the AspectJ implementation model (e.g. CaesarJ [26], and As-
pectC++ [37]).

193

Table 1: Faults related to PCDs – adapted from Ferrari et al. [18].
ID Description
F1.1 Selection of a superset of intended JPs.
F1.2 Selection of a subset of intended JPs.
F1.3 Selection of a wrong set of JPs, which includes both intended and unintended

items.
F1.4 Selection of a wrong set of JPs, which includes only unintended items.
F1.5 Incorrect use of a primitive PCD1.
F1.6 Incorrect PCD composition rules.
F1.7 Incorrect JP matching based on exception throwing patterns.
F1.8 Incorrect JP matching based on dynamic circumstances.
1 Primitive PCDs are predefined PCDs available in AOP languages (e.g. in AspectJ [28]).

Table 2: Faults related to ITDs and declare-like expressions – adapted from Ferrari et al.
[18].

ID Description
F2.1 Improper method introduction, resulting in unanticipated method overriding

or not resulting in anticipated method overriding.
F2.2 Introduction of a method into an incorrect class.
F2.3 Incorrect change in class hierarchy through parent declaration clauses V (e.g.

declare parents statements), resulting in unintended inherited behaviour
for a given class.

F2.4 Incorrect method introduction, resulting in unexpected method overriding.
F2.5 Omitted declared interface or introduced interface which breaks object identity.
F2.6 Incorrect changes in exception-dependent control flow, resulting from aspect-

class interactions or from clauses that alter exception severity.
F2.7 Incorrect or omitted aspect precedence expression.
F2.8 Incorrect aspect instantiation rules and deployment, resulting in unintended

aspect instances.
F2.9 Incorrect policy enforcement rules supported by warning and error declarations.

Table 3: Faults related to advices – adapted from Ferrari et al. [18].
ID Description
F3.1 Incorrect advice type specification.
F3.2 Incorrect control or data flow due to incorrect aspect-class interactions.
F3.3 Incorrect advice logic, resulting in invariants violations or failures to establish

expected postconditions.
F3.4 Infinite loops resulting from interactions among pieces of advice.
F3.5 Incorrect access to JP static information.
F3.6 Advice bound to incorrect PCD.

Tables 5–7 summarise the designed operators. They are organised into
three groups, namely G1, G2 and G3. The groups correspond to the first

194

Table 4: Faults related to the base program – adapted from Ferrari et al. [18].
ID Description
F4.1 The base program does not offer required JPs in which one or more foreign

aspects were designed to be applied.
F4.2 The software evolution causes PCDs to break.
F4.3 Other problems related do base programs such as inconsistent refactoring or

duplicated crosscutting code.

three groups of fault types included in the taxonomy presented in Section 4.
Note that for base program-related faults (i.e. group F4 – see Table 4),
existing mutation operators are applicable (e.g. for unit level [32] and class
level [34]). The next sections describe the groups, providing an overview of
each operator and sound examples of their application. The examples are
based on the Banking System early introduced in Section 3.

Table 5: Mutation operators for PCDs – adapted from Ferrari et al. [16].
Oper. Description/Consequences
PWSR PCD weakening by replacing a type with its immediate supertype in PCDs.
PWIW PCD weakening by inserting wildcards into it.
PWAR PCD weakening by removing annotation tags from type, field, method and con-

structor patterns.
PSSR PCD strengthening by replacing a type with its immediate subtype.
PSWR PCD strengthening by removing wildcards from it.
PSDR PCD strengthening by removing “declare @” statements from the aspect code.
POPL PCD weakening or strengthening by modifying parameter lists of primitive

PCDs.
POAC PCD weakening or strengthening by modifying “after [retuning|

throwing]” advice clauses.
POEC PCD weakening or strengthening modifying exception throwing clauses.
PCTT PCD changing by replacing “this” PCDs with “target” ones and vice versa.
PCCE Context changing by switching “call/execution/initialization/

preinitialization” PCDs.
PCGS PCD changing by replacing “get” PCDs with “set” ones and vice versa.
PCCR PCD changing by replacing individual parts of a PCD composition.
PCLO PCD changing by varying logical operators present in type and PCD composi-

tions.
PCCC PCD changing by replacing “cflow” PCDs with “cflowbelow” ones and vice

versa.

5.1. Group G1: operators for PCDs

This is the largest group which includes 15 operators which model faults
related to PCDs. Such faults usually result in incorrect JP matchings or

195

Table 6: Mutation operators for declare-like expressions – adapted from Ferrari et al. [16].
Oper. Description/Consequences
DAPC Aspect precedence changing by alternating the order of aspects involved in

declare precedence expressions.
DAPO Arbitrary aspect precedence by removing “declare precedence” expressions.
DSSR Unintended exception handling by removing “declare soft” expressions.
DEWC Unintended control flow execution by changing “declare error/warning”

expressions.
DAIC Unintended aspect instantiation by changing “perthis/pertarget/

percflow/percflowbelow” deployment clauses.

Table 7: Mutation operators for advices – adapted from Ferrari et al. [16].
Oper. Description/Consequences
ABAR Advice kind changing by replacing a “before” clause with an “after

[retuning|throwing]” one and vice versa.
APSR Advice logic changing by removing invocations to “proceed” statement.
APER Advice logic changing by removing guard conditions which surround “proceed”

statements.
AJSC Static information source changing by replacing a “thisJoinPoint-

StaticPart” reference with a “thisEnclosingJoinPointStaticPart” one
and vice versa.

ABHA Behaviour hindering by removing implemented advices.
ABPR Changing PCD-advice binding by replacing PCDs which are bound to advices.

undue execution contexts. This group, shown in Table 5, is divided into
four categories, according to the results obtained from the application of the
respective operators:

(i) PCD weakening operators. This category includes the PWSR, PWIW and
PWAR operators. Mutants produced by these operators possibly increase the
number of selected JPs if compared to the original PCD. Figure 5 shows an
example of how the PWIW operator inserts the “*” and “+” wildcards into
the original anonymous PCD extracted from the IndentedLogging aspect (see
Figure 2, line 10). Note that for this example and the others presented in
the sequence, the original code is listed in the first line while the remaining
lines – starting with “>” – show its mutants.

(ii) PCD strengthening operators. This category includes the PSSR, PSWR
and PSDR operators. Mutants produced by these operators possibly decrease
the number of selected JPs if compared to the original PCD. Figure 6 shows
an example of how the PSWR operator removes the “+” wildcard from the

196

before () : call(* java.io.PrintStream.println (..)) && within(IndentedLogging +) {

> before () : call(* *.io.PrintStream.println (..)) && within(IndentedLogging +) {
> before () : call(* java .*. PrintStream.println (..)) && within(IndentedLogging +) {
> before () : call(* java.io.*. println (..)) && within(IndentedLogging +) {
> before () : call(* java.io.PrintStream .*(..)) && within(IndentedLogging +) {
> before () : call(* java.io.PrintStream.println *(..)) && within(IndentedLogging +) {
> before () : call(* java.io.PrintStream .* println (..)) && within(IndentedLogging +) {
> before () : call(* java.io.PrintStream *. println (..)) && within(IndentedLogging +) {
> before () : call(* java.io.* PrintStream.println (..)) && within(IndentedLogging +) {
> before () : call(* java.io.PrintStream +. println (..)) && within(IndentedLogging +) {
> before () : call(* java.io*. PrintStream.println (..)) && within(IndentedLogging +) {
> before () : call(* java.*io.PrintStream.println (..)) && within(IndentedLogging +) {

... // and so on

Figure 5: Examples of mutants produced by the PWIW operator.

original PCD. Note that this PCD is the same as used in the example pre-
sented in Figure 5.

before () : call(* java.io.PrintStream.println (..)) && within(IndentedLogging +) {

> before () : call(* java.io.PrintStream.println (..)) && within(IndentedLogging) {

Figure 6: Example of mutant produced by the PSWR operator.

(iii) PCD weakening or strengthening operators. This category includes the
POPL, POAC and POEC operators. They produce mutants that may either
increase or decrease the number of selected JPs. Figure 7 exemplifies the
application of the POAC operator to modify after advice clauses. The orig-
inal advice definition was extracted from the IndentedLogging aspect (see
Figure 2, line 8).

after() : loggedOperations () { _indentationLevel --; }

> after() returning : loggedOperations () { _indentationLevel --; }
> after() throwing : loggedOperations () { _indentationLevel --; }

Figure 7: Examples of mutants produced by the POAC operator.

(iv) PCD changing operators. Operators from this group perform a variety
of changes in PCDs, as shown in Table 5. As a result, we have: (i) partial
or complete changes in the number of selected JPs with the PCTT, PCGS,
PCCR and PCLO operators; (ii) changes in execution context with the PCCE

197

operator; and (iii) changes in the number of advice executions with the PCCC
operator.

Figure 8 shows some mutants that can be generated by the PCLO oper-
ator. The original code is part of a PCD from the LogAccountActivities

aspect (see Figure 3, line 6). In this example, the changes consists in re-
placing the “||” logical operator with “&&”, and adding the “!” operator to
each part of the composition. Note that similar rules can be applied to the
remaining parts of the PCD as well as to the whole expression.

((execution(void Account.credit(float)) || execution(void Account.debit(float))
) && this(account) && args(amount))

> ((execution(void Account.credit(float)) && execution(void Account.debit(float))
) && this(account) && args(amount))

> ((! execution(void Account.credit(float)) || execution(void Account.debit(float))
) && this(account) && args(amount))

> ((execution(void Account.credit(float)) || !execution(void Account.debit(float))
) && this(account) && args(amount))

Figure 8: Examples of mutants produced by the PCLO operator.

5.2. Group G2: operators for ITDs and declare-like expressions

This group contains five operators that model faults related to AspectJ
declare-like expressions. These operators are listed in Table 6. Faults that
are modelled by them may lead to unintended control flow executions, hence
may result in erroneous object/aspect state. For example, the DAPC opera-
tor modifies declare precedence expressions, swapping amongst all aspects
involved in the precedence definition. The DAPO operator is applied to omit
declare precedence expressions. Other declare-like expressions targeted
by operators of G2 are: declare soft (operator DSSR), declare error and
declare warning (operator DEWC), and aspect instantiation rules (operator
DAIC).

Figure 9 exemplifies the application of the DAPC operator that modifies
declare precedence statements. The original advice definition was extracted
from the LogAccountActivities aspect (see Figure 3, line 3).

declare precedence : LogAccountActivities , *;

> declare precedence : *, LogAccountActivities;

Figure 9: Example of mutant produced by the DAPC operator.

198

5.3. Group G3: operators for advices

Six operators related to advice definition and implementation compose
this group. They are described in Table 7. Faults modelled by them com-
prise incorrect advice kind (ABAR operator), incorrect advice logic (APSR,
APER and AJSC operators) and incorrect advice execution (ABHA and ABPR
operators). Figure 10 exemplifies the application of the ABAR operator that
replaces the kind of advices. The original advice definition was extracted
from the MinimumBalanceRuleAspect aspect (see Figure 4, line 12).

before(Account account , float withdrawalAmount) throws
InsufficientBalanceException:

> after(Account account , float withdrawalAmount) throws
InsufficientBalanceException:

> after(Account account , float withdrawalAmount) throwing throws
InsufficientBalanceException:

> after(Account account , float withdrawalAmount) returning throws
InsufficientBalanceException:

Figure 10: Example of mutant produced by the ABAR operator.

5.4. Analysing AO mutants

Analysing mutants of AO programs (hereafter called AO mutants) differs
from analysing mutants of conventional programs (or simply conventional
mutants). For example, while the analysis of conventional mutants is typ-
ically unit-centred, i.e. the task is concentrated on the mutated statement
and perhaps on its surrounding statements, detecting equivalent AO mutants
may require a broader analysis of the woven code4. This is due to the quan-
tification property [27] that is inherent to AOP constructs such as PCDs and
declare-like expressions.

For mutations that affect the quantification of JPs, a possible approach
to identify equivalent mutants is through the analysis of JP static shadows .
A JP static shadow consists of the set of implicit calls to advice-methods,
i.e. bytecode methods that result from the compilation of advices [38]. Such
calls are inserted into the base code during the weaving process. Nevertheless,
the advice execution itself may only be resolved at runtime, that is, not all

4The inter-class mutation operators for Java programs proposed by Ma et al. [34] pose
similar challenge, given that a mutation that affects a member inheritance or a polymorphic
type also requires broad analysis of the resulting compiled application.

199

JP included in a JP static shadow will in fact trigger the advice execution.
Furthermore, given that named PCDs are eligible to be reused by other
aspects, a complete JP matching analysis should be performed in order to
decide if a PCD-related mutant is equivalent or not.

6. Tool support

We implemented a tool called Proteum/AJ to support the application of
the mutation operators presented in the previous section [19]. The tool lever-
ages previous knowledge on developing Proteum (Program Testing Using
Mutants) [39], a family of tools for mutation testing developed by the Soft-
ware Engineering group at the University of São Paulo, Brazil.

Proteum/AJ supports the four main steps of mutation testing, as origi-
nally described by DeMillo et al. [11]: (i) the original program is executed on
the current test set and test results are stored; (ii) the mutants are created
based on a mutation operator selection that may evolve in new test cycle
iterations; (iii) the mutants can be executed all at once or individually, as
well as the test set can be augmented or reduced based on specific strategies;
and (iv) the test results are evaluated so that mutants may be set as dead or
equivalent, or mutants may remain alive. Along this section we provide an
overview of Proteum/AJ ’s structure and functionalities. In Sections 7 and
8 we present the results of two case studies that have been performed with
Proteum/AJ ’s support.

Proteum/AJ is composed by a set of functional modules that automate
the mutation testing steps. Such modules are invoked through parameterised
command lines. Figure 11 displays an example of a command line that
creates a test project (first 2 lines) together with some logging messages
(remaining lines). In this example, the user ferrari creates a test project
named exampleBankingSystem, which includes the PWIW, DAPC and APSR
operators. banking.zip is the compressed file that contains the application to
be tested.

The full mutation testing process supported by Proteum/AJ is next de-
scribed and depicted in Figure 12, which shows the execution sequence of
the main modules and the inputs/outputs of each of them. Command lines
scripts, as the one presented in Figure 11, can be executed to activate the
other Proteum/AJ ’s functionalities represented in Figure 12.

Pre-processing the original application: Initially, Proteum/AJ re-
ceives a compressed file which includes the application and possibly an ini-

200

java br.usp.icmc.labes.amt.ui.cmdtool.CreateProject -u ferrari -a
"/home/ferrari/tmp/banking.zip" -o "PWIW DAPC APSR" -p exampleBankingSystem

Timer started...

... Creating a new test project. Only the required parameters will be considered...

... Creating the project...

... Test project successfully created.

... Mutation operators successfully inserted.

uploadFile:
[echo] Uploading the target application...
[copy] Copying 1 file to /home/ferrari/tmp/mutation/executionFiles/uploads

... some other messages

BUILD SUCCESSFUL
Total time: 4 seconds
... Target application successfully decompressed and compiled...
... Test project successfully created.

Timer stopped...Total spent time: 00:00:07:04

Figure 11: Example of a shell command for creating a test project.

Non-
Equivalent
Mutants

Target
aspects

Application
Handler

Unzipped
application

Mutation
Engine

MutantsZipped
target

application

Test
Runner

Junit
Test Cases

Mutant
Compiler

Mutant
Analyser

Equivalent
Mutants

Equivalent
MutantsMutant

Test
Results

Original
Test

Results

Live
Mutants

Live
Mutants

Dead
Mutants

Dead
Mutants

Anomalous
Mutants

Anomalous
Mutants

Compilable
Mutants

Test
Evaluator

Mutation
Operators

process/module

entity

collection of entities

external input

Legend:

Figure 12: Proteum/AJ ’s execution flow – adapted from Ferrari et al. [19].

201

tial set of JUnit test cases. The Application Handler module then runs a
pre-processing step, whose outputs are the decompressed original applica-
tion and a list of target aspects. This step creates the test projects in the
Proteum/AJ database. The Application Handler also compiles the original
application through the iajc Ant task [28].

Execution of the original application: The decompressed applica-
tion is sent to the Test Runner module together with the test case files. The
Test Runner executes the application on the available test set by invoking the
junit Ant task. The results are stored for further evaluation of mutants.

Generation of mutants: The Mutation Engine includes 245 out of 26
mutation operators proposed in Section 5. It receives as input the list of
target aspects identified by the Application Handler and the set of mutation
operators selected by the tester. It produces the set of mutants that are
passed to the Mutant Compiler.

Execution of mutants: The execution of mutants requires a series
of steps in Proteum/AJ . Initially, each mutant is sent to the Mutant Com-
piler module, which invokes the AspectJ ajc compiler [28] through the iajc
Ant task. The Mutant Compiler detects non-compilable mutants which are
classified as anomalous. For compilable mutants, the weaving information
produced by the compiler is collected at this stage and further used by the
Mutant Analyser module. This output is a valuable information that includes
details of all matching w.r.t. JPs and static crosscutting between aspects and
base code [28]. The weaving output information of the original application
and of the mutants is compared in order to decide whether mutants created
by a subset of operators from Group G1 are equivalent to the original aspects.
Details about the automatic equivalent mutant detection performed by Pro-
teum/AJ are not described here due to space limitations although they can
be found elsewhere [19].

As for the original application, the Test Runner module runs all compil-
able, non-equivalent mutants on the current test set using the junit Ant task.
The results are stored and sent to the Test Evaluator module. The evaluator
contrasts the results with the original results and identifies which mutants
should be killed.

5Automating the PWSR and PSSR operators depends on class hierarchy analyses based
on the Java reflection API and is currently not available in Proteum/AJ.

202

Analysis of mutants: The Mutant Analyser module creates a set of
plain text reports that show the differences between the original and mutated
code. These reports show the modified parts of the code for each mutant,
hence providing guidance for the tester while analysing the changes. The
tester then decides which mutants should be set as equivalent and updates
their status through the Mutant Analyser module. This module also computes
the mutation score.

7. First case study: Evaluating the usefulness and required effort
of the proposed approach

This section describes a study that evaluates the mutation-based testing
approach proposed in this paper. The main goal of this study is checking the
feasibility of the approach in terms or its usefulness and required effort. The
evaluation procedures were planned and conducted in order to answer the two
following questions: (i) do the operators have the ability of simulating faults
that cannot be detected by pre-existing, systematically derived test suites?
and (ii) can the proposed mutation operators be applied at a feasible cost?

To answer these questions, we selected and thoroughly tested a set of AO
applications based on a well-established functional-based testing approach.
We evaluated the coverage obtained with this functional-based test data in
regard to the generated mutants for each application. This initial phase ad-
dressed the first defined question. We then evolved the test sets to make
them adequate to cover all non-equivalent mutants of the selected applica-
tions, thus addressing our second question. All procedures are described in
the sequence, starting from an overview of the evaluated AO applications.

7.1. Target applications

We selected 12 small AO applications upon which we performed our eval-
uation. All applications were identified from previous papers that describe
AO testing approaches and evaluation. A short description of each of them
is following presented. A summary of the size-related metrics of the selected
applications is shown in Table 8.

The BankingSystem application manages transactions for bank ac-
counts [29]. It has been the running example throughout this paper. Aspects
in BankingSystem implement logging, minimum balance control and overdraft
operations.

203

Table 8: Values of metrics for the selected applications (first case study).
Application LOC1 Classes2 Aspects PCDs Advices declare

1. BankingSystem 199 9 6 11 7 1
2. Telecom 251 6 3 6 7 1
3. ProdLine 537 8 8 10 10 4
4. FactorialOptimiser 39 1 1 2 3 0
5. MusicOnline 150 7 2 4 3 0
6. VendingMachine 64 1 3 6 6 1
7. PointBoundsChecker 44 1 1 4 4 0
8. StackManager 77 4 3 3 3 0
9. PointShadowManager 66 2 1 3 3 0
10. Math 53 1 1 1 1 0
11. AuthSystem 89 3 2 2 2 0
12. SeqGen 205 8 4 3 3 2
TOTAL 1774 51 35 55 52 9
1It considers only real lines of code, excluding comments and blank lines.
2It considers only relevant classes, excluding the driver ones.

Telecom is a telephony system simulator which is originally distributed
with AspectJ [28]. In Telecom, timing and billing of phone calls are han-
dled by aspects. The version evaluated in this section extends the original
implementation in order to support a different type of charging for mobile
calls [40].

ProdLine consists in a software product line for graph applications that
includes a set of common functionalities of the graph domain [41]. Typical
algorithms for graph manipulation are included, e.g. shortest-path between
vertices, identification of strongly connected components and cycle checking.
Aspects are used in this application to introduce the features selected for a
specific SPL instance. Each feature is implemented through one ore more
aspects. AspectJ ITDs are intensively used together with a few PCD-advice
pairs.

FactorialOptimiser is a math utility application that implements optimised
factorial calculation [7]. The calculation is managed by an aspect; if the
factorial for a given number has already been calculated, the aspects retrieve
it to reduce overhead. Every calculated factorial is cached for reuse purposes.

The MusicOnline application manages an online music store that allows
customers to play songs and playlists [42]. A customer needs to pay for each
played song or playlist. Aspects in this application manage the customer’s
accounts and the billing system. Once a customer exceeds his credit limit,
his account is suspended until he or she proceeds either a total or a partial

204

payment.
VendingMachine consists in an application for a vending machine into

which the customer inserts coins in order to get drinks [43]. The aspects are
responsible for controlling the sales operations (e.g. number of inserted coins
and number of available drinks).

PointBoundsChecker is a two-dimension point constraint checker [44]. An
aspect checks if the point coordinates conform to a specific range of values.
If not, exceptions are raised.

StackManager implements a simple stack that provides the basic push
and pop operations, which are supervised by aspects [45]. The aspects avoid
the insertion of negative values into the stack, perform audit on the stored
elements and count the number of push operations.

PointShadowManager is an application for managing two-dimension point
coordinates [6]. An aspect creates and manages shadows for point objects.
When a point is created, its shadow has exactly the same coordinates. When
a point coordinated is updated, the respective shadow’s coordinate is added
by a fixed offset.

Math is a math utility application that calculates the probability of suc-
cesses in a sequence of n independent yes/no experiments (Bernoulli trial),
each yielding success with probability p [42]. The aspect logs exponentiation
operations, identifying the type of the exponent (integer or real).

AuthSystem is a simplified version of a banking system that requires user
authentication before the execution of certain operations like debit and bal-
ance retrieval [46]. Furthermore, it monitors amount transfer between ac-
counts by means of atomic transactions. The aspects are responsible for
authentications and transaction management.

SeqGen implements a sequence generator of integers and chars values [47].
It includes two aspects that modularise the generation policy (random and
Fibonacci sequences) and the logging concerns. Similarly to the ProdLine
application, AspectJ ITDs are intensively used in SeqGen.

7.2. Building the initial test set

We applied the Systematic Functional Testing (SFT) criterion [48] to
build initial test sets for each selected application. The choice for the SFT
criterion was motivated by the significant results reported in previous re-
search [48]: test sets that covered all SFT-derived requirements – hereafter
called SFT-adequate test sets or simply TSFT – yielded high coverage of mu-
tants generated with conventional mutation operators for C programs [32].

205

SFT combines two widely used functional-based testing criteria: Equiv-
alence Partitioning and Boundary-Value Analysis [49]. Basically, the main
difference between SFT and the other two is that SFT requires two test cases
for each equivalence class. In this way, one can avoid coincidental correct-
ness possibly observed for a test input which “masks” a fault that could be
uncovered by another test input from the same domain partition [48].

For each of the target applications, we developed a test plan that
specifies the equivalence classes and boundaries that should be covered
at this initial testing phase. We defined the test requirements for every
public operation from the classes that compose the application. More-
over, we defined test requirements for aspectual behaviour according to
the description of the systems available in the original papers and re-
ports [6, 7, 29, 40, 41, 42, 43, 44, 45, 46, 47].

Figure 13 and Table 9 illustrate the definition of the equivalence classes
and boundary values for a method extracted from the BankingSystem ap-
plication. The debit method belongs to the AccountSimpleImpl class and is
intended to perform debit operations in bank accounts, having as a constraint
the current account balance that should never be lower than zero.

1 public void debit(float amount) throws InsufficientBalanceException {
2 if (_balance < amount) {
3 throw new InsufficientBalanceException("Total balance not

sufficient");
4 }
5 else {
6 _balance = _balance - amount;
7 }
8 }

Figure 13: Source code of the debit method (AccountSimpleImpl class).

Table 9: Equivalence classes and boundary values for the debit method.
Input Condition Valid class Invalid Class
amount parameter (C1) amount <= current balance (C2) amount > current

balance
Output Condition Valid class Invalid Class
Resulting balance (o1) balance = previous balance −

debited amount
n/a

(o2) balance = previous balance n/a
Boundary values
(C1) amount = current balance
(C2) amount = current balance + 0.01

206

Building SFT-adequate test sets requires designing at least two test cases
to cover each of the equivalence classes, as well as at least one test case that
covers each of the boundary values. As suggested by Myers et al. [49], tests
for valid classes can cover one or more of such classes, whereas individual
tests should be created for each invalid class. Considering the test plan
for the debit method presented in Table 9, a SFT-adequate test set w.r.t.
such method requires at least six test cases: four6 test cases to cover the
equivalence classes and two others to cover the boundary values. The results
obtained with the execution of the SFT-adequate test sets in this case study
are detailed in the sequence.

Table 10 summarises the results achieved during this initial phase. Col-
umn 2 lists the number of test requirements derived for each application ac-
cording to the Equivalence Partitioning criterion, and likewise does column 3
for Boundary-Value Analysis. Columns labelled with |TEB| and |TSFT | list
the size of test sets which are adequate w.r.t., respectively, the two afore-
mentioned traditional functional-based criteria and the SFT criterion (i.e.
SFT-adequate test sets). Column 6 lists the increase percentage w.r.t. the
size of the test sets when we evolved TEB to TSFT . Finally, Column 7 shows
the number of faults revealed in each application. Such faults are related to
either ordinary code (e.g. incorrect implemented logic) or AOP constructs
(e.g. incorrect PCD definition) and have been all fixed before we started the
mutation testing phase that is next described.

7.3. Applying Mutant Analysis to the target applications

We applied the 24 mutation operators implemented in the Proteum/AJ
tool to the 12 applications of our case study. The summary of the mutant
generation step is displayed in Table 11. Columns 2–4 represent the three
groups of mutation operators, namely G1 (related to PCDs), G2 (related
to declare-like expressions) and G3 (related to advices), together with the
associated number of mutants per application. Table 11 also includes the
number of equivalent mutants that have been automatically identified by
Proteum/AJ (column 6), the number of anomalous – i.e. non-compilable –
mutants (column 7) and the number of mutants that remained alive (col-
umn 8).

6Note that a single test case can cover classes C1 and o1, while another test case can
cover classes C2 and o2. Therefore, two other test cases are sufficient to fulfil the SFT
criterion w.r.t. the equivalence classes.

207

Table 10: Functional-based test requirements and respective adequate test sets.
Equivalence TEB →

Application Classes Boundaries |TEB | |TSFT | TSFT Faults
1. BankingSystem 36 10 34 58 71% 1
2. Telecom 49 2 37 63 70% 6
3. ProdLine 23 6 20 36 80% 0
4. FactorialOptimiser 10 6 15 19 27% 0
5. MusicOnline 43 2 25 46 84% 0
6. VendingMachine 13 5 12 18 50% 1
7. PointBoundsChecker 10 6 9 14 56% 0
8. StackManager 12 3 9 15 67% 2
9. PointShadowManager 12 2 6 12 100% 0
10. Math 26 38 41 53 29% 1
11. AuthSystem 16 6 12 17 42% 1
12. SeqGen 46 15 22 39 77% 0
TOTAL 296 101 242 390 61% 12

Table 11: Mutants generated for the 12 target applications.
Mut. Mut. Mut. Autom.

Application G1 G2 G3 Total Equiv. Anom. Alive
1. BankingSystem 108 2 26 136 68 18 50
2. Telecom 82 2 27 111 46 12 53
3. ProdLine 158 0 41 199 125 16 58
4. FactorialOptimiser 14 0 15 29 8 6 15
5. MusicOnline 47 0 10 57 25 5 27
6. VendingMachine 82 2 29 113 58 8 47
7. PointBoundsChecker 46 0 24 70 32 10 28
8. StackManager 34 0 11 45 24 0 21
9. PointShadowManager 38 0 12 50 25 4 21
10. Math 16 0 4 20 13 0 7
11. AuthSystem 45 0 7 52 28 3 21
12. SeqGen 33 0 7 40 19 3 18
TOTAL 703 6 213 922 471 85 366

Note that Proteum/AJ allows the tester to enable or disable the option
for automatic detection of equivalent mutants. The mutation operators that
are eligible for such automatic procedure are all listed in Section 8 of this
paper (see Table 14). They are related to PCDs and are expected to yield the
largest mutant set amongst the three groups of operators [16], from which a
high percentage represent equivalent ones7. Indeed, the figures presented in

7High percentages of PCD-related equivalent mutants have been observed by Delamare
et al. [50].

208

Table 11 reveal that nearly 67% of the mutants produced by operators from
G1 were automatically detected as equivalent. Besides that, around 9% of
mutants are anomalous. We can also observe a very small number of mutants
produced by operators from G2, mainly due to the rare use of declare-like
expressions in the selected applications.

In order to evaluate the mutant coverage yielded by the TSFT test sets
and augment such coverage, for each application we performed the following
sequence of steps: (1) execution of the live mutants on the respective TSFT

test set; (2) calculation of the initial mutation score; (3) manual identification
of equivalent mutants; (4) calculation of the intermediate mutation score;
(5) design of new test cases to kill the remaining live mutants, producing the
mutation-adequate (TM) test sets (i.e. mutation score of value 1.0).

The obtained results after performing the six steps just described are sum-
marised in Table 12. In this table, columns 2–5 list, respectively, the initial
number of live mutants, the number of mutants killed with the execution of
TSFT , the remaining number of live mutants after the execution of TSFT , and
the initially achieved mutation score. For those applications whose achieved
mutation score was lower than one (i.e. at least one mutant was still alive),
columns 6 and 7 show the number of equivalent mutants identified by hand
and the updated mutation score. Finally, columns 8–10 present, respectively,
the number of test cases added to TSFT in order to obtain the TM test set,
the size of TM and the final mutation score. Note that mutation scores of
value 1.0 are not repeated in subsequent columns of the table. The results
are analysed in the sequence.

Table 12: Mutation testing results for the 12 target applications.
Initial Killed by Remain Initial Man. Interm. Added Final

Application Alive TSFT Alive MS Equiv. MS Tests |TM | MS
1.BankingSystem 50 50 0 1.00 – – – 58 –
2.Telecom 53 31 22 0.58 10 0.72 4 67 1.00
3.ProdLine 58 58 0 1.00 – – – 36 –
4.FactorialOptimiser 15 14 1 0.93 1 1.00 – 19 –
5.MusicOnline 27 22 5 0.81 2 0.88 2 48 1.00
6.VendingMachine 47 23 24 0.49 13 0.68 5 23 1.00
7.PointBoundsChecker 28 28 0 1.00 – – – 14 –
8.StackManager 21 21 0 1.00 – – – 15 –
9.PointShadowManager 21 13 8 0.62 5 0.81 2 14 1.00
10.Math 7 4 3 0.57 2 0.80 1 54 1.00
11.AuthSystem 21 17 4 0.81 1 0.85 2 19 1.00
12.SeqGen 18 4 14 0.22 8 0.40 3 42 1.00
TOTAL 366 285 81 0.78 42 0.88 19 409 1.00

209

7.4. Analysis of the results

Comparing SFT with mutation testing: According to the results
presented in the previous section, in particular in Table 12, the TSFT test
sets have yielded high8 mutant coverage for five applications: MS = 1.00
for BankingSystem, ProdLine, PointBoundsChecker and StackManager, and
MS = 0.93 for FactorialOptimiser.

The mutation scores yielded by the TSFT test sets can be observed in
Figure 14. The chart depicts the achieved mutant coverage at two different
moments: before and after the manual identification of equivalent mutants.
The column labelled with Initial represents the first case, i.e. the achieved
coverage right after the execution of the TSFT test sets. The All Equiv col-
umn represents the coverage after we performed the analysis of live mutants
and classified all the equivalent ones. The chart also includes a column to
represent the goal, i.e. the full mutant coverage.

These obtained results provide evidence on the relevance of the muta-
tion operators’ ability in simulating faults that cannot be easily revealed by
existing, non-mutation-based test sets. In this case study, we applied the
SFT criterion, which combines widely used functional-based testing criteria
and has shown to be strong w.r.t mutant detection rate [48]. However, the
SFT-adequate test sets were able to achieve high mutation score for only 5
out of 12 evaluated applications.

Effort required to achieve mutation-adequate test sets: In regard
to the effort required to obtain the TM test sets (i.e. test sets that result in
mutation scores of 1.0), apart from the FactorialOptimiser application, whose
mutation score reached the value of 1.0 after the manual equivalent mutant
detection step, the other 7 applications required test set increments. This is
depicted in Figure 15, which shows the differences in size of TSFT and TM

test sets for all evaluated applications.
Considering the initial and final test set cardinalities (i.e. |TSFT | and

|TM |) (see Tables 10 and 12), in total, 19 test cases were designed to kill the
mutants that remained alive after the mutant execution and identification of

8Note that the definition of a threshold value for the goodness of the mutation score
(e.g. high or low) depends on the criticality of the program under evaluation. Never-
theless, mutation score values above 0.95 have typically been considered high in previous
research [51, 52]. In this case study, we use a threshold value of 0.9; therefore, MS ≥ 0.9
is considered high.

210

1.
 B

an
ki

ng

2.
 T

el
ec

o
m

3.
 P

ro
dL

in
e

4.
 F

ac
to

ria
l

5.
 M

us
ic

6
. V

e
nd

in
g

7.
 P

oi
nt

B
ou

nd
s

8.
 S

ta
ck

9.
 P

oi
nt

S
ha

do
w

10
. M

at
h

11
. A

ut
hS

ys
te

m

12
. S

eq
G

en

0%

20%

40%

60%

80%

100%

Initial All Equiv Full (the goal)

Applications

M
u

ta
n

t
c

o
v

e
ra

g
e

Figure 14: Coverage yielded by SFT test sets.

equivalent mutants steps. It means that, on average, the increase to produce
the |TM | test sets was nearly 5%. From this viewpoint, we can conclude
that the application of the proposed mutation operators does not overwhelm
the testers while enhancing the existing, systematically derived test sets to
achieve high mutant coverage.

7.5. Additional comments on the mutant analysis step

As highlighted in Section 5.4, a simple mutation can have wide impact
on the woven application. Consequently, many times analysing a mutant
required us to scan several modules of the application in order to realise
the real impact of the mutation on the application. However, even though
a mutation can impact on the quantification of JPs, the behaviour of the
woven application may remain the same.

For example, Figure 16 shows a mutant produced by the PWIW for the
MusicOnline application. The mutation consisted in replacing a naming part
of the PCD (i.e. the owed attribute) with the “*” wildcard. This modification
results in an additional JP selection in the based code, hence this mutant

211

1.
 B

an
ki

ng

2.
 T

el
ec

om

3.
 P

ro
dL

in
e

4.
 F

ac
to

ria
l

5.
 M

us
ic

6.
 V

en
di

ng

7.
 P

oi
nt

B
ou

nd
s

8.
 S

ta
ck

9.
 P

oi
nt

S
ha

do
w

10
. M

at
h

11
. A

ut
hS

ys
te

m

12
. S

eq
G

en

0

10

20

30

40

50

60

70

TSFT

TSFT TM

Applications

#
 o

f
te

s
t

c
a

s
e

s

Figure 15: Effort required to derive the TM test sets.

has not been automatically classified as equivalent by Proteum/AJ . Nonethe-
less, during the mutant analysis step, we noticed that the final behaviour of
MusicOnline was not altered so that this mutant was manually classified as
equivalent.

after(Account account) returning : set(int Account.owed) && this(account) {

> after(Account account) returning : set(int Account .*) && this(account) {

Figure 16: Example of an equivalent mutant of the MusicOnline application.

Note that the analysis of live mutants depends on the current configu-
ration of the application under test [53]. That is, while a PCD p may be
correct w.r.t. to a given base program P1, p may “misbehave” (i.e. match a
different set of JPs) when it is applied into a different base program P2. This
observation also holds for advices as well as for PCD-advice pairs.

212

8. Second case study: Estimating the cost of the approach with
larger systems

This section presents a second case study that aims to estimate the
cost of applying the AspectJ mutation operators in systems larger than the
ones presented in the previous section. This second case study comprises
four medium-sized AO systems from different application domains, and the
achieved results are compared to the results presented in Section 7 of this
paper. We start by describing the four analysed systems. The results are
presented in the sequence.

8.1. Target systems

The four systems we evaluated in this case study are called iBATIS,
TollSystemDemonstrator, HealthWatcher and MobileMedia. These systems
have already been evaluated within the academic and industrial con-
text [8, 9, 54, 55, 56] and employ mainstream industrial technologies in their
implementations. Table 13 lists some size-related metric values for the four
systems. Note that these implementations are significantly larger than the
applications evaluated in Section 7. This allows us to better estimate the cost
of applying the mutation operators, in particular w.r.t. the number of gener-
ated mutants, including equivalent and anomalous ones. A short description
of each system is following presented.

Table 13: Values of metrics for the selected applications (second case study).
Aprox.

Application KLOC1 Classes Aspects PCDs Advices declare
iBATIS 11 207 41 97 95 69
TollSystemDemonstrator 4 98 25 37 37 6
HealthWatcher 7 137 26 57 47 14
MobileMedia 3 45 22 65 60 26
TOTAL 24 487 114 256 239 115
1It considers only real lines of code, excluding comments and blank lines.

iBATIS [57] is a Java-based open source framework for object-relational
data mapping. The iBATIS AO versions [9] have some functional and non-
functional concerns modularised within aspects (e.g. exception handling,
concurrency and type mapping). The TollSystemDemonstrator (TSD) sys-
tem includes a subset of requirements of a real-world tolling system. It
has been developed in the context of the AOSD-Europe Project [54] and
contains functional and non-functional concerns implemented within aspects

213

(e.g. charging variabilities, distribution and logging). HealthWatcher (HW) is
a Web-based application that allows citizens to register complaints regarding
health issues [8, 56]. Some aspectised concerns in HealthWatcher are distri-
bution, persistence and exception handling. Finally, MobileMedia (MM) [55]
is a software product line for mobile devices that allows users to manipulate
image files in different mobile devices. In MM, aspects are used to configure
the product line instances, enabling the selection of alternative and optional
features.

Apart from TollSystemDemonstrator, which has a single release, the other
three systems have several releases available for evaluation. In this case study,
we selected versions 01, 10 and 06 of iBATIS, HealthWatcher and MobileMedia,
respectively. For more information about each of them, the reader may
refer to the respective placeholder websites or to previous reports of these
systems [8, 9, 54, 55].

8.2. Generating mutants for the target systems

Applying the 24 mutation operators implemented in Proteum/AJ re-
sulted in the numbers of mutants presented in Tables 14 and 15. Such tables
focus on, respectively, the numbers of equivalent and anomalous mutants
produced per operator. The two rightmost columns of the tables show the
total number of generated mutants for all systems and the respective percent-
ages of equivalent and anomalous mutants. Note that Table 14 only includes
mutation operators which are eligible in regard to automatic detection of
equivalent mutants. Furthermore, a blank cell in any of the tables means
that no value could be assigned to that category since no mutant has been
generated by the respective operator.

When we consider the overall number of mutants produced per operator,
we can see in Table 15 that three mutation operators (namely PSDR, DEWC
and AJSC) generated no mutants for any of the systems. This indicates that
AspectJ constructs targeted by these operators are not present in any of
the evaluated versions of those systems. In regard to mutants produced by
the PCCC operator, all were automatically classified as equivalent. However,
such mutants should be manually revised given that the JP selections by
the cflow and cflowbelow PCDs are evaluated at runtime in order to decide
whether every specific JP selection holds of not within the running control
flow context.

In the next section, we compare the obtained numbers of equivalent and
anomalous mutants with the results obtained in our first case study earlier

214

Table 14: Percentages of equivalent mutants generated for the target systems.
iBatis AO01 TollSystem HW AO10 MM AO06 All Systems

Operator Total Equiv. Total Equiv. Total Equiv. Total Equiv. Total Equiv.
PWIW 1976 92% 449 92% 646 87% 1075 96% 4146 92%
PWAR 0 – 4 0% 0 – 0 – 4 0%
PSWR 4 0% 5 20% 37 68% 0 – 46 57%
PSDR 0 – 0 – 0 – 0 – 0 –
POPL 193 63% 60 77% 70 74% 117 91% 440 74%
POAC 185 0% 41 0% 63 0% 75 9% 364 2%
POEC 19 58% 0 – 0 – 0 – 19 58%
PCTT 15 100% 21 81% 21 86% 39 85% 96 86%
PCGS 1 0% 1 0% 0 – 0 – 2 0%
PCCR 121 2% 17 0% 43 0% 120 32% 301 13%
PCLO 222 0% 30 37% 24 0% 21 29% 297 6%
PCCC 0 – 8 100% 1 100% 0 – 9 100%

TOTAL 2736 72% 636 78% 905 72% 1447 84% 5724 76%

presented in Section 7. We also estimate the effort required for developing
mutation-adequate test sets based on the previously observed results.

8.3. Contrasting the results with the first case study

From Tables 14 and 15, we can observe that for all systems the obtained
numbers of equivalent and anomalous mutants exceed the averages in our
first case study. This is graphically shown in Figure 17.

iBATIS TollSystem HealthWatcher MobileMedia
0%

20%

40%

60%

80%

100%

Equivalent Avg. of CS-01

Applications

%
 o

f
e

q
u

iv
a l

e
n

t
m

u
ta

n
ts

iBATIS TollSystem HealthWatcher MobileMedia
0%

20%

40%

60%

80%

100%

Anomalous Avg. of CS-01

Applications

%
 o

f
e

q
u

iv
a l

e
n

t
m

u
ta

n
ts

Figure 17: Percentages of equivalent and anomalous mutants for the target systems.

Considering the applications evaluated in Section 7, the average number
of equivalent mutants was 67%, while this value for the four larger systems

215

Table 15: Percentages of anomalous mutants generated for the target systems.
iBatis AO01 TollSystem HW AO10 MM AO06 All Apps

Operator Total Anom. Total Anom. Total Anom. Total Anom. Total Anom.
PWIW 1976 1% 449 1% 646 4% 1075 2% 4146 2%
PWAR 0 – 4 0% 0 – 0 – 4 0%
PSWR 4 25% 5 0% 37 5% 0 – 46 7%
PSDR 0 – 0 – 0 – 0 – 0 –
POPL 193 22% 60 3% 70 3% 117 6% 440 12%
POAC 185 96% 41 7% 63 5% 75 44% 364 59%
POEC 19 0% 0 – 0 – 0 – 19 0%
PCTT 15 0% 21 0% 21 0% 39 0% 96 0%
PCCE 153 50% 66 0% 52 23% 94 27% 365 31%
PCGS 1 0% 1 0% 0 – 0 – 2 0%
PCCR 121 7% 17 0% 43 5% 120 43% 301 21%
PCLO 222 40% 30 57% 24 17% 21 48% 297 40%
PCCC 0 – 8 0% 1 0% 0 – 9 0%
DAPC 0 – 0 – 1 0% 176 89% 177 88%
DAPO 0 – 0 – 1 0% 6 0% 7 0%
DSSR 69 81% 0 – 14 100% 20 100% 103 87%

DEWC 0 – 0 – 0 – 0 – 0 –
DAIC 8 0% 8 0% 0 – 0 – 16 0%
ABAR 123 48% 23 4% 52 4% 48 23% 246 30%
APSR 16 13% 25 24% 10 0% 41 32% 92 23%
APER 0 – 4 75% 0 – 4 0% 8 38%
AJSC 0 – 0 – 0 – 0 – 0 –
ABHA 95 0% 40 0% 47 0% 60 0% 242 0%
ABPR 405 37% 68 91% 146 52% 250 80% 869 56%

TOTAL 3605 19% 870 11% 1228 12% 2146 25% 7849 19%

analysed in this section represents 76% of the total. When it comes to anoma-
lous mutants, the average amount for the larger systems is 19% against 9%
for the smaller applications.

Let us consider a test set TC that is adequate to an AO system as large
as the ones evaluated in this case study. Moreover, TC is adequate w.r.t. to a
given criterion C other than Mutant Analysis (e.g. TC is derived from either
a functional-based or structural-based test selection criterion). Let us also
consider (i) the observed number of equivalent and anomalous mutants listed
in Tables 14 and 15, and; (ii) the effort required to create the TM test sets
in our previous case study. We can therefore assume that the effort testers
need to dedicate to evolve TC to cover all remaining live mutants after the
execution of TC shall be equal or less than 5% of |TC |.

The above estimate relies on the fact that the systems evaluated in this
section have a smaller proportion of live mutants to be handled than the

216

systems evaluated in the previous case study. Even though this a rough
estimate, according to the results observed in our first case study we argue
that well-designed test suites are able to reveal most of the faults simulated
by the mutation operators. Nevertheless, a small but not less important test
set increment is still needed in order to yield trustworthy results in regard to
the Mutant Analysis criterion.

9. Study limitations

The main threat to the validity of our evaluation studies – and, conse-
quently, to the achieved results – regards the representativeness of the se-
lected applications, specially in our first case study (described in Section 7).
Such study comprised a set of small AO applications upon which we per-
formed the evaluation procedures and drew our conclusions. It required us
to undertake a full – thus time consuming – test process, starting from the
test plan design and ending up with the creation of adequate test suites that
yielded full mutant coverage for all applications. The limited size of the
applications allowed us to produce detailed analysis of the systems, compre-
hensive test plans and subsequent test data. Note that performing such a
number of tasks from scratch for larger systems might have been prohibitive
specially due to time constraints. Besides that, similar studies in regard to
the size and the number of selected applications have been performed in order
to evaluate other testing approaches for AO software [42, 58, 59].

Another possible threat to the validity of our first case study concerns
the way we developed the initial test suites. Functional-based testing, as
a black-box technique [49], relies on specification documents to derive the
test requirements. However, the lack of detailed specifications for the appli-
cations evaluated in that case study led us to follow a “reverse” process to
derive the SFT-adequate test sets. Instead of building our test plans and the
respective test sets based exclusively on the specifications, we were forced to
analyse the source code in order to comprehend the functionalities of each
application. Therefore, the design of some test cases has also been guided by
internal (structural) elements of the code rather than solely by functional re-
quirements. As a consequence, the produced test sets may have led to higher
mutant coverage given that, traditionally, structural-based (i.e. white-box)
test suites [49] tend to outperform black-box ones [20].

In regard to our second case study (described in Section 8), our conclu-
sions are based on estimates derived from the set of generated mutants and on

217

the results achieved in the previous case study. In spite of the observed trend
regarding the number of generated mutants and on the estimated effort, more
definite conclusions are only possible after running similar procedures with
a larger set of applications. Exercising such applications with concrete test
data will also help us draw more well-founded conclusions on the required
effort to fulfil our testing approach requirements.

10. Related work

Research which is related to the work presented in this paper can be
grouped in the following categories: (i) mutation testing of AO programs; and
(ii) evaluation of AO testing approaches. Both categories are summarised in
the sequence.

10.1. Mutation testing of AO programs

Recent surveys on mutation testing [15] and AO testing [14] identified
a few approaches available in the literature [44, 50, 53, 60, 61] as well as
automated supporting tools [60, 61]. The first initiative was presented by
Mortensen and Alexander [44], which consists in a hybrid AO testing ap-
proach that combines coverage-based and mutation-based testing. It relies
on a candidate fault model for AO programs defined by Alexander et al. [7].
Three mutation operators are defined to strengthen and weaken PCDs and
to alter the advice precedence order. However, the authors do not provide
details of syntactic changes and implications of each operator as we did for
our mutation operators.

Lemos et al. [53] proposed another hybrid approach which involves struc-
tural and mutation testing of PCDs. The former consists of composing con-
trol flow graphs in order to detect unintended JP selection, while the latter
is used to increase the sets of matched JPs. However, the authors only high-
light the need for a comprehensive set of mutation operators to make the
approach more effective. This paper addressed the design of such mutation
operators.

Anbalagan and Xie [60] implemented a tool that automates the two PCD-
related mutation operators defined by Mortensen and Alexander [44]. Mu-
tants are produced through the use of wildcards as well as by using naming
parts of original PCDs and JPs identified from the base code. Based on
heuristics, the tool automatically ranks the most representative mutants,

218

which are the ones that more closely resemble the original PCDs. If a mu-
tant selects the same set of JP as does the original PCD, it is automatically
classified as equivalent. The final output is a list of the ranked mutants.
Our set of operators covers a broader set of AspectJ features, while the Pro-
teum/AJ tool provides support for other steps of mutation testing such as
test execution and mutant evaluation.

Delamare et al. [50] proposed an approach based on test-driven develop-
ment concepts and mutant analysis for testing AspectJ PCDs. The goal is
to validate PCDs by means of test cases that explicitly define sets of JPs
that should be affected by specific advices. In turn, PCDs that are bound
to such advices are also validated. A mutation tool named AjMutator [61]
implements seven of our PCD-related operators. The mutant PCDs are used
to validate the effectiveness of their approach. The AjMutator tool automati-
cally detects equivalent mutants based on JP matching information provided
by the abc compiler [62], an alternative compiler for AspectJ programs. How-
ever, the tool misses some basic functionalities to properly support mutation
testing. For instance, it does not allow for mutation operator selection, hence
hindering testers to apply different strategies. The mutant analysis itself is
limited to the automatic detection of equivalent mutants; other mutant han-
dling features such as individual mutant execution and manual classification
of mutants are not available. Proteum/AJ overcomes these main limitations
of AjMutator .

10.2. Evaluation of AO testing approaches

Considering that Aspect-Oriented Programming is still a developing re-
search topic, to date we can only find limited evidence w.r.t. evaluation and
assessment of related testing approaches. In our survey [14], we were able to
identify three pieces of work that regard evaluation of AO testing. They are
both based on practical evaluations of small AO applications [42, 58].

Xie and Zhao [58] proposed a framework for automatic test generation
based on state variables and method invocation wrappers. The quality of
the generated test data is checked against a set of structural-based cover-
age criteria. The authors also defined some guidelines that require developer
intervention in order to augment the initial coverage. To evaluate their ap-
proach, Xie and Zhao used a set of 12 small AO applications that partially
overlaps with our set (e.g. Telecom, ProdLine and BankingSystem). Differ-
ently from our evaluation study, Xie and Zhao’s test data was automatically

219

derived based on values of the input space. Furthermore, the adopted cov-
erage measure does not rely on mutants but on internal structural elements
such as control flow branches and unit interactions (e.g. method-method and
method-advice).

Lemos et al. [42] presented an approach for structural integration testing
of AO programs. They defined a set of control flow- and data flow-based
coverage criteria for pairwise integration of communicating units (methods
and advices). In their work, Lemos et al. estimate the cost for applying
their criteria based on the number of test cases which are required to evolve
the coverage from unit to integration level. Similarly to Xie and Zhao [58],
they also used a set of small AO applications (seven in total) that partially
overlaps with our set (e.g. Telecom, MusicOnline and StackManager). The
average number of test cases per application evaluated by Lemos et al. was
14, number that increased 12.5% during the test sets evolution. We followed
similar steps in our first case study; we compared the coverage SFT-adequate
test sets yield w.r.t. to AOP-specific mutants. Differently from us, however,
Lemos et al. estimate the costs based on requirements derived from two
structural-based measures: unit coverage and pairwise coverage.

11. Conclusion and future research

To deal with testing-related specificities of contemporary programming
techniques such as Aspect-Oriented Programming (AOP), at first software
engineers need to understand how software faults can occur in practice so
that they can be either avoided or rapidly localised within the software. In
this context, mutation testing is a widely explored test selection criterion that
focuses on recurring faults observed in the software. Starting from a well-
characterised set of fault types, mutation testing helps to demonstrate the
absence of such faults in the evaluated software products. However, when it
comes to AOP, to date the few initiatives for customising the mutation testing
for AO programs show either limited coverage with respect to the range of
simulated faults or a need for proper evaluation in regard to attributes like
application cost and effectiveness.

This paper contributes in this context. It revisited our previous research
on fault-based testing of AO software [16, 18, 19] in order to define a compre-
hensive approach for mutation testing of AO programs. The contributions
include (i) the definition a set of mutation operators for AspectJ programs
that simulate a range of fault types; (ii) the implementation of a tool that

220

automates the application of the mutation operators; and (iii) evaluation of
the proposed mutation operators by means of two case studies.

The evaluation results show that applying the mutation operators to AO
programs does not impose high costs, even though it is likely to require
increases of 5% in the test suites in order to achieve full mutant coverage.
These studies helped to demonstrate the feasibility of fault-based testing for
AO programs with adequate tool support.

Our future research includes: (i) possible refinements of the mutation
operator set; (ii) improvements to the Proteum/AJ tool; and (iii) further
empirical evaluation of the approach. We plan to analyse available fault
reports for AO programs [18] in order to figure out new mutation opera-
tors needs. Besides that, we aim to evolve Proteum/AJ to support varied
mutation testing strategies such as Constrained Mutation [63] and Selective
Mutation [64]. Finally, we will configure other evaluation studies similar to
the ones presented in Sections 7 and 8 of this paper, addressing different sets
of applications.

Acknowledgements

We would like to thank Otávio Lemos from UNIFESP, Brazil, and
Giuseppe Di Lucca from Università degli Studi del Sannio, Italy, for pro-
viding some of the AspectJ applications we analysed in our first case study.

The authors received full of partial funding from the following agencies
and projects: Fabiano Ferrari : FAPESP (grant 05/55403-6), CAPES (grant
0653/07-1) and EC Grant AOSD-Europe (IST-2-004349); Awais Rashid : EC
Grant AOSD-Europe (IST-2-004349); José Maldonado: EC Grant QualiPSo
(IST-FP6-IP-034763), FAPESP, CAPES and CNPq.

References

[1] G. Kiczales et al., Aspect-Oriented Programming, in: Proceedings of the
11th European Conference on Object-Oriented Programming (ECOOP),
Springer-Verlag, Jyväskylä - Finland, 220–242 (LNCS v.1241), 1997.

[2] M. Mortensen, S. Ghosh, J. M. Bieman, Aspect-Oriented Refactoring
of Legacy Applications: An Evaluation, IEEE Transactions on Software
Engineering (in press).

221

[3] A. Rashid et al., Aspect-Oriented Software Development in Practice:
Tales from AOSD-Europe, IEEE Computer 43 (2) (2010) 19–26.

[4] R. Laddad, Aspect-Oriented Programming Will Improve Quality, IEEE
Software 20 (6) (2003) 90–91.

[5] Y. Coady, G. Kiczales, Back to the Future: A Retroactive Study of
Aspect Evolution in Operating System Code, in: Proceedings of the
2nd International Conference on Aspect-Oriented Software Development
(AOSD), ACM Press, Boston/MA - USA, 50–59, 2003.

[6] J. Zhao, Data-Flow-Based Unit Testing of Aspect-Oriented Programs,
in: Proceedings of the 27th Annual IEEE International Computer Soft-
ware and Applications Conference (COMPSAC), IEEE Computer Soci-
ety, Dallas/Texas - USA, 188–197, 2003.

[7] R. T. Alexander, J. M. Bieman, A. A. Andrews, Towards the Systematic
Testing of Aspect-Oriented Programs, Tech. Report CS-04-105, Dept. of
Computer Science, Colorado State University, Fort Collins/Colorado -
USA, 2004.

[8] P. Greenwood et al., On the Impact of Aspectual Decompositions on
Design Stability: An Empirical Study, in: Proceedings of the 21st Euro-
pean Conference on Object-Oriented Programming (ECOOP), Springer
Berlin, Berlin - Germany, 176–200 (LNCS v.4609), 2007.

[9] F. C. Ferrari et al., An Exploratory Study of Fault-Proneness in Evolving
Aspect-Oriented Programs, in: Proceedings of the 32nd International
Conference on Software Engineering (ICSE), ACM Press, Cape Town -
South Africa, 65–74, 2010.

[10] R. Coelho et al., Assessing the Impact of Aspects on Exception Flows:
An Exploratory Study, in: Proceedings of the 22nd European Conference
on Object-Oriented Programming (ECOOP), Springer-Verlag, Paphos -
Cyprus, 207–234 (LNCS v.5142), 2008.

[11] R. A. DeMillo, R. J. Lipton, F. G. Sayward, Hints on Test Data Se-
lection: Help for the Practicing Programmer, IEEE Computer 11 (4)
(1978) 34–43.

222

[12] J. H. Andrews, L. C. Briand, Y. Labiche, Is Mutation an Appropriate
Tool for Testing Experiments?, in: Proceedings of the 27th International
Conference on Software Engineering (ICSE), ACM Press, St. Louis/MO
- USA, 402–411, 2005.

[13] H. Do, G. Rothermel, On the Use of Mutation Faults in Empirical As-
sessments of Test Case Prioritization Techniques, IEEE Transactions on
Software Engineering 32 (9) (2006) 733–752.

[14] F. C. Ferrari, E. N. Höhn, J. C. Maldonado, Testing Aspect-Oriented
Software: Evolution and Collaboration through the Years, in: Proceed-
ings of the 3rd Latin American Workshop on Aspect-Oriented Software
Development (LAWASP), Brazilian Computer Society, Fortaleza/CE -
Brazil, 24–30, 2009.

[15] Y. Jia, M. Harman, An Analysis and Survey of the Development of Mu-
tation Testing, IEEE Transactions on Software Engineering (in press).

[16] F. C. Ferrari, J. C. Maldonado, A. Rashid, Mutation Testing for Aspect-
Oriented Programs, in: Proceedings of the 1st International Conference
on Software Testing, Verification and Validation (ICST), IEEE Com-
puter Society, Lillehammer - Norway, 52–61, 2008.

[17] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G.
Griswold, An Overview of AspectJ, in: Proceedings of the 15th Euro-
pean Conference on Object-Oriented Programming (ECOOP), Springer-
Verlag, Budapest - Hungary, 327–353 (LNCS v.2072), 2001.

[18] F. C. Ferrari, R. Burrows, O. A. L. Lemos, A. Garcia, J. C. Maldonado,
Characterising Faults in Aspect-Oriented Programs: Towards Filling the
Gap between Theory and Practice, in: Proceedings of the 24th Brazilian
Symposium on Software Engineering (SBES), Salvador/BA - Brazil, (to
appear), 2010.

[19] F. C. Ferrari, E. Y. Nakagawa, A. Rashid, J. C. Maldonado, Automating
the Mutation Testing of Aspect-Oriented Java Programs, in: Proceed-
ings of the 5th ICSE International Workshop on Automation of Software
Test (AST), ACM Press, Cape Town - South Africa, 51–58, 2010.

[20] A. P. Mathur, Foundations of Software Testing, Addison-Wesley Profes-
sional, 2007.

223

[21] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

[22] E. Baniassad, S. Clarke, Theme: An Approach for Aspect-Oriented
Analysis and Design, in: Proceedings of the 26th International Con-
ference on Software Engineering (ICSE), IEEE Computer Society, Ed-
inburgh - UK, 158–167, 2004.

[23] M. P. Robillard, G. C. Murphy, Representing Concerns in Source
Code, ACM Transactions on Software Engineering and Methodology
(TOSEM) 16 (1).

[24] R. Johnson, J. Hoeller, A. Arendsen, C. Sampaleanu, R. Harrop, T. Ris-
berg, D. Davison, D. Kopylenko, M. Pollack, T. Templier, E. Vervaet,
P. Tung, B. Hale, A. Colyer, J. Lewis, C. Leau, R. Evans, Spring -
Java/J2EE Application Framework, Reference Manual Version 2.0.6, In-
terface21 Ltd., 2007.

[25] The JBoss Team, JBoss AOP Reference Documentation V2.0, Online,
http://docs.jboss.org/jbossaop/docs/index.html - last accessed
15/09/2010, 2010.

[26] M. Mezini, K. Ostermann, Conquering Aspects with Caesar, in: Pro-
ceedings of the 2nd International Conference on Aspect-Oriented Soft-
ware Development (AOSD), ACM Press, Boston/MA - USA, 90–99,
2003.

[27] R. E. Filman, D. Friedman, Aspect-Oriented Programming is Quan-
tification and Obliviousness, in: R. E. Filman, T. Elrad, S. Clarke,
M. Akşit (Eds.), Aspect-Oriented Software Development, chap. 2,
Addison-Wesley, Boston, 21–35, 2004.

[28] The Eclipse Foundation, AspectJ Documentation, Online,
http://www.eclipse.org/aspectj/docs.php - last accessed on
15/09/2010, 2010.

[29] R. Laddad, AspectJ In Action, Manning Publications, 2003.

[30] A. J. Offutt, J. Pan, Automatically Detecting Equivalent Mutants and
Infeasible Paths, Journal of Software Testing, Verification, and Reliabil-
ity 7 (3) (1997) 165–192.

224

[31] R. A. DeMillo, A. J. Offutt, Constraint-Based Automatic Test Data
Generation, IEEE Transactions on Software Engineering 17 (9) (1991)
900–910.

[32] H. Agrawal et al., Design of Mutant Operators for the C Programming
Language, Technical Report SERC-TR41-P, Software Engineering Re-
search Center, Purdue University, West Lafayette/IN - USA, 1989.

[33] M. E. Delamaro, J. C. Maldonado, A. P. Mathur, Interface Mutation:
An Approach for Integration Testing, IEEE Transactions on Software
Engineering 27 (3) (2001) 228–247.

[34] Y. S. Ma, Y. R. Kwon, J. Offutt, Inter-class Mutation Operators for
Java, in: Proceedings of the 13th International Symposium on Software
Reliability Engineering (ISSRE), IEEE Computer Society Press, An-
napolis/MD - USA, 352–366, 2002.

[35] J. C. King, Symbolic execution and program testing, Communications
of the ACM 19 (7) (1976) 385–394.

[36] J. S. Bækken, A Fault Model for Pointcuts and Advice in AspectJ Pro-
grams, Master’s thesis, School of Electrical Engineering and Computer
Science, Washington State University, Pullman/WA - USA, 2006.

[37] A. Gal, W. Schröder-Preikschat, O. Spinczyk, AspectC++: Language
Proposal and Prototype Implementation, in: Proceedings of the Work-
shop on Advanced Separation of Concerns in Object-Oriented Systems,
Tampa Bay/Florida - USA, 2001.

[38] E. Hilsdale, J. Hugunin, Advice weaving in AspectJ, in: Proceedings of
the 3rd International Conference on Aspect-Oriented Software Develop-
ment (AOSD), ACM Press, Lancaster - UK, 26–35, 2004.

[39] J. C. Maldonado, M. E. Delamaro, S. C. P. F. Fabbri, A. S. Simão,
T. Sugeta, P. C. Masiero, Proteum: A Family of Tools to Support Spec-
ification and Program Testing Based on Mutation, in: Mutation 2000
Symposium - Tool Session, Kluwer Academic Publishers, San Jose/CA
- USA, 113–116, 2000.

225

[40] O. A. L. Lemos, A. M. R. Vincenzi, J. C. Maldonado, P. C. Masiero,
Control and Data Flow Structural Testing Criteria for Aspect-Oriented
Programs, Journal of Systems and Software 80 (6) (2007) 862–882.

[41] R. E. Lopez-Herrejon, D. Batory, Using AspectJ to Implement Product-
Lines: A Case Study, Technical Report, Department of Computer Sci-
ences, The University of Texas, Austin, Texas- USA, 2002.

[42] O. A. L. Lemos, I. G. Franchin, P. C. Masiero, Integration testing of
Object-Oriented and Aspect-Oriented programs: A structural pairwise
approach for Java, Science of Computer Programming 74 (10) (2009)
861–878.

[43] C.-H. Liu, C.-W. Chang, A State-Based Testing Approach for Aspect-
Oriented Programming, Journal of Information Science and Engineering
24 (1) (2008) 11–31.

[44] M. Mortensen, R. T. Alexander, An Approach for Adequate Testing
of AspectJ Programs, in: Proceedings of the 1st Workshop on Testing
Aspect Oriented Programs (WTAOP), Chicago/IL - USA, 2005.

[45] T. Xie, J. Zhao, D. Marinov, D. Notkin, Automated Test Generation
for AspectJ Programs, in: Proceedings of the 1st Workshop on Testing
Aspect Oriented Programs (WTAOP), Chicago/IL - USA, 2005.

[46] Y. Zhou, D. J. Richardson, H. Ziv, Towards A Practical Ap-
proach to Test Aspect-Oriented Software, in: Proceedings of the
Net.ObjectiveDays 2004 Workshop on Testing Component-based Sys-
tems (TECOS), Germany, 1–16, 2004.

[47] M. L. Bernardi, G. A. D. Lucca, Testing Aspect Oriented Programs:
an Approach Based on the Coverage of the Interactions among Advices
and Methods, in: Proceedings of the 6th International Conference on
Quality of Information and Communications Technology (QUATIC),
IEEE Computer Society, Lisbon - Portugal, 65–76, 2007.

[48] S. Linkman, A. M. R. Vincenzi, J. C. Maldonado, An Evaluation of
Systematic Functional Testing Using Mutation Testing, in: Proceedings
of the 7th International Conference on Empirical Assessment in Software
Engineering (EASE), Keele - UK, 1–15, 2003.

226

[49] G. J. Myers, C. Sandler, T. Badgett, T. M. Thomas, The Art of Software
Testing, John Wiley & Sons, 2nd edn., 2004.

[50] R. Delamare, B. Baudry, S. Ghosh, Y. Le Traon, A Test-Driven Ap-
proach to Developing Pointcut Descriptors in AspectJ, in: Proceedings
of the 2nd International Conference on Software Testing, Verification
and Validation (ICST), IEEE Computer Society, Denver/CO - USA,
376–385, 2009.

[51] E. F. Barbosa, J. C. Maldonado, A. M. R. Vincenzi, Toward the Deter-
mination of Sufficient Mutant Operators for C, The Journal of Software
Testing, Verification and Reliability 11 (2) (2001) 113–136.

[52] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, C. Zapf, An Exper-
imental Determination of Sufficient Mutant Operators, ACM Transac-
tions on Software Engineering and Methodology (TOSEM) 5 (2) (1996)
99–118.

[53] O. A. L. Lemos, F. C. Ferrari, P. C. Masiero, C. V. Lopes, Testing
Aspect-Oriented Programming Pointcut Descriptors, in: Proceedings of
the 2nd Workshop on Testing Aspect Oriented Programs (WTAOP),
ACM Press, Portland/Maine - USA, 33–38, 2006.

[54] AOSD Europe, Project Home Page, http://www.aosd-europe.net/ -
last accessed on 15/09/2010, 2010.

[55] E. Figueiredo et al., Evolving Software Product Lines with Aspects:
An Empirical Study on Design Stability, in: Proceedings of the 30th

International Conference on Software Engineering (ICSE), ACM Press,
Leipzig - Germany, 261–270, 2008.

[56] S. Soares, P. Borba, E. Laureano, Distribution and Persistence as As-
pects, Software - Practice & Experience 36 (7) (2006) 711–759.

[57] iBATIS Development Team, Apache iBATIS home page, Online,
http://attic.apache.org/projects/ibatis.html - last accessed on
15/09/2010, 2009.

[58] T. Xie, J. Zhao, A Framework and Tool Supports for Generating Test
Inputs of AspectJ Programs, in: Proceedings of the 5th International

227

Conference on Aspect-Oriented Software Development (AOSD), ACM
Press, Bonn - Germany, 190–201, 2006.

[59] G. Xu, A. Rountev, Regression Test Selection for AspectJ Software, in:
Proceedings of the 29th International Conference on Software Engineer-
ing (ICSE), IEEE Computer Society, Minneapolis/MN - USA, 65–74,
2007.

[60] P. Anbalagan, T. Xie, Automated Generation of Pointcut Mutants for
Testing Pointcuts in AspectJ Programs, in: Proceedings of the 19th

International Symposium on Software Reliability Engineering (ISSRE),
IEEE Computer Society, Seattle/WA - USA, 239–248, 2008.

[61] R. Delamare, B. Baudry, Y. Le Traon, AjMutator: A Tool for the Muta-
tion Analysis of AspectJ Pointcut Descriptors, in: Proceedings of the 4th

International Workshop on Mutation Analysis (Mutation), IEEE Com-
puter Society, Denver/CO - USA, 200–204, 2009.

[62] abc Development Team, abc: The AspectBench Compiler for AspectJ,
Online, http://abc.comlab.ox.ac.uk/ - last accessed on 15/09/2010,
2009.

[63] A. P. Mathur, W. E. Wong, Evaluation of the Cost of Alternative Mu-
tation Strategies, in: Proceedings of the 7th Brazilian Symposium on
Software Engineering (SBES), João Pessoa/PB - Brazil, 320–335, 1993.

[64] A. J. Offutt, G. Rothermel, C. Zapf, An Experimental Evaluation of Se-
lective Mutation, in: Proceedings of the 15th International Conference on
Software Engineering (ICSE), IEEE Computer Society, Baltimore/MD
- USA, 100–107, 1993.

228

	Introduction
	Problem Statement and Justification for the Research
	Objectives and Research Methodology
	Thesis Outline and Summary of Contributions

	Background
	Foundations of Aspect-Oriented Programming
	Programming Languages and other Supporting Technologies

	Foundations of Software Testing
	Basic Terminology
	Testing Techniques and Criteria
	Test Evaluation and Comparison amongst Criteria
	Test Automation

	Testing of Aspect-Oriented Software
	The Systematic Mapping Study Protocol and Process
	The Systematic Mapping Study Results
	Fault Taxonomies for AO Software
	AO Testing Approaches
	Tool Support for AO Testing

	Final Remarks

	Evaluating the Fault-Proneness of Aspect-Oriented Programs
	A Study of the Fault-Proneness of AO Programs
	Goals and Method
	Results

	Defining and Evaluating a Fault Taxonomy for AO Programs
	Goals and Method
	Results

	Summary of Contributions and Limitations

	Designing Mutation Operators for Aspect-Oriented Programs
	Mutation Operators for AspectJ Programs
	Mutation Operators versus Fault Types
	Preliminary Cost Analysis

	Generalisation of the Fault Taxonomy
	Summary of Contributions and Limitations

	Automating the Mutation Testing of Aspect-Oriented Programs
	Requirements for Mutation Tools
	The Architecture of Proteum/AJ
	The Main Functionalities of Proteum/AJ
	Implementation Details
	Core Modules

	Summary of Contributions and Limitations

	Evaluating the Proposed Mutation Testing Approach
	First Study: Evaluating the Usefulness and Required Effort
	Target Applications
	Building the Initial Test Sets
	Applying Mutant Analysis to the Target Applications
	Analysis of the Results
	Additional Comments on the Mutant Analysis Step

	Second Study: Estimating the Cost of the Approach with Larger Systems
	Target Systems
	Generating Mutants for the Target Systems
	Contrasting the Results with the First Study

	Study Limitations
	Final Remarks

	Conclusions
	Revisiting the Thesis Contributions
	Theoretical Definitions
	Implementation of Automated Support
	Evaluation Studies

	Limitations and Future Work
	Possible Research Directions

	References
	Paper: An Exploratory Study of Fault-Proneness inEvolving Aspect-Oriented Programs
	Paper: Characterising Faults in Aspect-Oriented Programs:Towards Filling the Gap between Theory and Practice
	Paper: Mutation Testing for Aspect-Oriented Programs
	Paper: Automating the Mutation Testing of Aspect-OrientedJava Programs
	Paper: Towards the Practical Mutation Testing of Aspect-Oriented Java Programs

