• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.55.2017.tde-18122017-110406
Documento
Autor
Nome completo
Andrea Piranhe da Silva
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2005
Orientador
Banca examinadora
Ranga, Alagacone Sri (Presidente)
Andrade, Eliana Xavier Linhares de
Cuminato, José Alberto
Hounie, Jorge Guillermo
Menegatto, Valdir Antonio
Título em português
Um estudo dos zeros de polinômios ortogonais na reta real e no círculo unitário e outros polinômios relacionados
Palavras-chave em português
Medidas relacionadas
Polinômios ortogonais
Problema de autovalor
Relação de recorrência de três termos
Zeros de polinômios
Resumo em português
O principal objetivo deste trabalho 6 estudar o comportamento dos zeros de polinômios ortogonais e similares. Inicialmente, consideramos uma relação entre duas sequências ele polinômios ortogonais, onde as medidas associadas estão relacionadas entre si. Usamos esta relação para estudar as propriedades de monotonicidade dos zeros dos polinômios ortogonais relacionados a uma medida obtida através da generalização da medida associada a uma outra sequência de polinômios ortogonais. Apresentamos, como exemplos, os polinômios ortogonais obtidos a partir da generalização das medidas associadas aos polinômios de Jacobi, Laguerre e Charlier. Em urna segunda etapa, consideramos polinômios gerados por uma certa relação de recorrência de três termos com o objetivo de encontrar limitantes, em termos dos coeficientes da relação de recorrência, para as regiões onde os zeros estão localizados. Os zeros são estudados através do problema de autovalor associado a uma matriz de Hessenberg. Aplicações aos polinômios de Szegó, polinômios para-ortogonais e polinômios com coeficientes complexos não-nulos são consideradas.
Título em inglês
Not available
Palavras-chave em inglês
Eigenvalue problem
Orthogonal polynomials
related measures
Three term recurrence relation
Zeros of polynomials
Resumo em inglês
The main purpose of this work is to study the behavior of the zeros of orthogonal and similar polynomials. Initially, we consider a relation between two sequences of orthogonal polynomials, where the associated measures are related to each other. We use this relation to study the monotonicity propertios of the zeros of orthogonal polynomials related with a measure obtained through a generalization of the measure associated with other sequence of orthogonal polynomials. As examples, we consider the orthogonal polynomials obtained in this way from the measures associated with the Jacobi, Laguerre and Charlier polynomials. We also consider the zeros of polynomials generated by a certain three term recurrence relation. Here, the main objective is to find bounds, in terms of the coefficients of the recurrence relation, for the regions where the zeros are located. The zeros are explored through an eigenvalue representation associated with a Hessenberg matrix. Applications to Szegõ polynomials, para-orthogonal polynomials anti polynomials with non-zero complex coefficients are considered.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2017-12-18
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.