
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

Use of meta-learning for hyperparameter tuning of
classification problems

Rafael Gomes Mantovani
Tese de Doutorado do Programa de Pós-Graduação em Ciências de
Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Rafael Gomes Mantovani

Use of meta-learning for hyperparameter tuning of
classification problems

Doctoral dissertation submitted to the Institute of
Mathematics and Computer Sciences – ICMC-USP, in
partial fulfillment of the requirements for the degree of
the Doctorate Program in Computer Science and
Computational Mathematics. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. André Carlos Ponce de Leon
Ferreira de Carvalho
Co-advisor: Prof. Dr. Joaquin Vanschoren

USP – São Carlos
July 2018

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

G633u
Gomes Mantovani, Rafael
 Use of meta-learning for hyperparameter tuning
of classification problems / Rafael Gomes
Mantovani; orientador André Carlos Ponce de Leon
Ferreira de Carvalho; coorientador Joaquin
Vanschoren. -- São Carlos, 2018.
 155 p.

 Tese (Doutorado - Programa de Pós-Graduação em
Ciências de Computação e Matemática Computacional) --
 Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, 2018.

 1. Meta-learning. 2. Hyperparameter tuning. 3.
Classification problems. I. Carlos Ponce de Leon
Ferreira de Carvalho, André , orient. II.
Vanschoren, Joaquin, coorient. III. Título.

Rafael Gomes Mantovani

Uso de meta-aprendizado para ajuste de hiper-parâmetros
em problemas de classificação

Tese apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Doutor em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. André Carlos Ponce de Leon
Ferreira de Carvalho
Coorientador: Prof. Dr. Joaquin Vanschoren

USP – São Carlos
Julho de 2018

ACKNOWLEDGEMENTS

Firstly, I would like to thank everyone who contributed to this work, my parents, family,
friends from Brazil, friends from abroad, and colleagues. In particular, my former professor
Maria Angélica, who believed in me when I was giving up the academic career and indicated me
to professor André. It all started thanks to you.

I lovely thank my fiancée Larissa, not just once but as many times as I can. During this
Ph.D. process you’ve been by my side at all the times I’ve needed. I could not have done it
without your support and love.

I also especially thank professor André for the opportunity to work with him, for his
contributions to this research, for being my advisor and friend. It was a pleasure be your Ph.D.
student in the last five years. I wish we continue to collaborate for many years.

I thank professor Joaquin Vanschoren for his contributions to the research carried out
during this thesis, for being my co-advisor, and especially for receiving me in Eindhoven during
a whole year. This experience changed me so much. I am happy I’ve met you and wish we can
work together on many new research projects.

I also thank my friends and professors Ricardo Cerri, André Rossi, Sylvio Barbon and
Tomáš Horváth for their contributions during this Ph.D., and for the opportunity to keep working
with them in related projects.

I thank my friend Paulo Pisani. We have worked as Ph.D. students, but now I hope we
can collaborate more soon. Thank you for all the support and help to finish this thesis.

Finally, I would like to thank São Paulo Research Foundation (FAPESP), grants
#2012/23114-9 and #2015/03986-0, for the financial support of this thesis.

“What we know is a drop,

what we don’t know is an ocean.”

(Isaac Newton)

ABSTRACT

MANTOVANI, R. G. Use of meta-learning for hyperparameter tuning of classification
problems. 2018. 155 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2018.

Machine learning solutions have been successfully used to solve many simple and complex
problems. However, their development process still relies on human experts to perform tasks
such as data preprocessing, feature engineering and model selection. As the complexity of
these tasks increases, so does the demand for automated solutions, namely Automated Machine
Learning (AutoML). Most algorithms employed in these systems have hyperparameters whose
configuration may directly affect their predictive performance. Therefore, hyperparameter tuning
is a recurring task in AutoML systems. This thesis investigated how to efficiently automate
hyperparameter tuning by means of Meta-learning. To this end, large-scale experiments were
performed tuning the hyperparameters of different classification algorithms, and an enhanced
experimental methodology was adopted throughout the thesis to explore and learn the hyper-
parameter profiles for different classification algorithms. The results also showed that in many
cases the default hyperparameter settings induced models that are on par with those obtained
by tuning. Hence, a new Meta-learning recommender system was proposed to identify when it
is better to use default values and when to tune classification algorithms for each new dataset.
The proposed system is capable of generalizing several learning processes into a single mod-
ular framework, along with the possibility of assigning different algorithms. Furthermore, a
descriptive analysis of model predictions is used to identify which data characteristics affect the
necessity for tuning in each one of the algorithms investigated in the thesis. Experimental results
also demonstrated that the proposed recommender system reduced the time spent on optimization
processes, without reducing the predictive performance of the induced models. Depending on
the target algorithm, the Meta-learning recommender system can statistically outperform the
baselines. The significance of these results opens a number of new avenues for future work.

Keywords: Meta-learning, Hyperparameter tuning, Classification problems.

RESUMO

MANTOVANI, R. G. Uso de meta-aprendizado para ajuste de hiper-parâmetros em proble-
mas de classificação. 2018. 155 p. Tese (Doutorado em Ciências – Ciências de Computação e
Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, São Carlos – SP, 2018.

Soluções de aprendizado de máquina tem sido cada vez mais usadas com sucesso para resolver
problemas dos mais simples aos complexos. Entretanto, o processo de desenvolvimento de tais
soluções ainda é um processo que depende da ação de especialistas humanos em tarefas como:
pré-processamento dos dados, engenharia de features e seleção de modelos. Consequentemente,
quando a complexidade destas tarefas atinge um nível muito alto, há a necessidade de soluções
automatizadas, denominadas por Aprendizado de Máquina automatizado (AutoML). A mai-
oria dos algoritmos usados em tais sistemas possuem hiper-parâmetros cujos valores podem
afetar diretamente o desempenho preditivo dos modelos gerados. Assim sendo, o ajuste de
hiper-parâmetros é uma tarefa recorrente no desenvolvimento de sistems de AutoML. Nesta tese
investigou-se a automatização do ajuste de hiper-parâmetros por meio de Meta-aprendizado.
Seguindo essa linha, experimentos massivos foram realizados para ajustar os hiper-parâmetros de
diferentes algoritmos de classificação. Além disso, uma metodologia experimental aprimorada e
adotada ao lngo da tese perimtiu identificar diferentes perfis de ajuste para diferentes algoritmos
de classificação. Entretanto, os resultados também mostraram que em muitos casos as configura-
ções default destes algoritmos induziram modelos mais precisos do que os obtidos por meio de
ajuste. Assim, foi proposto um novo sistema de recomendação baseado em Meta-learning para
identificar quando é melhor realizar o ajuste de parâmetros para os algoritmos de classificação
ou apenas usar os valores default. O sistema proposto é capaz de generalizar várias etapas
do aprendizado em um único framework modular, juntamente com a possibilidade de avaliar
diferentes algoritmos de aprendizado de máquina. As análises descritivas das predições obtidas
pelo sistema indicaram quais características podem ser responsáveis por determinar quando o
ajuste se faz necessário para cada um dos algoritmos investigados na tese. Os resultados também
demonstraram que o sistema recomendador proposto reduziu o tempo gasto com a otimização
mantendo o desempenho preditivo dos modelos gerados. Além disso, dependendo do algoritmo
de classificação modelado, o sistema foi estatisticamente superior aos baselines. A significância
desdes resultados abre um novo número de oportunidades para trabalhos futuros.

Palavras-chave: Meta-aprendizado, Ajuste de hiper-parâmetros, Problemas de classificação.

LIST OF FIGURES

Figure 1 – Thesis structure. 29

Figure 2 – General hyperparameter tuning schema. 31

Figure 3 – Main steps of Meta-learning . 40

Figure 4 – Statistics from studies which employed MtL for HP tuning. 49

Figure 5 – Meta-features’ sets and additional processes used in previous work with MtL
and HP tuning. 51

Figure 6 – Experimental methodology used to adjust ML HPs. 57

Figure 7 – BAC values of the induced models obtained in each budget scenario 65

Figure 8 – HP space covered by GAs in the “LED-display-domain-7digit” dataset. Fig-
ure from Mantovani et al. (2015a). 66

Figure 9 – HP tuning results for the SVM algorithm. 68

Figure 10 – Win-Tie-Loss of the tuning techniques over the datasets. 69

Figure 11 – Comparison of the BAC values of the HP tuning techniques for SVMs
according to the Nemenyi test. 69

Figure 12 – Loss curves for SVMs across datasets. 70

Figure 13 – SVM HP tuning process with multiple datasets. 71

Figure 14 – HP tuning results for the default optimized HP settings. 72

Figure 15 – Win-Tie-Loss of the default HP values over the validation datasets. 72

Figure 16 – Comparison of the BAC values of the default HP approaches for SVMs
according to the Nemenyi test. 73

Figure 17 – Loss curves with a budget of 5000 evaluations for the J48 algorithm. 78

Figure 18 – HP tuning results for the J48 algorithm. Figure adapted from Mantovani et

al. (2018a). 80

Figure 19 – Distribution of the J48 HPs found by the tuning techniques. Figure from Man-
tovani et al. (2018a). 81

Figure 20 – HP tuning results and distributions for the CART algorithm found by the
tuning techniques. Figure adapted from Mantovani et al. (2018a). 83

Figure 21 – HP tuning results and distributions for the CTree algorithm found by the
tuning techniques. Figure adapted from Mantovani et al. (2018a). 84

Figure 22 – Win-Tie-Loss of the tuning techniques for the DT induction algorithms . . . 85

Figure 23 – Comparison of the BAC values of the HP tuning techniques for DTs according
to the Nemenyi test. 86

Figure 24 – Loss curves for the J48 algorithm across datasets. 87

Figure 25 – Loss curves for the CART algorithm across datasets. 88
Figure 26 – Loss curves for the CTree algorithm across datasets. 89
Figure 27 – Functional ANOVA HPs marginal predictions for DTs. 90
Figure 28 – HP tuning results for DTs with reduced hyperspace. 92
Figure 29 – MtL recommender system to predict whether HP tuning is required or not.

Adapted from (MANTOVANI et al., 2018b). 96
Figure 30 – Pearson correlation coefficient among the meta-features used to build meta-

datasets. 98
Figure 31 – Labels of the meta-datasets projected in the 2d PCA space. 100
Figure 32 – Meta-learners average AUC results on SMV’s meta-datasets. 102
Figure 33 – AUC performance values obtained by all the meta-learners considering dif-

ferent experimental setups. 104
Figure 34 – Average meta-features relative importance’ obtained from RF meta-models.

Figure from Mantovani et al. (2018b). 105
Figure 35 – Performance differences between SVM and a linear classifier in all the base-

level datasets. Figure from Mantovani et al. (2018b). 107
Figure 36 – Average RF relative importance of the relative landmarking meta-features. . 108
Figure 37 – Evaluating experimental setups adding relative landmarking meta-features. . 109
Figure 38 – SVM’s meta-learners predictions considering their experimental setups which

obtained the best AUC values. Figure from Mantovani et al. (2018b). 110
Figure 39 – Meta-learners average AUC results on DTs meta-datasets. 112
Figure 40 – AUC performance values obtained by all meta-learners in DT meta-datasets

considering different experimental setups. 114
Figure 41 – Average meta-features’ relative importance obtained from RF meta-models

on DTs meta-datasets. 116
Figure 42 – Meta-learners’ misclassifications in the J48 meta-dataset. 117
Figure 43 – Meta-learners’ misclassifications in the CART meta-dataset. 119
Figure 44 – Meta-learners’ misclassifications in the CTree meta-dataset. 121
Figure 45 – Performance of the meta-learners projected into the base-level datasets. Fig-

ure adapted from Mantovani et al. (2018b). 122
Figure 46 – Comparison of the BAC values of the meta-model approaches according to

the Nemenyi test. 122

LIST OF ALGORITHMS

Algorithm 1 – GS pseudocode . 33
Algorithm 2 – RS pseudocode . 34
Algorithm 3 – SMBO pseudocode . 34
Algorithm 4 – GA pseudocode . 35
Algorithm 5 – PSO pseudocode . 36
Algorithm 6 – EDA pseudocode . 36
Algorithm 7 – Irace pseudocode . 37

LIST OF TABLES

Table 1 – Summary of related studies applying to MtL to HP tuning 44
Table 2 – Summary of related studies applying to MtL to HP tuning 45
Table 3 – Parameters of the tuning techniques used in this thesis. 61
Table 4 – OpenML studies with results generated by experiments. 62
Table 5 – Repositories with tools developed by the authors. 62
Table 6 – SVM hyperspace used in experiments. 64
Table 7 – Budget scenarios investigated for SVM HP tuning. 64
Table 8 – Setup of the SVM HP tuning experiments. 67
Table 9 – DT HP spaces explored in experiments. 77
Table 10 – Setup of the DT HP tuning experiments. 79
Table 11 – Statistical improvements with complete and reduced HP spaces. 93
Table 12 – Groups of meta-features used in experiments. 97
Table 13 – Meta-datasets generated for MtL experiments. 99
Table 14 – Meta-learning experimental setup. 102
Table 15 – Misclassified datasets by all the meta-learners in SVM meta-dataset. 111
Table 16 – Misclassified datasets by all the meta-learners in J48 meta-dataset. 118
Table 17 – Misclassified datasets by all the meta-learners in CART meta-dataset. 120
Table 18 – OpenML datasets (1 to 45) used in experiments. 146
Table 19 – OpenML datasets (46 to 95) used in experiments. 147
Table 20 – OpenML datasets (96 to 140) used in experiments. 148
Table 21 – OpenML datasets (141 to 168) used in experiments. 149
Table 22 – Meta-features used in experiments - part 1. 152
Table 23 – Meta-features used in experiments - part 2. 153
Table 24 – Meta-learners’ HP spaces explored in experiments. 155

LIST OF ABBREVIATIONS AND ACRONYMS

Acc Accuracy

ANN Artificial Neural Network

AT Active Testing

AUC Area Under the ROC curve

AutoML Automated Machine Learning

CASH Combined Algorithm Selection and Hyperparameter Optimization

CD Critical Difference

CHAID Chi-squared Automatic Interaction Detector

CV Cross-Validation

DF Default values

DL Deep Learning

DS Decision Stump

DT Decision Tree

fANOVA Functional ANOVA

FN False Negative

FP False Positive

GA Genetic Algorithm

GS Grid Search

HPs hyperparameters

Irace Iterated F-Race

kNN k-Nearest Neighbors

LMT Logistic Model Tree

LOO Leave One Out

MAD Mean Absolute Deviation

MAP Mean Average Precision

ML Machine Learning

MLP Multilayer Perceptron

MtL Meta-learning

NAE Normalized Absolute Error

NBTree Naïve-Bayes Tree

NMSE Normalized Mean Squared Error

OpenML Open Machine Learning

PILS Iterated Local Search in Parameter Configuration Space

PMCC Pearson Product Moment Correlation Coefficient

PSO Particle Swarm Optimization

RBF Radial Basis Function

RF Random Forest

RIPPER Repeated Incremental Pruning to Produce Error Reduction

ROAR Random Online Adaptive Racing

RS Random Search

SFS Sequential Forward Selection

SMBO Sequential Model-based Optimization

SMOTE Synthetic Minority Over-sampling Technique

SVM Support Vector Machine

TAF Transfer Acquisition Function

TS Tabu Search

Xgboost Extreme Gradient Boosting

CONTENTS

1 INTRODUCTION . 25
1.1 Problem investigated and hypothesis assumed 26
1.2 Objective . 27
1.3 Main contributions to the research area 27
1.4 Thesis organization . 28

2 HYPERPARAMETER TUNING . 31
2.1 Definition . 32
2.2 Tuning techniques . 33
2.2.1 Grid Search . 33
2.2.2 Random Search . 33
2.2.3 Sequential Model Based Optimization 34
2.2.4 Genetic Algorithm . 35
2.2.5 Particle Swarm Optimization . 35
2.2.6 Estimation of Distribution Algorithms 35
2.2.7 Iterated F-Race . 36
2.3 Chapter remarks . 37

3 META-LEARNING ON HYPERPARAMETER TUNING 39
3.1 Meta-learning . 39
3.1.1 Definition . 40
3.1.2 Data characterization . 41
3.2 Meta-learning on HP tuning . 42
3.2.1 Recommendation of HP settings . 43
3.2.2 Prediction of training runtime . 46
3.2.3 Recommendation of initial values for HP optimization 46
3.2.4 Generation of rules for the extraction of meta-features 47
3.2.5 Prediction of HP tuning necessity . 47
3.2.6 Estimation of predictive performance for a given HP setting 48
3.3 General picture . 49
3.4 Literature overview . 52
3.5 Chapter remarks . 52

4 EXPERIMENTAL METHODOLOGY 55

4.1 Classification algorithms . 55
4.1.1 Support vector machines . 55
4.1.2 Decision tree induction algorithms . 56
4.2 Nested-CV resamplings . 57
4.3 Datasets . 58
4.4 Evaluation measures . 59
4.5 Statistical tests . 59
4.6 OpenML and mlr . 59
4.7 Setup of the tuning techniques . 60
4.8 Repositories for the coding used in this thesis 61
4.9 Chapter remarks . 62

5 TUNING OF SVMS . 63
5.1 SVM HP space . 63
5.2 Defining budget size . 64
5.3 Tuning setup . 67
5.4 Performance improvement . 67
5.5 Comparing techniques . 69
5.6 Optimization of new default HP values 71
5.7 Chapter Remarks . 73

6 TUNING OF DECISION TREES . 75
6.1 DT HP spaces . 76
6.2 Defining budget . 76
6.3 Tuning setup . 78
6.4 Performance improvements . 79
6.4.1 J48 improvements . 79
6.4.2 CART improvements . 82
6.4.3 CTree improvements . 82
6.5 Comparing techniques . 85
6.5.1 Statistical comparison . 85
6.5.2 Loss curves comparison . 87
6.6 Relative importance of the HPs . 89
6.7 Tuning with reduced HP spaces . 91
6.8 Chapter Remarks . 93

7 TO TUNE OR NOT TO TUNE? . 95
7.1 Recommender system framework . 95
7.1.1 Base-level tuning . 96
7.1.2 Meta-features . 97

7.1.3 Meta-targets . 97
7.1.4 Meta-learning setup . 99
7.2 When to tune SVMs? . 101
7.2.1 Evaluating different setups . 103
7.2.2 Meta-features importance . 105
7.2.3 Linearity Hypothesis . 107
7.2.4 Checking predictions . 109
7.3 When to tune DTs? . 111
7.3.1 Evaluating different setups . 113
7.3.2 Meta-features importance . 115
7.3.3 Checking predictions . 117
7.4 Projecting meta-models at the base-level 120
7.5 Chapter remarks . 123

8 CONCLUSIONS . 125
8.1 Main contributions and results . 126
8.1.1 SVM HP profile . 127
8.1.2 DT HP profiles . 127
8.1.3 MtL recommender system . 128
8.2 Publications . 129
8.2.1 Papers originated from thesis . 129
8.2.2 Collaborations in the same research topic 130
8.3 Limitations . 130
8.4 Future Work . 131

BIBLIOGRAPHY . 133

APPENDIX A LIST OF DATASETS 145

APPENDIX B SETS OF META-FEATURES 151

APPENDIX C META-LEARNERS’ HP SPACE 155

25

CHAPTER

1
INTRODUCTION

With the expansion of data generation, Machine Learning (ML) has achieved high
popularity in recent years. Progress in this area allowed a large uptake of ML solutions by
the industry. Building ML solutions often involve several tasks, which include comparing
many algorithms, optimizing their “hyperparameters (HPs)”, and exploring different feature
representations. However, very rarely an algorithm works satisfactorily at the first try. As a
consequence, a large amount of time is spent tuning HPs to generate models with high predictive
performance. Thus, as the complexity of these tasks increases, it demands ML solutions that can
be easily used, without the need for human intervention, which have been named “Automated
Machine Learning (AutoML)” (AutoML) solutions.

AutoML focuses on users with little or no expert knowledge in ML, also providing new
tools and functionalities to ML experts to advance the state-of-the-art in the area. It includes many
topics related with ML, such as Bayesian optimization (SNOEK; LAROCHELLE; ADAMS,
2012), Transfer learning and Meta-learning (MtL) (BRAZDIL et al., 2009).

The use of AutoML may relieve data scientists from the repetitive and time-consuming
steps in the design of a full data science solution, including the algorithm design and optimization
tasks. Hence, they can allocate their time on more difficult tasks. Thus, the goal of AutoML is
to facilitate and increase the use of data science techniques by non-experts and to support data
scientists in their work, not to replace them (FEURER et al., 2015). In this thesis, AutoML is
considered for predictive tasks, in particular, supervised classification tasks using the Support
Vector Machine (SVM) and Decision Tree (DT) induction algorithms. However, the issues
investigated in this thesis can be easily extended to other tasks.

Most of the ML algorithms employed in AutoML systems have HPs, free parameters/op-
tions that need to be configured beforehand, and which directly affect the predictive performance
of the induced models. A recurrent subtopic of research on AutoML systems is the HP tuning of
ML algorithms.

26 Chapter 1. Introduction

Many ML applications use default HP settings suggested by libraries and tools imple-
menting these algorithms, even though many studies have shown that their predictive performance
greatly depends on using suitable HP values (THORNTON et al., 2013; FEURER et al., 2015).
In predictive tasks, suitable HP values are those that lead to the induction of models with high
predictive accuracy. In early works, these values were tuned according to previous experiences
of data scientists by trial and error. To overcome this problem, optimization techniques are
often employed to automatically search for suitable HP settings (BERGSTRA et al., 2011;
BARDENET et al., 2013).

Although HP tuning may lead to more accurate models, the optimization process for
finding the most promising setting is usually very time-consuming. Depending on the data prob-
lem being solved and the number of HPs to be optimized, tuning may become computationally
unfeasible. A recent alternative to overcome these limitations has been the use of MtL (GOMES
et al., 2012; REIF et al., 2014; FEURER; SPRINGENBERG; HUTTER, 2015).

Different MtL systems have been proposed to select (ALI; SMITH-MILES, 2006),
rank (SUN; PFAHRINGER, 2013), or predict (REIF et al., 2014) the best HP settings of ML
algorithms. Other works combine MtL with optimization techniques, where MtL recommends
the initial points for optimization techniques to start the search for suitable HP settings 1.
The use of MtL by itself or in combination with optimization techniques tends to be more
computationally efficient when compared with the use of only optimization techniques. However,
it must be observed that the quality of MtL recommendations directly depends on the quality of
the meta-examples used (GOMES et al., 2012; FEURER et al., 2015).

1.1 Problem investigated and hypothesis assumed

The AutoML area is relatively new, and there are still many questions to be addressed.
This fact, and the emerging attention it has attracted from important research groups (FEURER
et al., 2015; KOTTHOFF et al., 2016) and large companies (GOOGLE, 2018; RAPIDMINER,
2018), highlights the importance of new studies in the area. The problem investigated in this
thesis is the automation of the HP tuning in the AutoML context. An important aspect for
successful AutoML is to have an automatic and robust HP tuning system, which emphasizes the
importance of the problem investigated.

Some ML algorithms are more sensitive than others to HP tuning (BERGSTRA; BEN-
GIO, 2012). Besides, different tuning methods may find suitable HP settings from different
hyperspace regions. However, the obtained predictive performance improvement may not be
statistically better than simply adopting the default HP values. This indicates that each algorithm
has its own HP profile. In this thesis, this term refers to a set of characteristics associated with
the HP tuning of a ML algorithm, such as: its sensitivity to the tuning process, the number

1 Related studies will be discussed in more details in Chapter 3.

1.2. Objective 27

of evaluations required to find suitable settings; the most suitable optimization technique for
different budget sizes; and which HPs are the most relevant for the tuning. This profile leads to
the first hypothesis investigated in this thesis:

H1: each classification algorithm has its own HP profile, which can impact the results obtained
by tuning techniques. Further, it would be possible to identify the most sensitive HPs and perform
a more efficient model tuning.

Previous works have pointed out that HP tuning is not mandatory to achieve good predic-
tive performance for some classification tasks (RIDD; GIRAUD-CARRIER, 2014). Therefore,
when computational resources are limited, a commonly adopted alternative is to use the default
HP values suggested by ML packages and tools. The use of default values largely reduces the
overall computational cost, but, depending on the dataset, it can result in models whose predictive
performance is significantly worse than models produced by using HP tuning. The ideal situation
would be to recommend the best alternative, default or tuned HP values, for each new dataset.

Based on the recent success of the MtL applications, the second hypothesis studied in
this work is:

H2: by exploiting the HP profile, meta-learning can support the identification of situations where
HP tuning can improve the predictive performance of ML algorithms;

1.2 Objective

The main objective of this thesis is to investigate and develop efficient MtL-based
recommender systems able to recommend the best HP values for classification algorithms.
This objective is accomplished by proposing a recommender system able to predict when HP
tuning is expected to lead to models with statistically significant improvements after identifying
the HP profile of the ML algorithm. The experiments performed in this thesis can be generalized
for several algorithms. Thus, the results from the current research can be used in the future to
develop a unified framework to be added to ML tools.

1.3 Main contributions to the research area

The thesis deals with several aspects of HP tuning systems, and makes contributions
to ML, MtL and HP tuning of ML algorithms. The main contributions of this thesis can be
summarized as:

• A clear comparison of different HP tuning techniques for Support Vector Machines (SVMs)
and Decision Tree (DT) induction algorithms on an unprecedented scale. The use of SVMs
as study case is justified by their sensitivity to tuning, while DT algorithms were selected
due to the lack of investigations in the literature;

28 Chapter 1. Introduction

• We unveil when is better to use HP tuning and when it is sufficient to use default HPs;

• Development of a meta-learning framework to predict when default HP values provide
accurate models, saving computational cost that would otherwise be wasted on optimization
with no significant improvement;

• A comprehensive analysis of the effect of HPs on the predictive performance of the induced
models and the relationship between them;

• A comparison of the effectiveness of different meta-features sets and preprocessing meth-
ods for MtL;

• Reproducibility of experiments: all code and experimental results are available to reproduce
experiments, analyses, and allow further analysis. Code is available at Github repositories,
while experimental results are available on Open Machine Learning (OpenML) (VAN-
SCHOREN et al., 2014).

1.4 Thesis organization
Throughout the thesis, several HP tuning scenarios for classification algorithms are

experimentally evaluated and discussed. An overview of the covered topics and their relationship
is shown in Figure 1:

• Chapter 2 introduces the HP tuning problem and the techniques often applied to deal with
this problem;

• Chapter 3 presents MtL concepts and definitions, followed by a review of related work on
MtL for HP tuning of classification algorithms. Several questions regarding the design of
experiments for MtL are also discussed;

• Chapter 4 briefly describes the common experimental methodology aspects adopted
throughout the thesis: classification algorithms, tuning techniques, resampling strategies,
statistical tests, and ML tools used to allow the reproducibility of experiments and analyses;

• Chapter 5 analyzes the HP profile of SVMs, while

• Chapter 6 analyzes the HP profile of DT induction algorithms;

• Chapter 7 investigates the use of SVM and DT generated meta-knowledge by a MtL
recommender system to predict in which situations the HP tuning will lead to a significant
improvements in predictive performance;

• Finally, Chapter 8 presents the conclusions of this thesis, and discusses final considerations,
limitations, and suggestions for future studies.

1.4. Thesis organization 29

Figure 1 – Thesis structure.

The full code generated for the experiments in this thesis is publicly available to reproduce the
reported analysis - and extend it to other classifiers. Links are available in Section 4.8, where the
methodology is described. All the experiments are also available at OpenML (VANSCHOREN
et al., 2014)2.

2 OpenML will be described in Section 4.6

31

CHAPTER

2
HYPERPARAMETER TUNING

In a supervised classification problem, ML algorithms are trained with labeled data to
identify which label a new observation belongs to. These algorithms have free “hyperparameters”
(HPs) whose values directly affect their predictive performance. Finding a suitable HP setting
requires specific knowledge, intuition, and mostly: trial and error experiments.

Figure 2 illustrates the general HP tuning schema. In many situations, the HP tuning is
carried out manually by some expert, progressively refining a grid of values over the desired
space. However, literature provides a set of techniques ranging from simple to complex, able to
accomplish this task. From a theoretical point of view, selecting the ideal HP values requires an
exhaustive search over all possible subsets of HPs. Depending on the number and type of the

Figure 2 – General hyperparameter tuning schema.

32 Chapter 2. Hyperparameter tuning

HPs, this task becomes impractical. Therefore, for the ML community, it is often accepted to
search reduced HP space instead of the complete space (BERGSTRA; BENGIO, 2012).

According to Bardenet et al. (2013), the use of automated techniques for HP tuning
presents benefits, such as:

• Freeing the users from the task of manually selecting the HP values, thus they can concen-
trate efforts in other aspects referring to the use of the algorithm itself;

• Reducing the computation time spent for training and use of the algorithm; and

• Improving the predictive performance of the induced models.

2.1 Definition
The HP tuning process is usually treated as a black-box optimization problem whose

objective function is associated with the predictive performance of the model induced by a ML
algorithm. Formally it is defined as follows:

Definição 1. Let H = H1×H2× ·· · ×Hk be the HP space for an algorithm a ∈ A, where A

is the set of ML algorithms. Each Hi represents a set of possible values for the ith HP of a

(i ∈ {1, . . . ,k}) and can be usually defined by a set of constraints.

Definição 2. Additionally, let D be a set of datasets where D ∈ D is a dataset from D. The
function f : A×D×H→ R measures the predictive performance of the model induced by the
algorithm a ∈ A on the dataset D ∈D given a HP configuration h = (h1,h2, . . . ,hk) ∈H. Without
loss of generality, higher values of f (a,D,h) mean higher predictive performance.

Definição 3. Given a ∈ A, H and D ∈ D, together with the previous definitions, the goal of a HP
tuning task is to find h? = (h?1,h

?
2, . . . ,h

?
k) such that

h? = arg max
h∈H

f (a,D,h) (2.1)

The optimization of the HP values can be based on any performance measure f , which can even
be defined by multi-objective criteria. Further aspects can make the tuning more difficult, like:

• HP configurations that lead to a model with high predictive performance for a given dataset
may not lead to high predictive performance for other datasets;

• HP values often depend on each other1. Hence, independent tune of HPs may not lead to a
good set of HP values;

• the exhaustive evaluation of several HP configuration can be very time-consuming.
1 This is the case of SVMs (BEN-HUR; WESTON, 2010).

2.2. Tuning techniques 33

2.2 Tuning techniques

In addition to simple approaches, like Grid Search (GS) and Random Search (RS), in
the last decades, population-based optimization techniques have been successfully used for HP
tuning of classification algorithms (BERGSTRA et al., 2011; LÓPEZ-IBÁÑEZ et al., 2011;
SNOEK; LAROCHELLE; ADAMS, 2012; BARDENET et al., 2013). When applied to tuning,
these techniques (iteratively) build a population P⊂ H of HP settings for which f (a,D,h) are
being computed for each h ∈ P. By doing so, they can simultaneously explore different regions
of a search space. There are various population-based HP tuning strategies, which differ in
how they update P at each iteration. Some of these methods will be discussed in the following
Subsections.

2.2.1 Grid Search

Grid Search (GS) is the most straightforward approach to HP tuning. It is an exhaustive
search through a subset of the HP space to select the best of a family of models, parametrized by
a grid of values. Its simple execution is illustrated in Algorithm 1.

Algorithm 1 – GS pseudocode
1: Bestglobal ← NULL
2: for each HP hi ∈ H do
3: Sample a set of values Vi = vi1,vi2, . . . ,viN from hi
4: end for
5: for each λ ∈ (h1, . . . ,hk) ∈V1×·· ·×Vk do
6: BestLocal ← f (a,D,λ)
7: end for
8: Bestglobal ← max{BestLocal}
9: return Bestglobal

GS may be a good choice for spaces with few HPs. However, it suffers from the dimen-
sionality of the problem: the higher the number of HPs evaluated, the higher the computational
cost required to solve the problem. Even so, the manual selection of the grid values that precede
the search may provide some tips on how the HP space surface behaves (BERGSTRA; BENGIO,
2012).

2.2.2 Random Search

Random Search (RS) is a simple technique that performs random trials in a search space.
Its use can reduce the computational cost when there is a large number of possible settings being
investigated (ANDRADOTTIR, 2015). Usually, RS performs its search iteratively in a predefined
number of iterations. P(i) is extended (updated) by a randomly generated HP setting h ∈ H in
each (ith) iteration of the HP tuning process. RS has obtained efficient results in optimization for

34 Chapter 2. Hyperparameter tuning

Deep Learning (DL) algorithms (BERGSTRA; BENGIO, 2012; BARDENET et al., 2013). The
RS simple workflow is described in Algorithm 2.

Algorithm 2 – RS pseudocode
1: t← 1
2: Bestglobal ← NULL
3: while Stopping criteria not satisfied do
4: Generate a population P(t) randomly
5: for each pi ∈ P(t) do
6: fpi ← f (a,D, pi)
7: end for
8: BestLocal ← max{ fp}
9: if Bestlocal > Bestglobal then

10: Bestglobal ← Bestlocal
11: end if
12: t← t +1
13: end while
14: return Bestglobal

2.2.3 Sequential Model Based Optimization

Sequential Model-based Optimization (SMBO) (SNOEK; LAROCHELLE; ADAMS,
2012; BROCHU; CORA; FREITAS, 2010) is a sequential method that starts with a small initial
population P(0) 6= /0 which, at each new iteration i > 0, is extended by a new HP configuration
h′, such that the expected value of f (a,D,h′) is maximal according to an induced meta-model
f̂ approximating f on the current population P(i−1). In the experiments reported in Bergstra
et al. (2011), Snoek, Larochelle and Adams (2012), Bergstra, Yamins and Cox (2013), SMBO
performed better than GS and RS and matched or outperformed state-of-the-art techniques in
several HP optimization tasks. The general SMBO framework is presented in the Algorithm 3.

Algorithm 3 – SMBO pseudocode
1: t← 0
2: Generate initial population P(0)
3: Evaluate the current population P(t)
4: while Stopping Criteria not satisfied do
5: t← t +1
6: Fit a Surrogate model M(t) to all points in P(t)
7: An infill criteria I proposes new n points N(t) from M(t)
8: The new points N(t) are evaluated and added to P(t)
9: end while

10: Bestglobal ← best individual in P(t)
11: return Bestglobal

After evaluating the initial points, the technique fits a surrogate regression model on the
available data. Then, it queries the model for a new candidate HP setting using an acquisition

2.2. Tuning techniques 35

function (or infill criteria). This function searches for a point at the hyperspace which yields the
best infill value (for example, the expected improvement regarding performance) and then adds
this value to the population for the next iteration.

2.2.4 Genetic Algorithm

Bio-inspired techniques, such as a Genetic Algorithm (GA), based on natural processes,
have also been largely used for HP tuning (GOMES et al., 2012; FRIEDRICHS; IGEL, 2005;
KALOS, 2005). In these techniques, the initial population P(0) = {h1,h2, . . . ,hn0}, generated
randomly or according to background knowledge, is changed in each iteration according to
operators based on natural selection and evolution. The GA general pseudocode is presented in
the Algorithm 4.

Algorithm 4 – GA pseudocode
1: t← 0
2: Generate initial population P(0)
3: Evaluate the current population P(t)
4: while Stopping criteria not satisfied do
5: t← t +1
6: Select population P(t) from P(t−1)
7: Apply crossover operators in P(t)
8: Apply mutation operators in P(t)
9: for each new individual i in the current population P(t) do

10: Evaluate individual i fitness
11: end for
12: end while
13: Bestglobal ← best individual i from P(t)
14: return Bestglobal

2.2.5 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a bio-inspired technique relying on the swarming
and flocking behaviors of animals (SIMON, 2013). In case of PSO, each particle h ∈ P(0) is
associated with its position p = (h1, . . . ,hk) ∈ H in the search space H, a velocity vh ∈ Rk and
also its so far best found position bh ∈ H. During iterations, the movements of each particle
are changed according to its so far best-found position as well as the so far best-found position
gBest ∈ H of the entire swarm (recorded through the computation). The Algorithm 5 outlines
PSO behavior.

2.2.6 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) (HAUSCHILD; PELIKAN, 2011) are a
family of algorithms that lie on the boundary of GA and SMBO by combining the advantages of

36 Chapter 2. Hyperparameter tuning

Algorithm 5 – PSO pseudocode
1: t← 0
2: Generate initial population P(0)
3: Evaluate the current population P(t)
4: while Stopping Criteria not satisfied do
5: t← t +1
6: Update weights
7: Select pBest for each particle h
8: Select gBest from P(t−1)
9: Update velocity v for each particle h

10: Update position b for each particle h
11: Evaluate the current population of particles P(t)
12: end while
13: Bestglobal ← gBest from P(t)
14: return Bestglobal

both approaches such that the search is guided by iteratively updating an explicit probabilistic
model of promising candidate solutions. In other words, the implicit crossover and mutation
operators used in GA are replaced by an explicit probabilistic model M. The Algorithm 6
describes EDA pseudocode. EDAs has some advantages when compared with other meta-
heuristics: over the iterations, it reduces considerably the number of functions evaluated, and it
is not sensitive to its parameters as GAs.

Algorithm 6 – EDA pseudocode
1: t← 0
2: Generate initial population P(0)
3: Evaluate the current population P(t)
4: while Stopping Criteria not satisfied do
5: Select population of promising solutions S(t) from P(t)
6: Build a probabilistic model M(t) from S(t)
7: Sample M(t) to generate new candidate solutions O(t)
8: Incorporate O(t) into P(t)
9: t← t +1

10: end while
11: Bestglobal ← P(t)
12: return Bestglobal

2.2.7 Iterated F-Race

The Iterated F-Race (Irace) (BIRATTARI et al., 2010) technique was designed for
algorithm configuration and optimization problems (LANG et al., 2015; MIRANDA; SILVA;
PRUDÊNCIO, 2014) based on ’racing’ procedures. A race starts with a population P(t) of HP
settings and iteratively selects the most promising candidates considering the HP distributions,
comparing them by statistical tests. Configurations that are statistically worse than at least one of

2.3. Chapter remarks 37

other configuration candidates are discarded from the racing. Based on the surviving candidates,
HP distributions are updated. This process is repeated until a stopping criterion is not satisfied.
An outline of the Irace algorithm is given in Algorithm 7.

Algorithm 7 – Irace pseudocode
1: t← 0
2: Generate initial population P(0)
3: Evaluate the current population P(0)
4: Estimate the number of races Nraces

5: Do a Race R(0) with the initial population P(0)
6: while Stopping Criteria not satisfied do
7: t← t +1
8: Calculate the limited budget B(t) of evaluations
9: Generate new candidates N(t) from P(t) distributions

10: Add N(t) into P(t)
11: Do a Race R(t) with the population P(t)
12: end while
13: Bestglobal ← best individual in P(t)
14: return Bestglobal

2.3 Chapter remarks
In this chapter, the formal definition of the HP tuning problem is presented. Subsequent

sections also described the main techniques often used to solve it: ranging from the most
straightforward techniques GS and RS, meta-heuristic like GA, PSO, and EDA; to more complex
approaches like SMBO and Irace. All these techniques can improve the predictive performance
of the final induced models, but they can also be very time consuming to find suitable HP settings.
Moreover, it is not guaranteed that the tuning process will lead neither to improved ML models
nor significant improvements. As stated in the thesis’ hypothesis, MtL can be useful to make HP
tuning less costly. MtL is the subject of the next chapter.

39

CHAPTER

3
META-LEARNING ON HYPERPARAMETER

TUNING

Several ML algorithms have been proposed for prediction tasks. However, since each
algorithm has its inductive bias, some of them can be more appropriate for a particular dataset.
When applying a ML algorithm to a dataset, a higher predictive performance can be obtained
if an algorithm whose bias is most appropriate to the datasets is used. The recommendation of
the most adequate ML algorithm for a new dataset is investigated in an research area known as
Meta-learning (MtL) (VILALTA; DRISSI, 2002; SMITH-MILES, 2009; BRAZDIL et al., 2009;
LEMKE; BUDKA; GABRYS, 2015).

This chapter provides an overview of MtL on HP tuning. The next sections are organized
as follow: Section 3.1 introduces MtL concepts; Section 3.2 describes several approaches using
MtL on HP proposed in the literature; Section 3.3 discusses the general picture of the research
area; Section 3.4 discusses the gaps presented in the literature; and, Section 3.5 presents the final
remarks of the chapter.

3.1 Meta-learning

In recent years, MtL has been largely used for algorithm selection (ALI; SMITH-MILES,
2006), algorithm ranking (KANDA et al., 2011) and prediction of the performance of ML
algorithms (REIF et al., 2014). In general words, MtL learns from many previous experiences,
i.e., applying different learning algorithms to many datasets, inducing a model capable of
selecting the most promising algorithm for a new dataset.

40 Chapter 3. Meta-learning on hyperparameter tuning

Figure 3 – Main steps of Meta-learning (Adapted from Brazdil et al. (2009)).

3.1.1 Definition

In this approach, each application of a learning algorithm to a dataset is named as
base-learning and the knowledge extracted during the process is commonly designated as meta-

knowledge. According to Brazdil et al. (2009), MtL can be used to continually improve the
learning mechanism after each training process.

Thus, the MtL investigates the relation between tasks/problem domains and learning
strategies. The goal is to select the most promising algorithm for a given task and to understand
when a particular learning strategy is more suitable than others. This task is also commonly
referred to as “Algorithm Selection” (SOARES; BRAZDIL; KUBA, 2004; BRAZDIL et al.,
2009). Figure 3 illustrates the main steps of these typical MtL process.

The first subtask is to select a set of datasets and ML algorithms. Both sets will be used
to create a meta-dataset. Each example in the meta-dataset corresponds to a conventional dataset
used in the ML task. Datasets would also be characterized by a set of descriptors, named “meta-
features”. At the same time, ML algorithms will perform over these datasets, and their predictive
performances will be used to define which one performs best, the “meta-target”. Meta-features
and meta-target compose the meta-knowledge about the recommendation problem.

As such, it is important to learn what makes a learning algorithm successful or unsuc-
cessful when applied to a given dataset. Besides, some criterion must be obeyed to guarantee a
learning task at the meta-level:

3.1. Meta-learning 41

• for each dataset, at least one algorithm should overcome the adopted baseline;

• given a set of algorithms A, their performance at the base level cannot be significantly
improved by the addition of a new algorithm;

• when comparing algorithms at the base level, each algorithm should overcome the others
at least once;

• an algorithm should not overcome another algorithm in all the datasets.

Following these requirements, a suitable meta-dataset is generated, and as result of the MtL
process, a meta-model is induced. This meta-model represents a mapping between meta-features
describing a dataset, and the predictive performance obtained by the group of learning algorithms
when applied to these datasets. Therefore, the quality of the meta-features is essential for the
predictive performance of the meta-models. Hence, it can be used to predict the best algorithm
for a new unseen problem.

3.1.2 Data characterization

The meta-features extracted from each dataset must be sufficient to describe the main
aspects of the dataset necessary to distinguish the predictive performance obtained by different
learning algorithms when applied to this dataset and, as a result, allow the induction of a meta-
model with a good predictive performance. According to Vilalta et al. (2004) three different
approaches can be used to extract meta-features:

(i) Simple, Statistical and Information-theoretic meta-features (BRAZDIL; GAMA; HEN-
ERY, 1994; BRAZDIL; HENERY, 1994): consist of simple measures about the input
dataset, such as the number of attributes, examples and classes, skewness, kurtosis and
entropy. They are the most explored subset of meta-features in literature (REIF et al., 2014;
MANTOVANI et al., 2015c; SOARES; BRAZDIL; KUBA, 2004; GOMES et al., 2012;
MIRANDA et al., 2012; REIF; SHAFAIT; DENGEL, 2012; FEURER; SPRINGENBERG;
HUTTER, 2015);

(ii) Model-based meta-features (BENSUSAN; GIRAUD-CARRIER; KENNEDY, 2000; PENG
et al., 2002): are a set of properties of a model induced by a ML algorithm for the dataset
at the hand. For instance, if a decision tree induction algorithm is applied to the dataset,
statistics about nodes, leaves and branches can be used to describe the dataset. They have
also been used frequently in literature (REIF et al., 2014; REIF; SHAFAIT; DENGEL,
2012);

(iii) Landmarking (PFAHRINGER; BENSUSAN; GIRAUD-CARRIER, 2000; VANSCHOREN,
2010): the predictive performance obtained by models induced by simple learning algo-
rithms, named landmarkers, are used to characterize a dataset. These measures were

42 Chapter 3. Meta-learning on hyperparameter tuning

explored in studies such as (REIF et al., 2014; FEURER et al., 2015; FEURER; SPRIN-
GENBERG; HUTTER, 2015).

Recently, new sets of measures have been proposed and explored in literature, like:

(iv) Data complexity (HO; BASU, 2002; ORRIOLS-PUIG; MACIA; HO, 2010): is a set
of measures which analyze the complexity of a problem considering the overlap in the
attributes values, the separability of the classes, and geometry/topological properties. They
have been explored in (MANTOVANI et al., 2015c; GARCIA; de Carvalho; LORENA,
2015; GARCIA; CARVALHO; LORENA, 2016; NOJIMA; NISHIKAWA; ISHIBUCHI,
2011); and

(v) Complex networks (MORAIS; PRATI, 2013; GARCIA; de Carvalho; LORENA, 2015):
measures based on complex network properties are extracted from a network built with
the data instances. These measures can only be extracted from numerical data. Thus, pre-
processing procedures are required for their extraction. They were explored in (GARCIA;
de Carvalho; LORENA, 2015; GARCIA; CARVALHO; LORENA, 2016).

An alternative for dataset characterization is the use of “relative landmarks” mea-
sures (LEITE; BRAZDIL; VANSCHOREN, 2012). In this approach, datasets are characterized
based on the pairwise performance differences of the algorithms run on them: if the perfor-
mance difference of two algorithms keeps similar across datasets, then data distributions of these
datasets are likely to be similar regarding the algorithms’ performance. Relative landmarking
meta-features are often explored with Active Testing (AT) systems, a kind of MtL (MIRANDA
et al., 2012; ABDULRAHMAN et al., 2018).

The meta-features’ selection can be considered as an ad hoc process. Pinto, Soares
and Mendes-Moreira (2016) present a framework to systematically generate meta-features in
the MtL context. The idea is to decompose meta-features into different components and use
post-processing functions to aggregate values over several data attributes. Experiments showed
that systematically generated sets could be more informative than non-systematic meta-features
for algorithm selection problem.

Using any of these meta-feature sets, the recommendation returned by a meta-model
for a new dataset may be the most promising learning algorithm(s), a set of the N best learning
algorithms or a ranking of learning algorithms according to their predictive potential for this data
set.

3.2 Meta-learning on HP tuning
As previously mentioned, there is a large number of studies investigating the use of MtL

to automate one or more steps in the application of ML algorithms to data analysis tasks. These

3.2. Meta-learning on HP tuning 43

studies can be roughly grouped into the following approaches, depending on which aspect that
MtL is applied:

• Recommends HP settings;

• Predicts training runtime;

• Recommends initial values for HP optimization;

• Generates rules for extraction of meta-features;

• Predicts HP tuning necessity;

• Estimates predictive performance for a given HP setting.

Tables 1 and 2 present a comprehensive list of studies that either embedded or used MtL to cope
with the HP tuning problem. Next, these works are described in detail.

3.2.1 Recommendation of HP settings

The first approach considered HP settings as independent algorithm configurations and
predicted the best setting based on characteristics of the dataset under analysis. In this approach,
the HP settings are predicted without actually evaluating the model on the new dataset (SOARES;
BRAZDIL; KUBA, 2004). In Soares, Brazdil and Kuba (2004) and Soares and Brazdil (2006),
the authors predicted the width (γ) of the SVM Gaussian kernel for regression problems. A finite
set of γ values was investigated for 42 regression problems, and the predictive performance
was assessed using 10-fold Cross-Validation (CV) and the Normalized Mean Squared Error
(NMSE) evaluation measure.The recommendation of γ values for new datasets used a k-Nearest
Neighbors (kNN) meta-learner.

Ali and Smith-Miles (2006) presented a similar study but selecting one among five
different SVM kernel functions for 112 classification datasets. They assessed model predictive
performance for different HP settings using 10-CV procedure and the simple Accuracy (Acc)
measure. Miranda and Prudêncio (2013) adapted the AT MtL approach’ (LEITE; BRAZDIL;
VANSCHOREN, 2012) to select the γ and the soft margin (C) SVM HPs. Experiments performed
on 60 classification datasets assessed the settings using a single 10-CV and the Acc measure.

Nojima, Nishikawa and Ishibuchi (2011) employed MtL to recommend the number of
fuzzy functions (3,5 or 7) to a Chi-RW fuzzy algorithm. Experiments were performed with 24
Keel original datasets and 300 artificial generated from them. Meta-examples were characterized
by data complexity meta-features, and a multiobjective genetic fuzzy rule selection meta-learners
induced meta-models with a Leave One Out (LOO)-CV assessing them with the simple Acc
measure.

44 Chapter 3. Meta-learning on hyperparameter tuning

Table
1

–
Sum

m
ary

ofrelated
studies

applying
to

M
tL

to
H

P
tuning.Fields

w
ithoutinform

ation
in

the
related

study
received

an
hyphen

(1
of2).

R
eference

M
eta-learning

B
ase

Tuning
M

eta
N

.of
Source

of
E

valuation
E

valuation
L

earner(s)
Techniques

L
earner(s)

D
atasets

D
atasets

Procedure
M

easure

Soares,B
razdiland

K
uba

(2004)
R

ecom
m

ends
H

P
settings

SV
M

G
S

kN
N

42
U

C
I,M

E
TA

L
10-C

V
N

M
SE

Soares
and

B
razdil(2006)

R
ecom

m
ends

H
P

settings
SV

M
G

S
kN

N
42

U
C

I,M
E

TA
L

10-C
V

N
M

SE

A
liand

Sm
ith-M

iles
(2006)

R
ecom

m
ends

H
P

settings
SV

M
G

S
C

5.0
112

U
C

I,K
D

C
10-C

V
A

cc

N
ojim

a,N
ishikaw

a
and

Ishibuchi(2011)
R

ecom
m

ends
H

P
settings

C
hi-R

W
G

S
M

oG
FR

S
24

K
eel

H
oldout

A
cc

Pinto
etal.(2017)

R
ecom

m
ends

H
P

settings
B

agging
G

S
X

gboost
146

O
penM

L
-

K
appa

Z
hongguo

etal.(2017)
R

ecom
m

ends
H

P
settings

C
4.5

G
S

kN
N

100
U

C
I

H
oldout

M
A

E
SV

M
kN

N

M
iranda

and
Prudêncio

(2013)
R

ecom
m

ends
H

P
settings

SV
M

G
S

A
T

60
U

C
I

10-C
V

A
cc

L
orena

etal.(2018)
R

ecom
m

ends
H

P
settings

SV
M

G
S

kN
N

39
U

C
I

10-C
V

N
M

SE

R
eif,Shafaitand

D
engel(2011)

Predicts
training

runtim
e

SV
M

,kN
N

,
G

S
SV

M
123

U
C

I
-

PM
C

C
M

L
P,R

ipper
N

A
E

D
T

*

Priya
etal.(2012)

Predicts
training

runtim
e

SV
M

G
A

J48,SV
M

78
U

C
I

5-C
V

M
A

D
B

agging,N
B

kN
N

,Jrip

G
om

es
etal.(2012)

R
ecom

m
ends

initialvalues
SV

M
G

S
kN

N
40

W
E

K
A

10-C
V

N
M

SE
forH

P
optim

ization
PSO

,T
S

M
iranda

etal.(2012)
R

ecom
m

ends
initialvalues

SV
M

G
S,PSO

kN
N

40
U

C
I,W

E
K

A
10-C

V
A

cc
forH

P
optim

ization

R
eif,Shafaitand

D
engel(2012)

R
ecom

m
ends

initialvalues
SV

M
G

S,G
A

kN
N

102
U

C
I,Statlib

10-C
V

A
cc

forH
P

optim
ization

R
F

M
iranda,Silva

and
Prudêncio

(2014)
R

ecom
m

ends
initialvalues

SV
M

G
S,PSO

kN
N

100
U

C
I

10-C
V

A
cc

forH
P

optim
ization

Feureretal.(2015)
R

ecom
m

ends
initialvalues

SV
M

,R
F

G
S,SM

B
O

kN
N

140
O

penM
L

N
ested-C

V
A

cc
Feurer,Springenberg

and
H

utter(2015)
forH

P
optim

ization
C

A
SH

3.2. Meta-learning on HP tuning 45

Ta
bl

e
2

–
Su

m
m

ar
y

of
re

la
te

d
st

ud
ie

s
ap

pl
yi

ng
to

M
tL

to
H

P
tu

ni
ng

.F
ie

ld
s

w
ith

ou
ti

nf
or

m
at

io
n

in
th

e
re

la
te

d
st

ud
y

re
ce

iv
ed

an
hy

ph
en

(2
of

2)
.

R
ef

er
en

ce
M

et
a-

le
ar

ni
ng

B
as

e
Tu

ni
ng

M
et

a
N

.o
f

D
at

as
et

s’
E

va
lu

at
io

n
E

va
lu

at
io

n
L

ea
rn

er
(s

)
Te

ch
ni

qu
es

L
ea

rn
er

(s
)

D
at

as
et

s
So

ur
ce

Pr
oc

ed
ur

e
M

ea
su

re

Su
n

an
d

Pf
ah

ri
ng

er
(2

01
3)

G
en

er
at

es
ru

le
s

fo
r

C
A

SH
PS

O
R

ip
pe

r
46

6
U

C
I,

W
E

K
A

10
-C

V
A

U
C

ex
tr

ac
tio

n
of

m
et

a-
fe

at
ur

es
A

T
R

Fo
re

st
s

St
at

lib
,K

D
D

M
ol

in
a

et
al

.(
20

12
)

Pr
ed

ic
ts

H
P

tu
ni

ng
ne

ce
ss

ity
J4

8
G

S

N
B

,S
V

M

14
-

10
-C

V
A

cc

L
R

,P
A

R
T

JR
ip

,C
A

R
T

R
B

F,
N

N
ge

L
A

D
Tr

ee
,M

L
P

R
E

PT
re

e,
J4

8
R

id
do

B
ay

es
N

et

R
id

d
an

d
G

ir
au

d-
C

ar
ri

er
(2

01
4)

Pr
ed

ic
ts

H
P

tu
ni

ng
ne

ce
ss

ity
C

A
SH

PS
O

J4
8,

R
F

32
6

U
C

I,
W

E
K

A
-

A
U

C
SV

M
St

at
lib

,K
D

D

G
un

as
ek

ar
a,

Pa
ng

an
d

K
as

ab
ov

(2
01

0)
E

st
im

at
es

pr
ed

ic
tiv

e
pe

rf
or

m
an

ce
SV

M
G

S
SV

M
4

-
10

-C
V

R
M

SE

R
ei

fe
ta

l.
(2

01
4)

SV
M

,D
T

*,

G
S

SV
M

54
U

C
I,

St
at

lib
10

-C
V

E
st

im
at

es
pr

ed
ic

tiv
e

pe
rf

or
m

an
ce

kN
N

,M
L

P
PM

C
C

fo
ra

H
P

se
tti

ng
R

F,
O

ne
R

R
M

SE
N

B
,L

R
FL

D

W
is

tu
ba

,S
ch

ill
in

g
an

d
Sc

hm
id

t-
T

hi
em

e
(2

01
5)

E
st

im
at

es
pr

ed
ic

tiv
e

pe
rf

or
m

an
ce

A
da

B
oo

st
G

S
SM

FO
25

U
C

I
H

ol
do

ut
C

A
N

E
fo

ra
H

P
se

tti
ng

SV
M

W
is

tu
ba

,S
ch

ill
in

g
an

d
Sc

hm
id

t-
T

hi
em

e
(2

01
6)

E
st

im
at

es
pr

ed
ic

tiv
e

pe
rf

or
m

an
ce

SV
M

G
S

G
P

10
9

U
C

I,
W

E
K

A
H

ol
do

ut
-

W
is

tu
ba

,S
ch

ill
in

g
an

d
Sc

hm
id

t-
T

hi
em

e
(2

01
8)

fo
ra

H
P

se
tti

ng
C

A
SH

E
gg

en
sp

er
ge

re
ta

l.
(2

01
8)

E
st

im
at

es
pr

ed
ic

tiv
e

pe
rf

or
m

an
ce

SV
M

R
O

A
R

,I
ra

ce
R

F
11

A
C

lib
H

ol
do

ut
R

M
SE

fo
ra

H
P

se
tti

ng
X

gb
oo

st
R

S,
PI

L
S

SC
R

R

46 Chapter 3. Meta-learning on hyperparameter tuning

Pinto et al. (2017) proposed the “autoBagging” tool, an AutoML system that automat-
ically ranks Bagging work-flows considering four different Bagging HPs by exploring past
performance and dataset characterization. Experiments were carried out with 140 OpenML
datasets and 146 meta-features (extracted with post-processing aggregation functions (PINTO;
SOARES; MENDES-MOREIRA, 2016)). They used an XGBoost as meta-learner to predict
ranking of work-flows, and evaluated results at the meta-level using a Mean Average Precision
(MAP) measure in a LOO-CV.

Zhongguo et al. (2017) employed MtL to recommend algorithm and its HP. The authors
performed experiments with C4.5, kNN and SVM classifiers covering few of their HP by a grid
design. Performances were evaluated over 100 UCI datasets regarding AUC. In the end, a kNN
meta-model was applied to recommend the best HP setting for new unseen datasets.

Lorena et al. (2018) proposed a set of new complexity meta-features for regression
problems. One of the case studies evaluated was the SVM HP tuning problem. The authors
generated a finite grid of γ , C and ε (margin of tolerance for regression SVMs) values, assessing
them with a single 10-fold CV and NMSE measure, over 39 regression problems. A kNN
distance-based meta-learner made the recommendation of HP for new unseen datasets.

3.2.2 Prediction of training runtime

A different approach is to use MtL to estimate the training runtime of classification
algorithms when induced by different HP settings. In Reif, Shafait and Dengel (2011), the
authors predicted the training runtime of several classifiers: kNN, SVM, Multilayer Perceptron
(MLP), a DT and RIPPER1. They defined a discrete grid of HP settings, evaluating these settings
on 123 classification datasets. The performance measures used for HP assessment were the
Pearson Product Moment Correlation Coefficient (PMCC) and Normalized Absolute Error
(NAE).

In Priya et al. (2012), the authors conducted a similar study with SVMs but using a
Genetic Algorithm (GA) to optimize HP and perform feature selection of six meta-learners (kNN,
SVM, J48, JRip, NB, and Bagging). Experiments were carried out over 78 classification datasets
assessing HP settings using 5-CV and the Mean Absolute Deviation (MAD) evaluation measure.

3.2.3 Recommendation of initial values for HP optimization

MtL has also been used to speed up the optimization of HP values for classification
algorithms (GOMES et al., 2012; MIRANDA et al., 2012; REIF; SHAFAIT; DENGEL, 2012;
FEURER et al., 2015). In Gomes et al. (2012) MtL is used to recommend HP settings that will
compose the initial population of the Particle Swarm Optimization (PSO) and Tabu Search (TS)

1 Repeated Incremental Pruning to Produce Error Reduction (RIPPER) is a propositional rule algorithm
which employs association rules with reduced error pruning.

3.2. Meta-learning on HP tuning 47

optimization techniques. Experiments were conducted in 40 regression datasets adjusting the C

and γ SVM HPs to reduce the NMSE value. A kNN meta-learner was used to recommend the
initial search values.

Reif, Shafait and Dengel (2012) and Miranda et al. (2012) investigated, respectively, the
use of GAs and different versions of PSOs for the same task. In Miranda, Silva and Prudêncio
(2014), the authors used multi-objective tuning to optimize the HPs increasing predictive perfor-
mance and the number of support vectors. These studies generated meta-knowledge evaluating
SVMs for a grid of γ×C values. These studies used simple accuracy measure and 10-fold CV to
optimize γ×C HP values.

The same approach is explored in a tool to automate the use of ML algorithms, the
Auto-skLearn (FEURER et al., 2015; FEURER; SPRINGENBERG; HUTTER, 2015). In this
tool, the MtL is used to recommend HP settings for the initial population of the Sequential
Model-based Optimization (SMBO) technique. The authors explored a Combined Algorithm
Selection and Hyperparameter Optimization (CASH) problem including ten algorithms and
their HPs. Experiments were performed over 140 OpenML classification datasets, exploring
meta-feature selection and dimensionality reduction techniques (PCA), assessing HP settings
with the simple Acc measure. It is also the first work that uses nested-CVs for evaluating HP
settings.

3.2.4 Generation of rules for the extraction of meta-features

Sun and Pfahringer (2013) presented a novel meta-feature generation method for MtL,
inducing meta-feature extraction rules. They performed experiments on 466 binary classification
datasets with all the available WEKA classifiers. The new meta-rules are used to produce a
ranking of the most suitable algorithms for new unseen datasets. At the base level, a PSO method
searches the space evaluating HP settings using 10-CV and Area Under the ROC curve (AUC)
measure.

3.2.5 Prediction of HP tuning necessity

In the current thesis, we investigate a way of predicting the HP tuning necessity. In
literature, there are two studies with proposals close to our approach. Molina et al. (2012)
employed MtL to predict the improvement obtained in a DT algorithm varying it HPs. They
selected the C4.5 algorithm and defined a grid of values for the HPs C and M. A total of 14
educational datasets were characterized by means of 5 simple meta-features. Thus, the MtL
was used to predict whether the use of different HP settings increase, decrease or maintain the
predictive performance of the induced DTs.

Ridd and Giraud-Carrier (2014) used MtL to identify when HP tuning would lead to
significant increase in accuracy. They carried out experiments using a PSO technique to search

48 Chapter 3. Meta-learning on hyperparameter tuning

the hyperspace of several ML algorithms in 326 binary classification datasets. Different than us,
they considered the tuning of all the algorithms as a unique scenario. The analysis performed by
the authors considered different thresholds to determine when an improvement was obtained or
not in the data collection, but no statistical analysis was performed.

Unlike these two related studies, the MtL experiments described in this thesis2 explored
a large number of heterogeneous datasets, an unbiased tuning methodology, and induced meta-
models for different target algorithms. The experimental setup also included meta-features from
several categories and different learning processes.

3.2.6 Estimation of predictive performance for a given HP setting

A more recent approach uses MtL to estimate ML algorithms performance considering
their HPs. In Gunasekara, Pang and Kasabov (2010) the MtL is used to predict the performance
of SVMs when a kernel n-gram is used to handle four different string datasets. The HP values
are discretized, then all the combinations evaluated using a 10-CV and the RMSE performance
measure. With this meta-data, HP settings are further recommended for new unseen data.

In Reif et al. (2014), the authors evaluated different ML algorithms over 54 datasets and
used the performance predictions to develop a MtL system for automatic algorithm selection.
Wistuba, Schilling and Schmidt-Thieme (2015), Wistuba, Schilling and Schmidt-Thieme (2016)
adapted the acquisition function of surrogate models by one optimized meta-model. They
evaluated several HP configurations in a holdout fashion procedure over 105 datasets and used
the meta-knowledge to predict the performance of new HP settings for new datasets. The base-
level algorithms explored were the AdaBoost and SVM. The authors also proposed a new Transfer
Acquisition Function (TAF) that extended the previous studies predicting the performance of HP
settings for surrogate models (WISTUBA; SCHILLING; SCHMIDT-THIEME, 2018).

Eggensperger et al. (2018) proposed a benchmarking approach of “surrogate scenarios”,
which extracts meta-knowledge from HP optimization and algorithm configuration problems,
approximating the performance surface by RF regression models. Two of the 11 meta-datasets
explored in the experimental setup are HP tuning problems: SVMs HP settings assessed in the
MNIST dataset, and Extreme Gradient Boosting (Xgboost) algorithm’s settings assessed on the
covertype dataset. These settings were obtained executing a simple RS method and three opti-
mizers: Random Online Adaptive Racing (ROAR) (HUTTER et al., 2009), Irace (LóPEZ-IBáñEZ
et al., 2016), and Iterated Local Search in Parameter Configuration Space (PILS) (HUTTER et

al., 2009).

2 See Section 3.3 and Chapter 7.

3.3. General picture 49

0

1

2

3

4

5

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Year

N
um

be
r

of
 p

ub
lic

at
io

ns

(a) Related studies published per year.

●●●●●●●●●●●●●●
●

●●●

●●●

0

50

100

150

0 100 200 300 400

Number of datasets

N
um

be
r

of
 m

et
a−

fe
at

ur
es Domain

● Improv.pred

Init.popul

Meta.rules

Perf.pred

Runtime.pred

Select.hps

(b) Number of datasets and meta-features used by
related studies.

0

5

10

15

20

A
da

B
oo

st

B
ag

gi
ng

C
45

C
A

S
H

C
hi

−
R

W D
T

F
LD J4

8

LR

M
LP N

B

O
ne

R

R
F

R
ip

pe
r

S
V

M

X
gb

oo
st

kN
N

rp
ar

t

Base Learner

N
um

be
r

of
 p

ub
lic

at
io

ns Domain

Improv.pred

Init.popul

Meta.rules

Perf.pred

Runtime.pred

Select.hps

(c) Algorithms used as base-learners by related studies.

0

3

6

9

A
R

T
F

or
es

t

AT

B
ag

gi
ng

B
ay

es
N

et

C
5.

0

C
A

R
T

G
P

J4
8

Jr
ip

LA
D

Tr
ee LR

M
LP

M
oG

F
R

S

N
B

N
ng

e

PA
R

T

R
B

F
 N

et
w

or
k

R
E

P
Tr

ee R
F

R
id

do
r

R
ip

pe
r

S
M

F
O

S
V

M

X
gB

oo
st

kN
N

Meta Learner

N
um

be
r

of
 p

ub
lic

at
io

ns Domain

Improv.pred

Init.popul

Meta.rules

Perf.pred

Runtime.pred

Select.hps

(d) Algorithms used as meta-learners by related studies.

Figure 4 – Statistics from studies which employed MtL for HP tuning.

3.3 General picture

Figure 4 shows the main statistics from MtL studies discussed above. The literature
review indicates that the use of MtL for HP tuning has grown in the last years (figure 4a). Since
2010, on average, two papers covering this main subject are published per year. However, they

50 Chapter 3. Meta-learning on hyperparameter tuning

are still just a few, and the problem could be more deeply explored in the literature. A total of 25
studies were found during the bibliographic review.

Regarding the base-level problems, datasets come mostly from the same sources. Very
first studies used UCI, Keel and WEKA repositories, but, since 2014, more publications are
using OpenML. OpenML provides an extensive data collection, which currently contains most
of the datasets from UCI, Keel, and WEKA, allowing greater reproducibility of the experiments.

Figure 4b relates the number of datasets and meta-features explored by the related studies.
The legend at the right side depicts each application domain discussed in the beginning of the
chapter: i) Predicts HP tuning necessity (Improv.pred); ii) Recommends initial values for HP
optimization (Init.popul) ; iii) Generates rules for extraction of meta-features (Meta.rules);
iv) Estimates predictive performance for a HP setting (perf.pred); iv) Predicts training runtime
(Runtime.pred); and vi) Recommends HP settings (Select.hps).

With few exceptions (SUN; PFAHRINGER, 2013; RIDD; GIRAUD-CARRIER, 2014),
most of the studies were conducted with less than 100 datasets. Since the HP optimization of the
base-level algorithm is required to generate the meta-knowledge, it limits the number of examples
explored by the MtL systems. The number of datasets increased just in most recent studies when
researchers could use more powerful computational architectures, like clusters and GPUs. For
this, as the number of datasets processes increased, different sets of meta-features were also
proposed and investigated. The exceptions are the studies proposed by Sun and Pfahringer (2013),
Ridd and Giraud-Carrier (2014): the first generated 466 binary datasets, which were later curated,
reduced, and used in the experiments described by the last.

Figure 4c shows the algorithms whose HP were optimized/recommended by the MtL
systems. Most of the studies consider SVMs as the subject of research, while few studies
investigate kNN and DTs tuning. It is interesting that SVMs are explored by almost all of
the domains. The use of SVMs as study case may be justified by their sensitivity to tuning:
defaults are not recommended for most of the problems and tuning often improves significantly
their performance (RIDD; GIRAUD-CARRIER, 2014). The SVM tuning problem is also often
modelled as a low-dimensional problem with few HPs to adjust, being an interesting first study
case to evaluate tuning approaches. An important observation should be made about the CASH
problems; they describe mixed hyper-spaces that cover more than 10 learning algorithms and,
therefore, were considered as a category different from the others.

Regarding the choice of the meta-learner algorithm, Figure 4d shows the general picture
of the related studies. Most of the approaches prioritized the use of an instance-based algorithm
(kNN). Relating recommendations with the most similar training example is a natural way
to search for patterns, and then identify which features explain the decision making process.
However, it does not always work, and more recent studies have been exploring different
algorithms at the meta-level. Curiously, MtL systems used to predict the improvement provided

3.3. General picture 51

●●●●●●●●●●●●●●

●
●●●

●●●●

●
●●●

●●●●

●●●

●●●●

●
●●●

●●●●

●●●

●●●●

●●●

●●●● ●●●● ●●●● ●●●● ●●●●

●●●

●●●● ●●●●Thesis
Wistuba.2018
Lorena:2018

Eggensperger:2018
Zhongguo.2017

Pinto.2017
Wistuba.2016
Feurer.2015B

Feurer.2015
Reif.2014

Ridd.2014
Miranda.2014
Miranda.2013

Sun.2013
Miranda.2012

Priya.2012
Reif.2012

Gomes.2012
Molina.2012

Reif.2011
Nojima.2011

Gunasekara.2010
Ali.2006

Soares.2006
Soares.2004

S
im

pl
e

S
ta

tis
tic

al

M
od

el
B

as
ed

In
fo

th
eo

La
nd

m
ar

ki
ng

T
im

e

C
om

pl
ex

ity

C
ne

t

P
C

A

re
la

tiv
eL

an
d

K
er

ne
l

S
tr

in
g

M
et

a.
R

ul
es

M
et

a.
Tu

ni
ng

F
ea

t.S
el

ec
tio

n

D
at

a.
B

al
an

ci
ng

Meta−features and Processes

S
tu

dy

Domain

● Improv.pred

Init.popul

Meta.rules

Perf.pred

Runtime.pred

Select.hps

Figure 5 – Meta-features’ sets and additional processes used in previous work with MtL and HP tuning.

by tuning techniques are those who employed most instance-based meta-learners3.

Figure 5 shows all sets of meta-features and data processes explored in the literature.
All the related studies are shown chronologically in the y-axis, while meta-features’ sets and
data processes are listed at the x-axis. The application domains are also highlighted by different
shapes and colors. Simple, Statistical, Model-based and Information-theoretic meta-features are
not surprisingly the most explored in literature (BRAZDIL et al., 2009). There are some specific
sets of meta-features used in one study only. It happens with the string-based (GUNASEKARA;
PANG; KASABOV, 2010) and pairwise meta-rules meta-features (SUN; PFAHRINGER, 2013).
Other sets are rarely explored depending on the application domain: kernel-based meta-features
were used when the object of study are SVMs (SOARES; BRAZDIL, 2006; GOMES et al., 2012);
relative landmarking is the representation adopted by AT algorithms (MIRANDA; PRUDÊNCIO,
2013); while data complexity meta-features were tried by studies selecting HP settings (NOJIMA;
NISHIKAWA; ISHIBUCHI, 2011; ZHONGGUO et al., 2017; LORENA et al., 2018).

Dimensionality reduction was first and only handled by the Auto-skLearn system (FEURER;
SPRINGENBERG; HUTTER, 2015; FEURER et al., 2015). The HP tuning of the meta-learners
has been explored only by more recent studies predicting the performance of the algorithms
(perf.pred). The meta-feature selection process was explored just by few studies (REIF;
SHAFAIT; DENGEL, 2012; PRIYA et al., 2012; RIDD; GIRAUD-CARRIER, 2014; REIF et

3 Meta-learners used by each one of the studies are also listed in Tables 1 and 2

52 Chapter 3. Meta-learning on hyperparameter tuning

al., 2014), but those who present a higher number of meta-examples. Finally, none of the related
studies explored data balancing techniques.

3.4 Literature overview
The literature review permitted to identify some interesting aspects. Overall:

• most of the studies created the meta-data using GS to tune the algorithms’ HPs;

• most of them also evaluated the resultant models with a single CV resampling procedure
and the simple Acc evaluation measure;

• most of the studies were conducted with at most 100 datasets (Figure 4b). In (RIDD;
GIRAUD-CARRIER, 2014; SUN; PFAHRINGER, 2013) the authors used more than 300
datasets, but all of them are binary classification problems;

• at the meta-level, most of the studies considered instance based meta-learners (kNN).
Different algorithms were tried at the meta-learning level but mostly concentrated by the
same study;

• experimental setups considering meta-feature selection, dimensionality reduction or HP
tuning of the meta-learners were considered just by few studies (FEURER; SPRINGEN-
BERG; HUTTER, 2015; FEURER et al., 2015; REIF et al., 2014; RIDD; GIRAUD-
CARRIER, 2014);

• different approaches to generate meta-features are not well explored in literature: data
complexity meta-features (Complexity, Cnet) are used just by three of the related studies;
the same for relative landmarking meta-features;

• few of them provide the complete resources for the reproducibility of experiments;

• None of the studies found by the authors combined all these six previous issues.

3.5 Chapter remarks
This chapter presented the literature review of MtL on HP tuning. Related studies were

split into six categories according to the final goal of the MtL system. The main aspects of
these studies are presented in Tables 1 and 2 and illustrated in Figures 4 and 5. Although the
number of related papers in the last years has been increasing, there are still several aspects
that need further investigation. Literature presents some patterns: most of the studies produced
meta-knowledge through GS executions with a Holdout or single CV resampling, characterizing
datasets using simple and statistical meta-features, and recommending HPs with a kNN meta-
learner. The reproducibility of the experiments and the sharing of results are two key aspects that

3.5. Chapter remarks 53

have not been explored yet. These aspects would benefit the research community with valuable
meta-knowledge for further work. Thus, exploring different experimental setups, meta-features,
and procedures applied to the learning task may open up new horizons in the MtL research area.

55

CHAPTER

4
EXPERIMENTAL METHODOLOGY

As shown in the previous chapter, different evaluation methodologies have been used to
assess the HP tuning of ML algorithms in MtL recommender systems. There is no standard in
the literature, and most of the studies prefer the simplest approaches. However, it is not always
the simplest solution that can describe a correct surface of the HP spaces. An important aspect
considered in this thesis is how HP settings are assessed during the optimization, to minimize the
chance of overfitting. Next sections briefly present the main experimental and methodological
choices adopted through the thesis.

The next sections are organized as follows: Section 4.1 briefly presents target ML
algorithms investigated in this thesis; Section 4.2 discusses the use of nested-CVs for HP tuning;
Sections from 4.3 to 4.6 presents datasets, evaluation metrics, statistical tests and AutoML
tools adopted in experiments; Section 4.7 enumerates tuning techniques’ parameters adopted
throughout the thesis; Section 4.8 lists repositories with the experimental results; and, Section 4.9
presents the final remarks of the chapter.

4.1 Classification algorithms

Many ML algorithms for solving supervised classification tasks can be found in the
literature. Two of the most important approaches are: Support Vector Machines and Decision
Trees’ induction algorithms (MITCHELL, 1997).

4.1.1 Support vector machines

Support Vector Machines (SVMs) (VAPNIK, 1995) are kernel-based algorithms that
perform non-linear classification using a hyperspace transformation, i.e., they map data inputs
into a high-dimensional feature space where the problem is possibly linearly separable. They
are known to show robust performance across a wide variety of problems (WAINBERG; ALI-

56 Chapter 4. Experimental methodology

PANAHI; FREY, 2016). A typical kernel function used by SVMs is the Radial Basis Function
(RBF) which contains the HP γ (the width of the kernel). The penalty HP C controls the trade-off
between minimizing the number of wrongly labeled examples and maximizing the margin1.

4.1.2 Decision tree induction algorithms

Although high predictive accuracy is the most frequently used measure to evaluate ML
algorithms, in many applications, easy interpretation of the induced models is also a necessary
requirement. Good predictive performance and model interpretability are found in one of the most
successful sets of classification algorithms: Decision Tree (DT) induction algorithms (ROKACH;
MAIMON, 2014).

They also have several advantages over many ML algorithms, such as robustness to
noise, tolerance against missing information, handling of irrelevant and redundant predictive
attribute values, and low computational cost (ROKACH; MAIMON, 2014). Their importance
is demonstrated by a wide range of well-known algorithms proposed in the literature, such
as Breiman et al.'s Classification and Regression Tree (CART) (BREIMAN et al., 1984) and
Quinlan's C4.5 algorithm (QUINLAN, 1993), as well as some hybrid-variants of them, like Naïve-
Bayes Tree (NBTree) (KOHAVI, 1996), Logistic Model Tree (LMT) (LANDWEHR; HALL;
FRANK, 2005) and Conditional Inference Trees (CTree) (HOTHORN; HORNIK; ZEILEIS,
2006).

In this thesis, the HP tuning of DT induction algorithms was also investigated, as well as
the impact of their HPs in the predictive performance. For such, three DT induction algorithms
were selected as study-cases:

• two of the most popular algorithms in ML (WU; KUMAR, 2009) - the J48 algorithm,
a WEKA (WITTEN; FRANK, 2005) implementation for the Quinlan‘s C4.5 (QUINLAN,
1993); the Breiman et al.'s CART algorithm (BREIMAN et al., 1984); and

• the CTree (HOTHORN; HORNIK; ZEILEIS, 2006), an algorithm that works similarly to
the traditional CHAID algorithm (KASS, 1980), using statistical tests, but it provides a
more recent implementation which handles different types of data attributes2.

Experiments were focused on these algorithms due to the interpretability of their induced
models and widespread use. All of them generate simple models, are robust for specific domains,
and allow non-experts users to understand how the classification decision is made.

1 A mode detailed discussion regarding SVM can be found in Ben-Hur and Weston (2010).
2 The CHAID algorithm processes just categorical data attributes.

4.2. Nested-CV resamplings 57

4.2 Nested-CV resamplings

Krstajic et al. (2014) compared different resampling strategies for selecting and assessing
the predictive performance of regression/classification models induced by ML algorithms. In
Cawley and Talbot (2010) the authors also discussed overfitting in the evaluation methodologies
when assessing ML algorithms. They describe an “unbiased performance evaluation method-

ology”, which correctly accounts for any overfitting that may occur in the model selection.
The internal protocol described by the authors performs the model’s selection independently
within each fold of the resampling procedure. In fact, most of the current studies on HP tuning
have adopted nested-CVs, including important AutoML tools, like Auto-WEKA3 (THORNTON
et al., 2013; KOTTHOFF et al., 2016) and Auto-skLearn4 (FEURER; SPRINGENBERG;
HUTTER, 2015; FEURER et al., 2015). Thus, this thesis adopts the nested-CV methodology in
the experiments.

Figure 6 – Experimental methodology used to adjust ML HPs. The tuning is conducted via nested cross-
validation: 3-fold CV for computing fitness values and 10-fold CV for assessing performances.
The outputs are the HP settings, the predicted performances and the optimization paths of each
technique. Figure adapted from Mantovani et al. (2018a).

The nested-CV (CAWLEY; TALBOT, 2010; KRSTAJIC et al., 2014) methodology is
illustrated by Figure 6. For each dataset, data are split into M outer-folds: the training folds are
3 <http://www.cs.ubc.ca/labs/beta/Projects/autoweka/>
4 <https://github.com/automl/auto-sklearn>

http://www.cs.ubc.ca/labs/beta/Projects/autoweka/
https://github.com/automl/auto-sklearn

58 Chapter 4. Experimental methodology

used by the tuning techniques to find good HP settings, while the test fold is used to assess the
‘optimal’ solution found. Internally, tuning techniques split each of the M training folds into N

inner-folds to measure the fitness value of each new HP setting. At the end of the process, a
set of M optimization paths, M settings, and their predictive performances are returned. During
the experiments, all the tuning techniques were run on the same data partitions, with the same
seeds and data to properly allow their comparison. In (KRSTAJIC et al., 2014), the authors used
M = N = 10. However, they argued that there is no study suggesting the number of folds in the
outer and inner CV loops. Here, the same value used in the original paper was used for M = 10.
Due to time constraints and the size of datasets used in the experiments, N = 3 was adopted.

4.3 Datasets

A total of 169 binary and multiclass classification datasets from OpenML (VANSCHOREN
et al., 2014) were selected for the experiments. From all the available and active datasets, those
attending the following criteria were selected:

(a) number of features does not exceed 1500;

(b) number of instances between 100 and 50.000;

(c) must not be a reduced, modified or binarized version of the original classification problem;

(d) must not be an adaptation of a regression dataset;

(e) all the classes must have at least 10 examples, enabling the use of stratified 10-fold CV.

All datasets, and their main characteristics, meeting these criteria are presented in Tables 18 to 20
at Appendix A. They were selected to cover a wide range of classification tasks, with different
characteristics. The OpenML (CASALICCHIO et al., 2017)5 package was used to select and
download datasets from the OpenML website, while functions from mlr (BISCHL et al., 2016)6

package were used to preprocess the collected datasets.

In order to allow their use by SVMs, the datasets were preprocessed: constant or identifier
attributes were removed; the logical attributes (TRUE/FALSE) were converted to values ∈ {0,1};
missing values were imputed by the median for numerical attributes, and a new category for
categorical attributes; all categorical attributes were converted to the 1-N encoding; all attributes
were normalized with µ = 0 and δ = 1. When performing HP tuning on DTs the original datasets
were used, i.e., no preprocessing step required, since DTs can handle any missing information or
data from different types.

5 <https://github.com/openml/openml-r>
6 <https://github.com/mlr-org/mlr>

https://github.com/openml/openml-r
https://github.com/mlr-org/mlr

4.4. Evaluation measures 59

4.4 Evaluation measures

Since the HP tuning experiments contain several and diverse datasets, many of them may
have unbalanced classes. Hence, the Balanced Per Class Accuracy (BAC) measure (BRODER-
SEN et al., 2010) was used as the fitness value during tuning, as well as for the final model
assessment. For each dataset, each tuning techniques was repeated several times using different
seeds. Thus, all results regarding BAC were averaged over these repetitions.

In MtL experiments described in Chapter 7, several binary classification problems were
generated. Thus, their predictions were assessed using the Area Under the ROC Curve (AUC)
performance measure, a more robust metric than BAC for binary problems. Besides that, using
the AUC, it is also possible to evaluate the influence that different threshold values have in the
predictions.

4.5 Statistical tests

The Friedman test (DEMŠAR, 2006), with significance levels at α = 0.05 and α = 0.1,
was also used to compare the hyperparameter tuning techniques, evaluating the statistical
significance of the experimental results. The null hypothesis states that all classifiers induced
with the hyperparameter settings found by the tuning techniques, and the classifier induced by
default values, are equivalent concerning predictive BAC performance. If the null hypothesis
were rejected, the Nemenyi post-hoc test was applied, stating that the performances of two
different techniques are significantly different if the corresponding average ranks differ by at
least a Critical Difference (CD) value.

Another statistical test used in this thesis is the Wilcoxon paired-test (SANTAFE; INZA;
LOZANO, 2015). In both base and meta-level experiments, it was used to compare tuning tech-
niques performances with those obtained by default HP settings, indicating in which situations
the improvement was statistically significant.

4.6 OpenML and mlr

Two experimental frameworks/tools were also adopted in this thesis:

• the OpenML.org (Open Machine Learning) (VANSCHOREN et al., 2014): is a free sci-
entific platform for standardization of ML experiments and sharing empirical results7. It
works as a place for researchers and students share and organize data and experimental
results, in a way they can collaborate with each other to handle harder problems. OpenML
links to data available anywhere online and is being integrated in popular Data Mining plat-

7 <http://openml.org/>

http://openml.org/

60 Chapter 4. Experimental methodology

forms such as Weka (HALL et al., 2009), R (R Core Team, 2016) and Python (ROSSUM,
1995)8; and

• the mlr R package (Machine Learning in R) package9 (BISCHL et al., 2016): a complete
framework in R that provides several ML tools to generate experiments efficiently. The
package is an interface to a large number of learning techniques (single and multi-target
classification and regression algorithms, survival analysis, clustering and general example-
specific cost sensitive learning), preprocessing methods (imputation, data balancing),
feature selection, HP tuning, benchmarking experiments (plots, statistical analysis) and so
on10 or blog web pages11.

These two tools work together through the OpenML12 R package (CASALICCHIO et al.,
2017), an interface that provides functions to interact with the OpenML server. For example, users
can download and upload files, run their implementations on a specific task (problem) and get
predictions in the correct form using R commands13.

Since AutoML is one of the primary motivations of the thesis, these tools provide ways
to make it real. Therefore, it was possible to setup a large number of automatic experiments to
generate meta-information used to feed the meta-learning recommender systems described in
further chapters.

4.7 Setup of the tuning techniques

Table 3 presents the setup of the tuning techniques described in Chapter 2. Except for
budget-dependent parameters, all parameters of the techniques are presented in this table. These
values are the default values provided by each R package implementation. In SMBO, Irace
and PSO cases, the use of the default values have shown to be robust enough to save time and
resources (ZAMBRANO-BIGIARINI; CLERC; ROJAS, 2013; LÓPEZ-IBÁÑEZ et al., 2016;
BISCHL et al., 2017). For EDA and GA (and evolutionary methods in general) there is no
standard values for their parameters (MILLS; FILLIBEN; HAINES, 2015). So, to keep fair
comparisons, the default parameter values provided by the correspondent R packages were
adopted in the experiments.

The GA, PSO and EDA meta-heuristics were implemented using the GA15(SCRUCCA, 2013),

8 More details can be found in (VANSCHOREN et al., 2014)
9 <https://github.com/mlr-org/mlr>
10 More details can be found in the official documentation <http://mlr-org.github.io/mlr-tutorial/release/

html/index.html>
11 <http://mlr-org.github.io/>
12 <https://github.com/openml/openml-r>
13 More detailed descriptions and examples can be found in the tutorial web page14

15 <https://github.com/luca-scr/GA>

https://github.com/mlr-org/mlr
http://mlr-org.github.io/mlr-tutorial/release/html/index.html
http://mlr-org.github.io/mlr-tutorial/release/html/index.html
http://mlr-org.github.io/
https://github.com/openml/openml-r
https://github.com/luca-scr/GA

4.8. Repositories for the coding used in this thesis 61

Table 3 – Parameters of the tuning techniques used in this thesis.

Technique Parameter Option R Package

GS stopping criteria budget size mlr

RS stopping criteria budget size mlr

PSO stopping criteria budget size psoalgorithm implementation SPSO2007 (CLERC, 2012)

EDA

stopping criteria budget size

copulaedasEDA implementation GCEDA
copula function normal
margin function truncnorm

GA

stopping criteria budget size

GA

selection operator proportional selection with linear scaling
crossover operator local arithmetic crossover
crossover probability 0.8
mutation operator random mutation
mutation probability 0.05
elitism rate 0.05

SMBO

initial design method Random LHS

mlrMBOsurrogate model Random Forest
stopping criteria budget size
infill criteria expected improvement

Irace stopping criteria budget size irace

pso16(BENDTSEN., 2012), and copulaedas17(GONZALEZ-FERNANDEZ; SOTO, 2014) R
packages, respectively. The J48, CART and CTree algorithms were implemented using the
RWeka18(HORNIK; BUCHTA; ZEILEIS, 2009), rpart19(THERNEAU; ATKINSON; RIPLEY,
2015) and party20(HOTHORN; HORNIK; ZEILEIS, 2006) packages, respectively, wrapped
into the mlr package. The SMBO technique was implemented using the mlrMBO21 (BISCHL
et al., 2017) R package, with its Random Forest (RF) surrogate models implemented by the
randomForest22 R package (LIAW; WIENER, 2002). The Irace technique was implemented
using the irace23 (LÓPEZ-IBÁÑEZ et al., 2016) R package.

4.8 Repositories for the coding used in this thesis

Experimental results are available at the OpenML studies as described at Table 4. In the
corresponding pages, all datasets, classification tasks, algorithms/flows, and results are available
for reproducibility.

The code used for HP tuning process (HpTuning), extracting meta-features (MfeatExtractor),

16 <https://cran.r-project.org/web/packages/pso/index.html>
17 <https://github.com/yasserglez/copulaedas>
18 <https://cran.r-project.org/web/packages/RWeka/index.html>
19 <https://cran.r-project.org/web/packages/rpart/index.html>
20 <https://cran.r-project.org/web/packages/party/index.html>
21 <https://github.com/mlr-org/mlrMBO>
22 <https://cran.r-project.org/web/packages/randomForest/index.html>
23 <http://iridia.ulb.ac.be/irace/>

https://cran.r-project.org/web/packages/pso/index.html
https://github.com/yasserglez/copulaedas
https://cran.r-project.org/web/packages/RWeka/index.html
https://cran.r-project.org/web/packages/rpart/index.html
https://cran.r-project.org/web/packages/party/index.html
https://github.com/mlr-org/mlrMBO
https://cran.r-project.org/web/packages/randomForest/index.html
http://iridia.ulb.ac.be/irace/

62 Chapter 4. Experimental methodology

Table 4 – OpenML studies with results generated by experiments.

Level Experiment Repository

Base SVM HP tuning <https://www.openml.org/s/52>

Base DT HP tuning <https://www.openml.org/s/50>

Meta When to tune SVM <https://www.openml.org/s/58>

Meta When to tune DT <https://www.openml.org/s/94>

running meta-learning (mtlSuite), and performing the graphical analyses (TuningAnalysis,
MtlAnalysis) are hosted at GitHub. All of these repositories are also listed at Table 5.

Table 5 – Repositories with tools developed by the authors.

Task Repository

HP tuning process <https://github.com/rgmantovani/HpTuning>

Meta-feature extraction <https://github.com/rgmantovani/MfeatExtractor>

Meta-learning <https://github.com/rgmantovani/mtlSuite>

Instructions to run each project can be found directly at the correspondent pages.

4.9 Chapter remarks
Evaluation methodologies adopted in previous work are not entirely suitable for HP

setting assessment in a MtL recommender system. Most of the studies searched the HP space
by sweeps or a simple GS with a single CV, and are evaluated in few datasets. To solve this
issue, nested-CVs have been discussed in the literature to avoid any overfitting that may occur
in the model selection (CAWLEY; TALBOT, 2010; KRSTAJIC et al., 2014). In this sense, the
experimental methodology adopted exploring different techniques, hundred of datasets, nested
resamplings and AutoML tools makes experiments more complete and reproducible. All the
concepts described in this chapter are applied in the experiments described in next chapters.

https://www.openml.org/s/52
https://www.openml.org/s/50
https://www.openml.org/s/58
https://www.openml.org/s/94
https://github.com/rgmantovani/HpTuning
https://github.com/rgmantovani/MfeatExtractor
https://github.com/rgmantovani/mtlSuite

63

CHAPTER

5
TUNING OF SVMS

Support Vector Machines (SVMs) have been successful in numerous applications (KOCH
et al., 2012). However, despite their good predictive performance, they are highly sensitive to their
HP values. Due to that, SVM HP tuning is still widely studied in literature (BRAGA et al., 2013;
DUARTE; WAINER, 2017; HORN et al., 2016; PADIERNA et al., 2017). As mentioned before,
different tuning techniques may obtain different HP settings from different hyperspace regions.
So, in this chapter, the HP profile of the SVMs is investigated. The experiments described in
this chapter were published in Mantovani et al. (2015a), Mantovani et al. (2015b). Experimental
results are further used to feed the MtL recommender system described in the Chapter 7.

The next sections are organized as follows: Section 5.1 presents the SVM HP space
investigated in experiments; Section 5.2 investigates the budget required for tuning SVMs;
Section 5.3 defines the setup for the tuning task; Section 5.4 discusses SVMs HP tuning results;
Section 5.5 compare the different tuning techniques when performed on SVMs; Section 5.6
shows a new approach for the SVMs default HP values; and Section 5.7 presents the final remarks
of the chapter.

5.1 SVM HP space

The SVM HP space used in the experiments is presented in Table 6. For each HP, the table
shows its symbol, name, range, scale (when applied to values) and default values provided by
LibSVM (CHANG; LIN, 2011). Here, only the Radial Basis Function (RBF) kernel is considered
since it achieves good performances in general, may handle nonlinear decision boundaries, and
has less numerical difficulties than other kernel functions (e.g., the values of the polynomial
kernel may be infinite) (HSU; CHANG; LIN, 2007). For C and γ , the selected range covers the
HP space also investigated in studies as Gomes et al. (2012), Reif, Shafait and Dengel (2012),
Ridd and Giraud-Carrier (2014). LibSVM default values are C = 1, and γ = 1/N, where N is the
number of features of the dataset under analysis.

64 Chapter 5. Tuning of SVMs

Table 6 – SVM hyperspace used in experiments. For each hyperparameter is shown its description, range,
and scale that values are calculated.

Symbol hyperparameter Range Scale Default

k kernel {RBF} - RBF

C regularized constant [2−15,215] log 1

γ width of the kernel [2−15,215] log 1/N

5.2 Defining budget size

The first crucial experimental choice is the budget size (b), i.e., how many HP settings
the techniques should evaluate to find good solutions. As such, a different progressive number of
budget sizes were investigated to check whether increasing the number of evaluations (individuals
in the case of population-based methods) leads to a higher predictive performance. Since just
a simple estimation was desired, only 20 datasets (a heterogeneous control group) and GA
technique were used in this preliminary experiment. Four scenarios were generated: budget size
of 200, 2.500, 5.000 and 10.000 evaluations per execution. These scenarios are illustrated in
Table 7.

Table 7 – Budget scenarios investigated for SVM HP tuning.

Scenario Number of Population Number of
Evaluations Size Generations

sc-200 200 10 20
sc-2.5k 2.500 100 25
sc-5k 5.000 100 50
sc-10k 10.000 100 100

Figure 7 summarizes the experimental results obtained in each budget scenario. Perfor-
mance values are averaged over 30 repetitions. This figure also shows validation and testing (test)
accuracies of the induced models. Datasets at the x-axis are identified by their correspondent
OpenML ids1.

Results show that similar BAC values were obtained in all scenarios, with a low standard
deviation associated with the resultant models. The biases (the difference between validation
and testing accuracies) are also very small even in the first scenario with fewer evaluations.
Increasing the number of evaluations does not necessarily improve the performance obtained,
and few evaluations are enough to find suitable solutions. A possible reason for this general
behavior is the small number of HPs being tuned and simple landscape of the hyperspaces.

Figure 8 illustrates GA tuning behavior in all budget scenarios for the dataset “LED-display-domain-7digit”2.
Left side figures show the SVM HP space covered by the GA executions, with default HP values

1 Datasets’ descriptions may be consulted in Tables 18, 19 and 20 at Appendix A.
2 LED-display-domain-7digit dataset has: 10 classes, 500 examples and 8 attributes - <https://www.

openml.org/d/40496>.

https://www.openml.org/d/40496
https://www.openml.org/d/40496

5.2. Defining budget size 65

● ●

●

●

● ●

●

●
●

●
●

●

●

●

●
●

●

●
●●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

5k evaluations 10k evaluations

200 evaluations 2.5k evaluations

40
47

4
18

7
40

47
5

14
99

14
88

40
73

4
15

08 44
8

14
60

14
73 55 44

4
15

23 53 8
14

92 61 48
14

65
40

49
6

40
47

4
18

7
40

47
5

14
99

14
88

40
73

4
15

08 44
8

14
60

14
73 55 44

4
15

23 53 8
14

92 61 48
14

65
40

49
6

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Dataset id

(b
al

an
ce

d)
 a

cc
ur

ac
y

Set
● test

validation

Figure 7 – BAC values of the induced models obtained in each budget scenario. Results are averaged over
30 repetitions. Figure adapted from (MANTOVANI et al., 2015a).

represented by a black point. The darker the point, the better is the predictive performance
reached on it.

Figures at the right side depict the predictive performances obtained in validation and
test sets during the optimization process. Bars in pink indicate the number of individuals of the
testing set that reached a certain level of performance. The light blue bars denote those from the
validation set. The region in gray is where the two distributions overlap. The higher the overlap,
the lower is the bias technique to estimate the performance of models in both evaluation sets.

Increasing the number of evaluations provides a better understanding of the hyperspace
and where the best solutions to the problem are located. SVM HPs are dependent on each other,
so there is not a single but a region of “best” HP settings (identified by orange). For this particular
dataset, default HP values stay out this region but close to the border. Hence, an improvement of
0.278 concerning BAC is observed when tuning is performed.

Regarding performance distributions, when the number of evaluations is increased,
distributions tend to overlap and the bias in the CVs decreases. However, there is a greater
number of points that achieve the same predictive performance. This can be observed mainly in
executions up to 2000 evaluations. This behavior can be seen by both the density of dots in the
heatmaps and the number of individuals with the same accuracy in histograms.

Since good HP settings were obtained by a reduced budget size with neither loss of
performance nor biasing results, a budget size of b = 200 evaluations was adopted for all the

66 Chapter 5. Tuning of SVMs

(a) Space covered with 200 steps. (b) BAC distributions with 200 steps.

(c) Space covered with 2500 steps. (d) BAC distributions with 2500 steps.

(e) Space covered with 5000 steps. (f) BAC distributions with 5000 steps.

(g) Space covered with 10000 steps. (h) BAC distributions with 10000 steps

Figure 8 – HP space covered by GAs in the “LED-display-domain-7digit” dataset. Figure from Mantovani
et al. (2015a).

5.3. Tuning setup 67

tuning tasks with SVMs.

5.3 Tuning setup

A total of five techniques were selected to check how tuning affects the predictive per-
formance of the induced models: GS, the simplest approach for tuning; RS (ANDRADOTTIR,
2015), baseline recommended by Bergstra and Bengio (2012); and three meta-heuristics com-
monly explored in related literature - GA (GASCóN-MORENO et al., 2011), PSO (LIN et al.,
2008) and EDAs (PADIERNA et al., 2017). Experiments were performed in a subset of 70 from
the datasets randomly selected from data collection.

Performance assessment was done using Nested-CVs: an inner 3-CV for the fitness
evaluation, and a 10-CV outer loop for model assessment. As discussed before, since data
collection contains a wide variety of binary and multiclass classification problems, the BAC
measure was used to assess induced models and also guide the search of the tuning techniques.
Default HPs values provided by LibSVM were also used as baselines to measure the improvement
obtained by tuning techniques.

Table 8 – Setup of the SVM HP tuning experiments.

Element Method R package

HP-tuning techniques

Grid Search (GS) mlr
Random Search (RS) mlr
Genetic Algorithm (GA) GA
Particle Swarm Optimization (PSO) PSO
Estimation of Distribution Algorithm (EDA) copulaedas

Algorithm SVM algorithm e1071

Inner resampling 3-fold cross-validation mlr
Outer resampling 10-fold cross-validation mlr
Optimized measure BAC mlr

Evaluation measure {BAC, mlrOptimization paths }
Repetitions 30 times with different seeds -

seeds = {1, . . . ,30} -

Baseline Default values (DF) e1071

5.4 Performance improvement

HP tuning results for SVMs in 70 datasets are depicted in Figure 9. Top figure (9a)
shows the average BAC values obtained by the tuning techniques and defaults averaged over 30
executions. The x-axis identifies datasets by their OpenML ids, listing them decreasingly by the
BAC performances obtained using default HP values3. For each dataset, the name of the tuning
technique that resulted in the best predictive performance is also shown above the x-axis.

3 The corresponding dataset names may be seen in Tables 18, 19 and 20 at Appendix A.

68 Chapter 5. Tuning of SVMs

The Wilcoxon paired-test was applied to assess the statistical significance of the results
obtained by this best technique when compared to the results using default HP values. The
test was applied to the solutions obtained from the 30 repetitions (with α = 0.05). An upper
green triangle (N) at x-axis identifies datasets where statistically significant improvements were
detected after applying the HP tuning technique. On the other hand, every time a red down
triangle (H) is presented, the use of defaults was statistically better than the use of tuning
techniques.

G
A

G
A

G
A

G
A

P
S

O
G

S
E

D
A

G
S

E
D

A
G

A
G

S
P

S
O

G
S

R
S

P
S

O
P

S
O

E
D

A
E

D
A

P
S

O
G

S
R

S
E

D
A

P
S

O
P

S
O

P
S

O
R

S
G

S
P

S
O

P
S

O
R

S
E

D
A

E
D

A
P

S
O

E
D

A
P

S
O

G
A

G
S

P
S

O
G

S
E

D
A

P
S

O
G

A
E

D
A

R
S

E
D

A
G

A
G

A
G

S
G

A
P

S
O

G
A

G
S

R
S

P
S

O
G

A
G

S
G

A
G

A
E

D
A

de
fa

ul
ts

R
S

G
A

E
D

A
E

D
A

P
S

O
E

D
A

E
D

A
E

D
A

E
D

A
E

D
A0.0

0.2

0.4

0.6

0.8

1.0

14
55 24

14
62 3

30
7

40
73

5
15

26 45
0 30 61 15

14
87 36 21 33

3
33

5
14

60
14

61
14

89
40

73
4

46
3

14
56

15
60 11 46

1
14

64
15

47 31
0

44
4

44
8 43 31 59 51

14
80

14
84 25 54

15
65

14
98

14
59

14
92 49 32

9
14

75 40 16
4 23

15
48

15
53

15
54 45

8
33

4
15

12 35
15

51 17
3

15
52 21

0
15

55
15

49
40

73
6 28 14

40
49

6
47

5
46

9
14

93
14

91 56
6

Dataset id

(b
al

an
ce

d)
 a

cc
ur

ac
y

defaults
PSO
GA
EDA
RS
GS

(a) Average BAC performance.

32

256

2048

14
55 24

14
62 3

30
7

40
73

5
15

26 45
0 30 61 15

14
87 36 21 33

3
33

5
14

60
14

61
14

89
40

73
4

46
3

14
56

15
60 11 46

1
14

64
15

47 31
0

44
4

44
8 43 31 59 51

14
80

14
84 25 54

15
65

14
98

14
59

14
92 49 32

9
14

75 40 16
4 23

15
48

15
53

15
54 45

8
33

4
15

12 35
15

51 17
3

15
52 21

0
15

55
15

49
40

73
6 28 14

40
49

6
47

5
46

9
14

93
14

91 56
6

Dataset id

N
. s

up
po

rt
 v

ec
to

rs

(b) Average number of support vectors. Y-axis values are in log2 scale.

Figure 9 – HP tuning results for the SVM algorithm.

In the figure, one may notice that all the techniques performed similarly, with their
curves mostly overlapped. It should be noted that there are some cases where the tuning does
not provide significant improvement. This mainly happened for some artificial and biological
datasets, like those with ids = {49, 1459, 1464, 1551, 1555}. Furthermore, in these datasets when
the improvement was significative, GS often presented performances visually inferior to other
techniques in at least five problems (as may be observed at the blue curve behavior). Overall, the
HP tuning statistically improved SVMs’ performances in 15/94 (≈ 57%) of the datasets. Default
HP values were significantly better in a single dataset, and in the remaining 29/70 (≈ 41%)
datasets, the approaches “tied”4, i.e., there was a waste of time trying to optimize the HPs.
4 A tie is considered when tuned models are not statistically better than those obtained by default HP

settings.

5.5. Comparing techniques 69

Figure 9b shows the average number of support vectors of the models obtained by each
tuning technique. Values at the y-axis are in log2 scale. X-axis datasets are presented in the same
order as in the figure above. In the figure, it can be noticed that default HP values induced models
with a higher number of support vectors. These models required more points in the hyperplane to
define the decision boundaries. On the other hand, when tuning improved SVMs, the HP settings
found generated models with a reduced number of support vector. In summary, when tuning
improved SVMs, it also reduced the number of required support vectors.

5.5 Comparing techniques

Results from the previous section show that no technique was the best on all datasets.
Figure 10 shows a simple win-tie-loss comparison, highlighting this fact by a high number of
ties between techniques. The experiments have shown that, overall, default values are good
initial values for the SVM HPs. Nevertheless, in most cases, tuning has resulted in a substantial
improvement regarding predictive performance.

Figure 11 presents the CD diagram comparing tuning techniques applied in SVMs.
Techniques are connected when there is no statistically significant differences between them.
Both scenarios, with α = 0.05 and α = 0.1 presented the same analysis. All the tuning techniques
performed better than HP values considering the selected datasets. PSO and EDA were ranked
first, followed by RS, GA and GS. In general, techniques did not present statistical differences
regarding performance between each other. The only exception is when PSO and GS are
compared, with the first surpassing the last.

DF

EDA

GA

GS

PSO

RS

0 20 40 60

Occurences

Te
ch

ni
qu

e

Win

Tie

Loss

Figure 10 – Win-Tie-Loss of the tuning techniques over the datasets.

CD

1 2 3 4 5 6

PSO
EDA
RS

defaults
GS
GA

(a) SVM CD diagram with α = 0.05.

CD

1 2 3 4 5 6

PSO
EDA
RS

defaults
GS
GA

(b) SVM CD diagram with α = 0.1.

Figure 11 – Comparison of the BAC values of the HP tuning techniques for SVMs according to the
Nemenyi test. Groups of techniques that are not significantly different are connected.

70 Chapter 5. Tuning of SVMs

0.25

0.30

0.35

0.40

0.45

1 50 100 150 200

Number of evaluations

A
ve

ra
ge

 L
os

s
(B

al
an

ce
d

A
cc

ur
ac

y)

defaults
PSO
GA
EDA
RS
GS

(a) Average loss curve.

1

2

3

4

5

6

1 50 100 150 200

Number of evaluations

A
ve

ra
ge

 R
an

k
(B

al
an

ce
d

A
cc

ur
ac

y)

defaults
PSO
GA
EDA
RS
GS

(b) Average ranking curve.

Figure 12 – Loss curves for SVMs across datasets.

These results suggest that, for SVMs, a simple and fast technique such as RS can obtain
similar results compared to more sophisticated techniques (e.g., population-based methods) and
the traditional GS. The reason could be due to the low dimensional space investigated since just
two HPs are being adjusted.

Figure 12 shows the average loss curves over the number of evaluations of the five tuning
techniques evaluated. The top figure shows the average loss regarding predictive performance,
while the bottom picture shows the average rank of the techniques. Results are averaged over the
70 datasets. As expected, defaults are the worst approach. Figure 12a highlights the GS deficiency,
with all the other techniques performing better than it. Among each other, meta-heuristics and
RS presented similar gain of performance across data collection.

When the measure is the average rank (Figure 12b) it is possible to see which technique
is best for each budget size. GS was always the worst ranked since the beginning. PSO and
EDA produced better models earlier and stayed close until 100 evaluations. After this period,
PSO improved more using the shared information between particles to reach new regions of the
hyperspace, while EDA got stuck in a common distribution.

5.6. Optimization of new default HP values 71

GA and RS always stay in the middle. It might be the case GA failed to change its
individuals sufficiently, and its parametrization may have affected it. In the end, RS approaches
the EDA and GA performances, randomly selecting new settings at the space. Overall, loss
curves go in the direction of what was presented in CD diagrams, showing that even RS would
be an interesting technique for the SVM HP tuning problem.

5.6 Optimization of new default HP values
Although HP tuning may result in more accurate models, the optimization of these HPs

usually has a high computational cost, since a large number of candidate solutions needs to be
evaluated. An interesting alternative would be to generate a default HP setting by optimizing
these HPs over several datasets rather than doing that individually. The optimized common
values may improve the model performance when compared with the use of the default values.
These optimized values can also reduce the computation cost to induce models when compared
with the optimization for each dataset.

Figure 13 – SVM HP tuning process with multiple datasets. Figure adapted from Mantovani et al. (2015b)

Following this hypothesis, the predictive performance of SVMs induced by a PSO
algorithm generating these common HPs were evaluated. Figure 13 illustrates the experimental
tuning methodology adapted to handle multiple datasets at the same time. In general, there are
no big differences from the experimental methodology presented before in Section 4.2. All the
datasets were into training and testing partitions.

The main difference is how the tuning technique evaluates candidate solutions and guides
the search. Every time a new HP setting is evaluated, SVMs are induced for each one of the
datasets, generating an array of performance values. Then, a criterion is applied in this array to
select a HP setting which will designate the fitness value. The criterion may be any function,
but in experiments, the median value of the predictive performances was defined as the fitness
value of the individual. The tuning technique selected was the PSO, since it was top-ranked
when compared to the other techniques. The same control group of 20 datasets used before was

72 Chapter 5. Tuning of SVMs

selected to optimize the common HP values. The remaining 70 datasets were used to evaluate
the approach. New default optimized HP values (“def.Opt’)’ were compared with those provided
by LibSVM and WEKA tools5.

0.2

0.4

0.6

0.8

1.0

14
55 24

14
62 3

30
7

15
26 45

0
40

49
9

33
3 61 36 21 33
5

14
60

14
89

14
73 46

3
15

60
14

56 11
15

06
15

04 55 59 46
1

14
64

15
47 31

0
44

4
44

8 43
14

80 31
40

47
5

40
47

4 54 25
14

98
14

59
40

73
3

14
92 32

9
14

75 40 16
4

15
53

15
54 45

8
15

65 33
4 35

15
51 17

3
21

0
15

52
40

73
6

15
49

14
93

14
91 47

5

Dataset id

(b
al

an
ce

d)
 a

cc
ur

ac
y

def.WEKA
def.LibSVM
def.Opt

Figure 14 – HP tuning results for the default optimized HP settings.

def.Opt

def.WEKA

def.LibSVM

0 20 40 60

Occurences

Te
ch

ni
qu

e

win

tie

loss

Figure 15 – Win-Tie-Loss of the default HP values over the validation datasets.

Figure 14 shows the HP tuning results for the default HP optimized approach. Datasets
on the x-axis are decreasingly ordered according to the LibSVM default HP performances.
Unsurprisingly, the optimized common HP values reached the best predictive performance.
As expected, the new optimized settings fell in the optimum region for most of the datasets,
surpassing the traditional approaches for default values. When compared with the individual
tuning processes, in most of the datasets the tuning is still required. However, the new optimized
default values could increase the number of cases where tuning could be avoided.

Figure 15 presents the win-tie-loss statistics regarding these three approaches. Default
HP settings provided by ML tools performed quite similar, with the WEKA approach prevailing
in a few more cases. Moreover, models induced by the optimized default HPs were the best in
60% of the cases. Figure 16 complements the analysis presenting the CD diagram comparing the
HP default approaches. Using different α values did not change results. The new approach was
the top-ranked approach in the datasets selected for evaluation, presenting statistical differences
with both baselines.

The WEKA default HP settings are constant for any dataset. Thus, they may not be
necessarily located in the region with the best solutions. The LibSVM, although it uses a formula
5 The default HP values for SVMs provided by WEKA can be find at the following page: <http://weka.

sourceforge.net/doc.dev/wekfollowingfiers/functions/SMO.html>

http://weka.sourceforge.net/doc.dev/wekfollowingfiers/functions/SMO.html
http://weka.sourceforge.net/doc.dev/wekfollowingfiers/functions/SMO.html

5.7. Chapter Remarks 73

CD

1 2 3

def.Opt def.WEKA
def.LibSVM

(a) SVM CD diagram with α = 0.05.

CD

1 2 3

def.Opt def.WEKA
def.LibSVM

(b) SVM CD diagram with α = 0.1.

Figure 16 – Comparison of the BAC values of the default HP approaches for SVMs according to the
Nemenyi test. Groups of techniques that are not significantly different are connected.

to define γ , it falls into the same problem. The optimized default settings, even being optimized
simultaneously for many datasets, are mostly near the optimum regions because it considers the
dependent relationship of the SVM HPs. It is true they will not always be the best choice, but its
performance comes similar to the tuning techniques. Once SVMs are very sensitive algorithm, it
is an interesting alternative when more accurate models are desirable with a lower computational
cost.

5.7 Chapter Remarks
In this chapter, the HP profile of SVMs was investigated. SVMs are highly sensitive

to their HP values, and thus still widely studied in recent literature (PADIERNA et al., 2017;
LORENA et al., 2018), but few of them compare different techniques when performing HP
tuning (HORN et al., 2016).

Experiments were carried with simple (RS, GS) and population-based techniques (GA,
PSO, EDA) over a total of 90 public datasets. The experimental results provided the HP profile

of the SVMs, showing that only a few iterations are required to reach good solutions in the SVM
hyperspace.

Further, all the techniques performed statistically better than models induced with default
HP settings. Overall, there were no statistical differences among each other. Thus, a simple
RS performed similarly than meta-heuristics regarding of the average loss over data collection.
This study was the first showing the effectiveness of a simple RS technique for the SVM HP
tuning (MANTOVANI et al., 2015a).

Besides the default values proposed by ML tools, an optimization technique to define
new default HP values based on a group of datasets was developed (MANTOVANI et al., 2015b).
The use of this new set of HP values, referred to as optimized defaults, produced significantly
better models than the default values suggested by ML tools.

All the data generated from tuning tasks is meta-knowledge that will be used by the MtL
recommender system proposed in Chapter 7. In the next chapter, the HP profile of DT induction
algorithms will be investigated.

75

CHAPTER

6
TUNING OF DECISION TREES

The HP tuning task is usually investigated for “black-box” algorithms, such as Artifi-
cial Neural Network (ANN) and SVMs (as reported in the previous chapter), but not for DTs.
There are some prior studies investigating the evolutionary design of new DT induction algo-
rithms (BARROS et al., 2012; BARROS; CARVALHO; FREITAS, 2015), but only a few on HP
tuning for them (REIF; SHAFAIT; DENGEL, 2011; MOLINA et al., 2012; REIF et al., 2014).

Many ML algorithms able to deal with classification tasks can be found in the literature.
Although high predictive accuracy is the most frequently used measure to evaluate these algo-
rithms, in many applications, easy interpretation of the induced models is also a requirement.
Good predictive performance and model interpretability are found in one of the most successful
sets of classification algorithms: DT induction algorithms (ROKACH; MAIMON, 2014).

In this chapter, the HP profile of the DT induction algorithms is investigated. The
experiments described in this chapter were published in Mantovani et al. (2016), Mantovani et al.

(2018a). Experimental results are further used to feed the MtL recommender system described in
the Chapter 7.

The next sections are organized as follows: Section 6.1 presents DT HP spaces investi-
gated in the experiments; Section 6.2 studies the budget required for tuning DTs; Section 6.3
describes the setup for the tuning task; Section 6.4 discusses the results obtained from the DT HP
tuning; Section 6.5 compares different tuning techniques on DTs; Section 6.6 uses a fANOVA
analysis to estimate DT HPs relative importance; Section 6.7 investigates how reducing HP
spaces affect the performance of induced DTs; and, Section 6.8 presents the final remarks of the
chapter.

76 Chapter 6. Tuning of Decision Trees

6.1 DT HP spaces

The experiments were performed considering the HP tuning of three DT induction
algorithms:

1. the J48 algorithm, a WEKA1 (WITTEN; FRANK, 2005) implementation of the C4.5 algo-
rithm;

2. the rpart implementation of the CART (BREIMAN et al., 1984) algorithm; and

3. and the CTree algorithm (HOTHORN; HORNIK; ZEILEIS, 2006).

These algorithms were selected due to their wide acceptance and use in many ML applica-
tions (BARROS et al., 2012; JANKOWSKI; JACKOWSKI, 2014; ROKACH; MAIMON, 2014).
The first two algorithms are among the most used in ML, especially by non-expert users (WU;
KUMAR, 2009), and the third one is a more recent implementation that uses statistical tests for
splits, like the classical Chi-squared Automatic Interaction Detector (CHAID) algorithm (KASS,
1980). The correspondent HP spaces investigated are described in Table 9.

Originally, J48 has ten tunable HPs2: all presented at Table 9 and the HP “U”, which
enables the induction of unpruned trees. Since pruned trees look for the most interpretable
models without loss of predictive performance, this HP was removed from the experiments, and
just pruned trees were considered. For CTree, all the statistically dependent HPs were kept out,
since their effects were previously studied and the default choices were robust for a wide range
of problems (HOTHORN; HORNIK; ZEILEIS, 2006), thus the non-statistically dependent HPs
were selected. Regarding CART, all the tunable HPs in rpart were selected.

For each HP, Table 9 also shows the allowed range of values, default values provided
by the correspondent packages, and its constraints for setting new values. The “M” HP values
were the same used in Reif, Shafait and Dengel (2011). The range of the pruning confidence (C)
HP was adapted from Reif et al. (2014), because the algorithm internally controls the parameter
values, does not allow some values near zero or C ≥ 0.5.

6.2 Defining budget

Following the same principle adopted for SVMs, the first experiment investigates whether
it is possible to find suitable HP settings by using a reduced budget3 when tuning DTs. Thus,
experiments were performed with the J48 algorithm and the tuning techniques previously
evaluated for SVMs, except GS.

1 <http://www.cs.waikato.ac.nz/ml/weka/>
2 <http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html>
3 In this thesis, the budget corresponds to the number of evaluations.

http://www.cs.waikato.ac.nz/ml/weka/
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html

6.2. Defining budget 77

Table 9 – DT HP spaces explored in experiments. The J48 nomenclature is based on the RWeka package,
the CART terms is based on the rpart package, and the CTree terms based on the party
package.

Algo Symbol Hyperparameter Range Type Default Conditions

J48 C pruning confidence (0.001,0.5) real 0.25 R = False

J48 M minimum number of instances in a leaf [1,50] integer 2 -

J48 N number of folds for reduced
[2,10] integer 3 R = Trueerror pruning

J48 O do not collapse the tree {False, True} logical False -

J48 R use reduced error pruning {False, True} logical False -

J48 B use binary splits only {False, True} logical False -

J48 S do not perform subtree raising {False, True} logical False -

J48 A Laplace smoothing for predicted {False, True} logical False -
probabilities

J48 J do not use MDL correction for {False, True} logical False -
info gain on numeric attributes

CART cp complexity parameter (0.0001,0.1) real 0.01 -

CART minsplit minimum number of instances in a
[1,50] integer 20 -node for a split to be attempted

CART minbucket minimum number of instances in a leaf [1,50] integer 7 -

CART maxdepth maximum depth of any node of
[1,30] integer 30 -the final tree

CART usesurrogate how to use surrogates in the splitting {0,1,2} factor 2 -process

CART surrogatestyle controls the selection of the best {0,1} factor 0 -surrogate

CTree mincriterion
the value of the statistic test

(0.9,0.999) real 0.95 -(1 - p-value) to be exceed for
a split occurrence

CTree minsplit minimum sum of weights in a
[1,50] integer 20 -node for a split occurrence

CTree minbucket minimum sum of weights in a leaf [1,50] integer 7 -

CTree mtry
number of input variables randomly

[p0.1, p0.9] real 0 -sampled as candidates at each node
for random forest like algorithms

CTree maxdepth maximum depth of any node of
[1,30] integer no restriction -the final tree

CTree stump a stump (a tree with three nodes {False, True} logical False -only) is to be computed

The J48 algorithm was chosen for this task because it presents a higher number of HPs
among the DT induction algorithms. Hence, it would require a higher number of iterations to find
suitable HP values. As the J48 hyperspace has nine HPs, GS can become infeasible due to the
size of the search space. Consequently, it was removed from the experimental setup. The tuning
methodology adopted is the same described in Chapter 4: tuning is performed with nested-CV
resamplings - an inner 3-CV loop to evaluate candidate HP settings, and an outer 10-CV loop to
assess models induced by the recommended HP settings. Experiments were performed over 94

78 Chapter 6. Tuning of Decision Trees

datasets, duly identified in the tables at Appendix A.

0.26

0.28

0.30

0.32

0 1000 2000 3000 4000 5000

Number of evaluations

A
ve

ra
ge

 L
os

s
(B

al
an

ce
d

A
cc

ur
ac

y)

defaults
PSO
GA
EDA
RS

Figure 17 – Loss curves for J48 algorithm across datasets with 5000 evaluations.

Figure 17 presents loss curves when tuning the J48 algorithm with a budget of b = 5000
evaluations. Results are averaged over the 94 datasets. The experimental results suggested that
all the considered techniques required only around 900− 1000 evaluations to converge. The
convergence here means the tuning techniques could not reduce their average loss more than
x = 105 until the budget was consumed. Actually, in most cases, the tuning reached its maximum
performance after 300 steps. Thus, a budget size of b = 900 evaluations is deemed sufficient to
perform HP tuning in DT induction algorithms.

6.3 Tuning setup

Once the budget size was defined, experiments were performed to tune all the three DT
induction algorithms. A total of six HP tuning techniques were selected to check how tuning
affects the predictive performance of the induced DTs:

• the three meta-heuristics explored before with SVMs: GA, PSO and EDA;

• a simple RS technique: as suggested in Bergstra and Bengio (2012), it is a suitable baseline;

• Irace (BIRATTARI et al., 2010): a racing technique designed for algorithm configuration
problems; and

• SMBO (SNOEK; LAROCHELLE; ADAMS, 2012): a state of the art technique for op-
timization that employs statistical and/or ML techniques to predict distributions over
labels.

Irace and SMBO were added to the experimental setup since they natively handle mixed HP
spaces (as it is the case) and allows a direct optimization with many dimensions. Table 10
summarizes the choices made to accomplish the general HP tuning procedure. The experiments

6.4. Performance improvements 79

Table 10 – Setup of the DT HP tuning experiments.

Element Method R package

HP-tuning techniques

Random Search (RS) mlr
Genetic Algorithm (GA) GA
Particle Swarm Optimization (PSO) PSO
Estimation of Distribution Algorithm (EDA) copulaedas
Sequential Model Based Optimization (SMBO) mlrMBO
Iterated F-race (Irace) irace

Decision Trees
J48 algorithm RWeka
CART algorithm rpart
CTree algorithm party

Inner resampling 3-fold cross-validation mlr
Outer resampling 10-fold cross-validation mlr
Optimized measure {Balanced per class accuracy} mlr

Evaluation measure {Balanced per class accuracy, mlr
Optimization paths }

Budget {900} iterations

Repetitions 30 times with different seeds -
seeds = {1, . . . ,30} -

Baseline Default values (DF)
RWeka
rpart
party

were carried out using 94 public datasets from OpenML4,5.). Performance assessment was done
using Nested-CVs: an inner 3-CV for the fitness evaluation, and a 10-CV outer loop for model
assessment. As previously discussed, since data collection contains a wide variety of binary and
multiclass classification problems, the BAC measure was used to assess induced models and
also guide the search of the tuning techniques. Besides, the default HP values provided by the
‘RWeka’, ‘rpart’ and ‘party’ packages were used as baseline for the experimental comparisons.

6.4 Performance improvements

Since all the adopted tuning techniques are stochastic, each one was executed 30 times
for each dataset using different seed values. It results in a total of 270.000 = 30 (repetitions)
×10 (outer-folds) ×900 (budget) HP settings generated during the search process per dataset.

6.4.1 J48 improvements

HP tuning results for J48 are depicted in Figure 18. Figure 18a shows the average BAC
values obtained by the tuning techniques and default HP values over the datasets. Similarly to
the SVMs’ plots, the datasets at the x-axis are placed in decreasing order according to their
predictive performances using default HP values6.

For each dataset, the name of the tuning technique that resulted in the best predictive
performance is shown above the x-axis. Similarly to the SVM plots, the Wilcoxon paired-test
4 <http://www.openml.org/>
5 All datasets. Their main characteristics are specified in Tables 18 to 20 at Appendix A
6 The corresponding dataset names may be seen in Tables 18, 19 and 20 at A.

http://www.openml.org/

80 Chapter 6. Tuning of Decision Trees

de
fa

ul
ts

de
fa

ul
ts

de
fa

ul
ts

de
fa

ul
ts

P
S

O
de

fa
ul

ts
de

fa
ul

ts
Ir

ac
e

de
fa

ul
ts

de
fa

ul
ts

de
fa

ul
ts

de
fa

ul
ts

Ir
ac

e
P

S
O

R
S

de
fa

ul
ts

de
fa

ul
ts

P
S

O
de

fa
ul

ts
de

fa
ul

ts
P

S
O

P
S

O
Ir

ac
e

de
fa

ul
ts

de
fa

ul
ts

Ir
ac

e
de

fa
ul

ts
Ir

ac
e

R
S

de
fa

ul
ts

R
S

Ir
ac

e
R

S
de

fa
ul

ts
de

fa
ul

ts
de

fa
ul

ts
Ir

ac
e

Ir
ac

e
Ir

ac
e

Ir
ac

e
S

M
B

O
S

M
B

O
P

S
O

de
fa

ul
ts

de
fa

ul
ts

de
fa

ul
ts

P
S

O
Ir

ac
e

Ir
ac

e
Ir

ac
e

de
fa

ul
ts

de
fa

ul
ts

de
fa

ul
ts

G
A

Ir
ac

e
Ir

ac
e

Ir
ac

e
G

A
P

S
O

de
fa

ul
ts

S
M

B
O

de
fa

ul
ts

R
S

Ir
ac

e
de

fa
ul

ts
S

M
B

O
P

S
O

R
S

S
M

B
O

S
M

B
O

Ir
ac

e
P

S
O

R
S

de
fa

ul
ts

Ir
ac

e
de

fa
ul

ts
de

fa
ul

ts
de

fa
ul

ts
de

fa
ul

ts
de

fa
ul

ts
de

fa
ul

ts
Ir

ac
e

Ir
ac

e
de

fa
ul

ts
de

fa
ul

ts
de

fa
ul

ts
G

A
de

fa
ul

ts
Ir

ac
e

Ir
ac

e
Ir

ac
e

Ir
ac

e
P

S
O

S
M

B
O

0.0

0.2

0.4

0.6

0.8

1.0
14

55 24
15

04
15

26 3
46

1
33

5
14

62
15

60 36 45
0 61 12 35 46 18
7

45
8

40
49

9 15
14

99
15

68 28
14

60
15

14 59
14

89 44
8 25

40
73

4 30 21 44
4

30
7

14
88 16

4
15

08 53 31
0

15
23 14 51

15
01 33

3 40 54
14

84 32
9

14
56

14
61

15
47

14
98

14
64

14
67 55

14
87 8 31

40
73

3
40

73
6

40
73

5
14

59
14

80 11 43 17
3

15
48 46

3
14

93
15

53 33
4

14
79

15
06

14
73

14
91 23

14
92

40
47

4
40

47
5

15
54 48

14
75 47

5
15

52
15

65 49
14

65 21
0

15
12

40
49

6
15

51
15

55
15

49 46
9

56
6

Dataset id

(b
al

an
ce

d)
 a

cc
ur

ac
y

defaults
PSO
GA
EDA
RS
SMBO
Irace

(a) Average BAC performance.

4

32

256

2048

14
55 24

15
04

15
26 3

46
1

33
5

14
62

15
60 36 45

0 61 12 35 46 18
7

45
8

40
49

9 15
14

99
15

68 28
14

60
15

14 59
14

89 44
8 25

40
73

4 30 21 44
4

30
7

14
88 16

4
15

08 53 31
0

15
23 14 51

15
01 33

3 40 54
14

84 32
9

14
56

14
61

15
47

14
98

14
64

14
67 55

14
87 8 31

40
73

3
40

73
6

40
73

5
14

59
14

80 11 43 17
3

15
48 46

3
14

93
15

53 33
4

14
79

15
06

14
73

14
91 23

14
92

40
47

4
40

47
5

15
54 48

14
75 47

5
15

52
15

65 49
14

65 21
0

15
12

40
49

6
15

51
15

55
15

49 46
9

56
6

Dataset id

Tr
ee

 s
iz

e
(lo

g2
)

(b) Average tree size. X-axis values are in log2 scale.

Figure 18 – HP tuning results for the J48 algorithm. Figure adapted from Mantovani et al. (2018a).

was applied to assess the statistical significance of the results obtained by this best technique
when compared to the results using default HP values. The test was applied to the solutions
obtained from the 30 repetitions (with α = 0.05). An upper green triangle (N) at x-axis identifies
datasets where statistically significant improvements were detected after applying the HP tuning
technique. On the other hand, every time a red down triangle (H) is presented, the use of defaults
was statistically better than the use of tuning techniques.

J48 tuning results show that all tuning techniques have similar performances, with few
exceptions, since most of the curves overlap. In general, there is a small difference in predictive
performance regarding the default HP values. Higher improvements may be seen only in a small
subset of datasets. Tuned trees were better than those with defaults with statistical significance in
36/94 (≈ 38%) of the datasets. In most of these situations, the Irace, PSO or SMBO techniques
produced the best results. Default HP values were significantly better in 15/94 (≈ 16%) of the
cases, and in the remaining situations (43/94 - ≈ 46%) the approaches “tied”.

Figure 18b shows the average tree size of the final J48 induced models. The tree size
measures the number of nodes in the induced model. The interpretability of a tree is mostly
dependent on its size. Consequently, larger trees are usually more difficult to understand than
smaller trees. Therefore, regarding DT sizes, in most of the cases, the default HP values (dotted
black line) induced trees larger than those obtained by tuning techniques. This fact was true
whenever default HP values were the best option with statistical significance. For most of the

6.4. Performance improvements 81

multiclass tasks with many classes (datasets to the right at the charts), the tuned trees were also
smaller than those induced using default HP values. Although small improvements were obtained
in terms performance, they were still significant.

Looking at the peaks of improvements due to the use of HP tuning, they were reached
when the DTs induced using default HP values were much smaller than those using tuning
techniques. This occurred for the datasets with the ids = {51 333, 334, 1568}. These datasets are
the only ones in which the techniques presented significant performance differences. The soft
computing techniques tend to produce smaller trees than the SMBO and RS techniques.

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.1 0.2 0.3 0.4 0.5

value

de
ns

ity

(a) C

0.00

0.05

0.10

0.15

0 10 20 30 40 50

value

de
ns

ity

(b) M

0.00

0.05

0.10

2.5 5.0 7.5 10.0

value

de
ns

ity

(c) N

0

2500

5000

7500

10000

FALSE TRUE

value

co
un

t

(d) R

0

1000

2000

3000

4000

5000

FALSE TRUE

value

co
un

t

(e) O

0

2000

4000

FALSE TRUE

value

co
un

t

(f) B

0

1000

2000

3000

4000

5000

FALSE TRUE

value

co
un

t

(g) A

0

2000

4000

FALSE TRUE

value

co
un

t

(h) S

0

2000

4000

FALSE TRUE

value

co
un

t

(i) J

Figure 19 – Distribution of the J48 HPs found by the tuning techniques. Figure from Mantovani et al.
(2018a).

To compare default HP setting with the solutions found during the tuning process, and
also get useful insights regarding the defaults effectiveness, the distributions of the J48 HPs
found during optimization are presented in Figure 19. The numerical default HP values are
represented by vertical dashed lines. In the J48 tuning scenario, the largest contrast may be
noticed in the ‘R’ sub-plot: most of the obtained solutions presented ‘R=FALSE’, which disables
the use of the “reduce error pruning” option and the HP ‘N’ (like default HP setting does). The
values of ‘M’ obtained also tend to the default value in most of the cases (default is m = 2). The

82 Chapter 6. Tuning of Decision Trees

other Boolean HPs seem not to influence the induced models since they present a very uniform
distribution. Overall, only the “confidence pruning”(C) HP seems to influence the search for
different solutions, as indicated by Figure 19a.

6.4.2 CART improvements

Figure 20 presents graphical results for the CART tuning. Different from J48, CART was
more affected by HP tuning, presenting a different HP profile. The use of tuned values improved
the predictive performance with statistical significance when compared to the use of default
HP values in 62/94 (≈ 66%) of the datasets. Regarding just the predictive performance of the
induced models, the Irace and SMBO were the best optimization techniques. On the other hand,
default HP values were the best setup in 14/94 (≈ 15%) of the cases. In the remaining situations
(18/94≈ 19%) there was no significant statistical improvement using optimized values.

Regarding trees’ size, whenever default HP values were statistically better, the trees
induced by them have similar or lower sizes than those obtained by the optimization techniques.
However, in most cases, tuned HP settings induced trees statistically better and much larger
than those created using defaults. Although ‘default’ trees are simpler, they were incapable of
classifying most of the problems properly.

The comparison of the tuning techniques showed results different from those obtained
for the J48 algorithm. All the tuning techniques induced trees with similar sizes. However, the
DTs induced when Irace was used were slightly larger, and with better predictive performance
than those obtained by the other techniques.

The CART HP distributions shown in Figures 20c to 20h present a different behavior
than J48 scenario. The CART tuned trees were obtained from values substantially different
from the default HP values. This is more evident for the numerical HPs ‘cp’, ‘minbucket’
and ‘minsplit’. Their values tend to be smaller than defaults. For ‘maxdepth’, a wide range
of values is tried, indicating a possible dependence on the input problem (dataset). However,
the categorical HPs are very uniform, indicating that their choices may not influence the final
predictive performance.

6.4.3 CTree improvements

The CTree HP tuning results are illustrated in Figure 21. Most of the tuning techniques
presented similar results, except GA (the green line), which was worse than all the other
techniques regarding the predictive performance. Unlike the two previous case studies, the CTree
HP profile describes an algorithm less influenced by the HP tuning.

Default HP values induced the best models in 38/94 (≈ 40%) of the datasets. Tuned
values improved the predictive performance of the induced trees in 23/94 (≈ 25%) of the cases.
For the remaining problems 33/94 (≈ 35%) there was no statistical difference between the use

6.4. Performance improvements 83

de
fa

ul
ts

de
fa

ul
ts

Ir
ac

e
de

fa
ul

ts
Ir

ac
e

P
S

O
S

M
B

O
R

S
G

A
de

fa
ul

ts
Ir

ac
e

E
D

A
Ir

ac
e

Ir
ac

e
Ir

ac
e

Ir
ac

e
Ir

ac
e

S
M

B
O

Ir
ac

e
Ir

ac
e

de
fa

ul
ts

Ir
ac

e
Ir

ac
e

Ir
ac

e
R

S
S

M
B

O
de

fa
ul

ts
de

fa
ul

ts
Ir

ac
e

Ir
ac

e
de

fa
ul

ts
Ir

ac
e

Ir
ac

e
de

fa
ul

ts
S

M
B

O
de

fa
ul

ts
de

fa
ul

ts
Ir

ac
e

E
D

A
de

fa
ul

ts
de

fa
ul

ts
S

M
B

O
Ir

ac
e

Ir
ac

e
S

M
B

O
R

S
de

fa
ul

ts
R

S
Ir

ac
e

de
fa

ul
ts

de
fa

ul
ts

de
fa

ul
ts

Ir
ac

e
de

fa
ul

ts
Ir

ac
e

S
M

B
O

R
S

Ir
ac

e
R

S
Ir

ac
e

de
fa

ul
ts

E
D

A
Ir

ac
e

de
fa

ul
ts

Ir
ac

e
R

S
Ir

ac
e

Ir
ac

e
Ir

ac
e

Ir
ac

e
R

S
de

fa
ul

ts
de

fa
ul

ts
Ir

ac
e

S
M

B
O

S
M

B
O

P
S

O
Ir

ac
e

Ir
ac

e
S

M
B

O
P

S
O

G
A

Ir
ac

e
S

M
B

O
de

fa
ul

ts
G

A
R

S
de

fa
ul

ts
Ir

ac
e

E
D

A
Ir

ac
e

de
fa

ul
ts

S
M

B
O

P
S

O

0.0

0.2

0.4

0.6

0.8

1.0

15
26

15
04 24 46

1
33

5
14

55
14

62 3
15

60 46 45
0 61 35 36 15 12

14
99 21 18

7
45

8 25
15

14 59
14

60 33
3

40
49

9
44

8 53
14

88
40

73
4

15
23 31

0
44

4 51 28
15

08
14

84
14

89 30
14

56 40 16
4 54 14 33
4

15
68 8

15
47

14
61 31

14
98

40
73

3 55
14

67
15

01
14

64 30
7

14
87 32

9
46

3
14

80 11 43
15

53
40

73
5

17
3

40
73

6
14

73
14

79 23
15

06
15

48 47
5 48

15
54

14
59

15
52

40
47

4
40

47
5

15
65

14
65 49 21

0
14

75
40

49
6

15
51

15
12

15
49

15
55 46

9
14

92 56
6

14
91

14
93

Dataset id

(b
al

an
ce

d)
 a

cc
ur

ac
y

defaults
PSO
GA
EDA
RS
SMBO
Irace

(a) Average BAC performance.

4

32

256

15
26

15
04 24 46

1
33

5
14

55
14

62 3
15

60 46 45
0 61 35 36 15 12

14
99 21 18

7
45

8 25
15

14 59
14

60 33
3

40
49

9
44

8 53
14

88
40

73
4

15
23 31

0
44

4 51 28
15

08
14

84
14

89 30
14

56 40 16
4 54 14 33
4

15
68 8

15
47

14
61 31

14
98

40
73

3 55
14

67
15

01
14

64 30
7

14
87 32

9
46

3
14

80 11 43
15

53
40

73
5

17
3

40
73

6
14

73
14

79 23
15

06
15

48 47
5 48

15
54

14
59

15
52

40
47

4
40

47
5

15
65

14
65 49 21

0
14

75
40

49
6

15
51

15
12

15
49

15
55 46

9
14

92 56
6

14
91

14
93

Dataset id

Tr
ee

 s
iz

e
(lo

g2
)

(b) Average tree size. X-axis values are in log2 scale.

0

50

100

150

200

250

0.000 0.025 0.050 0.075 0.100

value

de
ns

ity

(c) cp

0.0

0.1

0.2

0.3

0.4

0 20 40 60

value

de
ns

ity

(d) minbucket

0.00

0.01

0.02

0.03

0.04

0 10 20 30

value

de
ns

ity

(e) maxdepth

0.00

0.03

0.06

0.09

0 50 100

value

de
ns

ity

(f) minsplit

0

1000

2000

3000

0 1 2

value

co
un

t

(g) usesurrogate

0

1000

2000

3000

4000

5000

0 1

value

co
un

t

(h) surrogatestyle

Figure 20 – HP tuning results and distributions for the CART algorithm found by the tuning techniques.
Figure adapted from Mantovani et al. (2018a).

84 Chapter 6. Tuning of Decision Trees

de
fa

ul
ts

Ir
ac

e
de

fa
ul

ts
de

fa
ul

ts
Ir

ac
e

de
fa

ul
ts

de
fa

ul
ts

de
fa

ul
ts

de
fa

ul
ts

de
fa

ul
ts

Ir
ac

e
de

fa
ul

ts
P

S
O

de
fa

ul
ts

Ir
ac

e
S

M
B

O
de

fa
ul

ts
de

fa
ul

ts
P

S
O

Ir
ac

e
P

S
O

Ir
ac

e
P

S
O

P
S

O
Ir

ac
e

S
M

B
O

de
fa

ul
ts

de
fa

ul
ts

de
fa

ul
ts

Ir
ac

e
de

fa
ul

ts
Ir

ac
e

de
fa

ul
ts

Ir
ac

e
de

fa
ul

ts
de

fa
ul

ts
Ir

ac
e

P
S

O
de

fa
ul

ts
P

S
O

P
S

O
E

D
A

G
A

de
fa

ul
ts

de
fa

ul
ts

P
S

O
de

fa
ul

ts
de

fa
ul

ts
Ir

ac
e

de
fa

ul
ts

de
fa

ul
ts

de
fa

ul
ts

de
fa

ul
ts

Ir
ac

e
de

fa
ul

ts
de

fa
ul

ts
R

S
Ir

ac
e

S
M

B
O

P
S

O
de

fa
ul

ts
de

fa
ul

ts
de

fa
ul

ts
de

fa
ul

ts
de

fa
ul

ts
de

fa
ul

ts
S

M
B

O
G

A
G

A
de

fa
ul

ts
de

fa
ul

ts
S

M
B

O
S

M
B

O
de

fa
ul

ts
Ir

ac
e

de
fa

ul
ts

de
fa

ul
ts

P
S

O
de

fa
ul

ts
S

M
B

O
S

M
B

O
de

fa
ul

ts
de

fa
ul

ts
P

S
O

de
fa

ul
ts

R
S

de
fa

ul
ts

de
fa

ul
ts

S
M

B
O

de
fa

ul
ts

G
A

de
fa

ul
ts

Ir
ac

e
de

fa
ul

ts

0.0

0.2

0.4

0.6

0.8

1.0

15
04 24

15
26 46

1
14

55 3
15

60
15

68
14

62 33
5 61 46 36 12 45
0 15 21 35

40
49

9
18

7
45

8
14

99 59 28
40

73
4

44
4 25

14
89

14
84

14
60

15
23 30 31

0
14

88 44
8

33
3 51 53 14 16
4

15
08 40

14
56

14
61 54 30

7
15

47 31
15

01
14

98
40

73
3

14
67

14
64 55 11

14
87 32

9 8 43
14

59 23 17
3

40
73

5
14

73
14

79 33
4

14
80 46

3
15

06
15

53
15

48
40

47
4

40
47

5
40

73
6

15
14

15
52 47

5
14

75
15

54 48 21
0

14
91

14
65

15
65

14
93 49

14
92

40
49

6
15

12
15

55 46
9

15
49

15
51 56

6

Dataset id

(b
al

an
ce

d)
 a

cc
ur

ac
y

defaults
PSO
GA
EDA
RS
SMBO
Irace

(a) Average BAC performance.

0.5

4.0

32.0

256.0

15
04 24

15
26 46

1
14

55 3
15

60
15

68
14

62 33
5 61 46 36 12 45
0 15 21 35

40
49

9
18

7
45

8
14

99 59 28
40

73
4

44
4 25

14
89

14
84

14
60

15
23 30 31

0
14

88 44
8

33
3 51 53 14 16
4

15
08 40

14
56

14
61 54 30

7
15

47 31
15

01
14

98
40

73
3

14
67

14
64 55 11

14
87 32

9 8 43
14

59 23 17
3

40
73

5
14

73
14

79 33
4

14
80 46

3
15

06
15

53
15

48
40

47
4

40
47

5
40

73
6

15
14

15
52 47

5
14

75
15

54 48 21
0

14
91

14
65

15
65

14
93 49

14
92

40
49

6
15

12
15

55 46
9

15
49

15
51 56

6

Dataset id

Tr
ee

 s
iz

e
(lo

g2
)

(b) Average tree size. Results are presented in log2 scale.

0

2000

4000

6000

8000

FALSE TRUE

value

co
un

t

(c) stump

0.00

0.05

0.10

0.15

0.20

0 20 40 60

value

de
ns

ity

(d) minbucket

0.00

0.01

0.02

0.03

0.04

0 10 20 30

value

de
ns

ity

(e) maxdepth

0.00

0.02

0.04

0 50 100

value

de
ns

ity

(f) minsplit

0

5

10

15

20

0.900 0.925 0.950 0.975 1.000

value

de
ns

ity

(g) mincriterion

0.00

0.02

0.04

0.06

0 100 200 300

value

de
ns

ity

(h) mtry

Figure 21 – HP tuning results and distributions for the CTree algorithm found by the tuning techniques.
Figure adapted from Mantovani et al. (2018a).

6.5. Comparing techniques 85

of default HP values and settings returned by tuning techniques. Considering the size of the
induced trees, tuning techniques did not generate larger or smaller trees than those induced by
using default values. There are just a few exceptions, for datasets ids = {79, 57}, where tuned
trees improved the predictive performance and are visually larger then defaults. Regarding just
the predictive performance, Irace and PSO were the best techniques, followed by the SMBO.

The CTree HPs’ distributions are shown in Figures 21c to 21h. Similarly to the CART
scenario, all the numerical HPs presented values different from the default values: some of
them produced values smaller than default choices (‘minbucket’, ‘minsplit’); another was
very close to the default value (‘mtry’); and all the others varied in a wide range of values
(‘maxdepth’, ‘mincriterion’). The categorical HP ‘stump’, which enables the induction of
a Decision Stump (DS) (tree with just a single level) is mostly set as stump = FALSE, like the
default setting, having no real impact on the performance differences.

6.5 Comparing techniques
The Win-Tie-Loss statistics of the tuning techniques for the three algorithms are illus-

trated in Figure 22. In all the scenarios, Irace won the most considering just the tuning techniques.
SMBO and PSO were the best technique for a set of problems, with RS being comparable
depending on the algorithm under analysis. GA and EDA did not perform well for most datasets,
showing some limitations to perform like the other techniques. On the other hand, default HP
values are suitable for a high number of datasets, when analyzing CTree and J48 algorithms.
It can be seen with the number of wins obtained by defaults when compared to the tuning
techniques. The CART algorithm, using the “rpart” implementation, is the most sensitive
algorithm for tuning.

CTree J48 Rpart

0 25 50 75 0 25 50 75 0 25 50 75

EDA

GA

Irace

PSO

RS

SMBO

defaults

Occurences

Te
ch

ni
qu

e

Win

Tie

Loss

Figure 22 – Win-Tie-Loss of the tuning techniques for the DT induction algorithms

6.5.1 Statistical comparison

The Friedman test with significance levels at α = 0.05 and α = 0.1, was also used to
compare techniques when performing the tuning of DTs. Figure 23 presents the CD diagram
for the three DT algorithms. Considering α = 0.05, Figure 23a depicts the comparison in J48

86 Chapter 6. Tuning of Decision Trees

scenario. The first look indicates that there are no statistical differences between the top two best
techniques: Irace and PSO. Also, the models induced with default HP values were no statistically
better results than Irace, PSO, SMBO, and RS. EDA and GA techniques were statistically inferior
to all the others.

CD

1 2 3 4 5 6 7

Irace
PSO

defaults

GA
EDA
RS

SMBO

(a) J48 CD diagram with α = 0.05.

CD

1 2 3 4 5 6 7

Irace
PSO

defaults

GA
EDA
RS

SMBO

(b) J48 CD diagram with α = 0.1.

CD

1 2 3 4 5 6 7

Irace
RS

PSO

defaults
GA

EDA
SMBO

(c) CART CD diagram with α = 0.05.

CD

1 2 3 4 5 6 7

Irace
RS

PSO

defaults
GA

EDA
SMBO

(d) CART CD diagram with α = 0.1.

CD

1 2 3 4 5 6 7

defaults
Irace
PSO

GA
EDA
RS

SMBO

(e) CTree CD diagram with α = 0.05.

CD

1 2 3 4 5 6 7

defaults
Irace
PSO

GA
EDA
RS

SMBO

(f) CTree CD diagram with α = 0.1.

Figure 23 – Comparison of the BAC values of the HP tuning techniques for DTs according to the Nemenyi
test. Groups of techniques that are not significantly different are connected. Left charts
show results with α = 0.05, while right charts show comparisons with α = 0.1. Figure
from Mantovani et al. (2018a).

For the CART algorithm (Figure 23c), the best-ranked technique over all datasets was
Irace, followed by RS, though with no statistical difference between their results. DTs induced
with default HP values obtained the worst performance, being statistically comparable only with
GA and EDA.

CTree’s CD-diagram for α = 0.05 is shown in Figure 23e. The defaults HP values were
ranked first, followed by Irace, PSO and SMBO techniques. However, there is no statistical
difference between them. The RS and EDA compose the second group of techniques. They
do not present statistical differences between them, but they present difference concerning the
first group of techniques. Finally, the GA technique was statistically worst than all the other
techniques.

It is worth mentioning that Irace was the best-ranked tuning technique for all the al-
gorithms even though the statistical tests did not show significant differences between Irace

6.5. Comparing techniques 87

and PSO (J48, CTree), and between Irace and RS (CART). When a larger α = 0.1 value was
considered (with CD= 0.848), there were no changes in J48 and CTree scenarios. However,
regarding CART performances, Irace statistically outperformed all the other techniques, as it can
be seen in Figure 23d.

6.5.2 Loss curves comparison

0.32

0.36

0.40

1 150 300 450 600 750 900

Number of evaluations

A
ve

ra
ge

 L
os

s
(B

al
an

ce
d

A
cc

ur
ac

y)

Defaults
PSO
GA
EDA
RS
SMBO
Irace

(a) Average loss curve.

1

2

3

4

5

6

7

1 150 300 450 600 750 900

Number of evaluations

A
ve

ra
ge

 R
an

k
(B

al
an

ce
d

A
cc

ur
ac

y)

Defaults
PSO
GA
EDA
RS
SMBO
Irace

(b) Average ranking curve.

Figure 24 – Loss curves for the J48 algorithm across datasets.

Similarly to SVMs, the J48 average loss curves are shown in Figure 24. The top figure
shows the average loss regarding the BAC predictive performance, while the bottom chart shows
the average rank of the techniques during the budget consumption. Results are aggregated over
all the 94 datasets.

Referring to the average loss, Irace presented the lowest aggregated value among tech-
niques. It is followed by SMBO, PSO and RS, which performed similarly. EDA and GA behaved
closely to the default HP settings, but just GA was worst than the default approach. Further,
techniques required few iterations to obtain suitable HP settings and converge (around 300−450).
By means of the average ranking curve (Figure 24b) an user may choose different techniques

88 Chapter 6. Tuning of Decision Trees

0.32

0.36

0.40

0.44

1 150 300 450 600 750 900

Number of evaluations

A
ve

ra
ge

 L
os

s
(B

al
an

ce
d

A
cc

ur
ac

y)

Defaults
PSO
GA
EDA
RS
SMBO
Irace

(a) Average loss curve.

1

2

3

4

5

6

7

1 150 300 450 600 750 900

Number of evaluations

A
ve

ra
ge

 R
an

k
(B

al
an

ce
d

A
cc

ur
ac

y)

Defaults
PSO
GA
EDA
RS
SMBO
Irace

(b) Average ranking curve.

Figure 25 – Loss curves for the CART algorithm across datasets.

according to the available budget size. For example, if tuning were performed with at most
b = 200 evaluations, PSO and SMBO would be the best choices. From that point and ahead,
Irace surpasses all the techniques.

Figure 25 presents loss curves for the CART algorithm. Except for Irace, all the tech-
niques converged at b = 150 evaluations. However, despite requiring more evaluations, Irace was
the technique which most reduced the loss of the datasets. Contrarily than the previous scenario,
all the tuning techniques presented average loss values lower than the value obtained by the
default HP values (Figure 25a). When analyzing the average rankings, different techniques are
most suitable according to the budget size. If a tiny budget is provided (b≤ 50), PSO is slightly
better than the other techniques. From 50 < b≤ 150, the SMBO would be the best choice. On
the other hand, with budgets (b > 150) Irace is the technique that best recommends values for
CART HPs.

CTree loss curves (Figure 26) describe a third tuning profile. Different than the two
algorithms described above, CTree is the less sensitive algorithm to tuning. The average loss
reduction with tuning is very small when compared with the results obtained with default

6.6. Relative importance of the HPs 89

0.35

0.40

0.45

0.50

0.55

1 150 300 450 600 750 900

Number of evaluations

A
ve

ra
ge

 L
os

s
(B

al
an

ce
d

A
cc

ur
ac

y)

Defaults
PSO
GA
EDA
RS
SMBO
Irace

(a) Average loss curve.

1

2

3

4

5

6

7

1 150 300 450 600 750 900

Number of evaluations

A
ve

ra
ge

 R
an

k
(B

al
an

ce
d

A
cc

ur
ac

y)

Defaults
PSO
GA
EDA
RS
SMBO
Irace

(b) Average ranking curve.

Figure 26 – Loss curves for the CTree algorithm across datasets.

HP values (Figure 26). GA was the only technique to perform worst than default HP settings.
Nevertheless, the absolute differences between techniques are very small, with PSO and SMBO
being slightly better than the others. Based on the average ranking values, the PSO technique
would be the best one for any budget size (Figure 26b), considering the budget evaluate in this
thesis.

6.6 Relative importance of the HPs

Statistical analysis was also used to understand how different HPs affect each other and
the DTs performances. A recent approach to evaluate HPs relative importance is the Functional
ANOVA (fANOVA) framework7, introduced in Hutter, Hoos and Leyton-Brown (2014). In that
study, the authors present an algorithm for computing marginal predictions and quantify the
importance of single HPs and interactions between them. The fundamental idea is to generate
regression forests that predict the performance of HP settings applying a variance decomposition
directly to these trees.
7 <https://github.com/automl/fanova>

https://github.com/automl/fanova

90 Chapter 6. Tuning of Decision Trees

M

R.vs.M

N.vs.M

M.vs.C

N

R

R.vs.N

C

J.vs.M

1 31 63 94

Dataset

J4
8

H
P

s
or

 p
ai

r
of

 H
P

s

0.00

0.25

0.50

0.75

1.00

functional
Anova marginals

(a) Functional ANOVA values for J48 hyperparameters.

minbucket

minsplit

minbucket.vs.minsplit

mavsdepth.vs.minbucket

mavsdepth

mavsdepth.vs.minsplit

minbucket.vs.cp

usesurrogate.vs.mavsdepth

usesurrogate.vs.minbucket

1 31 63 94

Dataset

rp
ar

t H
P

s
or

 p
ai

r
of

 H
P

s

0.00

0.25

0.50

0.75

1.00

functional
Anova marginals

(b) Functional ANOVA values for CART hyperparameters.

minbucket

minsplit

minbucket.vs.minsplit

mtry.vs.minbucket

mtry

mtry.vs.minsplit

stump.vs.minbucket

mtry.vs.mincriterion

stump

1 31 63 94

Dataset

ct
re

e
H

P
s

or
 p

ai
r

of
 H

P
s

0.00

0.25

0.50

0.75

1.00

functional
Anova marginals

(c) Functional ANOVA values for CTree hyperparameters.

Figure 27 – Functional ANOVA HPs marginal predictions for DTs. Marginal predictions are scaled
between zero and one. Figure adapted from Mantovani et al. (2018a).

In the source article, the authors ran fANOVA with HP settings obtained from SMBO
executions over some scenarios but never considering more than 13.000 settings. Here, a single
execution of any tuning technique generates 30×10×900 = 270.000 evaluations. Thus, experi-
ments using all techniques would have a high computational cost. Since Irace was the top-ranked
technique for all the DT algorithms (Figure 23), it was used to provide the HP settings for this
analysis. In the experiments, 27.000 HP settings for 3 repetitions were used when evaluating
the relative importance of DT HPs. When evaluating CTree models with fANOVA, seven jobs
produced errors. In these situations, a white column is presented at the heatmap.

Figure 27 shows the results obtained from the fANOVA analysis. In the figure, datasets
are arbitrarily listed at the x-axis while the y-axis presents HPs’ relative importance regarding

6.7. Tuning with reduced HP spaces 91

fANOVA. The darker the square, more important is the HP (or a pair of them) for inducing
trees in the datasets (scaled between zero and one). Single HPs, or combinations of HPs, whose
contribution to the predictive performance of the induced models was lower than 0.005 were
filtered from the figure. Even removing most of these unnecessary HPs, most of the heatmap’s
rows are quite white. It is substantial evidence that most of the HP combinations have little
contribution to the predictive performance of the induced DTs.

In Figure 27a, fANOVA indicates that most of the J48 performances were influenced by
‘M’ values: when not alone, in combination with another HP (R, N, C). For CART, the ‘minbucket’
and ‘minsplit’ HPs are the main responsible for the performance of the induced DTs, as may
be seen in Figure 27b. CTree HPs behave like CART ones: ‘minbucket’ and ‘minsplit’ are
also the most important HPs (Figure 27c). On the other hand, they have less strength to predict
marginal distributions. It reinforces previous findings describing that CTree has the less sensitive
HP profile, because even the most important HPs have a small contribution to the final models.

6.7 Tuning with reduced HP spaces

The fANOVA results indicate that although tuning was performed with several HPs, just
a subset of them seems to influence the final performance of the induced DTs. Thus, it opens an
interesting research question: does the tuning of DT algorithms with a reduced HP space affect
the predictive performance of the induced models? So, additional experiments were performed.

Except for the techniques selected, the tuning of DTs with their reduced HP spaces
followed the same experimental methodology described in Table 10. Based on the loss curves
and average ranking values, the best tuning techniques per algorithm were selected for the
optimization: Irace for J48 and CART, and PSO for CTree. For each algorithm, only the
most important HPs were selected according to the fANOVA analysis. For CTree and CART,
H = {minbucket,minsplit} HPs were selected, while for the J48 algorithm the subset H =

{M,R,C,N} was chosen. The remaining HPs used their default values provided by their corre-
spondent implementations. In 14 of the 94 datasets, machine errors occurred when performing
the tuning task. Hence, their results were removed from the analysis and experiments were
performed with 80 datasets.

Figure 28 summarizes tuning results with reduced HP spaces for all algorithms. The
top figure shows the HP tuning results of the J48 algorithm using Irace with the complete and
reduced HP space (irace.reduced). Results are also compared with the BAC values obtained
with default HP settings. The Wilcoxon paired-test with α = 0.05 was also applied to assess
the statistical significance of the results. Whenever HP tuning provided statistically significant
improvements, an upper green triangle appears. On the other hand, every time a red down triangle
is presented, default HP settings induced models statistically better than tuned trees. The first
line of triangles at each figure shows statistical comparisons between tuning with the complete

92 Chapter 6. Tuning of Decision Trees

ira
ce

.r
ed

uc
ed

ira
ce

.r
ed

uc
ed

Ir
ac

e
ira

ce
.r

ed
uc

ed
ira

ce
.r

ed
uc

ed

ira
ce

.r
ed

uc
ed

Ir
ac

e

Ir
ac

e

Ir
ac

e
ira

ce
.r

ed
uc

ed

Ir
ac

e
Ir

ac
e

ira
ce

.r
ed

uc
ed

ira
ce

.r
ed

uc
ed

Ir
ac

e
Ir

ac
e

ira
ce

.r
ed

uc
ed

Ir
ac

e
Ir

ac
e

ira
ce

.r
ed

uc
ed

ira
ce

.r
ed

uc
ed

Ir
ac

e
ira

ce
.r

ed
uc

ed
Ir

ac
e

ira
ce

.r
ed

uc
ed

Ir
ac

e
ira

ce
.r

ed
uc

ed
Ir

ac
e

ira
ce

.r
ed

uc
ed

ira
ce

.r
ed

uc
ed

ira
ce

.r
ed

uc
ed

Ir
ac

e
ira

ce
.r

ed
uc

ed
ira

ce
.r

ed
uc

ed
ira

ce
.r

ed
uc

ed
ira

ce
.r

ed
uc

ed
Ir

ac
e

Ir
ac

e
ira

ce
.r

ed
uc

ed

ira
ce

.r
ed

uc
ed

Ir
ac

e
ira

ce
.r

ed
uc

ed

ira
ce

.r
ed

uc
ed

ira
ce

.r
ed

uc
ed

Ir
ac

e
Ir

ac
e

ira
ce

.r
ed

uc
ed

ira
ce

.r
ed

uc
ed

ira
ce

.r
ed

uc
ed

ira
ce

.r
ed

uc
ed

0.0

0.2

0.4

0.6

0.8

1.0

1 59 74 66 48 5 57 23 29 71 8 47 33 2 76 25 68 60 21 46 65 3 44 72 63 28 4 32 64 54 70 51 80 53 40 55 31 73 50 38 9 22 11 67 24 43 61 27 69 58 62 10 45 20 37 36 12 19 17 56 77 34 78 79 18 75 35 7 16 42 39 26 30 41 49 15 13 14 6 52

Dataset id

(b
al

an
ce

d)
 a

cc
ur

ac
y

defaults
Irace
irace.reduced

(a) HP tuning results for J48.

Ir
ac

e

Ir
ac

e
Ir

ac
e

Ir
ac

e
Ir

ac
e

Ir
ac

e
Ir

ac
e

Ir
ac

e
ira

ce
.r

ed
uc

ed
Ir

ac
e

ira
ce

.r
ed

uc
ed

Ir
ac

e
Ir

ac
e

Ir
ac

e

ira
ce

.r
ed

uc
ed

Ir
ac

e
Ir

ac
e

Ir
ac

e

Ir
ac

e
Ir

ac
e

ira
ce

.r
ed

uc
ed

Ir
ac

e

Ir
ac

e

Ir
ac

e
Ir

ac
e

Ir
ac

e
Ir

ac
e

Ir
ac

e
Ir

ac
e

Ir
ac

e
Ir

ac
e

ira
ce

.r
ed

uc
ed

Ir
ac

e
Ir

ac
e

Ir
ac

e
Ir

ac
e

Ir
ac

e
Ir

ac
e

Ir
ac

e
Ir

ac
e

ira
ce

.r
ed

uc
ed

Ir
ac

e
Ir

ac
e

Ir
ac

e
Ir

ac
e

ira
ce

.r
ed

uc
ed

Ir
ac

e
Ir

ac
e

Ir
ac

e

Ir
ac

e
Ir

ac
e

ira
ce

.r
ed

uc
ed

ira
ce

.r
ed

uc
ed

Ir
ac

e
Ir

ac
e

ira
ce

.r
ed

uc
ed

Ir
ac

e

Ir
ac

e
Ir

ac
e0.0

0.2

0.4

0.6

0.8

1.0

66 74 59 5 57 1 23 48 29 8 47 33 71 25 68 28 2 44 46 21 55 76 3 70 64 72 80 51 4 40 60 50 65 63 9 31 54 73 53 56 27 11 22 69 67 43 24 32 61 38 19 45 20 37 17 62 36 58 34 77 12 7 75 18 10 16 78 79 42 26 39 30 35 49 15 41 14 13 6 52

Dataset id

(b
al

an
ce

d)
 a

cc
ur

ac
y

defaults
Irace
irace.reduced

(b) HP tuning results for CART.

ps
o.

re
du

ce
d

ps
o.

re
du

ce
d

ps
o.

re
du

ce
d

ps
o.

re
du

ce
d

P
S

O
ps

o.
re

du
ce

d
P

S
O

ps
o.

re
du

ce
d

ps
o.

re
du

ce
d

P
S

O
ps

o.
re

du
ce

d
ps

o.
re

du
ce

d
P

S
O

P
S

O
ps

o.
re

du
ce

d

P
S

O

ps
o.

re
du

ce
d

P
S

O
P

S
O

ps
o.

re
du

ce
d

P
S

O
ps

o.
re

du
ce

d
P

S
O

P
S

O
ps

o.
re

du
ce

d

P
S

O

ps
o.

re
du

ce
d

ps
o.

re
du

ce
d

ps
o.

re
du

ce
d

ps
o.

re
du

ce
d

P
S

O
P

S
O

P
S

O

ps
o.

re
du

ce
d

ps
o.

re
du

ce
d

ps
o.

re
du

ce
d

ps
o.

re
du

ce
d

P
S

O
ps

o.
re

du
ce

d
P

S
O

ps
o.

re
du

ce
d

ps
o.

re
du

ce
d

P
S

O

ps
o.

re
du

ce
d

ps
o.

re
du

ce
d

ps
o.

re
du

ce
d

0.0

0.2

0.4

0.6

0.8

1.0

74 59 66 5 1 48 29 23 57 47 71 8 25 28 33 76 2 68 46 60 72 4 44 65 50 21 80 63 51 64 3 55 40 70 53 54 31 9 22 73 32 11 69 67 24 43 20 61 38 27 37 10 36 62 34 56 45 19 77 17 12 78 79 58 16 7 35 18 75 30 26 42 39 49 41 13 6 14 15 52

Dataset id

(b
al

an
ce

d)
 a

cc
ur

ac
y

defaults
PSO
pso.reduced

(c) HP tuning results for CTree.

Figure 28 – HP tuning results for DTs with reduced hyperspace..

6.8. Chapter Remarks 93

Table 11 – Statistical improvements with complete and reduced HP spaces.

Algorithm
Complete Reduced Both

Space Space Spaces
(N- -H) (N- -H) (N- -H)

J48 27-37-16 32-34-14 37-39-4

CART 49-18-13 29-34-17 52-26-2

CTree 9-32-39 25-38-17 25-55-0

HP space and default HP settings. The second line compare tuning with reduced HP space and
default HP settings. In the end, the last lines compares the best of both spaces (complete or
reduced) against the default HP values. On the remaining cases, approaches performed similarly.

Experimental results and statistical tests show different results for the different algorithms.
Although BAC curves seem similar, they indicate interesting behaviors. Tuning J48 and CTree
with the reduced HP space increased the number of cases where tuning is significantly better.
However, the default HP values would still be preferred for most of the problems. Moreover,
when CART HPs are tuned, the opposite occurs: using reduced HP space makes tuning less
effective than before.

Table 11 summarizes these statistics for each algorithm. There, it is possible to see that
removing unnecessary HPs benefits J48 and CTree tuning. The removed HPs could have added
noise during the optimization with the complete space, which is not considered now. On the other
hand, reducing the CART space worsened the tuning in general. It indicates that the removed
HPs are still important for the tuning of several datasets. Even though, in the three cases, when
the best choice of HP space is considered, all the algorithms had their number of statistically
significant improvements increased.

6.8 Chapter Remarks

This chapter investigated the HP profile of three DT induction algorithms. There are some
studies in the literature that perform HP tuning for DTs (BERMÚDEZ-CHACÓN; GONNET;
SMITH, 2015; WAINBERG; ALIPANAHI; FREY, 2016; SARDá-ESPINOSA; SUBBIAH;
BARTZ-BEIELSTEIN, 2017), but none of them used an unbiased experimental methodology
or complete HP space. Thus, to the best of our knowledge, this is the first investigative study
regarding the HP profile of DT algorithms.

As expected, different algorithms presented different HP profiles. Regarding the HP
tuning predictive performances, CART and CTree are complementary opposites. The first was
extremely sensitive while the second was unaffected by the HP tuning for most of the problems.
J48 stays in the middle: tuning obtained statistical improvements for almost half of the datasets.
This might be because default values adopted by RWeka were chosen to obtain the best overall
performance on UCI ML repository (BACHE; LICHMAN, 2013) datasets.

94 Chapter 6. Tuning of Decision Trees

Depending on the dataset, the predictive performance obtained by tuning techniques can
be very small in relation to those obtained by default HP settings. Hence, the results indicate that,
for some optimization problems, it is better to just use the default HP settings. When comparing
tuning techniques, different techniques are more suitable for different budget sizes. If the user
has a large enough budget, Irace is a good choice. On the other hand, PSO and SMBO are the
recommended techniques with a faster convergence.

The fANOVA analysis also indicated that few of the HPs are effectively responsible for
the predictive performance of the final trees. Similar results with different ML algorithms were
reported in Rijn and Hutter (2017). In this sense, the fANOVA framework is a powerful tool to
reduce the search HP space and time spent with optimization. The last experiments described in
this chapter showed that a higher number of statistically significant improvements were obtained
when a reduced HP space was used to tune J48 and CTree algorithms. All the data generated
from tuning tasks is meta-knowledge that will be used by the MtL recommender system proposed
in the next Chapter.

95

CHAPTER

7
TO TUNE OR NOT TO TUNE?

The SVM and DTs’ HP profiles show that tuning is not always necessary. In many
situations, default HP settings are already enough to induce accurate models. Therefore, when
computational resources are limited, knowing beforehand which approach should be used (tuning
or defaults) can reduce the computation time and efforts.

In this chapter, HP profiles are explored to propose a new MtL system to support the
identification of situations where HP tuning can improve classification algorithms’ performance.
As such, this system takes advantages of previous classification experiments tuning SVMs and
DTs. Given a new unseen dataset, the system recommends the most suitable approach: to tune or
not to tune HPs. The experiments described in this chapter have been published in Mantovani et

al. (2015c) and documented in Mantovani et al. (2018b).

The next sections are organized as follows: Section 7.1 presents the general MtL frame-
work and its sub-tasks; Section 7.2 presents results for SVMs while Section 7.3 analyzes results
for DTs; Section 7.4 projects system predictions in the base level; and Section 7.5 presents the
final remarks of the chapter.

7.1 Recommender system framework

The general overview of the proposed MtL system is illustrated in Figure 29. The
recommendation task contains two learning steps: the base level, where the HP tuning process is
performed for different datasets; and the meta level, where meta-learning is applied to output
the recommendation for a new dataset: to tune or not to tune." Further subsections will describe
each component of the framework.

96 Chapter 7. To tune or not to tune?

Figure 29 – MtL recommender system to predict whether HP tuning is required or not. Adapted
from (MANTOVANI et al., 2018b).

7.1.1 Base-level tuning

The HP tuning process illustrated in Figure 29 (Item 2) was performed over 165 datasets
(Item 1) for all the target algorithms (SVM, J48, CART, CTree). However, the tuning setup was
modified exploring the HP profiles identified in Chapters 5 (SVMs) and 6 (DTs). Thus:

• tuning of SVMs was performed with a budget size of b = 200 evaluations and using only
the RS technique ;

• tuning of J48 and CART was performed with a budget size of b = 900 evaluations and
using only the Irace technique; and

• tuning of CTree was performed with a budget size of b = 900 evaluations and using only
the PSO technique.

The tuning task was performed with the experimental methodology depicted in Figure 61.
Techniques were executed 30 times with different data seeds. It is important to mention that
tuning jobs were required only for the datasets not included in previous experiments. Datasets
whose results were already available did not need to be tuned again. At the end of the HP tuning
1 For more details, please see Chapter 4.

7.1. Recommender system framework 97

processes, each dataset has 30 solutions recommended by the tuning techniques (black dots at
the figure) and 30 obtained by default HP settings (red dots).

7.1.2 Meta-features

The meta-datasets used in the experiments were generated out of ‘meta-features’ de-
scribing each base level dataset (Figure 29 - Item 3). These meta-features were obtained by
applying measures that extract likely relevant characteristics from the data. A total of 80 different
meta-features from the different subsets described in Section 3.1.2 were used in this thesis. They
correspond to all the categories of descriptors explored in literature, and are described in detail
in Tables 22 and 23 at Appendix B. The exact number of meta-features used from each category
is described in Table 12.

Table 12 – Groups of meta-features used in experiments.

Group N Description

Simple 17 Simple measures

Statistical 7 Statistical measures

Information-theoretic 8 Information theory measures

Model-based (trees) 17 Features extracted from decision tree models

Landmarking 8 Measures based on the predictive performance of ML algorithms

Data Complexity 14 Measures that analyze the complexity of a problem

Complex Networks 9 Measures based on complex networks

Total 80

The Pearson correlation coefficient (HALL, 1998) values between each pair of meta-
features used to build meta-datasets are shown in Figure 30. High positive correlation values are
shown in red, while high negative values are in blue. Meta-features in the both axes are presented
in the same order as in Tables 22 and 23 of the Appendix B, according to their correspondent
groups. Most of the correlation matrix is composed by blank or light squares.

7.1.3 Meta-targets

Each object in a meta-dataset is labeled with a meta-target, whose value indicates
whether the HP tuning significantly improved the predictive performance of the ML model
when compared with the use of default HP settings2. The so-called “meta-label rule” (Item 4 -
Figure 29) applies the Wilcoxon paired-test to compare the solutions obtained using tuned and
default HP settings.

Thus, given a dataset, if the HP tuned solution was significantly better than the default
solution, its corresponding meta-example is labeled as ‘Tuning’; otherwise, as ‘Default’. When

2 These performance values are assessed by BAC using a nested-CV resampling method.

98 Chapter 7. To tune or not to tune?

classes
attributes
numeric
nominal
samples

dimension
numRate
nomRate

symbols_min
symbols_max

symbols_mean
symbols_sd

symbols_sum
classes_min
classes_max

classes_mean
classes_sd

sks
sksP

kts
ktsP

acsC
canC

frac
clEnt

nClEnt
atrEnt

nAtrEnt
jEnt

mutInf
eqAtr

noiSig
nodes
leaves

nodeAtr
nodeIns
leafCor
lev_min

lev_max
lev_mean

lev_sd
bran_min

bran_max
bran_mean

bran_sd
att_min

att_max
att_mean

att_sd
nb

stump_min
stump_max

stump_mean
stump_sd
stMinGain

stRand
nn
f1

f1v
f2
f3
f4
l1
l2
l3

n1
n2
n3
n4
t1
t2

edges
degree
density

maxComp
closeness

betweenness
clsCoef

hubs
avgPath

cl
as

se
s

at
tr

ib
ut

es
nu

m
er

ic
no

m
in

al
sa

m
pl

es
di

m
en

si
on

nu
m

R
at

e
no

m
R

at
e

sy
m

bo
ls

_m
in

sy
m

bo
ls

_m
ax

sy
m

bo
ls

_m
ea

n
sy

m
bo

ls
_s

d
sy

m
bo

ls
_s

um
cl

as
se

s_
m

in
cl

as
se

s_
m

ax
cl

as
se

s_
m

ea
n

cl
as

se
s_

sd sk
s

sk
sP kt

s
kt

sP
ac

sC
ca

nC fr
ac

cl
E

nt
nC

lE
nt

at
rE

nt
nA

tr
E

nt
jE

nt
m

ut
In

f
eq

A
tr

no
iS

ig
no

de
s

le
av

es
no

de
A

tr
no

de
In

s
le

af
C

or
le

v_
m

in
le

v_
m

ax
le

v_
m

ea
n

le
v_

sd
br

an
_m

in
br

an
_m

ax
br

an
_m

ea
n

br
an

_s
d

at
t_

m
in

at
t_

m
ax

at
t_

m
ea

n
at

t_
sd nb

st
um

p_
m

in
st

um
p_

m
ax

st
um

p_
m

ea
n

st
um

p_
sd

st
M

in
G

ai
n

st
R

an
d nn f1 f1
v f2 f3 f4 l1 l2 l3 n1 n2 n3 n4 t1 t2

ed
ge

s
de

gr
ee

de
ns

ity
m

ax
C

om
p

cl
os

en
es

s
be

tw
ee

nn
es

s
cl

sC
oe

f
hu

bs
av

gP
at

h

−1.0

−0.5

0.0

0.5

1.0

Pearson
Correlation

Figure 30 – Pearson correlation coefficient among the meta-features used to build meta-datasets.

performing the Wilcoxon test, three different values of α = {0.1, 0.05, 0.01} were considered,
resulting in meta-datasets with different class distributions (Item 5 - Figure 29).

For the SVM meta-datasets, initial designs were compared only the LibSVM default
HP settings with the tuned solutions. The resultant meta-datasets presented a high imbalance
rate, prevailing the “Tuning” class. However, this became an interesting problem when SVMs
“optimized default HP values”, presented in Section 5.6, are also considered. These values
were obtained optimizing common HP settings simultaneously for a group of datasets. Hence,
when labeling SVM’s meta-examples, the meta-rule first identifies the best default approach
(LibSVM or optimized values) for each dataset and then compares the results with tuned HP
settings. Through this approach, the imbalance rate3 in original SVMs’ meta-datasets was
reduced from ≈ 2.6 to ≈ 1.7, increasing the number of meta-examples where the use of defaults
is recommended.

Table 13 presents the meta-datasets generated from the tuning of the target algorithms.
For each resultant meta-dataset, the following information is provided: the α value used to

3 imbalance rate = (majority class size/minority class size)

7.1. Recommender system framework 99

generate the labels; the number of meta-examples and meta-features; and the class distribution.
It is important to mention that SVM’s meta-datasets contain fewer meta-examples because the
datasets used to produce optimized default HP settings were removed.

Table 13 – Meta-datasets generated for MtL experiments.

Meta-dataset α
Meta Meta Class Distribution

examples features Tuning Default

Svm_90 0.1 156 80 102 54
Svm_95 0.05 156 80 98 58
Svm_99 0.01 156 80 94 62

J48_90 0.1 165 80 63 102
J48_95 0.05 165 80 57 108
J48_99 0.01 165 80 52 113

Rpart_90 0.1 165 80 113 52
Rpart_95 0.05 165 80 111 54
Rpart_99 0.01 165 80 104 61

Ctree_90 0.1 165 80 42 123
Ctree_95 0.05 165 80 36 129
Ctree_99 0.01 165 80 26 139

Meta-datasets’ labels projected in the PCA space with only the first two components
are shown in Figure 31. The labels presented in the figure were defined by the meta-rule with
α = 0.05. Meta-examples belonging to the “Tuning” class are represented by black triangles,
while red squares denote those where default HP settings are suitable. This figure shows different
problems for different target algorithms.

CART and SVM problems contain more meta-examples that require tuning. It may be
observed by black triangle regions in the border of the space. At the same time, they seem
to be easier problems, since the overlapping region between classes is smaller than in the
other problems. J48 and CTree problems present a higher number of meta-examples where
default HP settings are better than tuned solutions. While in the J48 problem most of the tuning
meta-examples can be isolated, this is not possible for CTree. In the CTree problem, almost all
meta-examples from the minority class (Tuning) stay very close to a meta-example from the
majority class (Default). It suggests a very hard decision boundary.

7.1.4 Meta-learning setup

Seven classification algorithms were used as meta-learners (Item 7 - Figure 29): Support
Vector Machine (SVM); Classification and Regression Tree (CART); Random Forest (RF); k-
Nearest Neighbors (kNN); Naïve-Bayes (NB); Logistic Regression (LR); and Gaussian Processes
(GPs). These algorithms were chosen because they follow different learning paradigms with
different learning biases. All of them were applied to the meta-datasets using a 10-fold CV
resampling strategy and repeated 20 times with different seeds. Their predictions were assessed
using the AUC performance measure, a more robust measure than BAC for binary classification

100 Chapter 7. To tune or not to tune?

J48 SVM

CART CTree

−10 −5 0 5 10 −10 −5 0 5 10

−10

−5

0

5

10

−10

−5

0

5

10

1st Principal component

2n
d

P
rin

ci
pa

l c
om

po
ne

nt

Class

Defaults

Tuning

Figure 31 – Labels of the meta-datasets projected in the 2d PCA space. Meta-target labels were defined
with an alpha value of α = 0.05.

problems4. At the meta-level, it was possible to perform:

(i) Feature Selection: As each meta-example is described by many meta-features, a sub-
set of them could be enough to induce meta-models with high predictive performance.
Thus, a Sequential Forward Selection (SFS) method was added to the MtL experimental
setup to perform the meta-feature selection. The SFS method starts from an empty set of
meta-features, increasing the set iteratively with the feature that most improves predictive
performance. This process stops when a minimum required value of performance improve-
ment (al pha=0.01) is not satisfied. Internally, it uses a stratified 3-fold CV to assess the
predictive performance (AUC) of the induced models.

(ii) Tuning: Since the HP values of the meta-learners may also affect their performance, the
tuning of the meta-learners was also considered in the experimental setup. A simple RS
technique was performed with a budget of 300 evaluations. Resultant models were assessed
through an inner stratified 3-fold CV and the AUC measure. Table 24 in Appendix C shows
the HP space considered for the tuning of meta-learners.

4 The BAC measure was preferred at the base level because data collection contains binary and multiclass
classification problems.

7.2. When to tune SVMs? 101

(iii) Data balancing: Even using the optimized default HP values for SVMs, the classes pre-
sented in the meta-datasets still have a disproportional rate. Consequently, the application
of the Synthetic Minority Over-sampling Technique (SMOTE) technique (CHAWLA et

al., 2002), which can deal with data imbalance, was also investigated.

Some of the algorithms’ implementations selected as meta-learners use a data scaling process
by default. This is the case of SVMs, kNN, and GPs. These algorithms try to reduce distances
between examples or spaces. In this way, scaling all the attributes reduces the dominance an
attribute may have over others. Conversely, algorithms like DTs and RF follow a different
learning bias, requiring little data preparation (JAMES et al., 2014). In fact, a preliminary
experiment showed that algorithms presented their best predictive performances using their
default setups. Due to that, data scaling was not considered as an option, and algorithms used
their default procedures.

Two versions of the meta-datasets were also adopted for the experimental comparisons: a
meta-dataset only composed by simple meta-features and another just with data complexity meta-
features. These versions were initially investigated in the first experiments reported in Mantovani
et al. (2015c). Experimental results were also compared with two traditional baselines:

• ZeroR: a meta-model that always recommends the majority class label;

• (Random): a meta-model that provides random recommendations.

7.2 When to tune SVMs?
Figure 32 summarizes the predictive performance of different meta-learners for three

different sets of meta-features, namely: all, complex and simple. The former has all 80 available
meta-features, the complex set contains only 14 data complexity measures as meta-features and
the latter consists of 17 simple and general meta-features. In this figure, the x-axis shows the
meta-learners while the y-axis shows their predictive performance assessed by the AUC averaged
over 20 repetitions. Besides, it shows the impact of different alpha (α) levels for the Wilcoxon
test for the definition of the meta-target labels.

The Wilcoxon paired-test with α = 0.05 was also applied to assess the statistical signif-
icance of the predictive performance differences obtained by the meta-models with all meta-
features, when compared to the best baseline. An upper green triangle (N) at the x-axis identifies
situations where using all the meta-features were statistically better. On the other hand, red down
triangles (H) show results where one of the baselines was significantly better. In the remaining
cases, the predictive performance of the meta-models were equivalents.

The best results were obtained by the RF meta-learner using data complexity meta-
features (complex), achieving AUC values nearly 0.80 for all α levels. These meta-models were

102 Chapter 7. To tune or not to tune?

Table 14 – Meta-learning experimental setup.

Element Method R package

Meta-learner

Support Vector Machine (SVM) e1071
Classification and Regression Tree (CART) rpart
Random Forest (RF) randomForest
k-Nearest Neighbors (kNN) kknn
Naïve-Bayes (NB) e1071
Logistic Regression (LR) gbm
Gaussian Processes (GPs) kernlab

Resampling 10-fold CV mlr

Feature Selection Sequential Forward Selection (SFS) - al pha = 0.01 mlrinner 3-CV - measure AUC

Tuning
Random Search (RS)

mlrbudget = 300
inner 3-CV - measure AUC

Data Balancing SMOTE mlr
oversampling rate = nMa j(meta−dataset)

nMin(meta−dataset)

Repetitions 20 times with different seeds -
seeds = {1, . . . ,20} -

Evaluation measures AUC mlrpredictions (prob)

Baselines

Simple meta-features -
Data complexity meta-features -
Random meta-model mlr
ZeroR meta-model mlr

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

alpha = 0.1 alpha = 0.05 alpha = 0.01

R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR

0.5

0.6

0.7

0.8

Meta−learners

A
ve

ra
ge

 A
U

C Meta−features
● all

complex

simple

Figure 32 – Meta-learners average AUC results on SMV’s meta-datasets. The black dotted line at
AUC = 0.5 represents the predictive performance of ZeroR and Random meta-models. Figure
from Mantovani et al. (2018b).

also statistically better than those obtained by other approaches at α = {0.90,0.95}. When
α = 0.99, the RF meta-learner using all the meta-features also generated a model with AUC near
0.8.

When a lower value of α is considered by the meta-label rule, performances using
data complexity and all the available meta-features tend to show similar distributions. The
meta-learners obtained their best AUC values following the highest assumption (α = 0.99).

7.2. When to tune SVMs? 103

Overall, varying α values did not change the predictive performance of the evaluated algorithms
substantially. In fact, few meta-examples have their meta-targets modified by the meta-rule with
different values of alpha. Hence, the predictions in the different scenarios mostly are the same
and performances remain similar.

Regarding predictive performance, the algorithms = {RF, SVM, GP, kNN} induced
accurate meta-models for the three meta-dataset variations. The predictive performance obtained
varied between AUC = {0.70,0.80}. Even the LR, depending on the meta-features used to
represent the recommendation problem, achieved reasonable AUC values. For comparison
purposes, it is important to mention that both random and ZeroR5 obtained AUC of 0.5 in all
these meta-datasets6. Since best results for most of the meta-learners were obtained using all
meta-features, and the possibility to select different sub-sets from this dataset, the next analysis
was performed using all meta-features.

7.2.1 Evaluating different setups

Given the great difference among meta-learners’ results, three different setups were also
evaluated, aiming to improve their predictive performances and enabling a deeper analysis:

(i) featsel - meta-feature selection via SFS method (BISCHL et al., 2016);

(ii) tuned - HP tuning of the meta-learners via a simple RS technique; and

(iii) smote: data balancing with SMOTE (CHAWLA et al., 2002).

They were compared with the original meta-data with no additional process, namely none, which
is the baseline. Setups were not performed together to avoid overfitting, since meta-datasets have
not so many meta-examples. Depending on their combinations, three levels of CV would be used
to assess models. For example: if feature selection and HP tuning were enabled at the meta-level,
one CV would be used for feature selection, one for tuning and another one to assess resultant
models.

Figure 33 summarizes the main aspects of these experimental results. Figure 33a shows
the average AUC values for each experimental setup considering all the meta-learners and the
α levels. The NB and LR meta-learners do not have any tunable HP. Thus, their results in this
figure are missing for the tuned setups (with and without SMOTE).

As in the case of previous experiments, statistical analysis is presented. Every time an
upper green triangle is placed at the x-axis, raw meta-data (none) generated results statistically
better than using the best of the experimental setups evaluated. On the other hand, red triangles
indicate when tuning, feature selection or SMOTE could statistically improve meta-models. In

5 This classifier simply predict the majority class.
6 The AUC performance values were assessed using the implementations provided by mlr R package.

104 Chapter 7. To tune or not to tune?

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

alpha = 0.1 alpha = 0.05 alpha = 0.01
R

F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR

0.5

0.6

0.7

0.8

Meta−learners

A
ve

ra
ge

 A
U

C

Setup

●

●

none

none + smote

featsel

featsel + smote

tuned

tuned + smote

(a) Average AUC performance values.

alpha = 0.1

alpha = 0.05

alpha = 0.01

R
F

R
F.

sm
ot

ed
R

F.
fe

at
se

l
S

V
M

.s
m

ot
ed

R
F.

sm
ot

ed
.tu

ne
d

R
F.

tu
ne

d
R

F.
sm

ot
ed

.fe
at

se
l

G
P

.s
m

ot
ed G
P

S
V

M
K

N
N

.fe
at

se
l

G
P

.s
m

ot
ed

.tu
ne

d
K

N
N

.s
m

ot
ed

.fe
at

se
l

G
P

.tu
ne

d
S

V
M

.s
m

ot
ed

.fe
at

se
l

LR
.fe

at
se

l
K

N
N

.tu
ne

d
LR

.s
m

ot
ed

.fe
at

se
l

S
V

M
.s

m
ot

ed
.tu

ne
d

S
V

M
.fe

at
se

l
S

V
M

.tu
ne

d
G

P
.s

m
ot

ed
.fe

at
se

l
K

N
N

.s
m

ot
ed

.tu
ne

d
K

N
N

C
A

R
T.

sm
ot

ed
N

B
.fe

at
se

l
K

N
N

.s
m

ot
ed

C
A

R
T.

tu
ne

d
N

B
.s

m
ot

ed
.fe

at
se

l
G

P
.fe

at
se

l
C

A
R

T
C

A
R

T.
sm

ot
ed

.fe
at

se
l

C
A

R
T.

sm
ot

ed
.tu

ne
d

C
A

R
T.

fe
at

se
l

N
B

N
B

.s
m

ot
ed LR

LR
.s

m
ot

ed

Meta−learner

M
et

a−
da

ta
se

t

1

10

20

29

38
Rank

(b) Average AUC ranking values.

Figure 33 – AUC performance values obtained by all meta-learners considering different experimental
setups. The black dotted line at AUC = 0.5 represents the predictive performance of ZeroR
and Random meta-models. Figure from Mantovani et al. (2018b).

the remaining cases, meta-models were equivalents, and, in theory, no additional process would
be required.

Despite the different setups evaluated, RF is still the best meta-learner for all α scenarios.
It is followed by SVM and GP versions using SMOTE, and depending on the experimental setup,
kNN and LR also yield good predictive performances. Regarding the HP tuning (tuned) of the
meta-learners, kNN was the single one with performances slightly improved for all the alpha
values.

Using just smote improved results for SVM, GP and CART meta-learners. In general, it
produces small improvements, but most of them are statistically significant. When used with
tuning or feature selection, it generates different patterns: for SVM and GP it improves setups’
performances; for LR, NB and kNN it does not bring any benefit; and for the other algorithms its
use is indifferent. The SMOTE’s inefficiency may be due to the use of default HP values, which
was already maximized using the optimized values when creating the meta-datasets.

7.2. When to tune SVMs? 105

The use of feature selection (featsel) deteriorates the performance of
{SVM, RF, GP, CART} meta-learners. On the other hand, it quite improved {kNN, LR, NB}
performances for most cases. kNN benefits from a subset of meta-features to maximize the
importance of more relevant meta-features. For NB and LR, selecting a subset of the attributes
may reduce data noise and less-informative attribute. Furthermore, it is important to observe that
the meta-models with feature selection presented the highest standard deviation between the
setups (light area along the curve). It may be related to the different subsets selected every time
feature selection is performed for the 30 repetitions.

Additionally, Figure 33b presents a ranking of all the combinations of meta-learners
and experimental setups. In the x-axis, they are presented in ascending order according to their
average ranking for the three scenarios (α values), showed on the y-axis. More red the squares,
lower the ranking, i.e., better the results. As reported previously, RF with no additional option is
the best-ranked method. It is also clear the some of its versions are among the best meta-models,
strengthening its choice as a meta-learner. SVM, GP and kNN setups appear in the next positions.

7.2.2 Meta-features importance

From the induced RF meta-models, it is possible to estimate the relative importance of the
meta-features based on the Gini impurity index. This metric is internally used for the calculation
of node splits (BREIMAN, 2001). Figure 34 depicts the average relative importance of the
meta-features obtained from the RF meta-models. The importance is shown for the experiments
considering all meta-features and α = 0.05 (middle case). In the x-axis, meta-features are
presented in decreasing order according to their average relative importance values.

Figure 34 – Average meta-features relative importance’ obtained from RF meta-models. Figure from Man-
tovani et al. (2018b).

In the face of no negative importance value obtained, no meta-feature disrupted was
selected to build meta-models. It also shows that a lot of meta-features were relevant for the
induction of the meta-models, what explains somewhat why feature selection at the meta-level

106 Chapter 7. To tune or not to tune?

produced worse results for most of the meta-learners. The most important meta-feature was a
landmarking measure: “stump_sd”, which describes the standard deviation of the number of
examples correctly classified by a decision stump. It measures at a low level the complexity of
the problem considering its simplicity. The second most important was a simple meta-feature:
“classes_min”, a meta-feature which measures the minority class size. The third one was also
a simple meta-feature: “classes_sd”, which describes the standard deviation of the number of
examples in the classes.

These meta-features together strongly indicate that RF has its recommendations based
on the data imbalance: it suggests that high imbalance datasets might not provide better results
with tuning, then defaults are a good estimate for SVM’s HPs. The next seven most important
meta-features were:

• “nClEnt” and “mutInf ”: are information-theoretic meta-features. The first measure de-
scribes the class entropy for a normalized base level dataset, while the second measures
the mutual information, a reduction of uncertainty about one random feature given the
knowledge of another;

• “betweenness”: betweenness centrality is a meta-feature derived from complex networks
that measures for vertex and edges the average number of shortest paths that traverse them.
The value will be small for simple datasets, and high for complex datasets;

• “l1” and “t2”: are data complexity meta-features. The first measures the minimum of
an error function for a linear classifier, while the second measures the average number
of points per dimension. These features try to map the class separability (l1), and the
geometry of the problem’s dimension (t2);

• “dimension”: is a simple meta-feature which measures the relation between the number
of samples and attributes in the dataset;

• “maxComp”: it is also a complex-network meta-feature which measures the maximum
number of connected components in the graph. If a dataset presents a high overlapping
of its classes, the graph will present a large number of disconnected components, since
connections between different classes are pruned.

Among the most important, there are meta-features from different categories (simple, data com-
plexity, complex-networks and from information-theory). Complex-network measures describe
data complexity regarding graphs and indicate how sparse are the classes between their levels.
Data complexity meta-features try to extract information, directly and indirectly, related to the
class separability. The stump meta-feature comes in the same direction, trying to identify the
complexity of the problem by a simple landmarker. The information-theoretic meta-features
check indirectly how powerful are the datasets attributes to solve the classification problem.

7.2. When to tune SVMs? 107

Although summarized rules cannot be obtained from RF meta-models, the meta-features
importance analysis suggests some general aspects considered by the algorithm to provide
accurate recommendations. For instance, datasets qualities like data balancing, class sizes,
complexity, and linearity are important characteristics to recommend when a HP tuning is
required for SVMs.

7.2.3 Linearity Hypothesis

Previous section analysis suggests that linearity is a key aspect to decide between the
recommendation of default or tuned HPs for SVMs. Results indicate that default values might
be good for classification problems close to being linearly separable. As a consequence, tuning
would be required for “harder” problems, where SVMs would need to find irregular decision
boundaries.

−0.2

0.0

0.2

0.4

Base−level dataset / meta−example

P
er

fo
rm

an
ce

 D
iff

er
en

ce
(S

V
M

 −
 L

in
ea

r
C

la
ss

ifi
er

)

Class

Defaults

Tuning

Figure 35 – Performance differences between SVM and a linear classifier in all the base-level datasets.
Figure from Mantovani et al. (2018b).

To investigate this hypothesis, a linear classifier was also evaluated on all the 156 base-
level datasets where SVMs were evaluated. If the linearity hypothesis is true, the performance
difference between SVMs and the linear classifier in meta-examples labeled as “Defaults”
would be smaller than in meta-examples labeled as “Tuning”. Figure 35 depicts these perfor-
mance differences yielded for all base-level datasets. Datasets at the x-axis are split based on
their meta-target labels, namely “Tuning”, most left in black, and “Defaults”, most right in red.
Although there are some outliers, the performance differences for “Tuning” meta-examples are
in general much higher than for the “Defaults” ones. In fact, the observed patterns go towards
the linearity hypothesis.

In Leite, Brazdil and Vanschoren (2012), the authors proposed a set of “relative landmarks”
meta-features based on the pairwise performance difference of simple landmark algorithms.
Based on this idea, a set of 10 new relative landmark meta-features was generated from the
pair-wise performance comparison of five algorithms: kNN, LR, SVM, NB, and DS. All of these
new meta-features are described in Table 23 at Appendix B.

108 Chapter 7. To tune or not to tune?

Figure 36 – Average relative importance of the meta-features obtained from RF meta-models when
including new meta-features to the meta-dataset. Figure from Mantovani et al. (2018b).

RF meta-models were performed again with the expanded meta-datasets to analyze how
useful are the new meta-features. Figure 36 depicts the relative importance values of the meta-
features averaged over 30 executions with the expanded meta-dataset. The new meta-features are
highlighted in red, while the simple landmarks performances are shown in blue (for comparison
purposes).

Two of the relative landmark meta-features are placed in the top-10 most important
meta-features:

• 1st - diff.nn.lm: the performance difference between 1-NN and LR; and

• 3rd - diff.svm.nn: the performance difference between SVM and 1-NN.

Other two measures are at top-20: the performance difference between DS and LR
(diff.stump.lr), and the performance difference between SVM and LR (diff.svm.df.lr).
It is interesting that three of them are directly dependent of the LR performance. The simple
landmark meta-features performed in general worse than relative landmarks. All these relative
importance plots bring evidence that the linearity hypothesis is true, and at least one characteristic
that defines the need of tuning for SVMs is the linearity of the base-level classification problem.

Given the potential presented by the relative landmark meta-features, they were exper-
imentally evaluated in combination with the most important sets of meta-features previously
evaluated. Complex network (cnet) meta-features were included since they are ranked between
the most important descriptors (as described in Subsection 7.2.2). Simple and data complexity
(complex) meta-features are the first approaches adopted in the experiments.

Figure 37 presents a final comparison between the main experimental setups considering
the addition of the relative landmarking (relativeLand) meta-features. The left chart shows
AUC performance values obtained each of the original setups, while right picture presents setups

7.2. When to tune SVMs? 109

●

●

●

●

●

●

●
●

●

●

●

●

●

●

original original + relativeLand

R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Meta−learners

A
ve

ra
ge

 A
U

C

Setup

● all (none)

relativeLand

simple

complex

cnet

Figure 37 – Evaluating experimental setups adding relative landmarking meta-features. Results are aver-
aged over 30 different executions. Figure from Mantovani et al. (2018b).

performances including the relative landmarking meta-features. The black dashed line highlights
the maximum AUC value obtained so far in experiments without considering the new set of
meta-features.

The figure shows that relative landmarking meta-features improve all the setups tried
with them. At least three different setups used by RF could surpass the high AUC performance
value obtained in the experiments. The setup considering simple and relative landmarking meta-
features induced the best meta-models for {RF, SVM, GP} algorithms. kNN and LR reached
maximum results using a combination of data complexity and relative landmarking meta-features,
while for CART and NB just the “relativeLand” set was the best choice.

7.2.4 Checking predictions

Analyzing the predictions performed by the meta-learners at a finer granularity can be
useful to better understand their behavior. In this sense, Figure 38 depicts the misclassifications
of the meta-learners considering their best experimental setups. The top chart (Fig. 38a) shows
all the individual predictions, with the x-axis listing all the meta-examples and y-axis the meta-
models. “Defaults” labels are indicated in black, while “Tuning” ones are in gray. The top line
at y-axis, “Truth”, shows the truth labels of the meta-examples, which are ordered according to
their truth labels. The bottom line (“*”) shows red points for meta-examples misclassified by all
meta-learners.

In SVM tuning recommendation problem, “Defaults” is defined as the positive class

110 Chapter 7. To tune or not to tune?

(a) Meta-learners individual predictions.

0.0

0.2

0.4

0.6

R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR
Meta−learners

A
ve

ra
ge

m
is

sc
la

ss
ifi

ca
tio

n
ra

te
s

FN.Rate

FP.Rate

(b) Meta-learners’ misclassification rates.

Figure 38 – SVM’s meta-learners predictions considering their experimental setups which obtained the
best AUC values. Figure from Mantovani et al. (2018b).

and “Tuning” is the negative class. Therefore, a False Negative (FN) is a wrong recommendation
to perform HP tuning, while a False Positive (FP) is a wrong recommendation to use the default
HP values. It is desirable to reduce as most as possible the number of FN, but balancing the FP
occurrences to not lose performance.

Algorithms following different learning biases present different prediction patterns and
this may be observed in Figure 38. Few meta-examples are classified correctly by all the
meta-models. Looking at the patterns presented:

• kNN and GP minimize the FN rate (as may also be observed at Sub-figure 38b), classi-
fying correctly most of the situations where defaults are recommended. However, they
misclassified a lot of examples of “Tuning” class, penalizing the overall performance of
the recommender system;

• SVM, CART and LR minimized the FP rate, classifying mostly corrected the situations
where tuning improved statistically induced models. But, it suggests a behavior predicting
mostly the majority class (Tuning), what is also not desirable;

7.3. When to tune DTs? 111

A more balanced scenario is indeed provided by RF meta-models, reflecting their best per-
formance values in experiments. The algorithm is not the best predicting none of the classes
individually but reduced the error rates dealing with both classes.

Table 15 – Misclassified datasets by all the meta-learners in SVM meta-dataset.. For each dataset it is
shown: the meta-example number (Nro); the OpenML dataset name (Name) and id (id); the
number of attributes (D), examples (N) and classes (C); the proportion between the number of
examples from minority and majority classes (P); the performance values obtained by defaults
(Def) and tuned (Tun) HP settings assessed by BAC; and the truth label (Label).

Nro Name id D N C P Def (sd) Tun (sd) Label

17 jEdit_4.0_4.2 1073 8 274 2 0.96 0.73 (0.01) 0.73 (0.01) Defaults
36 banknote-authentication 1462 4 1372 2 0.80 0.99 (0.01) 0.99 (0.01) Tuning
78 autoUniv-au7-500 1554 12 500 5 0.22 0.29 (0.01) 0.31 (0.01) Tuning
97 optdigits 28 62 5620 10 0.97 0.99 (0.01) 0.99 (0.01) Tuning

Table 15 list all the datasets misclassified by all the meta-learners as indicated in Fig-
ure 38a. Meta-examples with ids 17 (“Defaults”) and 78 (“Tuning”) were corrected labeled
by the statistical meta-rule, so the misclassification may have occurred due to the lack of the
descriptive ability of meta-features or noise in the meta-dataset. The other two meta-examples
(36, 97) were both labeled as “Tuning” but the statistical difference indicated is very small
in terms of performance, and which may indicate a limitation of the current meta-target rule
criterion.

7.3 When to tune DTs?

The predictive performance of the meta-learners when applied to the DTs meta-datasets
are summarized in Figure 39. The same approaches previously investigated with SVMs (all,
simple, complex) were also applied in the DT target algorithms. The statistical results from
pair-wise comparisons are also indicated at the x-axis. Predictive performance assessed in y-axis
were measured with the AUC averaged over 20 repetitions. Plots also show the impact of different
alpha (α) levels at the meta-target rule. For comparisons, it is important to mention that both
Random and ZeroR7 meta-models obtained AUC of 0.5 in all these meta-datasets8

The best results considering J48 meta-datasets (Figure 39a) were obtained by the
{RF, SVM, GP} meta-learners. They obtained their best predictive performances using prefer-
ably all the available meta-features. These meta-models achieved AUC values between auc =

(0.67,0.74) for all the α values. It is interesting to note that a more rigid assumption at the meta-
rule (α = 0.01) provided the best results for some algorithms. It may be the case that predictions
are tending to a specific class since this meta-dataset is imbalanced. When α = {0.95,0.99},
the RF meta-learner using only the simple meta-features also generated accurate meta-models

7 This classifier simply predict the majority class.
8 The AUC performance values were assessed using the implementations provided by mlr R package.

112 Chapter 7. To tune or not to tune?

with AUC > 0.7. However, in general, the complete set of meta-features provided best results
for most algorithms.

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

alpha = 0.1 alpha = 0.05 alpha = 0.01

R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR

0.4

0.5

0.6

0.7

Meta−learners

A
ve

ra
ge

 A
U

C Meta−features
● all

complex

simple

(a) AUC values for J48’s meta-datasets.

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

alpha = 0.1 alpha = 0.05 alpha = 0.01

R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR

0.4

0.5

0.6

0.7

0.8

Meta−learners

A
ve

ra
ge

 A
U

C Meta−features
● all

complex

simple

(b) AUC values for CART’s meta-datasets.

●
●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●●

●
●

alpha = 0.1 alpha = 0.05 alpha = 0.01

R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR

0.4

0.5

0.6

0.7

Meta−learners

A
ve

ra
ge

 A
U

C Meta−features
● all

complex

simple

(c) AUC values for CTree’s meta-datasets.

Figure 39 – Meta-learners average AUC results on DTs meta-datasets.

Figure 39b depicts the experimental results for CART meta-datasets. Best results were
obtained by RF meta-models using data complexity meta-features, but with no significance in
relation to the complete set of meta-features. These meta-models achieved AUC values near 0.8

7.3. When to tune DTs? 113

for all α values. In fact, these two approaches (“complex” and “all”) performed quite similar
when explored by the meta-learners. The α value used by the meta-label rule seems no to
influence meta-learners’ performance. In addition to RF, all the algorithms, with the exception of
NB and LR, induced meta-models with predictive performance auc > 0.75.

The results obtained by the meta-learners in CTree’s meta-datasets are summarized in
Figure 39c. Contrarily to the other two target algorithms, CTree is a highly imbalanced problem.
Predictive performance values obtained in this scenario are the lowest regarding AUC. The best
results were obtained by the kNN meta-models using data complexity meta-features, especially
when α = {0.95,0.99}. RF could also induce accurate models, but only using the set of simple
meta-features. As shown in Figure 31 from Section 7.1.3, the decision boundaries in the CTree
problem are very fuzzy. This fact may be the reason why meta-learners did provide accurate
models in this scenario.

The best results for CART and J48 were obtained when inducing meta-models with
all the available meta-features. Since it is possible to select different subsets from them, the
next analyzes for these meta-datasets were performed using the complete set of meta-features.
On the other hand, for CTree the maximum AUC value was obtained with RF and the simple
descriptors. Thus, the “simple” meta-features were selected for the next analysis regarding
CTree HP recommendation.

7.3.1 Evaluating different setups

The three different setups were also evaluated when performing experiments with DT
meta-datasets: meta-feature selection via SFS method (featsel); data imbalance with SMOTE
(smote); and HP of the meta-learners via RS technique (tuned). The original meta-datasets,
without any auxiliary process and namely none, are the baselines.

Figure 40 summarizes the main results of the experiments with the DT meta-datasets.
The NB and LR algorithms do not have any tunable HP. Consequently, their results for tuned
setups are missing. The top chart (Figure 40a) shows the average AUC values for the J48
meta-datasets considering all the meta-learners and α levels. In general, when considering AUC
values obtained in original meta-datasets, improvements were obtained only for CART and KNN
applying SMOTE at α = {0.95,0.99}. For the other algorithms, best meta-learners were still
induced without any additional process.

The middle figure (Figure 40b) presents results obtained in CART meta-datasets. Unlike
the results achieved with the J48 target algorithm, the use of SMOTE improved the AUC values
for most algorithms. Although improvements are small, they were statistically significant for
{GP, KNN, NB} with any value of alpha (α). Regarding the HP tuning of the meta-learners,
KNN and CART were the only algorithms with performances slightly improved by its use.
However, CART improvements did not surpass AUC performances obtained using only SMOTE.

114 Chapter 7. To tune or not to tune?

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

alpha = 0.1 alpha = 0.05 alpha = 0.01

R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR

0.4

0.5

0.6

0.7

Meta−learners

A
ve

ra
ge

 A
U

C

Setup

●

●

none

none + smote

featsel

featsel + smote

tuned

tuned + smote

(a) J48 meta-datasets’ average AUC values.

●
●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

alpha = 0.1 alpha = 0.05 alpha = 0.01

R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR

0.4

0.5

0.6

0.7

0.8

Meta−learners

A
ve

ra
ge

 A
U

C

Setup

●

●

none

none + smote

featsel

featsel + smote

tuned

tuned + smote

(b) CART meta-datasets’ average AUC values.

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
● ●

● ●

●

●

●

●

●
●

●

●

●

alpha = 0.1 alpha = 0.05 alpha = 0.01

R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR

0.4

0.5

0.6

0.7

Meta−learners

A
ve

ra
ge

 A
U

C

Setup

●

●

none

none + smote

featsel

featsel + smote

tuned

tuned + smote

(c) CTree meta-datasets’ average AUC values.

Figure 40 – AUC performance values obtained by all meta-learners in DTs meta-datasets considering
different experimental setups. Results are averaged over 20 repetitions.

7.3. When to tune DTs? 115

The use of feature selection deteriorates all the algorithms’ performances, except by the LR
meta-learner. A linear classifier with just a subset of features could improve AUC values from
0.55 to 0.75. Results suggest that the hyperplane efficiency is maximized when a subset of
features is considered, with classes becoming more separated.

The bottom figure (Figure 40c) presents results for CTree meta-datasets. Among the
three target DT algorithms, this is the most irregular scenario mainly due to the high imbalance
between classes. For this, the SMOTE technique could slightly improve meta-learners when
α = {0.90,0.95}. The of use of HP tuning at the meta-level improved specifically SVM and
GP meta-learners. However, these improvements may be related to an overfitting behavior,
classifying all the meta-examples with the majority class label “(Defaults)”. When feature
selection is considered, {GP, KNN, CART} meta-learners had their performances improved, but
statistically significant only for KNN.

The general picture shows that different setups could improve different algorithms. J48
had no improvement with additional learning processes. On the other hand, CART and CTree
results were improved with the use of SMOTE. Overall, even presenting some statistically signif-
icant improvements, none of the target problems had their maximum performances improved
by additional processes. Thus, it indicates a feature engineering is more important than using
additional learning processes.

7.3.2 Meta-features importance

As explored with SVM’s MtL results, RF meta-models were used to estimate the relative
importance of the meta-features (based on the Gini impurity index). Figure 41 shows the average
relative importance values for each meta-features in DT meta-datasets. The importance is shown
for the experiments considering all meta-features and α = 0.05 (middle case). RF meta-models
obtained from J48 and CART meta-datasets were induced with all the available meta-features.
For CTree, the RF meta-models used only the subset with the simple meta-features9. In all
of the analyzes, results were achieved in meta-datasets considering α = 0.05 (middle case).
Relative importance values were also normalized between [0,1]. Thus, it is possible to measure
how the same meta-feature can influence different problems. In the x-axis meta-features are
organized by their correspondent categories10.

As expected, the figure shows that different meta-features are important for different
problems. Disregarding CTree curve, which has one value for the simple meta-features, mea-
sures from different categories are important for the same problem. For example, the absolute
correlation of the attributes (abs_cor) meta-features is important for solving J48 and CART
problems. Another example is the number of samples which is important in CTree and CART
tuning recommendations. However, in most cases, an important meta-feature is activated only

9 Meta-features were selected according to the results shown in Figure 39.
10 Meta-features’ categories are listed in Tables 22 and 23 at Appendix B.

116 Chapter 7. To tune or not to tune?

Figure 41 – Average meta-features’ relative importance obtained from RF meta-models on DTs meta-
datasets. Values are normalized in the interval [0,1] for each one of the meta-datasets.

in a single problem. The most important meta-feature for the J48 problem was the data com-
plexity measure “f4”. This feature describes the collective attribute efficiency in a dataset. The
second most important one was a simple meta-feature: “abs_cor”, a metric that measures the
linear relationship between two attributes. This value is averaged over all pairs of attributes in
the dataset. The top-3 is completed with another data complexity meta-feature: “f3”, which
describes the maximum individual attribute efficiency. The two data complexity features measure
the discriminative power of the dataset’s attributes, while the absolute correlation verifies if the
information provided by attributes is not redundant. These most important metrics suggest that if
a dataset has representative attributes, default HP values are robust to solve it. Otherwise, HP
tuning is recommended.

For the CART meta-dataset, the two most important meta-features are: “n3” “nn”. The
first one is a data complexity meta-feature, and the second one a traditional landmarking. Both
measures estimate the error rate of the 1-NN classifier, by leave-one-out or cross-validation.
They measure how close the examples of different classes are. Low values mean that there is a
large gap in the class boundary. The third most important is also a data complexity meta-feature:
“n2”, that is the average intra-class and inter-class distances ratio used by a kNN algorithm to
classy data examples. Low values indicate that examples from the same class lay closely in the
feature space. In this way, it suggests that if the dataset’s examples from the same class are close
to each other, the 1-NN will find them closely in the feature space, and CART would also be
capable solving it without tuning. On the other hand, examples would be more overlapped, and
the HP tuning would fit better the learning bias of the algorithm.

The most important meta-features for the CTree meta-dataset are: the number of “samples”

7.3. When to tune DTs? 117

of the dataset; its “dimensionality”; and the proportion of examples belonging to the minority
class (“class_min”). In CTree base-level results most of the datasets had better performances
using default HP settings than tuned trees. These meta-features may suggest in which cases tun-
ing is recommended. At a first look, tuning is most suitable for datasets with high dimensionality
and imbalance rates. In all other cases, defaults are already robust.

In general, different aspects are being considered when choosing between tuned of default
HP settings for the target algorithms: the discriminative power of the attributes is important
to recommend the J48 tuning; the dispersion of datasets’ examples from different classes to
recommend CART tuning; and the dimensionality of a problem to recommend tuning for CTrees.
At least for J48 and CART, it is important to verify the importance of the dataset’s attributes
before do the HP tuning, which makes sense for a DT induction algorithm.

7.3.3 Checking predictions

(a) Meta-learners individual predictions.

0.00

0.25

0.50

0.75

R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR

Meta−learners

A
ve

ra
ge

m
is

sc
la

ss
ifi

ca
tio

n
ra

te
s

FN.Rate

FP.Rate

(b) Meta-learners’ misclassification rates.

Figure 42 – Meta-learners’ misclassifications in the J48 meta-dataset. Results consider the experimental
setups which obtained best AUC values when at α = 0.05.

The predictions obtained by the meta-learners in the DT meta-datasets can be useful to
better understand results. In this sense, Figure 42 depicts the misclassifications predictions of all

118 Chapter 7. To tune or not to tune?

the meta-learners considering their best experimental setups for the J48 meta-dataset. The figure
shows all the individual predictions, with the x-axis listing all the meta-examples and the y-axis
the meta-models. “Defaults” meta-examples are firstly shown in black, followed by ‘Tuning”
ones in gray. The top line at y-axis, “Truth”, shows the truth labels of the meta-examples, while
the bottom line (“*”) shows red points for meta-examples misclassified by all meta-learners.

In the experiments with DTs, the positive and negative classes are the same as defined
for SVMs. The positive class recommends the use of Defaults HP settings, and the negative
class recommends the HP “Tuning”. Thus, FP is a wrong recommendation to use default HP
values, while FN is a wrong recommendation to perform tuning. It is desirable for a meta-model
to minimize FN and FP rates, predicting as most as possible both classes. By this convention,
results from different target algorithms can be compared to each other.

The top chart (Figure 42a) shows all the individual predictions for the J48 meta-dataset.
Most of the “Defaults” labels are correctly predicted by GP and SVM meta-learners. However,
they overfitted predicting wrongly the minority “Tuning” class. Conversely, LR and KNN were
accurate to indicate when tuning is required, but also recommended the HP tuning for several
datasets where it is not needed. More balanced predictions are provided by the RF meta-model
(Figure 42b), reflecting a better performance compared with other algorithms.

All the meta-learners misclassified just five meta-examples, mostly multiclass problems
and all labeled with the Tuning class. The main characteristics of these base-level datasets are
listed in Table 16. Their meta-target values are correctly defined by the meta-target rule and,
therefore, the misclassification may have occurred due to the lack of the descriptive ability of the
meta-features or due to noise in the meta-dataset.

Table 16 – Misclassified datasets by all the meta-learners in J48 meta-dataset. For each dataset it is shown:
the meta-example number (Nro); the OpenML dataset name (Name) and id (id); the number of
attributes (D), examples (N) and classes (C); the proportion between the number of examples
from minority and majority classes (P); the performance values obtained by defaults (Def) and
tuned (Tun) HP settings assessed by BAC; and the truth label (Label).

Nro Name id D N C P Def (sd) Tun (sd) Label

5 ar4 1061 29 107 2 0.23 0.65 (0.01) 0.70 (0.01) Tuning
37 volcanoes-a1 1527 3 3252 5 0.02 0.58 (0.01) 0.71 (0.01) Tuning
54 libras_move 299 90 360 15 0.46 0.68 (0.01) 0.70 (0.01) Tuning
72 diggle_table_a2 694 8 310 9 0.44 0.96 (0.01) 0.97 (0.01) Tuning
165 yeast_v7 40733 8 1269 4 0.01 0.62 (0.01) 0.64 (0.01) Tuning

Figure 43a shows the individual predictions obtained in the CART meta-dataset. The
use of defaults has the best predictions provided by {NB, KNN, GP} meta-models. However,
the same meta-models also presented FP rates > 0.3. The NB, in particular, presented a FP rate
> 0.5, wrongly predicting half of the meta-examples where HP is required. The misclassification
rates of these meta-models can be observed in Figure 43b. Unlike the J48 problem, most of the
meta-examples belong to the Tuning class. In this context, the tuning recommendation is most

7.3. When to tune DTs? 119

(a) Meta-learners individual predictions.

0.0

0.2

0.4

R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR

Meta−learners

A
ve

ra
ge

m
is

sc
la

ss
ifi

ca
tio

n
ra

te
s

FN.Rate

FP.Rate

(b) Meta-learners’ misclassification rates.

Figure 43 – Meta-learners’ misclassifications in the CART meta-dataset. Results consider the experimental
setups which obtained best AUC values when at α = 0.05.

correctly classified by RF and CART meta-learners. These two algorithms also provided the
most balanced relation between the misclassification rates.

Table 17 list all the datasets misclassified by all the meta-learner in the CART meta-
dataset. Meta-examples with ids ={40,147,156} were labeled to use default HP settings, while
the other obtained best results with tuned trees. Looking to the values provided to the meta-target
rule, all the meta-examples are correctly labeled, so the misclassification may have occurred due
to a lack of descriptive information from the meta-features.

The individual predictions obtained in the CTree meta-dataset are shown in Figure 44a.
Similarly to the J48 problem, most of the meta-examples belong to the Default class, but CTree
meta-dataset presents the highest imbalanced rate among target algorithms. Even exploring
different setups at the meta-level, in particular, the SMOTE technique, all the meta-models
overfitted. Virtually, all the meta-examples belonging to the minority class are misclassified,
and meta-models obtained FP rates > 0.6. Among the meta-models, the KNN obtain the most
reduced error rates.

120 Chapter 7. To tune or not to tune?

Table 17 – Misclassified datasets by all the meta-learners in CART meta-dataset. For each dataset it is
shown: the meta-example number (Nro); the OpenML dataset name (Name) and id (id); the
number of attributes (D), examples (N) and classes (C); the proportion between the number of
examples from minority and majority classes (P); the performance values obtained by defaults
(Def) and tuned (Tun) HP settings assessed by BAC; and the truth label (Label).

Nro Name id D N C P Def (sd) Tun (sd) Label

40 volcanoes-a4 1530 3 1515 5 0.02 0.28 (0.01) 0.28 (0.01) Defaults
147 wall-robot-navigation-v3 1526 4 5456 4 0.15 1.00 (0.00) 1.00 (0.00) Defaults
156 steel-plates-fault 1504 33 1941 2 0.53 1.00 (0.00) 1.00 (0.00) Defaults

17 pc1_req 1167 8 320 2 0.50 0.56 (0.01) 0.58 (0.01) Tuning
55 credit-a 29 15 690 2 0.80 0.84 (0.01) 0.85 (0.01) Tuning
58 grub_damage 338 8 155 4 0.39 0.39 (0.01) 0.42 (0.01) Tuning
65 schizo 466 14 340 2 0.92 0.80 (0.01) 0.82 (0.01) Tuning
85 autoUniv-au6-1000 1555 40 1000 8 0.37 0.19 (0.01) 0.22 (0.01) Tuning
90 autoUniv-au7-500 1554 12 500 5 0.22 0.37 (0.01) 0.38 (0.01) Tuning
112 hayes-roth 329 4 160 3 0.01 0.58 (0.01) 0.75 (0.01) Tuning

The relative landmarking meta-features, previously explored, were used only by SVMs
due to the linearity hypothesis demonstrated by results. It may be the case that they work for
DTs as well, but the experimental results suggest that other meta-features are important for these
algorithms.

7.4 Projecting meta-models at the base-level
Even doing extensive analysis at the meta-level, it is important to evaluate the predictive

performance of the MtL systems for the target algorithms at the base-level. In this line, MtL
recommendations to use tuned or default HP settings were projected into the base-level datasets
for each target algorithm. The best meta-learners identified in the experiments were compared
with three simple baselines:

• Tuning: a model that always recommended the HP tuning;

• Defaults: a model that always recommended the use of defaults; and

• (Random): a model that provided random recommendations.

Figure 45 depicts a scatter plot with the projected BAC performance and runtime values
averaged over all the base-level datasets. Results are presented separately for each algorithm.
Overall, performing the HP tuning always has the highest average BAC value, except for CTree,
which is not so sensitive to HP tuning. However, it is the most expensive approach for all
algorithms. Using default HP values is trivially the fastest approach. It presented the lower
average performance value for SVM, J48 and CART target algorithms. For CTree, it performed
quite good, since in most of the base-level datasets induced models were not improved by tuning.
In all the scenarios, the Random meta-learner stays in the middle case between always tuning or
using default HP settings.

7.4. Projecting meta-models at the base-level 121

(a) Meta-learners individual predictions.

0.00

0.25

0.50

0.75

R
F

S
V

M

G
P

K
N

N

C
A

R
T

N
B

LR

Meta−learners

A
ve

ra
ge

m
is

sc
la

ss
ifi

ca
tio

n
ra

te
s

FN.Rate

FP.Rate

(b) Meta-learners’ misclassification rates.

Figure 44 – Meta-learners’ misclassifications in the CTree meta-dataset. Results consider the experimental
setups which obtained best AUC values when at α = 0.05.

Through the figure it is possible to identify three different situations when the MtL
system is used:

• CART and SVM: in these meta-datasets, “Tuning” is mostly, but not always recom-
mended. The proposed meta-models are above Random and Defaults baselines, perform-
ing closely to the Tuning baseline but with lower average runtime costs. They are also
considerably near the ground truth (Truth), specially for CART;

• J48: mostly, but not all of the meta-examples are labeled with Defaults. The proposed
meta-models are above Defaults, but relatively close to the Random and Tuning baselines.
The average BAC values of all the approaches are very close, even considering all the
baselines. This can be noted by the scale at the y-axis. However, all the meta-models have
lower average runtime when compared with Random and Tuning baselines;

• CTree: this meta-dataset is highly imbalanced, with almost all of the meta-examples
labeled to use default HP settings. Besides that, the CTree HP profile shows lower perfor-

122 Chapter 7. To tune or not to tune?

●

●

●

●
●

●

●
●

●

●

●

●

J48 SVM

CART CTree

0 500 1000 1500 0 1000 2000

0 200 400 600 800 0 250 500 750
0.629

0.631

0.633

0.635

0.69

0.70

0.71

0.72

0.64

0.65

0.66

0.67

0.665

0.670

Average Runtime
(seconds)

A
ve

ra
ge

 P
er

fo
rm

an
ce

(B
al

an
ce

d
ac

cu
ra

cy
)

Meta−learners

●

●

●

RF

SVM

GP

KNN

CART

NB

LR

Tuning

Defaults

Random

Truth

Figure 45 – Performance of the meta-learners projected into the base-level datasets. Figure adapted
from Mantovani et al. (2018b).

CD

1 2 3 4 5 6 7 8 9 10

CART
Tuning

RF
KNN
SVM

Defaults
Random

NB
LR
GP

(a) CART CD diagram with α = 0.05.

CD

1 2 3 4 5 6 7 8 9 10

KNN
SVM
RF

CART
NB

Random
Tuning

LR
GP

Defaults

(b) CTree CD diagram with α = 0.05.

CD

1 2 3 4 5 6 7 8 9 10

RF
NB
LR

KNN
CART

Defaults
GP

Random
SVM

Tuning

(c) J48 CD diagram with α = 0.05.

CD

1 2 3 4 5 6 7 8 9 10

SVM
Tuning

RF
CART

LR

Defaults
Random

NB
KNN
GP

(d) SVM CD diagram with α = 0.05.

Figure 46 – Comparison of the BAC values of the meta-model approaches according to the Nemenyi test.
Groups of techniques that are not significantly different are connected.

7.5. Chapter remarks 123

mances when tuning is applied11. Thus, the proposed meta-models are above Random and
Tuning (the worst) baselines. They also perform closely to the Defaults baseline (the
best), but not to the ground Truth. These results reflect somewhat the overfitting observed
in the meta-level learning task.

The Friedman test (DEMŠAR, 2006), with a significance level of α = 0.05, was also
used to assess the base-level predictions. The null hypothesis states that all the meta-learners
and baselines are equivalent regarding the average predictive BAC performance. When the
null hypothesis is rejected, the Nemenyi post-hoc test is also applied to indicate when two
different techniques are significantly different. Figure 46 presents the CD diagrams for the target
algorithms.

CD diagram at Figure 46a shows the statistical results for CART. The approach using
always default HPs (Defaults) is ranked last, followed by the Random baseline. Almost all
meta-learners are significantly better than both and are equivalent to Tuning, which always
performs the HP tuning. The same can be said for SVM’s results in Figure 46d. For J48 and
CTree (Figures 46c and 46b), most of the meta-models are better ranked than baselines, but,
overall, there are no statistical differences among the evaluated approaches.

With many datasets at the base-level, it is also correct to emphasize that the overall gain
is diluted between them. Even so, the meta-learners could considerably reduce the computational
costs related to tuning, keeping an accurate performance on recommendations. Finally, the
proposed MtL recommender system proves to be suitable for the target algorithms most sensitive
to the HP tuning (CART, SVM). Statistically significant results were obtained with a lower
runtime associated. On the other hand, when a HP profile describes an algorithm more likely to
use default HP settings, the MtL system does not provide statistically significant results.

7.5 Chapter remarks

This chapter proposed a new MtL recommender system to support the identification of
cases where HP tuning can improve the predictive performance of classification algorithms. For
such, it takes advantage of large-scale experiments tuning SVMs and DT induction algorithms
over a comprehensive data collection.

Unlike the two related studies in literature (MOLINA et al., 2012; RIDD; GIRAUD-
CARRIER, 2014), the meta-level experiments described in this Chapter explored a large number
of heterogeneous datasets, an unbiased tuning methodology, and induced meta-models for each
of the four target algorithms: SVM, J48, CART, and CTree. The experimental setup also included
meta-features from several categories and different learning processes.

11 See Figure 21 at Section 6.4.3.

124 Chapter 7. To tune or not to tune?

The obtained results presented accurate meta-models (0.7 < auc < 0.8) for most of the
target algorithms. Further, these meta-models could be improved when SMOTE was used to
reduce the data imbalance of the meta-datasets. For the CTree algorithm, in particular, meta-
models predictive performances could not surpass auc < 0.7. It is clear that data imbalance is
one of the main problems, but it may be the case the meta-datasets are not properly described by
the available meta-features.

A descriptive analysis of the meta-models indicated which characteristics may be re-
sponsible for the HP tuning necessity for the target algorithms. The tuning of SVMs is strongly
related to the non-linearity of the input problem. J48 requires tuning when the datasets’ attributes
are not descriptive enough, while CART tuning is recommended when dataset’s examples are
overlapped into the feature space. Even CTree not being sensitive to the HP tuning, when it is
required the datasets are high dimensional with many meta-examples.

The last experiments described in this chapter showed that the proposed MtL recom-
mender system is an interesting tool to reduce time spent with optimization processes, keeping
the predictive performances of the induced models. Depending on the target algorithm, the
effectiveness of the MtL recommender system can be statistically significant when projecting
results to the base-level learning. It was observed especially for the target algorithms CART
and SVM, which present the most sensitive HP profiles. The other two DT algorithms, J48 and
CTree, had their default HP settings robust for most of the datasets. However, from a user’s point
of view, it could be interesting to follow MtL recommendations to perform tuning, although the
results were not statistically significant.

125

CHAPTER

8
CONCLUSIONS

The increasing availability of data has increased the popularity of ML solutions able to
relieve humans from many risky, repetitive or tedious activities. In many cases, this requires
that ML algorithms are used in new and innovative ways. This development process is heavily
based on human experts to perform manual tasks such as data preprocessing, feature engineering
and evaluation of several possible ML algorithms. Hence, as the complexity of such solutions
increases, so does the demand for automated solutions that can be used easily and without high
human intervention. In this sense, the so-called Automated ML solutions (AutoML) can increase
the widespread use of efficient ML solutions and free data scientists and practitioners from
repetitive and time-consuming tasks. Thus, more applications can benefit from the use of ML
and data scientists can allocate their time on more creative and important tasks than fine tuning
algorithms (FEURER et al., 2015).

Most of the algorithms employed in AutoML systems have HPs, which usually affect
their predictive performance. Therefore, a recurrent task in AutoML design is tuning these
HPs. Several authors explored optimization techniques to automatically search for suitable HP
settings (BERGSTRA; BENGIO, 2012; KOTTHOFF et al., 2016; LÓPEZ-IBÁÑEZ et al., 2016).
Although HP tuning may lead to more accurate models, the optimization process for finding
these HP settings is still very time-consuming. Recently, MtL has been efficiently applied in
the HP tuning task to overcome these limitations, suggesting initial points to an optimization
technique (GOMES et al., 2012; MIRANDA et al., 2012; FEURER et al., 2015) or estimating
the predictive performance of a model given a HP setting (EGGENSPERGER et al., 2018;
WISTUBA; SCHILLING; SCHMIDT-THIEME, 2018).

Nevertheless, there is no guarantee that tuning will generate better results than just using
the default HP settings provided by ML packages and tools. Therefore, when computational
resources are limited, knowing beforehand which approach is more adequate (tuning or using
defaults) can reduce the computational cost of the ML task. Also, it is also important to know
which technique to use when tuning is required.

126 Chapter 8. Conclusions

This thesis proposed a new MtL recommender system to indicate in which situations
HP tuning should be applied. This objective is accomplished by proposing a framework able to
predict when HP tuning is expected to lead to models with statistically significant improvements
in predictive performance after identifying the HP profile of ML algorithms.

The experiments presented in this thesis improve the state of the art of MtL and of HP
tuning in the following ways:

• providing an enhanced experimental methodology for HP tuning and MtL tasks (code
available);

• presenting a large set of experiments with SVMs to identify their HP profile and the
effectiveness of a simple RS technique;

• presenting a large set of experiments with DTs to find their HP profiles, improving the
identification of when it is better to use tuned or default HP values;

• proposing a MtL recommender system capable of generalizing several learning processes
into a single modular framework, along with the possibility of assigning different ML
algorithms and HP optimization techniques.

8.1 Main contributions and results
The first contribution from this Ph.D. thesis is a novel evaluation methodology adopted

to perform base-level HP tuning and meta-level experiments, which is unusual in the related
literature. HP tuning results were obtained by an enhanced and reproducible methodology, using
a large number of heterogeneous datasets, tuning techniques with different biases, and evaluating
results with a measure that considers the imbalance between classes in real datasets, the BAC1

measure.

There is no consensus in the literature regarding the utility of MtL for HP tuning, and
each work generates meta-knowledge following different assumptions. However, most of the
studies have base-level tuning using simple GPs or even simply doing HP sweeps over the
hyperspace.

At the meta-level, the results reported in this thesis were obtained considering a wide
set of options. Our experimental setup also included different ML algorithms as meta-learners,
and not only an instance-based algorithm (kNN), as used in most studies. The complete pipeline
also considered data preprocessing techniques to deal with tasks like data imbalance treatment
(SMOTE), feature selection (SFS) and the tuning of these meta-learners (RS). As described in
Section 3.4, none of the related studies had applied these options together as the MtL system
proposed in this thesis.
1 Balanced per class accuracy.

8.1. Main contributions and results 127

The third important aspect regarding the experimental methodology is the reproducibility
of the experiments, which is also usually not guaranteed by related work. Although some studies
provide their source code, few offer the complete experimental results. Thus, the automated
and reproducible methodology (BISCHL et al., 2016; VANSCHOREN et al., 2013; CASALIC-
CHIO et al., 2017) adopted throughout this thesis generated a valuable contribution to the MtL
community as meta-knowledge for further research2.

8.1.1 SVM HP profile

SVMs are highly sensitive to their HP values and, therefore, widely explored by recent
studies (PADIERNA et al., 2017; LORENA et al., 2018). However, there is a lack of studies
benchmarking different techniques when performing their tuning. In fact, there is another study
benchmarking different SVM implementations (HORN et al., 2016), but the authors compared
models tuned by the same technique (SMBO). The experiments carried out with simple and
population-based techniques showed that only few HP evaluations are required to reach good
solutions in the SVM hyperspace. Further, all the techniques performed statistically better than
models induced by default HP values. However, when compared to each other, there were
no statistical differences. Thus, to the best of our knowledge, the experiments described in
Chapter 5 were the first showing the effectiveness of a simple RS technique for SVM HP
tuning (MANTOVANI et al., 2015a).

Further, experimental results also showed that default HP values proposed by SVM
tools 3 are not suitable for a large number of classification tasks. Thus, the experiments described
in section 5.6 present a new approach, namely “Optimized defaults”, which addresses these
limitations by optimizing new SVM HPs based on a group of heterogeneous datasets. The use of
this new set of HP values produced significantly better models than the default values suggested
by ML tools (MANTOVANI et al., 2015b). Experimental results showed that it is a promising
approach which could be extended to different ML algorithms.

8.1.2 DT HP profiles

Although high predictive performance is the most adopted measure to evaluate ML
algorithms, in many applications, easy interpretability of the results is also an important require-
ment. This characteristic is found in DT induction algorithms (ROKACH; MAIMON, 2014).
Although there are several studies investigating HP tuning for SVMs, the same is not true for
DTs. There are some prior studies investigating the evolutionary design of new DT induction
algorithms (BARROS et al., 2012; BARROS; CARVALHO; FREITAS, 2015), but only a few on
HP tuning for DT (REIF; SHAFAIT; DENGEL, 2011; MOLINA et al., 2012; REIF et al., 2014).

2 Code and results are publicly available. A list of the correspondent repositories can be found at Table 5.
3 At this point, they come from LibSVM and WEKA implementations.

128 Chapter 8. Conclusions

Hence, the set of experiments described in Chapter 6 is the first large study investigating the HP

profile of DT algorithms (MANTOVANI et al., 2016; MANTOVANI et al., 2018a).

Experiments were carried out with three popular DT algorithms in more than 94 clas-
sification datasets. The obtained results showed that each algorithm has its HP profile, which
impacts the results obtained by the tuning techniques. HP tuning on DTs presented different
scenarios, with some contradictory results for different DTs. The CART was the only algorithm
to present a high sensitivity to HP tuning. For J48 and CTree, the improvements obtained by
tuning techniques can be very small. Thus, for some optimization problems, it is better just to
use the default HP settings. When comparing tuning techniques, different approaches are more
suitable for different budget sizes. If the user has a large budget, Irace is indicated. On the other
hand, PSO and SMBO are the most suitable techniques with a faster convergence when tuning
DTs.

The fANOVA analysis (HUTTER; HOOS; LEYTON-BROWN, 2014) reported in Sec-
tion 6.6 also indicated that few of the HPs are effectively responsible for the predictive per-
formance of the induced trees. Similar results but with different ML algorithms were reported
in ML (RIJN; HUTTER, 2017). In this sense, fANOVA may be used to reduce the search
HP space and time spent with the optimization. The last experiments described in the chapter
showed that a higher number of statistical improvements were obtained when a reduced HP
space was used to tune J48 and CTree algorithms. Although this principled tuning of models
was demonstrated with DTs, it may be easily explored for any ML algorithm with HPs.

8.1.3 MtL recommender system

All HP tuning results with SVMs and DTs showed that tuning is not always necessary. In
many situations, default HP settings are enough to induce accurate models. Chapter 7 presented a
new MtL recommender system to support the identification of cases where HP tuning can improve
the predictive performance of classification algorithms. Similar studies were also reported in
the literature (MOLINA et al., 2012; RIDD; GIRAUD-CARRIER, 2014), but, unlike them,
the system proposed in this thesis was the first to predict the necessity of HP tuning inducing
meta-models for individual target algorithms (MANTOVANI et al., 2015c) and exploring a wider
experimental setup with heterogeneous datasets (MANTOVANI et al., 2018b).

Experiments were performed with four different target algorithms, evaluating different
experimental setups at the meta-level. The obtained results resulted in accurate meta-models for
most the target algorithms, with AUC values in the interval auc ∈ (0.68,0.83), especially when
SMOTE was used to reduce the data imbalance of the meta-datasets. For the CTree algorithm in
particular, the HP tuning recommendation problem was highly imbalanced in favor of the use of
default values.

The descriptive analyses in Sections 7.2.2 and 7.3.2 indicate which data characteristics

8.2. Publications 129

may be indicate the HP tuning necessity for the target algorithms. The tuning of SVMs is
strongly related to the non-linearity of the input problem. J48 requires tuning when the predictive
attributes of a dataset are not descriptive enough, while CART tuning is recommended when the
examples in a dataset are overlapped into the feature space. Even CTree, which does not require
tuning for most datasets, it is recommended for high-dimensional datasets with many examples.

The last experiments described in this chapter showed that the proposed MtL recom-
mender system reduced the optimization time without reducing the predictive performance of
the induced models. Depending on the target algorithm, the effectiveness of the MtL recom-
mender system was statistically significant when projecting results to the base-level datasets.
This behavior was observed especially for the target algorithms CART and SVM, which were
the most sensitive to tuning according to their HP profiles. For the other two DT algorithms,
J48 and CTree, their default HP settings were robust for most of the datasets. However, from a
user’s point of view, it could be interesting to follow MtL recommendations to perform tuning,
although the results were not statistically significant.

8.2 Publications

Several papers have been published during the development of the research for this thesis.
Hence, part of the results reported throughout this thesis can be found in these publications, as
presented next:

8.2.1 Papers originated from thesis

• R. G. Mantovani, A. L. D. Rossi, J. Vanschoren, B. Bischl, A. C. P. L. F. de Carvalho.
Effectiveness of Random Search in SVM hyper-parameter tuning. IJCNN 2015: 1-8;

• R. G. Mantovani, A. L. D. Rossi, J. Vanschoren, B. Bischl, A. C. P. L. F. de Carvalho.
To tune or not to tune: Recommending when to adjust SVM hyper-parameters via
meta-learning. IJCNN 2015: 1-8;

• R. G. Mantovani, A. L. D. Rossi, J. Vanschoren, A. C. P. L. F. de Carvalho. Meta-
learning Recommendation of Default Hyper-parameter Values for SVMs in Classifi-
cation Tasks. MetaSel@PKDD/ECML 2015: 80-92;

• R. G. Mantovani, T. Horváth, R. Cerri, J. Vanschoren, A. C. P. L. F. de Carvalho. Hyper-
Parameter Tuning of a Decision Tree Induction Algorithm. BRACIS 2016: 37-42;

• R. G. Mantovani, T. Horvath., R. Cerri, J. Vanschoren, A. C. P. L. F. de Carvalho. Tuning
Trees: on hyperparameter optimization for decision trees. 2018, pg 1-54 (under review
- Soft Computing journal);

130 Chapter 8. Conclusions

• R. G. Mantovani, A. L. D. Rossi, E. Alcobaça, J. Vanschoren, A. C. P. L. F. de Carvalho.
A meta-learning recommender system for hyperparameter tuning: Suggesting when
tuning improves SVM classifiers. 2018, pg 1-38 (under review - Data Mining and Knowl-
edge Discovery journal).

8.2.2 Collaborations in the same research topic

• T. Horváth, R. G. Mantovani, A. C. P. L. F. de Carvalho. Effects of Random Sampling
on SVM Hyper-parameter Tuning. ISDA 2016: 268-278;

• B. Bischl, G. Casalicchio, M. Feurer, F. Hutter, M. Lang, R. G. Mantovani, J. N. van Rijn,
J. Vanschoren. OpenML Benchmarking Suites and the OpenML100. 2017, pgs 1-6
(under review - Journal of Machine Learning Open Source Software);

• M. P. Basgalupp, R. C. Barros, A. G. C. de Sá, G. L. Pappa, R. G. Mantovani, A. C. P.
L. F. de Carvalho, A. A. Freitas. An Extensive Experimental Evaluation of Automated
Machine Learning Methods for Recommendation Classification Algorithms. 2018,
pg 1-25 (under review - Evolutionary Computing journal);

• T. Horvath, R. G. Mantovani, A. C. P. L. F. de Carvalho. Fast Data Characterization for
Meta-learning: Untapped Potentialities of PCA Meta-Features, (in preparation), pgs
1-30, 2018.

8.3 Limitations

During the base-level experiments, there were several difficulties to generate the meta-
knowledge. The process itself is computationally expensive, since a large number of tuning tasks
must be run and evaluated on a wide range of datasets. Initially, a larger number of datasets were
selected, but some of them were extremely expensive for HP tuning and meta-feature extraction.
A walltime of 100 hours was then defined and the problematic datasets were filtered out from the
dataset collection used in the experiments.

The thesis did not discuss questions regarding the“tuning of the tuning techniques”. In
the tuning experiments carried out, all the default settings provided by the implementations of
the optimization techniques were used. In fact, most of these default values have been evaluated
in benchmarking studies and reported to provide good predictive performance (BISCHL et al.,
2017; CÁCERES; LÓPEZ-IBÁÑEZ; STÜTZLE, 2014), while PSO’s showed to be robust in
a high number of datasets. EDAs are known to be sensitive concerning their population sizes,
while there is no standard choice for the GA’s parameter values (MILLS; FILLIBEN; HAINES,
2015). Even adapting both to handle mixed HP spaces they performed poorly when tuning
DTs. These results suggest that fine-tuning of the GA HPs would be needed. Since this would

8.4. Future Work 131

considerably increase the cost of experiments by adding a new tuning level, and most of the
techniques performed well with default values, this additional tuning step was not assessed in
this thesis.

The class imbalance at the meta-level was another problem that needed to be looked
at. At least for SVMs, the optimized default HP settings (MANTOVANI et al., 2015b) were
added to the experimental setup, maximizing the number of meta-examples labeled with the
class “’Default’.

Moreover, in all the target meta-datasets, some of the meta-examples were never correctly
predicted. These results suggest that the current meta-feature sets do not extract enough infor-
mation to describe characteristics relevant to the recommendation process. In fact, the results
suggested that a meta-feature engineering step is more important than adding learning processes
to the MtL pipeline. Thus, further investigations are necessary to discover new alternatives for
data characterization that could improve the predictive performance of the meta-models.

8.4 Future Work

The main findings also point out possible future research directions. First, the proposed
MtL recommender system could be extended to different ML algorithms, supporting the tuning
decision in different domains. Therefore, it would be possible to provide more accurate sugges-
tions exploring different data transformation methods at the meta-learning level, such as data
dimensionality techniques.

As suggested by the experiments, a feature engineering study could improve current
results. Thus, it would be interesting to investigate different meta-features to characterize datasets.
Also, a multicriteria objective function could replace the current meta-label rule, weighing
predictive performance, runtime and predictions. Another possibility would be to explore the
use of ensembles, given the complementary behavior of some of the algorithms studied here as
meta-learners.

Experiments described in Section 6.7 also open new possibilities for automated HP
tuning systems. Given the results reported there, a MtL system could be developed to recommend
in which situations it is interesting to perform HP tuning with the complete or reduced HP set.
Thus, a more focused tuning could be performed using a smaller number of evaluations and only
the most important HPs.

Another possibility of research is to expand the idea of AutoML system covered in this
thesis. In this case, the system would not only recommend when HP tuning is necessary but
also preprocessing methods, ML algorithms, and post-processing analysis able to explain the
experimental results. Thus, given a new dataset, the AutoML system would recommend the most
suitable components to solve the input problem. In fact, our research groups have already begun

132 Chapter 8. Conclusions

work in this direction.

133

BIBLIOGRAPHY

ABDULRAHMAN, S. M.; BRAZDIL, P.; RIJN, J. N. van; VANSCHOREN, J. Speeding up algo-
rithm selection using average ranking and active testing by introducing runtime. Machine Learn-
ing, v. 107, n. 1, p. 79–108, 2018. Available: <https://doi.org/10.1007/s10994-017-5687-8>.
Citation on page 42.

ALI, S.; SMITH-MILES, K. A. A meta-learning approach to automatic kernel selection for
support vector machines. Neurocomputing, v. 70, n. 13, p. 173–186, 2006. Citations on pages
26, 39, 43, and 44.

ANDRADOTTIR, S. A review of random search methods. In: FU, M. C. (Ed.). Handbook of
Simulation Optimization. [S.l.]: Springer New York, 2015, (International Series in Operations
Research & Management Science, v. 216). p. 277–292. Citations on pages 33 and 67.

BACHE, K.; LICHMAN, M. UCI Machine Learning Repository. 2013. Available: <http:
//archive.ics.uci.edu/ml>. Citation on page 93.

BARDENET, R.; BRENDEL, M.; KÉGL, B.; SEBAG, M. Collaborative hyperparameter tuning.
In: DASGUPTA, S.; MCALLESTER, D. (Ed.). Proceedings of the 30th International Confer-
ence on Machine Learning (ICML-13). [S.l.]: JMLR Workshop and Conference Proceedings,
2013. v. 28, n. 2, p. 199–207. Citations on pages 26, 32, 33, and 34.

BARROS, R.; BASGALUPP, M.; CARVALHO, A. de; FREITAS, A. A survey of evolutionary
algorithms for decision-tree induction. Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, v. 42, n. 3, p. 291–312, May 2012. Citations on pages
75, 76, and 127.

BARROS, R. C.; CARVALHO, A. C. P. L. F. de; FREITAS, A. A. Automatic Design of
Decision-Tree Induction Algorithms. Springer, 2015. (Springer Briefs in Computer Science).
ISBN 978-3-319-14230-2. Available: <http://dx.doi.org/10.1007/978-3-319-14231-9>. Cita-
tions on pages 75 and 127.

BEN-HUR, A.; WESTON, J. A user’s guide to support vector machines. In: Data Mining
Techniques for the Life Sciences. [S.l.]: Humana Press, 2010, (Methods in Molecular Biology,
v. 609). p. 223–239. Citations on pages 32 and 56.

BENDTSEN., C. pso: Particle Swarm Optimization. [S.l.], 2012. R package version 1.0.3.
Available: <https://CRAN.R-project.org/package=pso>. Citation on page 61.

BENSUSAN, H.; GIRAUD-CARRIER, C.; KENNEDY, C. A higher-order approach to meta-
learning. In: Proceedings of the ECML - Workshop on Meta-Learning: Building Automatic
Advice Strategies for Model Selection and Method Combination. [S.l.: s.n.], 2000. p. 109–
118. Citation on page 41.

BERGSTRA, J.; BENGIO, Y. Random search for hyper-parameter optimization. J. Mach.
Learn. Res., v. 13, p. 281–305, Mar. 2012. Citations on pages 26, 32, 33, 34, 67, 78, and 125.

https://doi.org/10.1007/s10994-017-5687-8
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/978-3-319-14231-9
https://CRAN.R-project.org/package=pso

134 Bibliography

BERGSTRA, J.; YAMINS, D.; COX, D. D. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In: Proc. 30th Intern. Conf.
on Machine Learning. [S.l.: s.n.], 2013. p. 1–9. Citation on page 34.

BERGSTRA, J. S.; BARDENET, R.; BENGIO, Y.; KéGL, B. Algorithms for hyper-parameter
optimization. In: SHAWE-TAYLOR, J.; ZEMEL, R. S.; BARTLETT, P. L.; PEREIRA, F.;
WEINBERGER, K. Q. (Ed.). Advances in Neural Information Processing Systems 24. [S.l.]:
Curran Associates, Inc., 2011. p. 2546–2554. Citations on pages 26, 33, and 34.

BERMÚDEZ-CHACÓN, R.; GONNET, G. H.; SMITH, K. Automatic problem-specific hyper-
parameter optimization and model selection for supervised machine learning: Technical
Report. Zürich, 2015. Citation on page 93.

BIRATTARI, M.; YUAN, Z.; BALAPRAKASH, P.; STÜTZLE, T. F-race and iterated f-race:
An overview. In: . Experimental Methods for the Analysis of Optimization Algorithms.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. p. 311–336. ISBN 978-3-642-02538-9.
Citations on pages 36 and 78.

BISCHL, B.; LANG, M.; KOTTHOFF, L.; SCHIFFNER, J.; RICHTER, J.; STUDERUS, E.;
CASALICCHIO, G.; JONES, Z. M. mlr: Machine learning in r. Journal of Machine Learning
Research, v. 17, n. 170, p. 1–5, 2016. Available: <http://jmlr.org/papers/v17/15-066.html>.
Citations on pages 58, 60, 103, and 127.

BISCHL, B.; RICHTER, J.; BOSSEK, J.; HORN, D.; THOMAS, J.; LANG, M. mlrMBO: A
Modular Framework for Model-Based Optimization of Expensive Black-Box Functions. 2017.
Available: <http://arxiv.org/abs/1703.03373>. Citations on pages 60, 61, and 130.

BRAGA, I.; CARMO, L. P. do; BENATTI, C. C.; MONARD, M. C. A note on parameter
selection for support vector machines. In: CASTRO, F.; GELBUKH, A.; GONZÁLEZ, M. (Ed.).
Advances in Soft Computing and Its Applications. [S.l.]: Springer Berlin Heidelberg, 2013,
(Lecture Notes in Computer Science, v. 8266). p. 233–244. Citation on page 63.

BRAZDIL, P.; GAMA, J.; HENERY, B. Characterizing the applicability of classification algo-
rithms using meta-level learning. In: Proceedings of the European conference on machine
learning on Machine Learning. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1994. p.
83–102. ISBN 3-540-57868-4. Citation on page 41.

BRAZDIL, P.; GIRAUD-CARRIER, C.; SOARES, C.; VILALTA, R. Metalearning: Appli-
cations to Data Mining. 2. ed. [S.l.]: Springer Verlag, 2009. Citations on pages 25, 39, 40,
and 51.

BRAZDIL, P. B.; HENERY, R. J. Analysis of results. In: MICHIE, D.; SPIEGELHALTER, D. J.;
TAYLOR, C. C.; CAMPBELL, J. (Ed.). Machine learning, neural and statistical classifica-
tion. [S.l.]: Ellis Horwood, 1994. chap. 10, p. 175–212. ISBN 0-13-106360-X. Citation on page
41.

BREIMAN, L. Random forests. Machine Learning, Kluwer Academic Publishers, Hingham,
MA, USA, v. 45, n. 1, p. 5–32, Oct. 2001. Citation on page 105.

BREIMAN, L.; FRIEDMAN, J.; OLSHEN, R.; STONE, C. Classification and Regression
Trees. [S.l.]: Chapman & Hall (Wadsworth, Inc.), 1984. Citations on pages 56 and 76.

http://jmlr.org/papers/v17/15-066.html
http://arxiv.org/abs/1703.03373

Bibliography 135

BROCHU, E.; CORA, V. M.; FREITAS, N. de. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
CoRR, abs/1012.2599, 2010. Citation on page 34.

BRODERSEN, K. H.; ONG, C. S.; STEPHAN, K. E.; BUHMANN, J. M. The balanced accuracy
and its posterior distribution. In: Proceedings of the 2010 20th International Conference on
Pattern Recognition. [S.l.]: IEEE Computer Society, 2010. p. 3121–3124. ISBN 978-0-7695-
4109-9. Citation on page 59.

CÁCERES, L. P.; LÓPEZ-IBÁÑEZ, M.; STÜTZLE, T. An analysis of parameters of irace. In:
. Evolutionary Computation in Combinatorial Optimisation: 14th European Confer-

ence, EvoCOP 2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014. p. 37–48. ISBN 978-3-662-44320-0. Citation on
page 130.

CASALICCHIO, G.; BOSSEK, J.; LANG, M.; KIRCHHOFF, D.; KERSCHKE, P.; HOFNER,
B.; SEIBOLD, H.; VANSCHOREN, J.; BISCHL, B. OpenML: An R package to connect to
the machine learning platform OpenML. Computational Statistics, p. 1–15, 2017. Available:
<http://dx.doi.org/10.1007/s00180-017-0742-2>. Citations on pages 58, 60, and 127.

CAWLEY, G. C.; TALBOT, N. L. C. On over-fitting in model selection and subsequent selection
bias in performance evaluation. The Journal of Machine Learning Research, v. 11, p. 2079–
2107, 2010. Available: <http://www.jmlr.org/papers/v11/cawley10a.html>. Citations on pages
57 and 62.

CHANG, C.-C.; LIN, C.-J. LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, v. 2, p. 27:1–27:27, 2011. Citation on page 63.

CHAWLA, N. V.; BOWYER, K. W.; HALL, L. O.; KEGELMEYER, W. P. SMOTE: synthetic
minority over-sampling technique. J. Artif. Int. Res., AI Access Foundation, v. 16, n. 1, p.
321–357, 2002. ISSN 1076-9757. Citations on pages 101 and 103.

CLERC, M. Standard partcile swarm optimization. 15 pages. 2012. Citation on page 61.

DEMŠAR, J. Statistical comparisons of classifiers over multiple data sets. The Journal of
Machine Learning Research, v. 7, p. 1–30, 2006. Citations on pages 59 and 123.

DUARTE, E.; WAINER, J. Empirical comparison of cross-validation and internal metrics for
tuning svm hyperparameters. Pattern Recogn. Lett., Elsevier Science Inc., New York, NY, USA,
v. 88, n. C, p. 6–11, Mar. 2017. ISSN 0167-8655. Available: <https://doi.org/10.1016/j.patrec.
2017.01.007>. Citation on page 63.

EGGENSPERGER, K.; LINDAUER, M.; HOOS, H. H.; HUTTER, F.; LEYTON-BROWN,
K. Efficient benchmarking of algorithm configurators via model-based surrogates. Machine
Learning, v. 107, n. 1, p. 15–41, 2018. Citations on pages 45, 48, and 125.

FEURER, M.; KLEIN, A.; EGGENSPERGER, K.; SPRINGENBERG, J.; BLUM, M.; HUTTER,
F. Efficient and robust automated machine learning. In: CORTES, C.; LAWRENCE, N. D.; LEE,
D. D.; SUGIYAMA, M.; GARNETT, R. (Ed.). Advances in Neural Information Processing
Systems 28. [S.l.]: Curran Associates, Inc., 2015. p. 2944–2952. Citations on pages 25, 26, 42,
44, 46, 47, 51, 52, 57, and 125.

http://dx.doi.org/10.1007/s00180-017-0742-2
http://www.jmlr.org/papers/v11/cawley10a.html
https://doi.org/10.1016/j.patrec.2017.01.007
https://doi.org/10.1016/j.patrec.2017.01.007

136 Bibliography

FEURER, M.; SPRINGENBERG, J. T.; HUTTER, F. Initializing bayesian hyperparameter
optimization via meta-learning. In: Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence. AAAI Press, 2015. (AAAI’15), p. 1128–1135. ISBN 0-262-51129-0.
Available: <http://dl.acm.org/citation.cfm?id=2887007.2887164>. Citations on pages 26, 41,
42, 44, 47, 51, 52, and 57.

FRIEDRICHS, F.; IGEL, C. Evolutionary tuning of multiple svm parameters. Neurocomputing,
Elsevier Science Publishers B. V., v. 64, p. 107–117, 2005. Citation on page 35.

GARCIA, L. P.; de Carvalho, A. C.; LORENA, A. C. Effect of label noise in the complexity of
classification problems. Neurocomputing, v. 160, p. 108–119, 2015. ISSN 0925-2312. Citations
on pages 42, 152, and 153.

GARCIA, L. P. F.; CARVALHO, A. C. P. L. F. de; LORENA, A. C. Noise detection in the
meta-learning level. Neurocomputing, v. 176, p. 14–25, 2016. Available: <https://doi.org/10.
1016/j.neucom.2014.12.100>. Citation on page 42.

GASCóN-MORENO, J.; SALCEDO-SANZ, S.; ORTIZ-GARCíA, E. G.; CARRO-CALVO,
L.; SAAVEDRA-MORENO, B.; PORTILLA-FIGUERAS, J. A. A binary-encoded tabu-list
genetic algorithm for fast support vector regression hyper-parameters tuning. In: International
Conference on Intelligent Systems Design and Applications. [S.l.: s.n.], 2011. p. 1253–1257.
Citation on page 67.

GOMES, T. A. F.; PRUDÊNCIO, R. B. C.; SOARES, C.; ROSSI, A. L. D.; CARVALHO nd A. C.
P. L. F. Combining meta-learning and search techniques to select parameters for support vector
machines. Neurocomputing, Elsevier Science Publishers B. V., Amsterdam, The Netherlands,
The Netherlands, v. 75, n. 1, p. 3–13, Jan. 2012. Citations on pages 26, 35, 41, 44, 46, 51, 63,
and 125.

GONZALEZ-FERNANDEZ, Y.; SOTO, M. copulaedas: An R package for estimation of distri-
bution algorithms based on copulas. Journal of Statistical Software, v. 58, n. 9, p. 1–34, 2014.
Available: <http://www.jstatsoft.org/v58/i09/>. Citation on page 61.

GOOGLE. Google Cloud AutoML. 2018. <https://cloud.google.com/automl/>. Accessed: 2018-
01-20. Citation on page 26.

GUNASEKARA, N.; PANG, S.; KASABOV, N. Tuning N-gram string kernel SVMs via meta
learning. In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). [S.l.: s.n.], 2010. v. 6444 LNCS,
p. 91–98. Citations on pages 45, 48, and 51.

HALL, M.; FRANK, E.; HOLMES, G.; PFAHRINGER, B.; REUTEMANN, P.; WITTEN, I. H.
The weka data mining software: An update. SIGKDD Explor. Newsl., ACM, New York, NY,
USA, v. 11, n. 1, p. 10–18, Nov. 2009. Citation on page 60.

HALL, M. A. Correlation-based Feature Subset Selection for Machine Learning. Phd The-
sis (PhD Thesis) — University of Waikato, Hamilton, New Zealand, 1998. Citation on page
97.

HAUSCHILD, M.; PELIKAN, M. An introduction and survey of estimation of distribution
algorithms. Swarm and Evolutionary Computation, v. 1, n. 3, p. 111 – 128, 2011. Citation
on page 35.

http://dl.acm.org/citation.cfm?id=2887007.2887164
https://doi.org/10.1016/j.neucom.2014.12.100
https://doi.org/10.1016/j.neucom.2014.12.100
http://www.jstatsoft.org/v58/i09/
https://cloud.google.com/automl/

Bibliography 137

HO, T. K.; BASU, M. Complexity measures of supervised classification problems. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, v. 24, n. 3, p. 289–300, 2002.
Citation on page 42.

HORN, D.; DEMIRCIOĞLU, A.; BISCHL, B.; GLASMACHERS, T.; WEIHS, C. A com-
parative study on large scale kernelized support vector machines. Advances in Data Analysis
and Classification, p. 1–17, 2016. ISSN 1862-5355. Available: <http://dx.doi.org/10.1007/
s11634-016-0265-7>. Citations on pages 63, 73, and 127.

HORNIK, K.; BUCHTA, C.; ZEILEIS, A. Open-source machine learning: R meets Weka.
Computational Statistics, v. 24, n. 2, p. 225–232, 2009. Citation on page 61.

HOTHORN, T.; HORNIK, K.; ZEILEIS, A. Unbiased recursive partitioning: A conditional
inference framework. Journal of Computational and Graphical Statistics, v. 15, n. 3, p. 651–
674, 2006. Citations on pages 56, 61, and 76.

HSU, C.-W.; CHANG, C.-C.; LIN, C.-J. A Practical Guide to Support Vector Classification.
Taipei, Taiwan, 2007. Citation on page 63.

HUTTER, F.; HOOS, H.; LEYTON-BROWN, K. An efficient approach for assessing hyper-
parameter importance. In: Proceedings of the 31th International Conference on Machine
Learning, ICML 2014, Beijing, China, 21-26 June 2014. [s.n.], 2014. p. 754–762. Available:
<http://jmlr.org/proceedings/papers/v32/hutter14.html>. Citations on pages 89 and 128.

HUTTER, F.; HOOS, H.; LEYTON-BROWN, K.; STÜTZLE, T. Paramils: an automatic algo-
rithm configuration framework. Journal of Artificial Intelligence Research, n. 36, p. 267–306,
2009. Citation on page 48.

JAMES, G.; WITTEN, D.; HASTIE, T.; TIBSHIRANI, R. An Introduction to Statistical
Learning: With Applications in R. [S.l.]: Springer Publishing Company, Incorporated, 2014.
ISBN 1461471370, 9781461471370. Citation on page 101.

JANKOWSKI, D.; JACKOWSKI, K. Evolutionary algorithm for decision tree induction. In:
SAEED, K.; SNášEL, V. (Ed.). Computer Information Systems and Industrial Management.
[S.l.]: Springer Berlin Heidelberg, 2014, (Lecture Notes in Computer Science, v. 8838). p. 23–32.
Citation on page 76.

KALOS, A. Automated neural network structure determination via discrete particle swarm
optimization (for non-linear time series models). In: Proceedings of the 5th WSEAS Interna-
tional Conference on Simulation, Modelling and Optimization. [S.l.]: World Scientific and
Engineering Academy and Society (WSEAS), 2005. (SMO’05), p. 325–331. Citation on page
35.

KANDA, J.; CARVALHO, A. C. P. L. F.; HRUSCHKA, E.; SOARES, C. Selection of algorithms
to solve traveling salesman problems using meta-learning. Int. J. Hybrid Intell. Syst., IOS
Press, Amsterdam, The Netherlands, The Netherlands, v. 8, n. 3, Aug. 2011. Citation on page
39.

KASS, G. V. An exploratory technique for investigating large quantities of categorical data
applied statistics. Applied Statistics, v. 30, n. 2, p. 119–127, 1980. Citations on pages 56
and 76.

http://dx.doi.org/10.1007/s11634-016-0265-7
http://dx.doi.org/10.1007/s11634-016-0265-7
http://jmlr.org/proceedings/papers/v32/hutter14.html

138 Bibliography

KOCH, P.; BISCHL, B.; FLASCH, O.; BARTZ-BEIELSTEIN, T.; WEIHS, C.; KONEN, W.
Tuning and evolution of support vector kernels. Evolutionary Intelligence, Springer-Verlag,
v. 5, n. 3, p. 153–170, 2012. Citation on page 63.

KOHAVI, R. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In:
Second International Conference on Knowledge Discovery and Data Mining. [S.l.: s.n.],
1996. p. 202–207. Citation on page 56.

KOTTHOFF, L.; THORNTON, C.; HOOS, H. H.; HUTTER, F.; LEYTON-BROWN, K. Auto-
weka 2.0: Automatic model selection and hyperparameter optimization in weka. Journal of
Machine Learning Research, v. 17, p. 1–5, 2016. Citations on pages 26, 57, and 125.

KRSTAJIC, D.; BUTUROVIC, L. J.; LEAHY, D. E.; THOMAS, S. Cross-validation pitfalls
when selecting and assessing regression and classification models. Journal of cheminformatics,
v. 6, n. 1, p. 10+, 2014. Available: <http://dx.doi.org/10.1186/1758-2946-6-10>. Citations on
pages 57, 58, and 62.

LANDWEHR, N.; HALL, M.; FRANK, E. Logistic model trees. Machine Learning, v. 95,
n. 1-2, p. 161–205, 2005. Citation on page 56.

LANG, M.; KOTTHAUS, H.; MARWEDEL, P.; WEIHS, C.; RAHNENFÜHRER, J.; BISCHL,
B. Automatic model selection for high-dimensional survival analysis. Journal of Statistical
Computation and Simulation, v. 85, n. 1, p. 62–76, 2015. Citation on page 36.

LEITE, R.; BRAZDIL, P.; VANSCHOREN, J. Selecting classification algorithms with active
testing. In: Proceedings of the 2012 Conference on Machine Learning and Data Mining
(MLDM 2012). [S.l.: s.n.], 2012. p. 117–131. Citations on pages 42, 43, and 107.

LEMKE, C.; BUDKA, M.; GABRYS, B. Metalearning: a survey of trends and technologies.
Artificial Intelligence Review, v. 44, n. 1, p. 117–130, Jun 2015. ISSN 1573-7462. Citation on
page 39.

LIAW, A.; WIENER, M. Classification and regression by randomforest. R News, v. 2, n. 3, p.
18–22, 2002. Citation on page 61.

LIN, S.-W.; YING, K.-C.; CHEN, S.-C.; LEE, Z.-J. Particle swarm optimization for param-
eter determination and feature selection of support vector machines. Expert Systems with
Applications, v. 35, n. 4, p. 1817 – 1824, 2008. Citation on page 67.

LÓPEZ-IBÁÑEZ, M.; DUBOIS-LACOSTE, J.; CÁCERES, L. P.; BIRATTARI, M.; STÜET-
ZLE, T. The irace package: Iterated racing for automatic algorithm configuration. Opera-
tions Research Perspectives, v. 3, p. 43 – 58, 2016. ISSN 2214-7160. Available: <http:
//www.sciencedirect.com/science/article/pii/S2214716015300270>. Citations on pages 60,
61, and 125.

LÓPEZ-IBÁÑEZ, M.; DUBOIS-LACOSTE, J.; STÜTZLE, T.; BIRATTARI, M. The irace
package, Iterated Race for Automatic Algorithm Configuration. [S.l.], 2011. Available:
<http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf>. Citation on page 33.

LORENA, A. C.; MACIEL, A. I.; MIRANDA, P. B. C. de; COSTA, I. G.; PRUDÊNCIO, R.
B. C. Data complexity meta-features for regression problems. Machine Learning, v. 107, n. 1,
p. 209–246, 2018. Citations on pages 44, 46, 51, 73, and 127.

http://dx.doi.org/10.1186/1758-2946-6-10
http://www.sciencedirect.com/science/article/pii/S2214716015300270
http://www.sciencedirect.com/science/article/pii/S2214716015300270
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

Bibliography 139

LóPEZ-IBáñEZ, M.; DUBOIS-LACOSTE, J.; CáCERES, L. P.; BIRATTARI, M.; STüTZLE, T.
The irace package: Iterated racing for automatic algorithm configuration. Operations Research
Perspectives, v. 3, p. 43 – 58, 2016. ISSN 2214-7160. Citation on page 48.

MANTOVANI, R. G.; HORVÁTH, T.; CERRI, R.; VANSCHOREN, J.; CARVALHO, A. C.
P. L. F. de. Hyper-parameter tuning of a decision tree induction algorithm. In: 5th Brazilian
Conference on Intelligent Systems, BRACIS 2016, Recife, Brazil, October 9-12, 2016. IEEE
Computer Society, 2016. p. 37–42. ISBN 978-1-5090-3566-3. Available: <http://dx.doi.org/10.
1109/BRACIS.2016.018>. Citations on pages 75 and 128.

. Tuning trees: on hyperparameter optimization for decision trees. Soft Computing, p. 1–54,
2018. Under review. Citations on pages 13, 57, 75, 80, 81, 83, 84, 86, 90, and 128.

MANTOVANI, R. G.; ROSSI, A. L. D.; ALCOBACA, E.; VANSCHOREN, J.; CARVALHO,
A. C. P. L. F. A meta-learning recommender system for hyperparameter tuning: Suggesting
when tuning improves svm classifiers. Data Mining and Knowledge Discovery, p. 1–35, 2018.
Under review. Citations on pages 14, 95, 96, 102, 104, 105, 107, 108, 109, 110, 122, and 128.

MANTOVANI, R. G.; ROSSI, A. L. D.; VANSCHOREN, J.; BISCHL, B.; CARVALHO, A. C.
P. L. F. de. Effectiveness of random search in SVM hyper-parameter tuning. In: 2015 Interna-
tional Joint Conference on Neural Networks, IJCNN 2015, Killarney, Ireland, July 12-17,
2015. IEEE, 2015. p. 1–8. ISBN 978-1-4799-1960-4. Available: <http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=7256526>. Citations on pages 13, 63, 65, 66, 73, and 127.

MANTOVANI, R. G.; ROSSI, A. L. D.; VANSCHOREN, J.; CARVALHO, A. C. P. L. F.
Meta-learning recommendation of default hyper-parameter values for svms in classification
tasks. In: VANSCHOREN, J.; BRAZDIL, P.; GIRAUD-CARRIER, C. G.; KOTTHOFF, L.
(Ed.). Proceedings of the 2015 International Workshop on Meta-Learning and Algorithm
Selection co-located with European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases 2015 (ECMLPKDD 2015), Porto, Portugal,
September 7th, 2015. CEUR-WS.org, 2015. (CEUR Workshop Proceedings, v. 1455), p. 80–92.
Available: <http://ceur-ws.org/Vol-1455/paper-09.pdf>. Citations on pages 63, 71, 73, 127,
and 131.

MANTOVANI, R. G.; ROSSI, A. L. D.; VANSCHOREN, J.; BISCHL, B.; CARVALHO, A.
C. P. L. F. To tune or not to tune: Recommending when to adjust SVM hyper-parameters via
meta-learning. In: 2015 International Joint Conference on Neural Networks, IJCNN 2015,
Killarney, Ireland, July 12-17, 2015. IEEE, 2015. p. 1–8. ISBN 978-1-4799-1960-4. Available:
<http://dx.doi.org/10.1109/IJCNN.2015.7280644>. Citations on pages 41, 42, 95, 101, and 128.

MILLS, K. L.; FILLIBEN, J. J.; HAINES, A. L. Determining relative importance and effective
settings for genetic algorithm control parameters. Evol. Comput., MIT Press, Cambridge, MA,
USA, v. 23, n. 2, p. 309–342, Jun. 2015. ISSN 1063-6560. Citations on pages 60 and 130.

MIRANDA, P.; PRUDÊNCIO, R. Active testing for SVM parameter selection. In: Neural
Networks (IJCNN), The 2013 International Joint Conference on. [S.l.: s.n.], 2013. p. 1–8.
Citations on pages 43, 44, and 51.

MIRANDA, P.; SILVA, R.; PRUDÊNCIO, R. Fine-tuning of support vector machine parameters
using racing algorithms. In: Proceedings of the 22nd European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning, ESANN 2014. [S.l.:
s.n.], 2014. p. 325–330. Citations on pages 36, 44, and 47.

http://dx.doi.org/10.1109/BRACIS.2016.018
http://dx.doi.org/10.1109/BRACIS.2016.018
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7256526
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7256526
http://ceur-ws.org/Vol-1455/paper-09.pdf
http://dx.doi.org/10.1109/IJCNN.2015.7280644

140 Bibliography

MIRANDA, P. B. C.; PRUDÊNCIO, R. B. C.; CARVALHO, A. C. P. L. F.; SOARES, C. An
experimental study of the combination of meta-learning with particle swarm algorithms for svm
parameter selection. Lecture Notes in Computer Science, Springer Verlag, v. 7335 LNCS, n.
PART 3, p. 562–575, 2012. Citations on pages 41, 42, 44, 46, 47, and 125.

MITCHELL, T. M. Machine Learning. New York: McGraw Hill, 1997. Citation on page 55.

MOLINA, M. M.; LUNA, J. M.; ROMERO, C.; VENTURA, S. Meta-learning approach for
automatic parameter tuning: A case study with educational datasets. In: Proceedings of the
5th International Conference on Educational Data Mining, EDM 2012. [S.l.: s.n.], 2012. p.
180–183. Citations on pages 45, 47, 75, 123, 127, and 128.

MORAIS, G.; PRATI, R. C. Complex network measures for data set characterization. In: Brazil-
ian Conference on Intelligent Systems, BRACIS 2013, Fortaleza, CE, Brazil, 19-24 Oc-
tober, 2013. IEEE Computer Society, 2013. p. 12–18. ISBN 978-0-7695-5092-3. Available:
<https://doi.org/10.1109/BRACIS.2013.11>. Citation on page 42.

NOJIMA, Y.; NISHIKAWA, S.; ISHIBUCHI, H. A meta-fuzzy classifier for specifying appro-
priate fuzzy partitions by genetic fuzzy rule selection with data complexity measures. In: 2011
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011). [S.l.]: IEEE, 2011.
p. 264–271. Citations on pages 42, 43, 44, and 51.

ORRIOLS-PUIG, A.; MACIA, N.; HO, T. K. Documentation for the data complexity library
in C++. Barcelona, Spain, 2010. Citation on page 42.

PADIERNA, L. C.; CARPIO, M.; ROJAS, A.; PUGA, H.; BALTAZAR, R.; FRAIRE, H. Hyper-
parameter tuning for support vector machines by estimation of distribution algorithms. In:

. Nature-Inspired Design of Hybrid Intelligent Systems. Cham: Springer International
Publishing, 2017. p. 787–800. ISBN 978-3-319-47054-2. Citations on pages 63, 67, 73, and 127.

PENG, Y.; FLACH, P.; BRAZDIL, P.; SOARES, C. Decision tree-based characterization for
meta-learning. In: Proceedings of the ECML - Workshop on Integration and Collaboration
Aspects of Data Mining, Decision Support and Meta-Learning. [S.l.: s.n.], 2002. p. 111–122.
Citation on page 41.

PFAHRINGER, B.; BENSUSAN, H.; GIRAUD-CARRIER, C. G. Meta-learning by landmarking
various learning algorithms. In: Proceedings of the Seventeenth International Conference
on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000. p.
743–750. ISBN 1-55860-707-2. Citation on page 41.

PINTO, F.; CERQUEIRA, V.; SOARES, C.; MENDES-MOREIRA, J. autobagging: Learning
to rank bagging workflows with metalearning. CoRR, abs/1706.09367, 2017. Available: <http:
//arxiv.org/abs/1706.09367>. Citations on pages 44 and 46.

PINTO, F.; SOARES, C.; MENDES-MOREIRA, J. Towards automatic generation of metafea-
tures. In: BAILEY, J.; KHAN, L.; WASHIO, T.; DOBBIE, G.; HUANG, J. Z.; WANG, R.
(Ed.). Advances in Knowledge Discovery and Data Mining - 20th Pacific-Asia Conference,
PAKDD 2016, Auckland, New Zealand, April 19-22, 2016, Proceedings, Part I. Springer,
2016. (Lecture Notes in Computer Science, v. 9651), p. 215–226. ISBN 978-3-319-31752-6.
Available: <https://doi.org/10.1007/978-3-319-31753-3_18>. Citations on pages 42 and 46.

https://doi.org/10.1109/BRACIS.2013.11
http://arxiv.org/abs/1706.09367
http://arxiv.org/abs/1706.09367
https://doi.org/10.1007/978-3-319-31753-3_18

Bibliography 141

PRIYA, R.; De Souza, B. F.; ROSSI, A. L. D.; CARVALHO, A. C. P. L. F. Using genetic algo-
rithms to improve prediction of execution times of ML tasks. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). [S.l.: s.n.], 2012. v. 7208 LNAI, n. PART 1, p. 196–207. Citations on pages
44, 46, 51, and 52.

QUINLAN, J. R. C4.5: Programs for Machine Learning. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993. ISBN 1558602402. Citation on page 56.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria,
2016. Available: <https://www.R-project.org/>. Citation on page 60.

RAPIDMINER. RapidMiner Auto Model. 2018. <https://rapidminer.com/>. Accessed: 2018-
02-07. Citation on page 26.

REIF, M.; SHAFAIT, F.; DENGEL, A. Prediction of classifier training time including parameter
optimization. In: BACH, J.; EDELKAMP, S. (Ed.). KI 2011: Advances in Artificial Intelli-
gence. [S.l.]: Springer Berlin Heidelberg, 2011, (Lecture Notes in Computer Science, v. 7006).
p. 260–271. Citations on pages 44, 46, 75, 76, and 127.

. Meta-learning for evolutionary parameter optimization of classifiers. Machine Learning,
Springer US, v. 87, p. 357–380, 2012. Citations on pages 41, 44, 46, 47, 51, 52, and 63.

REIF, M.; SHAFAIT, F.; GOLDSTEIN, M.; BREUEL, T.; DENGEL, A. Automatic classifier
selection for non-experts. Pattern Analysis and Applications, v. 17, n. 1, p. 83–96, 2014. ISSN
1433-755X. Available: <http://dx.doi.org/10.1007/s10044-012-0280-z>. Citations on pages 26,
39, 41, 42, 45, 48, 51, 52, 75, 76, and 127.

RIDD, P.; GIRAUD-CARRIER, C. Using metalearning to predict when parameter optimization
is likely to improve classification accuracy. In: VANSCHOREN, J.; BRAZDIL, P.; SOARES,
C.; KOTTHOFF, L. (Ed.). Meta-learning and Algorithm Selection Workshop at ECAI 2014.
[S.l.: s.n.], 2014. p. 18–23. Citations on pages 27, 45, 47, 50, 51, 52, 63, 123, and 128.

RIJN, J. N. van; HUTTER, F. An empirical study of hyperparameter importance across datasets.
In: BRAZDIL, P.; VANSCHOREN, J.; HUTTER, F.; HOOS, H. (Ed.). Proceedings of the Inter-
national Workshop on Automatic Selection, Configuration and Composition of Machine
Learning Algorithms co-located with the European Conference on Machine Learning &
Principles and Practice of Knowledge Discovery in Databases, AutoML@PKDD/ECML
2017, Skopje, Macedonia, September 22, 2017. CEUR-WS.org, 2017. (CEUR Workshop Pro-
ceedings, v. 1998), p. 91–98. Available: <http://ceur-ws.org/Vol-1998/paper_09.pdf>. Citations
on pages 94 and 128.

ROKACH, L.; MAIMON, O. Data Mining With Decision Trees: Theory and Applica-
tions. 2nd. ed. River Edge, NJ, USA: World Scientific Publishing Co., Inc., 2014. ISBN
9789814590075, 981459007X. Citations on pages 56, 75, 76, and 127.

ROSSUM, G. Python Reference Manual. Amsterdam, The Netherlands, The Netherlands,
1995. Citation on page 60.

SANTAFE, G.; INZA, I.; LOZANO, J. A. Dealing with the evaluation of supervised classification
algorithms. Artificial Intelligence Review, v. 44, n. 4, p. 467–508, Dec 2015. ISSN 1573-7462.
Citation on page 59.

https://www.R-project.org/
https://rapidminer.com/
http://dx.doi.org/10.1007/s10044-012-0280-z
http://ceur-ws.org/Vol-1998/paper_09.pdf

142 Bibliography

SARDá-ESPINOSA, A.; SUBBIAH, S.; BARTZ-BEIELSTEIN, T. Conditional inference trees
for knowledge extraction from motor health condition data. Engineering Applications of Arti-
ficial Intelligence, v. 62, p. 26 – 37, 2017. ISSN 0952-1976. Citation on page 93.

SCRUCCA, L. Ga: A package for genetic algorithms in r. Journal of Statistical Software, v. 53,
n. 1, p. 1–37, 2013. ISSN 1548-7660. Available: <https://www.jstatsoft.org/index.php/jss/article/
view/v053i04>. Citation on page 60.

SIMON, D. Evolutionary Optimization Algorithms. first. [S.l.]: Wiley, 2013. Citation on
page 35.

SMITH-MILES, K. A. Cross-disciplinary perspectives on meta-learning for algorithm selection.
ACM Comput. Surv., ACM, New York, NY, USA, v. 41, n. 1, p. 6:1–6:25, Jan. 2009. ISSN
0360-0300. Citation on page 39.

SNOEK, J.; LAROCHELLE, H.; ADAMS, R. P. Practical bayesian optimization of machine
learning algorithms. In: PEREIRA, F.; BURGES, C.; BOTTOU, L.; WEINBERGER, K. (Ed.).
Advances in Neural Information Processing Systems 25. [S.l.]: Curran Associates, Inc., 2012.
p. 2951–2959. Citations on pages 25, 33, 34, and 78.

SOARES, C.; BRAZDIL, P. B. Selecting parameters of svm using meta-learning and kernel
matrix-based meta-features. In: Proceedings of the 2006 ACM symposium on Applied com-
puting. [S.l.]: ACM Press, 2006. (SAC’06), p. 564–568. Citations on pages 43, 44, and 51.

SOARES, C.; BRAZDIL, P. B.; KUBA, P. A meta-learning method to select the kernel width
in support vector regression. Machine Learning, v. 54, n. 3, p. 195–209, 2004. Citations on
pages 40, 41, 43, and 44.

SUN, Q.; PFAHRINGER, B. Pairwise meta-rules for better meta-learning-based algorithm
ranking. Machine Learning, v. 93, n. 1, p. 141–161, 2013. ISSN 1573-0565. Available: <http:
//dx.doi.org/10.1007/s10994-013-5387-y>. Citations on pages 26, 45, 47, 50, 51, and 52.

THERNEAU, T.; ATKINSON, B.; RIPLEY, B. rpart: Recursive Partitioning and Regression
Trees. [S.l.], 2015. R package version 4.1-10. Available: <https://CRAN.R-project.org/package=
rpart>. Citation on page 61.

THORNTON, C.; HUTTER, F.; HOOS, H. H.; LEYTON-BROWN, K. Auto-WEKA: Combined
selection and hyperparameter optimization of classification algorithms. In: Proc. of KDD-2013.
[S.l.: s.n.], 2013. p. 847–855. Citations on pages 26 and 57.

VANSCHOREN, J. Understanding Machine Learning Performance with Experiment
Databases (Het verwerven van inzichten in leerperformantie met experiment databanken).
Phd Thesis (PhD Thesis) — Katholieke Universiteit Leuven, Belgium, 2010. Available:
<https://lirias.kuleuven.be/handle/123456789/266060>. Citation on page 41.

VANSCHOREN, J.; RIJN, J. N. van; BISCHL, B.; TORGO, L. OpenML: Networked science in
machine learning. SIGKDD Explorations, ACM, New York, NY, USA, v. 15, n. 2, p. 49–60,
2013. Citation on page 127.

. Openml: Networked science in machine learning. SIGKDD Explor. Newsl., ACM, v. 15,
n. 2, p. 49–60, 2014. ISSN 1931-0145. Citations on pages 28, 29, 58, 59, and 60.

VAPNIK, V. The Nature of Statistical Learning Theory. [S.l.]: Springer-Verlag, 1995. Cita-
tion on page 55.

https://www.jstatsoft.org/index.php/jss/article/view/v053i04
https://www.jstatsoft.org/index.php/jss/article/view/v053i04
http://dx.doi.org/10.1007/s10994-013-5387-y
http://dx.doi.org/10.1007/s10994-013-5387-y
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=rpart
https://lirias.kuleuven.be/handle/123456789/266060

Bibliography 143

VILALTA, R.; DRISSI, Y. A perspective view and survey of meta-learning. Artif. Intell. Rev.,
Kluwer Academic Publishers, Norwell, MA, USA, v. 18, n. 2, p. 77–95, Oct. 2002. ISSN
0269-2821. Citation on page 39.

VILALTA, R.; GIRAUD-CARRIER, C. G.; BRAZDIL, P.; SOARES, C. Using meta-learning to
support data mining. International Journal of Computer Science & Applications, v. 1, n. 1,
p. 31–45, 2004. Citation on page 41.

WAINBERG, M.; ALIPANAHI, B.; FREY, B. J. Are random forests truly the best classifiers?
Journal of Machine Learning Research, v. 17, n. 110, p. 1–5, 2016. Available: <http://jmlr.
org/papers/v17/15-374.html>. Citations on pages 56 and 93.

WISTUBA, M.; SCHILLING, N.; SCHMIDT-THIEME, L. Sequential model-free hyperpa-
rameter tuning. In: AGGARWAL, C.; ZHOU, Z.; TUZHILIN, A.; XIONG, H.; WU, X. (Ed.).
2015 IEEE International Conference on Data Mining, ICDM 2015, Atlantic City, NJ, USA,
November 14-17, 2015. IEEE Computer Society, 2015. p. 1033–1038. ISBN 978-1-4673-9504-
5. Available: <https://doi.org/10.1109/ICDM.2015.20>. Citations on pages 45 and 48.

. Two-stage transfer surrogate model for automatic hyperparameter optimization. In: .
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part I. [S.l.]:
Springer International Publishing, 2016. p. 199–214. ISBN 978-3-319-46128-1. Citations
on pages 45 and 48.

. Scalable gaussian process-based transfer surrogates for hyperparameter optimization.
Machine Learning, v. 107, n. 1, p. 43–78, 2018. Citations on pages 45, 48, and 125.

WITTEN, I. H.; FRANK, E. Data Mining: Practical Machine Learning Tools and Tech-
niques. 2nd. ed. San Francisco: Morgan Kaufmann, 2005. Citations on pages 56 and 76.

WU, X.; KUMAR, V. The Top Ten Algorithms in Data Mining. 1st. ed. [S.l.]: Chapman &
Hall/CRC, 2009. ISBN 1420089641, 9781420089646. Citations on pages 56 and 76.

ZAMBRANO-BIGIARINI, M.; CLERC, M.; ROJAS, R. Standard particle swarm optimisation
2011 at CEC-2013: A baseline for future PSO improvements. In: Proceedings of the IEEE
Congress on Evolutionary Computation, CEC 2013, Cancun, Mexico, June 20-23, 2013.
IEEE, 2013. p. 2337–2344. ISBN 978-1-4799-0452-5. Available: <https://doi.org/10.1109/CEC.
2013.6557848>. Citation on page 60.

ZHONGGUO, Y.; HONGQI, L.; ALI, S.; YILE, A. Choosing classification algorithms and its
optimum parameters based on data set characteristics. Journal of Computers, v. 28, n. 5, p.
26–38, 2017. Citations on pages 44, 46, and 51.

http://jmlr.org/papers/v17/15-374.html
http://jmlr.org/papers/v17/15-374.html
https://doi.org/10.1109/ICDM.2015.20
https://doi.org/10.1109/CEC.2013.6557848
https://doi.org/10.1109/CEC.2013.6557848

145

APPENDIX

A
LIST OF DATASETS

This appendix presents the full table of datasets used in experiments performed for this
thesis: Tables 18 to 20. For each dataset it is shown: the OpenML dataset name and id, the
number of attributes (D), the number of examples (N), the number of classes (C), the number
of examples belonging to the majority and minority classes (nMaj, nMin), and the proportion
between them (P).

146 APPENDIX A. List of datasets

Table 18 – OpenML datasets (1 to 45) used in experiments. For each dataset it is shown: the OpenML
dataset name and id, the number of attributes (D), the number of examples (N), the number
of classes (C), the number of examples belonging to the majority and minority classes (nMaj,
nMin), and the proportion between them (P).

Nro OpenML name OpenML did D N C nMaj nMin P

1 kr-vs-kp 3 37 3196 2 1669 1527 0.91
2 balance-scale 11 5 625 3 288 49 0.17
3 breast-cancer 13 10 286 2 201 85 0.42
4 mfeat-fourier 14 77 2000 10 200 200 1.00
5 breast-w 15 10 699 2 458 241 0.53
6 mfeat-karhunen 16 65 2000 10 200 200 1.00
7 mfeat-morphological 18 7 2000 10 200 200 1.00
8 car 21 7 1728 4 1210 65 0.05
9 mfeat-zernike 22 48 2000 10 200 200 1.00

10 colic 25 28 368 2 232 136 0.59
11 optdigits 28 65 5620 10 572 554 0.97
12 credit-g 31 21 1000 2 700 300 0.43
13 pendigits 32 17 10992 10 1144 1055 0.92
14 dermatology 35 35 366 6 112 20 0.18
15 segment 36 20 2310 7 330 330 1.00
16 diabetes 37 9 768 2 500 268 0.54
17 sick 38 30 3772 2 3541 231 0.07
18 sonar 40 61 208 2 111 97 0.87
19 haberman 43 4 306 2 225 81 0.36
20 spambase 44 58 4601 2 2788 1813 0.65
21 tae 48 6 151 3 52 49 0.94
22 heart-c 49 14 303 5 165 0 0.00
23 tic-tac-toe 50 10 958 2 626 332 0.53
24 heart-statlog 53 14 270 2 150 120 0.80
25 vehicle 54 19 846 4 218 199 0.91
26 hepatitis 55 20 155 2 123 32 0.26
27 vote 56 17 435 2 267 168 0.63
28 ionosphere 59 35 351 2 225 126 0.56
29 waveform-5000 60 41 5000 3 1692 1653 0.98
30 iris 61 5 150 3 50 50 1.00
31 molecular-biology_promoters 164 59 106 2 53 53 1.00
32 satimage 182 37 6430 6 1531 625 0.41
33 baseball 185 18 1340 3 1215 57 0.05
34 wine 187 14 178 3 71 48 0.68
35 eucalyptus 188 20 736 5 214 105 0.49
36 Australian 292 15 690 2 383 307 0.80
37 satellite_image 294 37 6435 6 871 275 0.32
38 libras_move 299 91 360 11 24 11 0.46
39 vowel 307 13 990 11 90 90 1.00
40 mammography 310 7 11183 2 10923 260 0.02
41 oil_spill 311 50 937 2 896 41 0.05
42 yeast_ml8 316 117 2417 2 2383 34 0.01
43 hayes-roth 329 5 160 4 65 0 0.01
44 monks-problems-1 333 7 556 2 278 278 1.00
45 monks-problems-2 334 7 601 2 395 206 0.52

147

Table 19 – OpenML datasets (46 to 95) used in experiments. For each dataset it is shown: the OpenML
dataset name and id, the number of attributes (D), the number of examples (N), the number
of classes (C), the number of examples belonging to the majority and minority classes (nMaj,
nMin), and the proportion between them (P).

Nro OpenML name OpenML did D N C nMaj nMin P

46 monks-problems-3 335 7 554 2 288 266 0.92
47 SPECT 336 23 267 2 212 55 0.26
48 grub-damage 338 9 155 4 49 19 0.39
49 synthetic_control 377 62 600 6 100 100 1.00
50 analcatdata_boxing2 444 4 132 2 71 61 0.86
51 analcatdata_boxing1 448 4 120 2 78 42 0.54
52 analcatdata_lawsuit 450 5 264 2 245 19 0.08
53 irish 451 6 500 2 278 222 0.80
54 analcatdata_broadwaymult 452 8 285 7 118 21 0.18
55 cars 455 9 406 3 254 73 0.29
56 analcatdata_authorship 458 71 841 4 317 55 0.17
57 analcatdata_creditscore 461 7 100 2 73 27 0.37
58 backache 463 33 180 2 155 25 0.16
59 prnn_synth 464 3 250 2 125 125 1.00
60 schizo 466 15 340 2 177 163 0.92
61 analcatdata_dmft 469 5 797 6 155 123 0.79
62 profb 470 10 672 2 448 224 0.50
63 analcatdata_germangss 475 6 400 4 100 100 1.00
64 biomed 481 9 209 2 134 75 0.56
65 rmftsa_sleepdata 679 3 1024 4 404 94 0.23
66 visualizing_livestock 685 3 130 5 26 26 1.00
67 diggle_table_a2 694 9 310 9 41 18 0.44
68 ada_prior 1037 15 4562 2 3430 1132 0.33
69 ada_agnostic 1043 49 4562 2 3430 1132 0.33
70 jEdit_4.2_4.3 1048 9 369 2 204 165 0.81
71 pc4 1049 38 1458 2 1280 178 0.14
72 pc3 1050 38 1563 2 1403 160 0.11
73 mc2 1054 40 161 2 109 52 0.48
74 mc1 1056 39 9466 2 9398 68 0.01
75 ar4 1061 30 107 2 87 20 0.23
76 kc2 1063 22 522 2 415 107 0.26
77 ar6 1064 30 101 2 86 15 0.17
78 kc3 1065 40 458 2 415 43 0.10
79 kc1-binary 1066 95 145 2 85 60 0.71
80 kc1 1067 22 2109 2 1783 326 0.18
81 pc1 1068 22 1109 2 1032 77 0.07
82 pc2 1069 37 5589 2 5566 23 0.00
83 mw1 1071 38 403 2 372 31 0.08
84 jEdit_4.0_4.2 1073 9 274 2 140 134 0.96
85 datatrieve 1075 9 130 2 119 11 0.09
86 PopularKids 1100 11 478 3 247 90 0.36
87 teachingAssistant 1115 7 151 3 52 49 0.94
88 musk 1116 170 6598 2 5581 1017 0.18
89 badges2 1121 12 294 2 210 84 0.40
90 pc1_req 1167 9 320 2 213 107 0.50
91 MegaWatt1 1442 38 253 2 226 27 0.12
92 PizzaCutter1 1443 38 661 2 609 52 0.09
93 PizzaCutter3 1444 38 1043 2 916 127 0.14
94 CostaMadre1 1446 38 296 2 258 38 0.15
95 CastMetal1 1447 38 327 2 285 42 0.15

148 APPENDIX A. List of datasets

Table 20 – OpenML datasets (96 to 140) used in experiments. For each dataset it is shown: the OpenML
dataset name and id, the number of attributes (D), the number of examples (N), the number
of classes (C), the number of examples belonging to the majority and minority classes (nMaj,
nMin), and the proportion between them (P).

Nro OpenML name OpenML did D N C nMaj nMin P

96 PieChart1 1451 38 705 2 644 61 0.09
97 PieChart2 1452 37 745 2 729 16 0.02
98 PieChart3 1453 38 1077 2 943 134 0.14
99 acute-inflammations 1455 7 120 2 70 50 0.71

100 appendicitis 1456 8 106 2 85 21 0.25
101 artificial-characters 1459 8 10218 10 1416 600 0.42
102 banknote-authentication 1462 5 1372 2 762 610 0.80
103 blogger 1463 6 100 2 68 32 0.47
104 blood-transfusion-service-center 1464 5 748 2 570 178 0.31
105 breast-tissue 1465 10 106 6 22 14 0.64
106 cardiotography 1466 35 2126 10 579 53 0.091
107 cnae-9 1468 857 1080 9 120 120 1.00
108 fertility 1473 10 100 2 88 12 0.14
109 first-order-theorem-proving 1475 52 6118 6 2554 486 0.19
110 hill-valley 1479 101 1212 2 606 606 1.00
111 ilpd 1480 11 583 2 416 167 0.40
112 lsvt 1484 311 126 2 84 42 0.50
113 ozone-level-8hr 1487 73 2534 2 2374 160 0.07
114 parkinsons 1488 23 195 2 147 48 0.33
115 phoneme 1489 6 5404 2 3818 1586 0.42
116 one-hundred-plants-shape 1492 65 1600 100 16 16 1.00
117 qsar-biodeg 1494 42 1055 2 699 356 0.51
118 qualitative-bankruptcy 1495 7 250 2 143 107 0.75
119 ringnorm 1496 21 7400 2 3736 3664 0.98
120 wall-robot-navigation 1497 25 5456 4 2205 328 0.15
121 sa-heart 1498 10 462 2 302 160 0.53
122 steel-plates-fault 1504 34 1941 2 1268 673 0.53
123 thoracic-surgery 1506 17 470 2 400 70 0.18
124 twonorm 1507 21 7400 2 3703 3697 1.00
125 wdbc 1510 31 569 2 357 212 0.59
126 wholesale-customers 1511 9 440 2 298 142 0.48
127 heart-long-beach 1512 14 200 5 56 10 0.18
128 robot-failures-lp4 1519 91 117 3 72 21 0.29
129 robot-failures-lp5 1520 91 164 5 47 21 0.45
130 vertebra-column 1523 7 310 3 150 60 0.40
131 volcanoes-a2 1528 4 1623 5 1471 29 0.02
132 volcanoes-a3 1529 4 1521 5 1369 29 0.02
133 volcanoes-b1 1531 4 10176 5 9791 26 0.00
134 volcanoes-b3 1533 4 10386 5 10006 25 0.00
135 volcanoes-b5 1535 4 9989 5 9599 26 0.00
136 volcanoes-b6 1536 4 10130 5 9746 26 0.00
137 volcanoes-d2 1539 4 9172 5 8670 56 0.01
138 volcanoes-d3 1540 4 9285 5 8771 58 0.01
139 autoUniv-au1-1000 1547 21 1000 2 741 259 0.35
140 autoUniv-au6-750 1549 41 750 8 165 57 0.35

149

Table 21 – OpenML datasets (141 to 168) used in experiments. For each dataset it is shown: the OpenML
dataset name and id, the number of attributes (D), the number of examples (N), the number
of classes (C), the number of examples belonging to the majority and minority classes (nMaj,
nMin), and the proportion between them (P).

Nro OpenML name OpenML did D N C nMaj nMin P

141 autoUniv-au6-400 1551 41 400 8 111 25 0.23
142 autoUniv-au7-1100 1552 13 1100 5 305 153 0.50
143 autoUniv-au7-500 1554 13 500 5 192 43 0.22
144 acute-inflammations 1556 7 120 2 61 59 0.97
145 bank-marketing 1558 17 4521 2 4000 521 0.13
146 breast-tissue 1559 10 106 4 49 14 0.29
147 hill-valley 1566 101 1212 2 612 600 0.98
148 wilt 1570 6 4839 2 4578 261 0.06
149 SPECTF 1600 45 267 2 212 55 0.26
150 PhishingWebsites 4534 31 11055 2 6157 4898 0.80
151 MiceProtein 4550 82 1080 8 150 105 0.70
152 cylinder-bands 6332 40 540 2 312 228 0.73
153 thyroid-allbp 40474 27 2800 5 1632 31 0.02
154 thyroid-allhyper 40475 27 2800 5 1632 31 0.02
155 LED-display-domain-7digit 40496 8 500 10 57 37 0.65
156 texture 40499 41 5500 11 500 500 1.00
157 cmc 23 10 1473 3 629 333 0.53
158 credit-a 29 16 690 2 383 307 0.80
159 page-blocks 30 11 5473 5 4913 28 0.01
160 heart-h 51 14 294 5 188 0 0.00
161 banana 1460 3 5300 2 2924 2376 0.81
162 planning-relax 1490 13 182 2 130 52 0.40
163 one-hundred-plants-margin 1491 65 1600 100 16 16 1.00
164 user-knowledge 1508 6 403 5 129 24 0.19
165 volcanoes-a1 1527 4 3252 5 2952 58 0.02
166 volcanoes-a4 1530 4 1515 5 1365 29 0.02
167 autoUniv-au7-700 1553 13 700 3 245 214 0.87
168 autoUniv-au6-1000 1555 41 1000 8 240 89 0.37

151

APPENDIX

B
SETS OF META-FEATURES

This appendix presents the full table of meta-features used in experiments performed
for this thesis: Tables 22 and 23. For each meta-feature it is shown: the category it belongs, its
acronym and description.

152 APPENDIX B. Sets of meta-features

Table 22 – Meta-features used in experiments - part 1. For each meta-features it is shown: its type, acronym
and description. Extended from Garcia, de Carvalho and Lorena (2015).

Type Acronym Description

Simple

classes Number of classes
attributes Number of attributes
numeric Number of numerical attributes
nominal Number of nominal attributes
samples Number of examples
dimension samples/attributes
numRate numeric/attributes
nomRate nominal/attributes
symbols (min, max, mean, sd, sum) Distributions of categories in attributes
classes (min, max, mean, sd) Classes distributions

Statistical

sks Skewness
sksP Skewness for normalized dataset
kts Kurtosis
ktsP Kurtosis for normalized datasets
absC Correlation between attributes
canC Canonical correlation between matrices
frac Fraction of canonical correlation

Information-theoretic

clEnt Class entropy
nClEnt Class entropy for normalized dataset
atrEnt Mean entropy of attributes

nAtrEnt Mean entropy of attributes for
normalized dataset

jEnt Joint entropy
mutInf Mutual information
eqAtr clEnt/mutInf
noiSig (atrEnt - mutInf)/MutInf

Model-based (Tree)

nodes Number of nodes
leaves Number of leaves
nodeAtr Number of nodes per attribute
nodeIns Number of nodes per instance
leafCor leave/samples
lev (min, max, mean, sd) Distributions of levels of depth
bran (min, max, mean, sd) Distributions of levels of branches
att (min, max, mean, sd) Distributions of attributes used

Landmarking

nb Naive Bayes accuracy
stump (min, max, mean, sd) Distribution of decision stumps
stMinGain Minimum gain ratio of decision stumps
stRand Random gain ratio of decision stumps
nn 1-Nearest Neighbor accuracy

153

Table 23 – Meta-features used in experiments - part 2. For each meta-features it is shown: its type, acronym
and description. Extended from Garcia, de Carvalho and Lorena (2015).

Type Acronym Description

Data Complexity

f1 Maximum Fisher’s discriminant ratio
f1v Directional-vector maximum Fisher’s discriminant ratio
f2 Overlap of the per-class bounding boxes
f3 Maximum feature efficiency
f4 Collective feature efficiency
l1 Minimized sum of the error distance of a linear classifier
l2 Training error of a linear classifier
l3 Nonlinearity of a linear classifier
n1 Fraction of points on the class boundary
n2 Ratio of average intra/inter-class NN distance
n3 leave-one-out error rate of the 1-NN classifier
n4 Nonlinearity of the 1-NN classifier
t1 Fraction of maximum covering spheres
t2 Average number of points per dimension

Complexity Network

edges Number of edges
degree Average degree of the network
density Average density of the network
maxComp Maximum number of components
closeness Closeness centrality
betweenness Betwenness centrality
clsCoef Clustering Coefficient
hubs Hub score
avgPath Average path length

Relative Landmarking

diff.svm.lm perf(SVM) - perf(Linear)
diff.svm.nb performance(SVM) - performance(NB)
diff.svm.stump performance(SVM) - performance(Decision Stump)
diff.svm.nn performance(SVM) - performance(1-NN)
diff.nn.lm performance(1-NN) - performance(Linear)
diff.nn.stump performance(1-NN) - performance(Decision Stump)
diff.nn.nb performance(1-NN) - performance(NB)
diff.nb.stump performance(NB) - performance(Decision Stump)
diff.nb.lm performance(NB) - performance(Linear)
diff.stump.lm performance(Decision Stump) - performance(Linear)

155

APPENDIX

C
META-LEARNERS’ HP SPACE

This appendix presents the full table of the meta-learners’ HPs tuned in the experiments
performed for this thesis. For each algorithm used as meta-learner, the table shows: the selected
HPs, their types and range of values, default settings and the R package used to implement the
algorithm.

Table 24 – Meta-learners’ HP spaces explored in the experiments. The nomenclature follows their respec-
tive R packages. The NB and LR classifiers do not have any hyperparameter for tuning.

Algo Symbol Hyperparameter Range Type Default Package

CART cp complexity parameter (0.0001,0.1) real 0.01

rpart
CART minsplit minimum number of instances in a

[1,50] integer 20node for a split to be attempted

CART minbucket minimum number of instances in a leaf [1,50] integer 7

CART maxdepth maximum depth of any node of
[1,30] integer 30the final tree

GP sigma width of the Gaussian kernel [2−15,215] real - kernlab

SVM k kernel Gaussian - -

e1071SVM C regularized constant [2−15,215] real 1

SVM γ width of the Gaussian kernel [2−15,215] real 1/N

RF ntree number of trees [20,210] integer 500
randomForest

RF nodesize minimum node size of the decision trees {1,20} integer 1

KNN k number of nearest neighbors {1,50} integer 7 kknn

NB - - - - - e1071

LR - - - - - gbm

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of algorithms
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Problem investigated and hypothesis assumed
	Objective
	Main contributions to the research area
	Thesis organization

	Hyperparameter tuning
	Definition
	Tuning techniques
	Grid Search
	Random Search
	Sequential Model Based Optimization
	Genetic Algorithm
	Particle Swarm Optimization
	Estimation of Distribution Algorithms
	Iterated F-Race

	Chapter remarks

	Meta-learning on hyperparameter tuning
	Meta-learning
	Definition
	Data characterization

	Meta-learning on HP tuning
	Recommendation of HP settings
	Prediction of training runtime
	Recommendation of initial values for HP optimization
	Generation of rules for the extraction of meta-features
	Prediction of HP tuning necessity
	Estimation of predictive performance for a given HP setting

	General picture
	Literature overview
	Chapter remarks

	Experimental methodology
	Classification algorithms
	Support vector machines
	Decision tree induction algorithms

	Nested-CV resamplings
	Datasets
	Evaluation measures
	Statistical tests
	OpenML and mlr
	Setup of the tuning techniques
	Repositories for the coding used in this thesis
	Chapter remarks

	Tuning of SVMs
	SVM HP space
	Defining budget size
	Tuning setup
	Performance improvement
	Comparing techniques
	Optimization of new default HP values
	Chapter Remarks

	Tuning of Decision Trees
	DT HP spaces
	Defining budget
	Tuning setup
	Performance improvements
	J48 improvements
	CART improvements
	CTree improvements

	Comparing techniques
	Statistical comparison
	Loss curves comparison

	Relative importance of the HPs
	Tuning with reduced HP spaces
	Chapter Remarks

	To tune or not to tune?
	Recommender system framework
	Base-level tuning
	Meta-features
	Meta-targets
	Meta-learning setup

	When to tune SVMs?
	Evaluating different setups
	Meta-features importance
	Linearity Hypothesis
	Checking predictions

	When to tune DTs?
	Evaluating different setups
	Meta-features importance
	Checking predictions

	Projecting meta-models at the base-level
	Chapter remarks

	Conclusions
	Main contributions and results
	SVM HP profile
	DT HP profiles
	MtL recommender system

	Publications
	Papers originated from thesis
	Collaborations in the same research topic

	Limitations
	Future Work

	Bibliography
	List of datasets
	Sets of meta-features
	Meta-learners' HP space

