• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2018.tde-12032018-113023
Documento
Autor
Nome completo
Marcio Demetrius Martinez
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2001
Orientador
Banca examinadora
Cuminato, José Alberto (Presidente)
Carvalho, Alexandre Nolasco de
Gomes, Sonia Maria
Título em português
Esquemas numéricos para equações hiperbólicas e aplicações
Palavras-chave em português
Não disponível
Resumo em português
Neste trabalho estudamos esquemas numéricos para resolver as formulações de valor de fronteira e de valor inicial para uma frente em movimento. Nosso objetivo é motivar e apresentar esquemas baseados nas relações existentes entre frentes em propagação, equações de Hamilton-Jacobi e leis de conservação hiperbólicas. Quando uma frente inicial evolui no tempo através de uma das formulações hiperbólicas, podem surgir singularidades, cúspides e mudanças em sua topologia e assim faz-se necessário a compreensão das técnicas de discretização de leis de conservação hiperbólicas para a obtenção de esquemas numéricos capazes de tratar e descrever corretamente esses problemas na geometria da frente. A solução numérica das leis de conservação inclui o desenvolvimento de esquemas numéricos capazes de resolver choques, descontinuidades e escolher a solução entrópica entre as muitas soluções fracas existentes. Para isso, analisamos esquemas na forma conservativa com propriedades especiais, tais como, esquemas Upwind, Monótonos, TVD, Entropia, Limitante de fluxo e Limitante de inclinação. Esses esquemas são acompanhados com uma coleção de implementações. Essa teoria pode ser empregada para o rastreainento da interface de escoamentos multifsicos, e uma aplicação futura que estamos interessados é a determinação da fronteira de um domínio a partir de seus pontos interiores para aplicação no simulador de escoamentos multifásicos na área de mecânica de fluidos.
Título em inglês
Not available
Palavras-chave em inglês
Not available
Resumo em inglês
ln this work we study schemes for solving the boundary and initial value formulations of front motion. Our objective is to motivate and present schemes based on the link between evolving fronts, Hamilton-Jacobi equations and hyperbolic conservation laws. When a initial front evolves in time through the hyperbolic formulation, singularities and changes in its topology can ansa, thus making it necessany the comprehension of discretization technics of hyperbolic conservation laws for obtaining nuxnerical schemes capable of resolving shocks, descontinuities and selecting the entropy solution from ali the existent weak solutions. With this purpose in mmd, we analised conservative schemes with special properties, such as, TJpwind, Monotone, TVD, Entropy, Flux-Lim.iter and Siope-Limiter are analysed. These schemes are followed by a coilection of impleinented examples. This theory can be used for tracking the interface of multifase fiows. Future applications that we are interested in include the determination of the boundary of a domain from its interior points for application in a simulator of multifase fiows in the arca of fluid mechanics.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-03-12
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.