• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
Documento
Autor
Nome completo
Eder José de Carvalho
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2017
Orientador
Banca examinadora
Oliveira, Maria Cristina Ferreira de (Presidente)
Chalco, Jesús Pascual Mena
Rezende, Solange Oliveira
Silva, Celmar Guimarães da
Título em inglês
Visual analytics of topics in twitter in connection with political debates
Palavras-chave em inglês
Social data analysis
Visual analytics
Visualization
Resumo em inglês
Social media channels such as Twitter and Facebook often contribute to disseminate initiatives that seek to inform and empower citizens concerned with government actions. On the other hand, certain actions and statements by governmental institutions, or parliament members and political journalists that appear on the conventional media tend to reverberate on the social media. This scenario produces a lot of textual data that can reveal relevant information on governmental actions and policies. Nonetheless, the target audience still lacks appropriate tools capable of supporting the acquisition, correlation and interpretation of potentially useful information embedded in such text sources. In this scenario, this work presents two system for the analysis of government and social media data. One of the systems introduces a new visualization, based on the river metaphor, for the analysis of the temporal evolution of topics in Twitter in connection with political debates. For this purpose, the problem was initially modeled as a clustering problem and a domain-independent text segmentation method was adapted to associate (by clustering) Twitter content with parliamentary speeches. Moreover, a version of the MONIC framework for cluster transition detection was employed to track the temporal evolution of debates (or clusters) and to produce a set of time-stamped clusters. The other system, named ATR-Vis, combines visualization techniques with active retrieval strategies to involve the user in the retrieval of Twitters posts related to political debates and associate them to the specific debate they refer to. The framework proposed introduces four active retrieval strategies that make use of the Twitters structural information increasing retrieval accuracy while minimizing user involvement by keeping the number of labeling requests to a minimum. Evaluations through use cases and quantitative experiments, as well as qualitative analysis conducted with three domain experts, illustrates the effectiveness of ATR-Vis in the retrieval of relevant tweets. For the evaluation, two Twitter datasets were collected, related to parliamentary debates being held in Brazil and Canada, and a dataset comprising a set of top news stories that received great media attention at the time.
Título em português
Análise visual de tópicos no Twitter em conexão com debates políticos
Palavras-chave em português
Análise de dados sociais
Análise visual
Visualização
Resumo em português
Mídias sociais como o Twitter e o Facebook atuam, em diversas situações, como canais de iniciativas que buscam ampliar as ações de cidadania. Por outro lado, certas ações e manifestações na mídia convencional por parte de instituições governamentais, ou de jornalistas e políticos como deputados e senadores, tendem a repercutir nas mídias sociais. Como resultado, gerase uma enorme quantidade de dados em formato textual que podem ser muito informativos sobre ações e políticas governamentais. No entanto, o público-alvo continua carente de boas ferramentas que ajudem a levantar, correlacionar e interpretar as informações potencialmente úteis associadas a esses textos. Neste contexto, este trabalho apresenta dois sistemas orientados à análise de dados governamentais e de mídias sociais. Um dos sistemas introduz uma nova visualização, baseada na metáfora do rio, para análise temporal da evolução de tópicos no Twitter em conexão com debates políticos. Para tanto, o problema foi inicialmente modelado como um problema de clusterização e um método de segmentação de texto independente de domínio foi adaptado para associar (por clusterização) tweets com discursos parlamentares. Uma versão do algorimo MONIC para detecção de transições entre agrupamentos foi empregada para rastrear a evolução temporal de debates (ou agrupamentos) e produzir um conjunto de agrupamentos com informação de tempo. O outro sistema, chamado ATR-Vis, combina técnicas de visualização com estratégias de recuperação ativa para envolver o usuário na recuperação de tweets relacionados a debates políticos e associa-os ao debate correspondente. O arcabouço proposto introduz quatro estratégias de recuperação ativa que utilizam informação estrutural do Twitter melhorando a acurácia do processo de recuperação e simultaneamente minimizando o número de pedidos de rotulação apresentados ao usuário. Avaliações por meio de casos de uso e experimentos quantitativos, assim como uma análise qualitativa conduzida com três especialistas ilustram a efetividade do ATR-Vis na recuperação de tweets relevantes. Para a avaliação, foram coletados dois conjuntos de tweets relacionados a debates parlamentares ocorridos no Brasil e no Canadá, e outro formado por um conjunto de notícias que receberam grande atenção da mídia no período da coleta.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2017-09-11
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2014. Todos os direitos reservados.