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ABSTRACT

GOMEZ-NIETO, E.. Generation of semantic layouts for interactive multidimensional data
visualization. 2017. 131 f. Doctoral dissertation (Doctorate Candidate Program in Computer
Science and Computational Mathematics) —Instituto de Ciéncias Matematicas e de Computacao
(ICMC/USP), Sao Carlos —SP.

Visualization methods make use of interactive graphical representations embedded on a display
area in order to enable data exploration and analysis. These typically rely on geometric primitives
for representing data or building more sophisticated representations to assist the visual analysis
process. One of the most challenging tasks in this context is to determinate an optimal layout
of these primitives which turns out to be effective and informative. Existing algorithms for
building layouts from geometric primitives are typically designed to cope with requirements
such as orthogonal alignment, overlap removal, optimal area usage, hierarchical organization,
dynamic update among others. However, most techniques are able to tackle just a few of those
requirements simultaneously, impairing their use and flexibility. In this dissertation, we propose
a set of approaches for building layouts from geometric primitives that concurrently addresses
a wider range of requirements. Relying on multidimensional projection and optimization
formulations, our methods arrange geometric objects in the visual space so as to generate
well-structured layouts that preserve the semantic relation among objects while still making an
efficient use of display area. A comprehensive set of quantitative comparisons against existing
methods for layout generation and applications on text, image, and video data set visualization
prove the effectiveness of ourapproaches.

Key-words: Overlap Removal, Similarity Preserving, Structured Layouts, Area Optimization,
Semantic Layout, High-Dimensional Data.






RESUMO

GOMEZ-NIETO, E.. Geracao de layouts semanticos para a visualizacao interativa de
dados multidimensionais. 2017. 131 f. Doctoral dissertation (Doctorate Candidate Program
in Computer Science and Computational Mathematics) — Instituto de Ciéncias Matemaéticas e
de Computacdo (ICMC/USP), Sao Carlos —SP.

Métodos de visualizacdo fazem uso de representagdes graficas interativas embutidas em uma area
de exibi¢do para exploracdo e andlise de dados. Esses recursos visuais usam primitivas geométri-
cas para representar dados ou compor representacdes mais sofisticadas que facilitem a extragdao
visual de informag¢des. Uma das tarefas mais desafiadoras € determinar um layout 6timo visando
explorar suas capacidades para transmitir informag¢do dentro de uma determinada visualizacdo.
Os algoritmos existentes para construir layouts a partir de primitivas geométricas sdo tipicamente
projetados para lidar com requisitos como alinhamento ortogonal, remog¢do de sobreposicao,
area usada, organizagdo hierarquica, atualizacdo dindmica entre outros. No entanto, a maioria
das técnicas sdo capazes de lidar com apenas alguns desses requerimentos simultaneamente,
prejudicando sua utilizacdo e flexibilidade. Nesta tese, propomos um conjunto de abordagens
para construir layouts a partir de primitivas geométricas que simultaneamente lidam com uma
gama mais ampla de requerimentos. Baseando-se em projecdes multidimensionais e formulacdes
de otimizagdo, os nossos métodos organizam objetos geométricos no espaco visual para gerar
layouts bem estruturados que preservam a relagdo semantica entre objetos enquanto ainda fazem
um uso eficiente da area de exibicdo. Um conjunto detalhado de comparacdes quantitativas com
métodos existentes para a gerac@o de layouts e aplicagdes em visualizagc@o de conjunto de dados
de texto, imagem e video comprova a eficicia das técnicas propostas.

Palavras-chave: Remocao de sobreposi¢do, Preservagdo da similaridade, Layouts Estruturados,

Otimizacido de Area, Layout Semantico, Dados em Alta Dimensao.
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INTRODUCTION

1.1 Motivation

Arranging geometric primitives to generate meaningful layouts is a mgjor task in vi-
sualization, which inherently appears in important applications such as word cloud construc-
tion (KOH et al., 2010; PAULOVICH et al., 2012), small-multiples arrangements (BERTIN,
2007; TUFTE, 1990; ELZEN; WIJK, 2013), and visual boards (PINHO; OLIVEIRA; LOPES,
2010; STRONG; GONG, 2011; STRONG; GONG, 2014). The difficulty in building layouts
made up alarge number of geometric objects restsin the set of requirements to be handled simul-
taneously, e.g., readability, overlaps, object size, semantic proximity and area usage. Moreover,
the number of data instances represented as geometric entitiesis typically much larger than the
visualization area, demanding the use of clustering, hierarchies, and navigation resources to
assist the visualization.

Although significant advances have been made towards building meaningful layouts
from geometric primitives, existing techniques are formulated to deal with alimited number of
requirements simultaneously, restricting their use to specific gpplications. For instance, tech-
niques such as visual boards and small multiples provide well structured layouts which are easily
readable, but they pay the price of scalability. Hierarchical methods such as Treemaps (FEKETE;
PLAISANT, 2002) mitigate the issue of scalability while making an efficient use of display area.
However, readability and semantic organization of data are aspects not so easily handled by
those methods. Overlap-free semantic preserving techniques such as RWordles (STROBELT et
al., 2012) and ProjCloud (PAULQOVICH et al., 2012) generate somewhat structured layouts and
keep instances with similar content close to each other. Nevertheless, they are not designed to
make an efficient use of display area and also suffer from scalability.

Handling many requirementsis not straightforward because distinct requirements can
compete with each other during layout construction. For instance, to facilitate readability, layouts
should be built with as large as possible geometric entities. However, large objects easily fill up
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the display area, thus limiting the number of instances that can be visualized. Therefore, finding
an optimal balance among multiple concurrent requirements is a challenging task, which has not
been completely tackled by existing methods.

In this dissertation we address this challenging problem by proposing new techniques
for building layouts. We denominate by Semantic Layout Arrangement as the task of allocating
efficiently a set of geometric instances, which summarizes a multidimensional dataset, into a
fixed-size display area, subject to preserve, as much as possible and at all times, the semantic
rel ationships among instances. The arrangement should simultaneoudly play with several require-
ments, such as area usage optimization, overlap removal, object scaling, orthogonal alignment
and dynamic updating.

In the proposed methods, semantic relationships are established by a similarity measure.
We use dimensionality reduction techniques for embedding data from multidimensional to visual
space in order to, subsequently, build a map of geometric entities. Then, we applied the proposed
optimization operators to rearrange entities according to the requirements we deem the most
relevant, thereby generating meaningful visualizations.

To our knowledge, the proposed approaches figure among the most simple, efficient and
intuitive alternatives to explore large amounts of multidimensional data while enabling a fluent
interaction with data analysts.

1.2 Thesis statement

Organizing multidimensional datainto semantic layouts improves information discovery
and data analysis tasks. These tasks demand the optimization of multiple conflicting require-
ments, such as semantic preservation, overlap removal, area usage optimization, object scaling,
orthogona alignment and dynamic update. Properly address those issues allow for an easier and
effective exploration of complex multidimensiona data.

This document presents a compilation of different techniques for interactive semantic
layouts generation for data visualization. Each proposed method brings new contributions for
the field with the purpose of addressing and solving specific problems involved in generating
geometric semantic layouts for interactive data visualization. Essentially, three proposed methods
rely on novel optimization formulations for simultaneously dealing with requirements that were
identified as the most relevant during our study. The last method presented in this dissertation
focuses on an application that demands semantic preserving layout updates during analyst’s
interactive data exploration.

In summary, this dissertation gathers techniques and results developed and published
during the doctorate term. Specifically, it putstogether the results from the following publications:

» “Smilarity Preserving Shippet-Based Visualization of Web Search Results” (GOMEZ-
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NIETO et al., 2014)
The contributions of this work are:

— We propose a method, which we called ProjSnippet, to display the results of textual
queries integrating textual snippets and multidimensional projection into a simple
and intuitive visuaization.

— The ProjSnippet relies on anovel overlap removal energy functiona that considers
both the neighborhood relations between snippets and their overlapping in the visual
space.

» “Mixed Integer Optimization for Layout Arrangement” (GOMEZ-NIETO et al., 2013)
The contributions of this work are:

— We propose a mathematical formulation, which we call MIOLA (Mixed Integer
Optimization for Layout Arrangement), for the problem of arranging rectangular
boxes in the visual space so as to place similar entities close to each other while
avoiding overlaps.

— MIOLA combines flexibility and capability in generating different layouts while still
solving the box-overlap removal problem.

— A video visualization application using MIOLA that allows for handling and exploring
video data sets.

+ “Dealing with Multiple Requirementsin Geometric Arrangements” (GOMEZ-NIETO et
al., 2016) The contributions of thiswork are:

— We propose a methodology to generate layouts made up of geometric primitives
which deals with multiple requirements such as grid-like structure, semantic relation
among objects, display area usage, and overlap removal. The methodology naturally
imposes an hierarchy on the visual representation in order to handle a large number
of datainstances.

— We propose an optimization scheme that relies on a reduced number of unknowns to
generate well structured layouts while making a good use of display area.

— We present a comprehensive set of comparisons against existing methods and severa
practical applicationsto confirm the effectiveness and usefulness of this methodol ogy.

+ “Semantically Aware Dynamic Layouts” (GOMEZ-NIETO; MOTTA; NONATO, 2014)
The contributions of this work are:

— We propose one fully interactive technique to arrange geometric primitives in two-
dimensional layouts.
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— A mechanism to enforce semantic relationships among entities of the layout.

— A combination of interpolation and optimization mechanism to enable a pleasant and
dynamic layout update during and after user intervention.

1.3 Outline

Thisthesisis organized in the three main parts: Thefirst part (chapters 2 and 3) covers
specific concepts on semantic layout generation and relevant literature to contextualize the
problem addressed. The second part (chapters 4 to 7) presents in detail the proposed methods.
Finally, the third part (chapter 8) present the conclusions and future work.

In summary the subjects covered by each chapter are:

» Chapter 2: On Semantic Layouts Requirements presents an study of general concepts
to contextualize the problem of semantic layout generation. It is divided in three main
sections: requirements, operations and quantitative metrics.

» Chapter 3: Review of the Literature describes a set of relevant methods to semantic layout
generation, organized into six different categories: overlap removal, board-based, space-
filling, alignment, hierarchy-based and dynamic update methods.

+ Chapter 4: ProjSnippet, is a visualization technique to display the results of web queries
through rectangular element layouts. It combines the neighborhood preservation capability
of multidimensional projections with the familiar snippet-based representation.

» Chapter 5: MIOLA, is a mechanism to arrange rectangular boxes in a two-dimensional
layout which keegps similar objects close while preventing overlaps. In contrast to heuristic
techniques, our gpproach relies on mixed integer quadratic programming, resulting in well
structured arrangements which can easily be tuned to take different forms.

+ Chapter 6: Dealing with Multiple Requirements presents a novel methodology for building
layouts from geometric primitives that concurrently addresses a wider range of require-
ments. Relying on multidimensional projection and mixed integer optimization, our ap-
proach arranges geometric objects in the visua space so as to generate well structured
layouts that preserve the semantic relation among objects while still making an efficient
use of display area.

 Chapter 7: Semantically aware Dynamic Layouts describe a novel interactive semantic
aware |layout construction technique that relies on a simple mathematical and computational
formulation to allow users to freely interact with the layout. This approach is supported by
interactive multidimensiona projection methods, which enforces similar instances to be
placed close to each other during layout updates.
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* Chapter 8: Conclusion and Future Work summarizes our general conclusions, discusses
limitations found during our study and describes some future works that can be conducted
to further develop this research topic.
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2

ON SEMANTIC LAYOUTS REQUIREMENTS

2.1 Introduction

This chapter provides basic concepts as to semantic layouts generation. First, welist a
collection of requirements that should be cared for during semantic arrangement of geometric
entities. The second section describes a set of operations that deals with such requirements.
Finally, thelast section presents a set of suitable metrics compiled from literature to assess the
performance of those operators.

2.2 Semantic layout arrangement requirements

In this section, we present a detailed list of requirements for semantic layouts generation
that we have identified as the most relevant ones during our studies. In order to better present
the achievements of our studies, this section divided into seven subsections, namely, similarity
preserving, areausage, layout structure, content, perceptive features, interactivity and adaptability,
which are described below.

2.2.1 Similarity preserving

Similarity is one of the most used resources for data visualization. It allows the analyst
to discover patterns, trends or relationships in data through grouping of semantically related
instances, i.e. data with similar valuesin its representative feature vector. In general, similarity is
geometrically represented by spatial proximity according to a distance measure, e.g. Euclidean,
Manhattan or Mahalanobis distances.

The following methods use similarity to map and organize high-dimensional datainto
2D visual space. These methods are highly useful in the context of our work, so they will be
presented here.
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2.2.1.1 Multidimensional projection

Multidimensional Projection (MP) relies on dimensionality reduction theory to embed
multidimensional datainto a visual space. Thus, it allows the visua exploration of different
types of data, such as, document collections (PAGLIOSA et al., 2013), image datasets (JOIA
et al., 2012) or even scientific data such as vector fields (DANIELS et al., 2010). Formally,
multidimensional projection methods can be defined as follows:

Definigdo 1. Multidimensional Projection (TEJADA; MINGHIM; NONATO, 2003) Let X be
aset of pointsin R"and 2 : R" x R" — R be a criterion of proximity between pointsin R". A
multidimensional projection isa mapping f that takes X to a set of points P in RY, v= {1,2,3}
suchthat if f : X — Pisabijectiverelationand d : RY x RY — R isa proximity criterionin RY
then d(xi,xj) — d(f(xi), f(x;)) isascloseto zero as possible, ¥;,x; € X.

There exist different taxonomies for classifying multidimensiona projection techniques.
For instance, Paulovich, Silva e Nonato (2010) classified the MP methods into three main
categories, namely, spectral decomposition, nonlinear optimization, and force-based schemes.
Another classification was proposed by Joia et al. (2011), grouping them into local and global
methods according to the information used to perform the projection. Global methods use only a
single transformation, while local techniques make use of neighborhood information of each
instance and the location of a subset of samples a priori positioned in the visual space to definea
family of mappings. Recently, Lehmann e Theisel (2016) classify MP methods based on the type
of projection used to map data, i.e. projective projections, affine projections and distance-based
projections.

It isworth to mention that most traditional methodsin literature, such as FastMap (FALOUT-

SOS; LIN, 1995), Multidimensiona Scaling (MDS) (TORGERSON, 1952) and Kernel Principal
Component Analysis (Kernel PCA) (SCHELKOPF; SMOLA; MULLER, 1998), established the
foundations for most up-to-date techniques. In fact, recent developments have extended MP
methods capabilities with remarkable success, for instance, reducing the number of distance
information to be computed (LSP (PAULOVICH et al., 2008), PLMP (PAULOVICH; SILVA;
NONATO, 2010)), interactive manipulation of the projection matrix (LAMP (JOIA et al., 2011),
iPCA (JEONG et al., 2009)), create inverse projection from 2D space back to a high-dimensional
space (iLAMP (AMORIM et al., 2012)) or control the influence of parameters in the projection
process (Probing Projections (STAHNKE et al., 2016)).

In generd, the approaches presented in this dissertation use LSP and LAMP as projection
mechanism due to their good accuracy in terms of distance preservation and low computational
cost.
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2.2.1.2 Self-organizing maps

Self-Organizing Maps (SOM) is an artificia neural network based method that makes
use of data compression process, known as vector quantisation, for reducing dimensionality of
vectors. The traditional Kohonen’s (KOHONEN, 1982) approach is typically employed in this
context (GASSEN et al., 2015). In terms of layout, it provides an optimal use of display area
since the layout is a priori defined.

M ore sophisticated methods were proposed extending the Kohonen approach. For in-
stance, Lagus, Kaski e Kohonen (2004) use the same principle of compression for summarizing
and mining large document text collections, named WEBSOM. Recently Strong e Gong (2014)
proposed Self-Sorting Maps (SSM), an greedy-based coarse-to-fine algorithm to compute near
optimal data placements of multimedia data.

2.2.2 Areausage

Since display devices are limited by their fixed physical space, a proper management
of areais afundamental requirement for all disciplines of Visual Computing’, as InfoVis and
VA. Most visualizations are displayed into a workspace (also known as visual space) that will
represents the whole space avail able for displaying visual resources, even if multiple devices are
used for the same application, asin Video Wall’s case.

In visualization, there exist different methods to exploit the visua space. Some methods
are devoted to split recursively the whole space into non-overlapping regions alocating data
to one of these regions, e.g. Treemaps. Other methods build several regions to represent data
aready arranged regardless important considerations as to overlap or area usage — since the sum
of areas of al regionsis not (usually) equal to visual space area— but preserving the original
arrangement of the objects represented.

However, the empty space plays an important role for conveying similarity. For instance,
grouping is clearly defined by the presence of a space that isolates a group for an easy and
intuitive visual discovery. Thus, finding a balance between area usage maximization and any
other perceptive feature for improving visual exploration is acomplex task. Thisis one of the
main issues addressed in this work.

2.2.3 Layout structure

Generaly, alayout structure can be seen as the manner that a set of objects are arranged
or distributed on a limited space. This distribution varies according to what will be conveyed.
As Figure 1 illustrates, different types of layouts transmit different ideas. For instance, a regular
layout — without differencesin size or any other perceptive feature — conveys an equal-weighted

1 Generic term to group all computer science disciplines handling with images and graphics, as computer graphics,
image processing, visualization, visual analytics, computer vision and virtual/augmented reality
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focus of attention for all instances, in contrast to a concentric layout which centers the major
importance on a specific entity, as shown in Figures 1(a) and 1(c) respectively. Figure 1(b)
illustrates a hierarchical layout where each level is represented by a different color, i.e. asthe
higher the level is, the darker the corresponding color. Circular layouts can be used to represent
list of objects following an specific ordering, with the purpose of use inner space to represent
rel ationships among them, as shown in Figure 1(d). Package based layouts allow to improve
readability and understandability of highly linked representation, e.g. large graphs with a high
number of connected nodes, as Figure 1(e) shows. To this end, optimization methods are used
to formulate automatic mechanism of compression. For a up-to-date review see Tim Dwyer’s
recent works (YOGHOURDJIAN et al., 2016), (DWYER et al., 2014) and (DWYER et al.,
2013). Radia axis layouts group subsets of objects in axes around a central object according to a
established metric (e.g. similarity, centrality or class), as shown in Figure 1(f).

Figure 1 — Six different types of layouts to arrange geometric entities. Linked nodes are joined by a blue edge.
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Source: Elaborated by the author.

2.2.4 Content

One of the main purposes when using geometric entitiesisto provide suitable alternatives
to display information associated to instances. Many visualization techniques try to generate
compact representations that summarize the whole content of each instance for an easy and fast
inspection of data. Web search engines, for instance, use textual snippets that depict atitle, a
brief description and URL of websites. Some other websites focused on video streaming (e.g.
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Youtube, Vimeo) add an image thumbnail to illustrate the video content, also known as visua
snippets. Moreover, some visual methods embed abstract representation into each geometric
entity area as barcharts, linecharts, scatterplots, wordclouds or sophisticated methods as Radial
visudizations (e.g. Star coordinates (KANDOGAN, 2001), RadViz (HOFFMAN et al., 1997))
or Parallel Coordinates (INSELBERG, 1998), as shown in Figure 2.

Figure 2 — Different types of content into geometric entities: (a) textual snippets extracted from Google (<http:
/lwww.google.com>), (b) visual snippets extracted from Vimeo (<http://www.vimeo.com>), and (c)
small multiples using line charts extracted from Flowingdata.com (<http://projects.flowingdata.com/tut/
linked_small_multiples_demo/>)
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Source: Elaborated by the author.

2.2.5 Perceptive features
2.2.5.1 Preattentive processing

Currently, the term “ preattentive” is commonly used for conveying an intuitive notion
of some visua properties that can be accurately and rapidly detected by Human Visua System
(HSV) and that precede the focused attention (HEALEY; ENNS, 2012). In general, actions
performed in less than 200-300 milliseconds (msecs.) can be considered preattentive since eye
movements take around 200 msecs. to initiate and focus on any particular location.

Below, we described a subset of visua features considered as preattentive related to
layout arrangement of geometric entities. For a more complete review of preattentive elements
invisualization see (HEALEY; ENNS, 2012) and (WARE, 2004).
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Hue isthe simplest example of a preattentive property. The orange
square, illustrated on the inline image, can be easily identified among
the rest of green instances. The more different thetarget’s hue is, faster
the detection process. In this context, an interesting study of color ap-
plied to cartographic mapsis presented in ColorBrewer (HARROWER,;
BREWER, 2003).

Density isavisua property that naturally conveys grouping. Most
visualizations that aim to represent similarity make use of density to
generate visual heaps according to an specific measure, asillustrate
the inline figure. Additionally, some well-known clustering agorithms
exploit spatial density among data to determine groups automatically,
ask-Means (LLOYD, 1982) or DBScan (ESTER et al., 1996).

Orientation isavery used element on perceptive textures genera
tion. Julész et al. presented to the psycophysics community a model
based on Textons — elementa microstructures in natural images, con-
sidered as the elemental unit on human visual perception. For more
information about this topic see (JULESZ, 1981) and (JULESZ, 1984)

Shape isavisua element that can be used to emphasize dissimi-
larity among data types, asillustrate the inline figure. Besides it is an
important property related to different requirements on layout arrange-
ment, e.g. area usage is strongly influenced by the geometric shape
used to display instances since design area can be totally exploited by
polygons as squares or triangles, in contrast to circle shapes. A suitable
set of shapes should follow the same guidelines as the used in tessel-
lation process in computer graphics area (SEYMOUR; BRITTON,
1989).

Size is, undoubtedly, one of most perceptive features on visuaiza-
tion. Frequently, sizeis an element used to visually convey vaues of a
quantitative feature limited by arange, such that, instances with large
associate va ues should make use of larger areain the visual space, as
illustrate the inline figure.

Direction of motion  concerns the vector direction of displacement,
for example as consequence of a specific event (e.g. click, drag or any
other mouse event). It can be used to convey similarity in adynamic
update process, for instance, when an specific instance is dragged
along a semantic map.
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Velocity of Motion  isanother feature of dynamic update representa-
tions. The variation on displacement speed is visualy easy to identify
and it can be attributed as a feature as well. Thus, during a process
updating the position of instances, this feature can perceptively convey
the notion of flow quick instances are moving.

2.2.5.2 Gestalt principles

They arealso called “Psychology of Form”, itisbasically made up of the seven?Fundamentals
of Gestalt: continuity, symmetry segregation, prégnanz, closure, similarity and proximity. It
assumes that the visual perception is a holistic process®. Thisimplies that the underlying struc-
ture of avisual system is more important than the elements that compose it. This affirmation is
typicaly summarized as “ The whole is more than the sum of its parts” .

Typically, closure, similarity and continuity are the three most relevant fundamental's of
Gestalt, illustrated in Figure 3. Closure says that human visual perception triesto first look at
simpler objects when analyzing a complex arrangements of individuals, similarity state that tend
to relate objects that are similar better than objects that are dissimilar, and continuity states that
learners “tend to continue shapes beyond their ending points”.

Figure 3 — lllustration of three fundamental Gestalt laws.

(a) Closure law (b) Similarity law (c) Continuity law

Source: Adapted from Keim e Zhang (2011).

2.2.6 Adaptability

Many technologies allow us to display visual representations into different devices (e.g.
Wall displays, PCs, tablets, smartphones), but not all of them provides a suitable environment
for interaction when we port these visual resources from one to another device. For instance,
visualizing large and dense graphs turns into an intricate and unpleasant experience on small
devices. In the specific case of layouts composed by 2D geometrical entities, adaptability is

2 This number can be vary depending on the source
3 |tisbased on the premise that properties of any system (the human for example) can be determined by andysis
or treatment of its parts
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strongly impacted by the number of elements displayed. In general, interactive operations for
data exploration in small display devices are not so pleasant as in large screen devices as they
provide more space to fregly organize elements. However, this resctriction is considered for
generating adaptable and ultra-compact layouts, as proposed by Yoghourdjian et al. (2016).

2.2.7 Interactivity

An interaction technique is essentially afusion of input and output involving hardware
and software elements and providing away for users accomplish atask (TUCKER, 1996). In
InfoVis, it plays an important role allowing users to explore and understand large amounts of
information at once.

In the specific case of semantic layouts arrangement, interactive methods perform a
wide set of operations. After semantic relationships being established, the analyst explores the
map in order to identify new patterns and understand the reasons for those relationships, so
this process can involve a repositioning of the instances, or some theory of set operations (e.g.
union, separation, intersection). For this, the main challenge is to preserve semantic during/after
updating process.

2.3 Operations

In this section, we describe a set of suitable operations for dealing with the layout
generation requirements mentioned above. We have categorized them into six types according to
the purpose to be accomplished, namely, overlap removal, space-filling, orthogonal ordering and
alignment, grouping/clustering, hierarchy generation and dynamic update. We describe these
categories in the following.

2.3.1 Overlap removal

Depending of visua metaphor used, overlap is the main difficulty for data exploration®.
There exist different factors causing occlusion between elements in visualization techniques, but
in general, it is due to an insufficient area of the visual space or a non-optimal overlap removal
method for the graphical elements arrangement.

For our purposes of semantic layouts generation, overlap remova has a crucia impor-
tance. The simplest approach is to shrink objects until overlap disappears, as Figure 4(b) shows.
Albeit this strategy preserves the original layout shape, it isinefficient in terms of compactness
and area usage. The overlap remova problem has a so been modeled as a packing problem where
geometric entities are arranged such that they occupy alimited area, disregarding neighborhood

4

In some visualization techniques, overlapping is used to convey grouping of non-classified data, for instance
Parallel Coordinates (INSELBERG, 1998), Star Coordinates (KANDOGAN, 2001) or Graph Splatting (LIERE;
LEEUW, 2003).
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relations as Figure 4(c) illustrates. Generally, these methods use numerical optimization to find
an optimal configuration for the layout.

As can be noticed, the two strategies mentioned above maximize only one requirement
disregarding any other. Therefore, an overlap removal technique that deals simultaneously with
both neighborhood preservation and area usage optimization arises as a suitable solution for gen-
erating compact and semantic-aware layouts, as Figure 4(d) illustrates. However, the formulation
of this solution is not atrivial task since it becomes more complex as more requirements are
simultaneously considered, as will be evidenced in the following chapters.

Figure 4 — Three approaches to solve the overlap removal preserving semantic problem.
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(a) Original Layout (b) Scaling approach (c) Compactness approach (d) Trade-off approach

Source: Elaborated by the author.

2.3.2 Space-filling

Essentidly, this requirement accounts for maximal usage of area. As commented previ-
ously in Section 2.2.2, many techniques consider a value (usually known as weight) to set up
the contribution on the area splitting process, as can be seen in Figure 5 where two different
approaches which differ on the order they allocate geometry entities are shown. Figure 5(b)
shows an arrangement based on area size — larger elements placed first — similar to traditional
treemaps strategies. Figure 5(c) illustrates a balanced arrangement that, simultaneously, tries
to preserve neighborhood relation from the original layout, i.e. adjacent entitiesin the original
layout should be adjacent in the final layout.

Figure 5 — Two different approaches to solve the space-filling problem.
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Source: Elaborated by the author.
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2.3.3 Orthogonal ordering and alignment

These operations aim to enforce orthogonality among geomet-
ric entities. Suppose alayout containing three boxes (B = {b1,b2,bs})

b,

in 2D space where the bottom-left corner of each box is denoted as e l by
X, bs, % for x-coordinates and bY, b, b} for y-coordinates (as illus- 3ba")

trated in the inlinefigure). Therelative order of the objectsispreserved | i

if the following relation is ensured: yLo

X

bl < b5 < b (x- orthogonal order) 2.1)
bf < by < b} (y- orthogonal order) '

Therefore, moving the boxes while ensuring inequality above, can generate layouts that
preserves the initia neighborhood structures.

Another useful operation isthe alignment of geometric primitives. It can be performed by
setting the same vaue in y-coordinates (for horizontal alignment or H-Align) and x-coordinates
(for vertical alignment or V-Align) for a subset of elements. Figures 6(b-c) illustrate H-Align
and V-Align performed on three subsets of instances. Additionally, Figure 6(d) shows the
resulting layout after perform sequentially both operations based on horizontal and vertical
nearest neighbor for each element. Thislast operation is also called layout regularization.

Figure 6 — Three different set of constraints for orthogonal alignment: (a) Original layout, (b) H-Align only, (c)
V-Align only, and (d) Both alignments sequentially performed based on horizontal and vertical nearest
neighbor for each element
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(a) Original Layout (c) H-Align only (b) V-Align only (d) H-Align then V-Align

Source: Elaborated by the author.

2.3.4 Grouping/Clustering

Analogously to point-based representations, grouping can be applied to |ayouts composed
of geometric entities. Well-known clustering methods can be performed considering acommon
spatial position for al entities, e.g. centroid or minimal point. Figure 7 illustrates the use of the
k-means (LLOY D, 1982) and DBScan (ESTER et al., 1996) algorithms for clustering instances
in ageometric layout.
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Figure 7 — Two different approaches for data clustering.
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(a) Original Layout (b) K-means approach (c) DBSCAN approach

Source: Elaborated by the author.

2.3.5 Hierarchy generation

When the number of geometric entities to be displayed is large, the available area can be
insufficient to provide a suitable visuadization. A straightforward solution to thisissueisto use
hierarchical representations. Hierarchies can be obtained through user interaction — based on
his/her preferences — or by grouping mechanisms as detailed in Section 2.3.4 and illustrated in
Figure 8.

Figure 8 — Setting hierarchies by grouping of elements.
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(a) Original layout (b) Setting hierarchies (c) Resulting layout

Source: Elaborated by the author.

2.3.6 Dynamic update

This operation concerns about the behavior of entities after any event or user interaction.
To accomplish this task, different approaches have been proposed, as the use of incremental
models for organize data such that each time a new item will be added (PINHO; OLIVEIRA;
LOPES, 2010) or similarity-preserving mechanisms for reorganizing fixed-size sets of ele-
ments (REINERT; RITSCHEL ; SEIDEL, 2013). In semantic layout case, updating the layout
dynamically is accomplished by generating maps which preserves semantic relations during the
entire exploration process.
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2.4 Quantitative metrics

In this section, we present a set of ten quantitative metrics to measure the quality of fina
layout after performing any of the operations described in Section 2.3 on theinitia (or original)
layout, in terms of the requirements presented in Section 2.2.

2.4.1 Euclidean distance (ED)

Denoting the bottom-1eft corner of each box before and after overlap removal by x° and
xi, the Euclidean distance metric is defined as

10
E- ﬁi;d(xi ) (2.2)

where n is the number of boxes and d is the Euclidean distance. This metric measures how
much the boxes move during the overlap removal process. Less movement is preferred, since the
original configuration is better preserved.

2.4.2 Layout similarity (LS)

This metric attempts to quantify how much neighborhood structures are affected by the
overlap remova mechanism and it is derived from the Frobenius metric. The ideaisto measure
how much the length of Delaunay edges, computed from the original layout, changes after
overlap removal. In mathematical terms, letting Ii°j and lj; denote the lengths of the Delaunay
edges before and after overlap removal, the layout similarity is given by

q ]

>(rij— ?)Q%m i
o= - , T=%21 (2.3)
r m
whererij = lij/ 17 and mis the number of edges in the Delaunay triangulation.

2.4.3 Sizeincrease (Sl)

Given the convex hulls C° and C of the origina and modified layouts, the sizeincreaseis

measured as:

area(C)
S= area(Co) (24

determining the relative changes in size as well as the compactness of the representation.

2.4.4 Shape preservation (SP)

Strobelt et al. (2012) proposed a measure based on shape variation between the origina
(C°) and modified (C) convex hulls.
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The lengths leng and leny are computed for angular orientations from 0°- 350° in
a = 10° steps from the centers of masses to intersections with each convex hull, respectively.
The differences dy, describe the shape increase towards the sampled directions.

leng

ds = ong (2.5)
Then, standard deviation of all differences values is computed:
\
F 1 35
SP=" —) (dsxa — mean(d)) (2.6)
36 £

Intuitively, it can be inferred that if a shapeis equally expanded onthe sx a directions
the standard deviation should be small, and if the shape is strongly deformed it should be high.

2.4.5 Neighborhood preservation (NP)

Proposed by Paulovich e Minghim (2008), this metric was originally used to assess
multidimensional projection techniques performance. It computes the average percentage of
preservation of the k-nearest neighbors of each box in the final layout. It can be seen as a
derivation of the Topology Preservation measure, detailed below.

2.4.6 Topology preservation (TP)

Konig (2000) compares the rank order of neighbors between the original and visua space
using topology information. Denoting by NN;i(i € [1,k], j € [1,m]) and nnj;(i €[1,K], j €[1,m])
the k nearest neighbors of instance j in the original and visual space respectively, the rank order
of each instance | is assessed by the following credit assignment:

3, if NNji = nnj;

o =12, if NNji = nnj,1 €[1,K],i6 |
PTEE1, if NNji = nnj,t e[k gl k< s
0, otherwise

2.7)

where sis afixed number. Typically k= 4 and s= 10. The global topology preservationis:
1 m
r= ﬁ FZ rJ (28)
Thevauer €[0,1] wherer = 1 isthe perfect topology preservation.

2.4.7 Orthogonal ordering (OO)

Measures the number of changes in both horizontal and vertical ordering of a given set
of geometric entities (MISUE et al., 1995). More precisely, positions are sorted in increasing



46 Chapter 2. On semantic layouts requirements

horizontal and vertical order and the number of inversions in the lists provides the quality
measure. |n mathematical terms:

0o= ¥ Zinv‘;)(i,j), (2.9)

se{xy} i<]

(

1, i) =XV -x") < 0

c (), s
invy’ (i, ) =
(i) 0, otherwise

(2.10)

wherei, j areindices of the sorted lists before (t — 1) and after (t) layout arrangement. inv§,t) (i, J)
is defined analogously to invi! (i, j). Small values indicate better behavior.

2.4.8 Orthogonal alignment (L)

Let {z,2,...,z} be points in Z x Z discretizing the interior of a disk,
as illustrated in the inline figure. Moreover, let by be the center of a 15

10 14
squarein thelayout and bij, j = 1,...,k bethe center of the squaresin the ; ; '5 "
k-nearest neighbor of bj. The orthogonal aignment metric is given by: ¢t e

T 11e 3¢ e o1 @9
10 "E:g«_: Z,bjj - b > 7 % %
b= k2 2™ Bk, - bk (2.11) :
nki; g 5 Rk - bk 180 12 %9

where n isthe number of geometric objectsin the layout and < -, - > accounts for the dot product.
This metric gauges how much alayout deviates from aregular grid, the closer to 1 the better.

2.4.9 Areausage (AU)

Let r be the longer diagonal of the bounding box of the layout produced by a given
method and A; the area of the i-th box in the layout. The area usage metric is defined similarly as
(SAMET, 2005):

2112
SiAC

This metric gauges layout compactness and values close to 11/ 2 are better.

NJ:

(2.12)

2.4.10 Dunn Index (Du)

Thismetric (XU; WUNSCH, 2009) identifies clustersthat are compact and well separated.

Du isdefined as follows:
EEH

DuK) = min B min ELPGC) [ (2.13)
i=1,.,K j=i+1,...K | ade(C|)




2.5. Conclusion 47

whered(GC;) = max (Dist(x,y)) isthe diameter of acluster, D(C;,C;j) = min_(Dist(x,y)) is
X,yeGi :

x€G;,yeC;

the distance between clusters and K is the number of clusters. Large values of Du(K) suggest
the presence of compact and well-separated clusters.

2.5 Conclusion

In this chapter we presented basic concepts related to semantic layout generation. These
concepts are fundamental for understanding the set of requirements introduced by our proposals,
the operators and performance metrics used to assess state-of-the-art methods. The next chapter
surveys a collection of related methods classified according to their purposes and functionalities.
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3

REVIEW OF THE LITERATURE

3.1 Introduction

In this chapter we describe a set of relevant methods to semantic layout generation. We
organize the methods in six main categories according to their main characteristic, i.e. overlap
removal, board-based, space-filling, alignment, hierarchy-based and dynamic update methods,
which are detailed in the following and summarized in Table 1.

3.2 Overlap removal

Overlap removal techniques vary greatly asto mathematical formulation and they can be
classified as physical-based, optimal-based and heuristic-based models.

Physical models such as force-based schemes (MISUE et al., 1995; HUANG et al.,
2007; SPRITZER; FREITAS, 2012) and spring systems (CHUANG; LIN; YEN, 2004; HAREL;
KOREN, 2002) are the methods used to position geometric entities representing graph nodes in
the visual space. Overlap removal algorithms for layout arrangement and graph drawing differ as
to the mathematical formulation aswell as the nature of overlap removal problem. More precisely,
graph drawing has an additional constraint rel ated to the closeness (and distance) of nodes, that is,
nodes have to be placed in the visua space such that the neighborhood of the nodes are preserved
as much as possible. An issue with the physical-inspired overlap removal techniquesis the lack
of guarantees as to convergence and quality of the resulting layout. Such issue is addressed
by optimal graph drawing techniques such as the ones proposed by Dwyer, Marriott e Stuckey
(2006) and Marriott et al. (2003), both proposed energy functionals derived from intersection
tests, which rely on quadratic optimization. In order to improve readability some techniques
impose constraints to the energy functiona towards generating grid-like arrangements (KIEFFER
et al., 2013; RUEGG et al., 2014). The main problem with these optimal approaches is that
the energy to be minimized depends on intersection tests, thus introducing several casesto be
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Chart 1 — Classification of relevant to semantic layout generation methods by requirement fulfilled

Requirement ‘ Class ‘ Method
MISUE et al., 1995)
HAREL ; KOREN, 2002)
MARRIOTT et al., 2003)
CHUANG; LIN; YEN, 2004)
(MARRIQTT et al., 2003)
VPSC (DWYER; MARRIOTT; STUCKEY, 2006)
PRISM (GANSNER; HU, 2009)
(DWYER; MARRIOTT; STUCKEY, 2006)
(KIEFFER et al., 2013)
(RUEGG et al., 2014)
(DWYER; NACHMANSON, 2010)
RWordle (STROBELT et al., 2012)

(TUFTE, 1990)

(BERTIN, 2007)

(JAVED; MCDONNEL ; ELMQVIST, 2010)
(

(

(
Physical Model E
(

Overlap Removal

Optimal base

Heuristic based

Small Multiples
ELZEN; WIJK, 2013)

KEHRER et al., 2013)
Correlated Multiples (L1U et al., 2013)
IncBoard (PINHO; OLIVEIRA; LOPES, 2010)
Other approaches | Self-Sorting Maps (STRONG; GONG, 2014)
IsoMatch (FRIED et al., 2015)

Treemap (SHNEIDERMAN, 1992) and its variations
(BUCHIN et al., 2011)

NMap (DUARTE et al., 2014)

Jasper (VALLET; MELANGON; PINAUD, 2016)

(XU et al., 2014), (XU et al., 2015)
(JANG ¢t al., 2015)

Treemap (SHNEIDERMAN, 1992) and its variations
(BEDERSON; SHNEIDERMAN; WATTENBERG, 2002)
(BALZER; DEUSSEN; LEWERENTZ, 2005)

(WOOD; DYKES, 2008)

PedVis (TUTTLE; NONATO; SILVA, 2010)

(NOCAJ; BRANDES, 2012)

ManiWordle (KOH et al., 2010)
(REINERT; RITSCHEL ; SEIDEL, 2013)

Board based

Space Filling

Alignment

Hierarchy based

Dynamic Update

Source: Elaborated by the author.
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handled by the algorithm. An interesting discussion about graph drawing literature can be found
in (GANSNER; HU, 2009).

Heuristic methods a so perform well in terms of overlap removal and similarity preser-
vation. For instance, R-Wordle (STROBELT et al., 2012) can take into account information
of similarity to place similar objects close to each other while avoiding overlaps. However,
those methods do not make an efficient use of display area, mainly when dealing with geomet-
ric objects with different sizes. Scalability is another hurdle for those techniques, with afew
exceptions (DWY ER; NACHMANSON, 2010).

3.3 Board-based

These methods tiles the visua space with geometric primitives so as to produce awell
structured layout. For instance, IncBoard (PINHO; OLIVEIRA; LOPES, 2010) arrange boxes
into a regular grid. This arrangement reflects similarity between instances by proximity, i.e.
neighbor cells in the grid represent similar instances in original space, allocated analogously
to a chessboard where each square position is associated with an multidimensional instance.
Self-Sorting Map (STRONG; GONG, 2011; STRONG; GONG, 2014) also relies on regular grids
arrangement. ltems are arranged based on a sorting mechanism using a hierarchical swapping
process which aims to maximize normalized cross correl ation between the input data and the
target structured grid. Another method that is worth mentioning is IsoMatch (FRIED et al., 2015)
that propose an optimization based on the error minimization of pairwise distances to alocate
elementsinto alayout with a priori defined shape, such as, 2D grid and 3D sphere.

Small multiples (BERTIN, 2007; TUFTE, 1990) is another class of techniques that
rely on structured arrangement of geometric primitives to build visuaization layouts. Small
multiplesis typically used to create different views of a data set (ELZEN; WIJK, 2013) or to
enable the visual anaysis of multiple complex data such as time series (JAVED; MCDONNEL;
ELMQVIST, 2010; KEHRER et al., 2013). Liu et al. (2013) proposed CorrelatedMultiples,
a visualization method which makes use of Constrained Multidimensional Scaling (CMDYS)
to map into the 2D space a set of small multiples conveying similarity between them. A fina
process of alignment produce a structured and pleasant representation. However, it does not allow
any interactive modification of the layout (as repositioning of instances), which is an important
requirement on data exploration.

One of the main advantages of structured layouts isthe ease interpretation of the resulting
visudization. In fact, Elzen e Wijk (2013) demonstrated in their user study that visuaizations
made up of small multiples are more effective than other methods for exploring different views
aswell as orthogonal arrangement of the data. Similar conclusions have been reached by Javed,
McDonnel e EImqvist (2010) in the context of time series visual analytics. Despite the advantages,
structured layouts not scale easily, impairing their use in applications involving large data sets.
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3.4 Space-filling

These methods aim to maximize area usage of visua space. One of the best known
methods in literature is Treemap. Treemaps were originally introduced by Shneiderman (1992)
defined as spaced-constrained visualization of hierarchical structures. This approach is performed
by recursively splitting the space in rectangular boxes whose size and orientation reflect the extent
of nodes in the hierarchy. For a complete revision on treemap evolution along last decades see
History of Treemap Research at the University of Maryland . Most recent variations of Treemap
incorporate remarkabl e features. For instance, Buchin et al. (2011) propose an optimization based
on adjacencies among blocks — where each block represent a cluster of 2D rectangles — with
purpose of transform an irregular layout into a spatial treemap, preserving cluster information
as much as possible. Duarte et al. (2014) makes use of a slice-and-dice strategy for creating
semantic preserved treemaps. Semantic information is defined by a multidimensional projection
technique for embedding data into 2D space. Jasper (VALLET; MELANCON; PINAUD, 2016)
is atwo-phase method for generating pixel-oriented layouts from large graphs. It summarizesinto
compact representations capable of conveying relevant information through a graph coarsening
process. However, dynamic and incremental features are not present on its formulation, forcing
to process the entire graph each time a node is modified.

3.5 Alignment

These methods are devoted to aign horizontally/verticaly geometric entities based on
their spatial positions. For instance, Xu et a. (XU et al., 2014; XU et al., 2015) proposed
important approaches for automatically inferring edge-alignment relationships. Such processes
use an optimization mechanism for layout refinement in order to satisfy the inferred relationships
while preserving as much as possible the original layout, in terms of position and size of
geometric entities. Analogously, Jian et al. (JANG et al., 2015) propose an algorithm for
automatic generation of constraints using an energy function. The main difference against the
method cited above, is aregularization step that resizes and rearranges el ements.

It is worth to mentioning some important applications for these methods in the field of
computer graphics to support the generation of urban procedura models (NISHIDA et al., 2016;
MUSIALSKI et al., 2013) and engineering (MURPHY et al., 2012).

3.6 Hierarchy-based methods

These methods are designed to make an efficient use of display area while enabling
dynamic navigation throughout different levels of a hierarchical representation (BLANCH;
LECOLINET, 2007). Treemap (JOHNSON; SHNEIDERMAN, 1991) and its variants (BRULS;

1 <http://www.cs.umd.edu/hcil/treemap-history/>
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HUIZING; WIJK, 2000; FEKETE; PLAISANT, 2002; SHNEIDERMAN; WATTENBERG,
2001; SHNEIDERMAN, 1998-2013) are examples of hierarchy-based techniques tailored to
visualize data organized as a tree structure. Another exampleis Pedvis (TUTTLE; NONATO;
SILVA, 2010), atechnique that builds upon H-tree layout and rectangular boxes to depict pedigree
information structured as deep hierarchies. In contrast to the hierarchical methods described
above, Voronoi Treemap (BALZER; DEUSSEN; LEWERENTZ, 2005) uses polygona objects
rather than rectangular boxes towards better representing the importance of nodesin the hierarchy
and further differentiate sibling and non-sibling nodes. Despite the efficiency in space occupation,
most tree-base layouts are not devised to place similar instances close to each other, making them
unsuitable for gpplications involving similarity-based data exploration. Aiming at addressing this
issue, some authors (BEDERSON; SHNEIDERMAN; WATTENBERG, 2002; WOOD; DYKES,
2008) have proposed ordering mechanisms that consistently arranges tree nodes according to
some similarity measure. Nocaj e Brandes (2012) combined multidimensional scaling, Voronoi
Treemap, and a set of visualization resources to highlight the similarity among data instances
while enabling navigation throughout the hierarchy.

Hierarchy-based methods scale well and they make good use of display area. However,
in contrast to structured arrangements, the layout resulting from those methods are not so easy to
read as similar instances are not necessarily placed close to each other.

3.7 Dynamic update

A few methods tackle the problem of enabling interactive mechanism to enrich user
experience during layout construction. ManiWordle (KOH et al., 2010) isone of the few examples
in the context of textual data visualization, which allows users to interactively position wordsin
the layout to dynamically update the overall arrangement. However, ManiWordle is not semantic
aware, therefore, the task of building layouts where similar entities are placed next to each other
falls entirely on the user’s shoulder. Reinert, Ritschel e Seidel (2013) proposed a semantic aware
fully interactive system that enables users to build customized layouts. Their gpproach is quite
versdtile and relies on a generalization of Centroidal Voronoi Tesselation to distribute primitives
inthe 2D space. The main drawback of Reinert et a.'s approach isthe intricate energy functional
that has to be evaluated and minimized, which demands tricky GPU implementations to ensure
real-time layout handling.

3.8 Conclusion

In this chapter we summari ze rel evant methods to semantic layout generation. As can
be noticed, most techniques are able to tackle just a few set of requirements simultaneously,
impairing their use and flexibility. From chapter 4 to 7, we present in detail our proposed methods
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designed to account for multiple concurrent requirements such as object scale, neighborhood
and aspect ratio preservation, optimal use of display area, and overlap removal.
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4

PROJSNIPPET

4.1 Introduction

Looking for useful information on Internet is daily task to millions of users. The tra-
ditional procedure consists in providing textua queries to aweb search engine, which returns
aranked list of textual snippets each containing a content summary and a link to the referred
web page. A ranked list of snippets is rather simple, straightforward to interpret, and it turns
out to be effective in focused search tasks that require locating a particular document or web
page (TEEVAN et al., 2009). Nonetheless, it also has limitations likely to hamper user experience
when exploring and analyzing search results in other scenarios. Indeed, ranked listsfail to provide
an overview of the collection retrieved, making it difficult and time consuming to figure out
how documents relate contentwise. For instance, if a user queries Googl€e's search engine on
the keywords “jaguar features’, the first page returned includes snippets on at least four distinct
subjects, namely, the animal, the car brand, a fan club of old Jaguar cars, and a video game
console. Certainly users may refine the search, however, if s’he needs agloba picture thereis
no other choice but navigating through the pages in the list and manually group the snippets
according to their topic.

InfoVis offers users more flexible mechanisms to inspect and navigate the result of
textual queries. Some existing methods preserve the snippet list paradigm while enhancing it
with visua resources such as color glyphs and tag clouds, adding information on the contents of
the returned documents. Although interesting and potentially useful, those visua resourcesrevea
no information on document relations, that is, which documents share similar content and how
many different subjects appear in the search results. Other types of methods replace the ranked
list paradigm with alternatives such as thumbnails to favor better understanding of document
content. Nonethel ess, those methods tend to be visually more intricate and demand greater user
effort to detect and inspect specific documents. Moreover, current visualization methods use the
full content of each document, therefore relying in pre-processed data not readily made available
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by standard search engines, thus preventing their usage as independent plug-ins.

Multidimensional projection techniques are generally employed to generate visualizations
that favor the perception of groups of similar documents. Such methods typically represent
documents as points in a two-dimensional visua space, where neighboring points correspond
to documents with similar content. However, points only convey information on neighborhood
relations.

Superseding them with other geometric primitives introduces overlapping, which impairs
readability. The problem of arranging geometric primitives in atwo-dimensional visua space so
asto ensure that ssimilar objects stay neighbors while avoiding overlap is a recurrent problem
in many different visualization contexts such as graph drawing, and word-cloud construction.
Since finding an exact solution to the problem is computationally intractable, heuristics have
been proposed, which though do not guarantee neighborhood preservation and visual space
occupation. Therefore, techniques capable of arranging geometric entitiesin a visual space by
taking into account their underlying object similarity while avoiding overlap are highly desirable,
as they may benefit many distinct gpplications.

The technique described in this chapter provides an overlap removal approach that
overcomes the drawbacks just discussed. More precisely, we propose an energy functional that
considers both the overlapping between snippets and the neighborhood structure provided by a
multidimensional projection. The minimum energy of such functional gives an arrangement of
geometric entities in the visual space that preserves neighborhoods with minimum overlap.

We apply the proposed overlap removal approach in the context of snippet-based textual
query web search result visualization, enabling two-dimensional layouts that preserve the sim-
plicity and readability of textual snippets while emphasizing groups of content related documents.
The unique combination of asimilarity-based layout with the textual snippets brings out a pow-
erful mechanism to organize and present textual search results that retains the familiar snippet
paradigm, thus avoiding complex interfaces and visua metaphors. Moreover, the visualization
is generated only from the information in the textua snippets, rendering the proposed method
computationally efficient and easy to plug into conventional search engines.

4.2 The method

The proposed technique comprises three steps as shown in the pipeline in Figure 9:
pre-processing of search results, multidimensional projection, and optimization. In the first step
each entry returned from a textual query is processed and its term frequency vector extracted
(see (SALTON, 1991) for details on term frequency extraction). Stemming and stopword removal
are gpplied and Luhn’s lower and upper cuts (LUHN, 1958) established to compute the tf-idf
vector representation of each snippet. Only the summary texts are processed, rather than the full
content of the referred documents or web pages, which renders the visualization algorithm fast.
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Figure 9 — Pipeline to produce the neighborhood-preserving snippet visualization. Snippet textual content is repre-
sented as multidimensional data points (Ieft). The multidimensional data is mapped to the visua space
and snippets are embedded into rectangles (middie). Optimization is applied to avoid overlap while
preserving neighborhoods.

Preprocessing Multidimensional Projection Optimization )

Source: Gomez-Nieto et al. (2014).

Although considering the full document content might improve cluster quality, handling only the
summary text favors interactivity and makes it easier to plug the proposed solution into existing
standard browsers, which typically do not make available the full pre-processed content data.

Each term frequency vector may be handled as a point in a multidimensional space that
can be mapped to the visual space with a multidimensional projection technique. Albeit our
current implementation adopts the Least Squares Projection (LSP) (PAULOVICH et al., 2008)
—due to its good accuracy in terms of distance preservation and low computational cost — any
projection technique with similar properties might be employed. The projection preserves much
of the neighborhood structure of the origina data, ensuring that similar instances are placed
close to each other in the visual space.

The following step is to embed the content of each snippet within a rectangle whose
bottom left corner isplaced in the snippet’s (or its multidimensional data point) projected position.
A rectangle’s height and width are settled to reflect the rank of its corresponding snippet in
the retrieved document list, so that better ranked snippets are assigned larger rectangles. The
k-means+ + algorithm (ARTHUR; VASSILVITSKII, 2007) is applied to the projected layout to
identify clusters of similar documents (using Euclidean distance as metric in the visual space),
and rectangles in the same cluster may be assigned the same color to highlight groups. The
benefits of highlighting clusters when visualizing and analyzing textual search results have been
pointed out by several authors (CUTTING et al., 1992; PIROLLI et al., 1996), motivating our
choice.

A magjor drawback at this stage of the pipeline is that rectangles enclosing the snippets
overlap considerably, impairing identification of individual entries and the perception of the
document neighborhood structure. The final step (rightmost box in Figure 9) optimizes the
placement of the snippetsin order to avoid overlapping while preserving data neighborhoods as
computed by the projection. The optimization is driven by an energy functional as follows.
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4.2.1 The energy functional

The energy functiona E involves two components, one that considers the overlap of
snippets, denoted by Ep, and a second component related to the neighborhood relations resulting
from the multidimensiona projection step, denoted by Ey. In mathematical terms, the energy E
is written as:

E=(1-a)Eo+ aEn (4.1)

where the parameter a € [0, 1] balances the relative contributions of both Eg and Ey in the total
energy.

Energy E, as well as Ep and En, are functions of the coordinates of the bottom-left
corners of the rectangles embedding the snippets, which initially correspond to the projected
coordinates of the multidimensional snippet vectors. We omit the independent variables from the
equations to simplify the notation.

Overlapping Energy  Aiming at enhancing overall visibility and readability of the visual-
ization, the energy Eg must be defined so as to minimize the overlap/intersection of adjacent
snippets. Thisis reached with a function that measures the distance between the |eft corners of
the rectangles. This function is smooth, attains its minimum value when no overl apping takes
place and takes higher values when rectangle overlap is greater. Smoothness is an important
property here, as it enables resorting to simple and efficient optimization methods which are
mandatory for quick generation of the final visualization.

Let x,5¥ € R" be the coordinate vectors of the bottom left corner of each rectangle and
v, 1 € R" be vectors whose components are the vertical and horizontal dimensions of each
rectangle. We first define two auxiliary functions to simplify the presentation:

. x= 0
X =
' x< 0
and
=l = (=) Xz X

Oi,j(x,h) = .
Ehire- - x)22 %< x

where x;, hj and xj, hj denote, respectively, the x-coordinates of the bottom left corner and the
lengths of rectanglesi and j. Noticethat O; j(x,T) is zero when thereis no horizontal overlapping
of rectanglesi and j and attains its maximum vaue of 1 when the x-coordinate of the left corners
of both rectangles coincide. Function O; ; works similarly if y-coordinates and heights are used
asarguments, i.e., O; j(¥,V).

From definitions above we set Eg as:

Eo= > > OxmOiy.y) - (4.2)
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Figure 10 — (a) Layout without optimization; (b) Overlapping energy Eo only; (c) both energies Eg and Ex combined

(a = 0.5).
| )  E—
— — f—
=g —N :
= =1 o — ] =
—— — ——
(@ (b) (c)

Source: Gomez-Nieto et al. (2014).

where n is the number of projected points. The definition of O; j clearly guaranteesthat Eq is
continuously differentiable and it rangesin the interval [0, 1].

Neighborhood Energy  The minimization of Eg spreads textual snippetsin the visual space
so as to prevent rectangles from overlapping. However, this minimization process is likely to
spoil the neighborhood structure established by the multidimensiona projection, placing similar
snippets far apart in the final visualization.

The energy term Ey isintroduced to ba ance the effect of the overlapping energy during
optimization. In practice, the energy Ey isdefined from ak-nearest-neighbor graph G constructed
from the projected “snippet-vectors’ (our implementation uses k = 10). In order to ensure G
is connected, any disconnected components resulting from constructing the k-nearest-nei ghbor
graph are connected by adding to G the shortest edge between them.

Let L bethenx nmatrix with entries |;; given by:
] i
t—1/1]i] if j&é iandijisanedgeof G
lij = 1 ifj=i (4.3)
@ 0 otherwise
where |i| isthe valence of nodei.

Denoting by x° and ¥° the x and y coordinate vectors of the nodes of G (recall that x°
and ¥ result from the multidimensional projection step) we define the differential vectors 8 and

dy as:
5 = LxO, 5, = Ly°. (4.4)

Notice that the components of &x and 8y are given, respectively, by:

1 1

0 0 0 0

o — § X, 0_ _ § 45
| |NI| J;‘I | yl |NI| y] ( )

JEN

In less mathematical terms, 8¢ and &y measure how much each node deviates from the
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average of its neighbors. Therefore, we define the neighborhood energy as

En = , HE D — w5x+ - way (4.6)

It can be easily realized that En will be minimal whenx andy are such that their differentials Lx
and Ly are proportional to theinitial differentials &, and 8y. In other words, the energy term En
is minimized when neighborhood relations are preserved during optimization. The unknown w is
added to the optimization to ensure that any scale of the pointsis a minimum of the neighborhood
energy (w is optimized together with &, and &).

The normalization factor % U85+ U851~ ensures that the range of Ey isin the
same order of magnitude as Ep, so that both terms play similar roles (controlled by the parameter
a) inthetota energy E.

Figure 10 illustrates the result of optimizing the layout shown in 10a. Figure 10b shows
the layout produced by optimizing the overlapping energy only, whereas Figure 10c shows the
outcome of the optimization procedure with both energy terms equally balanced.

4.2.2 Computational aspects and implementation

Horizontal and vertical bounds of the visuaization windows are imposed as constraints
for the minimization of the energy (4.1). Thisis necessary since for a sufficiently large positive
number K, the coordinate vectorsx = Kx° andy = Ky°, (w= K) correspond to aglobal minimizer
of E, as no overlap should appear and differentials are preserved by properly scaling the layout.
However, the minimal solution given by scaling is prone to spread the snippets far apart, resulting
in unpleasant and useless visualizations.

Therefore, denoting the horizontal and vertical bounds of the visualization window by
Xmins Xmax @Nd Yrmin, Ymax the minimization problem becomes:

min (1-a)Eo+ aEyn
suchthat: Xmn< X < Xmax—hi, i=1,...,n (4.7)
Ymin< Vi S Ymax— Vi, i=1,...,n.
(recalling that variables x; and y; are encapsulated into Eg and En) which ensures that all

rectangles lie within the visuaization window, therefore preventing an exaggerated scaling
effect.

The minimization is achieved by a globally convergent local optimization method,
namely the Method of Moving Asymptotes (SVANBERG, 2002), available on the NLopt library
at <http://ab-initio.mit.edu/wiki/index.php/NLopt>.

Reducing unused space For reducing unused space in the final layout we implemented a
simplified version of the seam carving strategy (WU et al., 2011). Theideaisto partition the
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Figure 11 — Reducing unused space with a carving mechanism for the search term “batman”.

region of collapse

(c) With carving strategy

Source: Gomez-Nieto et al. (2014).
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Figure 12 — Google and ProjSnippet views of the results of a query with terms “jaguar features’.

(a) First page of Google (b) ProjSnippet displaying 64 snippets

Source: Gomez-Nieto et al. (2014).

“white regions’ (snippet-free regions) of the visualization window into a rectilinear grid, as
illustrated in Figure 11a. Seams are then created by collapsing rectangular grid cells from left to
right and then from top to down. A cell is collapsed if and only if al the snippetsin the clusters
affected by the collapse can be moved horizontally or vertically. If only part of acluster can be
moved no collapsing is performed. Such a simple carving mechanism runs fast and it obviously
preserves the clusters. Although more sophisticated carving strategies exist capable of further
removing unused space, they are computationally expensive and tend to spoil the neighborhood
structures. The simple strategy described above is computationally efficient, produces pleasant
layouts and preserves clusters altogether (see Figure 11).

4.3 Results, comparisons and evaluation

In the following we describe examples illustrating the ProjSnippet visualization and its
capability to globally convey the results of a web query while emphasizing related hits in a
meaningful way. All examples have been generated in alntel Core™i7 CPU 920 2.66GHz with
8Gb of RAM. Stemming and stopword remova were applied in the pre-processing step, and
Luhn’s lower and upper cuts were set to 12 and 33, respectively, to compute the tf-idf vector
representation of the collection. A k-means+ + clustering has been performed just to color the
rectangles to visually highlight groups of similar snippets and provide some visual segregation to
facilitate user inspection. The optimization procedure has been gpplied with a = 0.3 (the default
vauein our current implementation).

Thefirst exampleillustrates a visualization displaying the results of a query on the terms
“jaguar features” submitted to Googl€e's search engine. The view in Figure 12a shows the 10 best
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ranked snippets shown in the first page. Figure 12b displays a ProjSnippet view with the 64 best
ranked snippets. |nspection discloses that the snippets on the left (cyan, red, blue, yellow) all
refer to different models of Jaguar cars, whereas the green ones on the right refer to a surprising
variety of topics, that include multiple references to the wild animal (3 snippets) and also to
supercomputer models named Jaguar (2 instances). There are also unique references to an earlier
MacOs operating system named Jaguar, to a video game, a swimming pool brand, a hair product
brand, an aircraft model and afew other varied stuff. Looking at the |eft region, one identifies
that most snippetsin the blue cluster contain general references to the car brand, whereas the
each of the three other clusters refer mostly to a specific Jaguar model, namely most yellow
snippets refer to the XK model, cyan snippets refer to XJ and red to XF models. There are some
noticeable exceptions, e.g., ayellow snippet refers to the XF model and a blue one refersto the
XJmodd. Still, overal the final layout depicts a representative overview of the search hits, as far
grouping/separating similar/dissimilar results is concerned. Notice that it is pretty difficult to
handle such a variety topics and subtopicsin Googl€'s list-based view, which indeed brings only
results on cars, animals and the game in the first page.

Figure 13 shows the result of a search on Amazon’'s search engine, illustrating the
potential of ProjSnippet in scenarios of searching for products at on-line stores. In these examples
the fields Title, Author, Brand, Color, Edition, Feature, Published Language, Manufacturer,
Product Group, Size, Warranty, Year of Publication we used to generate the vector space mode.

In Figure 13a we issued a query with terms “scrapbooking supplies” in the category
“Office Products’, from which 50 products were returned and visualized. Overall, the layout
organization reflects a global arrangement of the products by brand and functionality. Most of
the snippets in the top orange group refer to punch models from the same brand, EK Success.
There are also snippets that refer to an adhesive remover and a rounder, both products from the
same brand as the punches. The red group includes only products from Fiskars, also comprising
punches and corner and border punches. The light yellowish green group on the right displays
products from a particular brand (Martha Stewart Crafts), again including mostly models of
punches. The green group of snippets on the left is more varied in content, including different
products from various brands. Still, the majority refers to various types of adhesives and related
products: tape, tape gliders and tape refills; glue stick and varied occurrences of stickers, such
as baby stickers and a sticker maker. The green group also includes a reference to cardstock
and areference to a craft storage rack. The centra red group includes mostly references to
utensils ranging from knife to cutting blades, from varied brands —including Fiskars, that has
also utensilsin the red group. The remaining two groups identified by the clustering are both
very small. The two blue snippets on the top, to the left of the yellow group, refer to a hole
puncher and a paper pad. The three ones in cyan at the bottom refer to punch models from a
single brand and a pen set.

Figure 13b shows the visual result for a query on terms “pyrotechnic supplies” on
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Figure 13 — Searching for “scrapbooking supplies’ (a) and “pyrotechnics supplies” (b) on Amazon.
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Figure 14 — Effect of varying parameter a.
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Amazon. The search, conducted in category All, returned 50 hits shown in the visualization. The
red group on the left contains snippets referring to dog T-shirts designs with a printed phrase that
includes the term “pyrotechnics’. The exception is the bigger snippet that refers to a waterproof
fuse. Just under is a blue cluster of just two snippets that refer to colored paper from a brand
named Fireworx. Further down are the cyan snippets, most referring to US Army technical
manuals on military pyrotechnics. Again, there is one exception, areference to label supplies.
The green cluster on the top right region refers mostly to chemical supplies, but it also includes
two references to abook and areference to atoy. Finaly, the yellow group contains instruction
material, mainly books but also video, on safety, addressing topics as protection, strategy, tactics
and firefighting. Again, an exception is areference to a video game. In this visualization the
groupings are very uniform in content and clearly separated by topic, except for the few unusual
items, such as the labels or the video game.

Users can interact with the visualizations to navigate directly from the snippets, e.g., to
further inspect page contents, as afforded by the conventional list-based metaphor. Moreover, the
examples shown clearly illustrate that the ProjSnippet visualizations are capable of depicting
many snippets simultaneously in a clear and organized manner.

The effect of varying the parameter a in equation (4.1) isillustrated in Figure 14, which
shows optimized layouts (without applying the carving mechanism) of the results from a query
on terms “wave applications” posed to Bing's search engine. In Figure 14a only the overlapping
energy has been considered (a = 0). There is no overlapping, but neighborhoods are clearly
not preserved and snippets are far too spread. Inspecting Figures 14b and 14c one observes
how similar snippets get more tightly connect as a values increase. Notice that even with large
valuesof a (a = 0.8 in Figure 14c) the snippets do not overlap unduly, showing the robustness
of ProjSnippet as to the choice of a. No displacement of snippets occursif a = 1, since the
result of the projection is clearly a minimizer of Ey.

Table 1 shows the energy values after optimization, as well as computational times (in
seconds) for the examples presented in the paper (the search “Batman” is depicted in Figure 11).
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Table 1 — Optimization results.

| Search (k] Eo | Ex | E [Time(9)]
Pyrotechnics supplies| 5 | 45477 [ 1.97-% [ 5.937° | 0.24
Scrapbooking supplies| 7 | 1.71-7 [ 5.09-% | 5.11-° | 0.23
5
6

Jaguar features 3.97°71191-4[ 5764 | 0.27

Wave gpplications 5.38°6 | 8534|3444 | 112

Batman 512798 48°5|219°° | 0.26
Source: Gomez-Nieto et al. (2014).

Figure 15 — Comparing ProjSnippet, VPSC, PRISM, Voronoi-based, and RWordle-C considering metricsE (a), o
(b), S(c), and k-nearest neighborhoods (d). Better performanceis indicated by lower valuesfor E and S,
vaues of o closer to 1, and higher k-nearest neighborhood curves.
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The minimization strategy does apretty good job in quite acceptable times, supporting interactive
visudization.

4.3.1 Comparing with overlap removal heuristics

Severa heuristics have been proposed to arrange rectangular boxes in a viewport so
as to avoid overlapping while still preserving the semantic relations among boxes as much
as possible. In order to assess the effectiveness of the overlap removal mechanism built into
ProjSnippet we have compared it with four well-known heuristics, namely, VPSC (DWY ER,;
MARRIOTT; STUCKEY, 2006), PRISM (GANSNER; HU, 2009), Voronoi-based (DU; FABER,;
GUNZBURGER, 1999) and RWordle-C (STROBELT et al., 2012), regarding the following
metrics: Euclidean Distance (Section 2.4.1), Layout Similarity (Section 2.4.2), Size Increase
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Figure 16 — Global comparison of overlap removal methods regarding the four metrics simultaneously.
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(Section 2.4.3) and Neighborhood Preservation (Section 2.4.5).

Figure 17 shows the layouts produced by the algorithms when applied to the data sets
in the first column of Table 1. We run ProjSnippet with (ProjSnippet+Carving Strategy) and
without (ProjSnippet) the seam-carving mechanism. One notices that ProjSnippet outputs a more
organized layout, as compared with existing heuristics. On afirst glance, its layouts resemble
those obtained by RWordle-C, but ProjSnippet is more effective in preserving the grouping of
similar elements (notice, for example, the red and the light blue groups on “Jaguar Features’
and “ Scrapbooking Supplies’, respectively). Figure 15 summarizes the quantitative results by
the above metrics: ProjSnippet performed quite well, resulting in better values than the other
methods, in most cases.

Figure 16 shows a plot that considers all metrics simultaneously. Each overlap removal
technique has been represented as a four-dimensional vector (Eg, 04, Sa, ka), where Eg, 04, S5, ka
are the average values of the metrics E, 0, S and k-nearest neighbors computed for each tech-
nique, over all data sets. The points labeled “best”, “average”, and “worst” in Figure 16 were
created artificialy as four dimensional vectors describing the best, average and worst results
computed considering all methods over all data sets. More precisely, the coordinates of the
point labeled “best” are given by the best value of each metric obtained in the experiments (over
al data sets). The same for the “worst” point, now considering the worst values, whereas the
“average” point is obtained by averaging the values of each metric computed from all methods
over al data sets. The four dimensiona vectors were projected with the LAMP multidimen-
sional projection (JOIA et al., 2011). The techniques closer to “best”, namely ProjSnippet and
RWordle-C, are the ones with the best global performance, relative to all metrics.

4.3.2 User evaluation

We conducted two controlled user evaluations: one comparing ProjSnippet with a stan-
dard list-based interface and another comparing it against other layout techniques, namely
PRISM, VPSC and RWordle-C. Thefirst study was aimed at assessing whether the Proj Snippet
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Figure 17 — Layouts produced by ProjSnippet, VPSC, PRISM, Voronoi-based, and RWordle-C for five distinct data
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layout allows users to find information faster than a list-based interface in tasks that require
identifying groups of related sites, without significantly affecting precision. The second study
was aimed at comparing ProjSnippet with other layout techniques, regarding the correctness of
such tasks.

We formulated specific questions, detailed in Table 2, relative to the two queries already
introduced, on “pyrotechnics supplies” (DT1) and on “jaguar features’” (DT2). Each snippet in
the interfaces shows its rank as returned by the search engine, so that the rank could be taken as
asiteidentifier by subjects answering the questions, when required.

Both evauations followed the same overall procedure comprised of four steps:

1. Introduction: participants were given a brief explanation on the purposes of the study.

2. Tool exposure: participants were shown basic functionalities and interaction functions of
the prototypes interfaces (ProjSnippet and list-based).

3. User familiarization: participants interacted with their relevant interfaces for around 10
minutes, exploring a collection other than DT1/DT2.

4. Evauation: participants were invited to answer the questionsin Table 2 on their assigned
interface/collection.

For the first study we invited 14 participants, al undergraduate or graduate students to
execute the tasks using ProjSnippet and the standard list-based interface. Subjects were split
into two groups of seven, so that a group used the list-based interface to answer questions on
the “pyrotechnics supplies’ hits and the ProjSnippet interface to answer questions on the “jaguar
features” hits, whereas the other group used the interfacesin the reverse order. This study verified
the following hypothesis:

» H: Users of ProjSnippet will spend less time to answer questions that require a global
analysis of the query results (T1, T2, T3 and T4), with no significant loss in correctness.

We measured correctness of the answers (success rates) and the elapsed times taken
to answer questions T1 to T5. In order to assess only the effectiveness of the proposed two-
dimensional layout we turned off the clustering mechanism, that is, clusters of similar snippets
have not been colored or highlighted. For the sake of fairness we also disabled the carving
mechanism available in ProjSnippet. Results are shown in Figure 18, for each task and each
dataset. 100% success rates were achieved on both collections on tasks T4 and T5. We applied a
T-test with a5% level (a = 0,05) to check for statistical significance of the differences found.

One observes in Figure 18(a) that subjects answering task T1 (“how many websites...”)
achieved better correctness on the Proj Snippet interface, on both collections. The difference,
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Chart 2 — Task questionsin user tests.

] Task Target \ Question

DT1: How many websites report on
T1 | Identify groups of related sites chemical supplies for pyrotechnics?
DT2: How many sites depict content on
the “Jaguar XJ’ car model ?

DT 1: Which sites present books, guides
T2 | Identify groups of related sites or papers about pyrotechnics?

DT2: Which sites depict content on the
“Jaguar XK” car model ?

DT1|DT2: How many different topics
you can identify in the returned results?
T4 | Find different sites addressing AL tg;zz,v_vebsm announaing
similar content DT2: Find two websites that refer to the
animal “Jaguar”.

DT1: Find awebsite that addresses the
T5 | Find aparticular site topic “wick cannon fuse”

DT2: Find a website that includes the
expression “Jaguar Features’.

Source: Gomez-Nieto et al. (2014).

T3 | Identify groups of related sites

Figure 18 — Correctness (average success rate) of subject answersin Tasks T1, T2 and T3 when using the Proj Snippet
and the List-based interfaces, and the response times, in seconds, to all tasks.
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Table 2 — ProjSnippet x List-based T-test p-values

\ Task | “pyrotechnics supplies’ (DT1) | “jaguar features” (DT2) \
T1 0.002629 0.001074
T2 0.002387 0.002976
T3 0.036768 0.039171
T4 0.652960 0.005878
T5 0.780640 0.036399

Source: Gomez-Nieto et al. (2014).

Table 3— ANOVA p-values rel ative to comparison of the four layout techniques.

\ Task | “pyrotechnics supplies’ (DT1) | “jaguar features” (DT2) \
T1 0.2427 0.5827842
T2 0.426798 0.020015
T3 0.012762 0.908402

Source: Gomez-Nieto et al. (2014).

however, is not statistically significant. Participants answering task T2 (“which websites...”)
performed better on the list-based interface on DT1 (“pyrotechnics supplies’), and better with
ProjSnippet on DT2 (“jaguar features’). Again, differences have not been found to be statisti-
caly significant. Finally, on task T3, which required identifying the multiple topics addressed,
performance of ProjSnippet users was equivalent to those of the list-based on DT2, and better on
DT1 —theonly difference found to be of statistical significance. Therefore, we conclude that in
general users could identify the relevant sites with both interfaces. In fact, in most cases users of
Proj Snippet performed better, albeit it is not possible to conclude that it favors an improvement
in the success rates.

Figure 18(d) confirms that ProjSnippet users took less time to answer all questions on
both collections, with one single exception (task TS on DT1). Differences have been found to be
statistically significant for tasks T1, T2 and T3 on DT1 (“pyrotechnics supplies’) and for al five
tasks on DT2 (“jaguar features”). Table 2 shows the p-values computed for the time differences
in tasks, on both collections. Even for task T5 (identifying a particular website), Proj Snippet
users performed better on DT2, whereas we expected scanning through the list view would be
faster. These results confirm our initial hypothesis.

For the second user study we invited 24 participants, again undergraduate or graduate
students in Computer Science and none of them involved in the previous study. They were asked
to answer the same questions, with evaluation taking place in two stages: first, each subject
worked on DT1 displayed by a particular layout technique, and then on DT2 and a different
layout technique. Subjects wereinitially randomly assigned to 4 groups, and each group of six
assessed one layout technique. In the second stage subjects were reassembled into 4 groups
ensuring they would work on alayout technique different from the previous one. The working
hypothesis can be stated as:
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Figure 19 — Correctness (average success rate) of subject answersin Tasks T1, T2 and T3 for the different layout
techniques, and overall response times (in seconds).
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» H: Users of ProjSnippet will achieve better success rates than users of other layouts when
answering questions that require a global analysis of the query results (T1, T2 and T3).

Subjects spent roughly 20 to 30 min to complete each stage. We measured correctness of the
answers to questions T1 to T5. Again, 100% success rates were achieved on tasks T4 and T5
on both collections, and results for tasks T1, T2 and T3 are shown in Figure 19. We applied
one-way ANOVA at 5% level to check for statistical significance of the performance differences,
corresponding va ues are shown in Table 3.

Analysis of Figure 19 reveals that ProjSnippet users did better than the others on task T2,
on both datasets. However, only in DT2 the performance difference was found to be significant.
They also did better on Task T1 with DT2, whereas with DT 1 the ProjSnippet layout came as
second best. Again, differences have not been found to be statistically significant. On task T3
ProjSnippet came second to PRISM on DT1, and first (but equivalent to VPSC) on DT2, with
statistical significance found on DT1 only.

Although these results do not allow usto confirm the original hypothesison the superiority
of ProjSnippet, we observe it displayed good performance and a more stable behavior across
tasks than the other techniques considered. Its users achieved higher or equivalent average
success rates, as compared to users of other layouts, in four out of the six scenarios, and they
also did well in the remaining two. They also spent less time executing their tasks, as observed
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in Figure 19(d).

Notice that Figure 16 indicates the inferior quality of PRISM compared to ProjSnippet,
RWordle-C, and V PSC regarding the quantitative measures, which is consistent with the obser-
vations from our user evaluation, where PRISM users did worse than users of the other three
techniques in all except one task (T3/DT1). Moreover, RWordle-C users performed better in
one evaluation (T1/DT1), being second in other two (T2/DT1 and T2/DT2), while VPSC tied
with ProjSnippet in thefirst position once (T3/DT2), being second in the T1/DT2 test. Based on
these evidences one could claim that RWordle-C has a better performance than VPSC, again in
agreement with Figure 16. We point out, though, that additional studies should be conducted to
further investigate the relationship between quantitative measures provided by the metrics and
the qualitative results resulting from our user evaluation.

4.4 Discussion and limitations

The ProjSnippet views of a collection of returned hits highlight their global relationships,
as opposed to organizing them by their inferred rel evance to the query. Still, the visualizations
retain the simplicity of the snippet-based interaction, which from our perspective is a significant
advantage. The underlying visualization paradigm is modified gently, requiring no substantial
additional effort from users familiar with the standard list-based views. Even the aspect ratio
of the rectangles reflects the nature of textual snippets, which are wider than higher. Users can
still navigate the snippets and click to see a web-page preview (see Figure 20) and to inspect the

Figure 20 — Interactive exploration with ProjSnippet: (a) Main window, (b) on mouse over a snippet is highlighted
and enlarged, (c) after afew seconds a preview of the page content is displayed.

Source: Gomez-Nieto et al. (2014).
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contents of particular documents.

Both the display size and the overall number of snippets exhibited affect visualization
readability. Theillustrative examples shown were handled on medium to large-sized monitors
and were readily interpreted and easily read. Obviously, readability will be hampered on small
monitors, in which caseit is better to display less snippets. Finding an optimal number of snippets
to display is not straightforward, since a decision involves many variables, such as the screen
resolution and the nature of the search. Moreover, if the user-defined number of clustersis not
set properly, non-similar snippets may end up in the same cluster and mislead user interpretation.

Our examples also indicate that creating the visualizations only from the summarized
snippet texts is quite satisfactory. Similar entities are nicely clustered, although some apparent
“outliers” may occur. Cluster quality might be further improved by inputting additional text
from the documents into the clustering algorithm. Nonetheless, this would incur in higher
computational cost and not necessarily produce better results, as text clustering isintrinsically
fuzzy: in many situations one could easily justify assigning a document to multiple clusters.

Proj Snippet requires avery simple pre-processing step, but some tricky issues remain.
For example, setting appropriate values for Luhn’s lower and upper cuts in scenarios where
littleinformation is available, asit isthe case here, is not straightforward and deserves further
investigation. In our examples we typically employed a lower cut of three and no upper cut and
removed the query terms from the vector representation.

Finally, clustering in visual space will produce good results as long as the projection
technique does a good job of preserving the relevant neighborhoods. Our choice of the LSP
method is justified by its being known to perform quite well in terms of neighborhood preser-
vation, which is confirmed by the results shown here. Nonetheless, if this is not the case, the
visualization of groups may be misleading. Users may investigate aternatives playing with the
number of clusters while observing the visualization.

4.5 Conclusion

In this chapter we described Proj Snippet, atechnique to visualize the collection of textual
snippets returned from a web query. This gpproach builds intuitive and meaningful layouts
that optimize the placement of snippets by employing an energy functional that considers both
overlapping removal and preservation of neighborhood structures.

We showed results illustrating how the ProjSnippet layouts convey a global view of
the results from a query while allowing for identifying similar content through a clustering
mechanism. Since ProjSnippet relies only on information extracted from the textual snippets,
it can be plugged into search engines in a straightforward manner, with a modest impact on
the computational times. The unique combination of simplicity, low computationa cost, and
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flexibility renders ProjSnippet an attractive alternative for visualizing web queries results.
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MIOLA

5.1 Introduction

In this chapter we describe Mixed Integer Optimization for Layout Arrangement (MI-
OLA), atechnique to tackle the problem of arranging rectangular boxes in the visua space so as
to place objects representing similar content close to each other while avoiding overlaps. We
formulate the problem as a Mixed Integer Quadratic Programming Problem (MIQP), which
enables well structured layouts. In contrast to other optimal methods that take into account
the similarity between instances, our approach does not rely on intersection tests, making the
algorithm simpler to implement. Moreover, our technique is quite flexible, being able to generate
different layouts by just handling optimization constraints.

The practical usefulness of our method is demonstrated in a video data set visualization
application. Textual information associated to each video is used to measure the similarity
between them, that is, the similarity between videos is cal culated using bag-of-words derived
from textural information and the cosine distance measure. The similarity measureis, then, used
by a multidimensional projection technique that maps the data to the visual space, where the
boxes representing the videos are arranged by the proposed optimization mechanism, generating
thefinal layout.

5.2 The method

Let B= {B4,B,,...,Bn} beaset of nrectangular boxes arranged in the visual space such
that the neighborhood structure of the boxes reflects a property of interest. For instance, if a
data set is mapped to the visual space using a multidimensional projection technique and a
box is centered on each projected data point, the resulting arrangement makes neighbor boxes
correspond to similar data. Boxes in this arrangement, however, should overlap considerably,
impairing the visualization of individual boxes. In order to make each box visible, one hasto
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Figure 21 — Inequalities (5.2) ensure that no boxes will not displayed offscreen while inequalities (5.3) preserve
the order of the coordinates w.r.t. initia layout. (a) Input layout and (b) result after layout arrangement
(orthogonal ordering: Xy, < Xp, ;,P1= 2,p2= 3,p3= 1,p4 = 4; similarity for y case).
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(@) Input layout. (b) Optimized layout.

Source: Gomez-Nieto et al. (2013).

displace the boxes in the two-dimensional space so as to remove overlaps, but preserving the
initial neighborhood structures to keep similar objects close to each other. As described next, we
formulate the problem above as a mixed integer quadratic programming optimization.

5.2.1 Problem statement

Let B= {B4,By,...,Bn} beaset of nrectangular boxes initially positioned in a two-
dimensional space. Each box B; is specified by afour dimensional vector B; = (x;, i, Wi, hi) € R%,
where(xi,Yi), w; > 0, hj > 0 arethe centroid, width and height of B;, respectively (see Fig. 21(a)).
Two boxes B; and B; do not overlap if and only if one of the following inequalities holds:

hi+ hj
>
2

We refer to the inequalitiesin (5.1) as non-overlap constraints.

IXj— x| 2 —— or |yj- Vil (5.1)

Moreover, the boxes must respect the bounds of the visualization window during dis-
placement, that is,

% + lbx< X < ubx- % (x lower/upper bounds)
(5.2)
g+ lby < y; < uby— g (y lower/upper bounds)

where [ bx, | by, ubx, uby are lower and upper visualization window bounds (constants) in x and y
directions. If needed, visualization window bounds can a so assume independent values for each
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box.

Equations (5.1) and (5.2) provide the conditions to be held so as to guarantee that boxes
do not overlap and are inside a visualization window. However, those equations do not take into
account neighborhood structures, thus neighbor boxes can be placed far apart from each other
after the overlap removal process. One useful way to keep up the neighborhood relationshipsis
to preserve the relative order of the centroids of boxes, that is,

Xp; S Xp, S ...

Yar S Yoo S -
where p,q: {1,2,...,n} —{1,2,...,n} are permutations of indices obtained by sorting the coor-
dinates x and y of the centroids of boxesin the visua space (see Fig. 21).

Xp, (X orthogonal order)

(5.3)
Yan (y orthogonal order)

<
<

Therefore, by moving the centroid of the boxes while ensuring Equations (5.1), (5.2),
and (5.3) can generate an overlap free layout that preserves the initial neighborhood structures.

5.2.2 The MIQP formulation

The problem of positioning the boxes B; in the visual space so asto ensurethat Equations
(5.1), (5.2), and (5.3) hold can be formulated as a Mixed Integer Quadratic Programming
Problem (LAZIMY, 1982) asfollows:

n n

1
min f(z)= =z'Qz= Dist?(B;, Bj)
z 2 i;j=Z-1 o
. Az< b
subject to
_ _ Ibsz<ub
(5.4)

,_ X = (X{,X2,...,Xn)” € R"
r y= (y1,YZ,---aYn)> € Rn

r=(r2,...,Mn,r23,...,f2n,...,rn-1n)”, rij €{ 0, 1}

where z is the sought solution, Dist(B;, Bj) denotes the euclidian distance between (x;,y;) and
(Xj,¥j), and vectors Ib (lower bounds) and ub (upper bounds) are the visualization window
bounds as defined in the inequalities (5.2). Q is the positive semi-definite matrix composed by
blocks L given by:

" # 4]
L0
] -+ - 10 [
Q=01 0'L + [E L=nlg-ones(nn),
0 0

where |y isthe identity matrix and ones(n, n) isthe nx n matrix with al entries equal one.

Matrix A and vector b are defined so as to incorporate the constraints (5.1) and (5.3).
Precisely, the ordering given by (5.3) allows us to write:
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Xp; S Xpp S ...S Xp, = Xp— Xp,; S 0,i=1...n-1, (5.5)

with asimilar expression holding for y. Additionally, the sorting aso allows us to get rid of the
absolute value function in (5.1), that is,

Wp, + Wp,
xpjs_i( " o) g, (5.6)
with a similar expression holding for y. The variables rij allows for incorporating the OR

condition defined in (5.1) into the optimization problem as follows:

Xpi —

Xp— Xp; S Wij+ Mrij & yg—Yq; < hij+ M(1-r1ij),
(5.7)
i< j, rij 6{0,1},

wherewj = — (Wp‘;ij), hij= - w and M is a very large constant. The rational e behind
the construction in Equation (5.7) is that if rij = 0, the constraint xp — Xp, < Wi; becomes
mandatory while yg - yg; < hij+ M is naturaly satisfied as M is a large number (if rij = 1,
we have the opposite situation, instead). Therefore, optimizing the centroid positions and the
decision variables rij simultaneously alows us to find the optimal position for the boxes while
respecting all the constraints as stated in Equations (5.1), (5.2), and (5.3).

Equations (5.5) and (5.7) are incorporated into matrix A using the auxiliar matrices
Cx, Gy, Dx, Dy asfollows:

[ET #
(7] ,(}X,:,O,L,p, |
acEp 0090 L= (5.8)
D' 0 | —Mlg d
0 37 If)yT Mlg

where [Cx|Cy|c] and [Dx|Dy|d] are built from constraints (5.5) and (5.7), respectively. Notice that
vector cisnull as stated in (5.5). However, this constraint can be relaxed so as to introduce more
flexibility into the layout, as explained in subsection 5.2.3. Figure 22 illustrates the resulting
layout from solving the standard MIQP (5.4). Notice that the orthogonal order is accurately
preserved while the boxes are thoroughly spread in the visualization window.

5.2.3 Relaxation of constraints

Besides providing accuracy and robustness when dealing with complex layouts, the
formulation (5.4) enables great flexibility in generating a variety of non-overlap arrangements.
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Figure 22 — Result of our method to rearrange boxes with overlaps.

.

(@) Input layout. (b) Optimized layout.

Source: Gomez-Nieto et al. (2013).

Different layouts can be easily obtained by introducing relaxation constants within lower b and
upper ub bounds in Equations (5.4) and/or vector b = [c|d]" in (5.8) as follows:

Ibre|ax= |b+ E, Ubre|ax= Ub+ % (59)

Cre|ax= C+ 6, dre|ax= d+ a, (510)

where lb = (Ibj), ub = (ub;), = (ck) and d = (d|) are the relaxation constants. Notice that
relaxation constants can be individually chosen for each box in (5.9) or for each pair of boxes
defined in (5.10). Moreover, each coordinate of Ib, ub, € and d can assume both positive and
negative values.

While Ib and ub regulate the effective visual space of the boxes, b and € control the
rel axation distances of orthogonal ordering and non-overlap constraints. Figure 23 depicts the
geometric interpretation when handling Equations (5.9)-(5.10).

5.3 Results, comparisons and evaluation

We begin this section showing the usefulness of our methodology in a practical appli-
cation devoted to video data visualization. The flexibility to generate different layouts by only
tuning the constraints in the optimization isillustrated in several examples. Finaly, we show
the effectiveness of MIOLA by comparing it against state-of-art overlap removal techniques
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Figure 23 — Geometric interpretation of relaxation constants. Fig.(a) shows the input layout while Fig.(b) depicts
the optimization result after setting upper bound relaxation (< 0) in both directions. Fig.(c)-(d) show
the maximum distance tolerance when violating the orthogonal order constraints and imposing a
displacement between boxes, respectively (in x-direction). Fig.(e)-(f) yield the same previous conclusion
w.r.t. non-overlap constraints but obtained by handling y-direction relaxation.
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(d) Increasing orthogonal order. (e) Increasing non-overlap distance. (f) Violating non-overlap distance.

Source: Gomez-Nieto et al. (2013).
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Figure 24 — Result of our method when applying on a content layout taken from Youtube's search engine.

(b) Optimized layout after applying MIOLA without
(a) Input Layout. relaxation constants.

Source: Gomez-Nieto et al. (2013).

typically employed in information visualization applications. We denote the pair of numbers
VS= ([-S,Sd,[-S,,S)]) = (S, §) asthelower and upper bound constants in (5.9). Orthogo-
na order as well as non-overlap relaxation constants in (5.10) are denoted by the numbers OO
and NOL. The minimization problem (5.4) is solved by an extension of the Linear-Programming
based Branch-and-Bound Algorithm (LEE; LEY FFER, 2012), available from the Gurobi library
at <http://www.gurobi.com/>. Our code was implemented in MATLAB with support to C++
MEX routines and free optimization interface provided by Yin (2011).

5.3.1 Applications

Video Snippet Visualization  Figure 24 shows the layout resulting from MIOLA applied to
video snippet visualization. Figure 24a depicts theinitial layout just after projecting video data
obtained from Youtube, using the word “SIBGRAPI” as query. The projection is generated by ap-
plying the LSP multidimensional projection technique (PAULOVICH et al., 2008), measuring the
similarity between video snippets through the cosine metric applied to feature vectors extracted
from the textual data associated to the videos. More precisely, feature vectors are generated
by extracting a bag-of-words (SALTON; WONG; YANG, 1975) from the text associated to
each video. Figure 24b shows the resulting layout after optimization. Notice that SBGRAPI’s
Fast Forward videos are nicely grouped on top left while videos related to volume rendering,
modeling and graphics are arranged on middle/bottom left. Top right snippetsin Figure 24b are
mainly related to videos presented in SBGRAPI’s Video Festival while bottom right videos are
related to “dancing animation”. The video visualization application clearly shows that MIOLA
is able to arrange the video snippets in the visua space avoiding overlaps while preserving the
proximity relation among videos.
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5.3.2 Flexibility to generate different layouts

Flexibility and Adaptability  Figures 25ato 25e show the flexibility of MIOLA in producing
different layouts by just modifying constraints in the optimization. Figure 25a shows the original
layout while Figure 25b displays the resulting layout when no relaxation is used during opti-
mization. Changing the constraints that define the lower and upper bounds of the visualization
window give rise to a more compact layout, as shown in Figure 25c. We use colors and numbers
to label the boxes, from which one can clearly see that MIOLA preserves nei ghborhoods quite
nicely. An even more compact layout can be obtained by further squishing the visualization
window and relaxing the orthogonality constraints, as depicted in Figure 25d. Figure 25e shows
an extreme case where the visualization window is set to be one-dimensional, that is, the centroid
of each box must be place in a horizontal line. Notice that even in this drastic situation the
algorithm was able to arrange the square respecting neighborhoods.

Shrinking scattered layouts MIOLA can aso be used for shrinking sparse layouts. Fig-
ure 26b shows the result of optimizing the spread layout depicted in Figure 26a. One can see that
the opti mization produces a pleasant layout in terms of compactness and organization. Moreover,
nei ghborhood structures have also been nicely preserved.

5.3.3 Comparisons against state-of-art methods

The effectiveness of MIOLA is assessed by quantitatively measuring its accuracy asto
layout organization, neighborhood preserving and compactness against state-of-art methods.
The quantitative measures are computed using the following metrics: Euclidean Distance (Sec-
tion 2.4.1 referred here as E), Layout Similarity (Section 2.4.2 referred here as g), Size Increase
(Section 2.4.3 referred here as §), Orthogonal Ordering (Section 2.4.7 referred here as O) and
Neighborhood Preservation (Section 2.4.5 referred here ask).

Such measures allow us to quantitatively compare our technique against the following
wel|-established overlap removal methods: VPSC (DWYER; MARRIOTT; STUCKEY, 2006),
PRISM (GANSNER; HU, 2009), Voronoi-based (DU; FABER; GUNZBURGER, 1999) and
RWordle-C (STROBELT et al., 2012).

Figure 27 shows the resulting layout after applying MIOLA and the four techniques
we compare against on five different datasets containing textual information collected from
web search engines. The first three data sets, namely, “ Scientific Visualization” (50 instances),
“Sibgrapi” (32 instances) and “Purple” (100 instances), were generated using fixed-size square
boxes while the last two datasets - “Wave” (64 instances) and “Batman” (50 instances) - were
created taking rectangles with sizes given by the rank of the document (the rank is provided by
the search engine). Larger rectangles have higher rank. One can note that the Voronoi-based
method results in unstructured overl ap-free layouts when compared to the other methods. PRISM
preserves relevant parts of the initial shape, but with the disadvantage of excessive use of
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Figure 25 — Flexibility and adaptability of the proposed formulation.

(d) Optimized layout with moderaie oompact?
(c) Optimized layout with small compactness (VS  ness and OO relaxation (OO = 120; VS =
= (250,400)). (10,230)).
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(e) Optimized layout with hard compactness and NOL relaxation (NOL = 10; VS = (3800, 5)).

Source: Gomez-Nieto et al. (2013).
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Figure 26 — Optimizing sparse layouts with MIOLA.
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(a) Layout with scattered boxes. (b) Result after layout adjustment.

Source: Gomez-Nieto et al. (2013).

space, hampering data exploration. The layouts produced by VPSC are quite structured, helping
readability, however, it is prone to stretch the layout vertically (see the “Wave’ and “Batman”
results). RWordle-C produced satisfactory layouts preserving, in some cases, clusters visualy
identified by the user (see the “Wave” result), but still leaving some expressive empty spaces
when compared with MIOLA. Moreover, the orthogonal ordering is considerably affected by
RWordle-C. In contrast, MIOLA produces very well-organized and compact layouts while still
respecting the orthogonal order in a satisfactory way.

Figure 28 summarizes the quantitative results of the metrics described above. Notice
that MIOLA produces more compact layouts measured by Euclidian distance and Size increase,
being fairly stable as to other metrics.

Figure 29 plots a map that considers all metrics simultaneously. Each overlap re-
moval technique has been represented as a five-dimensional vector (Ea, 03,04, Si, k), where
Ea, 024,04, Sy, ka are the average values of the metrics 0, — E; and k-nearest neighbors computed
for each technique, over al data sets from Figure 27. The blue points denoted by “Best”, “Aver-
age’, and “Worst” in 29 were created artificialy as five-dimensional vectors containing the best,
average and worst values taken from the results of all methods. We use the multidimensional
projection method LAMP (JOIA et al., 2011) to project the five dimensiona data to the visual
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Figure 27 — Layouts produced by our approach (MIOLA), VPSC, PRISM, Voronoi-based, and RWordle-C for five

distinct data sets.
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Source: Gomez-Nieto et al. (2013).
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Figure 28 — Comparing our approach, VPSC, PRISM, Voronoi-based, and RWordle-C considering the metrics E
(a), o (b), O (¢), S(d), and k-nearest neighborhoods (€) (in log scale after normalization) regarding to
Fig.27.
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Source: Gomez-Nieto et al. (2013).

space. The technique mapped closest to “Best” isthe one that, on average, has shown the best
performance, relative to all metrics. Clearly, one can observe that MIOLA is the technique closer
to the best result.

5.4 Discussion and limitations

Our technique displays layouts in such a way that keegps boxes disjointed while still
preserving the similarity of the neighborhood structures. Comparisons presented in Section 5.3
clearly show the effectiveness of the proposed optimization method, surpassing, in terms of
accuracy, existing methods. As shown in Figure 25, MIOLA turns out to be flexible and capable
of producing avariety of layouts, a characteristic not present in any other state-of-art method.
The snippet video application depicted in Figure 24 indicates that MIOLA can be used to remove
overlaps while kegping similar entities close to each other, thus preserving the similarity relations
introduced during the multidimensional projection.

Despite good results and solid mathematical foundation, there are two aspects to be
observed when using MIOLA. First, the visualization window as well as the number of boxes to
be displayed simultaneously can affect the readability of the visualization. Easy to read layouts
depend on the screen size. Finding out a good trade-off between clean/pleasant layouts and the
relaxation parameters is another issue that deserves further investigation.
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Figure 29 — Comparison of overlap removal techniques respecting the five metrics simultaneously. Red points
represent the evaluated techniques while the blue points show the worst, average and best points
artificially produced.
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Source: Gomez-Nieto et al. (2013).

5.5 Conclusion

In this chapter we described atechnique for solving the box overlap removal problem,
called MIOLA. The evaluation we provided shows that the proposed method outperforms
existing methods in terms of producing well structured layout. MIOLA turns out to be effective
in practical application and quite flexible to generate different layouts by just tuning parameters,
rending it a very attractive overlap removal approach.
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DEALING WITH MULTIPLE REQUIREMENTS

6.1 Introduction

In this chapter we describe a methodol ogy for building layouts from geometric primitives
which is able to deal with a wide range of requirements simultaneously. Relying on multidimen-
sional projection, density-based adaptive grids, and mixed integer optimization, our approach is
semantically aware, makes an efficient use of display area, and generates well structured grid-
like layouts. Moreover, the formulation intrinsically impose a hierarchy on the data, enabling
aternatives for the scalability issue.

The proposed optimization scheme arranges geometric entities (boxes) with varying
sizes so as to avoid overlaps while preserving the neighborhood structure of the underlying
data (semantics). The area of each geometric primitive is also included in the optimization
process to ensure that the display area will be efficiently occupied. In fact, supported by the
adaptive grid, our formulation is able to scae elements with different sizes using only one
variable, thus rendering the optimization procedure as simple as possible. A comprehensive set
of quantitative comparisons against existing geometry-based |ayouts shows the eff ectiveness of
our approach. The usefulness of our methodology in visualizing text, image, and video data sets
is aso confirmed in several practical applications.

6.2 The method

Figure 30 illustrates the proposed methodology composed by three main steps: multidi-
mensional projection, density-based adaptive grid generation, and layout optimization.

In the first step, high-dimensional datais mapped to the visual space so as to preserve
distance among data instances. In our implementation we use the Least Square Projection
(LSP) method (PAULOVICH et al., 2008), which preserves distances nicely during the mapping
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Figure 30 — Pipeline used comprises three main steps: (i) datais mapped into visual space using a multidimensional
projection technique, (ii) adaptive grid is built from projected points and (iii) an optimization algorithm
is performed to reach an optimal area usage.
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Source: Gomez-Nieto et al. (2016).

process, thus enforcing that neighbor points in the visua space correspond to similar/close
instances in the original space. The use of a distance preserving mapping to placeinstancesin the
visua space provides the neighborhood structure that must be “mimicked” by the final layout.

An adaptive grid is then generated from projected points. In contrast to typical adaptive
grid generation schemes, our gpproach refines the grid in less dense (but not empty) regions of
the visual space, thus placing larger grid cellsin denser regions (see Figure 30 top right). The
rationaeisto allow users easily identify dense regions by visually recognizing large geometric
objectsin the layout. The number of refinement levelsis a user defined parameter.

The adaptive grid produces a size varying tiling of the visua space. Moreover, grid
cells inherit the semantic relation of the project instances, that is, neighbor grid cells tend to
encompass similar instances. Although well structured, the cell arrangement resulting from
the refinement istypically spread, making an inefficient use of display area. Therefore, in the
third step of the proposed pipeline, cells are rearranged in the visual space to optimize the area
usage. The optimization is formulated to account for object scale, overlapping, and grid-like
arrangement while preserving neighborhood rel ationships and the aspect ratio among cells (see
Figure 30 bottom).
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Figure 31 — Density based refinement process. (a) Aninitial regular grid is defined in the visua space. Such an
initial grid provides the coarser refinement level (first level, as depicted in (b)). (c) An adaptive grid
is built from density information. Denser areas are represented by larger cells. (d) Active (not empty)
cells are then ready to be optimized in the next step of the proposed framework.
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Source: Gomez-Nieto et al. (2016).

The rationae hereisto build layouts as readable as possible while still dragging users
attention to denser regions that should be further explored.

The following subsections detail the second and third step of our pipeline, which corre-
spond to the major technical contributions of our method.

6.2.1 Adaptive grid generation

LetP = {p1,p2,...,Pqt © R?betheprojection of aset of instancesinto the 2D visual
space and G be an x mregular grid which discretizes the bounding box of P . The number of
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cellsin each orthogona direction is defined such that each grid cell g;j has a square shape, that is,
given the number of subdivision in one direction, for instance m, the number of subdivisionin the
other directionisn= d%me (the boundary of the bounding box can be displaced to accommodate
the number of cells), where H and W account for the height and width of the bounding box of
P, respectively.

The regular mesh G is the coarser grid level for the adaptive process. The refinement is
driven by density information computed from P in each grid cell. The density can be estimated
in different ways, for instance by integrating a kernel density estimator over each grid cell. As
our application does not demand highly accurate density estimation, we opt to approximate the
density in each cell by simply counting the number of points p; contained in the cell.

Given the density calculation, the refinement processis carried out as follows: let dij be
the density of the grid cell gi; and dmax = max{d;j} bethelargest density valuein G. A grid cell
0ij undergoes one level of refinement if dij < 0.50max, two levels of refinement if dij < 0.250may,
three levelsif dij < 0.125dmax, and so on. Figure 31 illustrates the refinement process with three
levels.

Although simple, the grid generation scheme described above has two meaningful
properties. First, dense regions in the visual space can easily be identified from the larger cells,
pointing out where users should nail down their exploration. Second, the proposed refinement
scheme allows for resizing all grid cells by controlling only one parameter. In other words, if
one wantsto scale al cells preserving their relative size, the only parameter to betuned is the
length & of coarser cells. In fact, the length of the cells in each refinement level is given by
(1/2%)8, wherek = 0,1, isthelevel of refinement. This last property will be exploited during
optimization to find the value of & that resultsin the best use of display area, as detailed below.

6.2.2 Optimization

Let G= {g1,02,...,gn} be the set of non-empty cellsin G, that is, G comprises the
cells of G with projected pointsin their interior. Each cell g; is a square box described by the
vector gi = (X;,Yi,w;) € R3, where (x;,y;) accounts for the center of the box and w; > 0 isthe
edge length of g;. The cells g; should be rearranged and resized inside aW x H display area so
as to make an efficient use of display area while preserving grid alignment and neighborhood
structures. As described in Section 6.2.1, w; = a;d, where a; = 1/ 2, k corresponding to the
level of refinement of g;. Hence, & is aparameter to be optimized (initialy set asthe length &g of
the coarser cell) from which the size of each cell is derived, as Figure 32 shows.

6.2.2.1 Rearranging cells with area resizing

Rearrange cells g; so as to generate layouts that optimize use of area while presenting a
grid-like structure is an NP-hard problem (LEUNG et al., 1990) present in different contexts
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Figure 32 — (a) The input layout with &y being the length of the coarser cell. The size of the remaining cells
are defined according to the initial parameter 8y and their scale parameters a;. (b) The result of the
optimization when & > &g.
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Source: Gomez-Nieto et al. (2016).

such as cutting optimization and rectangle packing (JANSEN; PRADEL, 2009). In order to get
an approximate solution, we formul ate the problem as a computationally tractable quadratic
optimization problem. The optimization is formulated as in Equation (6.1) below:

subjectto Az< b, z=[xyr 8,
X = (X1,X2,...,XN)> S RN (61)
y= (y1.y2,-,yn)” €RY

F=(r12,.-; 1IN, 123, s F2NS - TN INDT L i €10, 1)
o< &< min(W,H),

where z is the sought solution; y and x correspond to the coordinates of the centroids of the
cells; 6 isthe scaling factor; A and b hold the constraints imposed on the optimization problem.
The unknowns rj; are control variables used to properly avoid overlaps. The energy components
Ecomp(2) and Eresize(2) control the proximity between cells and the area increase, respectively.
The former term accounts for overlaps and neighborhood preservation and the second term is
designed to scale the box to fill up as much area as possible, as Figure 33 illustrates.

Compactness Energy Term The first term in the energy functional, Ecomp, controls the
relative position among cells and its god is to keep the layout compact. The energy Ecomp
is a quadratic function that simply takes into account the centers of the boxes, as shown in
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Figure 33 —Minimizing each term of the energy functiona E in anillustrative layout. (a) Original layout, (b) Ecomp
only, () Eresize only, (d) the proposed energy functional E = Ecomp+ Eresize-
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Source: Gomez-Nieto et al. (2016).
Equation (6.2):

Ecomp(2) = C 3 (%= x))%+ (vi— ¥j), (6.2)
(i,1)
where(i, j) = (],i) representsthe NB=) pairs(gi, gj),i, j, € {1,....,N} andC= 1/ min(W,H) - ME=1
isanormalization factor. In less mathematl cal terms, Ecomp forces box&s to be close to each other
and the normalization factor C ensures that the term Ecomp contributes in the same amount as

Eresize in the total energy E, thus enabling a good bal ance between compactness and area usage.

Area Usage Energy Term The energy term E;e52 controls the amount boxes should be
scaled to optimize the use of display area. Since the area of any cell depends only on the length
of the largest cells, that is, the area of each cell gj isgivenby A = (0;8)2, a; = 1/ 2K, wherekis
the refinement level of g;, we can define the resize energy as a quadratic function as follows:

Eresize(2) = (85— min(W,H))?, (6.3)

where min(W, H) isthe minimum between the width and height of the display area (see Fig. 33c).

It is easy to see that if no constraints are imposed to the unknowns, the minimum of
Ecomp is reached when al cells have the same center and the minimum of Eresz takes place
when the length of the larger cell is equal to min(W,H). Therefore, without constraints the
optimization process will stack cells on over the other. To avoid such unsuitable output, we must
settle constraints as discussed next.

6.2.2.2 Optimization constraints

As described in Equation (6.1), constraints are gathered in matrix A and vector b and
they are imposed to properly control overlaps and the relative position of cells. Given the initial
position (x;, ;) and length a;& of each cell, the relative order (also called orthogonal order) of
the boxesis given by:
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Figure 34 — Comparison against overlap removal techniques for the threeinitial classes of experiments.
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Xpy S Xpp S .. S Xpy = Xp = Xp, 4 < 0

Yar < Y = S Yo = Yo~ Yg.1 S 0
where p,q: {1,2,...,N} — {1,2,...,N} are permutations of indices generated by sorting the
coordinates x; and ;.

(6.4)

<
<

Inequalities (6.4) alows for preserving the relative order of the cells, but it does not
account for overlap. Overlaps can be handled by forcing non-overlap conditions as follows:
(aj+ aj) (aj+ aj)

2

IXj = xi| 2 5 or |yj-yilz 5, (6.5)

From Equation (6.4) we have that if x; < x; and y; < y; then [x; — x| = x; - X; and

lyj = vil = yj - Vi, which give rise to the following linear system of inequality:
xi—xj< - Gty
or (6.6)

yi-y < - 99)s

Asproposed in (GOMEZ-NIETO et al., 2013), the or condition in (6.6) can be handle
by binary variablesrij € { 0,1} such that:

Xi—Xj< ajjd+ Mrij & yi—y;< 0ijd+ M(1-rjj), (6.7)

whereajj = — (“‘J“Z“") and M is avery large constant. The role of rj; isto ensure that if one of

the inequdities in Equation (6.6) holds, its counterpart is set aside. For instance, if xi— xj< a;;0,
thenrjj isequal to zero, thusyi— y; < a;j;0+ M(1-rjj) is naturaly satisfied for any values of y.
The linear inequalities, rij unknowns, and & make up the linear system [A|b]. The left and right
bounds for the x coordinate of the center of the cells must also beimposed in [A|b], that is,

0< x— %6 and X + %6< W,i=1,2,..N, 6.8)

Similar inequalities are set to limit the upper and lower bounds of the y coordinates.

Constraints Relaxation ~ The optimization problem described in Equation (6.1) provides a
flexible and simple mechanism to relax constraints and generate distinct layout arrangements.
Thisis performed by adding rel axation parameters (scalars) in the inequalities to alow for some
degree of overlap, orthogonal disorder and so on.

6.2.2.3 Computational aspects

The formulation (6.1) is a Mixed Integer Quadratic Programming (MIQP) Problem,
which is minimized by computing an extension of the so-called Branch-and-Bound optimization
scheme, where the original MIQP problem is converted to a Linear Programming Problemin
order to be properly handled and solved (LEE; LEYFFER, 2012).
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Figure 35 — Comparison with visual board techniques for the last class (taken from Fig. 37).
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In terms of usage, our code was implemented using the solvers and opti mization routines
provided by Gurobi Optimization Package, which is available at <http://www.gurobi.com/>.

6.3 Results and comparisons

The performance of the proposed optimization scheme is assessed through a set of
comparisons against well established geometry based layout construction techniques. More
precisely, we employ four distinct metrics to quantitatively measure the quality of layouts
produced by two distinct classes of techniques, namely: overlap removal methods and visual
board techniques. Before presenting the comparison, we briefly describe the metrics aswell as
the data sets used in our tests.

6.3.1 Metrics and datasets

The quantitative measures are computed using the following metrics: Orthogonal Order-
ing (Section 2.4.7 referred here as O), Neighborhood Preservation (Section 2.4.5 referred here as
K), Area Usage (Section 2.4.9 referred here as A) and Orthogonal Alignment (Section 2.4.8).

Metrics above have been chosen because they measure important properties a semantic
layout must hold, namely, similarity preserving, compactness, and orthogonal alignment.

Data sets and Test Settings We divided the experiments in four groups: the first three
groups of tests assess overlap removal methods while the last group evaluates the performance
of our optimization scheme against visual board techniques.
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Figure 36 — Layouts produced by our approach, ProjSnippet, MIOLA, RWordle-C, VPSC and PRISM in 5 datasets.
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In the first test we randomly draw pointsinside a rectangular two-dimensional domain,
which represents the display area. The rectangleis discretized as aregular grid with dimensions
1600 x 1200. Cells of the grid that do not contain any point are discarded. The remaining cells
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define the boxes to be arranged in the layout. As no overlap exists at this point, we enforce the
cellsto overlap by uniformly increasing their areain 10%. Forcing overlap is mandatory since
most overlap removal methods can not start up from an overlap free arrangement. Notice that
this is not the case for our approach, which also operates on overlap free layouts in order to
optimize area usage and structure. Fifteen configurations, with fifty random points each, make
up thefirst group of tests (called class 1 in Figure 34). The second experiment is similar to the
first one, except we use athree level adaptive grid to generate the geometric primitives (class 2
in Figure 34).

In the third experiment (class 3 in Figure 34) we use real data set containing high-
dimensional instances which are mapped to the visual space using the L SP multidimensional
projection scheme. The layout is built from the projected points using a three level adaptive grid.
Five data sets, taken from a public repository’, have been employed in the third experiment.
One data set contains a collection of snippets retrieved from a web search using "Scientific
Visualization" as query expression; two data sets contain news from BBC, CNN, and REUTERS;
the fourth data set corresponds to abstracts from |EEE InfoVis 2004 conference; and the last
data set contains metadata from a scientific paper collection. Bag-of-words were extracted from
textual content and used to define the similarity between instances. Those distances are used as
input to the LSP projection method (PAULOVICH et al., 2008), which maps instances to the
visua space.

Findly, in the fourth group of tests we have randomly generated squaresin a2D square
domain, as depicted in Figure 37. Those layouts are used as input to existing visua board
techniques.

6.3.2 Comparisons

The metrics describe above are used to assess the effectiveness of our approach when
compared against well known overlap removal techniques. Precisely, VPSC (DWY ER; MAR-
RIOTT; STUCKEY, 2006), PRISM (GANSNER; HU, 2009), RWordle-C (STROBELT et al.,
2012), MIOLA (GOMEZ-NIETO et al., 2013), and ProjSnippet (GOMEZ-NIETO et al., 2014)
are used as basis for comparisons. These methods have been chosen either because they are
widely used or due to their good performance reported in the literature. We also compare our
approach against three visual board techniques, namely, Incboard (PINHO; OLIVEIRA; LOPES,
2010), SSM (STRONG; GONG, 2014) and IsoMatch (FRIED et al., 2015).

Figure 34 shows quantitative results obtained from the metrics described above. Notice
that our approach clearly outperforms most techniques as to area usage (top row) and orthogonal
alignment (bottom row right). Regarding orthogonal ordering (middle row), our approach turns
out to be competitive, performing better for class 1. In terms of neighborhood preservation
(bottom row left), our approach aso performed well, being surpassed only by ProjSnippet

1 Available at <http:/infoserver.lcad.icmc.usp.br/infovis2/DataSets>



102 Chapter 6. Dealing with multiple requirements

and PRISM, which are known to preserve neighborhoods well. Figure 35 brings quantitative
comparison against visua board techniques. Notice that the proposed method outperforms
IncBoard and behaves nicely even when compared to SSM and |soMatch, which have optimal
area usage (notice the vanish box plots) and cell alignment.

Figures 36 and 37 depict qualitative results comparing our approach with overlap removal
and visual board techniques, respectively. Notice that the proposed method gives rise to well
structured layouts where neighborhoods (indicated by color map) are nicely preserved. Moreover,
our gpproach makes a better use of display area, thus improving readability and content analysis.

6.4 Applications

In this section we present three different applications of our technique, namely, image
galery construction, textual documents analysis, and video data set visualization. In those
applications, effective data exploration is enabled if requirements such as object size, semantic
and overlap-free arrangements, scalability, and optimal area usage are combined in an optimal
manner, showing the relevance of our methodology to applications as the ones presented in this
section.

The image gallery application, depicted in Figure 38, aims at visualizing image data sets
such that highly similar images, which tend to be projected close to each other in the visual
space, are summarized in large icons, while images with discriminative feature are represented
in small icons. To build the image gallery we extract 96 features from color attribute. More
specificaly, each imageis split in 16 non-overlapping regular regions covering the image from
which the first and second statistical moments for each R,G,B channel is extracted. Feature vec-
tors representing the images are projected in the visual space using the Least Square Projection
(LSP) (FAULOVICH et al., 2008) method. A three level adaptive grid is constructed and the
proposed layout optimization scheme is triggered in order to arrange the cellsin a structured
overlap freelayout. Large grid cells containing several similar images give riseto iconic represen-
tations that summarizes the underlying images. Such iconic representation is built by blending a
randomly chosen subset of the underlying images using five levels of Laplacian pyramid (DO;
VETTERLI, 2003). In the example shown in Figure 38, cells containing |ess then four images
are represented by a single representative image, cells containing four to eight images givesrise
to afour blended image icon, and icon with nine blended imagesis used to represent cells with
nine or more images. Images used in this application were obtained from (FEI-FEI; FERGUS;
PERONA, 2007).

The second application concerns textual document visualization. Following the conven-
tional tf-idf bag-of-words construction (SALTON, 1991) and stemming (LUHN, 1958), one can
yield feature vectors from which our methodology can straightly be applied. In the application
illustrated in Figure 39, we visualize a collection of 515 related papers published in the IEEE
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Figure 37 — Qualitative comparison of the proposed optimization scheme against visua board techniques In-
cboard (PINHO; OLIVEIRA; LOPES, 2010), SSM (STRONG; GONG, 2014) when taking the best
result from SSM w.r.t. their objective function after 1000 executions and IsoMatch (FRIED et al., 2015)
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VisWeek Conference 2004. Each cell istextured with aword cloud built from keywords extracted
from the documents contained in the cell while font size and opacity is used to highlight the most
relevant keywords whose ranking is computed using the method described in (PAULOVICH et
al., 2012). Notice that the layout is easy to read, mainly due to the effective use of display area.
Moreover, it is not difficult to note that the grid-like structure makes the visual identification of
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Figure 38 — Image gallery application: (a) an adaptive grid is built from projected images; (b) an initia iconic

representation is generated; (c) the layout is optimize to make an optimal use of area while preserving
the neighborhood of the grid cells.
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Figure 39 — Visualizing a dataset containing 515 documents using word clouds.(a) each document is represented by

apoint embedded in 2D space where adaptive grid isimposed, (b) aword cloud based on term-frequency
of documents contained in each cell of grid is built.(c) shows the optimized layout using the proposed
method. Notice the size increasing that allow us to increase the number of words by each cell (colored

in lightgray).
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similar documents an easier task.

Our last application regards video visualization, asillustrated in Figure 40. We build a
collection of 300 videos from Youtube querying six distinct topics, namely, linux, civil war, fifa
world cup, hawk, guitar and information visualization. Textua information associated to each
video is processed to generate a feature vector that represents the video in a high-dimensional
space. The proposed methodology with three level grid refinement is employed to build alayout
where larger cells are textured as word clouds while the cells in the lowest refinement level
(smaller cells) are textured with a snippet build from a screenshot of arandomly chosen video
contained in the cell as well as textual information containing title, description and URL of the
video. Word clouds are generated using keywords extracted from the text associated to the video.
Asin the previous gpplication, font sizes and priority-based opacity are used to highlight the
importance of each keyword, which are ranked asin (PAULOVICH et al., 2012).

Notice how our approach was able to semantically organize the layout according to
the distinct topics, keeping videos related to “guitar” grouped on the left part of the layout,
“linux” and “information visualization” on the top right, “hawk” in the center, “fifa world cup”
on the bottom right, and “civil war” centered on the bottom. Interestingly, the smaller cellsin
the layout contain mainly videos about civil war and music videos related to the song “ Civil
War” by Guns N’ Roses. Moreover, besides being well structured and semantically organized, the
layout resulting from our methodology is compact and easy to read due to its effective use of
display area. One interesting fact of all generated layouts is the high level of interactivity for the
exploration task i.e. users are allowed to choose a cell summarizing some content (from al levels
except the last one) and then further explore that cell in more detail by recursively applying the
whole layout construction process only within that cell.

6.5 Discussion and limitations

Quantitative and qualitative comparisons presented in Section 6.3 attest the quality of
our layout arrangement mechanism. In fact, our approach clearly outperforms most existing
techniques with respect to properties such as area usage, orthogonal ordering and layout align-
ment, in addition to perform well as to neighborhood preservation. Therefore, our approach is
able to handle several requirement simultaneously, making it an attractive alternative for several
applications. The applications described in Section 6.4 show the versatility of our approach
in scenarios ranging from image gallery construction to word cloud based text visualization.
Moreover, the layouts resulting from our methodology turned out to be clean, well structured,
and easy to read.

Another interesting aspect of our approach is that the only parameter to be set is the
number of refinement levelsin the adaptive grid. In our tests we use three levels of refinement
and we notice that the layout is not so easy to read when more than five levels are used. However,
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Figure 40 — Visualizing 300 videos extracted from Youtube querying 6 different topics.
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the appropriate number of refinement level's depends on the underlying application and the size
of screen. A weakness of our methodology isthat dense and tight data cluster may be cut into
multiple cells during the grid construction. This problem can be mitigated through density-aware
grid generation, an improvement to be incorporated in our methodol ogy.

The quality of the semantic relation among grid cells also depends on the effectiveness
of the multidimensional projection scheme in preserving neighborhoods during the mapping
process. Visually encoding uncertainties as to neighborhood relation can help users during data
exploration. However, thisis an aspect that has not been properly addressed even in the context
of multidimensional projection methods.

From our experimental analysis we also notice that it is not necessary to run the opti-
mization procedure until convergence. In other words, good layouts are obtained after a few
hundred iteration steps, being unnecessary to wait until aloca minimum is reached. This fact
makes the proposed methodology aso attractive in terms of computational times. For instance,
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the layouts presented in Section 6.4 took less than six seconds to be produced. However, the
agorithm can take a few minutes to fully convergeif alocal minimum is sought. To numerically
illustrate this fact, we show in Fig. 41 the computational time spent by our methodology to reach
a certain number of iterations versus the ratio between the resulting and global minimization
energies Et/ Eg for each layout from Fig. 36. Note from the y-axis of the graph that how close to
1 the energy rates are, even for the layouts produced with a reduced number of iteration steps.

Figure 41 — Computational time versus optimization convergence rate for the layouts from Fig. 36.
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6.6 Conclusion

We introduced a novel methodology to build geometric layouts to visuaize data. In
contrast to existing techniques, the proposed method makes use of a novel optimization procedure
that is able to handle severa requirements simultaneously, yielding structured overlap-free
arrangements while still ensuring a semantic relation among neighbor entities. Furthermore,
the method makes optimal use of display area, rendering it an effective and flexible tool for
applications varying from image gallery construction to video data set visualization.

We are currently investigating interactive mechanismsto enable afree navigation through-
out the layout as well as dynamic user-driven layout updates.
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SEMANTICALLY AWARE DYNAMIC LAYOUTS

7.1 Introduction

In this chapter we describe a novel semantic aware layout construction technique that
allowsusersto freely tailor 2D arrangements according to their interest. The proposed formulation
relies on interactive mechanisms enabled by multidimensional projection methods to enforce
semantic relation in the layout. Moreover, the proposed approach is based on a simple energy
function that can efficiently be minimized using well-known optimization libraries, thus avoiding
intricate computational implementations while ensuring real-time layout updates. Similar to
state-of-the-art techniques, our methodology is able to arrange geometric primitivesin arbitrary
visua domains, what rendersit quite flexible and versdtile.

The provided results show the effectiveness of our approach in building and organizing
user tailored layouts. Semantic rel ation between entities derives from similarity metrics, therefore,
the proposed methodology can be employed in different scenarios and applications.

7.2 The method

The proposed mechanism to dynamically update |ayouts according to user intervention
builds upon the methodology of ProjSnippet (GOMEZ-NIETO et al., 2014), which has been
conceived to optimize layouts restricted to rectangular domains and with no interactive resources.
Our approach, in contrast, enables interactive resources that allow users to freely modify the
layout according to their interest while still being able to build arrangementsin arbitrary visual
domains. Moreover, the proposed formulation combines the flexibility provided by control points
used in multidimensional projections with an energy function tuned to enable interactive layout
update as well as to enforce semantic relations among neighbor entities.

Figure 42 illustrates the main components of the proposed pipeline. From left to right,
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Figure 42 — Method pipeline
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given adata set and a similarity metric, the layout construction starts by mapping data instances
to avisual space using a control point based multidimensional projection scheme, which forces
similar instances to be projected close to each other. Each instance in the visua spaceis then
associated to a geometric primitive (abox in our case), which are arranged in the visual space so
asto avoid overlaps while preserving the nei ghborhood rel ations settled during the proj ection step.
User can then modify the layout interactively by dragging and dropping geometric primitives.
During user interaction a simplified optimization scheme is triggered to dynamically remove
overlaps between instances, ensuring therefore a pleasant visual effect. When an instance sel ected
by the user is released, it becomes a new control point for the multidimensional projection and
the whole process is restarted from scratch. Since the initial control points are kept fixed,
neighborhoods far from the region of interaction are mostly preserved by the multidimensional
projection, maintaining the context on those parts of the layout.

The following subsections detail each step of the pipeline.

7.2.1 Building the initial layout

In our implementation we use LSP (PAULOVICH et al., 2008) as multidimensional
proj ection mechanism. In order to keep the text self contained and better explain our approach
we quickly describe the LSP method.

LetP= {p1,...,pn} beaset of instancesin a high-dimensiona spaceand G= {P,E} be
the k-nearest neighbor graph of P, that is, each p; (for simplicity we use the same notation p; to
represent instances and graph nodes) isanode of G and an edge g € E if either p; isak-nearest
neighbor of p; or pj is ak-nearest neighbor of p;. Let L be the graph Laplacian matrix of G
definedasL = D- A, where D isthe diagonal matrix with Dj; = deg(pi) (degree or valence of
the node) and A is the adjacency matrix of G whose entry Ajj = 1 if thereis an edge connecting
pi and p; and Ajj = 0 otherwise.

Assuming G connected (we can ensure connectedness by adding new edges if necessary),
the LSP method maps each instance p; to the visual space by solving the two linear systems
Lx = 0, Ly = 0 and setting the coordinates of p; = (x;,Yi) where x; andy; arethei-th entry in the
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solution vectorsx and y.

The homogeneous systems Lx = 0 and Ly = 0 admit thetrivia solutionsx= y = 0. To
avoid these trivial solutions constraints must be imposed to the systems, which is performed with
the help of control points. Specifically, LSP assumes that a subset P; ¢ P, the control points, are
endowed with coordinates in the visua space. The coordinates of the control points are used
as constraints to the linear systems, thus avoiding the trivial solutions. Moreover, the control
points constraints drive the whole mapping process. In other words, the whole projection follows
the position of the control points, making instances that are neighbors of control pointsin the
high-dimensional space to be mapped close to the corresponding control pointsin the visual
space. The coordinates of the control pointsin the visual space are typically defined by aforce
scheme or manually specified by users.

The original LSP method imposes constraints using a least square based gpproach.
Since the proposed interactive mechanism demands control points to be updated after each
user interaction, we opt to impose constraints via the penalty method. More specifically, let
Pe= {pi,..., pi,} betheset of instances corresponding to control points, to use the penalty
method the linear systems are then modified as follows:

(L+ 9x= Dy and (L+ Yy= Dy (7.1)

where S is the penalty matrix with all entries equal zero except for the diagonal elements
S;i;»J = 1,...,m corresponding to control point indexes, which receive to a large positive
value, typicaly §;i; = 108. Vectorsby and Dy also have entries equal zero except for the ones
corresponding to the indexes of control points, which are set with the abscissa and ordinate
coordinates of the control points, respectively. The advantage of using the penalty method is that
only diagonal elements of L are affected when constraints are imposed. Therefore, L does not
need to be recomputed every time a new constraint shows up.

Figure 43(a) illustrates the point cloud resulting from the projection step and Figure
43(b) shows the initial layout after associating geometric primitives (rectangular boxes) to each
projected instance.

7.2.2 Semantic preserving overlap free layouts

At the end of the projection step geometric primitives associated to projected instances
overlap considerably, impairing identification of individual entities and layout readability. In
order to produce uncluttered layouts we optimize the position of geometric primitives to remove
overlaps and preserve neighborhood structures established by the LSP.

The energy function that steers the layout arrangement is made up of two components

E=(1- a)Eo+ aEn (7.2)
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Figure 43 — Visual result of each step of the proposed dynamic layout
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The component Eg accounts for overlapping between primitives while Ey is related to neighbor-
hood relations resulting from the projection step. The parameter a € [0, 1] balances the relative
contribution of each component for the total energy E.

Energy E, as well as Ep and En, are functions of the coordinates of the bottom-left
corners of the rectangles representing data entities. We omit the independent variables from the
equations to simplify the notation.

Let x,5¥ € R" be the coordinate vectors of the bottom left corner of each rectangle and
v,h € R" be vectors whose components are the vertical and horizontal dimensions of each
rectangle. The energy term Eg is then defined as:

2 n n [
Eo= Gi,j(x1) G j(¥,v) (7.3)
n(n+ 1) £ j=|z+1 ) ')
where E
==L - (- x)22 %2 X
Oi,j('X,'h) 1j 2
hi4[hI - (X-x)s X<
=] x= 0
X+ =
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where nisthe number of datainstances and x;, hj and x;, hj denote, respectively, the x-coordinates
of the bottom left corner and the lengths of rectanglesi and j. Notice that the function O; j(%,7) is
zero (minimd) if thereis no horizontal overlapping between the rectanglesi and j. The function
Oi,j(y,v) isdefined similarly.

While Eg moves geometric primitives to prevent overlapping, the energy term Ey
establishes semantic relations by forcing neighbor elements to be close to each other and it is
defined from the Laplacian matrix L introduced in the last subsection. Denoting by x° and 4 the
x and y coordinate vectors of projected data instances we define the differential vectors 8, and 3y
as:

&=Lx% & =Ly" (7.4)

The neighborhood energy is then defined by:

(7.5)

En is minimal when the differentials Lx and Ly are proportional to the initial differentials &
and y. In other words, the energy En is minimized when neighborhood relations are preserved
during optimization. The unknown w is necessary to ensure that a scaled version of the originaly

Hat oifhe neighborhood energy (w is optimized together with &,
~ ensures that EN has the same order of magnitude as
Eo, thus both terms play similar rolesin the total energy E. Figure 43(c) shows the optimized
layout obtained from 43(b).

7.2.3 Enabling user interaction

There are two main issues that must be addressed to enable friendly interactive resources,
namely, dynamic update of the layout during user interaction and preservation of semantic
relations in the modified layout. Dynamically updating the layout during interaction is important
to improve user experience and to ensure pleasant interaction resources. Preserving semantic
relations is mandatory to facilitate layout readability and interpretation.

In order to dynamically update the layout during user interaction we trigger a simplified
optimization scheme that removes overl gps between the primitive selected by the user and other
primitives in the layout. Specifically, when the user drags a primitive, the layout is dynamicaly
optimized, but using only the overlap energy Eo. The rationa e behind temporarily neglecting the
nei ghborhood energy term isthe following: as most parts of the layout are not affected during
interaction, the energy functional is already minimum in those regions, therefore, taking into
account neighborhood energy En during interaction adds a unnecessary computational effort.
Moreover, during interaction the user kegps attention on the object s/he is interacting with,
neglecting semantic relations temporarily. Therefore, considering only Eg during interaction
saves computational effort and this choice does not undermine user experience considerably.
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The minimization of Eg can be done quite efficiently, as most parts of the layout are
aready in their minimum configuration during interaction. In fact, this minimization can be
performed in interactive rates, enabling pleasant animation effects (see video in the supplemental
material).

After interaction, we recover the semantic relation between neighbor instances by ex-
ploiting the flexibility provided by control points used in the multidimensional projection step.
Theideais to make each user selected instance a new control point for the multidimensional
projection. Once a selected instance is rel eased by the user, its coordinates in the visual space are
incorporated into vectorsby and by in Equation (7.1), updating the penalty matrix Saccordingly.
The multidimensional projection is then run with the new set of control points and the layout
rebuilt from scratch, that is, the minimization processis triggered according to equation (7.2).
Since the origina control points are fixed, most parts of the layout remain unchanged, preserving
the visualization context as much as possible. Figures 43(d) and 43(e) illustrate how alayout is
affected during and after user interaction.

Replacing the layout modified during interaction by the layout updated after interaction
would result in an abrupt visua change, making difficult to figure out which primitives has been
affected due to user intervention. In order to provide a smoother transition between layouts
we combine an interpol ation scheme with overlap removal. Specificaly, let L , and L 4 be the
layouts resulting from user interaction and optimized with the new control points. Let Iy and |
be the location of a given geometric primitivein L , and L 5 respectively. The smooth transition
between |, and |5 is performed as describe in the following algorithm:

Algorithm 1: Smooth transition

fori=1,...,ndo
L li < lpi

N =

3 repeat

4 for each | do

5 Vi —lg—1; // displacement direction

6 O «— okvik // displacement factor

7 li < li + &vi/ kvik // displacement towards lg
8 | {li} < Overlap_Removal({li})

9 li — (kvik— &)li/ klik // ensuring li goes to Iy

10 until maxkvik = ¢;

Lines 1 to 2 initialize the smoothing transition process. Lines from 4 to 7 pushes all
geometric primitives towards their fina positionin L 5. The overlap removal stepinline 8 is
necessary to ensure pleasant transition but it can push geometric primitives away from their fina
position. Line 9 ensures the primitives are indeed converging to their position in the final layout
L 5. The scalar & isfixed as 0.05, what makes &; to be five percent of the distance between |; and
. € isfixedin 10~ 3.
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Figure 44 — Defining constraints to trap primitives within a giving visual domain
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Source: Gomez-Nieto, Motta e Nonato (2014).

7.2.4 Dealing with arbitrary domains

In order to confine each geometric primitives within agiven visua domain we impose
constraints to the minimization problem. Specifically, the coordinates of the bottom left corner
of each primitive are bounded by the visual domain boundary shape, as depicted in Figure 44

and mathematically formalized in equation (7.6).

min (1-a)Eo+ aEyn

such that: ximi”s X< x™—h, i=1,...,n

YIS yi< Yy =1,

(7.6)

To speed up the optimization process we update the constraints only after a fixed number

of optimization steps (20 in our implementation). Not updating the constraints after every opti-
mization step allows primitives to move temporarily outside the visua domain. For visudization
purposes, violating slightly the visual domain boundariesis not a problem and it is justified by

the gain in terms of computational performance.

The minimization is accomplished by a globally convergent local optimization method,

namely the Method of Moving Asymptotes (SVANBERG, 2002), available from the NLopt
library at <http://ab-initio.mit.edu/wiki/index.php/NLopt>.

7.3

Results

In this section we present some layouts generated from the proposed methodology. All
the results were produced using an Intel(R) Core(TM) i7-3537U computer with 8GB RAM.
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Figure 45 — Layouts produced from piano’s images. From left to right: initial layout, layout during interaction, final
layout

(@) Initial Layout (b) User Interaction (c) Final Layout

Source: Gomez-Nieto, Motta e Nonato (2014).

Figure 46 — Word cloud with size varying primitives
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Source: Gomez-Nieto, Motta e Nonato (2014).

Figure 45 shows layouts generated from fifty images with dimensions 256 x 256 obtained
from the Calltech 101 data set (FEI-FEI; FERGUS; PERONA, 2007). Those images where
embedded in afeature space by extracting 96 features rel ated to color moments. More specifically,
each image was split in 16 non-overlapping regions from which the first and second statistical
moments for each R,G, and B channel were extracted. Figure 45(a) shows the initia layout
obtained by projecting and optimizing the layout according to equation (7.2) (a square box has
been assigned to each projected image). Figure 45(b) show the layout during user interaction
phase. The overlap removal opens a “path” throughout the region the user has dragged images.
The opened path helps the user to kegp a mental model of how much and where the layout is
changing. Figure 45(c) depicts the fina layout after optimization. Notice that the interaction
changed the position of two white background piano images and, as a consequence, all pianos
with white background has also been properly displaced, showing the capability of our approach
in preserving semantic relations.
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Figure 47 — Arbitrary Domain

Source: Gomez-Nieto, Motta e Nonato (2014).

Figure 46 illustrates the use of our layout construction methodology in textual data
analysis. More specifically, the layouts depicted in Figure 46 were generated by extracting bag-
of-words from parts (abstract and title) of 60 visualization related papers published in the IEEE
VisWeek Conference 2004. Therefore, each paper is represented by a term frequency vector in a
high-dimensional space. After projecting data instances to the visua space, the most frequent
word for each data instance is used to represent the paper in the visual space and to generate
the word cloud. The size of each word in the layout reflects the relevance of its corresponding
paper. Precisely, we build an histogram of words and papers with alarge number of frequent
words are considered more relevant. The result of projecting and optimizing the position of
words is depicted in 46(a). Layouts generated during and after user intervention are depicted in
Figures 46(b) and 46(c).

There are two important aspects to point out in this word cloud construction application.
First, it shows the flexibility of our approach in handling geometric primitives with distinct
sizes (in this case the rectangles bounding each word). Second, in contrast to other interactive
schemes devoted to generate word clouds, our approach ensures a semantic relation between
neighbor words in the cloud, which is highly desirable. The semantic relation here is defined by
the similarity between documents measured from the word-frequency feature vector.

To illustrate how our approach behaves when facing irregular visual domains we present
the layout depicted in Figure 47. Notice that despite the irregular shape of the underlying visual
domain, our approach was able to generate a satisfactory result.

To conclude, we present in Figure 48 alayout generated from 70 images of Rio de Janeiro
city obtained from searches in the web. The layout was drastically modified by a user (Figure 48
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Figure 48 — Layout generated from 70 images of Rio de Janeiro city arranged with the proposed interactive layout
construction mechanism.

Source: Gomez-Nieto, Motta e Nonato (2014).

middle) and our method was able to rebuild the layout respecting the similarity of the images
(Figure 48 right). Notice that images of beaches are mostly concentrated at the bottom-right part
of the layout while images related to the Christ’s statue and Rio night life are on the center and
top right parts of the layout.

7.4 Discussion, limitation and future Work

Asshown in last section the proposed methodology enables free user interaction and it is
able to produce pleasant layouts. Moreover, it turns out to be flexible enough to be employed in
applications ranging from image gallery construction to word cloud based text visualization. In
fact, the proposed methodology bearstraits not present in most existing techniques such as the
capability of preserving semantic relationsin the layout.

When compared against state-of-art techniques as the one proposed by Reinert et
al. (REINERT; RITSCHEL; SEIDEL, 2013), which also preserves semantic relations, our
approach relies on a much simpler computational formulation/implementation. However, Rein-
ert’s technique has the advantage of producing pretty regular layouts, a property not present in
our approach. Generating well structured layouts is adesirable property that facilitates readability
and object location in the layout. How to modify the energy functional to produce more regular
arrangements is a problem we intend to tackle in a future work.

Another drawback of our approach is related to local minima, mainly when dealing with
very irregular visual domains. Local minima can lead to unsuitable layout configurations, ham-
pering visualization. Although users can “reshape’ the layout interactively, we are investigating
aternatives that are less susceptible to local minima.
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7.5 Conclusion

In this chapter we described a novel methodology to build layouts made up geometric
primitives. Our gpproach isvery flexible, allowsfree user intervention, and can ded with arbitrary
visual domains, thus bearing traits not present in most existing methods. The proposed technique
isuseful in different visualization scenarios and quite effective in terms of semantic preservation
during layout construction. The simple computational and mathematical formulation render our
methodology a good alternative for tailoring semantic layouts.
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8

CONCLUSION AND FUTURE WORK

In this dissertation we presented four different formulations to address the generation
of semantic layouts from multidimensional data. As can be noticed, all of these approaches
deal simultaneously with multiple requirements for empowering exploration and analysis ca-
pabilities of similarity based 2D representations. Specifically, ProjSnippet (GOMEZ-NIETO
et al., 2014) displays the results of textual queries applied to web search engines by using a
novel overlap removal energy functiona that considers both the neighborhood relations between
instances and their overlapping in the visual space. Minimizing this energy functional providesa
neighborhood preserving two-dimensional arrangement of the textual snippets with minimum
overlap. MIOLA (GOMEZ-NIETO et al., 2013) uses a Mixed Integer Quadratic Formulation
for overlap removal, enabling well structured layouts generation. It does not rely on intersection
tests, making the algorithm simpler to implement. Moreover, it is quite flexible, being dle to
generate different layouts by just handling optimization constraints. Subsequently, we propose
a new optimization method (GOMEZ-NIETO et al., 2016) that incorporates a wider range of
requirements, i.e. display area optimization, hierarchical organization and object scaling. It
dlowsto exploit efficiently the display space while preserve the scale ratio among entities, in
addition to the set of requirements aready addressed. Moreover, scaability is handled through a
hierarchical representation scheme combined with navigation tools. Finally, our mechanism of
semantically aware for dynamic updating (GOMEZ-NIETO; MOTTA; NONATO, 2014) alows
free user intervention to rearrange the layout according to his/her preferences besides dealing
efficiently with arbitrary visual domains.

One of the positive aspects in managing multiple requirements during layout construction
isthat we can play with properties such as object size and neighborhood to highlight relevant
portions of the layout without losing the semantic rel ation among objects. By handling additional
requisites such as overlap-free and optimal usage of display area we can reduce visual clutter
while improving readability. As far as we known, no other techniques devoted to build layouts
from geometric primitives is able to deal with so many concurrent requirements to generate
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meaningful layouts.

The practical usefulness of our methods is demonstrated in different multimedia data
visualization applications. Within these we can mention textual snippets from web search engines,
worclouds from document collections, image galleries and videos from video streaming sites.
An important benefit of our methods is that are highly applicable to any dataset as long as it can
be described as multidimensional data and a distance measure can be used to establish similarity
relations between instances. A good example is the work proposed by Dasgupta et al. (2015)
that improves readability of its visualization for climate model comparison using MIOLA.

Identifying new requirements is a mandatory task to evolve in this research topic. All of
requirements addressed in this study were result of experimentation on multidimensiona data
associated to geometric primitives. As commented in Chapter 1, different types of data requires
of different designs and functionalities for extracting as much information as possible, in this
way we believe that introducing semantic layouts into different contexts that to the focused in
this work will widely enrich the development of this topic.

We are currently investigating new interactive mechanisms to enable a free navigation
throughout the layout as well as dynamic user-driven layout updates. A mgjor drawback is
concerns to the number of instances to optimize during semantic interactions since solving
an optimization problem with a high number of variables fast enough to provide areal time
interaction is computationally costly.
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