• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
Documento
Autor
Nome completo
Alfredo Lanari de Aragão
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2003
Orientador
Banca examinadora
Carvalho, André Carlos Ponce de Leon Ferreira de (Presidente)
Fortes, Renata Pontin de Mattos
Nicoletti, Maria do Carmo
Título em português
"Utilização de aprendizado de máquina para a adaptação de estruturas em hipermídia adaptativa"
Palavras-chave em português
aprendizado de máquina
hipermídia adaptativa
modelagem de usuário
Resumo em português
Sistemas Hipermídia são programas capazes de armazenar e recuperar informações não-lineares, estabelecendo uma estrutura complexa e flexível representada por nós interligados. À medida em que aumenta o espaço de navegação, tal como acontece na World Wide Web (WWW ou Web), a possibilidade de desorientação do usuário no espaço de navegação torna-se maior. Assim, a Hipermídia Adaptativa investiga métodos e técnicas para a adaptação automática de conteúdos e/ou ligações para características, interesses ou objetivos individuais. Trabalhos recentes em Hipermídia Adaptativa sugerem o uso de técnicas de Aprendizado de Máquina e Modelagem de Usuários. Este trabalho investiga o uso de técnicas de Aprendizado de Máquina para a adaptação de estruturas (ligações) em um ambiente Hipermídia, em especial a World Wide Web. Para tanto, avalia-se o desempenho de diferentes algoritmos de Aprendizado de Máquina para a adaptção de ligações em ambiente WWW. Os resultados experimentais obtidos sugerem o potencial do emprego de técnicas de Aprendizado de Máquina.
 
Arquivos
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
disserta-TED.pdf (1.35 Mbytes)
Data de Publicação
2004-07-29
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.