• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
Documento
Autor
Nome completo
Camila de Lima
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2017
Orientador
Banca examinadora
Helou Neto, Elias Salomão (Presidente)
Pierro, Alvaro Rodolfo de
Ponti, Moacir Antonelli
Saito, Jose Hiroki
Título em português
Cálculo rápido do operador de retroprojeção com aplicações em reconstrução tomográfica de imagens
Palavras-chave em português
Cálculo rápido da proejeção e retroprojeção
Métodos incrementais
Métodos iterativos
Reconstrução Tomográfica
Transformada de Radon
Resumo em português
Os métodos incrementais pertencem a uma classe de métodos iterativos que divide o conjunto de dados em subconjuntos ordenados, e que atualiza a imagem ao processar cada subconjunto (sub-iterações). Isso acelera a convergência das reconstruções, e imagens de qualidade são obtidas em menos iterações. No entanto, a cada sub-iteração é necessário calcular os operadores de projeção e retroprojeção, resultando no custo computacional de ordem O(n3) para a reconstrução de imagens de dimensão × . Por outro lado, algumas alternativas baseadas na interpolação em uma grade regular no espaço de Fourier ou em transformadas rápidas não-uniformes, dentre outras ideias, foram desenvolvidas a fim de aliviar esse custo computacional. Além disso, diversas abordagens foram bem sucedidas em acelerar o cálculo das iterações de algoritmos clássicos, mas nenhuma havia sido utilizada em conjunto com os métodos incrementais. Neste trabalho é proposta uma nova abordagem em que a técnica de transformada rápida de Fourier não uniforme (NFFT) é utilizada nas sub-iterações de métodos incrementais com o objetivo de efetuar de forma eficiente os cálculos numericamente mais intensos: a projeção e a retroprojeção, resultando em métodos incrementais com complexidade O(n2 log n ). Os métodos propostos são aplicados à tomografia por radiação síncrotron e os resultados da pesquisa mostram um bom desempenho.
Título em inglês
Fast computation of the backprojection operator with applictions in tomographic image reconstruction
Palavras-chave em inglês
Fast computation of the projection and backprojection.
Incremental methods
Iterative methods
Radon transform
Tomographic reconstruction
Resumo em inglês
Incremental methods belong to a class of iterative methods that divide the data set into ordered subsets, and which update the image when processing each subset (sub-iterations). It accelerates the reconstruction convergence and quality images are obtained in fewer iterations. However, it is necessary to compute the projection and backprojection operators in each sub-iteration, resulting in the computational cost of O(n3) flops for × images. On the other hand, some alternatives based on interpolation over a regular grid on the Fourier space or on nonequispaced fast transforms, among other ideas, were developed in order to alleviate the computational cost. In addition, several approaches substantially speed up the computation of the iterations of classical algorithms, but the incremental methods had not been benefited from these techniques. In this work, a new approach is proposed in which the nonequispaced fast Fourier transform (NFTT) is used in each subiteration of incremental methods in order to perform the numerically intensive calculations efficiently: the projection and backprojection, resulting in incremental methods with complexity O(n2 log n ). The proposed methods are applied to the synchrotron radiation tomography and the results show a good performance.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2017-11-10
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2014. Todos os direitos reservados.