
Quality evaluation model for crisis and emergency
management Systems-of-Systems

Daniel Soares Santos

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura:________________________

Daniel Soares Santos

Quality evaluation model for crisis and emergency
management Systems-of-Systems

Master dissertation submitted to the Instituto de Ciên-
cias Matemáticas e de Computação – ICMC-USP, in
partial fulfillment of the requirements for the degree of
theMaster Program in Computer Science and Compu-
tational Mathematics. EXAMINATION BOARD PRE-
SENTATION COPY

Concentration Area: Computer Science and Compu-
tational Mathematics

Advisor: Profa. Dra. Elisa Yumi Nakagawa

USP - São Carlos
January 2017

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados fornecidos pelo(a) autor(a)

S237q
Santos, Daniel Soares
 Quality evaluation model for crisis and
emergency management Systems-of-Systems / Daniel
Soares Santos; orientadora Elisa Yumi Nakagawa. --
São Carlos, 2017.
 118 p.

 Dissertação (Mestrado - Programa de Pós-Graduação
em Ciências de Computação e Matemática
Computacional) -- Instituto de Ciências Matemáticas
e de Computação, Universidade de São Paulo, 2017.

 1. Software Quality . 2. Evaluation Model. 3.
Systems-of-Systems. I. Nakagawa, Elisa Yumi,
orient. II. Título.

Daniel Soares Santos

Modelo de avaliação de qualidade para
Sistemas-de-Sistemas de gerenciamento de crises e

emergências

Dissertação apresentada ao Instituto de Cincias
Matemáticas e de Computação – ICMC-USP, como
parte dos requisitos para obtenção do título de Mestre
em Ciências – Ciências de Computação e Matemática
Computacional. EXEMPLAR DE DEFESA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientadora: Profa. Dra. Elisa Yumi Nakagawa

USP - São Carlos
Janeiro de 2017

Abstract

Systems-of-Systems (SoS) have performed an important and even
essential role to the whole society and refer to complex software-
intensive systems, resulted from interoperability of independent con-
stituent systems that work together to achieve more complex mis-
sions. SoS have emerged specially in critical application domains
and, therefore, high level of quality must be assured during their de-
velopment and evolution. However, dealing with quality of SoS still
presents great challenges, as SoS present a set of unique characteris-
tics that can directly affect the quality of such systems. Moreover,
there are not comprehensive models that can support the quality
evaluation of SoS. Motivated by this scenario, the main contribution
of this Master’s project is to present a SoS Evaluation Model, more
specifically, addressing the crisis/emergency management domain,
built in the context of a large international research project. The
proposed model covers important evaluation activities and considers
all SoS characteristics and challenges not usually addressed by other
models. This model was applied to evaluate a crisis/emergency man-
agement SoS and our results have shown it viability to the effective
management of the SoS quality.

Keywords: Software Quality, Evaluation Model, Crisis and Emer-
gency Management, Systems-of-Systems.

7

Resumo

Sistemas-de-Sistemas (SoS, do inglês Systems-of-Systems) realizam
um importante e até essencial papel na sociedade. Referem-se a com-
plexos sistemas intensivos em software, resultado da interoperabili-
dade de sistemas constituintes independentes que trabalham juntos
para realizar missões mais complexas. SoS têm emergido especial-
mente em domínios de aplicação crítica, portanto, um alto nível de
qualidade deve ser garantido durante seu desenvolvimento e evolução.
Entretanto, lidar com qualidade em SoS ainda apresenta grandes de-
safios, uma vez que possuem um conjunto de características únicas
que podem diretamente afetar a qualidade desses sistemas. Além
disso, não existem modelos abrangentes para o suporte à avaliação de
qualidade de SoS. Motivado por este cenário, a principal contribuição
deste projeto de mestrado é apresentar um modelo de avaliação para
SoS, especialmente destinado ao domínio de gerenciamento de crises
e emergências. Este modelo foi construído no contexto de um grande
projeto de pesquisa internacional, e cobre as mais importantes ativi-
dades de avaliação, considerando as principais características e de-
safios de SoS geralmente não abordados por outros modelos. Este
modelo foi aplicado na avaliação de um SoS de gerenciamento de
crises e emergência, e nossos resultados têm mostrado sua viabili-
dade para o efetivo gerenciamento da qualidade de SoS.

Palavras-chave: Qualidade de Software, Modelo de Avaliação, Geren-
ciamento de Crises e Emergências, Sistemas-de-Sistemas.

9

Contents

Abstract 7

1 Introduction 1
1.1 Motivation . 3
1.2 Objective . 3
1.3 Organization . 4

2 Background 5
2.1 Systems-of-Systems . 6

2.1.1 SoS Characteristics . 7
2.1.2 Types of System-of-Systems and Some Examples 9

2.2 Software Quality Evaluation . 10
2.2.1 Software Quality Models . 12
2.2.2 Quality Metrics and Evaluation Techniques 14
2.2.3 Quality Evaluation Process . 16

2.3 Quality Attributes for System-of-Systems 20
2.3.1 SoS quality attributes and application domains 21
2.3.2 Discussion and Evaluation Challenges 25

2.4 Final Remarks . 28

3 Systems-of-Systems Quality Evaluation Model 30
3.1 Overall Structure . 30
3.2 Establishment of the SoS Evaluation Requirements 34
3.3 Specification of the SoS Evaluation . 36
3.4 Design of the SoS Evaluation . 38
3.5 Execution of the SoS Evaluation . 39
3.6 Conclusion of the SoS Evaluation . 40
3.7 Final Remarks . 43

4 Case Study: Crisis and Emergency Management Domain 44
4.1 Application Context . 45
4.2 Establishment of the SoS Evaluation Requirements 47
4.3 Specification of the SoS Evaluation . 50

i

4.4 Design of the SoS Evaluation . 53
4.5 Execution of the SoS Evaluation . 54

4.5.1 Evaluation of Mobile Crowdsourcing Solution 55
4.5.2 Evaluation of Emergence Response Toolkit 62
4.5.3 Evaluation of RESCUER SoS as Independent System 69

4.6 Conclusion of the SoS Evaluation . 77
4.7 Final Remarks . 82

5 Conclusions 84
5.1 Contribution of this Master’s Project . 84
5.2 Difficulties and Limitations . 85
5.3 Future Works . 86

References 97

Appendix A Quality Attributes for Systems-of-Systems: Systematic Lit-
erature Review 98
A.1 Planning . 98
A.2 Conduction . 101
A.3 Threats to Validity . 106

Appendix B Evaluation of Systems-of-Systems Software Architectures:
Systematic Literature Review 108
B.1 Planning . 108
B.2 Conduction . 110
B.3 Threats to Validity . 114
B.4 Main Results . 114

B.4.1 Evaluation Methods and Techniques 115
B.4.2 Quality Attributes Commonly Considered 116
B.4.3 Evaluation Challenges . 116

B.5 Conclusion . 117

ii

List of Figures

2.1 Quality in use model . 13
2.2 Product quality model . 14
2.3 Evaluation process . 18
2.4 Studies included per year . 21
2.5 Authorship relationship between studies 22
2.6 Maturity of the included studies . 22
2.7 Quality attributes identified in the included studies 23
2.8 Application domains identified on the included studies 24

3.1 Overall structure of SoS Evaluation Model 31
3.2 Structure of SoS quality model . 36
3.3 SoS aggregation model . 41

4.1 RESCUER SoS overview . 47
4.2 RESCUER quality model . 49
4.3 MCS user interface . 57
4.4 AttrakDiff based questionnaire . 59
4.5 ERTK incident browser . 64
4.6 ERTK incident detail view . 64
4.7 ERTK map view . 65
4.8 ERTK questionnaire results . 67
4.9 Diagram of the Lambach tunnel . 72

B.1 Process of primary studies selection . 111

iii

iv

List of Tables

2.1 SoS vs. monolithic systems . 8
2.2 Quality metric examples . 15
2.3 ISO/IEC 25010 quality attributes coverage 26

3.1 Evaluation techniques vs quality attributes priorities 37
3.2 SoS evaluation plan example . 39

4.1 RESCUER product quality metric . 50
4.2 RESCUER quality in use metrics . 52
4.3 RESCUER evaluation design . 54
4.4 MCS quality metrics . 56
4.5 Percentage of tasks successfully performed 60
4.6 MCS evaluation results . 61
4.7 ERTK quality metrics . 62
4.8 Relation between questions and metrics . 68
4.9 ERTK evaluation results . 68
4.10 RESCUER SoS metrics . 69
4.11 Evaluation team distribution . 73
4.12 RESCUER SoS questionnaire results . 77
4.13 Relation between questions and metrics . 78
4.14 RESCUER SoS evaluation results . 78
4.15 Evaluations conducted during RESCUER project 79
4.16 Results aggregation in first project iteration 80
4.17 Results aggregation in second project iteration 81
4.18 Results aggregation in third project iteration 81

A.1 Selected publication databases . 99
A.2 Search sources and primary studies selected and included 102
A.3 Included primary studies . 102

B.1 Selected publication databases . 110
B.2 Primary studies selected . 112
B.3 Summary of SoS architecture evaluation approaches 113

v

C

1
Introduction

Software-intensive systems have become increasing ubiquitous and complex over the last
years and have evolved to enable the cooperation of various operationally independent
and distributed systems, which, in many cases, are developed with different technolo-
gies and for a series of platforms. Cooperation is a major concern that enables systems
to solve larger, complex missions, which could not be solved by any system working
alone (Maier, 1998). Referred as Systems-of-systems (SoS), this class of system emerges
as a result of the interaction of large, complex, and independent systems (called con-
stituent systems in the context of SoS) (Maier, 1998). This class of systems has become
a trend of the current software-intensive systems and is grounding the path for future
systems (Nakagawa et al., 2013). They can be found in many sectors and application
domains, mainly critical ones. Good examples of SoS can be found in representative do-
mains, such as robotics, airport, avionics, smart-* systems (e.g., smart-grid, smart-cities,
smart-buildings, and smart-farms), and in the military domain (e.g., aerospace, warfare,
and global earth observation) (Bianchi et al., 2015; Jamshidi, 2008; Lane, 2013; Nakagawa
et al., 2013). Differently from classical software systems, SoS present a set of character-
istics that make them unique (Maier, 1998): (i) operational independence of constituent
systems; (ii) managerial independence of constituent systems; (iii) evolutionary develop-
ment; (iv) emergent behavior from the collaboration of constituents; and (v) distribution
of the constituent systems, geographically or not. These SoS characteristics have been
widely shared among the international community and help to understand the difference
between SoS and complex monolithic systems.

1

CHAPTER 1. INTRODUCTION

SoS can also be classified accordingly to the level of interaction among their con-
stituents (Maier, 1998). Directive SoS have a central controller, a common mission, and
dependence among constituents, while in another extreme, virtual SoS have no central
controller and a mission emerges among constituents that do not have a strict depen-
dence among themselves. Each type of SoS requires specific solutions, which considerably
impose challenges for their development (Maier, 1998).

Specifically for the context of SoS, mainly because of their applicability in several
critical application domains, there is a great necessity of dealing with software quality
during their development and evolution (DoD, 2010). The quality of any software sys-
tems is directed related to their capacity of satisfying stated goals and needs that justify
their development (Wagner, 2013). In addition to perform a set of required functions,
systems must exhibit some quality characteristics (generally called quality attributes) re-
lated to the needs of stakeholders (people or organizations)(Wagner, 2013). Normally, the
SoS application domains are responsible for presenting a required set of these attributes,
which can be different from the quality attributes considered for developing constituent
systems. For example, the avionics domain requires that systems exhibit a high level of
dependability among all systems communication to decrease chances of issues in airplanes
during flying, whereas the main concern of navigation systems could be the reliability for
defining the position of airplanes. Despite the many ways to increase the quality of SoS
throughout their life cycle, it is important to evaluate their quality to ensure they will be
able to achieve their mission. Otherwise, more iterations should be carried until enough
quality is achieved for deployment.

One way to evaluate the quality of systems is to use a set of standards established by in-
ternational organizations, such as ISO1 (International Organization for Standardization),
IEC2 (International Electrotechnical Commission), and IEEE3 (Institute of Electrical and
Electronics Engineers). When used in combination, standards allow to assess the quality
of software systems in a systematic way. ISO/IEC 25010 (2011) provides two quality
models composed of quality attributes of software systems as a product (e.g., perfor-
mance and maintainability) and under operation by users (e.g., safety and satisfaction).
These attributes serve as basis for specifying quality requirements and quality evalua-
tion(Wagner, 2013). Besides that, ISO/IEC 9126-2 (2003), ISO/IEC 9126-3 (2003), and
ISO/IEC 9126-4 (2003) provide a set of metrics to measure internal, external, and quality
in use attributes, respectively, such as the presented in the quality models of ISO/IEC
25010. Finally, ISO/IEC 25040 (2011) describes a process (and its requirements) for eval-
uating the quality of software systems. It is composed of five phases and can be supported

1http://www.iso.org
2http://www.iec.ch
3https://www.ieee.org

2

http://www.iso.org
http://www.iec.ch
https://www.ieee.org

CHAPTER 1. INTRODUCTION

by the standards ISO/IEC 9126-2, ISO/IEC 9126-3, and ISO/IEC 25010 throughout its
application.

1.1 Motivation
The main problem that is found and has motivated the conduction of this Master’s project
is that the quality management of SoS still presents great challenges for the classical
software engineering approaches, as SoS present a set of unique characteristics (DoD,
2010; Larsson et al., 2016; Wang and Wan, 2014). For SoS, besides interoperability,
several other quality attributes are critical (e.g., performance, reliability, and security)
and, therefore, should be carefully considered so that the objectives of the SoS can be
reached (Ackermann et al., 2009). However, achievement of these goals is quite difficult,
as the constituents are sometimes developed and maintained by different organizations,
with their own stakeholders, development teams, processes, and resources (Gagliardi et
al., 2009; Santos et al., 2014). In addition, because the size, complexity and common
asynchronous development of SoS becomes difficult to perform evaluation activities in
this environment (DoD, 2008; Wang and Wan, 2014).

Currently, there are no comprehensive evaluation models for SoS that can control
and improve the quality of such systems. In addition, there are no specific studies or
wide experience reports to guide the quality evaluation of an SoS, considering all of its
characteristics and, mainly, the challenges inherent of this context. Most studies about
quality evaluation of SoS address the architecture level, which does not eliminate the
need of a product quality evaluation (Santos et al., 2014). As previously mentioned, a
common way to evaluate the quality of a software product is to use general purpose quality
models or evaluation processes (e.g., ISO/IEC 25010/25040). However, their application
is limited in the context of SoS, where it is needed to consider the evaluation not only in
system product level but also in SoS level, besides consider the impact of each independent
constituent in the achievement of the SoS mission. In addition, these standards do not
discuss in an sufficient way how the evaluation results could be aggregated to obtain the
whole quality of a system, much less a SoS.

1.2 Objective
Motivated by this scenario, the main contribution of this Master’s project is to propose
a quality evaluation model suitable to SoS, addressing the crisis/emergency management
domain. This quality evaluation model was built in the context of a large international

3

CHAPTER 1. INTRODUCTION

research project entitled RESCUER project4. The proposed model intends to cover impor-
tant evaluation activities, considering all SoS characteristics and main challenges related
to their evaluation.

The proposed evaluation model restructures the common evaluation activities consid-
ering both constituent system and SoS levels, providing guidelines to conduct evaluation
activities in light of SoS characteristics. To support the use of our evaluation model,
we established a quality model extending the current ISO/IEC 25010 with a way to link
constituent systems with the quality attributes and their priority concerning the achieve-
ment of SoS mission. In addition, we tailored the ISO/IEC 25010 and ISO/IEC 9126-2,
ISO/IEC 9126-3, and ISO/IEC 9126-4 to crisis/emergency management domain through
the contribution of RESCUER stakeholders, defining a specific quality model and metrics
for that domain. In addition, we adapted the aggregation model proposed by Wagner et
al. (2012) to SoS context to guide the aggregation of evaluation results of each constituent
system to obtain the measurement of whole SoS quality. In summary, all artifacts pro-
duced during the evaluation phases proposed by this evaluation model (quality model,
metrics, strategies, and plan) can be used as basis for evaluationg any crisis/emergency
management SoS (CEMSoS).

Finally, we applied this model to evaluate a CEMSoS. Results achieved show the
viability of our evaluation model, what has motivated us to apply this model in other SoS
being developed in the context of our research group.

1.3 Organization
The remainder of this project is organized as follows. Chapter 2 presents the main concepts
regarding the SoS and software quality evaluation. In addition, it presents an study about
the commonly considered quality attributes in the SoS context. Chapter 3 details the SoS
Evaluation Model proposed in this Master’s project. Chapter 4 presents a case study
applying the SoS Evaluation Model in a crisis and emergency management SoS. Finally,
Chapter 5 describes our main conclusion, limitation, and future works.

4http://www.rescuer-project.org

4

http://www.rescuer-project.org

C

2
Background

This chapter aims to present the main concepts related to Systems-of-Systems (SoS) and
Software Quality Evaluation. The goal is to provide the needed information to a complete
understanding of the SoS Quality Evaluation Model proposed in this Master’s project.

In addition, this chapter presents the main results of a Systematic Literature Review
(SLR) - a special kind of literature review conducted to identify, assess, and interpret
available evidences on a research question, topic or phenomenon of interest (Kitchenham
and Charters, 2007) - about the commonly considered quality attributes in the context
of SoS. Moreover, it provides an discussion about the five main quality attributes and
the challenges involved in their evaluation. Main results of this SLR are presented in
Section 2.3, whereas Appendix A presents its protocol and conduction process. Results
of this SLR were published as a paper in the 3th International Workshop on Software
Engineering and Systems-of-Systems (Bianchi et al., 2015) and as a technical report in
University of São Paulo (Santos et al., 2015a).

Due to difficulty to perform tests in an environment of asynchronous development
(DoD, 2008) such as the commonly found in the SoS context, most of the SoS evaluation
experiences reported in literature are about architecture evaluation of these systems. It
happens due to not only the size and complexity of SoS, but also the fact that parts of the
functionality are deployed in different constituents (DoD, 2008). Despite the architecture
evaluation field is not completely related to this Master’s project theme, we also conducted
an SLR to understand how this kind of evaluation is performed in the SoS context, and
which quality attributes are considered. Results of this SLR are also interesting, since

5

CHAPTER 2. BACKGROUND

most SoS architecture evaluations can be conducted instead of SoS product evaluation due
the its complexity. The protocol, conduction process, and main results of this SLR are
presented in Appendix B. Results of this SLR was published in the 8th Workshop on Dis-
tributed Software Development, Software Ecosystems, and Systems-of-Systems (Santos
et al., 2014).

This chapter is organized as follows. Section 2.1 presents the main concepts about
Systems-of- Systems domain. Section 2.2 describes the main concepts about the software
quality evaluation area, with an special focus on quality models, metrics, evaluation tech-
niques and process. Section 2.3 describes a study about the commonly considered quality
attributes in the SoS context. Finally, Section 2.4 presents the final remarks on the topics
covered in this chapter.

2.1 Systems-of-Systems
A System-of-Systems (SoS) is result of the interaction of systems that operate indepen-
dently but collaborate among them to achieve goals that would not be possible by these
systems working separately (DoD, 2008; Luzeaux and Ruault, 2010; Maier, 1998). This
scenario is increasingly common and such systems are becoming important and even essen-
tial to the whole society. However, development and quality management of SoS are still
a current challenge that has not still been overcome by the classical software engineering
(DoD, 2010; Larsson et al., 2016; Wang and Wan, 2014).

The first definitions to the term SoS appeared in studies published in the early 90s
in the areas of defense, information technology, and air traffic control (Luzeaux and Ru-
ault, 2010). Although the term meets featured today, it has no universally recognized
definition (Luzeaux and Ruault, 2010), and then, their characterization depends often on
the viewpoint and system’s context. A practical definition is that an SoS is a “super-
system” composed of complex and operationally independent systems to achieve higher
goal (Jamshidi, 2008). Due to the increasing spread of the concepts of SoS in software
engineering (Boehm and Lane, 2006), several other SoS definitions can be found in the
literature, such as:

• Maier (1998): “A system of systems is an assemblage of components which indi-
vidually may be regarded as systems, and which possess two additional properties:
operational independence of the components and managerial independence of the
components.”

• ISO/IEC 24765 (2010): “A large system that delivers unique capabilities, formed by
integrating independently useful systems.”

6

CHAPTER 2. BACKGROUND

• Sage and Cuppan (2001): “Systems of systems exist when there is a presence of a
majority of the following five characteristics: operational and managerial indepen-
dence, geographic distribution, emergent behavior, and evolutionary development.”

• Eisner (1993): “Systems of systems are large geographically distributed assemblages
developed using centrally directed development efforts in which the component sys-
tems and their integration are deliberately, and centrally, planned for a particular
purpose.”

• Minkiewicz (2006): “The constituents of a system of systems are independently useful
but synergistically superior when acting in concert. In other words, it represents a
collection of systems whose capabilities, when acting together, are greater than the
sum of the capabilities of each system acting alone.”

As previously mentioned, there is still no universally recognized definition for SoS.
However, it can be perceived that most of definitions converge to a set of key characteristics
previously identified by Maier (1998).

2.1.1 SoS Characteristics
The following characteristics have been widely shared among the international commu-
nity and help to understand the difference between SoS and complex monolithic systems
(Maier, 1998):

• Operational Independent: constituent systems are operationally independents
and have their own goals, even when disconnected from the SoS;

• Managerial Independent: managerial independence means that each constituent
system is developed and maintained by different organizations, with their own stake-
holders, development teams, processes, and resources;

• Evolutionary and Adaptive Development: SoS development is evolutionary
and adaptive, where structures, functions, and purposes are added, removed, and
modified according to emergence needs of the system;

• Emergent Behavior: emergent behavior means that properties, functionality, and
features of the SoS can not be identified or provided by any constituent system
working separately; and

• Geographical distribution: constituent systems may be located in different
places depending on the employed technologies and communication means.

7

CHAPTER 2. BACKGROUND

Despite the dissemination of characteristics of SoS in the community, the establishment
of the exact differences between monolithic systems and SoS is a more delicate topic than
it seems. Luzeaux and Ruault (2010) present the following reflection about this issue: A
computer is a system composed of subsystems (peripheral devices, central unit), where
each subsystems are independently developed by different organizations, and some of then
can be put to different use, however, a computer is not generally recognized as SoS. On
the other hand, everyone agrees the air transportation system is an SoS, but it can also
be classified as a system? Opinions differ depending on the system concept accepted by
each one.

According to Oberndorf and Sledge (2010), the major difference between systems and
SoS is regarding their span of control. For a monolithic system, practices and processes
are determined within a single program. For SoS, instead, these practices and processes
are influenced by the SoS as a whole. To better understand this difference, Oberndorf
and Sledge (2010) compares some specific characteristics of monolithic systems and SoS
regarding some perspectives (see Table 2.1).

Table 2.1: SoS vs. monolithic systems (Oberndorf and Sledge, 2010)
Comparison Perspective Monolithic Systems System-of-Systems
Problems Causes of problems and behaviors

effects can be largely known
Problems are affected by a combi-
nation of factors, some are known,
some unknown, and some un-
knowable.

Dependencies System dependencies are mainly
within one program context and
known scope control. Changes
that affect dependencies within a
system can be controlled

SoS dependencies are outside the
scope of control and the context
may not be completely known.
SoS changing dependencies may
be only managed.

System focus The focus is to optimize their ca-
pabilities

The focus is achieving the collec-
tive emergent capabilities.

Negotiations and decisions Negotiations and decisions are
performed within the program
purview

The boundaries are not clear.
There is more dependence on col-
laboration and influence in negoti-
ations and decisions.

In general, when compared to single systems, an SoS requires new paradigms due to
the independent management, operation, development, and evolution of the constituent
systems, and mainly because their focus on collective emergent capabilities (Oberndorf
and Sledge, 2010).

SoS started to gain popularity mainly on military systems as a strategy to reach goals
or deliver unique capabilities wherein a collaborative work of complex systems is needed
(DoD, 2010; Maier, 1998). Currently, SoS have increasingly become the focus of interest
in Software Engineering (Boehm and Lane, 2006) and, consequently, new application
scenarios have emerged in research and industry.

8

CHAPTER 2. BACKGROUND

2.1.2 Types of System-of-Systems and Some Examples
SoS have been commonly applied in safety-critical domains in which failures may cause
death or injury to people, harm to the environment, or substantial economic loss (Bozzano
and Villafiorita, 2010). Besides the military domain, some examples are (Lane, 2013):
Car2- Car interactions that help to prevent accidents at crossings or optimize cruise
speed; Ambient Assisted Living (AAL) solutions that assist people with specific needs at
home and while travelling via monitoring, remote control or automation; and emergency
and disaster management systems that allow more efficient response to crisis and incidents
through integration of police, firefighters, military, and medical systems.

Despite the most of system are developed without explicit concerns about SoS consid-
eration (DoD, 2008), these systems can be classified based upon the level of responsibility
and authority overseeing the evolution of the SoS (Lane, 2013). In this sense, Maier (1998)
and Dahmann and Baldwin (2008) identified four types of SoS: virtual, collaborative, ac-
knowledged, and directed.

• Virtual: Constituent systems are not subjected to a central management authority
and there is not a clear SoS purpose. Constituent systems are not necessarily known
and mechanisms to maintain the SoS are not evident. An example of this type of
SoS is the World Wide Web and all provided services that are integrated in an ad
hoc manner;

• Collaborative: Constituent systems interact somehow voluntarily to reach shared
or common purposes. There is not an authority to guide or manage activities of the
constituent systems. Examples of this are the emergency and disaster management
systems, where each agency voluntarily cooperates to allow a more efficient response
to crisis, and incidents;

• Acknowledged: Despite the considerable independence of the constituent systems,
there are specific objectives, management team, and resources to address concerns
on the SoS level. Further changes in the constituent systems are based on their
collaboration within the SoS. Examples of this type of SoS are military command
and control systems. According to Lane (2013), these systems have transitioned
from collaborative to acknowledged SoS due to the importance of the missions and
complexity of the cross-cutting SoS capabilities; and

• Directed: Directed SoS are centrally built and managed to fulfill specific purposes.
Although constituent systems maintain the operational independence, their behavior
and evolution are predominantly subordinated to a central purpose. A healthcare
SoS is an example of this type of SoS. These systems integrate several patient

9

CHAPTER 2. BACKGROUND

care systems, such as patient management system, imaging management system,
pharmacy system, among others.

As SoS have been commonly applied in safety-critical domains, their quality need to
be carefully evaluated to ensure that SoS mission be sufficiently achieved. Next section
presents main concepts related to software quality evaluation.

2.2 Software Quality Evaluation
Software quality has been a research topic widely investigated over the last three decades
(Wagner, 2013). Due this, concepts and definitions about this theme has been improved
and evolved over the years. Currently, quality is accept as a complex and multifaceted
concept that can be described in different perspectives (Wagner, 2013). Garvin (1984),
for example, defines a set of different views or approaches to quality, which also can be
used to understand the software quality:

• The transcendental approach sees quality as something that can be recognized but
not defined. It captures the intuitive feeling of quality that can be useful in software
product quality management, but it cannot be objectively measured;

• The user approach sees quality as fitness for purpose. It assumes that a product
with quality needs to satisfy the user requirements and mainly the users expectation;

• The value-based approach sees quality as dependent on the value a customer is
willing to pay for it. In this approach, the conformance and non conformance to
requirements are associated to the benefits and cost to do it. A cheap but less
durable product can be of higher value to a user than a durable but very expensive
product;

• The product approach sees quality as a inherent characteristics of the product. In
this approach, the quality is achieved when a set of desired attributes is sufficiently
identified in the product. Therefore, it is assumed that each attributes is known,
describable, and precisely measurable; and

• The manufacturing approach sees quality as conformance to specification. It as-
sumes the possibility to define the requirements of a product completely and, conse-
quently, identification of any deviation. Because this, the development process needs
to ensure that the software is created in a way that conforms to its specification.

It can be perceived that each one of these approaches can be more relevant and ad-
equate at different period of the product’s life cycle, since its inception and requirement

10

CHAPTER 2. BACKGROUND

specification until to product’s building (Kitchenham and Pfleeger, 1996). This variety of
quality perceptions also reflects the slightly different meanings of quality used currently
in international software standards. For example, ISO/IEC 24765 (2010) defines quality
with six definition:

• The degree to which a system, component or process meets specified requirements;

• The ability of a product, service, system, component or process to meet customer
or user needs, expectations or requirements;

• The totality of characteristics of an entity that bears on its ability to satisfy stated
and implied needs;

• Conformity to user expectations, conformity to user requirements, customer satis-
faction, reliability, and level of defects present;

• The degree to which a set of inherent characteristics fulfils requirements; and

• The degree to which a system, component or process meets customer or user needs
or expectations.

The most definitions address the idea of requirements that need to be satisfied to
achieve quality in a system, component, process, product or service (Wagner, 2013).
In order to apply this quality concept in the software’s life cycle, basically, we need to
understand the user expectations, translate them into clear product attributes and ensure
that these attributes are then implemented in the product (Wagner, 2013). This process
is generally defined as software quality control (ISO/IEC 24765, 2010). In this context,
quality evaluation is an important part of quality control, where a systematic examination
to verify if the product is capable of fulfilling specifics quality attributes is performed
(ISO/IEC 24765, 2010). In order to measure how much the software product complies with
a specific quality attribute, quality metrics must be defined. As result of the application of
a quality metric to a software product, a qualitative value is obtained that characterizes
the degree of compliance of the system to the quality attributes. More details about
quality attributes and quality metrics are described in Section 2.2.1. A software quality
model is basically used to support a better understanding and management of software
quality through its hierarchical decomposition in quality attributes. Consequently, after
the measurement of each expected quality attribute, the total quality of the system can
be obtained through the its hierarchical composition.

11

CHAPTER 2. BACKGROUND

2.2.1 Software Quality Models
A well-accepted way to support quality control is to adopt software quality models that
have been over the last three decades an area widely researched in Software Engineering
(AL-Badareen et al., 2011; Wagner, 2013). A quality model intends to describe, assess,
and/or predict quality, usually through hierarchical decomposition of the general product
quality into sub characteristics to make them better understandable and manageable
(Wagner, 2013).

A software quality model may support a better understanding about what quality is
in the context of software systems, supporting diverse activities throughout system de-
velopment cycle. This is done through the identification of quality characteristics that
are exhibited by software systems and can be aggregated to compose the overall software
quality concept. These characteristics are generally called quality attributes (e.g., main-
tainability, performance, and security), which are presented by quality models to define,
assess, and/or predict software quality (Wagner, 2013).

Quality models can be used by developers, acquirers, quality assurance, control staff,
and independent evaluators, particularly those responsible for specifying and evaluating
software product quality (ISO/IEC 25010, 2011). In summary, the use of quality models
can benefit several software development activities, such as (ISO/IEC 25010, 2011):

• identifying software and system requirements;

• validating the comprehensiveness of a requirements definition;

• identifying software and system design objectives;

• identifying software and system testing objectives;

• identifying quality control criteria as part of quality assurance;

• identifying acceptance criteria for a software product and/or software-intensive com-
puter system; and

• establishing measures of quality attributes to support these activities.

The first quality models emerged in the early days of the software engineering area and
since then, quality models are still subject of research. Published in the 70s, Boehm et al.
(1978) and McCall et al. (1977) proposed the first quality models for software. The two
models are similar and use a hierarchical decomposition of quality in quality factors, such
as maintainability and reliability (Wagner, 2013). The McCall’s model was developed by
the US Air-force Electronic System Decision (ESD), the Rome Air Development Center

12

CHAPTER 2. BACKGROUND

(RADC), and General Electric (Ravichandran and Rothenberger, 2003). The major con-
tribution of the McCall’s model is the relationship between the quality attributes and
metrics despite not consider directly the functionalities of software products. Boehm et
al. (1978) added new quality factors to McCall’s model (AL-Badareen et al., 2011), but
no suggestion to improve the measuring of quality was presented. In 1987, Robert Grady
and Hewlett-Packard Co. proposed the FURPS model (Grady and Caswell, 1987) that
decomposed the software quality into functionality, usability, reliability, performance,
and supportability. However, this model had considered only the user’s quality aspects
and not took into account quality attributes, such as portability and maintainability
(AL-Badareen et al., 2011). Thereafter, several variations of these models have appeared
over time to mitigate the shortcoming of the previous quality models. This motivated the
world-wide standardization and consensus of the software quality model (AL-Badareen
et al., 2011). In this context, ISO (the International Organization for Standardization)
and IEC (the International Electrotechnical Commission) developed the ISO/IEC 9126 -
a quality model that is part of the ISO/IEC 9000 standard, and is the most important
standard for quality assurance. In 2011, the ISO/IEC 9126 was technically revised and
replaced by ISO/IEC 25010 - Systems and software Quality Requirements and Evaluation
(SQuaRE): System and software quality models.

The ISO/IEC 25010 quality model has become the standard for evaluating the quality
of modern computer-intensive systems and is also used to measure the quality of U.S.
Departament of Defense (DoD) systems (Azizian et al., 2011). ISO/IEC 25010 is based
on the fact that the software product quality can be specified and evaluated using a
hierarchical structure of quality attributes (ISO/IEC 25010, 2011).

In this model, the software quality attributes were classified in a hierarchical structure
of characteristics and sub characteristics divided in two quality models (i.e., quality in
use model, and product quality model), each one considering different quality aspects.

Figure 2.1: Quality in use model (ISO/IEC 25010, 2011)

13

CHAPTER 2. BACKGROUND

The quality in use model defines five attributes related to outcomes of interaction
with a system (ISO/IEC 25010, 2011): effectiveness, efficiency, satisfaction, freedom from
risk, and context coverage, as showed in Figure 2.1. The quality in use of a system
characterizes the impact that the system or software product has on stakeholders. It can
be determined by the quality of the software, hardware and operating environment, and
the characteristics of the users, tasks, and social environment (ISO/IEC 25010, 2011).

The product quality model categorizes system/software/product quality properties
into eight attributes (ISO/IEC 25010, 2011): functional suitability, performance effi-
ciency, compatibility, usability, reliability, security, maintainability, and portability.
Each attribute is composed of a set of related sub attributes that are relevant and can
be applied in both software and systems products (ISO/IEC 25010, 2011), as shown in
Figure 2.2.

Figure 2.2: Product quality model (ISO/IEC 25010, 2011)

Both quality models are supposed to be applied to any kinds of computer systems that
include a software product. In practical terms, when every sub attribute is measured, it
is considered that the attribute is also measured by aggregation. Having every attributes
measured, the overall quality of the product is determined. In order to achieve this goal,
one or more metrics are defined and applied to each sub attribute, resulting in a value
that represents the degree to which it is present in the final product.

2.2.2 Quality Metrics and Evaluation Techniques
When applying a quality metric, it is possible to obtain a quantitative value that char-
acterizes the degree of compliance of the software to the corresponding quality attribute.
The ISO/IEC 9126-2 - External Metrics (ISO/IEC 9126-2, 2003) and ISO/IEC 9126-4 -
Quality In Use Metrics (ISO/IEC 9126-4, 2003) are examples of standard that present

14

CHAPTER 2. BACKGROUND

metrics for measuring sub attributes, and may be used together with ISO/IEC 25010 to
evaluate quality of a software product. External metrics are used to measure the quality
of the software product by measuring the system behavior, during testing stages or system
operation (ISO/IEC 9126-2, 2003). On the order hand, quality in use metrics are applied
in a realistic system environment to verify if a product meets the needs of specified users
to achieve their goals (ISO/IEC 9126-4, 2003).

Table 2.2 presents examples of external metrics for two important quality sub at-
tributes for any software system: (i) Functional completeness that refers the degree to
which the set of functions covers all specified tasks and user objectives (ISO/IEC 25010,
2011); and (ii) Functional Appropriateness that refers the degree to which the functions
facilitate the accomplishment of specified tasks and objectives (ISO/IEC 25010, 2011).
In ISO/IEC 25010, these quality attributes compose the Functional Suitability attribute,
which represents the degree to which a product or system provides functions that meet
stated and implied needs when used under specified conditions.

Table 2.2: Quality metric examples
Metric name Purpose of the metrics Method of application Measurement Interpretation

Functional
adequacy
metric

How adequate are
the evaluated functions?

Number of functions that are suitable
for performing the specified tasks
comparing to the number of function
evaluated.

X=1-A/B,
A= Number of functions in which
problems are detected in evaluation,
B= Number of functions evaluated

0 <= X <= 1,
The closer to 1.0,
the more adequate.

Functional
completeness
metric

How complete is
the implementation
according to requirement
specifications?

Do functional tests (black box test)
of the system according to the
requirement specifications. Count the
number of missing functions detected
in evaluation and compare with the
number of function described in the
requirement specifications.

X = 1 - A / B,
A = Number of missing functions
detected in evaluation,
B = Number of functions described
in requirement specifications

0<=X<=1
The closer to 1.0
is the better.

It can be perceived the application of both metrics will generate a quantitative result
between 0 and 1 that will represent the degree of compliance with the evaluated quality
attribute. Therefore, Functional Suitability quality attribute only will be achieved if the
measurement of both quality sub attributes achieve acceptable results. These acceptable
results (also referred as acceptance criteria) need to be defined in the system specification,
since it will be used as reference to the system quality determination. In addition, it is
very important to highlight that specific input data is needed for an adequate applica-
tion of these metrics. Input data can be obtained by using different techniques, such as
questionnaires, checklists, experiments, observations, software test, etc. For instance, for
these metrics, ISO/IEC 9126-2 suggests to apply them during functional testing. Then,
for detecting missing functions, it is suggested that each function stated in a requirement
specification be tested one by one during functional testing. Such results become input
to “Functional completeness metric”. For detecting functions that are implemented but
inadequate, it is suggested that each function be tested for multiple specified tasks. Such
results become input to the “Functional adequacy metric”.

15

CHAPTER 2. BACKGROUND

The main idea is that the choice of the method or techniques that will be used to obtain
the input data depends on the software product, evaluation requirements, evaluation
purpose, importance and relevance of the quality attribute, etc (ISO/IEC 25040, 2011).
In particular, the degree of rigour associated to the evaluation may be used as a guide to
select evaluation techniques and it can be different to each software component and each
quality attribute. As a consequence, evaluation at different levels gives different level of
confidence in the quality of the software product (ISO/IEC 25040, 2011). For instance,
ISO/IEC 25040 (2011) proposes, for each quality attribute, a list of evaluation techniques
ranked from less demanding levels to more demanding levels, such as presented bellow:

• Functionality: 1. functional or black box testing; 2. inspection of development
documentation guided by checklists; 3. unit testing with test coverage criteria.

• Reliability: 1. verification of the use of specific programming language facilities;
2. analysis of fault tolerance construct in the software design and code; 3. reliability
growth modeling.

• Usability: 1. user interface and documentation inspection; 2. verification of the
conformity to interface standards; 3. performing usage experiments with real users.

• Efficiency: 1. execution time measurement; 2. benchmark testing; 3. analysis of
the design to determine the algorithmic complexity.

• Maintainability: 1. inspection of development documentation guided by check-
lists; 2. code measures and programming rules verification; 3. analysis of traceability
between elements of development documentation.

• Portability: 1. analysis of software installation procedures; 2. programming rules
verification; 3. analysis of software design.

As early mentioned, quality model is already a well-accepted way to support qual-
ity evaluation. However, for reliable results in quality evaluations, its planning, execu-
tion, and conclusion need to be performed in coherent and adequate way. In this sense,
ISO/IEC 25040 defines a evaluation process as well as a set of roles to guide the soft-
ware quality evaluation in different application contexts. In this evaluation process, all
elements mentioned in this section are addressed in a synchronized way.

2.2.3 Quality Evaluation Process
Evaluation process is the basis for software product quality evaluation, since it defines a
set of activities and roles needed to perform quality evaluation. The ISO/IEC 25040 -

16

CHAPTER 2. BACKGROUND

Systems and software Quality Requirements and Evaluation (SQuaRE): Evaluation pro-
cess - defines a software product quality evaluation reference model that includes the
evaluation process as well as roles, such acquirer, developer organisation, or independent
evaluator. This evaluation process has been widely accepted, since it can be used for dif-
ferent purposes and approaches as well as applied to evaluate the quality of pre-developed
software or custom software during its development process (ISO/IEC 25040, 2011). Ba-
sically, ISO/IEC 25040 divides the evaluation process in five main activities: (i) Establish
the evaluation requirements; (ii) Specify the evaluation; (iii) Design the evaluation; (iv)
Execute the evaluation; and (v) Conclude the evaluation. As showed in Figure 2.3, each
activity is divided in several tasks. Details about each activity and its tasks are provided
following (ISO/IEC 25040, 2011):

Activity 1 - Establish the evaluation requirements: In this activity, require-
ments of the evaluation are established.

• Task 1.1 - Establish the purpose of the evaluation: Document the purpose for which
the involved organization intend to evaluate the quality of the software product.

• Task 1.2 - Obtain the software product quality requirements: Identify stakeholders
of the software product and specify the software product quality requirements using
a quality model.

• Task 1.3 - Identify product parts to be included in the evaluation: Identify and
document all product parts to be evaluated. The detail level and type of information
(e.g., requirements specification, design diagrams, and test documentation) depends
on the stage in the life cycle and purpose of the evaluation.

• Task 1.4 - Define the stringency of the evaluation: Define the evaluation rigor of the
software product quality according to its intended use and purpose of the evaluation.
The evaluation rigor will influence the evaluation techniques to be applied and
evaluation results to be achieved.

Activity 2 - Specify the evaluation: In this activity, decision criteria for quality
metrics are specified.

• Task 2.1 - Select quality measures: Select or define quality metrics to cover all soft-
ware quality requirements. Measurement procedures should measure the software
quality attributes (or sub attributes) with sufficient accuracy to allow its comparison
with the acceptance criteria.

17

CHAPTER 2. BACKGROUND

Figure 2.3: Evaluation process (ISO/IEC 25040, 2011)

• Task 2.2 - Define decision criteria for quality measures: Decision criteria or accep-
tance criteria shall be defined for the selected individual measures and are used to
decide whether metric results are satisfactory or not, considering the expected re-
sults. These criteria are numerical thresholds or targets used to determine the need
for action or further investigation.

• Task 2.3 - Define decision criteria for evaluation: the evaluator should prepare a
procedure for further summarization, with separate criteria for different quality
attributes in terms of their sub attributes and quality measures.

Activity 3 - Design the evaluation: In this activity, the evaluation plan is defined.

18

CHAPTER 2. BACKGROUND

• Task 3.1 - Plan evaluation activities: The evaluation activities shall be scheduled
taking into account the availability of resources and evaluation environment, such
as personnel, software tools, computers, budget, evaluation methods, adopted stan-
dards, etc.

Activity 4 - Execute the evaluation: In this activity, the evaluation is executed,
applying the quality metrics and decision criteria.

• Task 4.1 - Make measurements: Selected quality metrics shall be applied to the
software product and components, according to the evaluation plan.

• Task 4.2 - Apply decision criteria for quality measures: Quality metrics results shall
be compared with their defined decision criteria.

• Task 4.3 - Apply decision criteria for evaluation: The set of decision criteria shall
be summarised into sub attributes and attributes, producing evaluation results for
quality requirements.

Activity 5 - Conclude the evaluation: In this activity, the software product quality
evaluation is concluded, reviewing evaluation results and creating evaluation report.

• Task 5.1 - Review the evaluation result: The evaluator and requester shall review
the evaluation results.

• Task 5.2 - Create the evaluation report: Once results are reviewed, the evaluation
report is created, including requirements of the evaluation, results from the mea-
surements and analysis performed, any limitations or constraints, evaluators and
their qualifications, etc.

• Task 5.3 - Review quality evaluation and provide feedback to the organisation:
Evaluator shall review results of the evaluation and validity of the evaluation process,
indicators, and metrics applied. Feedback from the review should be used to improve
the evaluation process and evaluation techniques.

• Task 5.4 - Perform disposition of evaluation data: When evaluation is completed,
the evaluation data shall be disposed according to requirements of the requester,
such as returning, archiving or destroying.

In general, software product quality evaluation can be performed during or after the
development process or acquisition process by the developer organization, acquirer organi-
zation or an independent evaluator. A developer organization can evaluate intermediate
software products or final products to ensure that they meet required quality criteria,

19

CHAPTER 2. BACKGROUND

which can be set by the acquirer or by comparison with other products. The acquirer, on
the other hand, can establish quality in use requirements and software quality require-
ments, can specify requirements to the supplier, can evaluate the software against these
requirements before acquisition, and can use the evaluation results to compare alternative
products. Finally, independent evaluators can evaluate intermediate software products or
final products (requested by a developer, acquirer or some other party) for stakeholders
understand, accept, and trust in the evaluation results.

In order to avoid unnecessary work, minimizing specifics challenges or even improving
practicality, objectivity, and reliability of the evaluation, it is essential that the imple-
mentation of the evaluation process present flexibility to accommodate uniqueness of each
application context, such as Systems-of-Systems. Next section presents details about SoS
quality attributes and evaluation challenges inherent of this kind of systems.

2.3 Quality Attributes for System-of-Systems
As mentioned early, several quality attributes are critical for SoS (e.g., interoperability,
performance, reliability, and security) and, therefore, they should be carefully considered
to satisfy the SoS mission (Ackermann et al., 2009). In addition, currently, SoS charac-
teristics can be found in several application domains, such as military, smart home, inte-
grated health systems, crisis management systems, and others. Hence, it is very important
the support of a quality model during specification and evaluation of the SoS quality at-
tributes, which are commonly addressed in this variety of domains. However, there is
not a clearly decomposition criteria that determines how the complex concept “quality”
should be handled for SoS, where constituent systems have complex interdependencies
and, sometimes, are developed and maintained by different organizations, with their own
stakeholders, development teams, processes, and resources (Gagliardi et al., 2009; Santos
et al., 2014). This problem has motivated a growing number of research, since the devel-
opment of SoS and management of their quality are still a challenge currently, as stated
previously by DoD (2008).

In this context, this section presents a panorama about the current state of the art on
quality attributes in the SoS context, considering different application domains besides
to understand the challenges to evaluate SoS imposed by this context. In this sense, we
conducted a SLR, besides to analyze the suitability of the well-established quality model
defined by ISO/IEC 25010 regarding the SoS quality attributes that were found. In next
section, the main results obtained in our SLR are presented. The research protocol (i.e.,
the process followed for identifying, analyzing, and extracting information from primary
studies) and details about the execution of this SLR are presented in Appendix A.

20

CHAPTER 2. BACKGROUND

2.3.1 SoS quality attributes and application domains
In short, during the SLR conduction, 52 primary studies were selected from four different
publication databases: ACM Digital Library1, IEEE Xplore2, Scopus3, and Web of Sci-
ence4. These primary studies were used to answer the following research questions (RQ):
(i) RQ1: Which are the most common quality attributes for SoS?; (ii) RQ2: Which are
the most common application domains considered for SoS?; and RQ3: Which are the
quality attributes established for each SoS domains?

First of all, our results indicated that: (i) research on quality attributes for SoS is in
increasing during the last years (see Figure 2.4); and (ii) the topic quality attributes for
SoS has been investigated by small groups (see Figure 2.5). Analysing the maturity of
the research, included studies indicated that the research is overall on a early stage, as
most studies were classified as “case study” and “without validation” (see Figure 2.6).

Figure 2.4: Studies included per year

In summary, our results show that the five most relevant quality attributes on SoS
research are: security, interoperability, performance, reliability, and safety. Overall, 56
different quality attributes distributed in several domains were identified. Figure 2.7
shows an histogram with all of them and their frequency in the studies considered in this
SLR.

1http://dl.acm.org/
2http://ieeexplore.ieee.org/
3https://www.scopus.com/
4https://www.webofknowledge.com/

21

CHAPTER 2. BACKGROUND

Figure 2.5: Authorship relationship between studies

Figure 2.6: Maturity of the included studies

22

C
H
A
PT

ER
2.

BA
C
K
G
RO

U
N
D

Figure 2.7: Quality attributes identified in the included studies

23

CHAPTER 2. BACKGROUND

The military domain is the target of most studies. This is understandable since SoS
started to gain their popularity in military domain. However, new application scenarios
of SoS have been considered as Figure 2.8 shows highlighting the domains “IT systems”,
“smart grids” and “automotive”. In the IT systems domain, SoS characteristics have been
increasingly incorporated, mainly because the integration requirements of these systems
with third-party systems (Calinescu et al., 2012; Kimura et al., 2011; Tsadimas et al.,
2014). More specifically, Kimura et al. (2011) indicate that this is a tendency due to
popularization of cloud computing on the industry. On the other hand, smart grids domain
is being investigated in the context of energy management systems, which have as main
priority the integration with communication services to detect and address incidents before
they compromise the power offering (Singh and Dagli, 2009; Wada et al., 2008; Zafar et al.,
2014). Finally, a modern automotive industry is typically driven by the integration of more
than 50 embedded computers, also known as ECUs (Electronic Control Units) (Aoyama
and Tanabe, 2011; Eklund and Bosch, 2014; Fuchs and Rieke, 2010). More specifically,
Fuchs and Rieke (2010) investigate vehicles and roadside units that can communicate in
ad hoc way to exchange information, such as safety warnings and traffic information, to
avoid accidents and traffic congestion.

Figure 2.8: Application domains identified on the included studies

Our results also indicate that domains addressed in Figure 2.8 are concerned with a
similar set of quality attributes, such as security, interoperability, performance, reliability,
and safety. Next section will present a discussion about these five most frequent quality
attributes for SoS and their specific evaluation challenges. Besides that, we analyzed

24

CHAPTER 2. BACKGROUND

how the known quality models, specifically ISO/IEC 25010, can support specification and
evaluation of these attributes, considering characteristics and challenges of SoS context.

2.3.2 Discussion and Evaluation Challenges
As mentioned, results suggest that besides military domain, new application scenarios
of SoS have emerged, including safety-critical systems, such as military, automotive, and
crisis and emergencies management systems. In these situations, SoS must be able to
react appropriately to dynamic changes to assure its behavior and quality (Schneider and
Trapp, 2011). Therefore, still according to Schneider et al., it is very difficult to assure
quality properties like safety, reliability, performance, and security for the whole SoS.
The quality of the constituent systems is not enough to ensure the SoS overall quality;
therefore, it is necessary to consider the end-to-end quality of the whole SoS. In this
context, the dependence, tradeoffs, and relations among quality attributes become more
evident and complex.

Another problem found is that some well-established definition for quality attributes,
such as for reliability, can not be fully applied in the SoS context. Garro and Tundis (2014)
highlight that this problem happens because in SoS the concept of mission failure is not
so easily identifiable in comparison to monolithic systems, where failure scenarios and
their effects can be clearly identified. Therefore, the SoS reliability is an wider and more
flexible concept that should be taken into account considering the flexible and dynamic
nature of SoS.

In most SoS domains identified in our SLR, “safety” is an essential quality attribute or
even the main goal of these SoS. According to ISO/IEC 25010 (2011), safety is the degree
to which a product or system mitigates the potential risk to people in the intended context
of its usage. In SoS, these potential risks can become hazardous situations due to failures
in any of the constituent systems. This shows that availability, reliability, performance,
and security attributes must be properly addressed for each constituent system (Schneider
and Trapp, 2011). It is also important to note that these quality attributes and their
inter-dependences/relations are not properly considered in the hierarchical structure found
in ISO/IEC 25010 and other quality models.

On the other hand, “interoperability” can be handled as a cross-cutting concern that
has an unique and crucial coordination role relative to the others quality concerns (Rothen-
berg, 2008). However, an SoS is usually conceived without considering the interoperability
of its constituent systems on the early stages of development (Madni and Sievers, 2014).
In addition, metrics established by current quality models can not directly measure in-
teroperability (Guariniello and DeLaurentis, 2014b). This is explained by the emergent
behavior of SoS that makes difficult to capture and evaluate interoperability at the level

25

CHAPTER 2. BACKGROUND

of constituent systems (Meilich, 2006). Hence, it is important to consider the interdepen-
dence between quality attributes in scenarios where cascading failures and bottlenecks
could result in a complete SoS blackout (Chiprianov et al., 2014). In this sense, quality
attributes needs to be measured and controlled for each constituent system to address the
impact on SoS quality (Chiprianov et al., 2014; Gorod et al., 2007; Waller and Craddock,
2011).

Moreover, it is necessary to take into account the SoS specific characteristics and how
they impact the quality of SoS as a whole. For instance, considering performance and
security, some example of the impact of SoS characteristics on these quality attributes
are (Chiprianov et al., 2014; Gorod et al., 2007; Waller and Craddock, 2011): (i) the
operational independence of the constituents can lead to potential incompatibilities and
conflicts between security or performance of each system; then, some systems may be
more vulnerable to attacks or have less critical real-time constraints than others and,
therefore, their effects and consequences must be carefully considered in the SoS. (ii) due to
managerial independence, constituents can have to protect themselves within the SoS from
other systems and from SoS emerging activities, which can bring consequences to the SoS
mission; (iii) evolutionary development of SoS makes difficult to completely specify quality
requirements, such as performance and security at design time, and will need to evolve
as the SoS evolves; (iv) emergent behavior difficults the clear identification of the source
of a security fault or performance degradation; and (v) geographic distribution makes
difficult to achieve security or performance in the SoS as a whole, mainly when different
national regulations must be met and when functionalities are met due to numerous and
long paths of interaction.

In addition, a first analysis of the ISO/IEC 25010 coverage on the SoS quality at-
tributes shows that 48% of the quality attributes commonly considered in SoS are not
addressed by this standard as presented in Table 2.3. So, this can be evidence that,
currently, SoS have been developed and mainly evaluated without considering some im-
portant quality attributes, since they are not being properly identified and handled by a
standardized quality model.

Table 2.3: ISO/IEC 25010 quality attributes coverage

Quality Attributes Among Covered by ISO

1 performance 14 yes
2 security 14 yes
3 interoperability 14 yes

continued on next page ...

26

CHAPTER 2. BACKGROUND

Quality Attributes Among Covered by ISO

4 reliability 13 yes
5 safety 10 yes
6 availability 8 yes
7 maintainability 6 yes
8 complexity 5 no
9 dependability 5 no
10 robustness 4 no
11 survivability 4 no
12 flexibility 4 yes
13 adaptability 4 yes
14 agility 3 no
15 reusability 3 yes
16 stability 3 no
17 evolvability 3 no
18 portability 3 yes
19 changeability 2 no
20 operability 2 yes
21 lethality 2 no
22 controllability 2 no
23 composability 2 no
24 integrity 2 yes
25 scalability 2 yes
26 testability 2 yes
27 capability 2 no
28 confidentiality 2 yes
29 variability 2 no
30 usability 2 yes
31 capacity 2 yes
32 resilience 2 no
33 maneuverability 2 no
34 open-endedness 1 no
35 susceptibility 1 no
36 extensibility 1 no
37 fault tolerance 1 yes

continued on next page ...

27

CHAPTER 2. BACKGROUND

Quality Attributes Among Covered by ISO

38 networkability 1 no
39 behavioral conformance 1 no
40 vulnerability 1 no
41 confort 1 yes
42 technology neutrality 1 no
43 component abstraction 1 no
44 sustainability 1 yes
45 affordability 1 no
46 traceability 1 no
47 effectiveness 1 yes
48 effectiveness 1 yes
49 energy efficiency 1 yes
50 managebility 1 no
51 accountability 1 yes
52 accuracy 1 yes
53 recoverability 1 yes
54 modifiability 1 yes
55 compositionality 1 no
56 modularity 1 yes

As conclusion, the analysis of the five most relevant quality attributes pointed out
limitations of the current quality models, specifically, the well-established and widely
used ISO/IEC 25010. SoS quality attributes have also complex interdependencies that
can not be translated by a hierarchical structure. Besides that, some well-established
definitions for each quality attribute can not be fully applied in the SoS context due to
the flexible, dynamic nature of these systems.

2.4 Final Remarks
This chapter introduced, firstly, concepts related to SoS, their characteristics, common
application domains, types, and main differences between SoS and monolithic systems.
After that, we presented main concepts related to software quality with a special focus on
quality evaluation aspects, such as quality models, metrics, evaluation process, techniques
and strategies. In addition, an overview about the current quality models and interna-
tional standards addressed to evaluation of software products was provided. Finally, we
presented a SLR about the commonly considered SoS quality attributes and their applica-
tion domains. From results of this SLR, we provided an important discussion about main

28

CHAPTER 2. BACKGROUND

five quality attributes found, and current challenges involved in their evaluation consid-
ering the SoS context. This information allows to understand our research context and
the main contributions of the SoS Evaluation Model proposed by this Master’s project in
next chapter.

29

C

3
Systems-of-Systems Quality

Evaluation Model

This chapter presents a quality evaluation model suitable to the SoS context. This model
has been built in the context of a large international research project entitled RESCUER
project1 that had as main goal to develop a crisis/emergency management SoS.

The remainder of this chapter is organized as follows. Section 3.1 presents the overall
structure of the SoS quality evaluation model. Sections 3.2 to 3.6 present in details all
activities that compose our model. Finally, Section 3.7 presents final remarks on the
topics covered in this chapter.

3.1 Overall Structure
This quality evaluation model intends to cover all important evaluation activities con-
sidering all SoS characteristics and challenges not usually addressed by other models. In
this sense, evaluation activities defined by current software quality standards and quality
models were reviewed and restructured to allow the quality evaluation of SoS.

Figure 3.1 presents an overview of the main activities that compose this SoS Evaluation
Model. In summary, it is divided in five activities: (i) Activity 1 - Establishment of the
SoS evaluation requirements; (ii) Activity 2 - Specification of the SoS evaluation; (iii)

1http://www.rescuer-project.org

30

http://www.rescuer-project.org

CHAPTER 3. SYSTEMS-OF-SYSTEMS QUALITY EVALUATION MODEL

Activity 3 - Design of the SoS evaluation; (iv) Activity 4 - Execution of the SoS evaluation;
and (v) Activity 5 - Conclusion of the SoS evaluation. It can be observed that Activity
4 is decomposed in sub activities conducted in a system level. These sub activities are
repeated for each constituent system during all project iterations until no evaluation work
is more needed. In next sections, all these activities, sub activities, and artifacts to be
produced are detailed.

Figure 3.1: Overall structure of SoS Evaluation Model

To make possible an adequate application of this evaluation model in most SoS con-
texts, some important information are presented bellow:

• In a SoS, constituent system organizations can adopt different development processes
than that used for SoS team. Therefore, their internal quality assurance activities
are independently conducted to deliver a level of quality to the SoS. On the other
hand, SoS evaluation supported by this evaluation model will ensure that quality

31

CHAPTER 3. SYSTEMS-OF-SYSTEMS QUALITY EVALUATION MODEL

attributes important to the mission are achieved in both constituent systems and
whole SoS;

• This SoS Evaluation Model can be used by developers, acquirers, quality assurance,
control staff, and independent evaluators, particularly those responsible for specify-
ing and evaluating the SoS quality. In this sense, the evaluation activities described
in this model can be conducted by both independent evaluation organization teams
and members of SoS/constituent systems teams;

• Some activities described in this evaluation model, mainly these ones regarding
the SoS evaluation planning (Activities 1, 2, and 3), do not necessarily need to be
conducted in sequence. In addition, some information needed to conclude the eval-
uation planning activities can not be available initially and will be obtained during
the project. In this sense, learned lessons and important feedbacks obtained during
execution of the evaluation can be used to improve requirements, specification, and
design of SoS evaluation;

• The number of evaluation iterations will depend on the each project. Considering
the evolutionary and adaptive development commonly found in SoS projects, where
new functions, purposes, and quality requirements are added, removed, and modified
according to emerging needs, an evaluation iteration could be conducted several
times in a SoS project as a way to control the evolution of SoS quality. This
would facilitate the quality management of a SoS, since it would allow the gradual
quality evaluation of SoS quality requirements. For example, in SoS projects with
an iterative development process, an evaluation iteration could be conducted in the
final of each project iteration. However, evaluation effort and cost sometimes can
limit the number of evaluations conducted in projects with several short iterations,
as commonly adopted in agile developments;

• Due to emergent behaviors of SoS, some quality requirements of SoS can not be
evaluated only through constituent system evaluations. Hence, it will be needed to
consider the whole SoS as an independent system (more details about this are pro-
vided during the description of this evaluation model). In this sense, it is important
to highlight that, in this SoS Evaluation Model, the term “system” refers to the
constituent systems and also to SoS when it is considered as an independent system
(see sub activities of Activity 4);

• In general, this evaluation model can be used throughout the lifecycle of any ac-
knowledged SoS, where there are recognized goals, a management team, and re-

32

CHAPTER 3. SYSTEMS-OF-SYSTEMS QUALITY EVALUATION MODEL

sources despite the constituent systems retain their managerial and operational in-
dependence; and

• During the SoS evaluation, four different documents are produced: an evaluation
plan and an evaluation report for both SoS and system levels. The SoS Evaluation
Plan is built based on the output of all SoS evaluation planning activities (Activ-
ities 1, 2, and 3) and constantly improved based on the feedback obtained from
the conduction of system level activities (sub activities of Activity 4). The System
Evaluation Plan is built based on guidelines/requirements defined into SoS Evalu-
ation Plan and restrictions imposed by the constituent system application context.
Finally, the System Evaluation Report describes results obtained during the con-
stituent system evaluation, whereas the SoS Evaluation Report presents aggregated
results of all constituent system evaluations to provide information of the whole
quality of SoS.

The SoS Evaluation Model is based on recommendations and guidelines provided in
the main international standards addressed to software quality. Some of these standards
were used as base to development of general structure of this evaluation model, whereas
others are used as base to the conduction of some evaluation activities. Bellow, it is
described the relation of our SoS Evaluation Model with current international standards
and quality models.

Firstly, each evaluation activity that composes the evaluation process defined in ISO/IEC
25040 was reviewed and restructured to allow the quality evaluation in SoS level. In the
sense, evaluation activities were divided in SoS level (Activities 1 to 5) and system level
(sub activities of Activity 4).

In Activity 1 (Establishment of the SoS evaluation requirements), standard ISO/IEC
25010 is used as base to select SoS quality attributes. Hence, the quality model established
by this standard was tailored to reflect the crisis and emergency domain. In addition, the
structure of ISO/IEC 25010 quality model was adapted to describe quality attributes of
all constituent systems in a single structure, and also to describe the importance of each
quality attribute to each constituent system.

In Activity 2 (Specification of the SoS evaluation), international standards ISO/IEC
9126-2 - External Metrics and ISO/IEC 9126-4 - Quality in Use Metrics are used as base to
define quality metrics needed to measure each quality attribute defined in the established
quality model.

In Activity 3 (Design of the SoS evaluation), the evaluation design recommendations
presented in ISO/IEC 25040 were raised to cover the schedule of all constituent system
evaluations considering the expected number evaluation iterations of a SoS project.

33

CHAPTER 3. SYSTEMS-OF-SYSTEMS QUALITY EVALUATION MODEL

In Activity 4 (Execution of the SoS evaluation), specifically sub activities 4.1, 4.2,
and 4.3 are basically established as described in ISO/IEC 25040 process, as they still are
conducted in a single system level. However, to allow suitable conduction of these sub
activities in the SoS context, guidelines are also provided.

In Activity 5 (Conclusion of the SoS evaluation), the aggregation model defined by
Quamoco quality model (Wagner et al., 2012) was used with some adaptation. This is
needed to guide the aggregation of evaluation results of each constituent system to obtain
the measurement of whole SoS quality, considering the importance of each constituent
system in the achievement of SoS mission.

It is noteworthy that for all evaluation activities defined in our model, guidelines are
provided to support their suitable conduction, considering the SoS characteristics and
challenges found in this context. These guidelines were defined based on our experience
in SoS quality evaluation, more specifically in the context of the research project in which
this Master’s project takes part. In next section, all evaluation activities defined in our
SoS Evaluation Model are detailed.

3.2 Activity 1: Establishment of the SoS Evaluation Re-
quirements

Specifically in this activity, the main objective is to document all information needed to
guide the evaluation strategies, methods, and techniques that will be used, besides helping
to foresee the required effort for the SoS quality evaluation.

Regardless the application context or type of system, the first task to be performed
in a quality evaluation is to define its purpose (ISO/IEC 25040, 2011). Basically, the
ultimate objective is to ensure that the product provides required quality, meeting stated
and implied needs of the users. In the sense, the expected purpose of a SoS evaluation
may be, for instance: (i) to assure quality for a SoS and its constituent systems; (ii) to
verify the acceptance of a new SoS functionality and decide when to release it; (iii) to
assure that a SoS is able to perform its mission; (iv) to access the ongoing feasibility of
the project in development; and (v) to predict or estimate final quality of the whole SoS.

Another task in this activity is to identify all constituent systems that will be object
of evaluation and also their quality requirements. It is important to obtain the docu-
mentation (e.g., requirements specification, design diagrams, and test documentation) of
all considered constituent systems. Existing specification of quality requirements pro-
vided by organizations involved may be reused, reviewed, and refined during this process.
Besides that, quality requirements addressed to the SoS level also need to be identified
and/or defined. Therefore, stakeholders of SoS level (e.g., project manager, evaluation

34

CHAPTER 3. SYSTEMS-OF-SYSTEMS QUALITY EVALUATION MODEL

requester, constituent project leaders, final users, and requesters of evaluation report) and
constituents level (e.g., developers, users, operators, and maintainers) shall be identified
and explored to adequately understand the quality requirements in both SoS level and
system level.

Using all these information sources, the SoS quality requirements that will be con-
sidered in the quality evaluation are specified using a quality model, which is the main
output of this activity. The quality model presented by ISO/IEC25010 can be used as
basis to the selection of software quality attributes of a specific domain. For selecting
quality attributes that will compose the SoS quality model, it is important to consider
project constraints, such as evaluation budget, target date for evaluation, and purpose
of the evaluation, as all identified quality attributes could not be viable to be evaluated.
To obtain a consensus, the involvement of stakeholders is very important. To support
this task, a survey can be performed with requirement teams, developers, task leaders,
and project coordinators to assure that all selected quality attributes are appropriate and
relevant regarding the SoS quality requirements. Moreover, this established quality model
can be updated during the SoS development project, by adding new quality attributes
not considered previously.

In addition, it is important to define the priority or importance of each quality at-
tribute to be evaluated. This information will also impact the definition of strategies and
techniques that will be applied, besides the definition of acceptance criteria that will be
used to decide whether the evaluation results are satisfactory or not. This prioritization
allows the measurement of whole SoS quality, considering the relative importance of each
quality attribute.

Figure 3.2 presents a template to SoS quality model. In this model, it is possible to
present quality attributes of all considered constituent systems in a single SoS quality
model, together with their respective priorities. For example, for Constituent System 1
(CS1) are considered the Quality Sub Attribute 1.1 as having a middle priority (M) and
Quality Sub Attribute 2.2 having high priority (H), whereas for the Constituent System
2 (CS2) are considered Quality Sub Attribute 1.1 having high priority (H) and Quality
Sub Attribute 2.1 having low priority (L).

Despite of all, evaluation of each constituent system can not be sufficient to guarantee
quality of the whole SoS, mainly because some quality requirements only become evident
when constituents are working together. Usually, these quality requirements are result
of emergent behaviors of SoS; therefore, they can not be measured through only of con-
stituent evaluations. Therefore, to also support the evaluation of specifics SoS quality
requirements, it is needed to consider SoS like an independent system/a black box sys-
tem. As the example in Figure 3.2, Quality Sub Attribute n.1 has high priority (H) and

35

CHAPTER 3. SYSTEMS-OF-SYSTEMS QUALITY EVALUATION MODEL

Figure 3.2: Structure of SoS quality model

Quality Sub Attribute n.n has middle priority (M) to SoS and, therefore, the whole SoS
will be measured in a specific evaluation. Evaluation of an SoS as an independent system
is detailed in next sections.

3.3 Activity 2: Specification of the SoS Evaluation
The main goal of this activity is to define the quality metrics to each quality attributes
(of the quality model previously established) as well as their acceptance criteria, which
are numerical thresholds or targets used to determine the need for action or further
investigation, or to describe the level of confidence in a given result (ISO/IEC 25040,
2011).

It is important to highlight that, in the SoS context, different quality metrics, measure
strategies, and acceptance criteria could be defined for each constituent system consid-
ering its resources, measurement context, and evaluation purpose. This scenario is more
common in an SoS with high level of managerial independence of its constituent sys-
tems, or when different organizations are responsible by the conduction and report of the
constituents quality evaluation. Besides that, it is important to remember that suitable
quality metrics could also need to be defined to measure quality attributes addressed to
the SoS level.

To define quality metrics to each quality attribute in the established quality model,
international standards, such as ISO/IEC 9126-2 - External Metrics and ISO/IEC 9126-4 -
Quality In Use Metrics, can be used as base. Quality metrics proposed by these standards
can be selected and tailored to the considered application context. The choice of the
methods or techniques that will be used to obtain input data to each metric, depends

36

CHAPTER 3. SYSTEMS-OF-SYSTEMS QUALITY EVALUATION MODEL

on the importance and relevance of the quality attribute to achieve SoS mission. In
particular, the quality attribute priorities defined in the SoS quality model (low, middle,
and high are used as example, but any prioritization rank could be adopted) may be used
as a guide to select evaluation techniques. For instance, evaluation techniques suggested
by ISO/IEC 25040 can be linked to the quality attribute priorities, considering the needed
rigor in each evaluation, as presented in the Table 3.1.

Table 3.1: Evaluation techniques vs quality attributes priorities
Quality Attribute Priority Evaluation Techniques

Functionaly
L Functional or black box testing
M Inspection of development documentation guided by checklists
H Unit testing with test coverage criteria

Reliability
L Verification of the use of specific programming language facilities
M Analysis of fault tolerance construct in the software design and code
H Reliability growth modeling

Usability
L User interface and documentation inspection
M Verification of the conformity to interface standards
H Performing usage experiments with real users

Efficiency
L Execution time measurement
M Benchmark testing
H Analysis of the design to determine the algorithmic complexity

Maintanability
L Inspection of development documentation guided by checklists
M Code measures and programming rules verification
H Analysis of traceability between elements of development documentation

Portability
L Analysis of software installation procedures
M Programming rules verification
H Analysis of software design

Based on that, the SoS team or independent organizations can suggest the method-
s/techniques/tools more suitable to obtain information inputs to the metrics. However,
the selection of these evaluation techniques will also depend on each constituent system
context. Hence, detailed specification about which and how these strategies will be ap-
plied in the evaluations should be preferably defined with a broad participation of each
involved organization (Sub Activity 4.1 - Design the evaluation in system level), as it will
depend on several variables, e.g., available resources and internal process, which can not
be clearly known by SoS team or independent evaluation organizations. This detailing
will compose the System Evaluation Plan. In the same way, a System Evaluation Plan
also needs to be developed to SoS when it is considered as an independent system. Details
about this artifact will be presented in Section 3.5 and Section 4.

Ideally, the acceptance criteria are defined from the SoS specification and SoS qual-
ity requirements since it will be used as reference to the system quality determination.
However, this information could not be still available, in the needed detail, in the current
project iteration. The SoS team can lead the elicitation of these criteria from the involve-
ment of stakeholders, requirement teams, developers, task leaders, project coordinators,

37

CHAPTER 3. SYSTEMS-OF-SYSTEMS QUALITY EVALUATION MODEL

domain experts, among others, to obtain consensus about quantitative targets for each
quality attribute. Next section presents examples of these quantitative targets.

3.4 Activity 3: Design of the SoS Evaluation
The main goal of this activity is to plan and design the SoS evaluation. Evaluation
of the quality attributes of all constituent systems as well as those defined specifically
to the SoS are scheduled. The main concern is to define which quality attributes and
metrics will be considered for each system and in which evaluation iteration. In addition,
it is important to define people, constituents, and external organizations that will be
responsible to execute and report each expected evaluations.

This resulting plan must also take into account availability of resources from the con-
stituent organizations and SoS team, besides quality requirements dependencies. For
example, a constituent organization or SoS team could not evaluate a specific quality
attribute or apply a specific quality metric in an evaluation iteration due to the devel-
opment status or lack of resources. Besides that, due to the evolutionary development
of SoS, design of SoS evaluation produced in this activity must be updated or revisited
constantly after starting evaluations, since some items of the evaluation plan could have
been only defined at a high level in the early phase of the project.

To support the designing of SoS evaluation, Table 3.2 can be used as a model to
define which quality attributes and metrics will be considered for each evaluation in which
iteration. In addition, the acceptance criteria defined in last activity (Activity 2) can
be fractioned to obtain the target value in the final project iterations. In the example
presented in Table 3.2, Metric 1 (M1) used to measure Quality Sub Attribute 1.1 (QSA1.1)
is applied to Constituent System 1 (CS1) in the project interaction 1, 2, and N with
increasing acceptance criteria (50% in iteration 1, 85% in iteration 2, and 100% in iteration
N. Defining 100% as acceptance criteria in a project iteration means that all quality
requirement should be achieved in this phase). M2 (also used to measure QSA1.1) is
applied to both CS1 and CS2. However, CS2 is only considered from the iteration 2
onwards. On the other hand, M3 is considered only to CS2 in the iteration 1 and N.
Evaluation of SoS as an independent system is scheduled to the last project iteration,
considering the metric Mn used to measure the Quality Sub Attribute n.n (QSAn.n)

The main outputs from this activity, as well as the outputs from last two activities
(defined as SoS planning activities) will compose a document defined as SoS Evaluation
Plan. This document will be used as basis to all evaluations conducted in system level
(detailed in next section). Moreover, it can be constantly improved based on the feedback
obtained from the conduction of these evaluations. In general, the SoS Evaluation Plan

38

CHAPTER 3. SYSTEMS-OF-SYSTEMS QUALITY EVALUATION MODEL

Table 3.2: SoS evaluation plan example
Quality
Attribute.

Quality Sub
Attribute. Metric Iteration 1 Iteration 2 Iteration N

Const.
System

Accept.
Criteria

Const.
System

Accept.
Criteria

Const.
System

Accept.
Criteria

QA1 QSA1.1
M1 CS1 50% CS1 85% CS1 100%

M2 CS1 80% CS1 90% CS1 100%
- - CS2 75% CS2 100%

QA2 QSA2.1 M3 CS2 70% - - CS2 100%
...
QAn QSAn.n Mn - - - - SoS 100%

will contain information such as: a) SoS overview; b) information about the constituent
systems; c) SoS Evaluation purpose; d) SoS quality model, quality metrics, acceptance
criteria, and evaluation methods/tools; e) SoS evaluation design considering the project
iterations and all constituent systems; f) organisations involved in the evaluation, such
as an independent/external evaluation organisations, constituent systems organizations,
client organizations, together with their responsibilities; g) evaluation budget issues; h)
schedule for the evaluation milestones; i) evaluation context and environment to be con-
sidered; and j) required standards to be adopted in the evaluation.

3.5 Activity 4: Execution of the SoS Evaluation
The execution of the SoS evaluation is decomposed in a set of sub activities conducted in
the system level. These sub activities (4.1-Design of the Evaluation, 4.2-Execution of the
Evaluation, and 4.3-Conclusion of the Evaluation) are repeated for each system during
the project iterations. Since these activities are applied in a single system level, they can
be executed as suggested by ISO/IEC 25040; however, some consideration are necessary.

The design of each system evaluation needs to be conducted according to the SoS
Evaluation Plan, which defines which quality attributes, metrics, methods/tools, and
acceptance criteria must be considered in each expected evaluation, considering all the
foreseen iterations. In particular, the System Evaluation Plan needs to present, in a
detailed way, all evaluation activities, techniques, tools, and methods that will compose
the evaluation strategy specific for a given system. It is important to remember that
these evaluation strategies needs to be able to produce input data to application of each
metric defined in SoS Evaluation Plan and, consequently, enable the measurement of each
quality attribute. In the same way as defined to constituent systems, in the case of an
evaluation considers the SoS as an independent system, a System Evaluation Plan also
need to be produced detailing how exactly this evaluation will be conducted.

In summary, a System Evaluation Plan should contain information such as: a) SoS
overview; b) system considered in the evaluation; c) system evaluation purpose; d) qual-

39

CHAPTER 3. SYSTEMS-OF-SYSTEMS QUALITY EVALUATION MODEL

ity attributes, metrics, and acceptance criteria to be considered; e) evaluation strategy,
method and tools to be used; f) organizations or people to be involved in the evalua-
tion together with their responsibilities; g) evaluation context and environment to be
considered; and h) required standards to be adopted in the evaluation.

After executing the evaluation, in the Activity 4.3 - Conclude the evaluation, evalu-
ation results are compared with acceptance criteria defined in the SoS Evaluation Plan.
This enables to identify if the systems meet the quality requirements regarding the cur-
rent evaluation iteration. These results are reported into a System Evaluation Report.
In general, depending on how the evaluation report is intended to be used, it should in-
clude the following items: a) summary of System Evaluation Plan; b) evaluation results
from the measurements and analysis performed; c) quantitative analysis from comparison
between metric results and acceptance criteria; d) limitations, constraints, deficiencies,
or exclusions in an evaluation activity, including their impact on the use, configuration,
modification, decision taken, or general maintenance of the system over time; e) the eval-
uators and their qualifications; and f) other information necessary to be able to repeat or
reproduce the evaluation.

From the evaluation conduction experience and analysis of evaluation results, it is
possible to identify: (i) system deficiencies or evaluation limitations; (ii) need of any
additional evaluations; (iii) identification of new quality requirements or update of their
priority; and (iv) suitability of the evaluation strategies and methods used. This feedback
must be used to improve the SoS Evaluation Plan that will be the base to subsequent
constituent evaluations during next evaluation iterations.

3.6 Activity 5: Conclusion of the SoS Evaluation
In this activity, results of each system evaluation are put together to obtain the mea-
surement of the whole quality of SoS. This measurement can be done in the final of each
evaluation iteration as a way to control the evolution of SoS quality, through its gradual
measurement. Firstly, the quality of each constituent system is obtained through the
composition of the measurement result of each quality attribute. Considering that each
quality attribute has different priorities for each constituent system, the total quality
needs to consider different weights to each quality attribute and sub attributes.

After obtaining the total quality measurement of each constituent system, a similar
approach can be applied to obtain the quality of the SoS, considering different weights
for each constituent system that composes the SoS. This needs to be considered, as each
constituent system can have different priorities and importance in the achievement of the
SoS mission.

40

CHAPTER 3. SYSTEMS-OF-SYSTEMS QUALITY EVALUATION MODEL

To guide this quality aggregation an aggregation model to SoS quality evaluation was
defined based on that proposed by Quamoco quality model (Wagner et al., 2012). This
quality model proposes that in a hierarchical quality model, the measurement of whole
quality is calculated by the weighted sum of the measurements of all sub-factor. This
quality aggregation is successively conducted to next level of quality model until the total
product quality be obtained. According Wagner et al. (2012), the aggregation operator
defined as a weighted sum is an easily understandable and reliable aggregation approach.

Figure 3.3 presents the SoS quality aggregation model defining composition levels
needed to obtain the measure of the whole quality of SoS. Firstly, results from each met-
ric are aggregated to obtain the quantitative value that refers to the degree of compliance
to the corresponding quality attribute. This aggregation step is repeated for all qual-
ity measures of each constituent system. Finally, SoS quality is obtained through the
aggregation of quality measure of all its constituent systems.

Figure 3.3: SoS aggregation model

For example, consider a SoS with three constituent systems: CS1, CS2, and CS3 with
importance/priority defined as H, M, and L, respectively, by stakeholders regarding the
achievement of SoS mission. The weights (w) assigned to H is 3, M is 2, and L is 1.
Suppose that during the constituent systems evaluations, the quality (Qcs) obtained were
0.7 to CS1, 0.85 to CS2, and 0.60 to CS3. From this information, it is possible to calculate

41

CHAPTER 3. SYSTEMS-OF-SYSTEMS QUALITY EVALUATION MODEL

the SoS quality (QSoS) by the weighted sum using Equation 3.1.

Q(SoS) =
∑n

i=1(Qcsi∗Wcsi)
∑n

i=1(Wcsi)
(3.1)

After the calculus, it is obtained the Q(SoS) = 0.73 that represent the whole quality
of the SoS obtained from the aggregation of the quality of its constituent systems. It is
important to highlight that a similar approach is conducted in all phases defined in the
SoS quality aggregation model.

As suggested in Figure 3.3, although not mandatory, a weight could be assign to
each element in all aggregations levels established in aggregation model. This means, the
definition of weights, if possible, to metrics, quality sub attributes, quality attributes, and
finally, the weight of each constituent systems. In this context, it is very important to
take into account the experts opinion, considering different perspectives (e.g., managers,
developers, users), as it produces more trustable results and reflects more precisely the
common view of quality of the set of stakeholders (Villalba et al., 2010). These opinions
can be obtained, as in the example before, by collecting data with questionnaires using
the average values from a rating scale such as L - Low, M - Medium, and H - High, which
can be directly translated in weights.

As suggested by Wagner et al. (2012), another way to support the definition of weights
is to use the Rank-Order Centroid method (Barron and Barrett, 1996) to calculate the
weights of each factor automatically based on a relevance ranking between sibling quality
attributes using the Swing approach (Edwards and Barron, 1994). It is needed to rank the
set of quality attributes by stakeholders and experts to identify their relative importance.
Then, the weight of each quality attribute is calculated by Equation 3.2, considering n as
the number of factors (metrics/quality attributes/constituent systems) considered in the
rank, and i the position of the factor in the rank.

Wi = (1/n)
n

∑
j=i

(1/ j) (3.2)

Finally, it is important to remember that, in a SoS context, new behaviors and func-
tionalities emerge from the collaboration of constituent systems. As mentioned in Sec-
tions 3.2 and 3.3, it is needed to define quality attributes and/or metrics that will be
applied to the SoS level as an independent system. Therefore, two evaluation results of
SoS quality are produced, one obtained from the aggregation of the evaluation results of
all constituent systems, and other from evaluation of SoS as an independent system. This
makes it possible to identify problems in some quality attributes that only become evident
when constituents are working together. On the other hand, the composition result can

42

CHAPTER 3. SYSTEMS-OF-SYSTEMS QUALITY EVALUATION MODEL

help to identify a problem in a constituent quality that has highly impacted the whole
quality of SoS. In summary, both results are equally important and complementary.

3.7 Final Remarks
This chapter presented a quality evaluation model suitable to the SoS context. The
main goal of this model is to cover important evaluation activities, considering SoS char-
acteristics and challenges. For that, the SoS Evaluation Model was built considering
recommendations and guidelines provided in the main international standards addressed
to software quality. Most important software quality evaluation activities were reviewed
and restructured in both, constituent system and SoS levels. This allowed the under-
standing of the roles and responsibilities of an SoS evaluation team in the context of an
acknowledge SoS. In addition, it allows to understand how system level evaluation ac-
tivities can be distributed and controlled to a better measurement and management of
SoS quality through the evaluation of its constituent systems. In addition, guidelines and
recommendations were provided for all evaluation activities defined in this model to allow
a suitable conduction in SoS context.

In summary, the proposed model covers five evaluation activities, such as: (i) Activity
1 - Establishment of the SoS evaluation requirements; (ii) Activity 2 - Specification of the
SoS evaluation; (iii) Activity 3 - Design of the SoS evaluation; (iv) Activity 4 - Execution
of the SoS evaluation; and (v) Activity 5 - Conclusion of the SoS evaluation. During
the application of our model, four different documents are produced: (i) SoS Evaluation
Plan is built based on the output of all SoS evaluation planning activities and used as
basis to planning of all system evaluations. (ii) System Evaluation Plan is built based on
guidelines/requirements defined into SoS Evaluation Plan and used as basis to conduction
of a specific system evaluation. Finally, (iii) System Evaluation Report describes results
obtained during the constituent system evaluation, whereas (iv) SoS Evaluation Report
presents aggregated results of all constituent system evaluations to provide information
about the whole quality of SoS.

43

C

4
Case Study: Crisis and Emergency

Management Domain

This chapter presents the application of the SoS Evaluation Model described in Chap-
ter 3 in the context of RESCUER project1. Our experience regarding the planning,
execution, and conclusion of evaluations conducted in the crisis/emergency management
SoS developed in this project were previously and partially reported in the papers entitled
“Reporting an experience on the establishment of a quality model for Systems-of-System”
(Santos et al., 2015a) and “Evaluation of a Crowdsourcing System: An experience report”
(Santos et al., 2015b).

The rest of this chapter is organized as follows: Section 4.1 describes our application
context; Section 4.2 presents the establishment of the SoS evaluation requirements; Sec-
tion 4.3 describes the specification of the SoS evaluation; Section 4.4 presents the design
of the SoS evaluation; Section 4.5 describes the execution of the SoS evaluation; Sec-
tion 4.6 presents the conclusion of the SoS evaluation; and finally, Section 4.7 presents
final remarks on topics covered in this chapter.

1http://www.rescuer-project.org

44

http://www.rescuer-project.org

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

4.1 Application Context
The main challenge for an emergency command and control centre (C&CC) is to quickly
obtain contextual information to answer an emergency and ensure correct decisions. An
appropriate response is essential to attenuate occurrence of physical injuries as well as
negative outcome to the public image of the involved organizations. Decisions based on
incorrect or late information have a great potential to cause more damage (Villela et al.,
2013).

In parallel, the daily use of mobile devices, such as tablets and smartphones, provides
an enabling technology for building new software solutions. Exploring such devices as
a communication mechanism, the RESCUER research project proposes the development
of an interoperable computer-based solution to provide C&CC with real-time contextual
information related to the emergency situation in large-scale events and industrial areas/-
chemical parks. This solution relies on the collection, combination, and aggregation of
crowdsourcing information of these contexts (Villela et al., 2013).

Large-scale events are public events attended by a lot of people. Public events address
every interested visitor who intends to attend to the activities that are offered, for instance,
musical performance, sports, or other social activities. Chemical parks are industrial areas
in which, among other things, chemicals are stored and processed. In case of an incident in
these industrial areas, chemicals can harm employees, civilians in the affected community,
and the environment. In Brazil, chemical companies are usually placed in industrial parks.
These industrial parks have several companies that must be according to the Brazilian
laws for emergency management.

In summary, the RESCUER SoS comprises four main constituent systems (Villela et
al., 2013):

• Mobile Crowdsourcing Solution (MCS, also RESCUER application or app) imple-
ments suitable context-sensitive mechanisms for eyewitnesses and operational forces
carrying mobile devices to provide the C&CC with information about emergency
situations. This application takes in consideration the behavior of people under
stress situations as emergency situations that trigger very basic human instinctive
behavior, making people overwhelmed and confused. Users provide reports of inci-
dents with text, photos, and videos. Besides, the RESCUER application is able to
send relevant information automatically from device sensors without the necessity
of any user interaction, such as user location, direction, velocity, etc.;

• Data Analysis Solution (DAS) is composed by algorithms that process and filter
received data (e.g., image, text, and video) to extract relevant and consolidated

45

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

information. This solution is responsible for fusing similar data coming from differ-
ent eyewitnesses as well as analysing photos, videos, and text messages to extract
information, such as the type of incident, position and dimensions of the affected
area, people density, surrounding sources of further danger, evacuation routes, and
possible approach routes for the first responders;

• Emergency Response Toolkit (ERTK) provides the C&CC with updated and rel-
evant information, in an adequate format, to support decision-making during an
emergency. It applies a set of solutions to manage the analyzed data coming from
DAS and presents them in a real time dashboard, using adequate visualization
means; and

• Communication Infrastructure (COM) supports the information flow between stake-
holders (i.e., eyewitness, workforces, supporting forces) even when traditional com-
munication infrastructure (i.e., WiFi, 3G, 4G, etc.) is overloaded, by establishing
an ad hoc network communication to propagate data between users phones and the
C&CC.

It is important to highlight that all these constituent systems are completely dis-
tributed, as they are developed and maintained by different organizations from four dif-
ferent countries (namely Germany, Spain, Brazil, and Austria), with their own stake-
holders, development teams, processes, and resources. The solution that emerged from
integration of these constituent systems is considered a SoS, since it can be perceived the
SoS characteristics.

These constituent systems are part of an integrated solution entitled RESCUER SoS,
which gathers crowdsourcing information from thousands of MCS users, providing rele-
vant information through DAS to the C&CC. Due to criticality of RESCUER SoS, the
COM helps to ensure the availability of whole SoS. RESCUER SoS can be considered an
acknowledged SoS, since there are recognized goals, a management team, own resources,
and at the same time, the constituent systems retain their managerial and operational
independence. Figure 4.1 shows an overview of RESCUER SoS and its constituent sys-
tems.

An important characteristic of this SoS is also its evolutionary and adaptive develop-
ment, where structures, functions, and purposes are added, removed, and modified ac-
cording to emerging needs. To manage expected changes in its requirements, RESCUER
project adopted an iterative development process, in which each subsequent iteration
builds on and improves results of the previous one. The overall strategy divided the pro-
cess in three iterations. Basically, iterations were defined according to the integration of
functionality (basic functions first, more complex functions later). This facilitated quality

46

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

Figure 4.1: RESCUER SoS overview (Villela et al., 2013)

management, since it allows the quality evaluation of first results, and gradual specifica-
tion and maturation of the requirements of RESCUER SoS. Therefore, RESCUER SoS
evaluations were also divided in three iterations, conducted in the final of each project
iteration.

4.2 Activity 1: Establishment of the SoS Evaluation Re-
quirements

As early explained, the main output of this activity is the quality model related to the SoS
to be evaluated. This quality model was initially based on quality attributes defined in
ISO/IEC 25010. To determine which quality attributes and sub attributes were relevant
to the RESCUER SoS, all RESCUER non-functional requirements as well as the project
goals and scope were carefully identified and analyzed from available documentation.
This analysis allowed to translate each non-functional requirement into ISO/IEC 25010
quality attributes, taking into account the product quality and quality in use models. To
support this activity, a survey2 with requirement teams, developers, task leaders, and
project coordinators was performed to assure that all selected quality attributes were ap-

2A model of the questionnaire used in this survey can be found in: https://goo.gl/Zi3ulI

47

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

propriate and relevant regarding RESCUER SoS requirements. Additionally, suggestions
of other quality attributes that could be considered in the quality model were obtained.
After questionnaires were answered, a meeting was performed with stakeholders to discuss
results and, consequently, to obtain consensus about elements that would compose the
quality model.

The involvement of stakeholders was very important, since the requirements about
RESCUER SoS were still being detailed in current phase of the project. Therefore, some
quality attributes could still not be directly translated from RESCUER requirements.
Moreover, this strategy allowed to obtain a consensus about all elements that composed
the quality model, besides to assure that main decisions about the quality model were
coherent with system requirements and project goals.

To support the evaluation of specific SoS quality requirements that only become evi-
dent when constituent systems were working together, some of identified quality attributes
were addressed to RESCUER SoS as an independent system. Besides that, it is impor-
tant to highlight that, not all quality attributes and sub attributes were relevant for all
constituent systems and as well as the SoS. Depending on use purpose of the quality
model (system specification or evaluation), and evaluation subject, a different subset of
attributes/sub attributes could be chosen accordingly to specific goals and objectives. In
addition, as RESCUER was an iterative research project, its requirements were constantly
modified, and hence, the quality model also was constantly adapted. Therefore, quality
attributes that were not considered in initial project iteration were added in following
project iterations when needed.

Figure 4.2 presents quality attributes and sub attributes that composed this quality
model. In addition, on the right side of figure, it is specified the set of constituent
systems that each quality sub attribute was related, and the respective importance that
these quality sub attributes had in each evaluation subject. The importance of each
quality attribute was defined as H - High, M - Medium, and L - Low. H means that a
high rigor should be applied in the definition of evaluations strategies to obtain highly
reliable results, and also, a high acceptance criteria should be applied to decide whether
the evaluation results were satisfactory or not. On the other hand, L means that a low
rigor would be applied in the definition of evaluation strategies and acceptance criteria
considered. In summary, this link among quality attributes, priority, and constituent
systems was very important in this SoS context, since the priority, way to lead, and cost
to evaluate the quality attributes were different to each constituent system.

48

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

Figure 4.2: RESCUER quality model

49

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

4.3 Activity 2: Specification of the SoS Evaluation
The main output of this activity is the set of quality metrics that will be used to measure
all quality attributes as well as their corresponding acceptance criteria, and suggestions of
methods/techniques/tools more suitable to obtain information inputs to quality metrics
application. When applying a quality metric, it is possible to obtain a quantitative value
that characterizes the degree of compliance of a software to the corresponding quality
attribute. For each quality sub attribute defined in the quality model, a set of appropriated
metrics was established. These metrics were selected and adapted from ISO/IEC 9126-2 -
External Metrics and ISO/IEC 9126-4 - Quality In Use Metrics. External metrics usually
measure the quality of a software product by measuring the behavior of system, during
testing stages or system operation (ISO/IEC 9126-2, 2003). On the order hand, quality
in use metrics are applied in a realistic system environment to verify if a product meets
the needs of specified users to achieve their goals (ISO/IEC 9126-4, 2003).

Table 4.1 and Table 4.2 present a total of 23 metrics that we established in our quality
model. For example, metrics UL1 and UL2 were used to measure the learnability of
MCS, a key quality attribute, since no training material should be necessary for the user
to understand and interact with the app during an emergency incident, even when users
are under high stress situations. Therefore, these metrics are important to identify the
influence of demonstration or tutorial in the effectiveness of users and, consequently, to
measure the level of learnability of MCS. On the order hand, PT1 was defined to verify
the performance in a SoS level of RESCUER SoS, considering all constituent systems
working together. This metric measures the average time that a report sent by MCS user
takes to be analyzed by DAS and showed to C&CC by ERTK constituent system. This
time needs to be carefully controlled for that decision making activities and the suitability
of contextual information not be affected.

Table 4.1: RESCUER product quality metric
Quality
At-
tributes

Quality
Sub At-
tributes

Metric Purpose of the
metric

Method of application Artefact

Functional
Suitability

Functional
Complete-
ness

FF1 How complete is the
system from the user
point of view?

Count the number of user that
think the system complete and
compare with the total number of
users in the evaluation.

Conduct user
test and inter-
view user with
questionnaires.

Functional
Appropri-
ateness

FF2 How adequate are the
evaluated functions of
the user point of
view?

Count the number of functions in
which problems was detected in
the evaluation and compare with
the number of evaluated function.

Conduct user
test and inter-
view user with
questionnaires.

continued on next page ...

50

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

Quality
At-
tributes

Quality
Sub At-
tributes

Metric Purpose of the
metric

Method of application Artefact

Performance
Efficiency

Resource
Utilization

PR1 How adequate is the
battery consump-
tion?

Measure the battery consumption
for a specific period of time and
compare with the acceptable bat-
tery consumption for the same pe-
riod of time.

The battery sta-
tus before and af-
ter the evaluation

PR2 How adequate is the
processor consump-
tion?

Measure the processor consump-
tion for a specific period of time
and compare with the acceptable
processor consumption.

The processor sta-
tus before and af-
ter the evaluation

PR3 How adequate is the
memory consump-
tion?

Measure the memory consump-
tion for a specific period of time
and compare with the acceptable
memory consumption.

The memory sta-
tus before and af-
ter the evaluation

Capacity PC1 What is the rate of
incident reports that
system can handle
without problems?

Send the expected load of incident
reports and measure the rate that
the system can handle.

Load Test
(Apache JMe-
ter)

Time Be-
haviour

PT1 What is the average
time that a report
sent from MCS take
to be presented by
ERTK?

Simulate an expected load of
users, and measure the average
time to reports be presented by
ERTK.

Load Test
(Apache JMe-
ter)

Usability

Operability
UO1 How many steps the

user need for perform
a specific task?

Count the number of steps the
user need for perform a specific
task and compare with the min-
imal number of needed interac-
tions

Conduct user test
and observe user
behaviour

UO2 What proportion of
user think the system
easy to use and navi-
gate?

Count the number of user that
think the system is easy to use and
compare with the total number of
users in the evaluation

Conduct user test
and interview user
with questionnaire

Appropriateness
Recognis-
ability

UA1 What proportion of
the product functions
will the user be able
to understand cor-
rectly?

Count the number of user inter-
face functions that are easily un-
derstood by the user and com-
pare with the number of functions
available for user

Conduct user test
and interview user
with question-
naires or observe
user behaviour.

User in-
terface
aesthetics

UU1 How attractive is the
interface to the user?

Measure the score assigned by
users to defined criteria in the ap-
plied questionnaire

AttrakDiff quest.
to assess the at-
tractiveness of the
interface to users
after experience of
usage

Learnability

UL1 What proportion of
user can operate suc-
cessfully a function
without a demonstra-
tion or tutorial?

Count the number of users that
adequately operated the func-
tions without a demonstration
and compare with the total num-
ber of users in the evaluation who
did not have a demonstration or
tutorial

Conduct user test
and interview user
with question-
naires or observe
user behaviour.

continued on next page ...

51

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

Quality
At-
tributes

Quality
Sub At-
tributes

Metric Purpose of the
metric

Method of application Artefact

UL2 What proportion of
user can operate suc-
cessfully a function
after a demonstration
or tutorial?

Count the number of users that
adequately operated the functions
after the demonstration and com-
pare with the total number of
users in the evaluation who had
a demonstration or tutorial.

Conduct user test
and interview user
with question-
naires or observe
user behaviour.

UL3 What proportion of
user can learn to use
the functions with an
acceptable number of
attempts?

Count the number of users that
can learn to use the functions cor-
rectly with an acceptable number
of attempts and compare with the
total number of users in evalua-
tion

Conduct user test
and observe user
behaviour.

UL4 How frequently does
an user ask for ex-
planation to learn to
operate adequately a
function.

Count the number of users that
ask for explanation and compare
with the number of users that use
the app without further explana-
tion

Conduct user test
and observe user
behaviour.

Reliability Availability RA1 How available is the
system for use during
the specified period of
time?

Test system in production for a
specified period of time perform-
ing all user operations. Measure
the time that the system is un-
available.

Conduct system
test of the Inte-
grated Solution
(Apache Jmeter)

Portability Installability
and Adapt-
ability

PI1 Can users success-
fully install the soft-
ware in the operation
environment?

Count number of installations
successfully performed and com-
pare with the number of attempts.
A successfully installation means
that the system was installed cor-
rectly and that all functions are
working as expected or with mi-
nor problems.

Conduct instal-
lation and func-
tional test using a
representative set
of mobile devices

Table 4.2: RESCUER quality in use metrics
Quality
At-
tributes

Quality
Sub At-
tributes

Metric Purpose of the
metric

Method of application Artefact

Effectiveness EF1 What proportion of
the tasks are ade-
quately completed by
users?

Count total number of tasks ad-
equately completed by users and
compare with total number of
tasks performed by users

Conduct user test

Efficiency EF2 How long does it take
to complete a task?

Count the number of users that
think fast to perform a specific
task a task

Conduct user test
and interview user
with questionnaire

Freedom from Risk FR1 What is the incidence
of hazard to people
affected by use of the
system?

Count number of people that feel
to run further risks due to the use
of the app and compare with the
total number of people that used
the app

Usage statistics

continued on next page ...

52

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

Quality
At-
tributes

Quality
Sub At-
tributes

Metric Purpose of the
metric

Method of application Artefact

Satisfaction
Usefulness SU1 How useful is the sys-

tem for the user?
Measure the score assigned by
users to usefulness criteria defined
in the applied questionnaire

ISO Quest. Us-
ability 9241-10 or
Atrakdiff tool [5]

Trust ST1 How Trust is the sys-
tem to the user?

Measure the score assigned by
users to trust criteria defined in
the applied questionnaire

ISO Questionnaire
Usability 9241-10
or Atrakdiff tool
[5]

Context
Coverage

Context
Complete-
ness

CC1 How the system can
be used with effec-
tiveness, efficiency,
freedom from risk,
and satisfaction in all
the specified contexts
of use?

Compare the results of the Qual-
ity in Use metrics in different con-
text of use

Evaluation report
of the qual-
ity attributes:
Effectiveness, Ef-
ficiency, Freedom
from Risk, and
Satisfaction

For each metric, acceptance criteria was defined used to decide whether the metric
results were satisfactory or not, considering expected result in the final of project. These
criteria were defined through detailed analysis of RESCUER quality requirements and
refined by requirement team, task leaders, and project coordinators. Some of these accep-
tance criteria are shown in the next section together with the design of RESCUER SoS
evaluation.

In addition, it is very important to highlight that specific input data is needed for
an adequate application of these metrics. Input data can be obtained by using question-
naires, checklists, experiments, observations, simulations, etc. For each metric, methods
of application, evaluation strategies, and sources of data that could be used in the mea-
surement were established. This information was properly detailed in System Evaluation
Plans created to guide evaluations of constituent systems and SoS as independent system.

4.4 Activity 3: Design of the SoS Evaluation
The design of RESCEUR SoS evaluation was developed to guide the evaluation of all
constituent systems and SoS, during three iterations of the project. It also composes
the acceptance criteria defined in last activity to better manage and control the quality
evolution of the RESCUER SoS. This also allowed us to identify and, therefore, react in
a straightforward manner, to problems that could influence the overall quality of RES-
CUER SoS. These acceptance criteria were defined considering an increased level of rigor,
since metric results should improve in the course of the iterations to achieve the quality
requirements expected to the final of the project.

53

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

Table 4.33 presents the design of SoS evaluation for the metrics UL1, UL2, and PT1,
regarding the three project iterations, besides the increasing level of rigor for each accep-
tance criteria. As the application of metric PT1 in RESCUER SoS is dependent of all
constituent systems working in integrated way, it was schedule to be applied to SoS only
in the third project iteration.

Table 4.3: RESCUER evaluation design
Quality
Attribute

Quality Sub
Attribute Metric First Iteration Second Iteration Third Iteration

System Acceptance Criteria System Acceptance Criteria System Acceptance Criteria

Usability Learnability
UL1 MCS

60% of the users
should adequately
use the app without
demonstration

MCS

65% of the users
should adequately
use the app without
demonstration

MCS

70% of the users
should adequately
use the app without
demonstration

UL2 MCS

70% of the users
should adequately
use the app with
demonstration

MCS

75% of the users
should adequately
use the app with
demonstration

MCS

80% of the users
should adequately
use the app with
demonstration

ERTK

50% of the users
should adequately
use the app with
demonstration

ERTK

75% of the users
should adequately
use the app with
demonstration

Performance
Efficiency Time Behavior PT1 SoS

The reports must
not spend more
than 3 min to be
showed in ERTK
System

All information produced until that moment were put in a document called SoS Evalu-
ation Plan, mainly containing the SoS evaluation goals, SoS quality model, set of metrics,
acceptance criteria, and SoS evaluation design. In general, this document was used as
base to all expected evaluations during RESCUER project and, therefore, it was con-
stantly adapted and detailed to better support the expected evaluations, mainly when
the evaluation context became more clear for the evaluation team.

4.5 Activity 4: Execution of the SoS Evaluation
This section presents the execution of evaluation of MCS conducted in first project it-
eration, ERTK conducted in second project iteration, and RESCUER SoS conducted in
third project iteration, considering the SoS Evaluation Plan previously established. The
main idea is to present part of our experience evaluating this kind of systems and show
evidences of the utility and applicability of the proposed SoS evaluation model in a real
evaluation context. On the order hand, in Section 4.6 - Conclusion of the SoS Evaluation,
results of all evaluation conducted in the context of RESCUER project are considered.

Therefore, it is important to point out exactly our participation in the planning,
conduction, and report of these evaluations. During the RESCUER project, we partici-
pated actively on the planning, execution, and report of MCS evaluation and RESCUER
SoS as a independent system. In very less intensity, we participated on the planning

3The full version of this table can be found in: https://goo.gl/F6qQ1K

54

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

of ERTK evaluation, as it was lead by others constituent organizations. However, all
evaluations conducted during the RESCUER project used as basis the SoS Evaluation
Plan established in the context of this dissertation. Details of each evaluation are de-
scribed in internal project deliverables. In particular, in this chapter, these evaluations
are presented in a summarized way to show the applicability of the SoS Evaluation Model
proposed in this Master’s project. Several others evaluations were conducted during this
project, as defined in the SoS Evaluation Plan. In total, the RESCUER SoS and its
constituent systems were evaluated 20 times, in different countries, context, and using
different evaluation strategies. Section 4.6 presents an overview of all these evaluations.

Following the SoS Evaluation Model, each evaluation presented here is divided in three
sub activities: (i) 4.1 Design of the System Evaluation; (ii) 4.2 Execution of the System
Evaluation; and (iii) 4.3 Conclusion of the System Evaluation.

4.5.1 Evaluation of Mobile Crowdsourcing Solution
MCS is one of the main systems that composes the RESCUER SoS. It implements suit-
able context-sensitive mechanisms for eyewitnesses and operational forces carrying mobile
devices to provide C&CC with information about emergency situations. Emergency sit-
uations trigger very basic human instinctive behavior, making people overwhelmed and
confused. Therefore, it is important to deeply understand how these situations affect
human behavior and how this can impact the MCS utilization.

This evaluation aimed to assess quality attributes, specifically: usability (user interface
aesthetics, and learnability); satisfaction (usefulness, and trust); and effectiveness. These
quality attributes were established to MCS considering the first project iteration. For each
quality attribute, a set of corresponding metrics was pickup to measure the presence of
such quality attributes on the MCS application. A summary of quality metrics considered
in this evaluation are presented in Table 4.4. Through this evaluation, it was possible
to verify if that current version of system achieved its quality requirements, and which
improvements should be implemented in next system version.

Before starting to detail the design, execution, and conclusion of this evaluation, some
important information about this constituent system is provided in next section.

4.5.1.1 Mobile Crowdsourcing Solution

The MCS supports communication of eyewitnesses and official first responders (e.g., po-
lice, fire fighter, etc.) with the C&CC. Eyewitnesses and first responders are equipped
with MCS for the following purposes (Villela et al., 2013):

55

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

Table 4.4: MCS quality metrics
Quality
Attributes

Quality Sub
Attributes Metric Purpose of the metric Method of application

Usability

User interface
aesthetics UU1 How attractive is the

interface to the user?
Measure the score assigned by users to defined
criteria in the applied questionnaire.

Learnability UL1

What proportion of user
can operate successfully
a function without a
demonstration or tutorial?

Count the number of users that adequately
operated the functions without a demonstration
and compare with the total number of users in
the evaluation who did not have a demonstration
or tutorial.

UL2

What proportion of user
can operate successfully
a function after a
demonstration or tutorial?

Count the number of users that adequately
operated the functions after the demonstration
and compare with the total number of users in the
evaluation who had a demonstration or tutorial.

Effectiveness EF1
What proportion of the
tasks are adequately
completed by users?

Count total number of tasks adequately completed
by users and compare with total number of tasks
performed by users.

Satisfaction Usefulness SU1 How useful is the system
for the user?

Measure the score assigned by users to usefulness
criteria defined in the applied questionnaire.

Trust ST1 How Trust is the system
to the user?

Measure the score assigned by users to trust
criteria defined in the applied questionnaire

• Eyewitnesses use MCS on their mobile devices to provide multimedia information
about an incident that has occurred. The goal is to benefit as much as possible from
information that can be provided by mobile devices without any explicit action of
their users, but taking into consideration the user’s privacy; and

• First responders focus on rescuing victims, providing medical care, and dealing with
hazards, so their profile for iteration with the command centre is very similar to the
eyewitnesses’ profile. They mainly use mobile devices, such as smart phones and
wearable devices, equipped with MCS to keep C&CC informed about the evolution
of the situation.

Based on that, two types of information can be gathered from people carrying mobile
devices in the place of an emergency situation: (i) information that can be extracted from
mobile devices without user interaction with those devices, e.g., GPS position, movement
speed, movement trails, and number of devices at a specific location; and (ii) information
provided by users through an explicit interaction with their mobile device, e.g., videos of
the incident, text message with the incident description, and photos of damages.

Figure 4.3 presents the user interface of MCS, which was used in this evaluation. In
short, users start the report of an incident by notifying the C&CC. Users can select the
incident type, such as explosion, fire, human crush, among others (on the first screen).
By pressing one of the options, the reporting process is immediately triggered and sensor
based information is sent to the server. After this, the user can continue the interaction
and send a standard report or call back the notification, in the case of a false alarm.
In a standard report (on the second screen), the user is confronted with his/her own
position (automatically detected) represented in terms of a pin displayed on the map and
the incident position, which can be redefined by holding and dragging the point of the

56

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

incident on the map. In addition, this screen offers the possibility of specifying the severity
of the incident, if there are injured persons, and possibility of taking photos/videos of the
incident. By navigating in the section “Describe the fire”, the user get a new screen (on
the third screen) with several attributes that are relevant for the incident classification.

Figure 4.3: MCS user interface (RESCUER, 2015)

4.5.1.2 Activity 4.1: Design of the System Evaluation

To evaluate the MCS, a System Evaluation Plan was prepared. This plan aims to define
strategies, guidelines, artifacts, scenarios, and participants that are considered to obtain
information for the quality assessment. In short, to obtain the needed data to assessment
of set of quality attributes defined to this evaluation, two complementary strategies were
considered: (i) evaluation of MCS in use; and (ii) interviewee opinion and characterization
through a survey. These strategies are described in more detail bellow.

(i) Evaluation of MCS in Use

In this strategy, the evaluation was performed considering the use of MCS by po-
tential eyewitnesses in the scenarios of large events and industrial parks (these scenarios
will be detailed in Section 4.5.1.3). In summary, potential users were asked to perform
a predefined set of tasks in the context of an emergency situation such as a fire in a

57

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

stadium. In the meanwhile, an evaluation team guided the tasks execution and observed
the participants behaviour. The tasks asked for participants to perform were:

• T1. Report that you see an incident;

• T2. Inform that the incident is in the other side of yours;

• T3. Inform that you see injured people;

• T4. Describe the properties of the incident;

• T5. Inform the severity of the incident; and

• T6. Take a photo of the incident.

Each evaluation team was composed by two people, one moderator, and one observer,
each one with the following responsibilities: Moderator was responsible for addressing
participants, presenting the application and an emergency scenario, supporting partici-
pants during the test, and applying the survey in the final of the evaluation; Observer
was responsible to observe if the users performed each task in an expected way filling up
the observation sheet and collecting evaluation cards used in the survey. In addition, in
each evaluation, one person was responsible for supporting and supervising the activities
performed by evaluation teams.

For each task set, users were randomly divided in two groups: (i) users that performed
the tasks without previous demonstration of MCS; and (ii) users that performed the tasks
after demonstration. This division in groups was very important, as it allowed us to
evaluate the learnability of MCS and to identify which aspects and characteristics of the
application can influence its usability. It was expected that the difference between the
results for these groups would be minimal, what would indicate that the application is
usable enough for the users to complete all tasks without difficulties, doubts or questions
even in an emergency situation.

(ii) MCS Survey

After using the application, users were asked to answer questions in a survey to provide
their opinion about the usability of the application. They also asked questions regarding
general acceptance of the application and their personal characteristics.

The questionnaire applied to obtain feedback from users, regarding the usability of
the application was defined based on the AttrakDiff questionnaire (Väätäjä et al., 2009).
This is an established evaluation tool that addresses evaluations of user experience and
has already been used for evaluating mobile systems (Väätäjä et al., 2009). As it can
be seen in Figure 4.4, this questionnaire consists of pairs of contrasting attributes that

58

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

may be applied to the application, such as Simple and Complicated, Ugly and Attractive,
Confusing and Clearly structured, among others. In this questionnaire, squares between
attributes represent gradations between the opposites. The user can express his/her
agreement with the attributes by ticking the square that most closely reflects his/her
impression.

Figure 4.4: AttrakDiff based questionnaire (RESCUER, 2015)

To identify the acceptance of the application, following questions were used in the
questionnaire: (i) Would you use this application to help workforces if an emergency
situation like this occurs during a large event? (ii) Would you use this application to safe
yourself if an emergency situation like this occurs during a large event? In addition, users
were asked to answer some personal information, such as (i) Gender; (ii) Age; (iii) If they
own a smartphone; and (iv) If they have experience with emergency situation. Through
this questionnaire, it was also possible to obtain specific recommendation of the users to
become the interface more intuitive as possible.

4.5.1.3 Activity 4.2: Execution of the System Evaluation

Considering the scenario of large events, this evaluation was performed in Salvador -
Brazil, São Carlos - Brazil, and Kaiserslautern - Germany. In particular, the evaluation
happened during FIFA World Cup 2014, which is one of the biggest sport events of the
world and was used as main scenario of MCS evaluation. In this scenario, 50 people par-
ticipated in the evaluation conducted in Kaiserslautern - Germany, 35 in Salvador - Brazil,

59

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

and 27 in São Carlos - Brazil, totalizing, 112 participants, 55 without demonstration and
57 with demonstration of MCS.

Considering the scenario of industrial parks, the evaluation was performed in Camaçari
Industrial Complex4, which is the largest integrated industrial complex in the Southern
Hemisphere. It is comprised of over 90 chemical and petrochemical companies, besides
other production facilities, such as cellulose, copper metallurgy, textiles, automobiles,
beverages, and services. In this scenario, a total of 60 people participated in the evaluation
conducted in Camaçari - Brazil, 28 without demonstration and 32 with demonstration.

4.5.1.4 Activity 4.3: Conclusion of the System Evaluation

Results presented in this section were grouped according to tasks performed by each
participant with and without demonstration of the application. For each task defined
in the planning of this evaluation, the number of users that performed it successfully
was measured. A successfully performed task means that no question was asked and
the participant behavior was as expected. In addition, the usability of application can
be derived from the slight difference between results of those who received and did not
receive a demonstration. This means that, as lower the influence of demonstration in
the comprehension of application and effectiveness of users, the level of usability and
learnability of the application will be greater.

Table 4.5 shows a summary of the successfully performed tasks regarding the kind of
demonstration and evaluation scenario. As it can be observed, tasks “T2. Inform that
the incident is in the other side of yours”, “T3. Inform that you see injured people”, and
“T6. Take a photo of the incident” had a lower level of effectiveness. Beside this, the
difference of effectiveness regarding users that received and not received demonstration
was very significant. This allow us to identify key points of application that impacted the
usability of the application in these tasks.

Table 4.5: Percentage of tasks successfully performed

Tasks Large scale events Industrial Park
With Demo Without Demo With Demo Without Demo

T1. Report that you see an incident 95% 80% 88% 82%
T2. Inform that the incident is in the other side of yours 59% 38% 86% 61%
T3. Inform that you see injured people 80% 67% 80% 76%
T4. Describe the properties of the incident 82% 72% 80% 60%
T5. Inform the severity of the incident 81% 58% 91% 89%
T6. Take a photo of the incident 62% 49% 72% 61%

The feedback of the participants regarding the usability of the application, as early
mentioned, was captured through the use of an AttrakDiff questionnaire. In general, the
feedback of the participants was positive. On average, the score obtained was 6 of a

4http://www.coficpolo.com.br

60

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

maximum of 7. In addition, the application was well received by the general public. More
than 85% of participants said they would use MCS to save themselves, which indicates
a clear acceptance. When asked if they would use the application to help operational
forces, more than 90% responded positively. With these results, it is possible to conclude
that most people would probably use this application in an emergency situation.

Using the information obtained from evaluation of MCS (in use and through the sur-
vey), the set of metrics presented in Table 4.4 was calculated. After this, results were
compared to acceptance criteria established for that current project iteration. Table 4.6
presents the MCS evaluation results regarding quality attributes and scenario where eval-
uation was performed (i.e., large scale events or industrial park). To better understanding
how the metric results were obtained, some clarifications are provided.

Table 4.6: MCS evaluation results
Quality

Attribute
Quality Sub

Attribute Metric Acceptance
criteria

large-Scale
Events

Industrial
Park

Total
Measure

Total
Result

Usability
User Interface Aesthetics UU1 0.7 0.84 0.87 0.86 yes

Learnability UL1 0.6 0.57 0.70 0.64 yes
UL2 0.7 0.73 0.80 0.77 yes

Effectiveness EF1 0.55 0.66 0.76 0.71 yes

Satisfaction Usefulness, SU1 0.6 0.94 0.97 0.96 yes
Trust ST1 0.6 0.87 0.93 0.90 yes

The metric UU1 was calculated from the participants’ feedback about the usability
of application. In particular, the average score for all aspects defined in AttrakDiff ques-
tionnaire was used as input for the measurement of this metric. In this sense, 0.7 is the
acceptance criteria defined for this metric; 0.84 and 0.87 are the average score obtained
in AttrakDiff questionnaire for large-scale events and industrial parks context, respec-
tively; 0.86 is the average of results obtained in both contexts; and finally, column “Total
Results” shows that the total measure was sufficient, when compared to the acceptance
criteria. Metrics UL1 and UL2 were calculated from the number of all tasks performed
by participants with and without demonstration of MCS, respectively. Metric EF1 was
calculated from the number of tasks successfully performed by participants. Metrics SU1
and ST1, regarding the user satisfaction, were measured considering answers obtained in
the application acceptance evaluation. Specifically, answers to question “Would you use
this application to safe yourself?” were used to measure the degree to which a user has
confidence in the application, whereas answers to question “Would you use this appli-
cation to help operational forces?” were used to measure the degree to usefulness of the
application perceived by users.

As presented in Table 4.6, all results were satisfactory considering our expectations
for that evaluation iteration. This means that, taking into consideration the average eval-
uation results, the metric values are higher than the values of the acceptance criteria.

61

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

Despite this, it was observed the existence of room for improvement to achieve a higher
quality for the next evaluation iteration and to make the application as intuitive as possi-
ble. All improvement points identified were carefully considered and analyzed to develop
a better version of MCS.

4.5.2 Evaluation of Emergence Response Toolkit
ERTK and DAS are two of four main constituents of RESCUER SoS. ERTK is the
interface between RESCUER SoS and dispatchers at C&CC; it provides visualization of
all data analysed by DAS in a user-friendly application. On the other hand, DAS provides
accurate information about the incident, as reported by the crowd, in the minimum
possible time. Therefore, this section describes results of ERTK evaluation that was
carried out in different C&CC in Brazil and Austria.

This evaluation aimed to assess quality attributes, more specifically, usability (user
interface aesthetics, learnability, and operability); satisfaction (usefulness); efficiency; and
effectiveness. These quality attributes were established by the SoS Evaluation Plan con-
sidering the second project iteration. For each quality attribute, a set of corresponding
metrics was pickup to measure their presence on ERTK. A summary of the quality met-
rics considered in this evaluation is presented in Table 4.7. Through this evaluation, it
was possible to verify if that version of ERTK meets its quality requirements, and which
improvements should be implemented in next ERTK version.

Table 4.7: ERTK quality metrics

Quality Attribute Quality Sub
Attribute Metric Purpose of the metric Method of application

Usability

Appropriateness
Recognisability UA1

What proportion of the product
functions will the user be able
to understand correctly?

Conduct user test and interview user
with questionnaires. Count the number
of user interface functions where purposes
are easily understood by the user and
compare with the number of functions
available for user.

Learnability UL3
What proportion of users have
clearly understood the purpose
of the available functions?

Count the number of users that have clearly
understood the purpose of the available
functions and compare with the total
number of users in the evaluation.

Operability UO2
What proportion of users think
the system easy to use and
navigate?

Count the number of users that think the
system easy to use and compare with the
total number of users in the evaluation.

Effectiveness EF1 What proportion of the tasks are
adequately completed by users?

Count total number of tasks adequately
completed by users and compare with total
number of tasks performed by user

Efficiency EF2 How long does it take to complete
a task? Measure the average time to perform a task

Satisfaction Usefulness SU1 How useful is the system for the
user?

Measure the score assigned by users to
usefulness criteria defined in the applied
questionnaire

Before to detail the design, execution, and conclusion of this evaluation, some impor-
tant information about this constituent system is provided in next section.

62

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

4.5.2.1 Emergence Response Toolkit

This section describes briefly ERTK and also the DAS, which is responsible to fed ERTK.
DAS provides a multimedia description of the emergency situation, as complete as pos-
sible. This constituent system receives text and multimedia data from MCS used by the
crowd, and then, the output of DAS is visualized and managed in the ERTK (RESCUER,
2016a).Three main data analysis are performed by DAS depending on the type of data
received (RESCUER, 2016a):

• Video Analysis: Video analysis component analyzes video and sensor data to provide
high level measures (e.g., crowd density, risk of congestion) about the crowd in the
scenario and detects fire and/or smoke in the scene;

• Image Analysis: Image analysis component focuses on detecting and characterizing
fire and/or smoke in every image the system receives. This component is composed
by a classifier based on colour detection methods and similarity-queries; and

• Text Analysis: Text analysis component extracts relevant emergency-related infor-
mation by the text data (e.g., SMS, incident reports). The main purpose of this
component is to extract most important parts of the information: what is happen-
ing, where, and who are involved.

The main goal of ERTK is to provide necessary and sufficient information at the right
time to C&CC staff, by means of an intuitive and concise user-interface that facilitates
the decision taking process when dealing with an emergency (RESCUER, 2016a). The
following list presents all concepts in which the features of ERTK are built on (RESCUER,
2016a):

• Emergency Map: Features that enable showing the location of the incidents, drawing
and text annotations, crowd density, and behaviour visualisation;

• Emergency Dashboard: Features that show statistics related to incidents, traffic,
and weather information;

• Emergency Browser: Features that allow to explore information about the emer-
gency situation; and

• Follow-up Interaction/Guidance Messages: Features to send messages based on lo-
cation and/or specific MCS user profiles.

Basically, an emergency in the ERTK is defined by reports sent from the MCS. ERTK
processes these reports and identifies the incidents reported. The incident browser (see

63

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

Figure 4.5) shows the list of incidents with key information obtained from reports of
each incident. The incident detail view (see Figure 4.6) contains several visualization
components that may be used to get more information about an incident, and also to see
details about each report from the incident selected. In map view (see Figure 4.7), the
location and movement of all MCS users inside of monitoring zone are presented, showing
an overview of emergency situation. Besides these features, ERTK is composed of several
others. For more details about all ERTK features, see (RESCUER, 2016a).

Figure 4.5: ERTK incident browser (RESCUER, 2016a)

Figure 4.6: ERTK incident detail view (RESCUER, 2016a)

64

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

Figure 4.7: ERTK map view (RESCUER, 2016a)

4.5.2.2 Activity 4.1: Design of the System Evaluation

To guide the evaluation of the ERTK, a System Evaluation Plan was prepared. This plan
aimed to define strategies, guidelines, artifacts, scenarios, and participants that would
be considered to obtain information for the quality assessment. To obtain needed data
to evaluate the set of quality attributes defined to this evaluation, the evaluation was
conducted with emergency management specialists.

In this evaluation, it was considered an emergency scenario where an explosion hap-
pened during a large-scale event and people in the crowd started to send reports through
the MCS. During this scenario, volunteers played the role of a C&CC staff and were asked
to perform a set of tasks, as presented bellow:

• T1. Identify the type of incident that happened and where it happened;

• T2. Find the screen with information about the incident;

• T3. List all available information about the incident;

• T4. Change the incident status to confirmed;

• T5. In case you identify, list changes in the information regarding the incident;

• T6. Identify the color of the smoke;

• T7. Again, in case you identify, list changes in the information regarding the inci-
dent; and

65

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

• T8. Colors indicate the user’s profile that sent an information (e.g., civilian, sup-
porting force). According to you feelings, associate a color to a profile.

During execution of these tasks, two members of evaluation team sent to ERTK prede-
termined incident reports at a specific time using the MCS, and considering the established
scenario. This made possible to compare the information provided in the incident reports
and that one identified by participant in each task. The participants were not trained;
however, during the tasks execution, they could ask to any support or even to skip a
task. All the time, participants behaviour was observed by a member of evaluation team
that was aware to the expected reactions for each task, and took notes about what the
participant did, besides, this member was also responsible to give to participants each
evaluation task in the right time.

After conducting the evaluation, participants were asked to answer an evaluation ques-
tionnaire and a characterization form. Basically, the evaluation questionnaire was com-
posed of a set of question, such as: (i) How easy it was to find the type of incident and its
location?; (ii) How useful do you consider the new incident alert?; (iii) In your opinion,
is it easy to navigate through the system?; (iv) How fast do you think you were in find-
ing information about the incident?; (v) How clear are the terminologies used from the
current incident status?; (vi) How easy it was to notice that a new information arrived
or that an old information changed?; (vii) Have you managed to understand the meaning
of the icons in the incident information screen?; (viii) In you opinion, how difficult it
was to understand the trust level of each information?; and (ix) How useful do you think
this system is to help a command and control center in obtaining information about an
incident, and aiding in decision making? The answers of all these questions were used as
input for the metrics and, consequently, the measurement of ERTK quality attributes.

4.5.2.3 Activity 4.2: Execution of the System Evaluation

This evaluation was conducted in two different places, firstly, at CEIC - Centro Inte-
grado de Comando5 (in English, Command Integrated Center) in Porto Alegre, Brazil.
It is the intelligence center of the city, guaranteeing security of citizen through the in-
tegration of video-monitoring, operational planning of large events, climate monitoring,
and emergency response. This evaluation was also performed during CIDEM - Congresso
Internacional de Desastres em Massa6 (in English, International Congress on Mass Disas-
ters) in Salvador, Brazil. This event was attended by members of local, regional, national,
and international organizations that act in disaster situations, such as civil defence, mu-
nicipal guard, firefighters, military police including the special operations police battalion

5http://www2.portoalegre.rs.gov.br/ceic/
6http://www.cidem2016.com.br/

66

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

(BOPE), civil police, technical police, federal police, army, navy, air force, interpol and
universities. This occurred from 10 to 12 June 2016 in both Hotel Fiesta and Arena Fonte
Nova, with the theme: “Safety for large events - A global warning”.

In both opportunities, emergency management specialists and potential ERTK users
were approached and asked to participate in this evaluation. For all participants, it was
provided an overview of RESCUER purpose and an explanation about the goals of the
evaluation, besides the role of the participant in the evaluation.

4.5.2.4 Activity 4.3: Conclusion the System Evaluation

In total, 15 volunteers participated in this evaluation, six from CIDEM and nine from
CEIC. In average, they had 13 years of experience in emergency management. 80% of
them had experience with web systems, and 53% of them had some experience with
emergency management systems.

About the execution of tasks, participants spend more time trying to accomplish the
task “T2 - Find the screen with information about the incident”. Besides that, this task
was skipped two times by participants during evaluation. Overall, participants did not
spend more than one minute to conclude each task, considering the time spend with some
discussion about participants feedback, and feeling in each task given.

As presented in Figure 4.8, evaluation results were positive, with most of participants
successfully performing all tasks. Besides that, participants with and without experience
in emergency systems finished the tasks in almost same time, which raises evidences about
the usability of ERTK.

Figure 4.8: ERTK questionnaire results

Using information obtained from the evaluation of ERTK, the set of metrics presented
in Table 4.7, defined for the measurement of quality attributes addressed to ERTK, was

67

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

calculated. About results obtained through the application of questionnaire, Table 4.8
summarizes the relation between questions used as source of data and quality attributes.
In the case of more than one question contributing to a quality attribute, the final measure
is the average of the results of each question. On the other hand, the effectiveness is
measured by the number of tasks successfully performed by the participants.

Table 4.8: Relation between questions and metrics
Question Quality Attribute Metric
Q1. How easy it was to find the type of incident
and its location? Usability (Appropriateness Recognisability) UA1

Q2. How useful do you consider the new incident
alert? Satisfaction (Usefulness) SU1

Q3. In your opinion, it is easy to navigate through
the system? Usability (Operability) UO2

Q4. How fast do you think you were at finding the
information about the incident? Efficiency EF2

Q5. How clear are the terminologies used from the
current incident status?

Usability (Appropriateness Recognisability,
Learnability) UA1, UL3

Q6. How easy it was to notice that a new information
arrived or that an old information changed? Usability (Appropriateness Recognisability) UA1

Q7. Have you managed to understand the meaning of
the icons in the incident information screen?

Usability (Appropriateness Recognisability,
Learnability) UL3, UA1

Q8. In you opinion, who difficult it was to understand
the trust level of each information?

Usability (Appropriateness Recognisability,
Learnability) UL3, UA1

Q9. How useful do you think this system is to help a
command and control center in obtaining information
about an incident, and aiding in decision making?

Satisfaction (Usefulness) SU1

After this, results were compared to acceptance criteria established in the SoS Evalu-
ation Plan. Table 4.9 presents results of quantitative evaluation of ERTK.

Table 4.9: ERTK evaluation results
Quality Attribute Quality Sub Attribute Metric Accept. Criteria Measurement Result

Usability
Appropriateness Recognisability UA1 0.8 0.94 Yes
Learnability UL3 0.8 0.94 Yes
Operability UO2 0.8 0.93 Yes

Effectiveness EF1 0.8 0.98 Yes
Efficiency EF2 0.8 0.87 Yes
Satisfaction Usefulness SU1 0.8 0.97 Yes

In short, all results were satisfactory considering our expectations for this project
iteration. This means that, taking into consideration the average evaluation results,
the metric values were higher than the values of acceptance criteria. Despite this, it
was observed the existence of room for improvement that was carefully considered and
analyzed to make the application as intuitive as possible.

68

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

4.5.3 Evaluation of RESCUER SoS as Independent System
Since the individual evaluation of each main RESCUER constituents is not able to guar-
antee the quality of whole system, the evaluation of RESCUER SoS as an independent
system must be conducted.

This evaluation aimed to assess the following quality attributes: performance efficiency
(resource utilization, capacity, and time behavior); reliability (availability); functional
suitability (completeness); usability (appropriateness recognisability); freedom from risk;
satisfaction (usefullness and trust). These quality attributes were established in the SoS
Evaluation Plan, considering the third project iteration. For each quality attribute, a set
of metrics was pickup to measure the presence of such quality attributes on the RESCUER
SoS. Table 4.10 presents a summary of quality attributes and metrics considered in this
evaluation.

Table 4.10: RESCUER SoS metrics

Quality Attribute Quality Sub
Attribute Metric Purpose of the metric Method of application

Performance
Efficiency

Resource
Utilization

PR2 How adequate is the processor
consumption?

Measure the processor consumption
for a specific period of time
and compare with the acceptable
processor consumption

PR3 How adequate is the memory
consumption?

Measure the memory consumption
for a specific period of time
and compare with the acceptable
memory consumption

Capacity PC1
What is the rate of incident
reports that system can
handle without problems?

Send the expected load of incident
reports and measure the rate that
the system can handle.

Time Behaviour PT1
What is the average time that
a report sent from MCS take
to be presented by ERT

Simulate an expected load of users,
and measure the average time to
reports be presented by ERT

Reliability Availability RA1
How available is the system
for use during the specified
period of time?

Test system in production for a
specified period of time performing
all user operations. Measure the
time that the system is unavailabe

Functional Suitability Completeness FF1 How complete is the system
from the user point of view?

Count the number of user that
think the system complete and
compare with the total number
of users in the evaluation.

Usability Appropriateness
Recognisability UA1

What proportion of the
product functions will the
user be able to understand
correctly?

Count the number of user interface
functions that are easily understood
by the user and compare with the
number of functions available for
user

Freedon from Risk FR1
What is the incidence of
hazard to people affected
by use of the system?

Count number of people that feel
to run further risks due to the use
of the app and compare with the
total number of people that used
the app

Satisfaction Usefulness SU1 How useful is the system
for the user?

Measure the score assigned by
users to usefulness criteria defined
in the applied questionnaire

Trust ST1 How Trust is the system
to the user?

Measure the score assigned by
users to usefulness criteria defined
in the applied questionnaire

69

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

4.5.3.1 Activity 4.1: Design of the System Evaluation

To guide this evaluation, a System Evaluation Plan was prepared. This plan aimed to
define strategies, guidelines, artifacts, scenarios, and participants to obtain information
for quality assessment. To obtain the needed data to application of the set of metrics, two
evaluation strategies were conducted: (i) load test experiment to measure performance
efficiency and reliability; and (ii) emergency simulation exercise to measure functional
suitability, usability, freedom from risk, and satisfaction. Details about the design of
these evaluation strategies are presented bellow.

Load Test Experiment

This load test experiment aimed to simulate a load of incident reports sent by eye-
witness in a large-scale emergency situation. This experiment was supported by tool
Apache Jmeter7. Apache Jmeter is an open source and a Java application, designed to
test functional behaviour and to measure system performance. The goal was to obtain,
in an efficient way, all input data to evaluate performance efficiency and reliability.

The load test planning intended to, simultaneously, simulate thousands of users of
MCS application sending incident reports, while RESCUER infrastructure was monitored.
Using Apache Jmeter, it was possible to analyze performance and to test the server
behavior under a high concurrent load.

The load test was planned considering a simulation of a fire incident, divided in three
phases with different load of reports. The total time of the incident was one hour, i.e.,
the idea was to simulate an incident that started and was combated in a period of one
hour, when no more reports were sent. During this period, C&CC members could use all
information provided by crowd to any needed decision making. The time and number of
reports that were sent in each incident phase are described below.

• 1st phase: 3,000 reports sent in 10 minutes

• 2nd phase: 3,000 reports sent in 20 minutes

• 3rd phase: 3,000 reports sent in 30 minutes

An application was developed by one of constituent organizations to creates a JSON
file with a set of 9000 reports describing a fire incident, and considering the following
distribution: 50% of reports with only text; 45% with images; and 5% with videos. This
JSON file is consumed by Jmeter that send the reports according the incident phases
described above. Results of this load test allowed the identification and correction of
potential bugs in the RESCUER SoS.

7http://jmeter.apache.org/

70

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

Emergency Simulation Exercise

A emergency simulation exercise was conducted in an still unopened tunnel near the
town of Lambach, close to Linz, Austria. The tunnel has been built by Caverion Group8,
and is 912m long. A diagram of the tunnel can be seen in Figure 4.9.

The incident simulated was a car accident in the tunnel, with three vehicles involved.
One of them was represented to be on fire, with smoke in the tunnel represented by cold
smoke. During the incident, 13 people were involved: one person trapped in one of the
vehicles, two people injured, but capable of walking, and 10 other people not injured and
able to walk. This simulation also included a number of participants from emergency re-
sponse entities, such as 30 firefighters, six polices, 10 rescue service members, besides more
20 people from tunnel administration and control centre personnel, road maintenance de-
pot staff, state authorities personnel, company employees, and public authorities. Most
of them had an active role in the emergency simulation exercise. The evaluation team
was composed of eight people divided in five groups, as presented in Table 4.11, which
describes the local, tasks to be performed, and number of participants for each evaluation
team group. In summary, two groups were inside the Lambach tunnel supporting partic-
ipants and sending incident reports when necessary. One person was responsible to take
pictures and videos of all activities. Inside the C&CC, one person was monitoring the
ERTK and one was operating the RESCUER news, which is a module of the system that
supports the public communication of the incident status. In total, 86 people participated
in this emergency simulation.

8http://www.caverion.com/

71

C
H
A
PT

ER
4.

C
A
SE

ST
U
D
Y
:C

R
ISIS

A
N
D

EM
ERG

EN
C
Y

M
A
N
A
G
EM

EN
T

D
O
M
A
INFigure 4.9: Diagram of the Lambach tunnel (RESCUER, 2016b)

72

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

Table 4.11: Evaluation team distribution (RESCUER, 2016b)
Team Local Tasks Participants

Team 1 Tunnel Support to participants, sending reports from
Civilian or Supporting force profiles when necessary. 3 people

Team 2 Tunnel Support to participants, sending reports from
Workforce profiles when necessary. 2 people

Reporter Tunnel Record pictures and videos of the activities 1 person
Coordinator C&CC Linz Monitor the system 1 person
News person C&CC Linz Operate RESCUER News 1 person

In summary, this simulation exercise was divided in five phases:

• Preparation: During this phase, preparation activities were performed. This in-
cluded contacting people who would participate in the evaluation, providing them
with the necessary materials for the evaluation. Other activities included the techni-
cal deployment, setup and operation of the RESCUER system components, checking
of communications and data coverage in the evaluation scenario, etc.;

• Opening: During this phase, the final preparation activities were carried out, in-
cluding checking whether users had all materials and MCS application installed, if
ERTK was functioning correctly, etc. Additionally, a script was rehearsed with all
participants and RESCUER evaluation team to guide the use of the application
through the evaluation;

• Simulation start: The incident started as scripted, with the three cars and the
trapped person surrounded by smoke. In this moment, people capable of walking
informed the emergency situation via both, the tunnel incident mechanisms and the
MCS. After that, they proceeded to the designated tunnel emergency rescue rooms;

• Emergency responses: Having been alerted, firefighter brigades arrived at the
tunnel and began the actions to control the fire. At the same time, the extractors of
the tunnel were activated at maximum power to quickly dissipate the smoke. The
smoke intensified several times during the exercise to emulate a worsening of the
conditions of the accident. When the fire was getting under control, the firefighters
proceeded to extract the trapped person from the car and moved her to a safe lo-
cation for first aids. The ambulance was at the entrance of the tunnel, waiting for
the fire brigades to grant them access to the tunnel and evacuate the injured peo-
ple. All the time, incident reports were sent using the MCS application, providing
additional information, photos of the incident, and incident status updates; and

• Emergency under control/finished: In this phase, the incident was considered
to be under control, and the ambulance was allowed to get to the accident site,

73

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

and evacuate the injured person. The corresponding incident updates were sent to
C&CC.

After all evaluation phase to be concluded, a feedback was asked to participants via a
questionnaire. This questionnaire was composed of eight questions: (i) Does RESCUER
provide its information in a timely manner to adequately support decision making?; (ii)
Can the use of RESCUER SoS reduce the use of human and material resources needed
to manage an emergency situation?; (iii) Do you trust in RESCUER SoS to receive infor-
mation from people in the incident place?; (iv) Do you trust that information presented
by RESCUER SoS represents the real situation in the incident place?; (v) Do you think
the use of RESCUER SoS in an emergency situation can expose people in the incident
place to additional risks?; (vi) Would you actually use RESCUER SoS for emergency
management?; (vii) Would you recommend the use of RESCUER SoS to other emergency
response entities or public authorities?; and (viii) Is there any other activity related to
emergency management that RESCUER should support?

The answers of all these questions were used as input for the metrics and, consequently,
the measurement of quality attributes considered in the evaluation of RESCUER SoS.

4.5.3.2 Activity 4.2: Execution of the System Evaluation

The load test experiment was conducted in September 09, 2016 from 00:34am to 01:34am.
The load of 9,000 reports was sent from Apache Jmeter to ERTK following the scenario
defined in the System Evaluation Plan. During the experiment, RESCUER SoS was
monitored regarding performance and reliability aspects.

The emergency simulation exercise was conducted in November 16, 2016 starting at
07:00pm as scripted. The evaluation team arrived in the place 4:00pm to all preparations.
At 9:00pm, all evaluation activities had been concluded and the questionnaire answered.

Results of both evaluations are presented in next section.

4.5.3.3 Activity 4.3: Conclusion of the System Evaluation

Load Test Experiment

During the load test, the system behaved in a stable way, with good and constant
response time observed when navigating through the ERTK screens and functions. How-
ever, ERTK stopped to show the received reports after about 2,000 reports had been
consumed, which happened about two hours after the load test had started. Checking
the ERTK console, it was possible to verify that the reports were still coming and being
processed by the ERTK. After 10 hours of experiment, about 4,500 reports (out of 9,000)
had been processed by ERTK. Therefore, the RESCUER SoS presented the capacity to

74

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

successfully support the consumption of 2,000 reports, which took two hours. However, it
is important to point out that the 2,000 reports were sent by JMeter about seven minutes
after the start of the experiment. This means that, in two hour of execution, the RES-
CUER SoS was able to successfully process only reports sent in the first seven minutes
of the simulated emergency situation. In others words, the capacity of the RESCUER
SoS is 0.28 (2000/7200s) reports/seconds instead to be 2,5 (9000/3600s) as expected in
average. Analysing these results, we consider that this capacity is not enough, as relevant
information coming from the crowd would not be processed and visualised in the ERTK,
which would impact the decision-making capacity of C&CC negatively.

Considering the information from the crowd must be available in the ERTK, the avail-
ability of RESCUER SoS was highly impacted due to ERTK problem reported abovemen-
tioned. However, the measurement of availability of RESCUER SoS can be realized in
two ways: (i) considering that the expected availability of the SoS is only one hour (i.e.,
60 minutes or the time taken to JMeter to send all reports), and (ii) considering that the
expected availability is the total of the experiment time (10 hours or 600 minutes), i.e.,
until all reports sent to ERTK are consumed. Bellow, we present results considering both
options:

Availability (1) = (Operation_time / Incident_time) * 100
= (60 min / 60 min) * 100
= 100%

Or
Availability (2) = (Operation_time/ Experiment_time) * 100

= (120 min9 / 600 min) * 100
= 20%

RESCUER SoS must be available during the whole emergency situation and it must
allow users to achieve their goals. Therefore, RESCUER SoS could be available during
the whole emergency situation for the majority of the incidents at large-scale events
and in industrial areas (two hour timeframe), but then the users would not be able to
achieve their goals, because the data in the ERTK does not properly represent the current
emergency state. For more complex and longer incidents, the availability of RESCUER
SoS is not currently satisfactory. However, it is expected that RESCUER SoS availability
has an improvement in its next version, since the problem reported (the main responsible
for the current availability results) already was identified.

After 10 hours of experiment, about 4,500 reports (out of 9,000) had been processed
by ERTK. Based on a simple forecast, ERTK would probably take about 20 hours to
process 9,000 reports. According the RESCUER requirements specification (RESCUER,

9Time the ERTK stopped to show the received reports

75

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

2016c), RESCUER SoS should take up to three minutes to process a report with data
analysis and one minute without analyzing data. This means that three minutes is the
maximum expected delay for a report be consumed. Therefore, the response time of
the current RESCUER SoS is still too far from ideal, as all reports should have already
been processed by ERTK after 1h:03min (time the last report was sent + maximum
expected delay) of experiment. In summary, the average time to process an incident
report during the experiment was about eight seconds (36000s/45000 reports) instead of
0.42s (3780s/9000 reports).

The computer used to support the ERTK had 4GB memory and Xeon 2.4 GHz proces-
sor, Dual-Core, and Windows server 2012 R2 64 bits. During the experiment, the average
percentage of the use of RAM and CPU were 15% and 1%, respectively. These results are
very good regarding the system resource utilization efficiency, once only a small quantity
of resources is requested by the RESCUER SoS currently.

In summary, analyzing results of load test experiment, we identified that some at-
tention needs to be taken to ensure that quality attributes, such as availability, response
time, and capacity, fulfill the RESCUER SoS requirements.

Emergency Simulation Exercise

About the emergency simulation exercise, the evaluation questionnaires of RESCUER
SoS were answered by a total of four people distributed in four profiles: technical employee,
rescue dog handler, rescue officer, and fireman. All of them were male and had experience
in emergency situations. In average, participants had 40 years old. The complete results
of the questionnaire can be seen in Table 4.12.

In summary, the most responders said the RESCUER SoS provides information in a
timely manner to support making decision. All participants said that trust in RESCUER
SoS to receive information from people in an incident place. However, it can be observed
that most of them had doubt about the risk exposure of the people and the capacity of
the SoS to reduce the use of resources in emergency situation, and if they would use or
recommend the RESCUER SoS for emergency response or public authorities.

The small number of responders may not be enough to draw conclusive observations on
the questions asked. However, they may hint on some feedback that could be necessary to
advance on the specification of RESCUER SoS in the future. Therefore, the goal here is to
make a brief assessment on the responses obtained during the evaluation. In this context,
also it would not make sense to do a quantitative analysis of these results. However, we
need to translate these feedbacks in quantitative values through the metrics application.
This is important to the complete application of the SoS Evaluation Model described in
Chapter 3, mainly regarding the application of the SoS aggregation defined in Section 3.6.

76

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

Table 4.12: RESCUER SoS questionnaire results

Question Technical
employee

Rescue
dog handler

Rescue
officer Fireman

Q1. Does RESCUER provide its information in a timely
manner to adequately support decision-making? Yes No Yes Yes

Q2. Can the use of RESCUER reduce the use of human
and material resources needed to manage an emergency
situation?

Maybe Maybe Certainly
Yes Maybe

Q3. Do you trust in RESCUER to receive information
from people at the incident place? Yes Yes Yes Yes

Q4. Do you trust that information presented by
RESCUER represents the real situation at the incident
place?

Maybe Yes Yes Maybe

Q5. Do you think the use of RESCUER in an emergency
situation can expose people at the incident place to
additional risks?

Maybe No Maybe Yes

Q6. Would you actually use RESCUER for emergency
management? Maybe Yes No Maybe

Q7. Would you recommend the use of RESCUER to
other emergency response entities or public
authorities?

Maybe Yes No Maybe

Q8. Is there any other activity related to emergency
management that RESCUER should support? Yes Yes Yes Yes

Therefore, a quantitative analysis was done from the questionnaires results, but they can
not be considered as conclusive results of respective quality attributes. In Table 4.13, it
is presented a summary of these quality attributes and their relation between questions
used as source of data. In the case of more than one question contributing to a quality
attribute, the final measure is the average of the results of each question.

After the conduction of both evaluation, results were compared to acceptance criteria
established in the SoS Evaluation Plan. Table 4.14 presents the RESCUER SoS evaluation
results of load test experiment (performance efficiency, and reliability) and emergency
simulation exercise (functional suitability, usability, freedom from risk, and satisfaction).
As it can be observed, all quality attributes evaluated during the emergency simulation
exercise had no sufficient results. However, as explained before, they are not conclusive.

About the load test results, attention needs to be payed to capacity and time Behav-
ior quality attributes, which were impacted by the ERTK problem previously reported.
However, most of the problems found during this evaluation already were identified and
some possible solutions proposed to be implemented in the next system version.

4.6 Activity 5: Conclusion of the SoS Evaluation
In this activity, firstly, results of each constituent system evaluation are put together to
obtain the measurement of the whole quality of SoS. This activity can be conducted in
the final of each project iteration as a way to better manage the quality of the SoS. In Sec-

77

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

Table 4.13: Relation between questions and metrics
Question Quality Attribute Metric
Q1. Does RESCUER provide its information in a timely
manner to adequately support decision-making? Efficiency EF2

Q2. Can the use of RESCUER reduce the use of human
and material resources needed to manage an emergency
situation?

Efficiency EF2

Q3. Do you trust in RESCUER to receive information
from people at the incident place? Trust, Usefulness ST1, SU1

Q4. Do you trust that information presented by
RESCUER represents the real situation at the incident
place?

Trust, Usefulness ST1, SU1

Q5. Do you think the use of RESCUER in an emergency
situation can expose people at the incident place to
additional risks?

Freedom from Risk FR1

Q6. Would you actually use RESCUER for emergency
management?

Usability (Appropriateness
Recognisability),
Usefulness, Trust

UA1, SU1,
ST1

Q7. Would you recommend the use of RESCUER to
other emergency response entities or public
authorities?

Usability (Appropriateness
Recognisability),
Usefulness, Trust

UA1, SU1,
ST1

Q8. Is there any other activity related to emergency
management that RESCUER should support?

Functional
Suitability (Completeness) FF1

Table 4.14: RESCUER SoS evaluation results

Quality Attribute Quality Sub
Attribute Metric Accept.

Criteria Measurement Results

Performance
Efficiency

Resource
Utilization

PR3 0.8 0.85 Yes
PR2 0.8 0.99 Yes

Capacity PC1 2.5 0.28 No
Time
Behavior PT1 0,42 8.0 No

Reliability Availability RA1 0.9 1.0 Yes
Functional
Suitability Completeness FF1 0.8 0.0 No

Usability Appropriateness
Recognisability UA1 0.8 0.25 No

Freedom from Risk FR1 0.8 0.5 No

Satisfaction Usefulness SU1 0.8 0.5 No
Trust ST1 0.8 0.25 No

tion 4.5, we reported the planning, conduction, and results of MCS evaluation conducted
in first project iteration, ERTK evaluation conducted in second project iteration, and
RESCUER SoS evaluation conducted in third project iteration. In this section, results of
all evaluation conducted in the context of RESCUER project are considered. Table 4.15
presents the list of all evaluations conducted during the RESCUER project with the coun-
try, place, number of participants, and evaluation strategy considered. These evaluations
took place in four different countries, Brazil, Germany, Spain, and Austria, using three

78

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

different evaluation strategies: emergency simulation exercise, evaluation survey, and load
test experiment.

Table 4.15: Evaluations conducted during RESCUER project
Project
Iteration

Constit.
System

Country Place Part. Evaluation Strat-
egy

First
Iteration

MCS Brazil
FIFA FAN Fest (Salvador) 35 Evaluation Survey
University of São Paulo (São Carlos) 27 Evaluation Survey
COFIC - Industrial Park (Camaçari) 50 Simulation Exercise

Germany Fritz Walter Stadium (Kaiserslautern) 60 Evaluation Survey

ERTK
Brazil CICC - Integrated Command and Con-

trol Centre (Salvador); Bahia’s Civil
Police; COFIC - Industrial Park (Ca-
maçari)

4 Evaluation Survey

Spain CISEM - Centro Integrado de Seguridad
y Emergencias (Madrid)

1 Evaluation Survey

Austria Fire Brigade Chemical Park (Linz); Aus-
trian Fire Brigade (Linz); Austrian Red
Cross (Linz)

6 Evaluation Survey

Second
Iteration

MCS Brazil CIDEMII - International Congress on
Mass Disasters (Salvador)

31 Evaluation Survey

COFIC - Industrial Park (Camaçari) 24 Simulation Exercise
Germany Fraunhofer IESE (Kaiserslautern) 22 Experience

ERTK Brazil CIDEMII - International Congress on
Mass Disasters (Salvador); CEIC - Inte-
grated Command Center (Porto Alegre)

15 Evaluation Survey

Third
Iteration

MCS Austria Lambach Tunnel (Linz), Stadion der
Stadt (Linz)

32 Simulation Exercise

ERTK Lambach Tunnel (Linz) 4 Simulation Exercise

SoS Austria Lambach Tunnel (Linz) 4 Simulation Exercise
Brazil Load Test (São Carlos) - Experience

In summary, emergency simulation exercises were used to simulate an incident in a
controlled way to provide a more realistic incident scenario as possible. Despite the need of
a bigger effort to plann and conduct this kind of strategy, it was very important to exercise
the whole system in an integrated way, besides to check the influence of the participant’s
stress that is expected in a real emergency situation. In the load test experiment no final
users were involved. The main goal was to simulate thousands of users of MCS application
sending incident reports, while the RESCUER SoS was monitored. Evaluation survey was
used as strategy to obtain opinion of final users and technical experts about key aspects of
the system. Using this strategy, participants were asked to use the system considering an
incident scenario, and their opinion catched through a questionnaire application, basically.

Despite constituent systems DAS and COM were integrated in the whole RESCUER
SoS, they were not formally evaluated during RESCUER project. Because this, Table 4.15
does not mention these constituent systems. However, this did not represent any loss for
the application of the SoS Evaluation Model, since that evaluation of two constituent
system and RESCUER SoS was enough to the complete application of this model and,

79

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

mainly, to the aggregation of results to obtain values representing the measurement of the
RESCUER SoS quality.

Table 4.16, Table 4.17, and Table 4.18 present the application of SoS aggregation
model in the three project iterations, respectively. In this model, four aggregation levels
are needed to obtain the measure of whole quality of RESCUER SoS. In first aggregation
level (represented by column “A1”), results from each metric were aggregated to obtain
the quantitative value, which refers to degree of compliance of constituent system to the
corresponding quality sub attribute. In second aggregation level (represented by column
“A2”), results of each quality sub attribute were aggregated to obtain the value for the
quality attributes. In third aggregation level (represented by column “A3”), the value
that refers the quality of each constituent system was obtained through the aggregation
of results of all quality attributes. Finally, in fourth aggregation (represented by column
“A4”), whole quality of RESCUER SoS is obtained by aggregation of results of each
constituent system. This process is applied to each project iteration.

Table 4.16: Results aggregation in first project iteration
A4 - SoS
Quality

Const.
System

Prior. A3 Qualiy At-
tribute

Prior. A2 Quality Sub
Attribute

Prior. A1 Metric Result

0.77

MCS 3 0.81

Usability 3 0.79
User Interface
Aesthetics

3 0.86 UU1 0.86

Learnability 3 0.71 UL1 0.64
UL2 0.77

Effectiveness 3 0.71 Effectiveness 3 0.71 EF1 0.71

Satisfaction 3 0.93 Usefulness 3 0.96 SU1 0.96
Trust 3 0.90 ST1 0.90

ERTK 3 0.73 Usability 2 0.60
User Interface
Aesthetics

2 0.82 UU1 0.82

Appropriateness
Recognisability

2 0.17 UA1 0.17

Learnability 1 1.0 UL1 1.0
Satisfaction 3 0.82 Usefulness 3 0.82 SU1 0.82

It is important to highlight that, for the correct aggregation of metrics results, it
is needed to respect a same data scale. Most metrics used in the RESCUER quality
measurement produce a quantitative value between 0 and 1. Therefore, metric results
that do not respect this scale needed to be normalized. This was done to results of metrics
PC1 and PT1, regarding capacity and time behavior, respectively (compare Table 4.14
and Table 4.18).

All aggregation levels were calculate using Equation 3.1 presented in Section 3.6. In
first aggregation, no weights were considered, as any priority to the metrics was not
assigned . In second aggregation, weight considered to each quality sub attribute was
obtained from the RESCUER quality model presented in Section 4.2. During the con-
struction of this quality model, the priority of each quality attribute to the achievement
of the system goals were collected from the RESCUER stakeholders as H - High (weight
3), M - Medium (weight 2), and L - Low (weight 1). In third aggregation, weight of

80

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

Table 4.17: Results aggregation in second project iteration
A4 - SoS
Quality

Const.
System

Prior. A3 Quality At-
tribute

Prior. A2 Quality Sub
Attribute

Prior. A1 Metric Result

0.91

MCS 3 0.86

Functional
Suitability 3 0.71 Completeness 2 0.66 FF1 0.66

Appropriateness 3 0.75 FF2 0.75

Usability 3 0.83

User Interface
Aesthetics

3 0.80 UU1 0.80

Appropriateness
Recognisability

3 0.91 UA1 0.91

Learnability 3 0.81 UL3 0.81
Operability 3 0.78 UO2 0.78

Portability 3 1.0 Portability 3 1.0 PI1 1.0
Freedom
from Risk

3 0.71 Freedom from
Risk

3 0.71 FR1 0.71

Satisfaction 3 0.98 Usefulness 3 0.98 SU1 0.98
Trust 3 0.98 ST1 0.98

Effectiveness 3 0.91 Effectiveness 3 0.91 EF1 0.91

ERTK 3 0.95

Usability 2 0.94
Operability 2 0.93 UO2 0.93
Appropriateness
Recognisability

2 0.94 UA1 0.94

Learnability 1 0.94 UL3 0.94
Effectiveness 3 0.98 Effectiveness 3 0.98 EF1 0.98
Efficiency 2 0.87 Efficiency 2 0.87 EF2 0.87
Satisfaction 3 0.97 Usefulness 3 0.97 SU1 0.97

Table 4.18: Results aggregation in third project iteration
A4 - SoS
Quality

Const.
System

Prior. A3 Quality At-
tribute

Prior. A2 Quality Sub
Attribute

Prior. A1 Metric Result

0.57

MCS 3 0.70

Functional
Suitability 3 0.90 Completeness 2 0.94 FF1 0.94

Appropriateness 3 0.87 FF2 0.87

Usability 3 0.71

Appropriateness
Recognisability

3 0.70 UA1 0.70

User Interface
Aesthetics

3 0.71 UU1 0.71

Learnability 3 0.77 UL3 0.77
Operability 3 0.67 UO2 0.67

Freedom
from Risk

3 0.5 Freedom from
Risk

3 0.5 EF1 0.5

Satisfaction 3 0.70 Usefulness 3 0.70 SU1 0.70
Trust 3 0.70 ST1 0.70

ERTK 3 0.45

Usability 2 0.38 Appropriateness
Recognisability

2 0.38 UA1 0.38

Operability 2 0.38 UO2 0.38
Effectiveness 3 0.38 Effectiveness 3 0.38 EF1 0.38
Efficiency 2 0.25 Efficiency 2 0.25 EF2 0.25

Satisfaction 3 0.69 Usefulness 3 0.75 SU1 0.75
Trust 3 0.63 ST1 0.63

0.44 SoS 3 0.44

Functional
Suitability

2 0.0 Completeness 2 0.0 FF1 0.0

Usability 3 0.25 Appropriateness
Recognisability

3 0.25 UA1 0.25

Performance
Efficiency 2 0.36

Resource
Utilization 2 0.92 PR3 0.85

PR2 0.99
Capacity 2 0.11 PC1 0.11
Time Behavior 2 0.05 PT1 0.05

Reliability 3 1.0 Availability 3 1.0 RA1 1.0
Freedom
from Risk

3 0.5 Freedom from
Risk

3 0.5 FR1 0.5

Satisfaction 3 0.38 Usefulness 3 0.5 SU1 0.5
Trust 3 0.25 ST1 0.25

each quality attribute was obtained by the average of the weights of its quality sub at-

81

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

tributes. In the final aggregation, for both constituent systems, the maximum priority
was assigned, since they are the most important constituent systems of the RESCUER
SoS. These weights could also be obtained by a survey with stakeholders.

After the application of the aggregation model, we obtained values that represent
the whole quality of RESCUER SoS during the project. These values were 0.77 in first
iteration, 0.91 in second iteration, and 0.57 in third iteration. This quality management
is very important to verify the evolution of SoS quality. A good improvement of the
SoS quality can be noticed in the second iteration, but the same improvement did not
happen in third iteration. This information allowed us to identify the reasons for that,
and possible points of improvement in the RESCUER SoS.

Actually, the SoS quality in third iteration was very impacted by poor results of eval-
uation conducted in Lambach tunnel, where only four people participated and, therefore,
the results were not considered conclusive. For this reason, the SoS quality measured in
third iteration did not represent the real RESCUER quality. However, even so we used
these results to allow the complete application of the SoS Evaluation Model defined in
this Master’s project.

As explained in Section 3.6, it is possible that two evaluation results of SoS be pro-
duced: one obtained from the aggregation of results of all constituent systems and another
from the evaluation of the SoS as an independent system. These values can be seen in the
results of third iteration (see Table 4.18), where specific quality metrics were applied to
the SoS. This complementary result allows to identify problems in the quality attributes
that only become evident when all constituents are working together. The resulting value
of the evaluation of RESCUER SoS in third iteration was 0.44. This value was also neg-
atively impacted by the poor results of load test experiment, mainly about the capacity
and time behavior.

In summary, the proposed SoS aggregation model was successfully applied in RES-
CUER context, in all its aggregation levels. This model can manage the SoS quality,
considering the importance of the quality value produced by composition of constituent
system quality, and the SoS quality obtained through its evaluation as an independent
system.

4.7 Final Remarks
This chapter presented a case study of application of the SoS Evaluation Model described
in Chapter 3 in the context of RESCUER research project. In this sense, our experience
regarding the planning, execution, and conclusion of the RESCUER project evaluations
was reported. To describe the application of this model, three evaluations (out of 20)

82

CHAPTER 4. CASE STUDY: CRISIS AND EMERGENCY MANAGEMENT
DOMAIN

were reported in detail based on the SoS Evaluation Plan, which was produced during
the planning activities of SoS evaluation.

Due to the level of operational and managerial independence of the constituent or-
ganizations, ensure that all evaluations were conducted considering the SoS Evaluation
Plan was a bit difficult. In summary, the evaluations tended to be planned, conducted,
and mainly reported in a no standardized way. This can becomes difficult to put together
all evaluation results to perform the SoS quality aggregation. In addition, some times,
constituent system evaluations were planned and conducted without to consider the ap-
plication of all metrics and quality attributes defined into SoS Evaluation Plan. This
happened in some cases, by carelessness, or when the evaluation context becomes difficult
to apply evaluation strategies that would allow to obtains the needed data to application
of specifics metrics. In both situations, the SoS Evaluation Plan was updated after the
evaluations be performed to maintain the coherence. In short, this model was successfully
applied in RESCUER context, showing that is possible to effectively manage the quality
of a SoS through its project iterations.

83

C

5
Conclusions

SoS is becoming increasingly important and being applied in several critical sectors of the
society. This class of systems emerges as a result of the interaction of large, complex, and
independent systems. By their criticality, evaluation of their quality is essential. However,
the quality management of SoS still presents great challenges, as these systems have a
set of unique characteristics when compared to monolithic systems. In addition, there
are no specific studies or wide experience reports to guide the quality evaluation of SoS,
considering all of its characteristics and mainly the challenges inherent of this context.

5.1 Contribution of this Master’s Project
This Master’s project presented a SoS Evaluation Model, addressed to the crisis/emer-
gency management domain. The main goal of this model is to cover important evalua-
tion activities, considering the main SoS characteristics and challenges imposed by these
systems still not addressed by current models. The SoS Evaluation Model was built con-
sidering recommendations and guidelines provided by the main international standards
focused on software quality and also our experience in planning, executing, and reporting
SoS quality evaluations. In this sense, most important software quality evaluation activ-
ities were reviewed and restructured to both constituent system and SoS levels. Besides
that, guidelines and recommendations were provided for all evaluation activities to allow
the suitable adoption of this model.

84

CHAPTER 5. CONCLUSIONS

This SoS Evaluation Model was applied in the context of a large international research
project entitled RESCUER, which aimed to develop a crisis/emergency management SoS.
Our model was used as basis to evaluation of the RESCUER SoS and its main constituent
systems during three project iterations. A total of 20 evaluations were conducted during
the project, allowing us to verify the suitability of our model, besides obtaining a wide
experience that was used to refine the model. In short, the proposed SoS Evaluation
Model was successfully applied in RESCUER context in all its project iteration.

By applying our model, a set of artifacts are created, including a domain specific
quality model, a set of metrics, evaluation and planning strategies to both SoS level
and constituents level. In particular, all artifacts produced applying our model in the
RESCUER SoS evaluation could be used as basis to conduction of evaluations of any
other crisis/emergency management SoS. In a more generic way, this model could be
reused in any acknowledged SoS, which have recognized goals, a management team, and
own resources, despite the constituent systems retain their managerial and operational
independence.

Our experience applying the SoS Evaluation Model showed us that it is possible to
effectively manage the quality of a SoS throughout of its project iterations. This was
possible through the measurement of the SoS quality by considering the quality of all
its constituent systems, and also the evaluation of the SoS as an independent system.
In general, these measurements allow the management of quality attributes that only
become evident when all constituents are working together and, therefore, they would
not be measured only by evaluating individually the constituent systems. On the other
hand, the composition of the evaluation results supported us to identify problems with
constituent systems that have negatively impacted the whole quality of this SoS.

It is important to highlight that SoS have been increasingly adopted in different and
critical application domains. We believe that our model can be a good starting point
and basis to further initiatives to develop or improve the SoS Evaluation Model for other
applications domains.

5.2 Difficulties and Limitations
As this model was developed in the context of a specific research project, evidences still
need to be raised about its suitability for other types of SoS, application domains, even
so to others crisis/emergency management SoS. Therefore, due to the wide possibility of
organizational structures, roles and dependencies among the parts that compose a SoS, it
is possible that adaptations need to be done in the proposed model. Despite to be used
to conduct a total of 20 evaluations in the context of RESCUER project, this evaluation

85

CHAPTER 5. CONCLUSIONS

model was applied in only one case study. This was due to the time constraints to the
conduction of the Master’s project.

Difficulties and limitations were also found during the conduction of our case study.
It was clear that the level of operational and managerial independence of the constituent
organizations, geographic distribution, and the evolutionary development adopted in RES-
CUER project were responsible for the main difficulties and limitations found during the
application of our evaluation model. In this scenario, maintaining the SoS Evaluation
Plan updated regarding quality requirements in constant changing, and also coherent
with regard to what were actually conducted by constituent organizations was a difficult
task.

5.3 Future Works
This Master’s project has opened several perspectives of research. As main future works
that we intend to develop are:

• To conduct other case studies and experiments to verify the suitability of our model
in other crisis and emergencies management SoS. The main idea is, firstly, to verify
the suitability and coverage of our model in similar SoS contexts, considering varia-
tions in their organizational structures, roles, and dependencies between constituent
systems. In addition, we intend to verity the coverage and suitability of artifacts
developed during the conduction of this Master’s project, when used to evaluate
other crisis and emergencies management SoS. New strategies and techniques could
be also added to this model to facilitate the tailoring of these artifacts;

• To apply our model in other SoS application domains (e.g., robotics, ambient as-
sisted living - AAL, IT systems, etc.) with the goal of, besides adapting and refining
the model, developing a new set of artifact, such as domain specific quality model,
set of metrics, evaluation and planning strategies, which could be used as basis to
evaluate other SoS domains;

• To conduct surveys with software quality and SoS experts from the industry, mainly
to validate and refine the overall structure adopted in this model, as well as the
recommendations and guidelines to become them even more aligned to best practices
and real needs of a wider number of evaluation initiatives addressed to complex,
distributed SoS development projects; and

• Extend our model to other types of SoS, i.e., directed, collaborative, and virtual.
These types of SoS have specific characteristics based upon their organizational

86

CHAPTER 5. CONCLUSIONS

structure and level of responsibility and authority of the constituent systems re-
garding the SoS missions. Therefore, these aspects and characteristics need to be
analyzed and understood to develop a broader SoS evaluation model that could be
suitable to evaluate all types of SoS.

87

References

Ackermann, C.; Lindvall, M.; Cleaveland, R. Towards behavioral reflexion models. In:
20th International Symposium on Software Reliability Engineering (ISSRE), 2009, p.
175–184.

AL-Badareen, A.; Selamat, M.; A. Jabar, M.; Din, J.; Turaev, S. Software quality
models: A comparative study. In: 2th International Conference Software Engineering
and Computer Systems (ICSECS), 2011, p. 46–55.

Alghamdi, A.; Hussain, T.; Faraz Khan, G. Enhancing c4i security using threat modeling.
In: 12th International Conference on Computer Modelling and Simulation (UKSim),
2010, p. 131–136.

Allen, M. From substandard to successful software. CrossTalk: The Journal of Defense
Software Engineering, v. 22, n. 4-5, p. 29–32, 2009.

Aoyama, M.; Tanabe, H. A design methodology for real-time distributed software archi-
tecture based on the behavioral properties and its application to advanced automotive
software. In: 18th Asia-Pacific Software Engineering Conference (APSEC), 2011, p.
211–218.

Azizian, N.; Mazzuchi, T.; Sarkani, S.; Rico, D. A framework for evaluating technology
readiness, system quality, and program performance of u.s. dod acquisitions. Systems
Engineering, v. 14, n. 4, p. 410–426, 2011.

Babar, M.; Zhu, L.; Jeffery, R. A framework for classifying and comparing software
architecture evaluation methods. In: 15th Australian Software Engineering Conference
(ASWEC), 2004, p. 309–318.

88

REFERENCES

Babar, M. A.; Chauhan, M. A. A tale of migration to cloud computing for sharing
experiences and observations. In: 2th International Workshop on Software Engineering
for Cloud Computing (SECLOUD), 2011, p. 50–56.

Balci, O.; Arthur, J. D.; Ormsby, W. F. Achieving reusability and composability with a
simulation conceptual model. Journal of Simulation, v. 5, n. 3, p. 157–165, 2011.

Barcelos, R.; Travassos, G. Arqcheck: Uma abordagem para inspeção de documentos
arquiteturais baseada em checklist. Simposio Brasileiro de Qualidade de Software
(SBQS), p. 175–189, 2006.

Barron, F. H.; Barrett, B. E. Decision quality using ranked attribute weights. Man-
agement Science, v. 42, n. 11, p. 1515–1523, 1996.

Batista, T. Challenges for SoS Architecture Description. In: 2th International Workshop
on Software Engineering for Systems-of-Systems (SESoS), 2013, p. 35–37.

Belloir, N.; Chiprianov, V.; Ahmad, M.; Munier, M.; Gallon, L.; Bruel, J.-M. Using
Relax Operators into an MDE Security Requirement Elicitation Process for Systems
of Systems. In: European Conference on Software Architecture Workshops (ECSAW),
2007, p. 32:1–32:4.

Bianchi, T.; Santos, D. S.; Felizardo, K. R. System-of-Systems Quality Attributes: A
Systematic Literature Review. In: 3th International Workshop on Software Engineering
and Systems-of-Systems (SESoS), 2015, p. 23–30.

Boehm, B.; Lane, J. A. 21st Century Processes for Acquiring 21st Century Software -
Intensive Systems of Systems. Crosstalk: Journal of Defence Software Engineering,
v. 19, n. 5, p. 4–9, 2006.

Boehm, B. W.; Brown, J. R.; Kaspar, J. R.; Lipow, M. L.; MacCleod, G. Characteristics
of software quality. Elsevier, 1978.

Bozzano, M.; Villafiorita, A. Design and safety assessment of critical systems. Taylor
& Francis, 2010.

Calinescu, R.; Kikuchi, S.; Johnson, K. Compositional Reverification of Probabilistic
Safety Properties for Large-scale Complex IT Systems. In: 17th Monterey Conference
on Large-Scale Complex IT Systems: Development, Operation and Management, 2012,
p. 303–329.

89

REFERENCES

Chen, H.-M.; Kazman, R. b.; Hong-Mei, C. Architecting ultra-large-scale green infor-
mation systems. In: 1th International Workshop on Green and Sustainable Software
(GREENS), 2012, p. 69–75.

Chiprianov, V.; Falkner, K.; Gallon, L.; Munier, M. Towards modelling and analysing
non-functional properties of systems of systems. In: 9th International System of Sys-
tems Engineering Conference (SOSE), 2014, p. 289–294.

Clements, P.; Kazman, R.; Klein, M. Evaluating software architectures: methods and
case studies. SEI series in software engineering. Addison-Wesley, 2002.

Dahmann, J.; Baldwin, K. Understanding the current state of us defense systems of sys-
tems and the implications for systems engineering. In: 2th IEEE Systems Conference,
2008, p. 1–7.

Dieste, O.; Grimán, A.; Juristo, N. Developing search strategies for detecting relevant
experiments. Empirical Software Engineering, v. 14, n. 5, p. 513–539, 2009.

DoD Systems engineering guide for system of systems. Technical Report, US Department
of Defense, 2008.

DoD DoDAF Architecture Framework Version 2.02. Technical Report, US Department
of Defense, 2010.

Dybå, T.; Dingsøyr, T. Strength of evidence in systematic reviews in software engi-
neering. In: 2th International Symposium on Empirical Software Engineering and
Measurement (ESEM), 2008, p. 178–187.

Edwards, W.; Barron, F. SMARTS and SMARTER: Improved Simple Methods for
Multiattribute Utility Measurement. Organizational Behavior and Human Decision
Processes, v. 60, n. 3, p. 306 – 325, 1994.

Eisner, H. Rcasse: Rapid computer-aided systems of systems engineering. In: Inter-
national Symposium of the National Council of System Engineering (NCOSE), 1993, p.
267–273.

Eklund, U. c.; Bosch, J. Architecture for embedded open software ecosystems. Journal
of Systems and Software, v. 92, n. 1, p. 128–142, 2014.

Fang, Z.; DeLaurentis, D.; Davendralingam, N. An approach to facilitate decision making
on architecture evolution strategies. Procedia Computer Science, v. 16, n. 0, p. 275 –
282, 2013.

90

REFERENCES

Fischer, D.; Sarkarati, M.; Spada, M.; Michelbach, T.; Urban, W.; Tueffers, C. An ap-
plication security framework for soa-based mission data systems. In: 4th International
Conference on Space Mission Challenges for Information Technology (SMC-IT), 2011,
p. 53–60.

Fuchs, A.; Rieke, R. Identification of security requirements in systems of systems by func-
tional security analysis. In: Casimiro, A.; de Lemos, R.; Gacek, C., eds. Architecting
Dependable Systems VII, v. 6420, p. 74–96, 2010.

Gagliardi, M.; Wood, W.; Klein, J.; Morley, J. A uniform approach for system of
systems architecture evaluation. The Journal of Defense Software Engineering, v. 22,
n. 3, p. 12–15, 2009.

Garro, A.; Tundis, A. On the Reliability Analysis of Systems and SoS: The RAMSAS
Method and Related Extensions. IEEE Systems Journal, v. PP, n. 99, p. 1–10, 2014.

Garvin, D. What does product quality really mean? Sloan Management Review, v. 26,
n. 1, p. 25–45, 1984.

Ge, B.; Hipel, K. W.; Yang, K.; Chen, Y. A data-centric capability-focused approach
for system-of-systems architecture modeling and analysis. Systems Engineering, v. 16,
n. 3, p. 363–377, 2013.

Gorod, A.; Gove, R.; Sauser, B.; Boardman, J. System of Systems Management: A Net-
work Management Approach. In: 2th International Conference on System of Systems
Engineering (SoSE), 2007, p. 1–5.

Grady, R. B.; Caswell, D. L. Software Metrics: Establishing a Company-wide Program.
Prentice-Hall, Inc., 1987.

Guariniello, C.; DeLaurentis, D. Communications, Information, and Cyber Security in
Systems-of-Systems: Assessing the Impact of Attacks through Interdependency Analy-
sis. Procedia Computer Science, v. 28, p. 720 – 727, 2014a.

Guariniello, C.; DeLaurentis, D. Integrated analysis of functional and developmental
interdependencies to quantify and trade-off ilities for system-of-systems design, archi-
tecture, and evolution. Procedia Computer Science, v. 28, p. 728–735, 2014b.

Guo, F.; Wang, M. Quantitative measurement of interoperability by using Petri net.
Journal of Computational Information Systems, v. 8, n. 8, p. 3245–3252, 2012.

91

REFERENCES

Iacobucci, J.; Mavris, D. A method for the generation and evaluation of architecture
alternatives on the cloud. In: 6th System of Systems Engineering (SoSE), 2011, p.
137–142.

ISO/IEC 24765 Systems and software engineering - Vocabulary. Technical Report, In-
ternational Organization for Standardization and International Electrotechnical Com-
mission, 2010.

ISO/IEC 25010 Systems and software engineering – Systems and software Quality Re-
quirements and Evaluation (SQuaRE) – System and software quality models. Technical
Report, International Organization for Standardization and International Electrotech-
nical Commission, 2011.

ISO/IEC 25040 Systems and software engineering – Systems and software Quality Re-
quirements and Evaluation (SQuaRE) – Evaluation process. Technical Report, Interna-
tional Organization for Standardization and International Electrotechnical Commission,
2011.

ISO/IEC 9126-2 Software engineering - Product quality - Part 2: External metrics.
Technical Report, International Organization for Standardization and International
Electrotechnical Commission, 2003.

ISO/IEC 9126-3 Software engineering - Product quality - Part 3: Internal metrics.
Technical Report, International Organization for Standardization International Elec-
trotechnical Commission, 2003.

ISO/IEC 9126-4 Software engineering - Product quality - Part 4: Quality in Use met-
rics. Technical Report, International Organization for Standardization International
Electrotechnical Commission, 2003.

Jamshidi, M. Systems of Systems Engineering: Principles and Applications. Taylor &
Francis, 2008.

Joyce, H.; Hin, O.; Seng, Y.; Chan, S. A systems assurance perspective towards generic
systems engineering. In: 21th International Symposium of the International Council
on Systems Engineering (INCOSE), 2011, p. 742–761.

Kazman, R.; Bass, L.; Webb, M.; Abowd, G. Saam: A method for analyzing the
properties of software architectures. In: 16th International Conference on Software
Engineering (ICSE), 1994, p. 81–90.

Kazman, R.; Gagliardi, M.; Wood, W. Scaling up software architecture analysis. Journal
of Systems and Software, v. 85, n. 7, p. 1511 – 1519, 2012.

92

REFERENCES

Kazman, R.; Klein, M.; Clements, P. ATAM: Method for Architecture Evaluation.
Technical Report, Carnegie Mellon University, 2000.

Kimura, D.; Osaki, T.; Yanoo, K.; Izukura, S.; Sakaki, H.; Kobayashi, A. Evaluation
of IT systems considering characteristics as system of systems. In: 6th International
Conference on System of Systems Engineering (SoSE), 2011, p. 43–48.

Kitchenham, B.; Charters, S. Guidelines for performing Systematic Literature Reviews
in Software Engineering. Technical Report, Keele University and Durham University
Joint Report, 2007.

Kitchenham, B.; Pfleeger, S. L. Software quality: The elusive target. IEEE Software,
v. 13, n. 1, p. 12–21, 1996.

Lane, J. A. What is a system of systems and why should i care? Technical Report,
Department of Industrial and Systems Engineering - University of Southern California,
2013.

Larsson, J.; Borg, M.; Olsson, T. Testing quality requirements of a system-of-systems in
the public sector - challenges and potential remedies. In: 3rd International Workshop
on Requirements Engineering and Testing (RET), 2016, p. 1–15.

Leuchter, S.; Reinert, F.; Muller, W. Assessment of the integration capability of system
architectures from a complex and distributed software systems perspective. In: SPIE
Open Architecture/Open Business Model Net-Centric Systems and Defense Transfor-
mation, 2014, p. 4–9.

Lin, Q.; Cai, Z.; Wang, Y.; Yang, J.; Chen, L. Adaptive Flight Control Design for
Quadrotor UAV Based on Dynamic Inversion and Neural Networks. In: 3th Iternational
Conference on Instrumentation, Measurement, Computer, Communication and Control
(IMCCC), 2013, p. 1461–1466.

Luzeaux, D.; Ruault, J. Systems of Systems. ISTE. Wiley, 2010.

Madni, A.; Sievers, M. System of systems integration: Key considerations and challenges.
Systems Engineering, v. 17, n. 3, p. 330–347, 2014.

Maier, M. W. Architecting principles for systems-of-systems. Systems Engineering,
v. 1, p. 267–284, 1998.

Mårtensson, F.; Tekniska, B. h. Software Architecture Quality Evaluation: Approaches
in an Industrial Context. Blekinge Institute of Technology licentiate dissertation series.
2006.

93

REFERENCES

McCall, J. A.; Richards, P. K.; Walters, G. F. Factors in software quality. Rome Air
Development Center Air Force Systems Command, 1977.

Meilich, A. System of systems (SoS) engineering amp; architecture challenges in a net
centric environment. In: 2006 IEEE/SMC International Conference on System of
Systems Engineering, 2006, p. 1–5.

Michael, J.; Riehle, R.; Shing, M.-T. The verification and validation of software archi-
tecture for systems of systems. In: 4th IEEE International Conference on System of
Systems Engineering (SoSE), 2009, p. 1–6.

Minkiewicz, A. F. Tackling the cost challenges of system of systems. The Journal of
Defense Software Engineering, v. 19, n. 5, p. 10–14, 2006.

Nair, S.; De La Vara, J.; Sabetzadeh, M.; Briand, L. An extended systematic literature
review on provision of evidence for safety certification. Information and Software
Technology, v. 56, n. 7, p. 689–717, 2014.

Nakagawa, E. Y.; Gonçalves, M.; Guessi, M.; Oliveira, L. B. R.; Oquendo, F. The state
of the art and future perspectives in systems of systems software architectures. In:
1th International Workshop on Software Engineering for Systems-of-Systems (SESoS),
2013, p. 13–20.

Oberndorf, P.; Sledge, C. Evolution of a software engineer in a SoS system engineering
world. In: 4th Annual IEEE Systems Conference, 2010, p. 91–96.

Oliveira, M.; Pereira, J. Extensible Virtual Environment Systems Using System of
Systems Engineering Approach. In: 17th Artificial Reality and Telexistence (ICAT),
2007, p. 89–96.

Osmundson, J. S.; Langford, G. O. Connections in System of Systems. INCOSE
International Symposium, v. 22, n. 1, p. 787–799, 2012.

Ramaswamy, A.; Monsuez, B.; Tapus, A. Formal models for cognitive systems. In:
16th International Conference on Advanced Robotics (ICAR), 2013, p. 1–8.

Ravichandran, T.; Rothenberger, M. A. Software reuse strategies and component mar-
kets. Communications of the ACM, v. 46, n. 8, p. 109–114, 2003.

RESCUER D5.2.1 - Evaluation Report of Mobile Crowdsourcing Solution 1. Technical
Report, Project RESCUER, 2015.

94

REFERENCES

RESCUER D4.4.3 - Emergency Response ToolKit 3. Technical Report, Project RES-
CUER, 2016a.

RESCUER D5.4.2 - Evaluation Report of Integrated Solution 2. Technical Report,
Project RESCUER, 2016b.

RESCUER D7.4 - System Specification. Technical Report, Project RESCUER, 2016c.

Rezaei, R.; Chiew, T.; Lee, S. An interoperability model for ultra large scale systems.
Advances in Engineering Software, v. 67, p. 22–46, 2014.

Rothenberg, J. Interoperability as a cross-cutting concern. In: Interoperabiliteit: Eerlijk
zullen we alles delen, RAND Corporation, 2008, p. 1–12.

Sage, A. P.; Cuppan, C. D. On the Systems Engineering and Management of Systems of
Systems and Federations of Systems. Information Knowledge Systems Management,
v. 2, n. 4, p. 325–345, 2001.

Santos, D. S.; Oliveira, B.; Duran, A.; Nakagawa, E. Reporting an experience on
the establishment of a quality model for systems-of-systems. In: 27th International
Conference on Software Engineering and Knowledge Engineering (SEKE), 2015a, p.
304–309.

Santos, D. S.; Oliveira, B.; Guessi, M.; Oquendo, F.; Delamaro, M.; Nakagawa, E. Y.
Towards the evaluation od system of systems softaware architecture. 8th Workshop
em Desenvolvimento Distribuido de Software, Ecossistemas de Software e Sistema de
Sistemas (WDES), p. 1–6, 2014.

Santos, D. S.; Oliveira, B.; Nakagawa, E. Evaluation of a Crowdsourcing System: An
experience report. In: 1th Workshop on Crowdsourcing Systems (SCrowd), 2015b, p.
29–36.

Schneider, D.; Trapp, M. Runtime Safety Models in Open Systems of Systems. In:
28th Digital Avionics Systems (DASC), 2009, p. 455–460.

Schneider, D.; Trapp, M. A Safety Engineering Framework for Open Adaptive Systems.
In: 5th Self-Adaptive and Self-Organizing Systems (SASO), 2011, p. 89–98.

Schugerl, P.; Rilling, J.; Witte, R.; Charland, P. A Quality Perspective of Software
Evolvability Using Semantic Analysis. In: 3th International Conference on Semantic
Computing (ICSC), 2009, p. 420–427.

95

REFERENCES

Shukla, M.; Asundi, J. Considering emergency and disaster management systems from
a software architecture perspective. International Journal of System of Systems Engi-
neering (SoSE), v. 3, n. 2, p. 129–141, 2012.

Singh, A.; Dagli, C. H. Multi-objective stochastic heuristic methodology for tradespace
exploration of a network centric system of systems. In: 3th Annual IEEE Systems
Conference, 2009, p. 218–223.

Stratton, W.; Sibol, D.; Lindvall, M.; Ackermann, C.; Godfrey, S. Developing an ap-
proach for analyzing and verifying system communication. In: IEEE Aerospace Con-
ference (AeroConf), 2009a, p. 1–13.

Stratton, W. C.; Sibol, D. E.; Lindvall, M.; Ackermann, C.; Godfrey, S. Developing
an approach for analyzing and verifying system communication. In: IEEE Aerospace
Conference (AeroConf), 2009b, p. 1–13.

Tsadimas, A.; Kapos, G.-D.; Dalakas, V.; Nikolaidou, M.; Anagnostopoulos, D. In-
tegrating simulation capabilities into SysML for enterprise information system design.
In: 9th System of Systems Engineering (SOSE), 2014, p. 272–277.

Tucker, A.; Dagli, C. Design of experiments as a means of lean value delivery to the
flight test enterprise. Systems Engineering, v. 12, n. 3, p. 201–217, 2009.

Urwin, E.; Venters, C.; Russell, D.; Liu, L.; Luo, Z.; Webster, D.; Henshaw, M.; Xu, J.
Scenario-based design and evaluation for capability. In: 5th International Conference
on System of Systems Engineering (SoSE), 2010, p. 1–6.

Väätäjä, H.; Koponen, T.; Roto, V. Developing practical tools for user experience
evaluation: a case from mobile news journalism. In: 1th Energy Conversion Congress
and Exposition (ECCE), 2009, p. 23.

Venters, C.; Russell, D.; Liu, L.; Luo, Z.; Webster, D.; Xu, J. A scenario-based architec-
ture evaluation framework for network enabled capability. In: 33th Computer Software
and Applications Conference (COMPSAC), 2009, p. 9–12.

Villalba, M. T.; Fernandez-Sanz, L.; Martinez, J. J. Empirical support for the generation
of domain-oriented quality models. IET Software, v. 4, n. 1, p. 1–14, 2010.

Villela, K.; Vieira, V.; Mendonca, M.; Franke, T.; Torres, J.; Graffy, S. RESCUER-Dow
- Reliable and Smart Crowdsourcing Solution for Emergency and Crisis Management.
2013.

96

REFERENCES

Wada, H.; Suzuki, J.; Oba, K. A model-driven development framework for non-functional
aspects in service oriented architecture. International Journal of Web Services Research
(IJWSR), v. 5, n. 4, p. 1–31, 2008.

Wagner, S. Software Product Quality Control. Berlin, Heidelberg: Springer, 2013.

Wagner, S.; Lochmann, K.; Heinemann, L.; Kläs, M.; Trendowicz, A.; Plösch, R.; Seidl,
A.; Goeb, A.; Streit, J. The Quamoco Product Quality Modelling and Assessment
Approach. In: 34th International Conference on Software Engineering (ICSE), 2012,
p. 1133–1142.

Waller, A.; Craddock, R. Managing runtime re-engineering of a System-of-Systems for
cyber security. In: 3th International Conference on System of Systems Engineering
(SoSE), 2011, p. 13–18.

Walraven, S.; Lagaisse, B.; Truyen, E.; Joosen, W. Dynamic composition of
cross-organizational features in distributed software systems. In: 10th International
Conference on Distributed Applications and Interoperable Systems (DAIS), 2010, p.
183–197.

Wang, H.; Wan, C. Quality failure prediction for the self-healing of service-oriented
system of systems. In: 21th International Conference on Web Services (ICWS), 2014,
p. 566–573.

Xia, X.; Wu, J.; Liu, C.; Xu, L. A Model-Driven Approach for Evaluating System of
Systems. In: 18th International Conference on Engineering of Complex Computer
Systems (ICECCS), 2013, p. 56–64.

Zafar, N.; Arnautovic, E.; Diabat, A.; Svetinovic, D. System security requirements
analysis: A smart grid case study. Systems Engineering, v. 17, n. 1, p. 77–88, 2014.

Zhu, L.; Staples, M.; Jeffery, R. Scaling up software architecture evaluation processes.
In: 9th International Conference on Software Process (ICSP), 2008, p. 112–122.

Zuccato, A. b.; Daniels, N.; Jampathom, C.; Nilson, M. Report: Modular safeguards
to create holistic security requirement specifications for system of systems. In: 2th
International conference on Engineering Secure Software and Systems (ESSoS), 2010,
p. 218–230.

97

C

A
Quality Attributes for

Systems-of-Systems: Systematic
Literature Review

In order to conduct this SLR, this work followed the process proposed by Kitchenham
and Charters (2007). In short, this process presents three main phases: (i) Planning: in
this phase, the research objectives and the systematic review protocol are defined. The
protocol constitutes a pre-determined plan that describes research questions and how the
systematic review will be conducted; (ii) Conduction: during this phase, primary studies
are identified, selected, and evaluated according to the inclusion and exclusion criteria
previously established. For each selected study, data are extracted and synthesized; and
(iii) Reporting: in this phase, a final report is organized and presented. As the results of
this SLR were already reported in Chapter 2, this appendix describes the first and second
phases in more details.

A.1 Planning
To establish the systematic review protocol it is necessary to states that the main research
objective of this systematic review is to identify primary studies that address quality
attributes for SoS considering its software domains. Thus, aiming at finding possibly all

98

APPENDIX A. QUALITY ATTRIBUTES FOR SYSTEMS-OF-SYSTEMS:
SYSTEMATIC LITERATURE REVIEW

primary studies to understand and summarize evidences about quality attributes in SoS,
the following research questions (RQ) were established:

• RQ1: What are the most common quality attributes for SoS?;

• RQ2: Which are the most common application domains considered for SoS?; and

• RQ3: Which are the QA established for each SoS domains?

In order to establish the search strategy, it is defined the following elements:
Sources selection criteria: Three types of sources were considered in this systematic

review: (i) Publication databases: Aiming at establishing which publication database
would be used to find the primary studies, it was adopted the following criteria (Dieste et
al., 2009): content update (publications are regularly updated); availability (full text of the
papers are available); quality of results (accuracy of the results obtained by the search);
and versatility export (a mechanism to export the results of the search is available);
(ii) Related works: it was also considered those studies cited as related works in the
relevant primary studies found in the publication databases; and (iii) Specialist: it was
also considered studies suggested by specialists of the areas of system of systems and
software quality. Although the indication of studies by specialists can be considered as
bias, it was adopted this source aiming to not lose any important evidence.

Sources list: The publication databases selected for this systematic review are shown
in Table A.1. According to Dybå and Dingsøyr (2008), these databases are efficient to
conduct systematic reviews in the context of Software Engineering. Furthermore, Scopus
has been added, since it is considered the largest database of abstracts and citations
(Kitchenham and Charters, 2007);

Table A.1: Selected publication databases
Source Location

ACM Digital Library http://dl.acm.org/
IEEE Xplore http://ieeexplore.ieee.org/Xplore/home.jsp

Scopus http://www.scopus.com/home.url
Web of Science http://apps.isiknowledge.com/

Studies language: Only primary studies written in English were considered in this
systematic review. English was adopted because most of research in Computer Science
have been reported in this language;

Keywords: The main keywords were “System-of-Systems” and “Quality Attributes”,
with the following related terms: (i) System-of-Systems: system-of-systems, systems
of systems, and systems-of-systems; and (ii) Quality Attributes: quality attribute,
quality attributes, non functional requirement, non-functional requirement, nonfunctional

99

http://dl.acm.org/
http://ieeexplore.ieee.org/Xplore/home.jsp
http://www.scopus.com/home.url
http://apps.isiknowledge.com/

APPENDIX A. QUALITY ATTRIBUTES FOR SYSTEMS-OF-SYSTEMS:
SYSTEMATIC LITERATURE REVIEW

requirement, non functional requirements, non-functional requirements, nonfunctional re-
quirements, quality requirement, quality requirements, quality characteristic, quality char-
acteristics, quality criteria, quality criterion OR non functional property, non-functional
property, nonfunctional property, non functional properties, non-functional properties,
nonfunctional properties, non functional characteristic, non-functional characteristic, non-
functional characteristic, non functional characteristics, non-functional characteristics,
nonfunctional characteristics, quality models, and quality model.

Search string: It was applied the boolean OR operator to link the main terms and
their related terms. All these terms were combined using the boolean AND operator.
Thus, the final search string was:

(“system of systems” OR “system-of-systems” OR “systems of systems” OR
“systems-of-systems”) AND (“quality attribute” OR “quality attributes” OR “non
functional requirement” OR “non-functional requirement” OR “nonfunctional

requirement” OR “non functional requirements” OR “non-functional requirements” OR
“nonfunctional requirements” OR “quality requirement” OR “quality requirements” OR
“quality characteristic” OR “quality characteristics” OR “quality criteria” OR “quality

criterion” OR “non functional property” OR “non-functional property” OR “nonfunctional
property” OR “non functional properties” OR “non-functional properties” OR

“nonfunctional properties” OR “non functional characteristic” OR “non-functional
characteristic” OR “nonfunctional characteristic” OR “non functional characteristics”
OR “non-functional characteristics” OR “nonfunctional characteristics” OR “quality

models” OR “quality model”)

Another important activity of the systematic review planning is to define the Inclusion
Criteria (IC) and Exclusion Criteria (EC). These criteria make possible to include primary
studies that are relevant to answer the research questions and exclude studies that do not
answer them. Thus, the inclusion criteria are:

• IC1: The study address one quality attribute for SoS;

• IC2: The study address more than one QA for SoS;

• IC3: The study address QA for SoS in one application domain; and

• IC4: The study address QA for SoS in more than one application domain.

The exclusion criteria are:

• EC1: The study does not address SoS;

• EC2: The study does not propose QA for SoS;

100

APPENDIX A. QUALITY ATTRIBUTES FOR SYSTEMS-OF-SYSTEMS:
SYSTEMATIC LITERATURE REVIEW

• EC3: The study is an editorial, keynote, opinion, tutorial, poster or panel;

• EC4: The study is a previous version of a more complete study about the same
research;

• EC5: The paper language is different from English;

• EC6: The paper is duplicated; and

• EC6: The full paper is not available.

In this systematic review, the selection and evaluation of primary studies was be
performed in three steps:

1. First Selection: initially, the search string will be customized and applied to each
publication databases, previously listed in Table A.1. For this, the title, abstract,
and keywords of all primary studies available will be considered. As a result, a set
of primary studies possibly related to the research topic will be obtained. Based
on this set, the title and the abstract of each primary study will be read and the
inclusion and exclusion criteria will be applied. Thus, studies will be selected as
relevant or not. The introduction and the conclusion sections of each primary study
might also be considered when necessary. After this analysis, if a study has been
selected, it will be read in full;

2. Second Selection: in this step, each primary study selected will be read in full
and analyzed again according to inclusion and exclusion criteria. In addition, the
related works cited by these studies will be evaluated intending to cover the whole
research area. This additional selection might be a great source of evidence, since an
included study often presents related works in the same research area. If the decision
about the inclusion or exclusion of a study is not clear, this study will be analyzed
by two reviewers. When a disagreement occurs, discussions will be conducted; and

3. Data Extraction and Synthesis Method: in order to extract data, it was
planned to build data extraction tables related to each research question. These
tables should synthesize results to facilitate the drawing of conclusions. To sum-
marize and describe the set of data, statistical synthesis method and meta-analysis
was applied.

A.2 Conduction
This SLR was conducted by three people: a software engineering researcher, a senior
software developer/architect from the industry, and a systematic review specialist. The

101

APPENDIX A. QUALITY ATTRIBUTES FOR SYSTEMS-OF-SYSTEMS:
SYSTEMATIC LITERATURE REVIEW

work started in October/2014 and was finalized in December/2014. In this section, the
details of the procedures to select the studies are described.

The primary studies were firstly identified on the selected databases, according to
the systematic review planning previously established. As a result, 116 studies were
identified. Next, the primary studies were selected by reading of title and abstract and
by the application of the inclusion and exclusion criteria. The Table A.2 summarizes the
number of studies obtained on each database, the number of included studies, and the
precision rate ACM, IEEE Xplore, Scopus, and Web of Science showed precision rates
of 0.173, 0.181, 0.073, and 0.875, respectively. It is important to highlight that mainly
Scopus stores studies from other databases, such as IEEE Xplore and ACM. After that,
repeated studies were also excluded and a total of 50 studies were selected. Then, the
inclusion and exclusion criteria were again applied after full reading of the selected studies.
Finally, 40 studies were selected as the most relevant to this systematic review. At the
end, 12 studies were included by the reviewers that were not returned originally by the
selected databases due to another systematic review performed by the authors of this
work (Santos et al., 2014) accounting a total of 52 studies included.

Table A.2: Search sources and primary studies selected and included
Source Selected Included Precision

ACM Digital Library 5 5 1
IEEE Xplore 14 9 0.643

Scopus 89 42 0.472
Web of Science 8 7 0.875

Table A.3 shows the 52 primary studies included. This table also presents the citation
for each study and the inclusion criteria (IC) used to include it. Column “Document
Type” indicates if the primary study was published as a Journal Article (JA) or as a
Conference Paper (CP).

Table A.3: Included primary studies
Citation IC Type

S1 Ackermann, C., Lindvall, M. and Cleaveland, R. Towards Behavioral
Reflexion Models.(Ackermann et al., 2009)

IC2,IC4 CP

S2 Alghamdi, A.; Hussain, T. and Khan, G. Enhancing C4I security using
threat modeling.(Alghamdi et al., 2010)

IC2,IC3 CP

S3 Allen, M. From substandard to successful software. (Allen, 2009) IC2,IC3 JA
S4 Aoyama, M. and Tanabe, H. A Design Methodology for Real-Time Dis-

tributed Software Architecture Based on the Behavioral Properties and
Its Application to Advanced Automotive Software. (Aoyama and Tan-
abe, 2011)

IC2,IC3 CP

continued on next page ...

102

APPENDIX A. QUALITY ATTRIBUTES FOR SYSTEMS-OF-SYSTEMS:
SYSTEMATIC LITERATURE REVIEW

Citation IC Type

S5 Azizian, N., Mazzuchi, T., Sarkani, S. and Rico, D. A framework for eval-
uating technology readiness, system quality, and program performance
of U.S. DoD acquisitions. (Azizian et al., 2011)

IC2,IC3 JA

S6 Babar, M.A.a and Chauhan, M.A.b. A tale of migration to cloud com-
puting for sharing experiences and observations. (Babar and Chauhan,
2011)

IC2,IC3 CP

S7 Balci, O. and Arthur, J. D. and Ormsby, W. F. Achieving reusability
and composability with a simulation conceptual model. (Balci et al.,
2011)

IC2,IC4 JA

S8 Batista, T. Challenges for sos architecture description. (Batista, 2013) IC2,IC4 CP
S9 Belloir, Nicolas and Chiprianov, Vanea and Ahmad, Manzoor and Mu-

nier, Manuel and Gallon, Laurent and Bruel, Jean-Michel. Using Relax
Operators into an MDE Security Requirement Elicitation Process for
Systems of Systems. (Belloir et al., 2007)

IC2,IC4 CP

S10 Calinescu, R.a and Kikuchi, S.b and Johnson, K.a. Compositional rever-
ification of probabilistic safety properties for large-scale complex IT sys-
tems. (Calinescu et al., 2012)

IC2,IC3 JA

S11 Hong-Mei Chen and Kazman, R. Architecting ultra-large-scale green in-
formation systems. (Chen et al., 2012)

IC1,IC3 CP

S12 Chiprianov, Vanea and Falkner, Katrina and Gallon, Laurent and Mu-
nier, Manuel. Towards modelling and analysing non-functional proper-
ties of systems of systems. (Chiprianov et al., 2014)

IC2,IC4 CP

S13 Colin, C.V. and Duncan, J.R. and Lu, L. and Zongyang, L. and David,
E.W. and Jie, X. A scenario-based architecture evaluation framework for
network enabled capability. (Venters et al., 2009)

IC2,IC3 CP

S14 Eklund, U.a c and Bosch, J.b. Architecture for embedded open software
ecosystems. (Eklund and Bosch, 2014)

IC2,IC3 JA

S15 Fang, Z., DeLaurentis, D. and Davendralingam, N. An Approach to
Facilitate Decision Making on Architecture Evolution Strategies. (Fang
et al., 2013)

IC2,IC3 JA

S16 Fischer, D., Sarkarati, M., Spada, M., Michelbach, T., Urban, W. and
Tueffers, C. An application security framework for SOA-based mission
data systems. (Fischer et al., 2011)

IC1,IC3 CP

S17 Fuchs, A. and Rieke, R. Identification of security requirements in systems
of systems by functional security analysis. (Fuchs and Rieke, 2010)

IC2,IC3 JA

S18 Gagliardi, M., Wood, W., Klein, J. and Morley, J. A uniform approach
for system of systems architecture evaluation. (Gagliardi et al., 2009)

IC2,IC3 JA

S19 Garro, A. and Tundis, A. On the Reliability Analysis of Systems and
SoS: The RAMSAS Method and Related Extensions. (Garro and Tundis,
2014)

IC1,IC4 JA

continued on next page ...

103

APPENDIX A. QUALITY ATTRIBUTES FOR SYSTEMS-OF-SYSTEMS:
SYSTEMATIC LITERATURE REVIEW

Citation IC Type

S20 Ge, B., Hipel, K. W., Yang, K. and Chen, Y. A data-centric
capability-focused approach for system-of-systems architecture model-
ing and analysis. (Ge et al., 2013)

IC2,IC3 JA

S21 Guariniello, C. and DeLaurentis, D. Communications, Information, and
Cyber Security in Systems-of-Systems: Assessing the Impact of At-
tacks through Interdependency Analysis. (Guariniello and DeLaurentis,
2014a)

IC2,IC3 JA

S22 Guariniello, C. and DeLaurentis, D. Integrated Analysis of Functional
and Developmental Interdependencies to Quantify and Trade-off Ilities
for System-of-Systems Design, Architecture, and Evolution. (Guariniello
and DeLaurentis, 2014b)

IC2,IC4 CP/JA

S23 Guo, F. and Wang, M. Quantitative measurement of interoperability by
using Petri net. (Guo and Wang, 2012)

IC1,IC3 JA

S24 Iacobucci, J. and Mavris, D. A method for the generation and evaluation
of architecture alternatives on the cloud. (Iacobucci and Mavris, 2011)

IC1,IC3 CP

S25 Joyce, H., Hin, O., Seng, Y. and Chan, S. A systems assurance perspec-
tive towards generic systems engineering. (Joyce et al., 2011)

IC1,IC3 CP

S26 Kazman, R. b., Gagliardi, M. and Wood, W. Scaling up software archi-
tecture analysis. (Kazman et al., 2012)

IC2,IC3 JA

S27 Kimura, D., Osaki, T., Yanoo, K., Izukura, S., Sakaki, H. and Kobayashi,
A. Evaluation of IT systems considering characteristics as system of sys-
tems. (Kimura et al., 2011)

IC2,IC3 CP

S28 Leuchter, S., Reinert, F. and Muller, W. Assessment of the integration
capability of system architectures from a complex and distributed soft-
ware systems perspective. (Leuchter et al., 2014)

IC2,IC3 CP

S29 Lin, Q., Cai, Z., Wang, Y., Yang, J. and Chen, L. Adaptive flight con-
trol design for quadrotor UAV based on dynamic inversion and neural
networks. (Lin et al., 2013)

IC2,IC3 CP

S30 Madni, A. and Sievers, M. System of systems integration: Key consid-
erations and challenges. (Madni and Sievers, 2014)

IC1,IC3 JA

S31 Michael, J., Riehle, R. and Shing, M.T. The verification and validation
of software architecture for systems of systems. (Michael et al., 2009)

IC2,IC4 CP

S32 Nair, S., De La Vara, J., Sabetzadeh, M. and Briand, L. An extended
systematic literature review on provision of evidence for safety certifica-
tion. (Nair et al., 2014)

IC1,IC3 JA

S33 Oliveira, M. and Pereira, J. Extensible Virtual Environment Systems
Using System of Systems Engineering Approach. (Oliveira and Pereira,
2007)

IC2,IC3 CP

continued on next page ...

104

APPENDIX A. QUALITY ATTRIBUTES FOR SYSTEMS-OF-SYSTEMS:
SYSTEMATIC LITERATURE REVIEW

Citation IC Type

S34 Osmundson, J. and Langford, G. Connections in system of systems. (Os-
mundson and Langford, 2012)

IC1,IC4 CP

S35 Ramaswamy, A. b., Monsuez, B. and Tapus, A. Formal models for cog-
nitive systems. (Ramaswamy et al., 2013)

IC2,IC3 CP

S36 Rezaei, R., Chiew, T. and Lee, S. An interoperability model for ultra
large scale systems. (Rezaei et al., 2014)

IC1,IC4 JA

S37 Schneider, D., Becker, M. and Trapp, M. Approaching runtime trust
assurance in open adaptive systems. (?)

IC2,IC3 CP

S38 Schneider, D. and Trapp, M. A safety engineering framework for open
adaptive systems. (Schneider and Trapp, 2011)

IC1,IC3 CP

S39 Schneider, D. and Trapp, M. Runtime safety models in open systems of
systems. (Schneider and Trapp, 2009)

IC2,IC3 CP

S40 Schugerl, P., Rilling, J., Witte, R. and Charland, P. A quality perspective
of software evolvability using semantic analysis. (Schugerl et al., 2009)

IC2,IC4 CP

S41 Shukla, M. and Asundi, J. Considering emergency and disaster man-
agement systems from a software architecture perspective. (Shukla and
Asundi, 2012)

IC2,IC3 JA

S42 Singh, A. and Dagli, C. H. Multi-objective stochastic heuristic method-
ology for tradespace exploration of a network centric system of systems.
(Singh and Dagli, 2009)

IC2,IC3 CP

S43 Stratton, W., Sibol, D., Lindvall, M., Ackermann, C. and Godfrey, S.
Developing an approach for analyzing and verifying system communica-
tion. (Stratton et al., 2009a)

IC2,IC3 CP

S44 Tsadimas, A., Kapos, G.-D., Dalakas, V., Nikolaidou, M. and Anagnos-
topoulos, D. Integrating simulation capabilities into SysML for enter-
prise information system design. (Tsadimas et al., 2014)

IC1,IC3 CP

S45 Tucker, A. and Dagli, C. Design of experiments as a means of lean value
delivery to the flight test enterprise. (Tucker and Dagli, 2009)

IC2,IC3 JA

S46 Urwin, E., Venters, C., Russell, D., Liu, L., Luo, Z., Webster, D., Hen-
shaw, M. and Xu, J. Scenario-based design and evaluation for capability.
(Urwin et al., 2010)

IC2,IC3 CP

S47 Wada, H., Suzuki, J. and Oba, K. A model-driven development frame-
work for non-functional aspects in service oriented architecture. (Wada
et al., 2008)

IC2,IC4 JA

S48 Walraven, S., Lagaisse, B., Truyen, E. and Joosen, W. Dynamic Compo-
sition of Cross-organizational Features in Distributed Software Systems.
(Walraven et al., 2010)

IC2,IC4 CP

S49 Xia, X., Wu, J., Liu, C. and Xu, L. A Model-Driven Approach for Eval-
uating System of Systems. (Xia et al., 2013)

IC2,IC3 CP

S50 Zafar, N., Arnautovic, E., Diabat, A. and Svetinovic, D. System Security
Requirements Analysis: A Smart Grid Case Study. (Zafar et al., 2014)

IC1,IC3 JA

continued on next page ...

105

APPENDIX A. QUALITY ATTRIBUTES FOR SYSTEMS-OF-SYSTEMS:
SYSTEMATIC LITERATURE REVIEW

Citation IC Type

S51 Zhu, L., Staples, M. and Jeffery, R. Scaling up software architecture
evaluation processes. (Zhu et al., 2008)

IC2,IC4 JA

S52 Zuccato, A. b., Daniels, N., Jampathom, C. and Nilson, M. Report:
Modular safeguards to create holistic security requirement specifications
for system of systems. (Zuccato et al., 2010)

IC1,IC4 JA

A.3 Threats to Validity
The main threats identified to the validity of this SLR are described as follows:

• Missing of important primary studies: the search for studies related to SoS
quality attributes was conducted in several publication databases and search engines.
According to Dybå and Dingsøyr (2008) and Kitchenham and Charters (2007), the
publication databases that were used are the most relevant sources. Aiming at not
missing any important evidence, it was also considered the specialist suggestion and
the related works which were presented in the reference list of the selected primary
studies. In addition, no limit was placed on the date of publications. During the
search, conference papers, journals, and technical reports were also considered. In
spite of the effort to included all relevant evidence in this research, it is possible
that primary studies were missed;

• Reviewers reliability: in this SLR, all reviewers are researchers in the Software
Engineering area. Furthermore, none of primary study was published by research
group or researchers related to the authors of this work. Therefore, the authors
of this work are not aware of any bias that may have been introduced during the
analysis process. However, it might be possible that the conclusion about the studies
evaluated have been influenced by the opinion of the reviewers;

• Data extraction: another threat to this review refers to how the data were ex-
tracted from the primary studies, since not all the information were obvious to an-
swer the research questions and some data had to be interpreted. In order to ensure
the validity of this systematic review, other sources of information were analyzed,
i.e., technical reports, web sites, and manuals, in addition to the primary studies
analyzed. Furthermore, in the event of a disagreement between the reviewers, a
discussion was conducted to ensure that a full agreement was reached; and

• Quality assessment: since the goal of this systematic review was to identify studies
related to SoS quality attributes, no quality assessment was performed, as it might
restrict the number of primary studies included. It is an agreement that a quality

106

APPENDIX A. QUALITY ATTRIBUTES FOR SYSTEMS-OF-SYSTEMS:
SYSTEMATIC LITERATURE REVIEW

assessment can provide more insights and explanations to the conclusion of this
review. Thus, it will be included in a future version of this work.

As it can be observed, the authors of this work are concerned with the validity of
results of this systematic review. In particular, they have dedicated special effort to
completely cover this research area as impartial as possible.

107

C

B
Evaluation of Systems-of-Systems
Software Architectures: Systematic

Literature Review

In order to conduct this systematic review, this work followed the process proposed by
Kitchenham and Charters (2007). In short, this process presents three main phases: (i)
Planning: in this phase, the research objectives and the systematic review protocol are
defined. The protocol constitutes a predetermined plan that describes research questions
and how the systematic review will be conducted; (ii) Conduction: during this phase,
primary studies are identified, selected, and evaluated according to the inclusion and
exclusion criteria previously established. For each selected study, data are extracted and
synthesized; and (iii) Reporting: in this phase, a final report is organized and presented.

B.1 Planning
The main goal of this SLR is to understand how the evaluation of the SoS software
architecture has been performed and which architecture evaluation methods have been
used or proposed for this purpose. In this sense, it is very important to understand how
the quality requirements has been achieved through architectural evaluation and which
are the impacts on the quality of SoS as a whole, considering their different application

108

APPENDIX B. EVALUATION OF SYSTEMS-OF-SYSTEMS SOFTWARE
ARCHITECTURES: SYSTEMATIC LITERATURE REVIEW

domains. Finally, aiming to contribute to the creation of new research perspectives, this
SLR intend to identify the difficulties and challenges of this application context. Thus,
aiming at finding possibly all primary studies to understand and summarize evidences
about SoS software architecture evaluation, the following research questions (RQ) were
established:

• RQ1: How the SoS architecture have been evaluated?

• RQ2: What is the maturity level of SoS architecture evaluation approaches?

• RQ3: How the architecture evaluation contributes for the fulfillment of SoS quality
requirements?

• RQ4: What are the difficulties and challenges in the SoS architecture evaluation?

The search string was defined based on the analysis of the research questions and
calibrated through of a control group consisting of three relevant studies in the research
area: (Gagliardi et al., 2009; Kazman et al., 2012; Xia et al., 2013).

Thus, an initial search string was tested in some of the predefined search bases and
improved until all articles present in the control group were returned. Furthermore,
the keywords to compose the generic search string were selected to cover the largest
number of studies regarding SoS architecture evaluation. Thereafter, the generic search
string was created from the key words: “System-of-Systems”, “Software Architecture”
and “Evaluation” plus their respective synonyms through the use of boolean operators
AND and OR. Thus, the final search string was:

(“system of systems” OR “system-of-systems” OR “systems of systems” OR
“systems-of-systems”) AND (“software architecture” OR “architectural” OR

“architecting” OR “software architectures” OR “nonfunctional requirement”) AND
(“assessment” OR “verification” OR “validation” OR “validate” OR “evaluation” OR

“evaluate” OR “analysis” OR “analyze” OR “validating” OR “analyzing” OR
“evaluating”)

In order to covering the largest number of studies related to SoS architecture evalu-
ation, it was used automatic search in publication databases instead of a limited set of
journals and conferences. The bases used are shown in Table B.1. It is noteworthy that
from the generic string were derived specific strings for each database.

Another important activity of the systematic review planning is to define the Inclusion
Criteria (IC) and Exclusion Criteria (EC). These criteria are used to identify primary
studies that provide direct evidence on the research questions. For this SLR, the following
criteria were defined:

109

APPENDIX B. EVALUATION OF SYSTEMS-OF-SYSTEMS SOFTWARE
ARCHITECTURES: SYSTEMATIC LITERATURE REVIEW

Table B.1: Selected publication databases
Source Location

ACM Digital Library http://dl.acm.org/
IEEE Xplore http://ieeexplore.ieee.org/Xplore/home.jsp

Scopus http://www.scopus.com/home.url
Web of Science http://webofknowledge.com
ScienceDirect http://sciencedirect.com

The inclusion criteria are:

• IC1: Studies that presents some level of evaluation or architectural analysis for
SoS, regardless of the application domain; and

• IC2: Studies reporting difficulties or challenges identified in the SoS architecture
evaluations.

The exclusion criteria are:

• EC1: Duplicated studies;

• EC2: Studies not written in English; and

• EC3: Studies that do not present or describe any architectural evaluation initiative
in the SoS context.

B.2 Conduction
This SLR was conducted by six people: three software engineering researchers, and three
systematic review specialists. The work started in May/2014 and was finalized in Ju-
ly/2014. In this section, the details of the procedures to select the studies are described.

Thereafter the search string calibrated, the search in the publication databases was
performed. The process of identification of primary studies is presented in the Figure B.1.
Initially, it were identified 292 primary studies. However, the research in selected bases
resulted in overlapping studies, which required the exclusion of duplicates through manual
filtering. In this step, remained 176 studies, which were analyzed by reading of title and
abstract and by the application of the inclusion and exclusion criteria. The divergences
between the reviewers were discussed and resolved during this phase. Finally, it were
selected 16 primary studies, which were fully read and submitted to the extraction of
relevant information. Still at this stage, 1 study was excluded because do not presents
an SoS evaluation in the architectural level. Therefore, 16 primary studies were selected
to answer the research questions. The list of selected studies and the main information
extracted are presented respectively in the Table B.2 and Table B.3.

110

http://dl.acm.org/
http://ieeexplore.ieee.org/Xplore/home.jsp
http://www.scopus.com/home.url
http://webofknowledge.com
http://sciencedirect.com

APPENDIX B. EVALUATION OF SYSTEMS-OF-SYSTEMS SOFTWARE
ARCHITECTURES: SYSTEMATIC LITERATURE REVIEW

Figure B.1: Process of primary studies selection

111

A
PPEN

D
IX

B.
EVA

LU
AT

IO
N

O
F
SY

ST
EM

S-O
F-SY

ST
EM

S
SO

FT
W
A
R
E

A
RC

H
IT

EC
T
U
R
ES:SY

ST
EM

AT
IC

LIT
ER

AT
U
R
E

R
EV

IEW
Table B.2: Primary studies selected

ID Author Name Year

E1 Guarinielloa, C. and De-
Laurentisa, D

Communications, information, and cyber security in systems-of-systems: Assessing the impact of
attacks through interdependency analysis 2014

E2 Guarinielloa, C. and De-
Laurentisa, D

Integrated analysis of functional and developmental interdependencies to quantify and trade-off
ilities for system-of-systems design, architecture, and evolution 2014

E3
Fanga, Z., DeLaurentisa,
D. and Davendralingam
N.

An Approach to Facilitate Decision Making on Architecture Evolution Strategies 2013

E4 Ge, B., Hipel, K. W.,
Yang, K. and Chen, Y.

A data-centric capability-focused approach for system-of-systems architecture modeling and anal-
ysis 2013

E5 Xia, X., Wu J., Liu C. and
Xu L. A Model-Driven Approach for Evaluating System of Systems 2013

E6 Chen, H. and Kazman, R Architecting ultra-large-scale green information systems 2012

E7 Kazman, R., Gagliardi,
M. and Wood, W. Scaling up software architecture analysis 2012

E8 Iacobucci. J. and Mavris,
D. A method for the generation and evaluation of architecture alternatives on the cloud 2011

E9

Urwin, E., Venters, C.,
Russell, D., Liu, L., Luo,
Z., Webster, D., Henshaw,
M. and Xu, J.

Scenario-based design and evaluation for capability 2010

E10 Ackermann, C., Lindvall,
M. and Cleaveland, R. Towards behavioral reflexion models 2009

E11 Gagliardi, M., Wood, W.,
Klein, J. and Morle, J. A uniform approach for system of systems architecture evaluation 2009

E12 Michael, J. B., Riehle, R.
and Shing, M. The verification and validation of software architecture for systems of systems 2009

E13 Singh, A. and Dagli, C. H. Multi-objective stochastic heuristic methodology for tradespace exploration of a network centric
system of systems 2009

E14
Stratton, W. C., Sibol, D.
E., Lindvall, M., Acker-
mann, C. and Godfrey, S.

Developing an approach for analyzing and verifying system communication 2009

E15 Zhu, L., Staples, M. and
Jeffery, R. Scaling up software architecture evaluation processes 2008

E16 Oliveira, M. and Pereira,
J. Extensible virtual environment systems using system of systems engineering approach 2007

112

A
PPEN

D
IX

B.
EVA

LU
AT

IO
N

O
F
SY

ST
EM

S-O
F-SY

ST
EM

S
SO

FT
W
A
R
E

A
RC

H
IT

EC
T
U
R
ES:SY

ST
EM

AT
IC

LIT
ER

AT
U
R
E

R
EV

IEW

Table B.3: Summary of SoS architecture evaluation approaches

ID Evaluation Approach Evaluation Phase Methods and
Techniques Validation Quality Attributes Domain

E1 Mathematical modeling Maintenance phase FDNA Proof of concept Reliability, Capability, Operabil-
ity, Security Military

E2 Mathematical modeling Both phase FDNA, DDNA Proof of concept Operability, Flexibility Generic
E3 Mathematical modeling Maintenance phase CPN Case study Performance, Complexity Military
E4 Simulation-based Maintenance phase CPN Proof of concept Generic Generic
E5 Simulation-based Both phase - Case study Performance, Effectiveness Military

E6 Scenario-based Design phase ATAM, CBAM Industry Generic Electric
power

E7 Scenario-based Both phase ATAM, QAW Industry Generic Military
E8 Simulation-based Design phase - Case study Performance Military
E9 Scenario-based Both phase AEF Expert opinion Performance, Survivability, Lethality Military
E10 Mathematical modeling Both phase - Case study Conformity Generic
E11 Scenario-based Both phase ATAM, QAW Proof of concept Generic Military
E12 Mathematical modeling Both phase - No assessment Generic Generic

E13 Mathematical modeling Design phase GA, FIS Proof of concept
Maintainability, Reliability,
Flexibility, Complexity, Afford-
ability

Electric
power

E14 Simulation-based Maintenance phase - Case study Reliability Generic
E15 Scenario-based Design phase ATAM, CBAM Industry Generic Industry

E16 Scenario-based Both phase SAAM Expert opinion Generic Virtual envi-
ronment

113

APPENDIX B. EVALUATION OF SYSTEMS-OF-SYSTEMS SOFTWARE
ARCHITECTURES: SYSTEMATIC LITERATURE REVIEW

B.3 Threats to Validity
The main threats identified to the validity of this SLR are described as follows:

• Missing of important primary studies: the search for studies related to SoS
architecture evaluation was conducted in several publication databases and search
engines. According to Dybå and Dingsøyr (2008) and Kitchenham and Charters
(2007), the publication databases that were used are the most relevant sources.
In addition, no limit was placed on the date of publications. During the search,
conference papers, journals, and technical reports were also considered. In spite of
the effort to include all relevant evidence in this research, it is possible that primary
studies were missed;

• Reviewers reliability: in this SLR, all reviewers are researchers in the Software
Engineering area. Furthermore, none of primary study was published by research
group or researchers related to the authors of this work. Therefore, the authors
of this work are not aware of any bias that may have been introduced during the
analysis process. However, it might be possible that the conclusion about the studies
evaluated have been influenced by the opinion of the reviewers;

• Data extraction: another threat to this review refers to how the data were ex-
tracted from the primary studies, since not all the information were obvious to
answer the research questions and some data had to be interpreted. Furthermore,
in the event of a disagreement between the reviewers, a discussion was conducted
to ensure that a full agreement was reached; and

• Quality assessment: since the goal of this systematic review was to identify studies
related to SoS architecture evaluation no quality assessment was performed, as it
might restrict the number of primary studies included. It is an agreement that a
quality assessment can provide more insights and explanations to the conclusion of
this review. Thus, it will be included in a future version of this work.

As it can be observed, the authors of this work are concerned with the validity of
results of this systematic review. In particular, they have dedicated special effort to
completely cover this research area as impartial as possible.

B.4 Main Results
Although there are several architecture evaluation methods, the scenario-based methods
such as ATAM (Kazman et al., 2000), and SAAM (Kazman et al., 1994), are the most

114

APPENDIX B. EVALUATION OF SYSTEMS-OF-SYSTEMS SOFTWARE
ARCHITECTURES: SYSTEMATIC LITERATURE REVIEW

popular ones and the most used in the industrial context (Babar et al., 2004; Mårtensson
and Tekniska, 2006; Nakagawa et al., 2013). However, these methods still have several
limitations that difficult their application in the SoS context, mainly because they rely
on resources that are not usually available in this context. One of the most critical
limitations is that the reliability of the software architecture evaluation is directly related
the evaluators knowledge in the evaluation method applied, which makes the evaluation
very subjective, and the heavy involvement of stakeholders in the evaluation process
which greatly increases the cost of the evaluation due to the difficulty of meeting a large
numbers of people (Barcelos and Travassos, 2006). These resources are usually unavailable
in the SoS, since the architectural documents are created by different development teams,
from different tools and notations, where there are several stakeholders, geographically
distributed, with competing interests. This scenario makes difficult to focus on quality
attributes and increases the level of complexity, cost and effort required in architecture
evaluation process (Gagliardi et al., 2009).

Aiming to provide an overview about current approaches for evaluating the SoS archi-
tecture, a Systematic Literature Review (SLR) was carried out following the guidelines
established by Kitchenham and Charters (2007). The focus is to understand how the
evaluation of the SoS architecture has been performed, which methods and techniques
have been used and how the SoS quality requirements have been met through architec-
ture evaluation. In addition, we surveyed the difficulties and challenges that are inherent
to SoS evaluation as a way of pointing out new and important research perspectives in the
software architecture area. Overall, 16 primary studies were included in this SLR. The
next section presents the main results obtained in this SLR considering the scope of this
Master’s project. The research protocol (i.e., the process followed for identifying, analyz-
ing, and extracting information from primary studies) and details about the execution of
this SLR are presented in Appendix A. In addition, part of these results can be found in
(Santos et al., 2014).

B.4.1 Evaluation Methods and Techniques
Evaluation of software architectures usually occurs after the design of such architectures
but before implementation starts. Nonetheless, an architecture can be evaluated at any
stage of its life cycle (Clements et al., 2002). In particular, for SoS software architectures,
due to their characteristics, we have observed that most works have proposed application
of evaluation methods in the design phase, as well as in architectures already established,
intending to analyze their flexibility and ability to evolution.

The processes for evaluation of SoS software architectures are typically supported by
different methods and techniques. Usually, they are adapted and enhanced to create a new

115

APPENDIX B. EVALUATION OF SYSTEMS-OF-SYSTEMS SOFTWARE
ARCHITECTURES: SYSTEMATIC LITERATURE REVIEW

proposal for SoS software architectures. Overall, six of the sixteen works propose or use
mathematical-modeling evaluation methods, four works propose or use simulation-based
methods, and six works propose or use scenario-based methods. Among the scenario-based
approaches, ATAM (Kazman et al., 2000) is the most popular one. In our SLR, it was
not observed a convergence in using a specific type of evaluation method. Besides that,
we did not found works that consider experience-based methods for evaluating SoS.

The suitability and viability of the methods and techniques proposed usually have
been assessed through expert opinion and experiences in real projects, proof of concept or
demonstration, case study, and application in industry. It is important to highlight that all
works selected to evaluation in the industrial context proposed the use of scenario-based
evaluation methods. This result shows that these evaluation methods have been well
accepted by industry or at least could be scalable to SoS.

B.4.2 Quality Attributes Commonly Considered
Evaluation methods can either focus on single or several quality attributes. Our re-
sults showed that all proposed scenarios-based methods do not focus on specific quality
attributes. The main reason is that scenarios-based methods usually focus on identify-
ing trade-off among different quality attributes instead of measuring each one. However,
simulation-based and mathematical modeling methods usually focus on one or a few tangi-
ble quality attributes. The most common quality attributes considered by these methods
are reliability, performance, operability, complexity, and flexibility. However, we have
observed that evaluation methods for SoS should take into account several quality at-
tributes. Moreover, these methods should also be able to measure and classify these qual-
ity attributes to support an accurate comparison among architectural alternatives. This
may be possible through the use of simulation-based in combination with scenarios-based
approaches.

Finally, the use of quality models for evaluating SoS architectures would be relevant, as
they would provide standardization for quality attributes of SoS, as well as establishment
of relationships among such attributes. However, none of the works included in our SLR
discusses the use of quality models during architectural evaluation.

B.4.3 Evaluation Challenges
We have also observed that there are several challenges for an adequate evaluation of SoS
software architectures. The following discussion focuses on the main challenges.

The reliability of the communication among constituent systems is an important fac-
tor to the success of SoS (Urwin et al., 2010). According to Stratton et al. (2009b), it is

116

APPENDIX B. EVALUATION OF SYSTEMS-OF-SYSTEMS SOFTWARE
ARCHITECTURES: SYSTEMATIC LITERATURE REVIEW

difficult to ensure reliable communication through an architecture evaluation for several
reasons: (i) constituent systems are usually developed independently by different teams
at different places; (ii) specification of communication requirements is ambiguous; and
(iii) communication issues are often subtle and remain hidden for a long time. Moreover,
the complex interdependencies that exist among constituents make it difficult to foresee
the behavior of SoS due to an unexpected loss of one of their constituents. In the worst
case, SoS could collapse or trigger a cascading failure among their constituents. These
consequences cannot be fully understood through an architectural evaluation of the in-
dependent systems, as SoS require an evaluation of the effect of interdependence among
constituents on the entire system (Guariniello and DeLaurentis, 2014a).

Regarding the evolutionary and decentralized nature of SoS, it becomes difficult to
ensure, for instance, reliability, security, or performance, using architecture evaluation
methods, which focus exclusively on structural characteristics but ignore behavior com-
pliance. This can be a problem, as a simple divergence in the implementation of one of
the constituents often reduces performance and reliability of the entire SoS (Ackermann
et al., 2009; Chen et al., 2012; Zhu et al., 2008).

Finally, an important step to an adequate architectural evaluation involves the iden-
tification of metrics to measure features of systems. However, metrics used to evaluate
individual systems can not directly deal with the characteristics of the SoS (Guariniello
and DeLaurentis, 2014b). This happens because the emergent behavior of SoS usually
cannot be captured and evaluated by evaluation approaches that address the level of
constituent systems (Meilich, 2006).

In summary, the source of challenges and difficulties related to SoS architectures is
mostly due to its emergent behavior that can not be captured and evaluated only through
classical software engineering. The context of SoS difficult the establishment of limits
to the specification and system design to create a set of requirements to be evaluated
(Meilich, 2006).

B.5 Conclusion
Despite the number of initiatives to evaluate SoS software architectures found in the
literature, there is still no consensus on what exactly should be considered during this
evaluation. From our results, we observe that main challenges in the SoS architecture
evaluation are due to the complex interaction among constituent systems and the evo-
lutionary, distributed nature of SoS as well. Therefore, appropriate, scalable evaluation
approaches still need to be developed. Moreover, we envisage that these new approaches
should be able to successfully capture and evaluate the emergent behavior of SoS.

117

APPENDIX B. EVALUATION OF SYSTEMS-OF-SYSTEMS SOFTWARE
ARCHITECTURES: SYSTEMATIC LITERATURE REVIEW

As future work, we intend to continue our investigation on evaluation of SoS archi-
tectures, updating this SLR as well as identifying appropriate architecture evaluation
methods that consider quality attributes usually addressed by SoS. Moreover, we will
investigate alternatives to combine these methods and techniques to reduce the number
of difficulties and challenges that are inherent to this new class of complex, large software
systems.

118

	Abstract
	Introduction
	Motivation
	Objective
	Organization

	Background
	Systems-of-Systems
	SoS Characteristics
	Types of System-of-Systems and Some Examples

	Software Quality Evaluation
	Software Quality Models
	Quality Metrics and Evaluation Techniques
	Quality Evaluation Process

	Quality Attributes for System-of-Systems
	SoS quality attributes and application domains
	Discussion and Evaluation Challenges

	Final Remarks

	Systems-of-Systems Quality Evaluation Model
	Overall Structure
	Establishment of the SoS Evaluation Requirements
	Specification of the SoS Evaluation
	Design of the SoS Evaluation
	Execution of the SoS Evaluation
	Conclusion of the SoS Evaluation
	Final Remarks

	Case Study: Crisis and Emergency Management Domain
	Application Context
	Establishment of the SoS Evaluation Requirements
	Specification of the SoS Evaluation
	Design of the SoS Evaluation
	Execution of the SoS Evaluation
	Evaluation of Mobile Crowdsourcing Solution
	Evaluation of Emergence Response Toolkit
	Evaluation of RESCUER SoS as Independent System

	Conclusion of the SoS Evaluation
	Final Remarks

	Conclusions
	Contribution of this Master's Project
	Difficulties and Limitations
	Future Works

	References
	Appendix Quality Attributes for Systems-of-Systems: Systematic Literature Review
	Planning
	Conduction
	Threats to Validity

	Appendix Evaluation of Systems-of-Systems Software Architectures: Systematic Literature Review
	Planning
	Conduction
	Threats to Validity
	Main Results
	Evaluation Methods and Techniques
	Quality Attributes Commonly Considered
	Evaluation Challenges

	Conclusion

