• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2007.tde-07052008-102458
Documento
Autor
Nome completo
Carolina Yukari Veludo Watanabe da Silva
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2007
Orientador
Banca examinadora
Traina, Agma Juci Machado (Presidente)
Barcelos, Celia Aparecida Zorzo
Goldenstein, Siome Klein
Título em português
Extração de características de imagens médicas utilizando wavelets para mineração de imagens e auxílio ao diagnóstico
Palavras-chave em português
Imagens médicas
Mineração de imagens
Recuperação por conteúdo
Vetor de características
Wavelets
Resumo em português
Sistemas PACS (Picture Archieving and Communication Systems) têm sido desenvolvidos para armazenar de maneira integrada tanto os dados textuais e temporais dos pacientes quanto as imagens dos exames médicos a que eles se submetem para ampliar o uso das imagens no auxílio ao diagnóstico. Outra ferramenta valiosa para o auxílio ao diagnóstico médico são os sistemas CAD (Computer-Aided Diagnosis), para os quais pesquisas recentes mostram que o seu uso melhora significativamente a performance dos radiologistas em detectar corretamente anomalias. Dentro deste contexto, muitos trabalhos têm buscado métodos que possam reduzir o problema do "gap semântico", que refere-se ao que é perdido pela descrição sucinta da imagem e o que o usuário espera recuperar/reconhecer utilizando tal descrição. A grande maioria dos sistemas CBIR (do inglês Content-based image retrieval ) utiliza características primárias (baixo nível) para descrever elementos relevantes da imagem e proporcionar recuperação baseada em conteúdo. É necessário "fundir" múltiplos vetores com uma caracterí?stica em um vetor composto de características que possui baixa dimensionalidade e que ainda preserve, dentro do possível, as informações necessárias para a recuperação de imagens. O objetivo deste trabalho é propor novos extratores de características, baseados nos subespaços de imagens médicas gerados por transformadas wavelets. Estas características são armazenadas em vetores de características, os quais representam numericamente as imagens e permitindo assim sua busca por semelhança utilizando o conteúdo das próprias imagens. Esses vetores serão usados em um sistema de mineração de imagens em desenvolvimento no GBdI-ICMC-USP, o StARMiner, permitindo encontrar padrões pertencentes às imagens que as levem a ser classificadas em categorias
Título em inglês
Feature extraction of medical images through wavelets aiming at image mining and diagnosis support
Palavras-chave em inglês
Content-based retrieval
Features vector
Medical images
Wavelets
Resumo em inglês
Picture Archiving and Communication Systems (PACS) aim at storing all the patients data, including their images, time series and textual description, allowing fast and effective transfer of information among devices and workstations. Therefore, PACS can be a powerful tool on improving the decision making during a diagnosing process. The CAD (Computer-Aided Diagnosis) systems have been recently employed to improve the diagnosis confidence, and recent research shows that they can effectively raise the radiologists performance on detecting anomalies on images. Content-based image retrieval (CBIR) techniques are essential to support CAD systems, and can significantly improve the PACS applicability. CBIR works on raw level features extracted from the images to describe the most meaningful characteristics of the images following a specific criterium. Usually, it is necessary to put together several features to compose a feature vector to describe an image more precisely. Therefore, the dimensionality of the feature vector is frequently large and many features can be correlated to each other. The objective of this Master Dissertation is to build new image features, based on wavelet-generated subspaces. The features form the feature vector, which succinctly represent the images and are used to process similarity queries. The feature vectors are analyzed by the StARMiner system, under development in the GbdI-ICMC-USP, in order to find the most meaningful features to represent the images as well as to find patterns in the images that allow them to be classified into categories. The project developed was evaluated with three different image sets and the results are promising
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
carol.pdf (3.34 Mbytes)
Data de Publicação
2008-05-08
 
AVISO: O material descrito abaixo refere-se a trabalhos decorrentes desta tese ou dissertação. O conteúdo desses trabalhos é de inteira responsabilidade do autor da tese ou dissertação.
  • RIBEIRO, Marcela Xavier, et al. Apoiando a Busca por Conteúdo em Imagens Médicas através da Mineração de Regras de Associação Estatísticas. In II Workshop em Algoritmos e Aplicações de Mineração de Dados, Florianópolis, 2006. Anais do II WAAMD.Porto Alegre : Sociedade Brasileira de Computação, 2006.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.