• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
Documento
Autor
Nome completo
Josenildo de Souza Chaves
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1999
Orientador
Banca examinadora
Rodrigues, Josemar (Presidente)
Achcar, Jorge Alberto
Leite, Jose Galvao
Título em português
Inferência Bayesiana para Dados Clínicos Exponenciais com Variáveis Auxiliares
Palavras-chave em português
Não disponível
Resumo em português
Apresentamos neste trabalho, uma análise bayesiana para dados clínicos exponenciais com variáveis auxiliares. Formulamos uma abordagem bayesiana com densidades a priori informativas, obtidas através das variáveis auxiliares sob o contexto de modelos lineares generalizados, para estimar os parâmetros de interesse, testar o modelo e prever a sobrevivência de pacientes com doenças graves. Diferentes funções de ligações são consideradas. O método que iremos examinar consiste na obtenção de informações a priori para a média das respostas, com correspondentes variáveis auxiliares fixas de modo que se possa induzir uma distribuição a priori sobre os coeficientes de regressão a partir de médias condicionais a priori. Esta abordagem utiliza os algoritmos computacionais do tipo Gibbs Sampling/Metropolis-Hastings e será comparada com a inferência bayesiana exata. Finalizamos com aplicações em dados clínicos exponenciais para pacientes com leucemia utilizando amostras completas e amostras censuradas.
Título em inglês
Not available
Palavras-chave em inglês
Not available
Resumo em inglês
In this work, a Bayesian analysis for the exponential clinica] data with auxiliary variables is presented. This Bayesian approach, with informative priors obtained under the context of generalized linear models with fixed auxiliary variables, is formulated to estimate the parameters of interest, to test models and to predict the survival time of patients with serious diseases. Various link functions are considered. The method that we are going to study consists in obtaining prior information for the response mean corresponding to observable variables with fixed covariates, such that we are able to induce a prior distribution on the regression coefficients. This approach uses Gibbs Sampling/Metropolis-Hastings algorithms and it will be compared with the exact Bayesian inference. We end with applications based on censored and uncensored exponential clinica] data for patients with leukemia diseases.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-03-06
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.