• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
Documento
Autor
Nome completo
Hélio Diniz
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1999
Orientador
Banca examinadora
Carvalho, André Carlos Ponce de Leon Ferreira de (Presidente)
Andrade Filho, Marinho Gomes de
Thomé, Antonio Carlos Gay
Título em português
Integração de Redes Neurais Artificiais & Métodos Estocásticos para Previsão de Séries Temporais
Palavras-chave em português
Não disponível
Resumo em português
Esta dissertação investiga a possibilidade de integração de Redes Neurais Artificiais (RNAs) e Método Estocásticos para previsão de séries temporais. O problema de previsão é geralmente abordado através de Métodos Estocásticos. Ultimamente, as RNAs têm sido muito utilizadas para a construção de previsores não lineares em diferente áreas de aplicações. Contudo, as arquiteturas da RNAs devem também ser parcimoniosas, ou seja, apenas considerar as entradas mais relevantes para realizar uma boa previsão. Assim, várias abordagens vêm sendo propostas para melhorar o projeto de arquitetura em problemas de previsão. Alguns exemplos destas abordagens são a combinação de RNAs e métodos Box 8c Jenkins, as técnicas de seleção usando métodos de poda de RNAs e modelos de RNAs com capacidade de processamento temporal. Além disso, as vantagens particulares dos previsores construídos seguindo tais abordagens podem ser combinadas através de comitês ou combinadores de previsão. Os experimentos desta dissertação foram realizados com dados sobre séries temporais de cotação de moedas e ações.
Título em inglês
Not available
Palavras-chave em inglês
Not available
Resumo em inglês
This work investigates the potential integration of Artificial Neural Networks (ANNs) and Stochastic Methods for time series prediction. The prediction problem is usually solved through stochastic methods. Recently, ANNs have been used in order to create nonlinear predictors in different arcas of application. However, the ANNs architecturcs should also be parsimonious, e. g., they should just consider the most relevant inputs so as to earry out good predietions. Therefore, severa] approaches have been proposed in order to improve the architecture design in this realm. Some examples of those approaches are the combination of ANNs the Box & Jenkins method, the variable seleetion teehniques using pruning methods and ANNs dynamic models with processing temporal skills. Besides, the particular advantages of each individual predictor that are created following those approaches can bc combined through a forecasting committee. The experiments of this dissertation were carried out using real-world data sets of exchange rate and stock markets time series.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
HelioDiniz.pdf (4.99 Mbytes)
Data de Publicação
2018-03-06
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.