• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2018.tde-06032018-104226
Documento
Autor
Nome completo
Estéfane George Macedo de Lacerda
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1999
Orientador
Banca examinadora
Carvalho, André Carlos Ponce de Leon Ferreira de (Presidente)
Braga, Antonio de Padua
Rezende, Solange Oliveira
Título em português
Otimização de Redes Neurais RBF Usando Algoritmos Genéticos e sua Aplicação na Área Financeira"
Palavras-chave em português
Não disponível
Resumo em português
A escolha da topologia de uma Rede Neural RBF é geralmente realizada por tentativa e erro baseado na experiência do projetista. Os algoritmos de treinamento existentes que determinam a topologia da rede utilizam métodos locais, que apresentam uma grande possibilidade de cair em mínimos locais gerando soluções sub-ótimas. Algoritmos Genéticos representam um método de busca global apropriado para encontrar boas soluções em espaços de busca complexos, como o espaço de busca das topologias das Redes Neurais. Este trabalho propõe um Algoritmo Genético para otimizar a topologia de redes RBF limitando o espaço de busca através de uma técnica de aglomeração. Os resultados obtidos sugerem que esta otimização melhora o desempenho de redes RBF em aplicações financeiras.
Título em inglês
Not available
Palavras-chave em inglês
Not available
Resumo em inglês
The choice of the topology of a RBF Neural Network is usually carried out by trial and error based on the designer experience. The most common training algorithms that define the network topology use local methods which have a large possibility of being trapped at a local minima, producing sub-optima solutions. Genetic Algorithms represent a global search method appropriate to find good solutions in complex search spaces, like the space of Neural Networks topologies. This work proposes a Genetic Algorithm for RBF networks optimisation limiting the search space through a clustering technique. The results achieved suggest that this optimisation improves the performance of RBF networks in finance applications.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-03-19
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.