• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2016.tde-06012016-145045
Documento
Autor
Nome completo
Victor Hugo Barella
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2015
Orientador
Banca examinadora
Carvalho, André Carlos Ponce de Leon Ferreira de (Presidente)
Paulovich, Fernando Vieira
Prati, Ronaldo Cristiano
Título em português
Técnicas para o problema de dados desbalanceados em classificação hierárquica
Palavras-chave em português
Aprendizado supervisionado
Classificação hierárquica
Dados desbalanceados
Desbalanceamento de dados
Resumo em português
Os recentes avanços da ciência e tecnologia viabilizaram o crescimento de dados em quantidade e disponibilidade. Junto com essa explosão de informações geradas, surge a necessidade de analisar dados para descobrir conhecimento novo e útil. Desse modo, áreas que visam extrair conhecimento e informações úteis de grandes conjuntos de dados se tornaram grandes oportunidades para o avanço de pesquisas, tal como o Aprendizado de Máquina (AM) e a Mineração de Dados (MD). Porém, existem algumas limitações que podem prejudicar a acurácia de alguns algoritmos tradicionais dessas áreas, por exemplo o desbalanceamento das amostras das classes de um conjunto de dados. Para mitigar tal problema, algumas alternativas têm sido alvos de pesquisas nos últimos anos, tal como o desenvolvimento de técnicas para o balanceamento artificial de dados, a modificação dos algoritmos e propostas de abordagens para dados desbalanceados. Uma área pouco explorada sob a visão do desbalanceamento de dados são os problemas de classificação hierárquica, em que as classes são organizadas em hierarquias, normalmente na forma de árvore ou DAG (Direct Acyclic Graph). O objetivo deste trabalho foi investigar as limitações e maneiras de minimizar os efeitos de dados desbalanceados em problemas de classificação hierárquica. Os experimentos realizados mostram que é necessário levar em consideração as características das classes hierárquicas para a aplicação (ou não) de técnicas para tratar problemas dados desbalanceados em classificação hierárquica.
Título em inglês
Techniques for the problem of imbalanced data in hierarchical classification
Palavras-chave em inglês
Data imbalance
Hierarchical classification
Imbalanced data
Supervised learning
Resumo em inglês
Recent advances in science and technology have made possible the data growth in quantity and availability. Along with this explosion of generated information, there is a need to analyze data to discover new and useful knowledge. Thus, areas for extracting knowledge and useful information in large datasets have become great opportunities for the advancement of research, such as Machine Learning (ML) and Data Mining (DM). However, there are some limitations that may reduce the accuracy of some traditional algorithms of these areas, for example the imbalance of classes samples in a dataset. To mitigate this drawback, some solutions have been the target of research in recent years, such as the development of techniques for artificial balancing data, algorithm modification and new approaches for imbalanced data. An area little explored in the data imbalance vision are the problems of hierarchical classification, in which the classes are organized into hierarchies, commonly in the form of tree or DAG (Direct Acyclic Graph). The goal of this work aims at investigating the limitations and approaches to minimize the effects of imbalanced data with hierarchical classification problems. The experimental results show the need to take into account the features of hierarchical classes when deciding the application of techniques for imbalanced data in hierarchical classification.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2016-01-06
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.