• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.55.2017.tde-05122017-170029
Document
Auteur
Nom complet
Rafael Giusti
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2017
Directeur
Jury
Batista, Gustavo Enrique de Almeida Prado Alves (Président)
Carvalho, Alexandre Plastino de
Quiles, Marcos Gonçalves
Ribeiro, Marcela Xavier
Traina, Agma Juci Machado
Titre en portugais
Classicação de séries temporais utilizando diferentes representações de dados e ensembles
Mots-clés en portugais
Aprendizado de máquina
Classificação de séries temporais
Inteligência artificial
Representação de séries temporais
Séries temporais
Resumé en portugais
Dados temporais são ubíquos em quase todas as áreas do conhecimento humano. A área de aprendizado de máquina tem contribuído para a mineração desse tipo de dados com algoritmos para classificação, agrupamento, detecção de anomalias ou exceções e detecção de padrões recorrentes, dentre outros. Tais algoritmos dependem, muitas vezes, de uma função capaz de expressar um conceito de similaridade entre os dados. Um dos mais importantes modelos de classificação, denominado 1-NN, utiliza uma função de distância para comparar uma série temporal de interesse a um conjunto de referência, atribuindo à primeira o rótulo da série de referência mais semelhante. Entretanto, existem situações nas quais os dados temporais são insuficientes para identificar vizinhos de acordo com o conceito associado às classes. Uma possível abordagem é transportar as séries para um domínio de representação no qual atributos mais relevantes para a classificação são mais claros. Por exemplo, uma série temporal pode ser decomposta em componentes periódicas de diferentes frequências e amplitudes. Para muitas aplicações, essas componentes são muito mais significativas na discriminação das classes do que a evolução da série ao longo do tempo. Nesta Tese, emprega-se diversidade de representações e de distâncias para a classificação de séries temporais. Com base na escolha de uma representação de dados adequada para expor as características discriminativas do domínio, pode-se obter classificadores mais fiéis ao conceitoalvo. Para esse fim, promove-se um estudo de domínios de representação de dados temporais, visando identificar como esses domínios podem estabelecer espaços alternativos de decisão. Diferentes modelos do classificador 1-NN são avaliados isoladamente e associados em ensembles de classificadores a fim de se obter classificadores mais robustos. Funções de distância e domínios alternativos de representação são também utilizados neste trabalho para produzir atributos não temporais, denominados atributos de distâncias. Esses atributos refletem conceitos de vizinhança aos exemplos do conjunto de treinamento e podem ser utilizados para treinar modelos de classificação que tipicamente não são eficazes quando treinados com as observações originais. Nesta Tese mostra-se que atributos de distância permitem obter resultados compatíveis com o estado-da-arte.
Titre en anglais
Time series classification using multiple representations and ensembles
Mots-clés en anglais
Artificial intelligence
Machine learning
Time series
Time series classification
Time series representation
Resumé en anglais
Temporal data are ubiquitous in nearly all areas of human knowledge. The research field known as machine learning has contributed to temporal data mining with algorithms for classification, clustering, anomaly or exception detection, and motif detection, among others. These algorithms oftentimes are reliant on a distance function that must be capable of expressing a similarity concept among the data. One of the most important classification models, the 1-NN, employs a distance function when comparing a time series of interest against a reference set, and assigns to the former the label of the most similar reference time series. There are, however, several domains in which the temporal data are insufficient to characterize neighbors according to the concepts associated to the classes. One possible approach to this problem is to transform the time series into a representation domain in which the meaningful attributes for the classifier are more clearly expressed. For instance, a time series may be decomposed into periodic components of different frequency and amplitude values. For several applications, those components are much more meaningful in discriminating the classes than the temporal evolution of the original observations. In this work, we employ diversity of representation and distance functions for the classification of time series. By choosing a data representation that is more suitable to express the discriminating characteristics of the domain, we are able to achieve classification that are more faithful to the target-concept. With this goal in mind, we promote a study of time series representation domains, and we evaluate how such domains can provide alternative decision spaces. Different models of the 1-NN classifier are evaluated both isolated and associated in classification ensembles in order to construct more robust classifiers. We also use distance functions and alternative representation domains in order to extract nontemporal attributes, known as distance features. Distance features reflect neighborhood concepts of the instances to the training samples, and they may be used to induce classification models which are typically not as efficient when trained with the original time series observations. We show that distance features allow for classification results compatible with the state-of-the-art.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2017-12-05
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2024. Tous droits réservés.