• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2018.tde-04072018-085531
Document
Author
Full name
Gaby Rosa Amaya Robles
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1994
Supervisor
Committee
Rodrigues, Josemar (President)
Arenales, Marcos Nereu
Leite, Jose Galvao
Title in Portuguese
INFERÊNCIA BAYESIANA PARA FUNÇÕES DE PERDAS ASSIMÉTRICAS
Keywords in Portuguese
Não disponível
Abstract in Portuguese
Nesta dissertação, abordamos métodos Bayesianos com funções de perdas assimétricas e simétricas para comparar inferências pontuais em confiabilidade. Os resultados obtidos neste trabalho mostraram que as funções de perdas assimétricas, embora não sejam explicitas em suas soluções, são mais realísticas que as funções de perdas simétricas. A análise Bayesiana para confiabilidade foi feita usando um modelo exponencial e algumas densidades a priori, em particular, a priori não-informativa. Também, desenvolvemos uma Função de Perda Balanceada Ponderada com censura, a qual combina a estatística clássica com a Bayesiana. Os resultados obtidos para a Função de Perda Balanceada Ponderada podem ser de grande interesse prático e metodológico.
Title in English
Bayesian Inference for asymmetric  loss functions
Keywords in English
Not available
Abstract in English
In this dissertation, we approach Bayesian methods with symmetrical or asymmetrical loss fiinctions for comparison of pontual inferences in reliability. The results obtained here show that asymmetrical loss fiinctions are more realistic than symmetrical loss fiinctions. Bayesian reliability analysis using the exponencial model is considered and some prior density fiinctions have been used, in particulary, non-informative priors. Also, it was developed a weighted balanced loss fiinctions with censoring which combine classical and Bayesian statistics. The results obtained for weighted balanced loss fiinctions may be of great practical and methodological interest.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-07-04
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.