• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2001.tde-03052006-093513
Documento
Autor
Nome completo
Katti Faceli
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2001
Orientador
Banca examinadora
Carvalho, André Carlos Ponce de Leon Ferreira de (Presidente)
Araujo, Aluizio Fausto Ribeiro
Ribeiro, Carlos Henrique Costa
Título em português
Combinação de métodos de inteligência artificial para fusão de sensores
Palavras-chave em português
combinação de estimadores
fusão de sensores
Resumo em português
Robôs móveis dependem de dados provenientes de sensores para ter uma representação do seu ambiente. Porém, os sensores geralmente fornecem informações incompletas, inconsistentes ou imprecisas. Técnicas de fusão de sensores têm sido empregadas com sucesso para aumentar a precisão de medidas obtidas com sensores. Este trabalho propõe e investiga o uso de técnicas de inteligência artificial para fusão de sensores com o objetivo de melhorar a precisão e acurácia de medidas de distância entre um robô e um objeto no seu ambiente de trabalho, obtidas com diferentes sensores. Vários algoritmos de aprendizado de máquina são investigados para fundir os dados dos sensores. O melhor modelo gerado com cada algoritmo é chamado de estimador. Neste trabalho, é mostrado que a utilização de estimadores pode melhorar significativamente a performance alcançada por cada sensor isoladamente. Mas os vários algoritmos de aprendizado de máquina empregados têm diferentes características, fazendo com que os estimadores tenham diferentes comportamentos em diferentes situações. Objetivando atingir um comportamento mais preciso e confiável, os estimadores são combinados em comitês. Os resultados obtidos sugerem que essa combinação pode melhorar a confiança e precisão das medidas de distâncias dos sensores individuais e estimadores usados para fusão de sensores.
Título em inglês
Combination of artificial intelligence methods for sensor fusion
Palavras-chave em inglês
estimators combination
sensor fusion
Resumo em inglês
Mobile robots rely on sensor data to have a representation of their environment. However, the sensors usually provide incomplete, inconsistent or inaccurate information. Sensor fusion has been successfully employed to enhance the accuracy of sensor measures. This work proposes and investigates the use of artificial intelligence techniques for sensor fusion. Its main goal is to improve the accuracy and reliability of a distance between a robot and an object in its work environment using measures obtained from different sensors. Several machine learning algorithms are investigated to fuse the sensors data. The best model generated with each algorithm are called estimator. It is shown that the employment of the estimators based on artificial intelligence can improve significantly the performance achieved by each sensor alone. The machine learning algorithms employed have different characteristics, causing the estimators to have different behaviour in different situations. Aiming to achieve more accurate and reliable behavior, the estimators are combined in committees. The results obtained suggest that this combination can improve the reliability and accuracy of the distance measures by the individual sensors and estimators used for sensor fusion.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
dissertacao.pdf (3.47 Mbytes)
Data de Publicação
2006-05-19
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.