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ABSTRACT

FAIÇAL, B. S. The use of computational intelligence for precision spraying of plant protec-

tion products. 2017. 115 p. Doctoral dissertation (Doctorate Candidate Program in Computer
Science and Computational Mathematics) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2017.

Protection management with the aid of plant protection products makes it possible to carry

out pest control programs in agricultural environments and make them less hazardous for the

cultivation of products on a large scale. However, when these programs are put into effect, only

a small proportion of the sprayed products is really deposited on the target area while much

of it is carried to neighboring regions. The scientific literature includes studies on the use of

mathematical techniques to calculate the physical transformation and movement and provide

a deposition estimate of the product. On the basis of this prediction, it is possible to configure

a system which can allow the spraying to be carried out in normal weather conditions in the

region for a satisfactory performance, although these conditions can undergo changes and make

any statistical configuration unreliable. An alternative way of overcoming this problem, is to

adapt the spray elements to the meteorological conditions while the protection management is

being undertaken. However, the current techniques are operationally expensive in computational

terms, which makes them unsuitable for situations where a short operational time is required.

This thesis can be characterized as descriptive and seeks to allow deposition predictions to be

made in a rapid and precise way. Thus it is hoped that the new approaches can enable the

spray element to be adapted to the weather conditions while the protection management is being

carried out. The study begins by attempting to reduce costs through a computational model of

the environment that can speed up its execution. Subsequently, this computational model is used

for predicting the rate of deposition as a fitness function in meta-heuristic algorithms and ensure

that the mechanical behavior of the spray element can be adapted to the weather conditions while

the management is put into effect. The results of this approach show that it can be adapted to

environments with low variability. At the same time, it has a poor performance in environments

with a high variability of weather conditions. A second approach is investigated and analyzed for

this scenario, where the adaptation requires a reduced execution time. In this second approach, a

trained machine learning technique is employed together with the results obtained from the first

approach in different scenarios. These results show that this approach allows the spray element

to be adapted in a way that is compatible with what was provided by the previous approach in

less space of time.

Keywords: Deposition prediction, Agricultural spraying, Precision agriculture.





RESUMO

FAIÇAL, B. S. Utilizando a inteligência computacional para a pulverização precisa de

produtos fitofarmacêuticos. 2017. 115 p. Doctoral dissertation (Doctorate Candidate Program
in Computer Science and Computational Mathematics) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2017.

O manejo de proteção com uso de produtos fitofarmacêuticos possibilita o controle de pragas

em ambientes agrícolas, tornando-o menos nocivo para o desenvolvimento da cultura e com

produção em grande escala. Porém, apenas uma pequena parte do produto pulverizado realmente

é depositado na área alvo enquanto a maior parte do produto sofre deriva para regiões vizinhas.

A literatura científica possui trabalhos com o uso de técnicas matemáticas para calcular a trans-

formação física e movimento para estimar a deposição do produto. Com base nessa predição é

possível configurar o sistema de pulverização para realizar a pulverização sob uma condição me-

teorológica comum na região para um desempenho satisfatório, mas as condições meteorológicas

podem sofrer alterações e tornar qualquer configuração estática ineficiente. Uma alternativa

para esse problema é realizar a adaptação da atuação do elemento pulverizador às condições

meteorológicas durante a execução do manejo de proteção. Contudo, as técnicas existentes são

computacionalmente custosas para serem executadas, tornando-as inadequadas para situações

em que é requerido baixo tempo de execução. Esta tese se concentra no contexto descrito com

objetivo de permitir a predição da deposição de forma rápida e precisa. Assim, espera-se que

as novas abordagens sejam capazes de possibilitar a adaptação do elemento pulverizador às

condições meteorológicas durante a realização do manejo de proteção. Este trabalho inicia com

o processo de redução do custo de execução de um modelo computacional do ambiente, tornando

sua execução mais rápida. Posteriormente, utiliza-se este modelo computacional para predição

da deposição como função Fitness em algoritmos de meta-heurística para adaptar o comporta-

mento do elemento pulverizador às condições meteorológicas durante a realização do manejo.

Os resultados desta abordagem demonstram que é possível utilizá-la para realizar a adaptação

em ambientes com baixa variabilidade. Por outro lado, pode apresentar baixo desempenho

em ambientes com alta variabilidade nas condições meteorológicas. Uma segunda abordagem

é investigada e analisada para este cenário, onde o processo de adaptação requer um tempo

de execução reduzido. Nesta segunda abordagem é utilizado uma técnica de Aprendizado de

Máquina treinada com os resultados gerados pela primeira abordagem em diferentes cenários. Os

resultados obtidos demonstram que essa abordagem possibilita realizar a adaptação do elemento

pulverizador compatível com a proporcionada pela abordagem anterior em um menor espaço de

tempo.

Palavras-chave: Predição da deposição, Pulverização agrícola, Agricultura de Precisão.
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CHAPTER

1

INTRODUCTION

1.1 General Background

The world population has increased rapidly and there has also been a sharp rise in the rate

of this growth. It is estimated that by the year 2100, there will be between 9.6 and 12.3 billion

people living on the planet (GERLAND et al., 2014). Among the various challenges posed by

this growth in population, there is an urgent need to produce and supply food for everybody

(JOHNSON, 2016). However, it is believed that in 2014, approximately 0.8 billion inhabitants of

the world did not have sufficient food and that the food deficit reached an order of 40 million

tons (MARSILY; RIO, 2016).

In light of this, the main exporting countries of agricultural products can be expected

(and have the opportunity) to increase their production, reduce the food deficit and supply food

for everybody. According to FAO Trade and Markets Division (2014), Brazil is one of the largest

producers and exporters of agricultural products in the world. This classification includes it in

the list of countries that have this responsibility.

An alternative way of boosting food production is to make already existing areas of

cultivated land more productive. For this reason, plant protection products (also known as

pesticides) are employed in agricultural management with a view to providing a less adverse

environment for the cultivation of products (WEISENBURGER, 1993; FERREIRA; OLIVEIRA;

PIETRO, 2009; DORNELLES et al., 2011).

In Brazil, Law 7.802, (11th July 1989) (LEI, 1989), defines plant protection products

(pesticides), as follows:

"Products and agents derived from physical, chemical or biological processes, that

are designed for use in the production sectors, storage facilities and for the benefit of

agricultural products, in pasturelands, the protection of forests, (native or planted)



20 Chapter 1. Introduction

and other parts of the ecosystem; and also for use in urban, hydric and industrial

environments, which result in altering the flora and fauna, with the aim of preserving

them from the harmful activities of living beings."

It should be stressed that the unsuitable use of these products, as a result of direct or

indirect contact can cause serious damage to people’s health. Contact with them can lead to a

wide range of illnesses including cancer, respiratory complications and neurological diseases

(WEISENBURGER, 1993). It is estimated that about 2.5 million tons of plant protection products

are employed around the world each year and this figure is rising (PIMENTEL, 1995; TARIQ et

al., 2007). Moreover, it is believed that, on average, less than 0.1% of this amount is enough to

control the pests in cultivated land.

This product is used in plantations by spraying the whole cultivated area. The agricultural

spraying can be defined as a measure to expel or release products on the crops in an agricultural

area (FERREIRA; OLIVEIRA; PIETRO, 2009). This activity is one of the main systems of

management and is aimed at protecting the crops against agricultural pests and other problems

(such as weeds and harmful insects in the crop fields).

Two methods are widely employed for the spraying of plant protection products in

extensive areas (DAVIS; WILLIAMS, 1990; PERECIN et al., 1999; DORNELLES et al., 2011),

namely (i) terrestrial and (ii) aerial . Different aspects of these have been fully investigated in the

scientific literature (WANG et al., 2016; SAHA; PIPARIYA; BHADURI, 2016; GREGORIO et

al., 2016; MINOV et al., 2016; JIAO et al., 2016; SALYANI; CROMWELL, 1992; GHATE;

PERRY, 1994), and include the following: the efficiency of the products employed, the resulting

environmental impact and the effectiveness of the equipment and techniques that are used.

In terrestrial spraying, a vehicle (usually a tractor) enters the plantation and carries out

spraying in the whole of the cultivated area (GHATE; PERRY, 1994; DAVIS; WILLIAMS, 1990;

SALYANI; CROMWELL, 1992). This method can only be undertaken with the aid of tracks

(which may have to be created) to allow the vehicle to pass through the whole stretch of land.

This direct contact between the spray vehicle and the land under cultivation leads to healthy

plants being trampled down. These factors (the presence of tracks inside the plantations and

harmful contact with healthy plants) lead to a reduction of agricultural production.

The other method involves aerial spraying with the use of an aircraft as a vehicle for

transporting the required spraying system . The plane must fly over the whole cultivated area

and release the product in the targeted regions, while seeking to cover the crops with the spray

(JIAO et al., 2016; DAVIS; WILLIAMS, 1990; XIANG; TIAN, 2011; HUANG et al., 2009;

SALYANI; CROMWELL, 1992). If this method is employed, there is no need for tracks inside

the plantation or any form of contact of the vehicle with it. However, there is a greater distance

from the point where the product is released (the spray nozzles) and the plantation than with the

terrestrial method and this causes drift.
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The aircraft often employ an Ultra-Low Volume (ULV) system for the application of a

greater volume of pesticides in a more versatile manner than the traditional spraying systems,

when in ideal conditions (PIMENTEL, 1995). However, in this scenario, only a small amount of

the pesticide reaches the targeted crop field, while the rest is carried outside the targeted areas

by the weather conditions (PIMENTEL, 1995). The evidence of the plant protection products

leading to drift, is usually found at a distance of 48 to 800 m from the targeted field; however,

this distance can reach 5 to 32 km, if it is in the direction of the wind (PIMENTEL, 1995).

There has been a notable rise in the use of autonomous vehicles (regardless of whether

they are terrestrial or aerial) and these are aimed at increasing the precision of the activities

and the duration of the procedure, without affecting the length of time spent each day by the

operatives. These vehicles also help to reduce the number of failures caused by human error

because they are fitted with a Global Positioning System (GPS) which provides precise navigation

and prevents the workers from suffering fatigue as the result of a long day’s work. One of the

wide range of autonomous vehicles which is under investigation is the Unmanned Aerial Vehicle

(UAV) which is used for the spraying of plant protection products (QIN et al., 2016; PEDERI;

CHEPORNIUK, 2015; ZHU et al., 2010; HUANG et al., 2009). Currently, it is estimated that

approximately 40% of the rice fields in Japan are sprayed by means of these aircraft (PEDERI;

CHEPORNIUK, 2015). One of the benefits of these types of aircraft is that they are able to

strengthen environmental protection management because they do not have a pilot on board and

can be remotely controlled by a professional.

In both spraying methods (terrestrial and aerial), the distance between the spray release

bar and the plantation, means that there can be drift outside the targeted region which can cause

an overlay of the product on plantations which do not require coverage. For this reason, it is

essential to know (and be able to handle) the vehicle correctly, as well as the spraying equipment,

so that the product can be applied properly (FERREIRA; OLIVEIRA; PIETRO, 2009). For

example, the Coefficient of Variation (CV) is one of the instruments used to estimate the most

suitable distance between the nozzles in the spray bar. Different distances between these elements

can provide overlapping patterns of varied uniformity and this has a direct influence on the

variability of the coverage. There have been several studies that suggest different values for this

coefficient depending on the type of product being employed (PERECIN et al., 1998; PERECIN

et al., 1999; SMITH, 1992; WOLF; SMITH, 1979).

The distance between the spray bar and the plantation is not the only factor related to

the drift of the product. Several other factors influence the trajectories of the droplets before

they reach the plantation(SALYANI; CROMWELL, 1992; WANG et al., 2014; RU et al., 2014;

DORUCHOWSKI et al., 2013; NUYTTENS et al., 2011), such as the speed and direction of the

wind, humidity, temperature, the size of the droplets, the speed of the vehicle and the volume

being sprayed.
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1.2 Motivation

Despite advances made by the scientific community, the problem of the drift of plant

protection products outside the region, remains one of the main challenges in agricultural spraying

(NUYTTENS et al., 2011; CUNHA, 2008; CUNHA; REIS; SANTOS, 2006; CUNHA, 2009),

since it is regarded as one of the main causes of environmental contamination by agricultural

products (FERREIRA et al., 2011). As a result, this issue has been the object of a number of

studies by the scientific community, which are all aimed at reducing the damage caused to the

flora and fauna and boosting the production of agricultural land (NUYTTENS et al., 2011;

DORUCHOWSKI et al., 2013; SALYANI; CROMWELL, 1992; GHATE; PERRY, 1994; JIAO

et al., 2016; MINOV et al., 2016; GREGORIO et al., 2016).

FRIEDRICH, RAETANO and ANTUNIASSI (2004) estimates that approximately 50%

of pesticide sprays are wasted because they are applied in an unsuitable way. CUNHA, TEIX-

EIRA and VIEIRA (2005) states that a good result in the spraying of plant protection products

(i.e. a low deposition rate), can only be achieved if one knows the nature of the product and

carries out practices that are suited to the products and crops that will be sprayed.

In an attempt to mitigate the harmful effects of these products and carry out spraying

with greater precision, several studies have been conducted with computational simulations and

mathematical models. The purpose of these is to estimate the movement and respective changes

of each of the droplets of the sprayed product. These studies have the potential to estimate the

spray drift in controlled environments (SALYANI; CROMWELL, 1992; DEVARREWAERE et

al., 2016; DORUCHOWSKI et al., 2013; BAETENS et al., 2007).

There are two approaches that stand out in this area (HALLMANN; SCHEURLEN;

WITTIG, 1993; BAETENS et al., 2007; DEVARREWAERE et al., 2016), namely those of: (i)

Euler and (ii) Lagrange. It should be noted that in some studies a hybrid Eulerian-Lagrange

approach is adopted which is based on a statistical description of the dispersion phase in terms of

a stochastic process. This is where the particle is attached in a Eulerian statistical representation

of the fluid transport phase (SUBRAMANIAM, 2013).

Although good results can be obtained through these approaches (GRIFOLL; ROSELL-

LLOMPART, 2012; GUO; FLETCHER; LANGRISH, 2004; NIJDAM et al., 2006a; NIJDAM et

al., 2006b), the models that are based on them are expensive to put into effect in computational

terms (GRIFOLL; ROSELL-LLOMPART, 2012). The reason for this is that these mathematical

models require complex calculations to be made for each droplet at every moment, until the

plantation is reached or some final state is satisfied (for example, the complete evaporation of the

droplet). As is well known, this approach leads to a huge number of calculations being produced

during the numerous iterations that are needed to reach a condition of closure, which causes a

considerable delay to the operation.

Owing to the computational costs of these approaches, caused by the number of calcula-
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tions made by the mathematical models, it is not applicable them in real-world environments

when managing the cultivation. This is because the calculation of a particular area can only be

finalized after it has already been sprayed. For example, there is a clear need for autonomous

vehicles to be adapted to the environmental conditions while the product is being applied. In this

way, the vehicle can adjust the spraying configurations to the weather conditions with the aim of

reducing the errors in the deposition.

1.3 Research Objective

The aim of this thesis is to allow a rapid and efficient prediction of the deposition of plant

protection products. This is to ensure that they can be used during the protection management so

that the mechanical behavior of the spray element (i.e. the vehicle fitted with a spraying system)

can be adapted to the weather conditions with a view to reducing the drift of these products while

the crops are being sprayed. This is because the drift is mainly caused by unsuitable spraying

being carried out in an environment with adverse weather conditions. The spraying element must

be able to operate in a suitable way in adverse weather conditions to ensure precision. It should

be noted that since there are constantly shifting weather patterns in the environment, the spray

element must be able to determine the weather conditions and make constant adjustments during

the protection management so that it can act with greater efficiency.

The nature of the locality and the concentration of the spray product must be estimated

in a rapid and precise way for this adaptation to be feasible. The estimate of the deposition must

be carried out at great speed so that it can be put into effect during the activity. At the same time,

accuracy is an essential feature because it has a direct influence on the decisions made by the

system.

Computational Intelligence (CI) can be defined as a methodology for computing which

provides a system with the capacity for learning and dealing with new situations, since it has one

or more reasoning attributes such as generalizing, discovery, combination and abstraction. In

other words, CI includes practical adaptation and the self-organization of concepts, paradigms,

algorithms and implementations that can enable suitable activities to be carried out (i.e. intelligent

behavior) in complex and constantly shifting environments (EBERHART; SHI, 2011).

The use of CI concepts allows the computational system of the spray element to adapt

to shifting patterns in the environment which are constantly taking place. Thus the computa-

tional element must identify the weather conditions of a particular environment and adapt its

configurations so that the lowest possible rate of drift will occur.

The combination of the dynamic features of the weather conditions with the compu-

tational costs incurred for estimating the deposition of spray products, poses a considerable

challenge for this thesis. Initially, a trade-off was made to overcome this problem by seeking

acceptable solutions while undertaking the management. This process is carried out in the
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maximum time possible (which is pre-defined) and in the end, the best solution that is found is

used. In other words, the cultivated land is divided into strips for spraying and these strips are

subdivided into regions of interest (referred to in this work as sub-area). While the spray element

operates in the sub-area, this subdivision allows the computational system to be more suitably

adapted to the nearest sub-area. This search is carried out while the whole of the current sub-area

is being sprayed and allows the configurations of the spray element to be updated in the period

of time preceding the beginning of the operation in the new sub-area.

A meta-heuristic algorithm is used for this method, together with a computational model

for management that is designed to seek solutions that allow an adaptation to be made involving

a reduction in the estimated error rate. The representation of this model is directed at the next

subarea that will be sprayed without the use of stochastic variables, since it is believed that

this is the most accurate comparison, of the solutions assessed by the meta-heuristic algorithm.

Moreover, the fitness function of each solution is calculated on the basis of the concentration of

the product deposited outside the targeted area, including the areas nearby.

The fitness function described here is based on the concept of a set of basic features

(JAKOBI; HUSB; HARVEY, 1995; GO; BROWNING; VELOSO, 2004), the minimum use of

which have an impact on the relationship between the real world and computed environment. In

other words, only factors of great significance are included in the design of the model. The use

of the minimum number of factors from the real world, reduces the use of computing resources

and speeds up the search for acceptable solutions.

A second approach investigated in this thesis adopts a previous approach to find solu-

tions (or rather, configurations for adaptation) for different weather conditions before the data

protection management system is put into effect. These solutions are employed as a knowledge

base for training an Artificial Neural Network (ANN) with the aim of provide replies similar to

those generated by the meta-heuristic algorithm. The ANN incurs lower computational costs

when it is being used during the management of the crops and this allows the configurations to

be updated in shorter spaces of time.

The results obtained from both approaches show that if the spray element is adapted to

the weather conditions, it will lead to an increase in the precision of the protection management,

and thus reduce the drift of plant protection products to neighboring areas. Both approaches

proved to be efficient for the purposes of this thesis and succeeded in adapting the mechanical

behavior of the spray element to the weather conditions during the spraying. However, the

second approach allows the adaptation to be faster and at the same time more efficient, during

the management which suggests that it is a more promising method for use in a real-world

environment.
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1.4 Structure of this thesis

This thesis is written as a collection of papers. All articles have the author of this thesis

as the first author and are originated from the studies carried out in this work.

Chapters of this thesis are structured in the following way: after this section, in Chapter 2,

the description of the studies for the development of originating articles in this thesis is presented.

Chapter 3 contains the article on the validation of the spray platform used as a case study in

this thesis. Research on possible approaches to adjust spray element settings starts in Chapter 4,

where the article that evaluates the feasibility of using meta-heuristics algorithms in this context

is presented. Subsequently, the paper presented in Chapter 5 proposed a system for adapting the

spray element configuration and assesses their effectiveness in spraying. In Chapter 6 (Article

under review), we conducted a thorough study to investigate the use of different meta-heuristic

algorithms in the previously proposed system. A second approach is investigated in Chapter 7

to achieve adaptation behavior more quickly than that provided by the prior approach. Finally,

Chapter 8 describes the conclusions reached after carrying out this thesis and makes suggestions

for further studies that can complete the work on this field.
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CHAPTER

2

BACKGROUND

At the outset, the article with the title The use of unmanned aerial vehicles and wireless

sensor networks for spraying pesticides (FAIÇAL et al., 2014b) (see Chapter 3) is mentioned as

the point of departure for this research study. In this article, a platform is designed that consists

of a UAV and a Wireless Sensor Network (WSN) for spray products. The WSN is installed inside

the plantation in the form of a matrix and this will receive the plant protection products by means

of the spraying carried out by the UAV. During the whole procedure, the UAV maintains active

communication links with the WSN which is used to pick up information about the deposition of

the spray product and the weather conditions of the region (for example the speed and direction

of the wind). If there is an imbalance between the readings carried out by the pairs of sensor

nodes in the upper layer and the previously defined threshold, the computational system of the

UAV will adjust its route to the flight so that it can maintain the correct balance for the deposition

of the product. The published results show that the degree of precision achieved in the spraying

with the proposed platform is higher than the spraying carried out with a traditional model (and

without any adjustment to the route).

The study undertaken in this article is geared to validating the platform, as the starting-

point of the thesis. This platform is essentially designed to be autonomous so that it is able to

take previously-defined corrective measures . It should be stressed that the automaticity of this

platform derives from its capacity to carry out the spraying without being controlled by a human

being. However, the mechanical behavior of the platform does not allow it to adjust to alterations

in the weather conditions of the region. As already stated, this gap is effectively filled by this

thesis which uses this platform as a case study that can enable its methodology to be transferred

to other approaches.

As the research progressed, it was found that the image intensity to which the UAV

routes were adjusted, had an influence on the precision of the spraying. In other words, the image

intensity that allowed the route to be well adjusted to particular weather conditions, did not have

the same degree of efficiency in different situations. As a result, there was an investigation of the
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use of meta-heuristic algorithms combined with the concepts of Evolutionary Computing (EC)

and Swarm Intelligence (SI) with a view to finding more efficient adaptive intensity corrections

of the route for the weather conditions. The article Exploiting Evolution on UAV Control Rules

for Spraying Pesticides on Crop Fields (FAIÇAL et al., 2014) (see Chapter 4), published the

initial results of this study, where the feasibility of using these techniques for this objective is

analyzed. This means determining if these techniques can converge and provide a satisfactory

response in a timely manner. Subsequently, the article Fine-tuning of UAV control rules for

spraying pesticides on crop fields (FAIÇAL et al., 2014a) (see Chapter 5) broadened the inquiry

and assessed the effectiveness of using meta-heuristic algorithms to find intensity corrections

of the route and thus provide greater precision in every kind of weather condition. The results

achieved show that the use of an adaptive intensity for the weather conditions led to more precise

spraying and reduced the amount of drift of the spray product to neighboring regions. These

results can be seen as strong indications that the adaptation of the mechanical behavior of the

spray element to the weather conditions, can bring about a more precise kind of protection

management.

In the work undertaken, there is also a description of the methodology employed for the

adjustment of the mechanical behavior of the spray element. A simplified computing model is

used for estimating the deposition of the spray product. The deposition is represented in a matrix,

the size of which is proportional to the targeted area of the product. The strip of land that the

UAV must fly over to carry out the spraying is divided into targeted sub-areas which are used

to make the adjustment. It should be emphasized that the adjustment is made in parallel with

the original operation of the platform. In view of this, only the methodology employed for the

recommended adjustment uses the view of the targeted subareas, whereas the UAV keeps to its

task of carrying out the spraying in a previously defined track.

The methodology for adjustment employs a computing model to estimate the deposition

of the plant protection products inside the next targeted sub-area, on the basis of the flight

parameters, the weather conditions and the dispersion model. This means that, while the UAV

sprays the region corresponding to a sub-area, the methodology of adjustment is employed with

the aim of improving the performance of the spray element for the next sub-area. At this stage,

a meta-heuristic algorithm interacts with the computing model to find an image intensity that

provides a greater degree of accuracy for the deposition of the product in the next sub-area. If

one kind of intensity proves to be more efficient, the configuration of the UAV is upgraded at

the time of transition between the sub-areas. In this way the mechanical behavior of the spray

element can be adjusted to the weather conditions collected by the sensors from the targeted

sub-area in the recent past.

It should be underlined that the track that is covered by each particle of the spray product

is calculated on the basis of a dispersion model implemented in the computing model. These

calculations are only applied to the particles that remain in the environment represented by the
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computing model (which includes a 3-dimensional representation), until they reach the plantation.

This feature assists in reducing the computational costs that are required to estimate the extent

of the deposition. In addition, the computing model that is employed does not make use of

stochastic variables to make an exact comparison between the various image intensities that are

assessed.

This approach was broadened in the article: An adaptive approach for UAV-based

pesticide spraying in dynamic environments (FAIÇAL et al., 2016a) (see Chapter 6) which

is currently being revised, and which can be outlined as follows: (i) investigations with four

meta-heuristic algorithms (Simulated Annealing, Hill Climbing, Particle Swarm Optimization

and Genetic) which are aimed at finding a technique that shows the best results for making the

mechanical behavior of the spray element suitable for the weather conditions , (ii) a system is put

forward for implementing the methodology outlined in Faiçal et al. (2014a) and (iii) there is an

investigation of the possibility of putting this approach into effect in a computational component

that is fitted on board of the aircraft.

The configurations of the algorithms that were evaluated were defined by the GridSearch

technique with a view to reducing the possible interference caused by the empirical configuration

parameters. The GridSearch technique undertakes a search which is guided by predefined

parameters and a suitable configuration within the search space which is also predefined. On

making a determined convergence, the configuration stage is finalized and the algorithms are

evaluated with their respectively defined configurations, in an individual way. The configuration

for the PSO algorithm, set out in Faiçal et al. (2014a), was not recommended by the GridSearch

technique but was included in the experiments of this study, because it is concerned with a

solution that is found in the literature and employed as a basis for evaluation.

The results published in this article show that the GA achieved a more stable execution

than the other techniques (100% of convergence for an intensity range that ensured a lower error

rate). Although the proposed system was expensive to put into effect in the aircraft itself, the

ground control station can be used as a center for processing the way it is carried out. Despite

the fact that the results showed an increase in the precision of the spraying, this system is

ideally suited for environments where there is little variability in the weather conditions. This

means that this approach cannot lead to a satisfactory performance in environments where the

weather conditions are subject to constant alterations. In this scenario, the defined intensity

cannot be more suitable when the UAV begins the spraying in the next targeted sub-area, even if

meteorological information about the recent past is provided.

As a means of finding a possible way of overcoming this obstacle, the use of a trained

ANN was investigated with results (intensity corrections for the route) obtained from the meta-

heuristic algorithm in different weather conditions. This approach is described in the article

Fine-Tuning of UAV Control Rules for Spraying Pesticides on Crop Fields: An Approach for

Dynamic Environments (FAIÇAL et al., 2016b) (see Chapter 7). The reason why the ANN
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technique was chosen for this investigation, is that it has a capacity for interpolating satisfactory

data. This allows appropriate intensities to be recommended for unknown weather conditions

(and not used during the training stage). The generation of the knowledge base and training stage

are carried out before the management protection begins. At the same time, the trained ANN is

used during the spraying to allow a faster execution than was provided by the previous approach.

The published results show that the trained ANN is able to recommend results that are

similar to those found in the meta-heuristic algorithm where there is less time for execution.

This mechanical behavior allows an intensity correction of the upgraded route to be constantly

maintained in environments where there are often changes in the weather conditions.

Finally, it is emphasized that the results obtained with this thesis were highlighted in the

article The use of autonomous UAVs to improve pesticide application in crop fields (FAIÇAL;

UEYAMA; CARVALHO, 2016) presented in the 1st Workshop on High Velocity Mobile Data

Mining (an event forming a part of the 17th IEEE International Conference on Mobile Data

Management), see Appendix A.
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a b s t r a c t

The application of pesticides and fertilizers in agricultural areas is of crucial importance for crop yields.
The use of aircrafts is becoming increasingly common in carrying out this task mainly because of their
speed and effectiveness in the spraying operation. However, some factors may reduce the yield, or even
cause damage (e.g., crop areas not covered in the spraying process, overlapping spraying of crop areas,
applying pesticides on the outer edge of the crop). Weather conditions, such as the intensity and direction
of the wind while spraying, add further complexity to the problem of maintaining control. In this paper,
we describe an architecture to address the problem of self-adjustment of the UAV routes when spraying
chemicals in a crop field. We propose and evaluate an algorithm to adjust the UAV route to changes in
wind intensity and direction. The algorithm to adapt the path runs in the UAV and its input is the feed-
back obtained from the wireless sensor network (WSN) deployed in the crop field. Moreover, we evaluate
the impact of the number of communication messages between the UAV and the WSN. The results show
that the use of the feedback information from the sensors to make adjustments to the routes could sig-
nificantly reduce the waste of pesticides and fertilizers.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Unmanned aerial vehicles (UAVs) have become cheaper be-
cause many control functions can now be implemented in software
rather than having to depend on expensive hardware. This has al-
lowed single or multiple UAVs to be employed for real-world appli-
cations. The UAVs very often require a means of communication so
that they can communicate with on-land computers, sensors or
other UAVs. As most of the research with UAVs is still in its initial
stages, there are a number of open questions that need solving, like
mapping and localization schemes [33], route planning [29], coor-
dination and task allocation [30,28] and communication issues [6],
among others.

In this paper, we propose an architecture based on unmanned
aerial vehicles that can be employed to implement a control loop
for agricultural applications where UAVs are responsible for spray-
ing chemicals on crops. The process of applying the chemicals is
controlled by means of the feedback from the wireless sensor net-
work which is deployed at ground level on the crop field. Further-
more, we evaluate an algorithm to adjust the UAV route to changes
in the wind (intensity and direction) and the impact caused by the
number of messages exchanged between the UAV and the WSN.
The information retrieved by the WSN allows the UAV to confine
its spraying of chemicals to strictly designated areas. Since there
are sudden and frequent changes in environmental conditions,
the control loop must be able to react as quickly as possible.

The information retrieved by means of the WSN provides the
UAV with knowledge of the position and amount of chemicals de-
tected by every sensor of the crop field. However, after the applica-
tion of the chemicals by the UAV, some areas of the crop may not
have a sufficient amount of chemicals; the reason for this is the
high speed of the UAV and even though the controls allow the
UAV to adjust to sudden random changes of wind as quickly as

http://dx.doi.org/10.1016/j.sysarc.2014.01.004
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possible, this might not be enough to maintain a perfect lane. As a
result, what happens is that we might have some clusters without
the correct amount of chemicals being dispersed. Hence, in this pa-
per we also show how to build a chemical concentration map using
the data provided by the WSN. The purpose of this is to show clus-
ters where there is an insufficient application of chemicals and the
map might be used to perform new UAV applications in designated
areas. We show how to build these maps using Instance-Based
Algorithms [2] and Density-Based Algorithms [20].

This paper is an extended version of a previous study [10]. It
aims to describe the methodology that is employed in a more thor-
ough way, conduct new experiments and discuss the new obtained
results. Furthermore, we describe how a chemical concentration
mapping can be carried out by using the data obtained from the
WSN and we present evaluations with real hardware, where we
measure the communication time between the UAV and a ground
sensor employing XBee-PRO Series 2.

This paper is structured as follows: in Section 2 we discuss re-
lated work on mobile ad hoc network routing protocols and coop-
erative sensing. Section 3 outlines the proposed method, by
describing the proposed system architecture and the details of its
development. Section 4 describes the evaluation of all the con-
ducted experiments, the first for the UAV route adjustment, the
second for building the chemicals concentration maps (clusters)
and the third for the evaluations employing real hardware. The fi-
nal section concludes the paper and offers some future
perspectives.

2. Related work

2.1. Routing protocols

Mobile ad hoc network (MANET) routing protocols can be di-
vided into a few main groups: (i) flat proactive routing, (ii) on-de-
mand reactive routing, (iii) hybrid schemes, (iv) geographical
routing and (v) opportunistic routing. Proactive (table-driven) ad
hoc routing protocols maintain their routing information indepen-
dently of communication needs. Status update messages are sent
periodically or when the network topology has changed. Thus, a
source node gets a routing path immediately if it needs one. This
results in low latency and makes them suitable for real-time traffic.
When they use proactive routing protocols, nodes proactively up-
date their network state and maintain a route regardless of
whether data traffic exists or not. The main drawback of these
routing protocols is the high overhead they need to keep the net-
work topology information up-to-date. All the nodes require a con-
sistent view of the network topology.

Reactive (on-demand) routing only establishes routes if they
are required. This saves energy and bandwidth during periods of
inactivity. It should be noted that a significant delay may occur
as a result of the on-demand route discovery. Compared to proac-
tive ad hoc routing protocols, one advantage of reactive routing
protocols is the lower overhead control. Furthermore, reactive
routing protocols have better scalability than proactive routing
protocols in MANETs. One drawback is that reactive routing proto-
cols may experience long delays for route discovery before they
can forward a data packet. Reactive protocols perform well in
light-load networks.

Geographical routing protocols assume that a source knows its
position and can determine the position of the destination. More-
over, each node knows its neighbors’ positions. In comparison with
flooding-based approaches, geographical routing has a reduced
overhead for route discovery. Geographical routing protocols only
require neighbor information containing their location to route
packets and do not need to maintain per-destination information.

Most geographical routing protocols use greedy forwarding as
the main method to select the next hop. In order to avoid dead-
ends in the routing path, face-routing has been proposed to route
around a void.

Opportunistic routing [7,35,27] assumes that an end-to-end
communication path may frequently be disrupted or may not exist
in a MANET at any time. The routing mechanism forwards the mes-
sage towards the destination on a hop-by-hop basis and the next
hops are selected according to protocol-specific characteristics.
This means that it is not essential to have a stable end-to-end con-
nection from the data source to the destination. The packets are
forwarded even though the topology is continuously changing.

2.2. Cooperative sensing

Wireless Sensor Networks are networks composed of several
wireless nodes. These nodes are often deployed near or inside envi-
ronments or phenomena with the aim of sensing/obtaining infor-
mation about it. The information is then routed to a command
center, where the data can be examined and appropriate action
can be taken [9]. According to [3], those nodes are small embedded
systems with the three following components: (i) mote, that is the
main component of the sensor node, it is able of communicate
wirelessly and should be programmable. Traditionally they are
composed of a microcontroller, a radio and an energy source; (ii)
a set of sensors, whose objective is to sense the environment and
collect data (i.e., temperature, humidity); and (iii) data interface,
that can be a USB or a serial port, used to connect the mote to a
computer so that it can be programmed. Some motes allow this
by means of the wireless interface.

One major issue when dealing withWSN is the limited source of
energy, which is normally provided by batteries. Although the bat-
teries can be changed, this can be dangerous for human beings as
the sensor nodes might be installed in hazardous environments
(i.e., volcanoes, chemical/nuclear affected areas). Furthermore,
changing batteries is expensive (and requires both human and
financial resources). Some techniques can be employed to increase
the lifetime of the nodes. The first of these is the on–off behavior,
i.e., the sensor nodes turn off some components to save energy. The
best component to turn off is the radio, because it is the compo-
nent which uses most energy [24]. This procedure makes the sen-
sor node unreachable for some time, so the communication
protocols used by the WSN must be aware of it. The second tech-
nique seeks to enhance the lifetime of the WSN by using limited
radios (low power and bandwidth) because it requires less energy.
As a result, the nodes can only communicate with the nearest
neighbors. Hence, to send any information from the WSN to a
base-station, the message must be routed via several nodes. This
method is called multi-hop communication.

The cooperation of several types of nodes in a WSN application,
including static and mobile nodes, can be seen in the work by
Erman et al. [14]. They have established a platform of heteroge-
neous wireless sensor nodes with the objective of sensing and
monitoring fires in buildings. They propose to deploy nodes inside
a building where each node is capable of detecting the temperature
of the room. When a fire is detected by the WSN, an UAV is called
to fly near the fire and to deploy more sensors, and thus gather
more information. When the fire-fighters arrive in the building,
they wear a so-called Body Area Network so that they can receive
the information from the nodes and also collect information
required for the protection of the fire-fighters, such as body
temperature and concentration of CO2 near their mask.

Another project that relies on the cooperation of different types
of nodes can be seen in the work by Valente et al. [31], where it is
proposed the deployment of sensors in several vineyards to collect
information about factors such as temperature and humidity.
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Initially, the collected data were routed to a command center, but
as the vineyards are more than 70 m away from each other, they
could not exchange the data. The authors tried to use more power-
ful radios, but this led to excessive battery consumption and the
life-cycle of the WSN was drastically reduced. In light of this, the
solution was to use an UAV to fly over the vineyards and gather
data when the farmer needs it. Following this, the UAV comes back
to the command center and the data is sent to a Graphical User
Interface system where the farmer can visualize the information
about the vineyards and determine the parameters of the watering
system.

3. Our approach to spraying pesticides

3.1. UAVs for agricultural application

Fig. 1 shows the application scenario outlined in this paper. The
current scenario has one UAV and n ground sensors. A UAV is used
to spray chemicals on an agricultural field. However, the neighbor-
ing field, which may belong to another owner or be a protected
area, must not be sprayed. Moreover, the UAV must keep to its
lane of operation (i.e., within the boundary). If the UAV used for
spraying comes too close to the neighboring field, or if there is a
sudden change in the direction of the wind, the chemicals might
fall on the neighboring field and this must be avoided. We propose
that the UAV gets information from the WSN deployed in the crop

field so that it is able to make the necessary adjustment to the
trajectory. If a sensor detects an excessive concentration of chem-
icals, the UAV doing the spraying will be guided away from the
border.

The proposed algorithm to adjust the UAV route can be under-
stood with the aid of Fig. 2. Periodically, the UAV broadcasts mes-
sages to the sensors in the field to determine the amount of
chemicals being perceived. If the sensor receives the message, it re-
sponds with a message reporting the amount of measured chemi-
cals and its position. On the basis of this information, the UAV can
make a decision about whether to change its route or not. The
route is changed when the amount of chemicals perceived by the
sensor does not match that of the proposed threshold (each type
of chemical must have its own threshold).

An algorithm that requires the sensor nodes to be distributed in
the form of a matrix is used to improve the application of the pes-
ticides during the spraying. Fig. 2 shows the flowchart with the
rules for changing the route; (1) Periodically, the algorithm sends
a message to make queries to the sensor nodes which are scat-
tered on the field. The sensor nodes located at the previous posi-
tion of the UAV respond to this message with information about
the amount of pesticides. (2) With this information, the UAV cal-
culates the difference in the concentration of pesticides between
each sensor node (left and right). (3) If the difference is greater
than a predefined threshold, the algorithm calculates the route
change, otherwise it continues in the pre-defined route and waits
for the next query. This threshold may be different for each type of

Fig. 1. Sample of application scenario.
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pesticide, so it should be predefined. (4) The dynamics of this solu-
tion are revealed by calculating the time that the UAV remains
with the changed route before returning to the initial path of
the UAV. This computation is based on the difference between
the samples and the change in the predefined factors (along with

the threshold). (5) The track angle of the initial direction is stored
and (6) a trajectory change is performed by the algorithm. The
route change consists of turning the UAV at an track angle of 45
degrees to the side where there is less concentration of pesticide.
(7) At the end of the predetermined time required for the algo-
rithm to change the route, the algorithm returns to the start track
angle. (8) If the spraying of the field crop has been completed, the
algorithm ends, otherwise it returns to the query sensor nodes.
The algorithm that corresponds to the flowchart can be seen in
Algorithm 1. In the algorithm, h was set to 45 degrees and the
durationTime that is employed to calculate the time to remain in
the new route was equal to 4.0. These values were obtained
empirically. It is worth to emphasize that this occurs inside a loop,
so, for each query it will maintain the new route for the predefined
time. Terrain and environmental configurations are described in
Section 4.

Algorithm 1. Adjusting the UAV
route

1: diff  sensorLeft � sensorRight; // see Figs. 2(1) and (2)
2: if (abs (diff) > threshold) then // see Fig. 2(3)
3: duration  abs (diff) �

durationFactor;
// see Fig. 2(4)

4: initialAngle  angle; // see Fig. 2(5)
5: if (diff < 0) then // see Figs. 2(6) and (7)
6: setAngle (angle + h);
7: else

8: setAngle (angle � h);
9: scheduleChangeRoute (angle,

duration);

The algorithm used to adjust the UAV route is based on control
theory, that is, the data collected by the ground nodes are used as
inputs of a control system, and the output is the track angle which
the UAV must take. The system has two inputs, one of which is the
chemical concentration perceived at the right-hand side of the
plane and the other is the chemical concentration perceived on
the left. The system calculates the time the UAV will spend in
the new route before returning to the pre-defined route, and at-
tempts to correct the amount of chemicals sprayed by adjusting
the track angle of the UAV flight. The algorithm decides the new
route on the basis of the data collected by the UAV from the ground
nodes.

3.2. System development

There are two main ways to validate large-scale WSN projects:
testbeds and simulations [8]. The testbed approach involves a
small version of the project, where the system is usually split into
modules, each of which is tested separately. The use of a testbed
approach has some drawbacks since it is hard to validate the sys-
tem in a real environment. In addition, Wireless Sensor Networks
are faced with other problems that are not found in traditional net-
works. For example, while the tests are being conducted, the nodes
constantly have to store debug messages or even exchange debug
messages. This can cause some problems, e.g., the interference of
multiple debug messages, or high memory usage, or even battery
exhaustion [8]. As a result, the WSN community has been attempt-
ing to validate the first stage of a project by adopting a simulation
approach [14].

There are several network simulators available (e.g., ns2, Java-
Sim, SSFNet, Glomosim). However, most of these simulators were
designed for specific networks and their usage for wireless net-
work simulation is wide-ranging, and, sometimes, requires the

Fig. 2. Flowchart showing the rules for changing the UAV route.
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implementation of wireless network protocols and algorithms [22].
In addition, in [22] it is possible to find out more about the features
of these available simulators. In carrying out this project, the sim-
ulator that is being used is OMNeT++.1

The OMNeT++ simulator is a discrete event simulator, based on
C++ to model communication networks, multiprocessors and other
parallel and distributed systems. This simulator is open-source and
can be used for academic, educational and commercial purposes. It
has been available for the Unix and Windows operating systems
since 1997 [32]. This simulator was not designed to work within
a specific network, and as a result, it is used in several kinds of sim-
ulations, such as networks with queues, wireless networks and P2P
networks [34]. Owing to its generic design, OMNeT++ has a num-
ber of frameworks that have been established for specific net-
works, such as MiXiM,2 a framework for wireless network
modeling. This framework provides detailed models of wireless
channels (e.g., fading), wireless connections, models for mobility,
models for obstacles and several communication protocols, espe-
cially for the MAC layer [19].

There are several systems that can be used to build autonomous
helicopters for agricultural applications. Currently, the most prom-
ising one, is the Yamaha RMAX, which is designed for agricultural
uses, include spraying, seeding, remote sensing and precision agri-
culture. This includes a liquid sprayer with a tank capacity of 8 li-
tres (2 tanks) and a granular sprayer with a tank capacity of 13
litres (2 tanks). Complete specifications can be seen in [36]. How-
ever, the Yamaha RMAX is not fully autonomous yet, hence, studies
that adopt intelligent and autonomous approaches are needed to
develop new versions. Another technical strategy that can be
adapted to autonomous helicopters for agricultural applications,
can be found in the work by Huang et al. [18], which examines
the deployment of a spraying system for the Rotomotion UAV
SR200 [25]. The Rotomotion UAV SR200 has up to 20 kg of payload
capacity, although it does not have a spraying system off the shelf.
In their work, the requirement was to spray 14 ha of land with a
single load, at a low volume spray rate (0.3 L/ha). Hence, 4.2 L of
chemical was needed to cover the 14 ha of land.

Furthermore, Ehmke [13] has written a featured research paper
in which he describes several aspects of the task of employing un-
manned aerial systems in agricultural fields, such as the necessary
skills, the costs involved and the privacy policy that is entailed in
the crop scouting and mapping by UAVs. As our aim is to study
the behavior of the UAV, in our approach, both of the above-cited
UAVs can be employed. Naturally, there must be a fine-tuning
phase involving the parameters of the algorithm, due to the
mechanical characteristics of each UAV. Furthermore, this fine-
tuning phase should also take into account the type of crop being
handled (soy, rice, corn, grapes, sugarcane) and the type of pesti-
cide to be used.

3.3. Implementation details

The system implementation (currently in a simulation model)
has been divided into two modules: (i) the Behavioral Module and
(ii) the Chemical Dispersion Module. In the Behavioral Module we
simulate the communication between the WSN positioned in the
field and the UAV, using OMNeT++ with the MiXiM framework.
The Dispersion Module was developed by means of Python3 and
SDL4 library. The two modules run simultaneously, in an integrated
way5 with socket-based communication. The Behavioral Module

sends the current position of the UAV (x; y; z) to the Dispersion Mod-

ule along with the track angle and speed of the UAV (h;v). Further-
more, the wind modeling is carried out in the Behavioral Module;
this emulates changes in wind direction and speed and provides
information to the Dispersion Module about changes in the environ-
ment. Fig. 3 shows an example of a sequence of scenes with the com-
munication between UAV and WSN. In this example, there are 12
nodes representing the sensors in the field and one node represent-
ing the UAV.

The Dispersion Module calculates the fall of the chemicals, by
obtaining the position and fall time of each drop. The WSN, in turn,
determines the amount and position of the chemicals and returns
this information to the Behavioral Module. Periodically, the UAV
sends a broadcast message to the ground sensor nodes, requesting
the concentration in its area. The ground sensor nodes that receive
this message, connect to the Dispersion Module and request its con-
centration using their positions (x, y, z) as parameters. In this way,
they can respond by giving details of the concentration in this area
to the UAV. By means of these response messages from the ground
nodes, the UAV can call a decision manager, for instance, to com-
pute its decision and then change its route if necessary. The chem-
ical dispersion is based on a simplified pollutant model, which
considers (1) the vector of the initial velocity of the particle when
it is sprayed, (2) the vector of wind speed and (3) gravity. The inter-
actions occur until the particles hit the ground. Nonetheless, in
conducting a simulation of how chemical falls, we must not only
take account of the height of the UAV, factors like wind speed
and direction, temperature, humidity and the droplet size also
influences the dispersion, as can be seen in the works by
[5,11,16,12]. However, as we are working to achieve a path optimi-
zation that can reduce the waste of chemicals, we believe the sim-
ulation is satisfactory at this stage. After having a real spraying
mechanism, we believe we will be in a position to fine-tune some
of the current parameters of the algorithm that adjust the path of
the UAV to particular environmental conditions, weather patterns
and types of chemical droplets.

Fig. 4 shows the proposed system sequence diagram and we can
see the relationship between the nodes. The first activity is wind
management which sets the velocity and direction of the wind
through the setWind ðv ; hÞ function. This activity can occur at
any time, by changing the wind properties in the Dispersion Mod-

ule. After this, while the UAV is moving through the field, it can
use the sprayChemicals function, and inform the Dispersion Module

of its position ðx; y; zÞ, velocity and track angle. With this informa-
tion, the Dispersion Module is able to calculate where the chemical
particles are going to be sprayed.

Regarding the ideal type of UAV, it must have the following
characteristics: (1) be capable of flying at �15 m/s, and (2) be
equipped with a spray bar that can spray the pesticide. It might
be an autonomous airplane or an autonomous helicopter, although
in the real-world scenario we are working with helicopters, as can
be seen in Fig. 9. With regard to the UAV flying pattern, a tradi-
tional technique is mimicked, in which the pilot performs the
spraying in predefined tracks. The UAV flies from the beginning
to the end of the track and across the field as many times as needed
to cover all the tracks. However, in this work the results are based
on flights along a single track. With regard to terrain characteris-
tics, the simulation environment considers the sensors deployed
as a matrix (this can be understood with the aid of Fig. 8a). It is ex-
pected to have random distributed sensors which will be a subject
for future studies.

Currently there are some technologies that can identify chemi-
cal levels in the air, soil or water. These technologies can calculate
the degree of moisture in terms of the percentage of a specific
chemical composition in a given area. In addition to determining
the degree of chemical concentration, the sensor nodes can be used

1 OMNeT++ Network Simulation Framework, http://www.omnetpp.org.
2 MiXiM project, http://mixim.sourceforge.net.
3 Python Programming Language, http://www.python.org.
4 Simple DirectMedia Layer, http://www.libsdl.org.
5 Simulation video available at http://youtu.be/4wFJZZEYAKM.
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to detect diseases in plants or insect infestation [17,26,21]. In the
current version of this work, we have employed simulated sensors.
The use of real electrochemical sensors is also a subject for future
work.

We are planning to have a network of UAVs (swarm) and also a
network of several sensors (which are currently being simulated).
The use of correct routing protocols is very important to minimize
battery consumption and maximize communication capabilities,
which have to be fine tuned to the specific environment. We have
been carrying out an investigation of several routing protocols, as
this is a part of the project; however, for the current version, there
is only direct communication between the sensor nodes and the
UAV.

4. Evaluations and results

4.1. Adjusting the UAV route

In evaluating the algorithm to adjust the route for the UAV, we
used a wind dataset with data that included wind direction and
intensity. With this dataset in hand, we were able to ensure a

better area of coverage even in changeable weather conditions.
In the evaluation, the UAV was programmed to fly over the crop
while spraying chemicals. Moreover, we tried to evaluate whether
the number of message exchanges between the UAV and the WSN
improved the system performance or not. The set of parameters in-
cluded in this evaluation can be seen in Table 1.

In this set of evaluations, we carried out experiments including
changes in the type of wind, changes in the number of messages
between the WSN and the UAV and experiments to point out the
behavior of the system while using the proposed algorithm. We
performed these 70 times for each parameter set, with different
random seeds. Fig. 5 shows the results of these experiments. It
should be emphasized that we established an area of 1100 m by
100 m as the size of the simulated crop field. In addition, we only
selected a section of the above-mentioned area as the part to be
sprayed (i.e., 1000 m by 50 m). The number of sensors inside the
crop field is 22 and the UAV velocity and operating height is
15 m/s and 20 m, respectively. We define light wind as 10 km/h
and moderate wind as 20 km/h.

We can see in Fig. 5 that the best results are CL10 and RL10. This
makes sense since both CL10 and RL10 are the evaluations that rely

Fig. 3. OMNeT++ project. Figures show the sequence of scenes with the communication between UAV and WSN. The red blocks present the UAV and the arrows present the
communication capabilities.

Fig. 4. Sequence diagram of the proposed model.
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on more messages (every 10 s). RL10 is slightly better than CL10
because it has random gusts of wind, which results in having no
wind in some parts of the execution. Consequently, the chemical
is not affected by the wind the whole time and sometimes goes di-
rectly toward the ground. The use of messages every 30 s shows an
improvement with regard to the simulation without communica-
tion and hence without using the proposed algorithm. In these
simulations, the use of messages every 10 s allowed us to improve
the chemical dispersion in �14% compared with the sets with

messages every 30 s and in �27% compared with the sets with
no messages at all.

We carried out a statistical analysis of the sets to determine if
they can be considered to be distinct, and showed the efficiency
of the algorithm. First we verified the normal adequacy of the
distributions using the Shapiro–Wilk normality test. Most (8 of
12) of the p-values are lower than 0.05, i.e., the hypothesis of
normal adequacy is rejected with 95% of confidence. As most of
the distributions are not accepted as normal, we carried out a

Fig. 5. Amount (%) of chemicals sprayed inside the boundary (results of 70 runs for each parameter set). The parameters can be seen in Table 1.

Fig. 6. A heat map to represent the chemicals sprayed on the crop at the end of the simulation. The red color represents no pesticide and green represents the most
concentrated places. The thin black lines show the crop field that needs to have chemicals sprayed. (a) Evaluation without wind. This shows almost no chemicals outside the
lane. (b) Evaluation with wind changes every 15 s and no adaptation in the UAV route – we can see that the wind makes the chemicals fall outside the boundary lane. (c)
Evaluation with wind changes every 15 s and when the algorithm is used to adapt the UAV route – we can see that the algorithm adjusts the UAV by attempting to keep the
chemicals within the boundary lane. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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non-parametric test (PairwiseWilcox Test) which showed p-values
lower than 0.05 in all cases. This means that the algorithm is effec-
tive in adjusting the route of the UAV to improve the chemical dis-
persion. Fig. 6 shows the representation of the chemicals sprayed
in the crop field in some of the evaluations. In Fig. 6c we can see
how the algorithm adjusts the UAV route and attempts to keep
the chemicals within the boundary lane.

4.2. Mapping the chemical concentration

As described earlier, the information retrieved by means of the
WSN, provides the UAV with knowledge of the position and the
amount of chemicals in every sensor of the crop field. However,
after the application of the chemical by the UAV, some areas of
the crop might not have a sufficient amount of chemicals; this
might occur because the UAV is going too fast and even though
the rules allow the UAV to adjust to highly random shifts of wind

direction as quickly as possible, it might not be as fast as necessary.
As a result, what happens is that there might be some clusters
without the correct amount of chemicals. Hence, if we are able to
build a chemical concentration map6 using the data provided by
the WSN, we might use this map to show clusters where there is
an insufficient application of chemicals.

At the end of the UAV spraying operation, we can build a com-
plete map of the chemical concentration, as we have all the infor-
mation about the position of the sensors and the amount of
chemicals perceived in the UAV memory. The crop field with
chemical concentration can be represented as a 2D matrix
(Fig. 8a). We represent this map as a heat map, i.e., the amounts
of chemicals are represented between the colors red and green,
green being the greatest amount.

Fig. 7. Steps for mapping the chemical concentration.

Fig. 8. (a) A crop field represented as a 2D matrix (heat map). A shift from red to green represents less to more perceived chemicals. Most of the area is in red because the
sensors are scattered. As expected, the diagram shows a crop field with a non-uniform chemical spraying operation, caused by the highly randomwind used in the simulation.
(b) Map after the application of the interpolation technique (instance-weighted nearest-neighbor algorithm). (c) Map after the application of the threshold value, which
determines the lowest amount of chemicals. (d) Cluster identification using the DBSCAN algorithm. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

6 Source-code and data files used to the mapping scheme are available in http://
goo.gl/b0ClX.
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In this simulation, the size of the terrain was set as 1500 m by
150 m. The number of sensors inside the crop field was 64 (4 lines
with 16 sensors each). As we were concerned with investigating
mapping schemes, we ran this simulation without our proposed
adjustment route algorithm and in highly randomwind conditions.

We can see in Fig. 8a the representation of the crop field after
the application of the chemicals. The red color represents a zero
amount, i.e., there is no sensor in that region or the sensor only
measured a very small amount of chemicals. In addition, Fig. 8a
shows (as expected) a crop field with a non-uniform chemical
spraying operation, due to highly random wind.

We ran three stages for cluster identification after obtaining the
raw information from the WSN (as shown in Fig. 7). As there are
not sensors for every small part of the crop field, it is necessary
to make an interpolation between the values of the sensors. Hence,
in the first step we use the Instance-Weighted Nearest-Neighbor
Algorithm [23] (Step 1 in Fig. 7). This technique is applied in every
position of the crop field where there is no sensing information
(red area). For each red cell, we calculate the Euclidian distance be-
tween its position and the positions of the sensors. Then, the value
of each cell will result from a radial function. The closer the chem-
icals are to the sensor, the higher is their influence on the sensor
value. The results of the Instance-Weighted Nearest-Neighbor

Algorithm, when applied to the crop field shown in Fig. 8a, can
be seen in Fig. 8b.

In the following stage (Step 2 in Fig. 7), we apply a threshold va-
lue which determines the lowest amount of chemicals. If the value
is below the threshold, it means there were not enough chemicals
in the application process. The resulting map after the threshold is
adopted can be seen in Fig. 8c.

The last stage (Step 3 in Fig. 7) in the mapping scheme and clus-
ter identification uses a DBSCAN algorithm [15]. The DBSCAN is
used to find clusters with an amount of chemicals below the
threshold. Using the DBSCAN algorithm, we have to specify a
parameter which represents the shortest distance possible be-
tween one cell and another to belong to that cluster. Since it aims
to provide a completely accurate mapping scheme, this parameter
should be measured from real applications. The result of the
DBSCAN that is applied in the crop field can be seen in Fig. 8d.
We can see five large clusters and three very small ones. We can
use the information about clusters to plan a new chemical spraying
operation, which is restricted to the delimited areas. Different
operations might be taken depending on the size of the cluster
(e.g., operations with the UAV or even other types of small auton-
omous vehicles).

4.3. A step toward a real-world implementation

In the current phase, most of this work has been carried out in
simulation environments. With the aim of carrying out evaluations
with real hardware, we have measured the communication time
between the UAV and a ground sensor, as shown in Fig. 9. We have
employed the XBee-PRO Series 27 to collect these measurements.
Fig. 10 depicts the results obtained from these measurements. The
measured communication time consists of the time needed for the
UAV to send a request message and receive a response from the
ground sensor.

The particular UAV heights (5, 10 and 20 m) were chosen be-
cause there is a relationship between the spray angle/coverage
and the drone height; the higher the flight, the greater the area
covered by the spray. As a result, increasing the distance from

Table 1

Parameter set employed in the evaluations (with different weather conditions and
system characteristics).

Eval. Wind type Messages
every

Using proposed
algorithm

CL10 Constant light wind 10 s Yes
CL30 Constant light wind 30 s Yes
CLNO Constant light wind – No
RL10 Random gusts light wind 10 s Yes
RL30 Random gusts light wind 30 s Yes
RLNO Random gusts light wind – No
CM10 Constant moderate wind 10 s Yes
CM30 Constant moderate wind 30 s Yes
CMNO Constant moderate wind – No
RM10 Random gusts moderate wind 10 s Yes
RM30 Random gusts moderate wind 30 s Yes
RMNO Random gusts moderate wind – No

Fig. 9. Example of the real environment used to collect the measurements. We have evaluated H with 5, 10 and 20 m.

7 Manufactured by DIGI, http://www.digi.com/products/wireless-wired-embed-
ded-solutions.
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the area where the pulverization is carried out, increases the
dispersion of the pesticide. It should be emphasized that environ-
mental conditions also affect the behavior (fall) of the chemicals.

We can notice that the average round trip time for 5, 10 and
20 m is �0.04 s. Hence, we carried out a statistical evaluation of
the times to check whether there was any significant difference
between the 5 m, 10 m and 20 m sets.

Using the Shapiro–Wilk normality test we can observe that
there is no evidence that the sets of 5 m and 20 m are normally
distributed, with 95% of confidence and the set of 10 m cannot
be rejected as a normal distribution, with 95% of confidence. The
p-values from the Shapiro–Wilk normality test, from 5 m, 10 m
and 20 m, are 0.031, 0.056 and 0.006, respectively. Hence, as two
of the sets are considered not to be normal, we employ a non-
parametric pairwise comparison. The pairwise comparison using
the Wilcoxon rank sum test showed that there is no evidence of
any difference between the measurements, as all the p-values are
greater than 0.05. This evaluation has shown that there is no signif-
icant difference between the times measured from 5 m, 10 m and
20 m.

5. Conclusions

In this paper we have described an architecture based on un-
manned aerial vehicles that can be used to implement a control
loop for agricultural applications, where UAVs are responsible for
spraying chemicals on crops. The process of applying the chemicals
is controlled by means of the feedback from the wireless sensors
network that is deployed at ground level on the crop field. Further-
more, we have evaluated an algorithm to adjust the UAV route to
changes in the wind (intensity and direction) and the impact re-
lated to the number of messages exchanged between the UAV
and the WSN. Using the current terrain configuration, we found
that the use of messages every 10 s does improve the spraying of
the chemical in �14% compared to the sets with messages every
30 s and in �27% compared to the sets with no messages at all.
Moreover, we have also shown how to build a chemical concentra-
tion map using the data provided by the WSN. The purpose of this
was to show clusters with insufficient application of chemicals
which might be used to perform new UAV applications in desig-
nated areas. We described how to build these maps using
Instance-Based Algorithms and Density-Based Algorithms. The
measured communication time between the UAV and the WSN,
when the XBee-PRO Series 2 was employed, showed no significant

difference for height of 5 m, 10 m and 20 m. All the measured com-
munication times are �0.04 s. However this appears to be very
short, we have still not been able to assess the actual sensing of
the chemicals, which needs to be addressed in the next stage of
this research.

6. Future work

The next stages of this project will be as follows: (i) developing
the system using real hardware, addressing the reality gap in com-
munications between the UAV and the WSN, the behavior of the
UAV and the sensor capabilities, (ii) investigating the use of Evolu-
tionary Techniques [4,1] to build (or tune) an autonomous set of
rules (i.e., the behavior of the UAV), and (iii) modeling the system
through a UAV swarm technique. As a final observation, since it is
necessary to improve the simulation environment (which allows
quicker and safer evaluations) other future work should seek to
improve the actual chemical dispersion, by also using the mass
of the particles, the viscosity of the chemicals and allowing a more
realistic interaction between these fluids.
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Abstract. The application of chemicals in agricultural areas is of cru-
cial importance for crop production. The use of aircrafts is becoming
increasingly common in carrying out this task mainly because of their
speed and effectiveness. Nonetheless, some factors may reduce the yield,
or even cause damage, like areas not covered in the spraying process or
overlapped spraying areas. Weather conditions add further complexity to
the problem. Sets of control rules, to be employed in an autonomous Un-
manned Aerial Vehicles (UAV), are very hard to develop and harder to
fine-tune to each environment characteristics. Hence, a fine-tuning phase
must involves the parameters of the algorithm, due to the mechanical
characteristics of each UAV and also must take into account the type of
crop being handled and the type of pesticide to be used. In this paper
we present an evolutionary algorithm to fine-tune sets of control rules, to
be employed in a simulated autonomous UAV. We describe the proposed
architecture and investigations about changing in the evolutionary pa-
rameters. The results show that the proposed evolutionary method can
fine-tune the parameters of the UAV control rules to support environ-
ment and weather changes in the simulated environment, encouraging
the deployment of the system with real hardware.

1 Introduction

Chemical defensives, also known as pesticides, are commonly applied in agricul-
tural areas to increase productivity. However, these products can cause serious
health problems for workers who have direct or indirect contact with them. There
are various diseases that can result from the interaction with these chemicals, like
cancers, complications in the respiratory system and neurological diseases [15].
It is estimated that about 2.5 million tons of pesticides are applied worldwide
each year and that this amount has been growing [12]. Much of the pesticide is
lost during the spraying process due to the type of technology employed. Nev-
ertheless, only a small part of the pesticide reaches the target crop field while
the rest of it drifts away [10]. Evidences of pesticide drifts are commonly found
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between 48 m and 800 m from the target crop field. Other problems are crop
areas not covered in the spraying process and overlapped spraying areas.

The use of UAVs to carry out the task of spraying pesticides can be beneficial
to many reasons, including (i) to reduce human contact with the chemicals, which
helps to preserve humanhealth; and (ii) to improve the performance of the spraying
operation, avoiding the presence of chemicals outside designed areas, which helps
to preserve neighborhood fields, that can be other crops, preserved nature areas or
water sources. Sets of control rules, to be employed in an autonomous UAV, are
very hard to develop and harder to fine-tune to each environment characteristics.
Thus, a fine-tuning phase must involves the parameters of the algorithm, due to the
mechanical characteristics of each UAV and also must take into account the type of
crop being handled and the type of pesticide to be used. In this paper we present a
evolutionaryalgorithm to fine-tune sets of control rules, to be employed in an simu-
lated autonomous UAV. We describe the proposed architecture and investigations
about changing in the evolutionary parameters.

The proposed architecture employs an UAV, which has a system of coupled
spray, and it is able to communicate with the Wireless Sensor Network (WSN),
which is organized in a matrix-like disposition on the crop field. This WSN aims
to send feedback on the weather conditions and how spraying actually are falling
in the target crop field. Based on the information received, the UAV appropri-
ately applies a policy to correct its route. Hence, the main contributions of this
research are as follows: (i) investigate an evolutionary methodology capable of
minimize human contact with pesticides, (ii) evaluate an evolutionary approach
able to minimize the error in spraying pesticides in areas of growing vegetables
and fruits, (iii) investigate techniques able to maximize quality in agricultural
production, and (iv) contribute to increase the autonomy of the architecture
proposed by [5], in which the policy parameters were set empirically and applied
independent of weather conditions.

This paper is organized in 5 sections. Section 2 presents other studies related
to this paper. The proposed methodology is described in Section 3. Results from
investigations are presented in Section 4. In Section 5 we present a discussion
upon the results; this section also presents the conclusions and describes some
future work.

2 Related Work

There are several works that employs UAVs as agents in agriculture and WSN as
monitors of the environment, occasionally integrating both [2,7,16]. For example,
Huang and collaborators [6] propose a system for spraying pesticide coupled to
an UAV capable of carrying as much as 22.7 kg. The UAV model used was
a SR200 manufactured by Rotomotion company. The spray system consists of
four major components: (i) a metal tube with nozzles, (ii) a tank to store the
pesticide, (iii) a pump to move the liquid and (iv) a mechanism for controlling
the activation of spray. The spraying system can carry up to 5 kg of pesticide,
which was needed to spray 0.14 km2; and it provides a flight time of around 90
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minutes. The main objective of that work was to validate the proposed system
and evaluate different spray nozzles. However, the weather conditions were not
taken into account. Additionally, a discussion of the evolutionary methodology
able to optimize control of this activity is not presented.

Valente and collaborators [13] show a system based on WSNs and UAVs to
monitor crop fields of vines. The WSN collects information from soil, climate
and the condition of vines and presents this data to the farmer. However, the
vine crop groups may be hundreds of meters distant from each other. Because
of barriers (eg. rivers and roads) that may occur between crop fields, the usage
of cables to connect networks implies in a prohibitive cost. Although the use of
more powerful radios in sensor nodes enables communication between WSN, this
will result in higher energy consumption implying in the reduction of battery
lifetime. Thus, the solution used to overcome such limitations was employ a
UAV able to fly over crop fields and collecting the information from each WSN,
bringing data back to a processing center.

Faiçal and collaborators [5] proposed and evaluated an architecture formed by
UAV and WSN to spray pesticides in crop fields. It is known that the weather
conditions in the area of cultivation, such as wind speed and direction, can cause
error in the spraying process. The study showed that the proposed architecture
allows to minimize error and increase control of this activity. However, the work
used a simplistic approach to correct the route of the UAV. The parameters
set for the correction of the route are similarly applied in different weather
conditions, which can harm the performance of this architecture. As previously
mentioned, the objective of this paper is to evaluate and propose an evolutionary
methodology to optimize and define the best weather parameter that influences
the intensity correction of the UAV route.

3 Methodology

Fig. 1 synthesizes the context of this work. It can be seen that the spraying
is carried out using UAVs, which have equipment for pesticide spraying, and a
WSN distributed in matrix disposition in the crop field. The WSN is represented
only in a target crop field delimited with two dashed lines (from the upper left
to the lower right corner) to simplify the visualization. The two arrows indicate
the direction of the wind at a specific location. The UAV maintains communi-
cation with WSN about the weather conditions (wind speed and direction) in
its current position and also about the concentration of the pesticides identified
by surrounding sensors. When an imbalance in the pesticide concentration is
detected (e.g. the sensor on the left side identified a higher concentration than
the one positioned on the right side), possibly caused by winds, the UAV uses its
policy to change the position so that the pesticide is applied at a concentration
balanced across the width of the target crop field. In addition, constraints pre-
vent the pesticide to be sprayed out of the bounds of the target crop field, which
may cause an overlap of the area that was subjected to the defensive chemicals.
The adjustment of the route is represented by small arrows between the images
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Fig. 1. Spraying using the architecture proposed by [5]. This architecture is formed by
a UAV (spray) and WSN (sensing and feedback). If spraying is unbalanced between
the sensors (distributed in matrix form on crop field), the UAV can correct your route
using a policy with parameter settings defined before starting the activity.

of the UAV in Fig. 1. To adjust the route, the policy has the routeChangingFac-

tor parameter, which operates pondering the intensity of alteration (sudden or
soft). This parameter is set empirically before the activity and will be constant
for all weather conditions.

In this work we extend the architecture proposed by [5], adding an evolution-
ary module able to optimize the parameter routeChangingFactor. Furthermore,
the UAV will query the WSN about weather conditions of a target crop field.
With this information, the UAV simulates computationally the result of spray-
ing using different possible configurations. These simulations take into account
the weather conditions informed by WSN and settings of UAV. The source code
contains all instructions necessary to simulate the behavior and communication
between the UAV and WSN. It also contains a dispersion model to represent
the movement of sprayed particles along the crop field. These simulations use
a Genetic Algorithm (GA) which evaluates the results and evolves to find a
near-optimal routeChangingFactor to be used. This optimization is carried out
for each target crop field until the whole desired area is sprayed. It is worth
mentioning that the optimization is carried out in parallel to the spraying of
pesticides and the routeChangingFactor is changed only when the GA finalize
and the UAV enters the analyzed crop field.

To investigate the evolution in control we considered a rectangular field 1100 m
long and 150 m wide. Moreover, a target crop field was considered to cover a rect-
angle measuring 1000 m by 50 m. The WSN consists of 20 sensor nodes arranged
in matrix form throughout the target crop field. The UAV flies 20 feet high at a
constant speed of 15 m/s, communicating with the WSN every 10 seconds.

The fitness function is the sum of pesticide gathered by the WSN outside
the boundaries, greater the number means that greater amount of pesticide was
placed outside the boundaries; hence, this fitness should be minimized. Current
genome has a single real value that represent the routeChangingFactor ; it is
detailed in the next section. We treated the genome as a real value because it
could be directed applied to the simulated UAV as an value to the rotors.

49



Exploiting Evolution on UAV Control Rules 53

3.1 Deployment of the Evolutionary Module

Projects on WSN and UAVs are commonly validated in two ways: (i) testbeds
and/or (ii) simulation. The testbed is a smaller version of the project built to
conduct experiments. On the other hand, simulation is the act of using com-
puters in formalization, as mathematical expressions or specifications, to mimic
a real-world process. The scientific community has used the simulation method
to validate WSN environments before real deployment [3,9]. Results from sim-
ulation are considered satisfactory in comparison to the results obtained from
testbeds [1,8]. Thus, simulation results may be used to justify changes in order
to minimize the negative impact in a real environment.

The same platform from [5] was employed to run the simulations. The OM-
NeT++1 is a discrete event simulator based on C++ to model communication
networks, multiprocessors and other parallel and distributed systems [14]. The
OMNeT++ has a wide scope so it can be used to simulate various types of net-
works. The GA is configured to use a crossing value of 90% in the population
and apply a mutation of 10%, besides employing the technique of elitism (where
the best individual is kept for the next generation). Table 1 exemplifies the pop-
ulation used by the genetic algorithm, in which each individual is composed of a
positive real value for the routeChangingFactor and its respective fitness which
is calculated by adding all the particles of pesticide that are applied outside the
target crop field. Therefore, a lower value of fitness indicates a better individual.

Table 1. Representation of the population used by the Genetic Algorithm

Individual routeChangeFactor Fitness

1st 2.136 12,032
2nd 2.532 12,169
3rd 1.465 20,032
4th 4.752 24,878
5th 3.846 22,987

In the experiments five population sizes and three maximum values of gener-
ations are evaluated. Each setting of experiments is represented by IndMGerN.
Thus, M is the number of individuals of the population and N the value maxi-
mum of generations. As a stopping condition, we define the maximum amount of
generations for each experiment, so after running all the pre-defined generations
the GA is finished and the best individual of this generation is considered the
routeChangingFactor more suitable for the weather conditions monitored by the
WSN. Each configuration of the experiments were replicated 30 times in order
to obtain a sample with high reliability to analyze its results.

The GA evolves the population according to their characteristics already de-
scribed, and changes the configuration to be evaluated through the assignment

1 OMNeT++ Network Simulation Framework, http://www.omnetpp.org
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Fig. 2. Interaction between Genetic Algorithm and the simulator OMNeT++

of a new value to the routeChangingFactor variable (considering the individual
to be tested) in the source code inside the simulator. Fig. 2 shows the interaction
between the GA and the simulator. Initially, the GA alters the configuration file
of module Simulates Spraying with the value of routeChangingFactor of individ-
ual to be evaluated (step 1). Subsequently, the GA run the module Simulates
Spraying in OMNeT++ (step 2) and finally analyzes the file log of the executed
plan (step 3). This file stores the result of spraying all over the field (1500 m x
150 m) and the amount of pesticide sprayed wrongly (outside the target crop
field 1000 m by 50 m) is considered as fitness of the individual. When the GA
has tested all individuals of a generation, it will produce a new generation of
individuals until the maximum generation is reached. During this study, we tried
to keep the GA simple and fast; this is important because all analysis need to
be carried in short time, once the spray occurs at runtime.

4 Results

We employed the Genetic Algorithm as an evolutionary method to find the best
routeChangingFactor to be used at a target crop field, considering the weather
conditions identified by the WSN2. Fig. 3 shows three heat maps of sprays in the
crop field. It can be observed that the target crop field is shown in this image,
thus it is possible to identify where the pesticide was actually applied in or out
of target field. The values 6.000 and 4.000 were defined empirically, whereas the
value 2.140 was obtained by the proposed evolution module. Also is possible
observe that the map of the spraying performed using the Evolution Module
portrays a most appropriate correction of route considering weather conditions
identified by WSN. This optimization provides a spray with lower error rate than
the others (see Fig. 3), and provide a setting at runtime this parameter.

To evaluate the results, we performed a series of statistical analyzes. We
started using the Shapiro Wilk method to verify the adequacy of normality and
consequently to direct it to use parametric or non-parametric methods according
to the results. We could observe that all values are less than 0.05, hence, all sets
have the hypothesis of normality rejected considering a confidence level of 95%.
Thus, we use non-parametric tests in the subsequent analyzes.

2 Source code available in http://goo.gl/9S14T0
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(a) routeChangingFactor = 6.000

(b) routeChangingFactor = 4.000

(c) routeChangingFactor = 2.140

Fig. 3. A heat map to represent the chemicals sprayed on the crop at the end of the
simulation. The green colour represents no pesticide and red represents the most con-
centrated places. The thin black lines show the crop field that needs to have chemicals
sprayed. (a) and (b) Evaluations with empirical values. (c) Evaluation with routeChang-

ingFactor obtained by the genetic algorithm. We can see that when employing the
routeChangingFactor obtained by the genetic algorithm we have the best adjusts in
the UAV track, attempting to keep the chemicals within the boundary lane. It is worth
to highlight that, as the simulation starts with wind, the UAV always starts the dis-
persion of the chemicals outside the boundary.

As implied in Fig 4(a), there appears to be an improvement in the obtained
results (lower error) with the increase of individuals. The pairwise comparisons
using Wilcoxon rank sum test shows that there is a significant difference in
populations formed by 3, 5 and 10 Individuals but not for populations with 10,
15 and 20 Individuals. This may imply that there is need to further increase the
number of generations. Figures 5(a) and 6(a) shows the results with 50 and 100
generations.

The pairwise comparisons using Wilcoxon rank sum test shows that for ex-
periments using populations with 5, 10, 15 and 20 Individuals for 50 generations
there is no significant difference. However, using populations with 5 and 10 in-
dividuals have lower accuracy populations when compared with the results of
the populations with 15 and 20 Individuals. To the experiments with 5, 10, 15
and 20 Individuals and 100 generations no significant difference and their ac-
curacies are similar. It should be noted that the settings used in the Genetic
Algorithm provide results with high accuracies. Therefore, the settings that re-
sulted in the best results are the populations formed with 15 and 20 Individuals
to 50 Generations and 5, 10, 15 and 20 Individuals to 100 Generations.

From Fig. 4(b), 5(b) and 6(b), we can see that the average runtime time grows
as the population and the amount of generations increase. Considering the set-
tings that correspond to the best results (Ind15Ger50, Ind20Ger50, Ind5Ger100,
Ind10Ger100, Ind15Ger100, Ind20Ger100), it is possible to note that the set-
ting Ind5Ger100 has the lowest average runtime of 44.12 seconds. As described
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(a) (b)

Fig. 4. Results of the GA employing 20 generations. (a) Fitness. (b) Time (in seconds).

(a) (b)

Fig. 5. Results of the GA employing 50 generations. (a) Fitness. (b) Time (in seconds).

above, the UAV flies at a speed of 15m/s in these experiments. Therefore, using
the setting Ind5Ger100 to analyze the target crop field the UAV would fly over
661.907 meters. Thus, we can conclude that due to the length of target crop
field measuring 1000 meters, this setting allows the later target crop field to be
analyzed while the current target crop field is sprayed.

5 Discussion

We have described a methodology to evolve the parameter routeChangingFactor,
which aims to adjust the UAV route and improve the spraying of pesticides on
crop fields. The spraying operation is conducted employing an architecture based
on a UAV and WSN. The UAV is the agent which spray the pesticide and the
WSN is responsible for the monitoring of (i) weather conditions, (ii) points where
the pesticide reached the crop field and (iii) feedback to the UAV. The initial
methodology, although functional, have showed some limitations in correcting
the route, since this parameter was defined empirically and remained the same
for all activity. This limitations is corrected with the proposal described in this
work.

Due to the fact that the adjustment of the route is performed using the
routeChangingFactor parameter. It may be noted that in the experiments that
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(a) (b)

Fig. 6. Results of the GA employing 100 generations. (a) Fitness. (b) Time (in seconds).

we use 20 generations to find the best parameter, settings involving populations
with 10, 15 and 20 individuals are not significantly different. However, only 50%
of the results achieved is the best possible value. The same happens with the
results obtained in experiments using populations with 5 and 10 individuals
when evolved by 50 generations. Moreover, the results obtained using 15 and
20 individuals by 50 generations and also 5, 10, 15 and 20 individuals by 100
generations achieved the best possible value and showed greater stability in its
results. Considering these results, the configuration Ind5Ger100, corresponding
to a population of 5 individuals with 100 generations, has satisfactory behavior
for the purpose this study. This configuration is able to achieve good results with
high accuracy at relatively low average runtime. Other settings of the experi-
ments not cited in this section are considered unsuitable for solving this problem
because of its low accuracy.

It is worth mentioning that the error in no case is less than 20% because the
methodology considers that the UAV starts spraying at a fixed point and the
route adjustment occurs after some predefined time. Thus, this error occurs at
the beginning of the crop field where spraying has the influence of the weather
conditions. Therefore, a better understanding of the results is made from the
following reading: starting spraying in position X, the best routeChangingFactor
has value Y, which will result in an error of Z% in weather conditions informed
by the WSN.

Lastly, it is important to remember that the developed methodology, which
evolve the routeChangingFactor, had as main motivation the possibility of pro-
viding to UAV with a intelligent behavior, adjusting its route considering weather
conditions. Thus, this becomes a dynamic policy for a naturally dynamic environ-
ment. The next stages of this project will be as follows: (i) developing the system
using real hardware, addressing the reality gap in communications between the
UAV and the WSN, the behaviour of the UAV and the sensor capabilities and
(ii) investigating the use of other evolutionary techniques, like NSGA-II [4] and
Differential Evolution [11]. As a final observation, since it is necessary to improve
the simulation environment (which allows quicker and safer evaluations) other
future work should seek to improve the current chemical dispersion module and
the physical behaviour of the UAV.
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Abstract—The use of pesticides in agriculture is essential to
maintain the quality of large-scale production. The spraying
of these products by using aircraft speeds up the process
and prevents compacting of the soil. However, adverse weather
conditions (e.g. the speed and direction of the wind) can impair
the effectiveness of the spraying of pesticides in a target crop field.
Thus, there is a risk that the pesticide can drift to neighboring
crop fields. It is believed that a large amount of all the pesticide
used in the world drifts outside of the target crop field and only
a small amount is effective in controlling pests. However, with
increased precision in the spraying, it is possible to reduce the
amount of pesticide used and improve the quality of agricultural
products as well as mitigate the risk of environmental damage.
With this objective, this paper proposes a methodology based
on Particle Swarm Optimization (PSO) for the fine-tuning of
control rules during the spraying of pesticides in crop fields.
This methodology can be employed with speed and efficiency and
achieve good results by taking account of the weather conditions
reported by a Wireless Sensor Network (WSN). In this scenario,
the UAV becomes a mobile node of the WSN that is able to
make personalized decisions for each crop field. The experiments
that were carried out show that the optimization methodology
proposed is able to reduce the drift of pesticides by fine-tuning
of control rules.

I. INTRODUCTION

Pesticides, also known as agrochemicals, are generally
applied in agricultural crop fields to increase productivity, im-
prove quality and reduce production costs. However, prolonged
contact (either directly or indirectly) with these products can
cause various diseases to humans such as several types of
cancers, complications in the respiratory system and neuro-
logical diseases [1]. It is estimated that about 2.5 million
tons of pesticides are used each year throughout the world
and this amount is growing [2]. Much of the pesticides are
wasted during the spraying process due to the type of employed
technologies. There are evidences that show that the drift of
pesticides is generally found at a distance of 48 m and 800 m
from the target crop field, the deviation can reach a distance
of 5 km to 32 km, downwind [3].

The use of UAVs to carry out the task of spraying pesticides
can be beneficial to many reasons, including (i) to reduce
human contact with the chemicals, which helps to preserve hu-
man health; and (ii) to improve the performance of the spraying
operation, avoiding the presence of chemicals outside designed
areas, which helps to preserve neighborhood fields, that can

be other crops, preserved nature areas or water sources. Sets
of control rules, to be employed in an autonomous UAV,
are very hard to develop and harder to fine-tune to each
environment characteristics. Thus, a fine-tuning phase must
involves the parameters of the algorithm, due to the mechanical
characteristics of each UAV and also must take into account
the type of crop being handled and the type of pesticide to
be used. In this paper we present a evolutionary algorithm to
fine-tune sets of control rules, to be employed in an simulated
autonomous UAV. We describe the proposed architecture and
investigations about changing in the evolutionary parameters.

The proposed architecture employs an UAV, which has a
system of coupled spray, and it is able to communicate with the
Wireless Sensor Network, which is organized in a matrix-like
disposition on the crop field. This WSN aims to send feedback
on the weather conditions and how spraying actually are falling
in the target crop field. Based on the information received, the
UAV appropriately applies a policy to correct its route. Hence,
the main contributions of this research are as follows: (i)
investigate an evolutionary methodology capable of minimize
human contact with pesticides, (ii) evaluate an evolutionary
approach able to minimize the error in spraying pesticides
in areas of growing vegetables and fruits, (iii) investigate
techniques able to maximize quality in agricultural production,
and (iv) contribute to increase the autonomy of the architecture
proposed by [4], in which the policy parameters were set
empirically and applied independent of weather conditions.

This paper is divided into six sections. Section II presents
other studies related to this paper. Following this, Section III
presents an outline of the architecture to clarify the scope of
this paper and the optimization methodology proposed in this
work. The experiments and results are presented and discussed
in Section IV, and then compared with the results found in
the literature. Finally, Section V summarizes the conclusions
obtained from the results and suggests how this paper might
encourage further studies in this field.

II. RELATED WORK

There are several studies that suggest how UAVs or WSNs
can be employed for monitoring agricultural production, occa-
sionally by integrating both technologies [5], [6], [7]. However,
this work differs in so far as it proposes a PSO to optimize
the control rules of the UAV at runtime, based in feedback
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provided by WSN about weather conditions in the agricultural
field.

Valente and collaborators [8] show a WSN-based system
and UAV to monitor the of vineyards. The WSNs collect
information about weather, soil and planting conditions and
then makes it available to farmers. However, a field crop may
be hundreds of meters away from other fields and sometimes
there are barriers (e.g., rivers and roads) that separate two crop
fields. Thus, it may not be viable or cost-effective to use cables
to connect the WSN. Although the use of powerful wireless
devices allows communication between WSNs, this solution
causes higher energy consumption and involves reducing the
lifetime of the WSNs. One solution that can be adopted to
overcome these limitations is to employ a UAV to fly over
the crop fields and gather information from each WSN, which
it can then convey to a processing center. Although this
study demonstrates that UAVs and WSNs can be integrated to
provide efficient solutions or improvements in an agricultural
setting, no methodology is employed for optimization at run-
time. Additionally, a UAV is used as a mobile node in a WSN
without any chance of having an effect on the environment.

In [9] a specific system is proposed to spray pesticide.
This system should be coupled with a UAV that is capable
of carrying approximately 22.7 kg. The model used in this
work is UAV SR200 manufactured by Rotomotion. The spray
system consists of four main components: (i) a metal tube with
nozzles; (ii) a tank to store pesticide; (iii) a pump to move
the liquid; and (iv) a mechanism for controlling the activation
of the spray. The spraying system can carry up to 5 kg of
pesticide, which is enough to spray 14 ha; and it has a flight
time of around 90 minutes. The main objective of this study is
to validate the proposed system and evaluate different types of
spray nozzles. However, the weather conditions were not taken
into account. Additionally, it does not include a discussion of
an evolutionary methodology that is able to optimize control
of this activity.

Faiçal and collaborators [4] proposed an architecture
formed of UAV and WSN to spray pesticide in crop fields.
It is known that adverse weather conditions, such as winds
of high speed, can cause errors in the spraying process. The
study shows how the recommended architecture can reduce the
risk of errors and increase control over this activity. With the
aid of feedback from the WSN about pesticide concentrations,
the route is gradually changed until the sensor node can
identify a correct application of the product. However, the
parameters set for the route change are apply in different
weather conditions, which may impair the performance of this
architecture. As mentioned earlier, this paper addresses this
limitation by evaluating a methodology that is employed for
the fine-tuning of a parameter that ponders the intensity which
the route followed by the UAV is changed.

III. METHODS

A. UAV and WSN architecture for spraying on crop fields

Fig. 1 illustrates how the UAV acts as an agent in the
crop fields. The UAV flies over the area, equipped with a
spray system and a communication module, which enables
data exchange (through a communication link) with distributed
WSN in the crop fields, and sprays the pesticide in its entire

Fig. 1. Example of spraying in crop fields with the architecture proposed by
[4]. This architecture consists of a UAV (to spray) and WSN (to monitor). If
the WSN identifies an unbalanced spray on its sensor nodes, the UAV changes
its route to correct the spraying of the pesticide.

length [4]. The WSN is represented solely within the target
crop fields and is bounded by two dark dashed lines (from
top left to bottom right) to simplify the viewing image. At
the top of Fig. 1, there are two arrows that indicate the wind
direction at a specific location. Through its communication
link with the WSN, the UAV is able to obtain information
about the weather (e.g. speed and direction of the wind)
and the concentration of the pesticides sprayed on the crops.
If an imbalance is detected in this concentration (e.g. the
sensor on the left identifies a higher concentration than the
sensor on the right), possibly caused by the wind, the UAV
adopts a policy that involves changing its route to balance
the application of pesticides in the whole extent of the target
crop fields. This policy also helps to prevent overlapping when
the chemical is applied. In Fig. 1, the correction of the route
is represented by small arrows between the images of the
UAV. The parameter called routeChangingFactor is employed
in the route change function to set the degree of intensity
(e.g. mild or sharp) so that the change can be made. However,
although this parameter is important to ensure the success of
the spraying, its value is set empirically before the beginning
of the flight and is used in all weather conditions that occur
during the spraying. This characteristic can affect the quality
of the spraying; for example, a sharp correction might be made
in an environment where a low wind speed has been identified.
Moreover, an increase of complexity in this environment might
cause variable behavior. In other words, the weather conditions
can change during the activity, and this is detrimental to all
the architecture if it has static configuration.

To overcome the problems mentioned above, this paper
proposes a methodology based on Particle Swarm Optimization
to optimize the parameter of the routeChangingFactor in
runtime. As previously mentioned, the parameter of route
change has a large influence on spraying and, in addition,
the architecture is employed in a dynamic environment. Thus,
it is worth investigating a methodology that is able to find
a value for the parameter of the routeChangingFactor (and
is close to an optimal solution) and which can be used and
updated during the spraying. Fig. 2 shows the behavior of
the architecture when the optimization methodology is used.
It assumes that a crop field is composed of several small
imaginary subareas in a rectangular shape. Thus, if all the
subareas are sprayed, this results in a full spraying of the
crop field. Each subarea will be called a “crop field” during
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Fig. 2. Behavior of the architecture that employs the proposed optimization
methodology. The Control Station (A) is installed outside the target crop field,
in a zone that remains communicable with the UAV (B). During the spraying
of the current crop field (D), the UAV sends a request for weather information
about the next crop field (E) to the WSN (C). When the information requested
is received, the UAV sends it to Control Station (A) where it will be used by the
optimization methodology. At the end of the optimization, the Control Station
sends the new configuration to UAV. The settings will be updated when the
spraying of the current crop field has been completed and the spraying of the
next crop field has begun.

this study. The flight plan of the UAV is defined to spray
the next crop field, soon after work on the current crop field
has been completed. The route change, as described earlier,
is made in the current crop field (D). In parallel to this
activity, the UAV (B) queries the WSN (C) about the weather
conditions in the next crop field (E). In this stage the request
can reach the nodes that are deployed inside the next crop
field by using multihop (not shown in the diagram). Only the
endpoints of the communication (source and destination) are
shown for a clear image. As soon as the UAV obtains weather
information, this is sent to Control Station (A) to optimize
the parameter of the routeChangingFactor. At this time, the
optimization methodology proposal is run together with the
weather information. At the end of the optimization, the best
value of the parameter that is found is sent to the UAV. When
the spraying of the current crop field (D) has been finalized,
the UAV updates its settings so that the spraying of the next
crop field (E) can start. It should be highlighted that the use
of a Control Station provides more powerful computation and,
in addition, allows a pilot (on the ground) to oversee the flight
and, if necessary, intervene in the control of the UAV.

B. Optimization of control rules

The optimization methodology proposed this paper is
essentially composed of an algorithm based on PSO [10],
[11]. This algorithm searches for a non-optimal value for
the routeChangingFactor parameter and in one computation
model of environment evaluates the accuracy of spraying by
applying the weather information received from the WSN.
Lastly, the algorithm returns the best solution (value per
parameter) and this is assessed so that it can be applied in
the next crop field. One important condition of this algorithm
is that the computational cost (runtime) should be lower than
the time required for spraying one crop field (subarea). Hence,

the search space is delimited in one zone that has values
of different acuteness (e.g. abrupt, smooth and moderate).
Additionally, this delimiting of the search space allows a more
rapid convergence. Following the definition of search space:

routeChangingFactor = {x ∈ R | 1.0 ≤ R ≤ 10.0}

The optimization process is conducted in two ways at the
same time: (i) through cooperation (group learning) and (ii)
competition (single learning), by considering the particles of
a swarm. Each particle is initialized in a random position
(possible solution) within a search space. In each iteration of
the algorithm, the velocity and position of the particles are
updated. The position found by the swarm with best fitness
and the positions with best fitness found by each particle
individually are considered for updating. As the positions of
the particles are possible values for the routeChangingFactor
parameter contained in search space, the velocity of the particle
indicates how far and in what direction this value will move (to
a new position). The new position of each particle is obtained
by Equation 1 (where: Xid is the position and Vid is the
velocity of particle i in a moment d), while the velocity is
updated in each iteration with Equation 2 (where: wi is the
inertia, C1 and C2 establish the importance of social trend or
individual (cooperation or competition), Pid is the best position
found by individual particle, Pgd is the best position found by
swarm and, finally, rand() and Rand() are different random
values for a good exploration of search space) [12].

Xid+1 = Xid + Vid (1)

Vid =
wi ∗ Vid + C1 ∗ rand() ∗ (Pid −Xid)

+C2 ∗Rand() ∗ (Pgd −Xid)
(2)

Algorithm 1 shows details of the optimization process. The
particles are initialized in random positions inside the search
space. The stop condition is defined by the amount of iteration
that the algorithm has to run. This stop condition allows
the average runtime to be analyzed in worst case scenarios,
when all the iterations are run to find one possible solution.
Following this, one stop condition can be added with the aim of
finalizing the algorithm when identifying the convergence that
has occurred. It should be noted that the runtime in worst cases
should be lower than the time required for spraying a crop field
(subarea). In each iteration, all the particles will have their
positions evaluated and if the “fitness” of a particle is the best
found by the swarm so far, the algorithm stores this position.
On the other hand, if the position is not the best in global terms
but is the best of particle the algorithm also stores this position
in the particle. Later on, the velocity and the position of each
particle are updated. When the algorithm achieves maximum
interaction, it is finalized and the best position found by the
swarm is returned.

The objective function (FuncObjetive) contained in the al-
gorithm, cited in Line 5 of Algorithm 1, refers to an interaction
with one project inside OMNeT++ software. The project is
an implementation of a computational model to evaluate the
spraying [4]. This interaction tests and analyzes the quality of
spray in each position of all the particles. The OMNeT++1

1OMNeT++ Network Simulation Framework, http://www.omnetpp.org
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Algorithm 1: Proposed algorithm to optimize the routeChang-

ingFactor parameter.

1: InitializeParticles(RandomPosition[1, 10])
2: for MAX_ITERATION do
3: PARTICLES ← FirstParticle()
4: for ALL_PARTICLES do
5: Result ← FuncObjetive(PARTICLES)
6: if Result is best particle then
7: Stores the position in particle
8: end if
9: if Result is the best in the swarm then

10: Stores the position in swar
11: end if
12: UpdateV elocity(PARTICLES)
13: NewPosition(PARTICLES)
14: PARTICLES ← NextParticle()
15: end for
16: end for

17: return BestGlobalPosition

Fig. 3. Interaction between PSO and OMNeT++.

is a simulator of discrete events implemented with base on
language C++ to model networks, multiprocessors and other
distributed and parallel systems [13]. The OMNeT++ can be
used to model several types of networks, such as networks
of queues, wireless and peer-to-peer types [14]. Because of
its generic design, OMNeT++ has several frameworks estab-
lished for specific networks, such as Mixim2 for modeling
wireless networks. This framework provides detailed models
for wireless channels, wireless connections, mobility models,
models for dealing with obstacles and several communication
protocols, especially for MAC [15]. Fig. 3 show the interaction
between the algorithm and OMNeT++. Initially the algorithm
changes the settings and files of “Project spraying” so that the
position of the particle can be used as routeChangingFactor,
apart from the addition of real weather information (Stage 1).
After this, the algorithm runs “Project spraying” in OMNeT++
(Stage 2) and, finally, analyzes the log file to determine the
results of the spraying (Stage 3). In the source code of “Project
spraying” there is a dispersion model to estimate the movement
of pesticide until the planting [4]. The fitness is calculated by
estimating the amount of pesticide sprayed outside of the target
crop field. Hence the proposed solution is to find, how far the
lower value is the best fitness.

IV. RESULTS

These experiments evaluate the use of the proposed
methodology by following two essential stages: (i) optimiza-

2MiXiM project, http://mixim.sourceforge.net

tion of the routeChangingFactor parameter; and (ii) evaluation
of spraying with routeChangingFactor parameter optimized by
means of the proposed algorithm. The results obtained in the
second stage of the experiments are validated by comparing
them with the results obtained without optimization of rule
controls for route changes [4].

The first stage of the experiments is carried out in a
virtualized machine with a single core of the processor (with
2.27 GHz of clock) in use. Other features of the computational
platform are the use of 1 GB of Memory and Ubuntu 2.6.32-
21-generic Operation System (called Control Station in Fig. 2).
In this stage, the algorithm will search for the best possible
value for applying as parameter of route changes (taking into
account the feedback about the weather information). The
settings evaluated are called with the standard PM (number
of particles) IH (number of interactions). Each configuration
is replicated thirty times, to obtain a greater confidence level
for future statistical analysis. The algorithm is defined so that
it will prefer the social trend (C2 = 0.75) to the individual
trend (C1 = 0.25) in the search. Another important parameter
for running the algorithm is Inertia, which is used to strike a
balance between local and global searches, and is set to carry
out local searches (wi = 0.1). Due to the low communication
time, measured in [4], it can be assumed that the communica-
tion time between the UAV and Control Station does not have
a significant influence on the full runtime. Thus, is assumed
in this experiment that the weather information already in the
Control Station.

The second stage involves the use of the solution which
has best fitness (found on previous stage) to evaluate the
spraying on a target crop field. This selection criterion is
used to evaluate the best solution in group of alternatives
generated by replications. If all the replications converge in
a group of solution with equal fitness, one of the solutions
is randomly selected. The spraying is carried out by using
the value selected as the routeChangingFactor parameter and
the result is compared with the results without optimization,
from [4] where it was employed a fixed value. It is worth
noting that the environmental features are the same for all the
experiments and is called Constant Light Wind in [4]. This
environment has a constant wind at a speed of 10 Km/h. The
crop field used has an area of 1500 m X 150 m and the area
of the target crop field is 1000 m X 50 m. The WSN have
twenty-two nodes spread across target crop field and the UAV
initialize the spraying at a height of 20 meters above ground
and a constant speed of 15 m/s. At intervals of ten seconds, the
UAV makes requests to the WSN for obtain information about
the quality of the spraying. These experiments are replicated
seventy times, to obtain a greater level of confidence for future
statistical analysis. In the following subsection, the results are
shown and discussed.

A. Optimization of routeChangingFactor

This subsection shows results employing the PSO-based
algorithm described in SubSection III-B. Table I shows the
results of the first stage. With exception of P3I20 setting,
that has 96.77% of convergence rate, all other settings have
a 100.00% convergence rate for the same value of fitness.
Due to particular features of the problem, it is possible that
a solutions group have the same fitness, since the difference
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TABLE I. RESULTS OF THE OPTIMIZATION OF THE

routeChangingFactor PARAMETER. P-VALUE LESS THAN 0.05 INDICATES A

NON-NORMAL ADEQUACY, THEM, IT LEADS TO NON-PARAMETRIC

STATISTICAL ANALYSIS.

Settings Convergence Average time Shapiro Wilk
rate (%) of evolutions (s) p-value

P3I20 96.77 18.617 ± 0.371 0.330
P3I50 100.00 45.927 ± 0.649 0.012
P3I100 100.00 93.854 ± 1.555 0.076
P5I20 100.00 30.705 ± 0.506 0.150
P5I50 100.00 77.162 ± 0.766 0.362
P5I100 100.00 158.995 ± 3.143 0.302
P10I20 100.00 62.549 ± 0.912 0.023
P10I50 100.00 157.957 ± 2.976 0.212
P10I100 100.00 313.335 ± 1.488 0.047
P15I20 100.00 93.606 ± 0.799 0.009
P15I50 100.00 235.189 ± 1.816 0.101
P15I100 100.00 480.359 ± 14.762 0.012
P20I20 100.00 125.088 ± 1.059 0.014
P20I50 100.00 312.894 ± 2.058 0.165
P20I100 100.00 628.324 ± 2.251 0.073

between the values of the routeChangingFactor parameter may
be low enough to have no significant influence on the spraying
in specific situations.

For validate the results, was carried out several static
analysis. We started using Shapiro Wilk method to verify
the adequacy of normality and consequently to lead it to use
parametric or non-parametric methods according to the results.
Only 53.33% of solution groups have value higher than 0.05
(see Table I), therefore the hypothesis of normality is rejected
considering a confidence level of 95%. Thus we use non-
parametric tests in the subsequent analyzes.

The pairwise comparisons performed with Wilcoxon Rank
Sum Test show3 that there is no significant difference between
the solution groups. Additionally, the Friedman Rank Sum Test
shows a p-value of 0.449, which also indicates that there is
no significant difference between the solution groups. Both
methods have a confidence level of 95%. Despite these results,
the P3I20 setting has a lower convergence rate than the other
settings. This difference in convergence rate is not indicated
by the methods, because the non-converged solution represents
3.5% of all the solutions (i.e. a value less than the confidence
level). Other important point contained in Table I, is the
average time ± standard deviation (in seconds) for each setting
of the algorithm. The spraying of a target crop field is carried
out in ≈ 66.667 seconds (in accordance with the speed of
the UAV) and as mentioned previously the runtime must be
less than the time required for spraying a target crop field.
Hence, the settings indicated for this application are P5I20,
P10I20 and P3I50. These settings allow the optimization of
the routeChangingFactor parameter with an appropriate time
and a convergence rate of 100%.

In conducting an analysis of the position of the solutions
in search space and visualizing the non-convergent solution,
we have plotted all the solutions on the basis of their value
in search space (see Fig. 4). It can be seen that the proposed
algorithm is capable of finding a region in search space where
values are appropriate for the routeChangingFactor parameter
in specific climatic conditions. This region in search space is
closely connected with features of the environment and tends

3The results of the Table are not included in this paper due to its size;
however, it can be viewed in http://goo.gl/iYR93k.

Fig. 4. Representation of the solutions found by the algorithm in the search
space.

TABLE II. CORRECT SPRAYING (%) IN THE TARGET CROP FIELD.

Settings Area with correct coverage (%)

CL10 72.871 ± 4.659

CL30 62.113 ± 3.591

CLNO 55.697 ± 0.657

P3I50 86.220 ± 2.538

P5I20 85.811 ± 2.894

P10I20 85.777 ± 2.520

not to be an appropriate region for the next crop field, since it
is a dynamic environment. Thus, the algorithm should be run
before starting the spraying in each crop field to reduce the
risk of making a wrong decision. The non-converged solution
originating from the P3I20 setting, is marked as “A” in Fig.
4. Despite its proximity, this solution does not belong to
the region of appropriate solutions for the weather conditions
reported by the WSN.

After analyzing the optimization of the routeChanging-
Factor parameter, we conducted experiments with the aim
of evaluating the precision of the spraying by using solution
indicated by the algorithm.

B. Spraying on crop fields

This subsection shows the results of the second stage of the
experiments. This involved analyzing and discussing the results
of spraying in a crop field by using the solutions found by the
PSO. In this stage, the experiments were conducted to support
the assessment of the proposal, which entailed optimizing
the routeChangingFactor parameter and ran parallel with the
spraying of a crop field (in the first stage ) and applied the
results of the optimization to subsequent crop fields (the second
stage). The results of spraying where optimization method
were used, are compared with the results when there was no
optimization [4].

Settings that did not involve the optimization of the pa-
rameter are described as follows: CL10, interval of ten seconds
between each of the requests of weather information from UAV
to WSN; CL30, interval of thirty seconds between each of the
requests of weather information from UAV to WSN; CLNO
does not change its route. These results came from [4].

The settings that use optimization parameter are described
as follows: P5I20, where the algorithm uses five particles
and twenty iterations; P10I20, where the algorithm uses ten
particles and twenty iterations; P3I50, where the algorithm
uses three particles and fifty iterations. These results are
obtained by the PSO.
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(a) routeChangingFactor = 3.000

(b) routeChangingFactor = 6.000

(c) routeChangingFactor = 7.164

Fig. 6. A heat map to represent the chemicals sprayed on the crop at the end of the simulation. The green colour represents no pesticide and red represents
the most concentrated places. The thin black lines show the crop field that needs to have chemicals sprayed. (a) and (b) Evaluations with empirical values. (c)
Evaluation with routeChangingFactor obtained by the PSO. We can see that when employing the routeChangingFactor obtained by the PSO we have the best
adjusts in the UAV track, attempting to keep the chemicals within the boundary lane. It is worth to highlight that, as the simulation starts with wind, the UAV
always starts the dispersion of the chemicals outside the boundary.

Fig. 5. Percent of pesticide spraying inside the target crop field. In this
Boxplot, first three results come from [4]; last three results are obtained in
this work by the proposed PSO.

Fig. 5 and Table II show the results of spraying on target
crop field, comparing results from [4] with results of the
proposed PSO. We can note that there is an increase in the area
with correct aplication of pesticides when employd the evolved
routeChangingFactor. The CL10 is a setting where there is less
error than between the non-optimized settings. However, all
the optimized settings surpass the precision usually achieved
when spraying a target crop field. Fig. 6 presents a heat map
to represent the chemicals sprayed on the crop at the end of
the simulation.

The Shapiro Wilk method, employed to the statistical
analysis, presents that the hypothesis of normality is rejected
for one of the sets, when there is a confidence level of 95%.
In view of this, we decided to use non-parametric tests in the
subsequent analysis.

TABLE III. RESULTS OF WILCOXON RANK SUM TEST. THERE ARE

EVIDENCES OF DIFFERENCE BETWEEN THE EVOLVED VALUES (P*) AND

THE NON-EVOLVED VALUES (C*) FROM [4] (P-VALUES LESS THAN 0.05).
THERE ARE NO EVIDENCES OF DIFFERENCE AMONG EVOLVED VALUES

(P-VALUES GREATER THAN 0.05).

CL10 CL30 CLNO P3I50 P5I20

CL30 0.000

CLNO 0.000 0.000

P3I50 0.000 0.000 0.000

P5I20 0.000 0.000 0.000 0.52

P10I20 0.000 0.000 0.000 0.52 0.79

The pairwise comparisons were performed by means of
the Wilcoxon Rank Sum Test (see Table III) and show that
there are significant differences between the results that employ
the methodology for optimization and the results when this
methodology is not used. However, no significant differences
were found when only the settings that use the optimization
methodology were analyzed. Additionally, the Friedman Rank
Sum Test is also applied to this data and shows a p-value
of 0.000, which suggests that there are significant differences
between the results shown in Fig. 5. As a result, it can
be concluded that the use of optimization method for the
routeChangingFactor parameter increases the efficiency of the
control rules, and reduces the errors when spraying in a crop
field.

V. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

In this paper, we have investigated a methodology based
on Particle Swarm Optimization for fine-tuning the control rule
of the UAV (i.e. the mobile node of WSN). The aim of this
proposal is to provide the optimization of the routeChang-
ingFactor parameter and thus reduce the error when spraying
pesticides on crop fields. In our experiments, we evaluated
several settings for the optimization method. The results show
that it is possible to obtain 100% of convergence for a group
of values. Thus, the control rule can be adapted to different
weather conditions without human intervention. Additionally,
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the use of this methodology increases the precision of spraying
pesticides so that ≈ 86% of the product is within a target crop
field. The reason for this is that the optimization is performed
during the application and thus the parameter can be adapted
to the climatic conditions of each target crop field.

Presented results encourage other studies; among these we
could cite the following: (i) investigation on optimization of
more parameters (e.g. the height and speed of the UAV, the
best starting-position for the next crop field, and the pressure of
the spray system); (ii) investigation of different methodology
for the fine-tuning control rules of UAV (e.g. Differential
Evolution [16], Genetic Algorithms [17], [18], Hill-Climbing
[19], NSGA-II [20]); (iii) an analysis of the feasibility of
embedding the optimization methodology in UAV, leading
to an autonomous architecture; (iv) an investigation of the
methodologies required for planning route-aware of weather
conditions.
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Abstract

Agricultural production has become a key factor for the stability of the world economy. The use of pesticides provides a more favorable environ-
ment for the crops in agricultural production. However, the uncontrolled and inappropriate use of pesticides affect the environment by polluting
preserved areas and damaging ecosystems. In the precision agriculture literature, several authors have proposed solutions based on Unmanned
Aerial Vehicles (UAVs) and Wireless Sensor Networks (WSNs) for developing spraying processes that are safer and more precise than the use of
manned agricultural aircraft. However, the static configuration usually adopted in these proposals makes them inefficient in environments with
changing weather conditions (e.g. sudden changes of wind speed and direction). To overcome this deficiency, this paper proposes a computer-
based system that is able to autonomously adapt the UAV control rules, while keeping precise pesticide deposition on the target fields. Different
versions of the proposal, with autonomously route adaptation metaheuristics based on Genetic Algorithms, Particle Swarm Optimization, Simu-
lated Annealing and Hill-Climbing for optimizing the intensity of route changes are evaluated in this study. Additionally, this study evaluates the
use of a ground control station and an embedded hardware to run the route adaptation metaheuristics. Experimental results show that the proposed
computer-based system approach with autonomous route change metaheuristics provides more precise changes in the UAV’s flight route, with
more accurate deposition of the pesticide and less environmental damage.

c© 2011 Published by Elsevier Ltd.

Keywords: Unmanned Aerial Vehicle, Unmanned Helicopter, Evolutionary Algorithms, Spraying Pesticides, Wireless Sensor Network

1. Introduction

Agriculture is one of the most important activities in the
world economy, which has led to a large variety of studies with
different goals, (Baggio, 2005, Daberkow and McBride, 2003,
McBratney et al., 2005, Zhang and Kovacs, 2012, Zhang et al.,
2002) including: (i) increasing crop productivity and quality,
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Paraná State University (UENP), Rodovia BR-369 Km 54, Vila Maria, CP 261
- Zip Code: 86360-000, Bandeirantes, Paraná - Brazil

Email address: bsfaical@uenp.edu.br (Bruno S. Faiçal)

(ii) decreasing production costs and (iii) reducing environmen-
tal damage. The use of technology in agriculture can be char-
acterized as Precision Agriculture (PA), as defined by Bongio-
vanni and Lowenberg-DeBoer (2004): the use of information
technology in all agricultural production practices, whether to
adapt the use of inputs to achieve the desired results in spe-
cific areas, or to monitor the results achieved in agricultural
plantations. The demand for larger agricultural production is
often reflected in the increase in the amount of pesticides used
during cultivation (Faustino et al., 2015, Tsimbiri et al., 2015,
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Walander, 2015). These products are used for pest1 control,
and creation of a nearly ideal environment for the crop growth.
Pimentel (2009) estimates that 3 million metric tons of pesti-
cides are used annually worldwide, but about 40% of all crops
are destroyed. One of the main reasons for this problem is the
pesticides drift out of the targeted area. In addition to the en-
vironmental damage caused by pesticide drift to neighboring
areas, prolonged contact with these products can cause various
diseases to humans (Dhouib et al., 2016), such as cancer, com-
plications in the respiratory system and neurological disorders.

Pesticide spraying in agricultural crop fields is generally
performed in two ways (Sammons et al., 2005), namely: (i) ter-
restrial and (ii) aerial. In the terrestrial way, which is largely
based on ground vehicles, paths are needed within the crop
field, as the vehicles require permanent contact with the ground
during locomotion. The spraying system must be close the cul-
ture, which reduces the drift of pesticides to neighboring areas.
Additionally, the terrestrial spraying is able to reach a higher ac-
curacy of spraying distribution in favorable conditions. For ex-
ample, it can attend particular demands of a specific culture. On
the other hand, this spraying approach is usually slow and has
contact with the culture, which decreases the production area
and can damage healthy plants. In contrast, the aerial spraying
allows faster spraying without the need for paths inside the crop
field. However, the larger distance between the spraying system
and the cultivated area increases pesticide drift to neighboring
areas (Nádasi and Szabó, 2011).

The aircrafts usually employed for spraying are manned,
therefore requiring the presence of a pilot during the spraying
activity. If there is any failure, human or mechanical, during
the flight that cause the aircraft fall, can severely harm the pi-
lot. It is important to observe that most of the aerial spraying
occur close to the soil (around 3 metres high), which increases
the chances of accidents. An alternative to reduce the risk of
fatal accidents is to use unmanned (autonomous or remote con-
trolled) aircrafts, like UAVs.

Several studies on the use of tele-operated UAVs to spray
pesticides can be found in the PA scientific literature (Bae and
Koo, 2013, Huang et al., 2009). However, the use of full or semi
autonomous UAVs to perform the spraying operation still has
not efficiently addressed the problem of how to autonomously
find control parameters able to continuously adapt the flight
route of an UAV spraying pesticides in a highly dynamic en-
vironment. In the (semi) autonomous operation, an UAV must
be able to adjust its flight route accordingly to its velocity and
operation height, the velocity and orientation of the wind, and
the type of chemical being sprayed (as it might change the size
of the droplets).

In this paper, the authors investigate the use of four meta-
heuristics, two of them population based, to obtain semi-optimal
flight control parameter values. The authors believe that these
metaheuristics can efficiently search the solution space to find
good parameter values for the UAV control rules, increase the

1Agriculture and Department (2003) defines a pest in an agricultural context
as any species, strain or biotope of plant, animal or pathogenic agent harmful
to plants.

accuracy of the spraying process.
Hence, looking to to obtain higher accuracy in pesticide

spraying and reduce the risk of human exposure to these prod-
ucts, this paper proposes a system called AdEn (Adaptation to
the Environment) to autonomously adjust the control rules of
UAVs spraying operation taking into account possible changes
in weather conditions. In the proposed system, four metaheuris-
tics are evaluated regarding their performance in the optimiza-
tion of the control rules, namely: (i) Genetic Algorithms, (ii)
Particle Swarm Optimization, (iii) Simulated Annealing, and
(iv) Hill-Climbing. Afterwards, this study will compare the
performance obtained in pesticide spraying by using AdEn with
the same approach adopted in the literature for the optimization
phase (i.e. replacing the metaheuristics by a specific empirical
setting of the PSO).

This paper is structured as follows: Section 2 described the
main aspects of related works. Next, Section 3 briefly presents
the proposed approach for UAVs-based pesticide spraying. In
Section 4 there is a detailed description of each component of
the approach proposed in this paper. The experimental evalua-
tion process used to assess the performance of the proposed ap-
proach is described in Section 5. Finally, a summary of the main
conclusions and suggestions for future works are presented in
Section 6.

2. Studies of accurate pesticide spraying

Given the benefits derived from pest control with the use
of pesticides, several studies have been conducted on how to
improve spraying accuracy (Bae and Koo, 2013, Huang et al.,
2009, Nádasi and Szabó, 2011, Pérez-Ruiz et al., 2015, Sam-
mons et al., 2005). According to the approach adopted, these
studies can be divided into two main groups: (i) terrestrial and
(ii) aerial. The main difference between the two approaches is
the vehicle used for transporting the spraying system. In the ter-
restrial approach, the vehicles remain in contact with the ground
throughout their route (e.g. tractors). Aerial models use air-
crafts with an attached spraying system to fly over the area of
cultivation and spray the pesticide on the plantation.

2.1. Terrestrial spraying

An alternative usually adopted for controlling the cultiva-
tion and the conditions required for crop growth is the use of
greenhouses. These structures can provide a controlled environ-
ment whose conditions are closer to the optimum required for
production. However, the controlled environment is considered
to be harmful to the health of farm workers due to the extreme
conditions they are subjected to, like high temperature and hu-
midity (Sammons et al., 2005). Because of the small space
between planting trails, pest control in these environments is
often performed with manual spraying equipment. As a result,
this activity becomes susceptible to human error and can lead to
an unbalanced deposition of pesticide. In addition, despite the
use of safety equipment, the workers are exposed to the sprayed
products. To overcome these hazards and reduce the impact of
pesticides on workers’ health, Sammons et al. (2005) propose
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the use of an autonomous robot for pesticide spraying inside
greenhouses. For such, a land vehicle uses an auxiliary struc-
ture that guides the route of the robot, similar to the way rails
are used by trains. This auxiliary structure is fixed between the
planting tracks. When the vehicle reaches the end of an alley, a
professional enters the greenhouse and positions the vehicle in
the next alley. This procedure is continued until all the tracks
are covered. The results reported by the authors show that this
solution provides a homogeneous and consistent coverage, with
an overlapping margin of 10% to 20%. Despite the good results,
this solution is not completely autonomous. Thus, workers are
still exposed to the sprayed product when they enter the green-
house to re-position the vehicle. Furthermore, this solution has
poor scalability and high costs due to its dependence on the
rails.

Another form of production is the cultivation in open field
crops. This allows extensive crop fields and, hence, large scale
production. On the other hand, this alternative is the most ex-
pensive agricultural production, since it requires a larger amount
of machinery and more workers to carry out activities in a timely
manner. However, there are limits to the working hours and pro-
ductivity of agricultural workers, preventing accomplishment
of the required tasks the over long periods of time. As a means
of overcoming the limitation of working hours and increasing
the safety of agricultural work, several studies have investigated
the use of autonomous vehicles (Pérez-Ruiz et al., 2015). This
approach has achieved good results and has been a more effi-
cient alternative than manned vehicles for agricultural produc-
tion.

The survey by Pérez-Ruiz et al. (2015) highlighted the con-
siderable progress made in this context, which includes: (i) au-
tonomous tractors, (ii) communication systems and the Global
Positioning System, (iii) a design for an intelligent spray bar,
(iv) thermal and mechanical systems to control weeds, and (v)
an air-blast sprayer. The good preliminary results obtained in
these areas show a promising future for the development and
use of autonomous vehicles for precision agriculture. Despite
making significant advances, land vehicles (whether autonomous
or manned) have to use routes within the plantation and this re-
duces the production area. Moreover, deviations in the route al-
ready established can damage healthy plants and further reduce
productivity, since these machines enter the crop field several
times during the production phase.

2.2. Aerial spraying

Aircrafts equipped with a spraying system are each time
more used as an alternative to land vehicles for spraying pes-
ticides on crop fields. This approach does not require routes
within the plantation, and, therefore, does not affect healthy
plants if there is deviation in their flight paths. In manned
vehicles, the pilot has several equipments to carry out cross-
checking of information during the flight (Nádasi and Szabó,
2011). To ensure the accuracy of the information provided to
pilots, Nádasi and Szabó (2011) describe the concepts neces-
sary for the deployment of Microelectro-MEchanical System
(MEMS)-based Inertial Measurement Units (IMU) navigation

systems. The main objective of this system is to enable the pi-
lot to know the aircraft geographical position more accurately
than when other alternatives, such as Global Position System
(GPS), are used. However, this study does not describe the im-
plementation and the results achieved by the proposed system.
Regardless of how the described system is validated, it should
be noted that the quality of aerial spraying of pesticides de-
pends largely on the experience and skills of the pilot (Nádasi
and Szabó, 2011). This is true because, even when information
is available, the pilot is still responsible for making decisions
during the flight to optimize pesticide spraying.

Regarding the use of unmanned aircraft, sprayed pesticides
using fixed-wing aircraft (for example, single-engine aircraft)
may cause drift to nearby areas that should not receive the pesti-
cides (e.g. environmental preservation areas) (Antuniassi, 2015).
While it is common to use buffer zones to mitigate the damage
caused by drift, this hazard can occur 5 to 32 km downwind (Pi-
mentel, 1995), which far exceeds the range of the buffer zones.
The use of UAV rotorcraft has been investigated as a safe and
high-precision alternative for spraying pesticides (Bae and Koo,
2013, Faiçal et al., 2014a,b, Huang et al., 2009). This occurs
because these aircrafts have no pilots on board and their down-
wash effect2 is directed to the plantation (Hanson, 2008). The
downwash can act as a protective tunnel for pesticide spraying.
Taking advantage of this effect, some studies use a spray sys-
tem attached to an unmanned helicopter for the application of
pesticides in the crop field (as proposed by Huang et al. (2009)).

The low-volume spraying system proposed by Huang et al.
(2009) has four main components: (i) a metal bar with 2, 3 or
4 nozzles, (ii) a reservoir that stores the product to be sprayed
(iii) a pressure pump and (iv) an engine for controlling the oper-
ation of the system. This system uses Pulse Width Modulation
(PWM) to regulate the pump inlet pressure, which has a linear
relationship with the spray flow. Thus, the number and type
of fixed nozzles in the metal bar and the PWM setting must
be in accordance with specific characteristics required for the
spraying process. The system may be loaded with up to 5 kg
of pesticide, which is sufficient to spray approximately 14 ha.
However, this system was designed and developed to be cou-
pled with the UAV SR200, produced by Rotomotion3. This
UAV has a combustion engine, which measures 3 m in diam-
eter (for the main propeller) and is able to carry up to 22.7 kg
of load. Even though this spraying system is integrated into the
UAV control system, which allows it to be adjusted to its geo-
graphical position, the accuracy and uniformity of the pesticide
deposition have not been evaluated. The uniformity of depo-
sition for unmanned helicopters was analyzed by Bae and Koo
(2013), which describes and offers a way of improving the UAV
structure to allow a uniform deposition. However, the accuracy
of pesticide deposition has not been evaluated in different flight
configurations and in dynamic weather conditions.

2In aeronautics, the term Downwash means changing the direction of air
diverted by the action of the aerodynamic airfoil, wing or helicopter engine in
motion, as part of the lifting process (Crane, 2012).

3http://www.rotomotion.com/
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2.3. Different approaches of spraying

It must be observed that the terrestrial approach employs
vehicles that use roads within the plantation to spray the pes-
ticide throughout the cultivation, which can result in soil com-
paction. The aerial approach, on the other hand, does not re-
quire pathways within the plantation and enables the pesticide
to be sprayed from a larger distance (when compared to the ter-
restrial approach). In the latter approach, there is an increase in
the drift of pesticides to neighboring areas (Antuniassi, 2015).
The drift of pesticides into the environment can cause serious
harmful effects on flora and fauna, by contaminating preserva-
tion areas and destroying wildlife. Moreover, even though the
pesticide is deposited within the crop field, wheather condic-
tions can spread pesticides to other areas, expose agricultural
workers and the population (end-consumers) to inappropriate
and prolonged contact with the products, causing serious health
damages (Dhouib et al., 2016).

An architecture based on UAV and wireless sensor networks
has been investigated and proposed to reduce the risks of pes-
ticide drifts outside of the target area and to avoid overlap-
ping sprayed areas, by ensuring more precise deposition of the
sprayed products. This approach can reduce the amount of pes-
ticides used in agricultural production, without damaging the
crop yield.

3. Proposed approach for UAV and WSN for aerial pesti-

cide spraying

3.1. Overview and problem statement

Previous works have investigated the use of UAVs to im-
prove the quality and amount of crop production in several agri-
cultural activities (Huang et al., 2009, Valente et al., 2011). One
of the most important of these activities is pesticide spraying
for pest control. This activity has had a great influence on the
quality and yield of cultivated crops, since pesticides are used
to create a near-optimum environment and their inappropriate
use can cause environmental and economic damage and lead
to health problems. Figure 1 shows the problem addressed in
this paper, resulting from inaccurate spraying pesticides. The
weather conditions in the crop field cause pesticide to drift out
of the target area. This results in extensive damage, such as
overlapping pesticides, non sprayed regions and contamination
of rivers, forests and inhabited areas.

3.2. First attempt to solve the problem

In order to deal with the previously mentioned problem,
Faiçal et al. (2014b) proposed an architecture based on UAV
and WSN for aerial spraying of pesticides in agricultural fields.
This architecture enables an UAV to adjust its route to the con-
centration of deposited pesticides. This information is obtained
through a WSN deployed in a matrix format covering the crops
in the field. According to experimental results, this architecture
makes the spraying process more precise and safer than previ-
ous approaches commonly employed for aerial spraying, where
a manned aircraft is used without the feedback of information
about pesticide deposition.

Figure 1. Problem statement: drift of pesticides from the target crop field in
dynamic environments (e.g. a change of wind speed and direction).

The application scenario exploited by Faiçal et al. (2014b)
is shown in Figure 2. In this figure, the UAV is a spraying ele-
ment equipped with a programmable trigger system. The con-
trol system divides the crop field into parallel spraying tracks
and defines a flight path so the UAV can fly over the center
of these tracks when spraying pesticide (see Figure 2(a)). The
used architecture allows the spraying process to be interrupted
at any time for refueling or pesticide recharge, and resumed at
the exact same point. Each track is positioned in a way that
pairs of sensors can be placed within the limits of its width.
Thus, as the track is covered during the spraying process, the
UAV communicates with the sensors in 10 second intervals (see
Figure 2(b)). During the communication, the sensor nodes send
information to the UAV control system, such as the concen-
tration of pesticides and weather conditions (wind speed and
direction). If the sensors report an imbalance in the pesticide
deposition that exceeds a fixed threshold, the UAV control sys-
tem adjusts the flight path to provide a uniform deposition.

The sensor nodes have a specific hardware to capture infor-
mation used by the UAV (wind speed and direction and pesti-
cide deposition). To obtain wind-related information, an anemo-
meter can be installed above the plantation height. For the pes-
ticide deposition, a specific chemical sensor may be needed to
detect the presence of the active substance used in the pesti-
cide. This is possible because when the pulverized product ap-
proaches the crop, the chemical sensors identify the presence of
a specific active substance and react to it. It is important to ob-
serve that the calibration of the chemical sensors depends on the
model and which active substance is used; the calibration must,
therefore, be performed in the actual deployment of WSN.

In addition to the WSN operation, the arrangement of sensor
nodes (in matrix format) allows the UAV’s on-board computer
to compare information from two neighboring nodes. This is
possible because the definition of the position of the nodes takes
into account the range of spraying. Thus, the width of the spray
ranges covers two neighboring nodes sensors (in parallel). Fi-
nally, regarding WSN architecture, the UAV is considered a mo-
bile node and it is responsible for requesting information from
specific fixed sensors (according to their position in the crop
field) at periodic time intervals.
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(a) The target crop field is divided into spraying tracks to guide the flight
path of the UAV. Each track is defined in order to allow pairs of sensor
nodes to be covered in its width. These spray tracks are made possible by
the WSN that is deployed within the plantation and have a matrix format.

(b) The UAV flies over each spray track, which is defined for the flight
path while the pesticides are being sprayed. During the spraying process,
the UAV checks the last covered sensors to find out the concentration of
pesticide deposited, together with the weather conditions. If the response
to the query indicates inadequate concentration (higher or lower than a
predetermined threshold), the UAV adjusts its route to balance the con-
centration in the target crop.

Figure 2. Standard operation of the proposed architecture by Faiçal et al.
(2014b).

The route is corrected by using the route change policy
based on feedback received from the WSN, which is to move
the UAV in the opposite wind direction. Hence, if for example,
the original route of the UAV is in the center of the spray track
and there is a wind blowing toward the right of the track which
is unbalancing the deposition of the pesticide, the policy moves
the UAV in the opposite direction to the wind (positioning its
route to the left). By this means, although there is drift, the
pesticide deposition is balanced in the target track (Faiçal et al.,
2014b).

In practice, the route correction policy uses a simple equa-
tion to define the time taken by the aircraft to update its route
moving its direction in response to wind changes by an angle of
45 degrees (Faiçal et al., 2014b). Finished the direction change,
the UAV adapts its route to fly in parallel with the spray track.
For such, the route is gradually corrected until the pairs of sen-
sor nodes show a balanced deposition. The routeChanging-

Factor parameter defines the intensity of the route correction,
which allows abrupt changes (a longer time for route correc-
tion) or mild changes (a shorter time for route correction).

3.3. Discussion of results

The described architecture was experimentally evaluated in
different weather conditions. The results from Faiçal et al. (2014b)

(a) routeChangingFactor = 3.000

(b) routeChangingFactor = 6.000

(c) routeChangingFactor = 7.164

Figure 3. As shown in Faiçal et al. (2014a), these heat maps represent the
chemicals sprayed on the crop. The green area illustrates the plantation and the
red area illustrates the concentration of the pesticide. The thin black lines show
the crop field that needs to be sprayed by pesticides. (a) and (b) Evaluations
with empirical values. (c) Evaluation with routeChangingFactor obtained by
the PSO. It can be seen that the best adjustments in the UAV track are achieved
when employing the routeChangingFactor obtained by the metaheuristic. It
should be observed that when the simulation starts with wind, the UAV always
starts the dispersion of the chemicals outside the boundary.

show that the proposed architecture improved the pesticide spray-
ing accuracy, when compared with a traditional model, which
does not allow route adjustments. Despite the good results,
it should be noted that the correction of the UAV’s course is
of the same intensity throughout the whole spraying activity,
regardless of the weather in the plantation area. This occurs
because the routeChangingFactor parameter is set before the
flight and remains unchanged. This static behavior is inefficient
in dynamic environments, where weather conditions can vary.
Thus, an initially good route intensity correction can become
bad when the weather condition changes. .

This drawback was partly investigated by Faiçal et al. (2014a),
which resulted in the proposal and evaluation of new methods,
based on Particle Swarm Optimization (PSO), to optimize the
routeChangingFactor according to the current weather condi-
tions. According to the experimental results obtained in this
study, the use of an adjusted routeChangingFactor parameter
for weather conditions allows the UAV to make a better route
correction. Besides, the UAV was able to spray pesticides with
a higher degree of accuracy. Figure 3 shows that adapting the
route correction intensity provides a more accurate measure-
ment. However, the study in (Faiçal et al., 2014a) only consid-
ers one type of weather condition, Constant Light Wind (CLW)
- which refers to a wind speed of 10 km/h. It is not possi-
ble to infer that different weather conditions benefit from the
same adjusted routeChangingFactor parameter, since this was
not evaluated. In addition, Faiçal et al. (2014a) only investigate
the use of a metaheuristic to optimize the routeChangingFac-

tor parameter for the weather condition; it did not study it as a
complete system. To overcome the previously mentioned lim-
itations, this paper proposes the AdEn system, a complete sys-
tem to optimize UAV flight trajectories where adjustments are
made in response to changes in the weather. It must be observed
that AdEn is evaluated in different weather conditions and with
different computing platforms.
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4. The AdEn System - Adaptation to the Environment

The Adaptation to the Environment system (AdEn) is com-
posed by two main components: (i) Collector and Actuating
(CollAct), and (ii) OPTImization Core (OPTIC). The first com-
ponent collects weather information and updates the settings of
the UAV control system. The second component is responsible
for adapting the routeChangingFactor parameter to changes in
the weather conditions. It defines the required route correction.

Figure 4 displays the main features of the AdEn system and
the computing platforms where they run, including their inter-
nal interactions. CollAct runs on a computer system embedded
in the UAV, while OPTIC runs on the Aircraft Control Station.
It is worth pointing out that both components (CollAct and OP-
TIC) run above the Operating System (OS) and in parallel with
other processes in their respective computing platforms. The
AdEn system is designed to interact with the UAV route correc-
tion system (using CollAct to update the flight configurations),
making it less dependent on other processes and libraries.

CollAct uses an existing communication link with the WSN
to collect weather information about the crop field being sprayed.
This information is transmitted to the OPTIC element via a
wireless communication link that exists between the UAV and
the Control Station. At this time, the OPTIC element is exe-
cuted and a new value for the routeChangingFactor parameter
is transmitted back to CollAct, which updates the value of the
rule-based parameter adjustment route of the aircraft. The set-
tings are loaded whenever the UAV starts to spray a new sub-
area.

Figure 4. Elements of the AdEn system (CollAct and OPTIC) in their respec-
tive computing platforms, together with the components of the architecture pro-
posed by Faiçal et al. (2014b).

As previously mentioned, AdEN uses a track structure to
guide the UAV’s flight path. AdEN creates sequential sub-
areas (regions of interest), forming logical divisions at the spray
tracks This division defines the regions that will have sensor
nodes, which can be queried for weather information and where
each optimized value (adjusted intensity) is employed. In the
spraying of each track, while a sub-area is sprayed (with the
standard operation - spraying and course correction with an in-
tensity set at the beginning of the sub-area),the intensity adjust-
ment (AdEn system) uses weather information from the next
sub-area. This process runs sequentially for each sub-area of
the track until the end of the spraying process. The spraying of
a crop field is concluded after all the tracks are sprayed by the
UAV. Figure 5 shows the logical divisions of the spray tracks,

which create sub-areas of interest, and the rest of the crop field
in tracks (those without divisions to make it easier to understand
the process).

Figure 5. The spray track is divided into sub-areas of interest, which define the
node sensors that will be queried for weather information and the area where
each intensity is used. The current sprayed area is highlighted in the whole
area to be sprayed. The wireless communication symbols represent the queries
about the deposition of the pesticide. Although the query about the weather,
used to adjust the intensity of the correction, is not shown (to keep the picture
more clear), it is performed with the sensor nodes in the next sub-area to be
sprayed.

The routeChangingFactor parameter is updated during the
transition between the current sprayed sub-area and the sub-
sequent sub-area. A procedure based on space-time between
the UAV and the crop field was used by the AdEN system to
synchronize the UAV activities. Figure 6 shows the sequence
of steps executed by the AdEn system while spraying a track.
These steps are performed in parallel with the operation of the
architecture proposed by Faiçal et al. (2014b). Thus, the AdEn
system runs in parallel with the original architecture, by adapt-
ing its route adjustment policy to environmental weather con-
ditions without the route correction system being aware of this
process.

Figure 6. Spatio-temporal representation of actions taken by AdEn. It is im-
portant to observe that the best route correction intensity found is used in the
following sub-area, in which the processing steps are executed (e.g., the result
of the 1st processing is used in the 1st sub-area). Initially, the CollAct element
queries the sensors from the next sub-area by asking about the weather. It then
sends this information to the OPTIC element in the Control Station. After the
optimization of the routeChangingFactor parameter, the best value is transmit-
ted back to CollAct (in the UAV). Finally, CollAct updates the route adjustment
policy with the received value.

Hence, the activities of the proposed system can be summa-
rized as follows: (i) collecting the weather information about
the next target sub-area; (ii) optimizing the parameter for the
weather and; (iii) updating the parameter value of the routeChang-
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ingFactor when setting the route adjustment policy. As shown
in Figure 6, the three activities are carried out sequentially to
obtain a new parameter value of the routeChangingFactor which
can be used in the next sub-area. However, in the first sub-area
of the spray track, AdEn performs all the activities before start-
ing the spraying. In this case, the UAV control system receives
a signal to wait for the routeChangingFactor parameter to be
updated.

4.1. Querying weather information and updating the route ad-

justment policy

Querying the sensor nodes located in the next sub-area is
performed throughout the wireless communication between UAV
and WSN. The querying process executed by the AdEn system
for nodes in the WSN, is performed by giving information of
the geographic coordinates that define the next target sub-area.
Since the sensor nodes have information about their locations,
the ones that are deployed within the next sub-area are able
to respond to the requests sent by AdEn. Response messages
sent by the sensor nodes are destined to the AdEn embedded
system in the UAV and have the weather information of the
sub-area. This information might be the average of the previ-
ously acquired sensor data. On receiving these messages, the
AdEn system calculates the average weather condition of the
sub-area and transmits this information to the OPTIC element
in the Control Station.

After sending the information to the OPTIC element, Col-
lAct remains on standby. This state is changed when it receives
a message from OPTIC with a new value for the routeChang-

ingFactor parameter or in case of a timeout, which can be set
according to how long the UAV will take to arrive at the end
of the current sub-area. In the event of a failure that prevents a
message sent by the OPTIC element (e.g. signal loss from the
telemetry system) from being received, two backup settings can
be used, (i) keep the last received value and use it for the next
sub-areas until the problem has been fixed or (ii) set a default
value to be used as a routeChangingFactor parameter until a
message from the OPTIC element is received.

Finally, the adaptation ends when the UAV reaches the end
of the target sub-area and CollAct updates the value of the route-

ChangingFactor parameter in the UAV route correction system.
This value is used in the next sub-area to be sprayed, while
another intensity adjustment cycle is executed in the next sub-
area.

4.2. Optimization of the routeChangingFactor parameter to wea-

ther conditions

As previously described, the optimization of the intensity
of route correction is carried out by the OPTIC element, which
runs in the control station while the previous sub-area was being
sprayed. Although the spraying architecture executes the course
correction autonomously, the Control Station enables a human
operator to take control of the aircraft at any time. Moreover,
as previously explained, the control station can also be used as
an additional computing platform for processing the decision-
making of the UAV control system.

In order to achieve an accurate global spraying, the eval-
uation of the pulverization accuracy was divided into several
sub-problems, each one concerned with the evaluation of the
accuracy of the deposition into a sub-area. The combination
of adjustments performed in each sub-area allows a better so-
lution to the large (global) problem, which is the adjustment of
the intensity of route correction during the complete spraying
of the agricultural field. Even if the pulverization in each sub-
area is highly accurate, it is still possible to achieve a globally
accurate spraying. The use of sub-areas to evaluate the spraying
accuracy can reduce the overall computational cost, making the
proposed solution computationally efficient during the online
processing.

The optimization problem addressed by the AdEn system
(specifically the OPTIC element) is to find non-optimal values
of intensity to adjust the route of the UAV in order to minimize
the function:

Fitness =
∑
ϑ −
∑
ν

where
∑
ϑ is the sum of all the pesticide sprayed and

∑
ν

is the sum of pesticide deposited in the correct region. Thus,
this function calculates the amount of pesticide deposited out-
side the target area. Consequently, the optimal route correction
intensity is the one that minimize this objective function (the
lower the value, the better the fitness).

In practice, the intensity of the route adjustment is a value
inside a search space that allows for different settings (e.g. abrupt,
smooth and moderate). The search space is defined by:

routeChangingFactor = {x ∈ R | 1.0 ≤ x ≤ 10.0}

Figure 7 shows the operations of OPTIC in the Control
Station, with the interactions between its components (Core,
Computer Model of the Environment and Metaheuristic). Ini-
tially, the Core receives weather information collected by Col-
lAct through the communication link between the Control Sta-
tion and the UAV (Step 1). Next, it incorporates this informa-
tion in a computer model that is specifically designed for the
given environment (Step 2) and runs a metaheuristic (Step 3).
The metaheuristic evaluates various solutions in the computa-
tional model (Step 4) to find a route correction intensity value
that is close to ideal. The best value found (non-optimal) by
the metaheuristic is sent to the Core (Step 5), which sends the
value to CollAct (Step 6) by the same communication link used
to receive the weather information.

The computer model used by OPTIC was first described in
Faiçal et al. (2014b), where it was used to evaluate the accu-
racy of the platform for route adjustment. However, this model
was adapted to run without the occurrence of stochastic interfer-
ence between the evaluations carried out during the execution
of the metaheuristic. This behavior allows a fair comparison be-
tween the tested intensities. Yet, the computational model used
considers the pesticide spraying architecture without the AdEn
system, as this is executed transparently and in parallel with the
original architecture.

OMNeT++4 was used to implement the computational model.

4OMNeT++ Network Simulation Framework, http://www.omnetpp.org
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Figure 7. Execution of OPTIC element in the Control Station to optimize the
routeChangingFactor parameter for weather measured by the WSN.

This software is a simulator of discrete events based on the C++
language to model networks, multiprocessors and other dis-
tributed and parallel systems (Varga, 2010). OMNeT++ can be
used to model several types of networks (for example, networks
of queues, wireless and peer-to-peer types) (Klaus Wehrle, 2005).
Because of its generic design, OMNeT++ has several frame-
works established for specific networks, such as Mixim5 for
modeling wireless networks. This framework provides detailed
models for wireless channels, wireless connections, mobility
models, models for dealing with obstacles and several com-
munication protocols, especially for MAC (Köpke et al., 2008)
layer.

Additionally, the computational model used allows the use
of different dispersion models to calculate the physical process
of transport and transformation of the product until it reaches
the culture. This modular structure allows assessments to be
carried out continuously to make it increasingly accurate against
the real process without losing deployments ever undertaken.
In the current implementation, the Chemical Dispersion Mod-
ule calculates the fall of the chemical through the position and
time of fall of each drop. This chemical dispersion is based
on a simplified model of pollutants, which consider (1) the ini-
tial velocity vector of the particle, when sprayed; (2) the wind
speed vector; and (3) gravity. Calculations are performed for
all instants of time for each drop of the pulverized product un-
til reaching the culture (Faiçal et al., 2014b). This dispersion
model, although simple, is satisfactory at this stage because the
goal is to optimize UAV route. However, it is important to note
that the dispersion model can be exchanged for more accurate
models according to future research needs.

Each solution found by the metaheuristic used is evaluating
according to the quality its associated route. The quality of
a solution is inversely proportional to the amount of pesticide
deposited outside the target region. Thus, the lower the amount
of pesticide outside the target area, the better the quality of the
route. A computational model uses an objective function to

5MiXiM project, http://mixim.sourceforge.net

evaluate the intensity of route changes and return the best value
found for the current weather. The following sections describe
the methodology used to assess the effectiveness of the AdEn
system.

5. Setting the Metaheuristic and Evaluating the AdEn Sys-

tem

The optimization of the routeChangingFactor parameter is
essential for the adaptation of the route correction of the origi-
nal architecture (proposed by Faiçal et al. (2014b)) to the weather
conditions. Several metaheuristic were investigated to select the
most efficient for this task. The progress made in the use of the
route correction intensity adapted to the weather conditions in
different scenarios was also evaluated. Due to the short time
available for transmitting weather information (Faiçal et al.,
2014b) and the need to concentrate on the behavior of the eval-
uated metaheuristics, it is assumed that the weather information
was already incorporated in the environmental computer model.
The, the main focus of this article is on assessing the perfor-
mance of the metaheuristics. This scenario is similar to that
employed in Faiçal et al. (2014a), used here as a benchmark to
show the progress achieved in this study.

The experiments are divided into three complementary pha-
ses. Initially, Grid Search is used to tune the main parameters
of the metaheuristic (see Table 2). Grid search is used to im-
prove the convergence rate of the metaheuristic. In the sec-
ond phase, the best settings for each metaheuristic is executed
on an embedded computing platform. The performance of the
metaheuristics in a UAV equipped with embedded hardware is
assesses and compared with the performance achieved by the
same metaheuristics in a computer platform used in the Control
Station. Finally, the accuracy of the spraying is evaluated to
assess if these metaheuristics can be used in different weather
conditions (winds of 10 and 20 km/h).

The following metaheuristics were investigated for this stu-
dy: (i) Particle Swarm Optimization – PSO (Eberhart et al.,
2001, Engelbrecht, 2006, Faiçal et al., 2014a); (ii) Genetic Al-
gorithm – GA (Faiçal et al., 2014, Holland John, 1975); (iii)
Hill Climbing with the Next-Ascent strategy - NAHC (Forrest
and Mitchell, 1993, Muhlenbein, 1991); and (iv) Simulated An-
nealing – SA (Kirkpatrick et al., 1983). These metaheuristics
are widely used in the optimization literature with good re-
sults in several applications. It must be emphasized that the
implementation of the metaheuristics was based on the article
where they were published and their source codes are available
at http://goo.gl/tT6qsf. Additional information on the flight con-
ditions of the UAV and about the environment for the develop-
ment and evaluation of AdEn system can be seen in Table 1.

The main results illustrating the progress made in this work
are described next. The results obtained by the GA are high-
lighted, because, together with the PSO results, they were the
best results achieved. PSO was used in the experiments re-
ported in Faiçal et al. (2014a). It is important to notice that two
PSO configurations were used in the experiments, (i) exactly as
proposed in our previous work and; (ii) with the same imple-
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Element Information Value

UAV Horizontal Position Middle
UAV Height 20 m

UAV Speed 15 m/s

UAV Direction East
UAV Acceleration 0 m/s2

UAV and WSN Time between communication 10 s

Crop Field Target Sub-area Dimension 1000 m x 50 m

Weather Wind Speed 10 and 20 km/h

Weather Wind Direction North

Table 1. The configuration adopted was defined to provide a fair comparison between the evaluated metaheuristics and the solution in the previous work, when the
AdEn system was developed. It must be observed that the Wind Speed parameter had a value of 20 km/h in the proposed system. Now two values (10 and 20 Km/h)
are used in the evaluation. The UAV’s flight height was defined based on related works (Ozeki, 2011, Salvador, 2011).

Figure 8. Scanning in the search space made by the Grid Search to define the
configuration of each metaheuristic. An important feature of this implementa-
tion of the Grid Search is the convergence and concentration of assessments in
a promising region of the search space. The movement of Grid Search is rep-
resented by numbered grids listed in the order in which the cycle was analyzed
(for example, 1◦ for the first cycle). The grid formed around a vertex with pre-
vious values indicates that this setting resulted in the best performance of the
previous cycle.

mentation, but modified according to improvements seen in the
experiments. All the results are available in https://goo.gl/fiSlcQ.

5.1. Evaluation of metaheuristics used for the optimization of

the routeChangingFactor parameter

Metaheuristics have been successfully employed in combi-
natorial problems to efficiently find non-optimal solutions. The
parameter values used in these metaheuristics can influence the
quality of the solutions found. The Grid Search Technique is
used to reduce the impact of an empirical configuration, search-
ing for parameter values able to improve the performance of the
metaheuristics investigated. Table 2 shows the parameters that
need to be configured and the limits of the search space covered
by Grid Search.

For all metaheuristics, the grid starts with the same uniform
positions in the search space. The configuration (indicated by
one of the vertices) with the best performance in each cycle, de-
fines the grid’s center vertex in the next evaluation cycle. The
distance between each pair of vertices is linearly decremented
for each evaluation cycle, starting with a distance of thirty units
and ending with a distance of five units. Figure 8 illustrates

the execution of the Grid Search. Each assessment cycle of the
Grid Search is performed as follows: initially, the settings spec-
ified by the vertices are incorporated in the configuration meta-
heuristic. Next, the metaheuristic performs an optimization of
the routeChangingFactor parameter ten times using the com-
putational model and assuming an environment with a constant
wind of 20km/h. After 10 runs for the nine settings indicated
by the grid, a few statistics are calculated: (i) the Convergence
Rate for the lowest overall Fitness (considered in this study to
be the lowest Fitness found for all the settings in the evalua-
tion cycle), (ii) the Mean Execution Time of the metaheuristic
for each configuration, and (iii) the Total Number of Evalua-
tions provided by the configuration. This information is used
to guide the movement of the technique in the search space,
named here “search heuristics”. Thus, the search heuristic uses
the previously described information to indicate a setting that
can provide the maximum possible number of ratings for the
metaheuristic without exceeding the maximum execution time
(the spraying time of a target subarea) and a convergence rate
for the best global Fitness larger than 80%.

A virtual computing platform was used to improve the man-
agement and control during the experiments. This computing
platform has 1 single-core processor at 2.27 GHz, 1 GB of
RAM, 10 GB Hard Disk and Ubutu 9.04 operating system. This
is the minimum required for the execution of the OPTIC ele-
ment in the AdEn system. The best configuration found in the
evaluation cycle (among the nine tested) is seen as the central
vertex of the grid in the next evaluation cycle. In the last evalu-
ation cycle, the best vertex is the final configuration that will be
be chosen.

Four classes were created to discretize the behavior dis-
played by the settings evaluated with each metaheuristic, which
are: (i) Very Poor; (ii) Poor; (iii) Average; and (iv) Good. These
classes represent a behavioral pattern for each setting, which is
shown and described in Table 3. Figures 9(a) and 9(b) show the
configuration of PSO and GA by Grid Search, with the quality
of each configuration evaluated. Initially, the grid starts at the
same position for both metaheuristic, but the search direction is
different for each metaheuristic. In the fourth round of evalua-
tions, Grid Search converges to a promising region of the search
space. returning good parameter values for the metaheuristics
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Metaheuristic Parameters Lower Limit Upper Limit

GA Individuals and Generations 1 120
PSO Particles and Interactions 1 120
HC Mutations and Jumps 1 120
SA Disorders and Iterations 1 120

Table 2. Parameters and limits of the search space used by the Grid Search for configuring the metaheuristics.

Symbol Name Description

△ Very Poor (VP) Average Runtime higher than available for optimizing the parameter
× Poor (P) Appropriate Average Runtime; Convergence Rate less than 0.5
+ Average (A) Appropriate Average Runtime; Convergence Rate between 0.5 and 0.8
• Good (G) Appropriate Average Runtime; Convergence Rate higher than 0.8

Table 3. Discretization of the performance of metaheuristics using the settings evaluated by the Grid Search.

(a) Search for configuring the PSO.

(b) Search for configuring the GA.

Figure 9. Search performed by the Grid Search for configuring the GA and
PSO, evaluated to optimize routeChangingFactor parameter.

(indicated by Good class).
Grid Search indicated settings with “Good” class for both

metaheuristics, two for PSO and three for GA. These settings
are shown in Figure 9(a) and 9(b) and marked with •. It is
possible to see the behavior of the five settings in Table 4, which
are: (i) for the PSO, PARTX_ITEY, where X is the number of
particles that compose the swarm and Y is the total number of
iterations; and (ii) for the GA, INDX_GENY, where X is to the
number of individuals that comprise the population and Y is to
the total number of generations.

Although all the settings in Table 4 comply with the criteria
set out in the search heuristics and can be classified as “Good”,
the PART45_ITE5 settings for PSO, and IND10_GEN25, for
GA, were better than the other settings. This can be explained
by the fact that they have the best convergence rates and further
evaluations were conducted during the execution of their meta-
heuristics. Even tough, these settings keep a reasonable Mean
Execution Time. Given the characteristics of environment and
flight, the Mean Execution Time is assumed to be reasonable if
it is below 66.667 s. The maximum time (∆) that the execution
of the metaheuristic can take is obtained by the Equation:

∆ =
α

ν

where α is the length of the sub-area in meters and ν is the UAV
speed in meters per second.

Another investigated approach explores the search space
and look for settings similar to those highlighted in Table 4,
which are later evaluated. To find these new settings, it is nec-
essary to define which numerical combinations of the two pa-
rameters of each metaheuristic (PSO and GA) result in the same
number of evaluations as the best settings found by Grid Search.
To find the new configurations that result in the same amount of
evaluations, a procedure calculates {i, j} where i × j == Over-

allEvaluation. In this case, OverallEvaluation is the maximum
number of evaluations allowed for the new settings and i and
j represent the metaheuristic parameters. When a numerical
combination satisfies this condition, the result is validated. In
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metaheuristic Settings Average Runtime (s) Convergence Rate Total Ratings

PSO PART40_ITE5 54.132 0.8 200
PSO PART45_ITE5 61.369 0.9 225

GA IND5_GEN30 30.992 0.8 150
GA IND10_GEN20 46.614 0.8 200
GA IND10_GEN25 57.785 1.0 250

Table 4. Behavior of the “Good” class settings found by Grid Search. The highlighted lines refer to the best settings found for each metaheuristic.

(a) Settings of the PSO that was evaluated.

(b) Settings of the GA that was evaluated.

Figure 10. Locations and quality classes for the new settings evaluated in the
complementary approach by GA and PSO.

this study, a blind search for new combinations was carried out,
without examining the suitability of each setting in the corre-
sponding metaheuristics. Before the combinations have their
feasibility assessed, they must allow a group of elements and
evolution cycles with a minimum value equal to five. This pre-
vents the metaheuristic from being suppressed by inadequate
settings and being rendered inefficient; for example, using 250
individuals for 1 evolving generation in the GA.

In the experiments, five new settings were found for the
PSO and 4 for the GA. These settings, and their respective be-
havior, are detailed in Table 5. Additionally, the location of
each setting in the search space, and the quality class it belongs
to, can be seen in Figure 10. The best settings obtained by Grid
Search for each metaheuristic were re-executed together with
the new settings that were evaluated to check the stability of
their executions. Setting PART45_ITE5, indicated by the Grid

Search for the PSO increased its Convergence Rate.
This increase may be due to a potential instability in the ex-

ecution of the PSO with this parameter values. Consequently,
the PART15_ITE15 setting is considered the best found for the
PSO, with a Convergence Rate of 0.8 and an appropriate Mean
Execution Time. Although other settings have the same behav-
ior, this setting had the lowest Mean Execution Time. For the
GA, the setting IND10_GEN25, indicated by the Grid Search,
maintained its Convergence Rate (1.0) and Mean Execution Time
at appropriate level for the application. This behavior indi-
cates a possible pattern of stable execution for optimizing the
parameter routeChangingFactor. Based on these results, the
settings used for the next steps are: PART15_ITE15 for the
PSO and IND10_GEN25 for the GA. These settings are called
PSO-PART15_ITE15 and GA-IND10_GEN25 respectively, in
the next experiments.

5.2. The embedded hardware

The single-board raspberry Pi computer was used in the
emnbedded hardware. This computer has the electronic com-
ponents necessary for the UAV computer system (Vujovic and
Maksimovic, 2014). This system requires low power and has a
reduced physical size, which makes it easy to use in robotic sys-
tems. In light of these characteristics, The PSO-PART15_ITE15
and GA-IND10_GEN25 metaheuristics were executed on the
Raspberry pi to evaluate if it can be used for the optimization
of the routeChangingFactor parameter in the UAV embedded
system. This can reduce the UAV communication rate with the
Control Station during spraying.

A Raspberry Pi Model B (see Figure 11) and a virtualized
computer (described in Section 5.1), which represented the con-
trol station as the computing platforms, were used in the experi-
ments. The hardware used has the following features: Processor
Broadcom BCM2835 ARMv6 (700 MHz), 512 MB SDRAM,
two USB Ports, Power Draw/Voltage of 1.2A @ 5V, 26 pin
of GPIO and one Ethernet Port. The Linux operating system
version 3.10.37+ for armv6l architecture was installed in an SD
Card Class 4 with 8 GB of space. The metaheuristics and source
code are the same as those used in previous experiments, but re-
compiled to run on the embedded system. Thus, the computer
platform is the only difference between this experiment and the
previous experiment.

Each metaheurstic was run 10 times, to provide more re-
liable results. The Average Runtime of the device used was
1480.198 seconds for the PSO-PART15_ITE15 and 1364.898
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Characteristics

metaheuristic Settings Average Runtime (s) Convergence Rate Total Ratings

PSO PART5_ITE45 63.156 0.8 225
PSO PART9_ITE25 63.311 0.8 225
PSO PART15_ITE15 63.112 0.8 225

PSO PART25_ITE9 63.148 0.6 225
PSO PART45_ITE5 62.401 0.7 225
GA IND5_GEN50 53.018 1.0 250
GA IND10_GEN25 59.637 1.0 250

GA IND25_GEN10 63.698 1.0 250
GA IND50_GEN5 65.139 0.9 250

Table 5. Parameter values evaluated in the complementary approach.

Figure 11. Embeddable device used as a computing platform to run the
PSO-PART15_ITE15 and GA-IND10_GEN25 metaheuristics to optimize the
routeChangingFactor parameter. This evaluation investigates whether the
metaheuristics can be embedded in the UAV to reduce the rate of communi-
cation with the Control Station.

Figure 12. A comparison between the Average Runtime of the metaheuristics
running on the Station Control and on the Raspberry PI. The difference was
confirmed with 95% of statistical significance.

seconds for GA-IND10_GEN25. Figure 12 compares the Aver-
age Runtime using Raspberry PI with the use of similar external
Control Station platform.

This comparison shows that it is not possible to run the
metaheuristics in the embedded platform, since the running time
will be longer than the maximum limit required. This occurred
because of the high processing power required to run the meta-
heuristics.

Therefore, the AdEn system was kept as it is in the original
proposal. In other words, OPTIC element remains running in
the Control Station while CollAct element remains embedded
in UAVs.

5.3. Pesticide spraying with Route Correction adapted to Weather

Conditions

This section evaluated three metaheuristic variations for op-
timizing the routeChangingFactor parameter optimization: (i)

GA-IND10_GEN25; (ii) PSO-PART15_ITE15; e (iii) PSO--
PART5_ITE20. The first two resulted from evaluations per-
formed in this paper and the third was proposed by Faiçal et al.
(2014a). The weather conditions used to evaluate the accuracy
of the deposition of the pesticide were as follows: (i) constant
wind speed – 10 km/h and 20 km/h; and and (ii) direction of
constant wind is in the transverse to the UAV route. A Constant

Light Wind (CLW) for a speed of 10 km/h and Constant Moder-

ate Wind (CMW) for a speed of 20 km/h were adopted (Faiçal
et al., 2014b). These and other environmental characteristics
are listed in Table 1. It should be noted that the experiments
performed in this evaluation stage were repeated 10 times.

The intensity of route correction with the worst fitness for
each weather condition was selected for the pesticide spraying.
In the case of a tie between the values with the worst fitness, the
choice was made at random. By using this approach, it was pos-
sible to analyze the worst case scenario that each metaheuristic
could provide for pesticide spraying, and the results with the
lowest accuracy.

5.3.1. Optimization of the routeChangingFactor parameter

In the experiments for the optimization of the intensity of
the route setting using the GA-IND10_GEN25, PSO-PART15_-
ITE15 and PSO-part5_ITE20 metaheuristics, each metaheuris-
tic was run in the control station for both types of weather con-
ditions (CLW and CMW). The performance and behavior of
each metaheuristic in both these conditions are listed in Table 6.

The metaheuristics evaluated showed a maximum conver-
gence rate (1.0) and an average execution time suitable for the
CLW environment. These results indicate that all the evaluated
solutions are suitable for the optimization of the routeChang-

ingFactor parameter in this weather. However, for the CMW
environment, only GA-IND10_GEN25 reached the maximum
convergence rate. The behavior presented by GA-IND10_GEN25
shows an improved stability in different weather conditions,
thus being the most reliable for use in AdEn system.

Figure 13 shows the parameter values obtained by the meta-
heuristics for different weather conditions. In the graphics, the
columns represent the environment (CLW and CMW) and the
rows the metaheuristics (PSO-PART5_ITE20; PSO-PART15_-
ITE15 e GA-IND10_GEN25). Figures 13(a), 13(c), and 13(e)
show a larger interval of values for the same accuracy in the
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Weather metaheuristic Settings Average Runtime (s) Total Ratings

CLW PSO PART5_ITE20 30.705 ± 0.506 1.0
CLW PSO PART15_ITE15 65.165 ± 1.478 1.0
CLW GA IND10_GEN25 63.031 ± 0.787 1.0
CMW PSO PART5_ITE20 28.697 ± 0.361 0.2
CMW PSO PART15_ITE15 63.112 ± 0.340 0.8
CMW GA IND10_GEN25 59.637 ± 0.086 1.0

Table 6. Optimization results for routeChangingFactor parameter with the GA (IND10_GEN25) and PSO (PART5_ITE20; PART15_ITE15) metaheuristics in
all-weather conditions (constant light wind (CLW) and constant moderate winds (CMW) - 10 km/h and 20 km/h).

(a) PSO-PART5_ITE20 in Constant Light Wind. (b) PSO-PART5_ITE20 in Constant Moderate Wind.

(c) PSO-PART15_ITE15 in Constant Light Wind. (d) PSO-PART15_ITE15 in Constant Moderate Wind.

(e) GA-IND10_GEN25 in Constant Light Wind. (f) GA-IND10_GEN25 in Constant Moderate Wind.

Figure 13. The values indicated by the metaheuristic for the routeChangingFactor parameter. The red dots represent the indicated values that are contained in a
range of values that resulted in the best Fitness found among all the optimizations.
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CWL environment, between the 3.343 and 6.616. On the other
hand, Figures 13(b), 13(d) and 13(f) suggest that, for the CMW
weather condition, the search space is less complex, as indi-
cated by the smaller range of values, between .561 and 3.660
and the best accuracy value found in the experiments. GA-
IND10_GEN25 was the only metaheuristic able to keep the
convergence rate at 100% for the range of values that provided
the best adjustment for the route correction.

5.3.2. Evaluation of Pesticide Spraying Accuracy

The proposed system was validated by evaluating the accu-
racy of pesticide spraying when the routeChangingFactor pa-
rameter is adapted to weather conditions. A simulated assess-
ment was carried out to preserve the integrity of the equip-
ment and comply with the first validation of the proposal. This
approach is commonly used in robotics, where the first vali-
dation is carried out using simulation to identify and resolve
potential problems before being actually implemented and de-
ployed in the field (Bergamini et al., 2009, Colesanti et al.,
2007, Malekzadeh et al., 2011).

The simulation performed produced an deposition matrix as
the result of the pulverization process. The deposition is mea-
sured by the amount of particles and the proximity to the target
region (Faiçal et al., 2014b), which enables the evaluation of
the spraying. It is important to observe that the experiments are
performed with stochastic variables to approach a realistic ac-
tual behavior. These variables are not used for the parameter
optimization phase (making it a deterministic environment), to
make the comparison between the different intensities as fair as
possible (since they are evaluated with the same environment).

As previously described, after the adaptation of routeChang-

ingFactor parameter, the UAV sprays one target sub-area with
route correction. The purpose of this experiment is to eval-
uate the spraying accuracy using the intensities indicated by
each metaheuristic (PSO-PART5_ITE20; PSO-PART15_ITE15
and GA-IND10_GEN25). To have more robust results, 70 rep-
etitions were performed for the worst intensity indicated by
each metaheuristic. The experiments use different stochastic
The metahueristics presented a similar behavior for the CLW
weather conditions.

Figure 14 shows the percentage of pesticides deposited in
the target sub-area (when sprayed correctly) for different ap-
proaches investigated in the literature and in this paper.. It
shows the increase in the accuracy of the pesticide spraying
obtained by the proposed approach, when compared with the
other approaches from the literature. The results from the PSO-
PART15_ITE15 metaheuristic presented more compact quar-
tiles and with a higher median, when compared with the previ-
ously proposed PSO-PART5_ITE20. They also show a spray-
ing accuracy improvement when PSO as configured by Grid
Search. Finally, GA-IND10_GEN25 presented a spraying ac-
curacy higher to the other metaheuristics. The authors believe
that the best results were obtained due to the stability in the
Convergence rate, despite the complexity of the weather condi-
tions investigated.

Statistical tests were conducted to evaluate the obtained re-
sults. Initially, the Shapiro-Wilk method was used to verify the

adequacy of the sample sets and normal distribution and, hence,
to define if parametric or non-parametric methods should be
used. The sample sets resulted in a p-value smaller than 0.05.
Thus, the normal distribution hypothesis was rejected and the
Wilcoxon method was used for the statistical analysis. There-
fore, paired comparisons using the Wilcoxon rank sum test (see
Table 7) were made to check whether there is a statistically sig-
nificant difference between the sample sets. Despite the appar-
ent improvement in accuracy when using the PSO-PART15_-
ITE15 rather than PSO-PART5_ITE20, it is not possible to as-
sume that there is a statistically significant difference between
the results obtained. On the other hand, the Wilcoxon test indi-
cates that the accuracy in the spray provided by GA-IND10_-
GEN25 is better, with statistical significance, than the other
metaheuristics evaluated (PSO in both settings).

According to the experimental results, GA-IND10_GEN25
seems to be a better caption for the AdEn system. This meta-
heuristic allowed high-precision spraying in a more complex
environment for adaptation of the route correction system. Fur-
thermore, the routeChangingFactor parameter optimization pro-
cess was more stable with the use of the GA-IND10_GEN25
than with any of the other metaheuristic analyzed.

6. Conclusion and Future Work

This paper proposes AdE, a system that can adapted the
route correction rules of a UAV pesticide spray in different weather
conditions. This system consists of two elements: (i) CollAct,
which is responsible for checking the weather of the crop field
and updating the routeChangingFactor parameter defined in the
UAV’s control system; and (ii) OPTIC, responsible for optimiz-
ing the routeChangingFactor parameter to adjust the intensity
of the route correction according to the sensored weather con-
ditions.

During the AdEn system design, the importance of an ef-
ficient optimization optimization process was observed Thus,
when validating the proposal and evaluating the progress made,
four metaheuristics were assessed as components of the AdEn
system. The accuracy of the pesticide spray provided by the
values optimized with these metaheuristics was evaluated.

The results of the experiments demonstrated that the pro-
posed AdEn system presented a good performance in the tested
scenario, since it uses the control station to process most of
the workload. Furthermore, the proposed metaheuristic, GA-
IND10_GEN25 (set by the Grid Search technique), was shown
to be more efficient and stable than other solutions found in the
literature.

In addition to the good results and progress achieved in
this work, it opened up several opportunities for further studies,
such as: (i) the development of a computer model for pesticide
spraying with lower computational costs; (ii) the optimization
of other parameters (e.g. height and speed of the UAVs) to re-
duce errors in pesticide deposition; (iii) investigation of specific
characteristics of optimization techniques for dynamic environ-
ments (Alba et al., 2013, Yang and Yao, 2013); (iv) an investiga-
tion of the scalability of the proposed system for implementing
a fully-featured prototype model; (v) study on the suitability of
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Figure 14. The degree of pesticides correctly deposited on the targeted sub-area for each solution in CMW weather conditions. It is important to observe that
GA-IND10_GEN25, proposed in this study, found a more appropriate intensity to weather in all its executions. This result exceeds the efficiency of the solutions
found in the literature.

Wilcoxon Rank Sum Test

PSO-PART5_ITE20 PSO-PART15_ITE15
PSO-PART15_ITE15 0.130 -
GA-IND10_GEN25 0.000 0.000

Table 7. P-values smaller than 0.05 indicate a statistically significant difference between the sample groups. The Wilcoxon test indicates that the accuracy achieved
by GA-IND10_GEN25 was better, with statistical significancy, than PSO in both settings.

different dispersion models to make the most accurate computer
model the real environment.
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Brazil is an agricultural nation whose process of spraying pesticides is mainly carried out

by using aircrafts. However, the use of aircrafts with on-board pilots has often resulted
in chemicals being sprayed outside the intended areas. The precision required for spray-

ing on crop fields is often impaired by external factors, like changes in wind speed and

direction. To address this problem, ensuring that the pesticides are sprayed accurately,
this paper proposes the use of artificial neural networks (ANN) on programmable UAVs.

For such, the UAV is programmed to spray chemicals on the target crop field considering
dynamic context. To control the UAV flight route planning, we investigated several opti-

mization techniques including Particle Swarm Optimization (PSO). We employ PSO to

find near-optimal parameters for static environments and then train a neural network to
interpolate PSO solutions in order to improve the UAV route in dynamic environments.

Experimental results showed a gain in the spraying precision in dynamic environments

when ANN and PSO were combined. We demonstrate the improvement in figures when
compared against the exclusive use of PSO. This approach will be embedded in UAVs

with programmable boards, such as Raspberry PIs or Beaglebones. The experimental

results demonstrate that the proposed approach is feasible and can meet the demand
for a fast response time needed by the UAV to adjust its route in a highly dynamic

environment, while seeking to spray pesticides accurately.

Keywords: Unmanned aerial vehicle; agricultural applications; dynamic environments;
neural networks; evolutionary algorithms.

1. Introduction

Pesticides, also known as agrochemicals, are generally applied in agricultural

crop fields to increase productivity, improve quality and reduce production costs.
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However, prolonged contact (either directly or indirectly) with these products can

cause various diseases to humans, such as several types of cancers, complications

to the respiratory system and neurological diseases.1 It is estimated that about

2.5 million tons of pesticides are used each year throughout the world and this

amount is growing.2 Much of the pesticide is wasted during the spraying process

due to the type of technology employed. Evidence show that the drift of pesticides

is generally found at a distance of 48 m to 800 m from the target crop field; the

deviation can range from a distance of 5 km to 32 km downwind.3

The use of unmanned aerial vehicles (UAV) to carry out the task of spraying

pesticides can have several benefits, including (i) to reduce human contact with the

chemicals, which helps to preserve human health; and (ii) to improve the perfor-

mance of the spraying operation, by avoiding the presence of chemicals outside the

designated areas, which is important to protect the neighboring fields that may have

other crops, and protect nature reserves or water sources. The sets of control rules

to be employed in an autonomous UAV are very hard to put into effect and even

harder to fine-tune to each environmental feature. Due to the technical features of

each UAV, a fine-tuning phase must include the parameters of the algorithm. This

process must also take into account the type of crop being handled and the type of

pesticide being used.

The proposed architecture employs an UAV that has an attached spraying sys-

tem and is able to communicate with a wireless sensor network (WSN), which is

arranged in a matrix-like grid on the crop field. The WSN sends feedback on the

weather conditions and determines how the pesticide is actually being applied on the

target crop field. On the basis of the received information, the UAV appropriately

adopts a policy that allows it to correct its route. Hence, the main contributions

of this research are: (i) to investigate an evolutionary methodology capable of min-

imizing human contact with pesticides, (ii) to evaluate an evolutionary approach

that is able to reduce errors when spraying pesticides in areas where vegetables and

fruits are grown, (iii) to investigate techniques able to maximize quality in agricul-

tural production, and (iv) to increase the autonomy of the architecture proposed

by Faiçal et al.,4 in which the policy parameters were set out empirically and could

be applied regardless of the weather conditions.

This paper extends the previous work5 by presenting a proposal and an eval-

uation on how UAVs can be controlled in a highly dynamic environment, such

as environments with sudden changes in the speed and direction of the wind. To

this aim, we devised an ANN to be employed in real-world operations, which was

built with evolved values employing a PSO approach. We employ the PSO to find

near-optimal parameters for static environments and then train a neural network to

interpolate the PSO solutions in order to improve the UAV route in dynamic envi-

ronments. Neural networks have an intrinsic mapping and generalization features,

which make them a good choice for dynamic environments,6,7 while the evolution-

ary approach is a good mean to discovering non-trivial parameters.8,9 Combining
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the evolutionary technique with the neural approach in this work allowed us to

leverage the best capabilities of each technique. In such a way, we propose the use

of an ANN for quick decision-making, since in real environments the weather con-

ditions change suddenly and at short intervals of time. The new proposal provides

a significant advance in the optimization of an UAV route which can be used in real

environments, as a trained ANN is faster than running the evolutionary process of

PSO technique over and over again whenever the weather conditions are change-

able. Moreover, even if the employed hardware has enough resources to perform the

technique PSO quickly, the ANN will enable the intensity of the route adjustment

to be adjusted in a shorter time.

This paper is divided into six sections. Section 2 examines other studies related

to this paper. Following this, Section 3 provides an outline of the architecture to

clarify the scope of this paper and the optimization methodology proposed in this

work. The experiments and results are analyzed and discussed in Section 4, and then

compared with the results found in the literature. Finally, Section 5 summarizes the

conclusions obtained from the results and suggests how this paper might encourage

further studies in this field.

2. Related Work

There are several studies that suggest how UAVs or WSNs can be employed for mon-

itoring agricultural production, occasionally by integrating both technologies.10–12

However, this work differs in so far as it proposes a particle swarm optimization

algorithm to optimize the control rules of the UAV at runtime, based on feedback

provided by WSN about weather conditions in the agricultural field.

Valente et al.13 describe a WSN-based system and UAV to monitor vineyards.

The WSNs collect information about weather, soil and planting conditions and then

make it available to farmers. However, a field crop may be hundreds of meters away

from other fields and sometimes there are barriers (e.g. rivers and roads) that sep-

arate two crop fields. Thus, it may not be feasible or cost-effective to use cables to

connect the WSN. Although the use of powerful wireless devices allows communica-

tion between WSNs, this solution leads to higher energy consumption and involves

reducing the lifetime of the nodes. One solution that can be adopted to overcome

these limitations is the employment a UAV to fly over the crop fields and gather

information from each WSN, which can then be conveyed to a processing center.

Although this study demonstrates that UAVs and WSNs can be integrated to pro-

vide efficient solutions or improvements in an agricultural setting, no methodology

is employed for optimization at runtime. Additionally, a UAV is used as a mobile

node in a WSN without having any adverse effects on the environment.

Huang et al.14 devise a particular system for spraying pesticide. This system

should be coupled with a UAV that is capable of carrying approximately 22.7 kg.

The model used in this work is UAV SR200 (manufactured by Rotomotion). The

spraying system consists of four main components: (i) a metal tube with nozzles;
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(ii) a tank to store pesticide; (iii) a pump to move the liquid; and (iv) a mechanism

for controlling the activation of the spray. The spraying system can carry up to

5 kg of pesticide, which is enough to spray 14 ha; and it has a flight time of around

90 min. The main objective of this study is to validate the proposed system and

evaluate different types of spray nozzles. However, the weather conditions were not

taken into account. Additionally, it does not include a discussion of an evolutionary

methodology that is able to optimize control of this activity.

Faiçal et al.4 proposed an architecture formed of a UAV and WSN to spray

pesticide in crop fields. It is known that adverse weather conditions, such as high-

speed winds, can cause errors in the spraying process. The study shows how the

recommended architecture can reduce the risk of errors and increase control over

this activity. With the aid of feedback from the WSN on pesticide concentrations,

the route is gradually changed until the sensor node can identify the correct appli-

cation of the product. However, the parameters set for the route change are applied

in different weather conditions, which might impair the performance of this archi-

tecture. As mentioned earlier, this paper addresses this limitation by evaluating a

methodology that is employed for the fine-tuning of a parameter that ponders the

changes in the intensity of the route followed by the UAV.

3. Proposed Approach

3.1. UAV and WSN architecture for spraying on crop fields

Figure 1 illustrates how the UAV acts as an agent on the crop fields. The UAV is

equipped with a spraying system and a communication module, which enables data

exchange with a WSN arranged on the crop fields; it flies over the area and sprays

the pesticide in its entire length. The WSN is only depicted within the targeted crop

fields and is bounded by two dark dashed lines (from top left to bottom right) to

simplify the viewing image. At the top of Fig. 1, there are two arrows that indicate

Fig. 1. Example of spraying in crop fields with the architecture proposed by Faiçal et al.4 This

architecture consists of a UAV (to spray) andWSN (to monitor). If the WSN detects an unbalanced
spray on its sensor nodes, the UAV changes its route to correct the spraying of the pesticide.
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the wind direction at a particular location. Through its communication link with

the WSN, the UAV is able to obtain information about the weather (e.g. speed and

direction of the wind) and the concentration of pesticides sprayed on the crops. If

an imbalance is detected in this concentration (e.g. the sensor on the left identifies a

higher concentration than the sensor on the right), possibly caused by the wind, the

UAV adopts a policy that involves changing its route to balance the application of

pesticides throughout the whole extent of the targeted crop fields. This policy also

helps to prevent overlapping when the chemical is applied. In Fig. 1, the correction

of the route is represented by small arrows between the images of the UAV.

A parameter called routeChangingFactor is employed in the route change func-

tion to set the degree of intensity (e.g. mild or sharp) so that the change can be

made. However, despite the importance of this parameter to ensure the success of

the spraying, its value is set empirically before the beginning of the flight and is

used for all weather conditions that occur during the spraying process. This charac-

teristic can affect the quality of the spraying; for example, a sharp correction might

be made in an environment where a low wind speed has been detected. Moreover,

an increase in the complexity of this environment might cause variable behavior.

In other words, the weather conditions can change during the activity, and this is

detrimental to the whole architecture if it has a static configuration.

The routeChangingFactor parameter is a weighting variable used in the calcula-

tion of the period of time assigned for a UAV route change.4 It defines if the route

change will be of mild intensity (low value, resulting in more time for a change

of route) or high intensity (high value, resulting in a short time to be re-routed).

Equation (1) illustrates the time that the UAV remains in change of route is set.

In this equation, ls (left sensor) and rs (right sensor) are data received from the

pair of sensors deployed inside the plantation and located in the spraying tracks

(see Fig. 1), τ is the routeChangingFactor and ∆ corresponds to the period of time

assigned for the route change.

∆ =
|ls− rs|

τ
. (1)

This equation is used by the UAV control policy, which sets a minimum threshold

for the difference between the values from the pair of sensor to decide whether the

route change should occur. If the difference is larger than the threshold, the UAV

control policy re-defines the duration of the route change (based on Eq. (1)), the

angle and the direction required for the aircraft.

To overcome the problems previously mentioned, this paper proposes a

methodology based on Particle Swarm Optimization to optimize the parameter

routeChangingFactor. As previously mentioned, the parameter of route change has

a large influence on spraying and, in addition, the architecture is employed in a

dynamic environment. Thus, it is worth investigating a methodology that is able

to find a value for the parameter routeChangingFactor (and is close to an optimal

solution). Figure 2 shows the behavior of the architecture when the optimization
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B. S. Faiçal et al.

Fig. 2. Behavior of the architecture that employs the proposed optimization methodology. The
Control Station (A) is installed outside the target crop field, in a zone within communication

range of the UAV (B). During the spraying of the current crop field (D), the UAV sends a request

for weather information about the next crop field (E) to the WSN (C). When the requested
information is received, the UAV sends it to Control Station (A) where it will be used by the

optimization methodology. At the end of the optimization, the Control Station sends the new
configuration back to the UAV. The settings will be updated when the spraying of the current

crop field has been completed and the spraying of the next crop field is about to begin.

methodology is used. It assumes that a crop field is composed of several small

virtual subareas with a rectangular shape. Thus, if all the subareas are sprayed,

this results in a complete spraying of the crop field. Each subarea will be called a

“crop field” during this study. The UAV’s flight plan is designed to ensure that the

next crop field will be sprayed right after the work on the current crop field has

been completed. The route change, as described earlier, is made in the current crop

field (D). Running parallel with this activity, the UAV (B) queries the WSN (C)

about the weather conditions in the next crop field (E). At this stage the request

can reach the nodes that are deployed inside the next crop field by using multi-

hop links (not shown in the diagram). Only the endpoints of the communication

(source and destination) are shown for a clear image. As soon as the UAV obtains

weather information, this is sent to Control Station (A) to optimize the parame-

ter routeChangingFactor. At this time, the optimization methodology proposal is

executed on the basis of the weather information. At the end of the optimization,

the best value of the parameter is sent back to the UAV. When the spraying of

the current crop field (D) is finalized, the UAV updates its settings so that the

spraying of the next crop field (E) can start. It should be highlighted that the use

of a Control Station provides more powerful computation and, in addition, allows a

pilot (on the ground) to oversee the flight and, if necessary, intervene in the control

of the UAV.
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3.2. Optimization of control rules

The optimization methodology proposed in this paper is essentially composed of

an algorithm based on PSO.15,16 This algorithm searches for a non-optimal value

for the parameter routeChangingFactor and in one computation model of the en-

vironment evaluates the accuracy of spraying by applying the weather information

received from the WSN. Lastly, the algorithm returns the best solution (value per

parameter) and this is assessed so that it can be applied in the next crop field. One

important condition of this algorithm is that the computational cost (runtime)

should be lower than the time required for spraying a single crop field (subarea).

Hence, the search space is restricted to one zone that has values of different acute-

ness (e.g. abrupt, smooth and moderate). Additionally, the delimitation of the

search space allows a faster convergence.

The optimization process is conducted in two ways simultaneously: (i) through

cooperation (group learning) and (ii) competition (single learning), by considering

the particles of a swarm. Each particle is initialized in a random position (possible

solution) within a search space. In each iteration of the algorithm, the velocity and

position of the particles are updated. The position found by the swarm with best

fitness (as well as the positions with best fitness found by each particle individually)

are considered for updating. As the positions of the particles are possible values for

the parameter routeChangingFactor contained in the search space, the velocity of

the particle indicates how far and in what direction this value will move (to a new

position). The new position of each particle is obtained by Eq. (2) (where: Xid is

the position and Vid is the velocity of particle i in an instant d), while the velocity is

updated in each iteration with Eq. (3) (where: wi is the inertia, C1 and C2 establish

the importance of social trend or individual (cooperation or competition), Pid is

the best position found by individual particle, Pgd is the best position found by

the swarm and, finally, rand() and Rand() are different random values for a good

exploration of search space).17

Xid+1 = Xid + Vid , (2)

Vid = wi ∗ Vid + C1 ∗ rand() ∗ (Pid −Xid) + C2 ∗ Rand() ∗ (Pgd −Xid) . (3)

Algorithm 1 shows details of the optimization process. The particles are initial-

ized in random positions inside the search space. The stop condition is defined by

the amount of iteration that the algorithm has to run. This stop condition allows

the average runtime to be analyzed in the worst case scenarios, when all the iter-

ations have been executed to find one possible solution. Following this, one stop

condition can be added with the aim of finalizing the algorithm after confirming

that convergence has occurred. It should be noted that the runtime in worst cases

should be shorter than the time required for spraying a crop field (subarea). In each

iteration, all the particles will have their positions evaluated and if the “fitness” of

a particle is the best found by the swarm so far, the algorithm stores this position.

On the other hand, if the position is not the best globally, but is the best of the
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Algorithm 1: Proposed algorithm to optimize the routeChangingFactor

parameter.

1: InitializeParticles(RandomPosition[1, 10])

2: for MAX ITERATION do

3: PARTICLES ← FirstParticle()

4: for ALL PARTICLES do

5: Result← FuncObjetive(PARTICLES)

6: if Result is best particle then

7: Stores the position in particle

8: end if

9: if Result is the best in the swarm then

10: Stores the position in swarm

11: end if

12: UpdateV elocity(PARTICLES)

13: NewPosition(PARTICLES)

14: PARTICLES ← NextParticle()

15: end for

16: end for

17: return BestGlobalPosition

particle, the algorithm also stores this position in the particle. Later on, the ve-

locity and the position of each particle are updated. When the algorithm achieves

maximum interaction, it is finalized and the best position found by the swarm is

returned.

The objective function (FuncObjetive) contained in the Algorithm, cited in

Line 5 of Algorithm 1, refers to an interaction with one project inside the

OMNeT++ software. The project is an implementation of a computational model

to evaluate the spraying.4 This interaction tests and analyzes the quality of spray-

ing in each position of all the particles. The OMNeT++a is a simulator of discrete

events based on C++ language to model networks, multiprocessors and other dis-

tributed and parallel systems.18 The OMNeT++ can be used to model several types

of networks, such as networks of queues, wireless and peer-to-peer types.19 Because

of its generic design, OMNeT++ has several frameworks established for specific

networks, such as Miximb for modeling wireless networks. This framework provides

detailed models for wireless channels, wireless connections, mobility models, mod-

els for dealing with obstacles and several communication protocols, especially for

MAC.20 Figure 3 shows the connection between the algorithm and OMNeT++.

aOMNeT++ Network Simulation Framework, http://www.omnetpp.org
bMiXiM project, http://mixim.sourceforge.net
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Fig. 3. Interaction between PSO technique and OMNeT++.

Initially the algorithm changes the settings and files of “Project spraying” so that

the position of the particle can be used as routeChangingFactor, apart from the

addition of real weather information (Stage 1). After that, the algorithm runs

“Project spraying” in OMNeT++ (Stage 2) and, finally, analyzes the log file to

determine the results of the spraying (Stage 3). In the source code of “Project

spraying” there is a dispersion model to estimate the movement of pesticide until

it reaches the planting [plantation ?].4 The fitness is calculated by estimating the

amount of pesticide sprayed outside of the target crop field.

Thus, the objective function used by the PSO technique consists of two stages:

(i) the execution of the computational model for the spraying of the agricultural

field with the parameters set by the algorithm; and (ii) an analysis of the concentra-

tion of pesticide deposited in the agricultural field. In the first stage, the algorithm

adjusts the computational model to the received weather conditions and the param-

eter routeChangingFactor being analysed, and runs the simulator to estimate how

the spraying will be performed in these conditions. This execution returns a matrix

with dimensions proportional to the size of the agricultural field and element val-

ues representing the concentration of the product deposited in each square meter.

It must be observed that the value of the parameter routeChangingFactor will be

changed during the optimization process. In the second stage, the pesticide concen-

tration matrix is analyzed and the amounts deposited outside the target area are

added to be used as the fitness value. Thus, the smaller the fitness, the better (more

accurate) is the spraying carried out with the considered routeChangingFactor.

3.3. Proposed approach for dynamic environments

One of the characteristics of the PSO is that the search for the best values occurs

in static environments. However, the evolutionary approach is often very time-

consuming, and hence, it is not trivial to employ it in embedded software for dy-

namic operations. The operation in this case is dynamic since the UAV can change

its speed and height or there may also be a change in the wind itself. Neural net-

works have intrinsic mapping and generalization features, which make them a good

choice for dynamic environments while the evolutionary approach is a good means

of discovering non-trivial parameters.
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B. S. Faiçal et al.

Fig. 4. ANN topology.

For an approach which can handle dynamic environments, we designed and eval-

uated how a neural network can be built upon data from the evolutionary algorithm.

Hence, we ran the evolutionary technique in 27 static different environments and

used its results to train the neural network. The 27 different scenarios were built

in the light of the following variations: UAV speed (m/s) {10, 15, 20}; wind speed

(km/h) {0, 10, 20} and UAV height of operation (m) {10, 15, 20}. We ran the evo-

lutionary algorithm 10 times for each scenario, and obtained 270 different values.

These values were then used for training the ANN. It should be highlighted that

for each static scenario, the values obtained by the PSO were not the same, but

often similar. We evaluated 5 ANN with different topologies to investigate which is

the smallest neural network that can achieve the highest degree of accuracy.

Figure 4 shows the ANN topologies. The ANN inputs are the speed of the UAV,

wind speed and UAV height and the output is the parameter changeRouteFactor.

The results of the evaluation are given in Section 4.3.

4. Evaluation and Analysis of the Experimental Results

This section includes a description of our evaluations and examines our results.

It is subdivided into three subsections which aim to explain (i) the evaluation of

the optimization of the routeChangingFactor, (ii) the comparison resulting from the

evolutionary approach with pre-programmed rules, i.e. without optimization of rule

controls for route changes, as discussed by Faiçal et al.,4 and (iii) evaluation of the

application of the neural network for dynamic environments.
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Table 1. Results of the optimization of the
routeChangingFactor parameter. The first column

shows the set of evaluated PSO as P#I# meaning P

(number of particles) and I (number of interactions).

Convergence Average Time

Settings Rate (%) of Evolutions (s)

P3I20 96.77 18.617± 0.371

P3I50 100.00 45.927± 0.649

P3I100 100.00 93.854± 1.555

P5I20 100.00 30.705± 0.506

P5I50 100.00 77.162± 0.766

P5I100 100.00 158.995± 3.143

P10I20 100.00 62.549± 0.912

P10I50 100.00 157.957± 2.976

P10I100 100.00 313.335± 1.488

P15I20 100.00 93.606± 0.799

P15I50 100.00 235.189± 1.816

P15I100 100.00 480.359± 14.762

P20I20 100.00 125.088± 1.059

P20I50 100.00 312.894± 2.058

P20I100 100.00 628.324± 2.251

4.1. Optimization of the routeChangingFactor parameter

In this stage, the algorithm will search for the best possible value when applying it

as the parameter of route changes (taking into account the feedback obtained from

the weather information). The evaluated settings are called as: P#I#, meaning P

(number of particles) and I (number of interactions). Each configuration is repli-

cated thirty times to obtain a greater confidence level for future statistical analysis.

The algorithm is defined so that it will prefer the social trend (C2 = 0.75) to the

individual trend (C1 = 0.25) in the search. Another important parameter for run-

ning the algorithm is Inertia, which is used to strike a balance between local and

global searches, and is set to carry out local searches (wi = 0.1). This configuration

aims at a “quick pull” of the swarm of particles to a place considered promising

because it contains a better intensity than the others found so far. Moreover, it is

expected that the particles will carry out a thorough search in the region where

they are located. It is notable that both the ability not to remain stuck in local

minima and the convergence of the algorithm were considered in this study, which

showed a satisfactory performance.

Due to the low communication time, measured in Ref. 4, it can be assumed

that the communication time between the UAV and Control Station does not have

a significant influence on the total runtime. Thus, it can be assumed from this

experiment that the weather information is already in the Control Station.

This subsection shows the results when the PSO-based algorithm described in

Section 3.2 is employed. Table 1 shows the results of the first stage. Apart from
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Fig. 5. Representation of the solutions found by the algorithm in the search space.

P3I20 setting, that has a 96.77% convergence rate, all the others have a 100%

convergence rate for the same value of fitness. Owing to particular features of

the problem, it is possible that a group of solutions has a fitness that is simi-

lar but not the same, since the difference between the values of the parameter

routeChangingFactor may be low enough to have no significant influence on the

spraying in specific situations.

It can be seen in Table 1 that the P3I20 setting is the only configuration that

does not have a convergence rate of 100%. Another important point in Table 1 is the

average time ± standard deviation (in seconds) for each setting of the algorithm.

The spraying of a target crop field is carried out in ≈ 65 seconds (in accordance

with the speed of the UAV) and as mentioned previously the runtime must be less

than the time required for spraying a target crop field. Hence, the settings that are

feasible for this application are P3I50, P5I20, and P10I20. These settings allow the

optimization of the parameter routeChangingFactor with an appropriate time (less

than 65 s) and with a convergence rate of 100%.

In conducting an analysis of the position of the solutions in search space and

visualizing the non-convergent solution, we have plotted all the solutions on the

basis of their value in search space (see Fig. 5). It can be seen that the proposed

algorithm is capable of finding a region in search space where values are appropriate

for the parameter routeChangingFactor in specific climatic conditions. This region

in search space is closely connected with features of the environment and tends not

to be an appropriate region for the next crop field, since it is a dynamic environment.

Thus, the algorithm should run before the spraying in each crop field is started to

reduce the risk of making a wrong decision. The non-converged solution originating

from the P3I20 setting, is marked as “A” in Fig. 5. Despite its proximity, this

solution does not belong to the region of appropriate solutions for the weather

conditions reported by the WSN.

After analyzing the optimization of the parameter routeChangingFactor, we con-

ducted experiments aimed at evaluating the precision of the spraying by using the

solution indicated by the algorithm.
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4.2. The spray operation on crop fields

This stage involves the use of the solution which has best fitness (found in the

previous stage) to evaluate the spraying on a target crop field. This selection cri-

terion is used to evaluate the best solution in the group of alternatives generated

by replications. If all the replications converge in a group of solutions with equal

fitness, one of the solutions is randomly selected. The spraying is carried out by

using the value selected as the parameter routeChangingFactor and the result is

compared with the results without optimization from Faiçal et al.,4 where a fixed

value was employed. It is worth noting that the environmental features are the same

for all the experiments and this is called Constant Light Wind by Faiçal et al.4 This

environment has a constant wind at a speed of 10 Km/h. The crop field used has

an area of 1100 m× 150 m and the area of the target crop field is 1000 m× 50 m.

The WSN has twenty-two nodes spread across the target crop field and the UAV

initializes the spraying at a height of 20 meters above ground and at a constant

speed of 15 m/s. At intervals of ten seconds, the UAV makes requests to the WSN

to obtain information about the quality of the spraying. These experiments are

replicated seventy times, to obtain a greater level of confidence for future statistical

analysis. In the following subsection, the results are shown and discussed.

This subsection shows the results of the second stage of experiments. This in-

volved analyzing and discussing the results of spraying in a crop field by using

the solutions found by the PSO. In this stage, the experiments were conducted to

support the assessment of the proposal, which entailed optimizing the parameter

routeChangingFactor and ran parallel with the spraying of a crop field (in the first

stage) and applied the results of the optimization to subsequent crop fields (the

second stage). The results of spraying where the optimization method was used,

are compared with the results when there was no optimization as discussed by

Faiçal et al.4

The following settings were adopted: CL10, interval of ten seconds between each

of the requests of weather information from UAV to WSN; CL30, interval of thirty

seconds between each of the requests of weather information from UAV to WSN;

CLNO does not change its route. The settings that use an optimization parameter

are P5I20, P10I20, and P3I50. These results are obtained by the PSO.

Figure 6 and Table 2 show the results of spraying on target crop field, and

compare the results from Faiçal et al.4 with the results of the proposed PSO. It is

clear that there is an increase in the area with a correct application of pesticides

when the evolved routeChangingFactor parameter was applied. The CL10 is the

setting with the smallest error rate among all the non-optimized settings. However,

all the optimized settings surpass the precision rate usually achieved when spraying

a target crop field. Figure 7 displays a heat map to represent the chemicals sprayed

on the crop at the end of the simulation.

The Shapiro Wilk method, employed for the statistical analysis, shows that the

hypothesis of normality is rejected for one of the sets when there is a confidence level
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Fig. 6. Percent of pesticide spraying inside the target crop field. In this boxplot, the first three

results come from Faiçal et al.4 and the last three results were obtained in this work by the

proposed PSO.

Table 2. Correct spraying (%) in the target
crop field.

Settings Area with Correct Coverage (%)

CL10 72.871± 4.659

CL30 62.113± 3.591

CLNO 55.697± 0.657

P3I50 86.220± 2.538

P5I20 85.811± 2.894

P10I20 85.777± 2.520

of 95%. In view of this, we decided to use non-parametric tests in the subsequent

analysis.

The pairwise comparisons were performed by means of the Wilcoxon Rank Sum

Test (see Table 3) and show that there are significant differences between the results

that employ the methodology for optimization and the results when this method-

ology is not used. However, no significant differences were found when only the

settings based on the optimization methodology were analyzed. Additionally, the

Friedman Rank Sum Test is also applied to this data and shows a p-value of 0.000,

which suggests that there are significant differences between the results shown in

Fig. 6. As a result, it can be concluded that the use of the optimization method

for the parameter routeChangingFactor increases the efficiency of the control rules,

and reduces the errors when spraying in a crop field.

4.3. Use of ANNs for dynamic environments

This section analyzes the ANN trained to interpolate and generalize the data from

27 static scenarios evolved by the PSO. As previously stated, the 27 different sce-

narios were built in the light of the following variations: UAV speed (m/s) {10, 15,

20}; wind speed (km/h) {0, 10, 20} and UAV height of operation (m) {10, 15, 20}.
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(a) routeChangingFactor = 3.000

(b) routeChangingFactor = 6.000

(c) routeChangingFactor = 7.164

Fig. 7. (Color online) A heat map to represent the chemicals sprayed on the crop at the end of

the simulation. The green colour represents no pesticide and red represents the most concentrated

places. The thin black lines show the crop field that needs to have chemicals sprayed. (a) and
(b) Evaluations with empirical values. (c) Evaluation with routeChangingFactor obtained by the

PSO. We can see that when employing the routeChangingFactor obtained by the PSO we have the

best adjusts in the UAV track, attempting to keep the chemicals within the boundary lane. It is
worth to highlight that, as the simulation starts with wind, the UAV always starts the dispersion

of the chemicals outside the boundary.

Table 3. Results of Wilcoxon Rank Sum Test. There are

evidences of difference between the evolved values (P*) and
the non-evolved values (C*) from Faiçal et al.; (p-values

less than 0.05). There are no evidences of difference among
evolved values (p-values greater than 0.05).

CL10 CL30 CLNO P3I50 P5I20

CL30 0.000

CLNO 0.000 0.000

P3I50 0.000 0.000 0.000

P5I20 0.000 0.000 0.000 0.52

P10I20 0.000 0.000 0.000 0.52 0.79

We ran the evolutionary algorithm 10 times for each scenario, and obtained 270

different values.

We sought to obtain the smallest ANN that would provide the most accurate

values, since this also reduces the chance of overfitting during the training and

improves the generalization of the ANNs. Hence, we started evaluating neural net-

works with one hidden layer and with 1 to 5 neurons. No ANN with these topologies
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Fig. 8. Mean square error for 30 runs of each ANN topology.

was able to learn an accurate model from the data. therefore, the number of neurons

and the number of layers were increased, leading to the following topologies for the

first and second hidden layers: {2× 2, 4× 4, 6× 6, 8× 8, 10× 10}. The input layer

has 3 neurons and the output has one neuron (as described in Section 3.3).

The evaluated ANNs are feed-forward multi-layer perceptron and are trained

with the resilient backpropagation algorithm. The ANNs were built and trained by

employing the Stuttgart Neural Network Simulator (SNNS).c We ran the training

30 times for each of the ANN topologies and employed 3-fold cross validation.

The ANNs were trained for 2000 cycles, although we used the values of the best

generalization point. The results as mean square error (MSE) can be seen in Fig. 8.

The distributions were evaluated with statistical tests (Shapiro-Wilk) that

showed that most of the distributions cannot be accepted as normal distribu-

tions. Hence, the comparison between the distributions was carried out with the

Wilcoxon-Mann-Whitney test. When 1% of significance is considered, the com-

parisons between ANN88 and ANN1010 are equivalent. No other comparison of

distribution showed equivalence with the ANN1010 distribution. We can see that

there is an improvement from ANN22 to ANN88; however, as the statistical test

showed that ANN88 and ANN1010 are equivalent, the ANN88 was considered for

the deployment.

Figure 9 displays an execution of the ANN88. The black dots represent the

expected (original) values and the blue dots represent the values obtained by the

ANN. It can be seen that there is a good fit for most of the points; however, there are

points in which the obtained values differ from the expected. The reason for this is

that the PSO does not obtain single values while performing the evolution, i.e. there

is a group of good solutions within a range. Figure 5 can enable us to understand

which good solutions are between ≈ 3 and 6, and thus, this PSO response can be

interpreted as if the function being evolved has plateau regions. The current ANN

topology allows unique outputs for the same inputs, which might be interpreted as

a disperse value, although, the type of dispersion shown in the diagram does not

cStuttgart Neural Network Simulator, http://www.ra.cs.uni-tuebingen.de/SNNS
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Fig. 9. (Color online) Results of execution of the ANN88 for ≈ 75 different inputs. The black dots

represent the expected (original) values and blue dots represent the values obtained by the ANN.

lead to failure in the spraying operation because the obtained values are within a

suitable range.

5. Conclusions and Suggestions for Future Work

In this paper, we have proposed and evaluated a methodology based on PSO, for

fine-tuning the control rule of a UAV, and on an ANN to increase the support for

high dynamic environments. The simulations with PSO provide the optimization of

the parameter routeChangingFactor and thus reduce the error rate when spraying

pesticides on crop fields. In the first experiments, we evaluated a broad set for the

optimization method and the results show that it is possible to obtain 100% of

convergence. Applying such evolutionary methodology allowed us to increase the

precision of spraying pesticides so that ≈ 86% of the product can be applied within

a target crop field. The reason for this is that the optimization is performed during

the application and thus the parameter can be adapted to the weather conditions

of each target crop field. Although, taking into account that the spraying operation

might occur in highly dynamic environment due to changes in wind speed and

direction, we devised an ANN to be employed in the real-world operations. The

proposed ANN is trained with a dataset of near-optimal parameters obtained by

the PSO that evolves for a limited set of static environments. The ANN training

process allows it to interpolate the results as so it can be applied dynamically

for any configuration of the environment. Combining the evolutionary technique

with the neural approach in this work allowed us to leverage the best capabilities

of each technique. The presented proposal provides a significant advance in the

optimization of an UAV route which can be used in real environments, as a trained

ANN is faster than running the evolutionary process of PSO technique over and

over again whenever the weather conditions are changeable. Moreover, even if the

employed hardware has enough resources to perform the technique PSO quickly, the
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ANN will enable the intensity of the route adjustment to be adjusted in a shorter

time.

On the basis of the results obtained the following are recommended for further

studies: (i) an investigation of how more parameters can be optimized (e.g. the

height and speed of the UAV, the best starting-position for the next crop field, and

the pressure of the spraying system); (ii) an investigation of different methodolo-

gies for the fine-tuning control rules of UAV (e.g. Differential Evolution,21 Genetic

Algorithms,22 Hill-Climbing,23 NSGA-II24); (iii) an analysis of the feasibility of

embedding the optimization methodology in the UAV, leading to an autonomous

architecture; (iv) an investigation of the methodologies required for a weather-aware

router planner.
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CHAPTER

8

FINAL CONSIDERATIONS

8.1 Conclusions

Precision Agriculture (PA) is one of the alternative ways of increasing agricultural

production. PA can be defined as the use of technology in the field and boosting production

by processing the needs of the crops in a space-time relationship. In this way, a management

system can be carried out which is geared towards the real needs of each agricultural region.

This approach makes it possible to increase the yield of agricultural production to a higher level

than what was achieved by the use of traditional techniques in a crop field of the same size.

In spite of the well-known and significant advances made in the field of PA, it clearly re-

mains a challenge to carry out the spraying of plant protection products in agricultural plantations

with precision. The weather conditions of the region can cause drift from the spray product to

neighboring regions which is harmful to the environment and reduces the efficiency of protection

management. However, this practice is essential for agriculture where there is a need for pest

control to boost production. Studies have shown that if the protection management is not carried

out properly (which can be explained as an inappropriate configuration of the spraying system for

the weather conditions at the time of its application), only a small amount of the spray product

will be really deposited on the targeted region, while most will form a part of the drift that is

blown to other areas.

Mathematical models are often employed to estimate the path followed and the physical

transformation of each spray particle until its final condition is attained. This condition might be

the complete evaporation of the particle or its deposition on a particular surface (for example

the soil or the crop). Studies are being carried out on the basis of these calculations of the final

position of each particle and these can allow estimates to be made of the concentration of the

product deposited in each area. Nonetheless, it should be noted that this approach is expensive in

computational terms, both for its execution and management. For example, if an autonomous
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spray vehicle has to make an estimate of the precision of the spraying procedure, this approach

will not allow this to be undertaken during the appropriate time needed for its operation.

This thesis explores approaches which allow estimates to be made of the concentration

of plant protection products in targeted areas, rapidly and with a reasonable degree of accuracy.

These might involve autonomous sprayers being able to adapt to the weather conditions of the

region of interest to achieve a more precise protection management which is less harmful to

the environment. For this reason, the thesis investigates the use of Machine Learning (ML)

techniques, together with a computing model based on the essential features of the problem

being addressed. In addition, a case study was conducted on an autonomous platform for spaying,

consisting of a UAV and a WSN. In this study, the UAV is the spray element ( a vehicle fitted

with a spray system) which flies over the crop field and is guided by the spray tracks so that it

can deposit the plant protection products on the crop; and the WSN is the support element that

provides information about the remote sensing of the weather conditions and the concentration

of the product deposited along the spray tracks for the UAV.

The computing model for the environment calculates the trajectory of each particle

on the basis of a dispersion model that takes account of the meteorological information and

the features of the spraying system. The trajectory of the particles shows their respective final

positions and this makes it possible to estimate the deposition of the product in the targeted area

or the amount that is being deposited in neighboring regions. This information is represented

by designing a matrix of a size that is proportional to the region of interest, where each cell

stores the estimated concentration for the final position of the particles. Furthermore, the model

represents the operation of the platform for the spraying in the region of interest and this makes

it possible to assess the degree of precision of the spraying in particular weather conditions.

Contributions made by this study to the research field

1. – Adjustment to environments with a low variability of weather conditions

The approach described for the computing model can be linked to meta-heuristic algo-

rithms as a part of the fitness function. This was supplemented by adding an element to the

analysis of the deposition matrix to check if the targeted region is being sprayed and giving a

response to the question of the number of particles deposited in the neighboring areas.Thus,

the fitness of the solutions provided by the meta-heuristic algorithms must have the minimized

values to represent a more precise spraying (with less drift). Finally, the fitness function only

makes use of deterministic variables in the computing model to ensure that a fair comparison is

made between the possible solutions.

The use of meta-heuristic algorithms with the fitness function described earlier, has

proved to be an efficient way to estimate the deposition of the spray product with a view to

adjusting the image intensity to the UAV route correctly. As a result, it has become possible to

adapt the mechanical behaviour of the UAV to the weather conditions of the environment for



8.2. Plans for Future Work 105

more precise spraying and thus reduce the drift of plant protection products to neighboring areas.

There was an assessment of the evolving pattern of this approach since its efficiency

can be impaired if an environment is chosen with constantly shifting weather patterns and the

meta-heuristic algorithm must be repeatedly executed for each new sub-area.

2. – Adjustment to environments with a high variability of weather conditions

Although the execution of the meta-heuristic algorithms requires a relatively long space

of time (for example, in scenarios where there is a need to carry out the adaptation in a short

space of time), Machine Learning techniques can be used to make the processing more versatile.

In Faiçal et al. (2016b), it is shown that an ANN can be used to indicate the possible results of

the meta-heuristic algorithm without the need for it to be re-executed for each new sub-area.

In addition, this approach allows the intensity correction of the route to be indicated with a

reasonable degree of accuracy for the unknown weather conditions during the training phase.

Hence, an ANN that has been previously trained, can replace the meta-heuristic algorithm to

indicate the correction of the route during the spraying of the plant protection products.

Finally, it is believed that the articles that have originated from this thesis show that the

new approaches and their evaluation allow the spray element to have their operations adapted to

the features of the environment so that a more precise kind of protection management can be

provided, even in environments that need to be upgraded in a short space of time.

8.2 Plans for Future Work

After completing this research study, it is possible to envisage areas that might be

explored in further studies, such as the following:

∙ Examining new approaches for the reduction of computational costs, which are incurred

by estimating the deposition of the spray product;

∙ The use of Computational Intelligence concepts to assess show different features of the

spray element can be adapted to the environment as a means of reducing the drift of the

spray product;

∙ Investigating the scalability of the proposal in environments where there is more than one

sprayer;

∙ Exploring the feasibility of making adjustments to the performance of terrestrial vehicles;

∙ Carrying out experiments in real-world environments in which the techniques validated

in real hardware are embedded, such as the spraying system that was designed and
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implemented during the course of this thesis. This system can be found under patent

No. BR 10 2016 029353 71.

1 The request for protection was deposited with the Instituto Nacional da Propriedade Industrial (INPI)
on December 14, 2016.
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Abstract—The population growth, increase of need for healthy
food and concerns regarding wildlife protection put a strong
demand in the improvement of agriculture productivity, re-
duction of the presence of pesticides in fruits and vegetables
and of wildlife contamination. Agriculture production needs the
application of pesticides to keep the necessary productivity levels.
The use of autonomous aircrafts in the application of pesticides
can increase the application precision efficiency, reducing the
harm to human beings and nature. Weather conditions, like wind
intensity and direction during the spraying, make the aircraft
control difficult. This talk will present a the use of autonomous
UAVs able to self-adjust their routes when spraying pesticides in
crop fields.

I. MOTIVATION
Agriculture plays an important role in the economy of many

countries, one of them Brazil. Farm activities in these countries
extensively use pesticides to eliminate diseases and plagues in
order to increase crop productivity. Noways, the application of
pesticides occurs mainly through the use of aircrafts. Aircrafts
can avoid problems due to adverse ground conditions that affect
the use of ground equipments, like areas with obstacles, like
steeply sloping land and tree limbs. Besides being able to avoid
ground obstacles, aircrafts can, in the same period of time, cover
a larger area than ground equipments. Thus, aircrafts are more
advantages when the ground presents obstacles and pesticide
application must be carried out in a short period of time.

Usually, these aircrafts are on-board piloted and the pilots
must attend several requirements and take specific examinations
to become commercial pesticide applicators. However, due to
external occurrences, like changes in wind direction and velocity,
the precision required by the spraying process on crop fields
is frequently is not fulfilled. This occurs because, as a result,
pesticides applied by these aircrafts can end up in other areas
nearby, affecting recreation areas, other crop cultures and natu-
ral resources. Besides, even using personal protective equipments
and complying with all safety requirements, pilots of pesticide
application aircrafts, can be exposed to pesticides, which can
cause serious damages to their health. Unmanned aerial vehicle
(UAV) have been used to reduce this problems and there are
commercial UAVs for such. However, most solutions use an
human pilot who may not be able to react fast to changes in
weather conditions, is prone to subjective mistakes and, if close

to the crop filed being sprayed, what is usually the case, is still
exposed to the pesticides.

II. EXPERIMENTS

This study shows how changes in weather condition and harm
to human health can be overcome by using an autonomous UAV.
To provide autonomy to the UAV, optimization and machine
learning techniques are embed into the UAV. As a result, the
UAV can accurately spray pesticides on the target crop field,
correct its route autonomously to take into account changes in
the environment conditions. The optimization technique is used
to find near-optimal flight control parameter values for static
environments. For such, several optimization techniques were
investigated and, because it presented the best performance,
Particle Swarm Optimization (PSO) was used. The machine
learning technique is used to induce a model able to make
interpolations of the best solutions found by PSO to improve the
UAV route in dynamic environments. For such, artificial neural
networks (ANNs) were used. This hybrid intelligent approach
was embedded in UAVs with programmable boards, such as
Raspberry PIs or Beaglebones.

Fig. 1. UAV used in the experi-
ments.

Several experiments were car-
ried out to evaluate the proposed
approach. According to the ex-
perimental results, the proposed
approach is feasible and meets the
requirements of a fast response
time needed by the UAV to adjust
its route in a highly dynamic envi-
ronment, while accurately spray-
ing pesticides in a crop field. The
combination of PSO and ANNs

improved the spraying precision in dynamic environments, when
compared, during the UAV activity, with the optimization tech-
niques alone. for static environments, such as PSO exclusive
use during activity. It is important to observe that PSO needs
to perform a large number of evaluations, where they use a
simulator that has a high computational cost. Thus, given the
time limit required to perform these assessments, the use of
just PSO is suitable only in environments with a low rate of
environmental change. Figure 1 illustrates the UAV used in the
experiments.
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III. NEXT STEPS

The experimental results obtained in the experiments carried
out using the proposed approach showed new challenges that
need to be addressed, which are (i) Reduce the computational
cost of the computational model used for pesticide spraying (ii)
optimize other parameters (e.g. height and speed of the UAVs)
to improve the precision of pesticide deposition; (iii) incorporate
characteristics specific of optimization techniques for dynamic
environments; (iv) investigate the scalability of the proposed
system for the implementation of a fully-featured prototype
model.
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