• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.55.2006.tde-01092006-155445
Documento
Autor
Nome completo
Ronaldo Cristiano Prati
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2006
Orientador
Banca examinadora
Monard, Maria Carolina (Presidente)
Dutra, Inês de Castro
Pozo, Aurora Trinidad Ramirez
Rezende, Solange Oliveira
Silva, Flavio Soares Correa da
Título em português
"Novas abordagens em aprendizado de máquina para a geração de regras, classes desbalanceadas e ordenação de casos"
Palavras-chave em português
aprendizado de máquina
classes desbalanceadas
combinação de rankings
geração de regras
Resumo em português
Algoritmos de aprendizado de máquina são frequentemente os mais indicados em uma grande variedade de aplicações de mineração dados. Entretanto, a maioria das pesquisas em aprendizado de máquina refere-se ao problema bem definido de encontrar um modelo (geralmente de classificação) de um conjunto de dados pequeno, relativamente bem preparado para o aprendizado, no formato atributo-valor, no qual os atributos foram previamente selecionados para facilitar o aprendizado. Além disso, o objetivo a ser alcançado é simples e bem definido (modelos de classificação precisos, no caso de problemas de classificação). Mineração de dados propicia novas direções para pesquisas em aprendizado de máquina e impõe novas necessidades para outras. Com a mineração de dados, algoritmos de aprendizado estão quebrando as restrições descritas anteriormente. Dessa maneira, a grande contribuição da área de aprendizado de máquina para a mineração de dados é retribuída pelo efeito inovador que a mineração de dados provoca em aprendizado de máquina. Nesta tese, exploramos alguns desses problemas que surgiram (ou reaparecem) com o uso de algoritmos de aprendizado de máquina para mineração de dados. Mais especificamente, nos concentramos seguintes problemas: Novas abordagens para a geração de regras. Dentro dessa categoria, propomos dois novos métodos para o aprendizado de regras. No primeiro, propomos um novo método para gerar regras de exceção a partir de regras gerais. No segundo, propomos um algoritmo para a seleção de regras denominado Roccer. Esse algoritmo é baseado na análise ROC. Regras provêm de um grande conjunto externo de regras e o algoritmo proposto seleciona regras baseado na região convexa do gráfico ROC. Proporção de exemplos entre as classes. Investigamos vários aspectos relacionados a esse tópico. Primeiramente, realizamos uma série de experimentos em conjuntos de dados artificiais com o objetivo de testar nossa hipótese de que o grau de sobreposição entre as classes é um fator complicante em conjuntos de dados muito desbalanceados. Também executamos uma extensa análise experimental com vários métodos (alguns deles propostos neste trabalho) para balancear artificialmente conjuntos de dados desbalanceados. Finalmente, investigamos o relacionamento entre classes desbalanceadas e pequenos disjuntos, e a influência da proporção de classes no processo de rotulação de exemplos no algoritmo de aprendizado de máquina semi-supervisionado Co-training. Novo método para a combinação de rankings. Propomos um novo método, chamado BordaRank, para construir ensembles de rankings baseado no método de votação borda count. BordaRank pode ser aplicado em qualquer problema de ordenação binária no qual vários rankings estejam disponíveis. Resultados experimentais mostram uma melhora no desempenho com relação aos rankings individuais, alem de um desempenho comparável com algoritmos mais sofisticados que utilizam a predição numérica, e não rankings, para a criação de ensembles para o problema de ordenação binária.
Título em inglês
"New approaches in machine learning for rule generation, class imbalance and rankings"
Palavras-chave em inglês
class imbalance
ensemble of rankings
machine learning
rule learning
Resumo em inglês
Machine learning algorithms are often the most appropriate algorithms for a great variety of data mining applications. However, most machine learning research to date has mainly dealt with the well-circumscribed problem of finding a model (generally a classifier) given a single, small and relatively clean dataset in the attribute-value form, where the attributes have previously been chosen to facilitate learning. Furthermore, the end-goal is simple and well-defined, such as accurate classifiers in the classification problem. Data mining opens up new directions for machine learning research, and lends new urgency to others. With data mining, machine learning is now removing each one of these constraints. Therefore, machine learning's many valuable contributions to data mining are reciprocated by the latter's invigorating effect on it. In this thesis, we explore this interaction by proposing new solutions to some problems due to the application of machine learning algorithms to data mining applications. More specifically, we contribute to the following problems. New approaches to rule learning. In this category, we propose two new methods for rule learning. In the first one, we propose a new method for finding exceptions to general rules. The second one is a rule selection algorithm based on the ROC graph. Rules come from an external larger set of rules and the algorithm performs a selection step based on the current convex hull in the ROC graph. Proportion of examples among classes. We investigated several aspects related to this issue. Firstly, we carried out a series of experiments on artificial data sets in order to verify our hypothesis that overlapping among classes is a complicating factor in highly skewed data sets. We also carried out a broadly experimental analysis with several methods (some of them proposed by us) that artificially balance skewed datasets. Our experiments show that, in general, over-sampling methods perform better than under-sampling methods. Finally, we investigated the relationship between class imbalance and small disjuncts, as well as the influence of the proportion of examples among classes in the process of labelling unlabelled cases in the semi-supervised learning algorithm Co-training. New method for combining rankings. We propose a new method called BordaRanking to construct ensembles of rankings based on borda count voting, which could be applied whenever only the rankings are available. Results show an improvement upon the base-rankings constructed by taking into account the ordering given by classifiers which output continuous-valued scores, as well as a comparable performance with the fusion of such scores.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
RonaldoPratiTese.pdf (1.83 Mbytes)
Data de Publicação
2006-09-13
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.