• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.54.1981.tde-19022015-175629
Documento
Autor
Nome completo
Newton Theophilo de Oliveira
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1981
Orientador
Banca examinadora
Silva Filho, Roberto Leal Lobo e (Presidente)
Costa, Rogerio Cantarino Trajano da
Fleming, Henrique
Luzzi, Roberto
Oliveira, Luiz Nunes de
Título em português
Sistemas vinculados e espaços curvos
Palavras-chave em português
Não disponível
Resumo em português
A parte inicial desta tese está relacionada com o formalismo das integrais de Feynman num espaço curvo. Desenvolvemos um processo de quantização para uma partícula movendo-se em uma variedade Riemeniana de dimensão n a qual tem o mérito de ser canonicamente invariante. O método é baseado na teoria de Faddeev-Fradkin para sistemas com Lagrangeanas degeneradas e conduz à proposição de De Witt para a equação de Schredinger. Na segunda parte tratamos dos processos aleatórios. Obtemos uma equação de evolução para um sistema de partículas não interagentes movendo-se em um espaço curvo considerado como um espaço euclidiano vinculado. A equação de evolução reproduz corretamente, para tempos pequenos, o comportamento mecânico do sistema e, para intervalos de tempos maiores, a equação da difusão. Fazemos uma aplicação para o rotor planar sujeito à colisões térmicas como uma primeira aproximação ao estudo da auto correlação de dipolos rígidos
Título em inglês
Not available
Palavras-chave em inglês
Not available
Resumo em inglês
The first part of this work deals with Feynman's path integral formalism in eurved spaees. We develop a quantization procedure for a particle moving in a Riemannian manifold of dimension which has the merit of being fully canonically invariant. It is based on the theory of Faddeev-Fradkin for Hamiltonian constrained systems and leads exactly to De Witt's proposal for the Schrôdinger equation. In the second part we are concerned with random processes An evolution equation is obtained for a sistem of non-interacting particle moving in a curved space considered as a constrained euclidean space. The evolution equation reproduces correctly the short time behaviour of the mecanical sistem and, for longer times, leads to the covariant diffusion equation. An application is made for planar rotators subject to thermal collisions as a first approximation to the study of the self-correlation of rigid dipoles
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
NewtondeOliveiraD.pdf (4.42 Mbytes)
Data de Publicação
2015-03-05
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.