• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.5.2013.tde-16012014-144713
Documento
Autor
Nombre completo
Sheila Souza
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2013
Director
Tribunal
Massad, Eduardo (Presidente)
Abe, Jair Minoro
Silva Filho, João Inácio da
Título en portugués
Sistema de reconhecimento de caracteres numéricos manuscritos baseado nas redes neurais artificiais paraconsistentes
Palabras clave en portugués
Escrita manual
Inteligência artificial
Lógica
Processamento de imagem assistida por computador
Reconhecimento automatizado de padrão
Redes neurais (computação)
Sistemas de computação
Resumen en portugués
O reconhecimento de padrões por computador é uma das mais importantes ferramentas da Inteligência Artificial presente em inúmeras áreas do conhecimento com aplicações em diversos setores, incluindo o reconhecimento de caracteres. O objetivo da dissertação se concentra na investigação de um processo computacional automatizado - Sistema Computacional Paraconsistente - capaz de reconhecer Caracteres Numéricos Manuscritos e Caracteres Magnéticos Codificados em 7 Barras utilizados em cheques bancários brasileiros, fornecendo uma fundamentação técnica para reconhecer documentos e imagens digitalizadas e, também, sinais biológicos. Embora haja vários estudos em reconhecimento de caracteres, optou-se pelo estudo desse tema devido à sua intrínseca importância e constante desenvolvimento, além de possibilitar adaptações para fazer o reconhecimento de diferentes tipos de sinais como, por exemplo, sinais biológicos. A metodologia adotada para essa tarefa se baseia nas Redes Neurais Artificiais Paraconsistentes por se tratar de uma ferramenta com capacidade de trabalhar com dados imprecisos, inconsistentes e paracompletos sem o perigo de trivialização. O processo de reconhecimento desse sistema é realizado a partir de algumas características do caractere previamente selecionadas com base em algumas técnicas do Grafismo e realiza-se a análise dessas características bem como o reconhecimento do caractere através das Redes Neurais Artificiais Paraconsistentes O sistema foi construído para reconhecer caracteres numéricos com um padrão previamente definido, onde adotou-se os Caracteres Magnéticos Codificados em 7 Barras utilizados em cheques bancários e, posteriormente, o sistema foi aperfeiçoado para fazer o reconhecimento de Caracteres Numéricos Manuscritos. Para a validação do estudo proposto apresentou-se dados reais, a saber, lotes de cheques e caracteres numéricos manuscritos digitalizados onde o sistema apresentou 97,85% de acertos para os Caracteres Magnéticos Codificados em 7 Barras e 91,62% de acertos para Caracteres Numéricos Manuscritos. O resultado obtido demonstra que o sistema é robusto o suficiente e pode servir de estudo para a análise de sinais em áreas correlatas com nível de precisão semelhante
Título en inglés
Handwritten numeric character recognition system based on paraconsistent artificial neural network
Palabras clave en inglés
Artificial intelligence
Computer systems
Handwriting
Image processing computer-assisted
Logic
Neural networks (computer)
Pattern recognition automated
Resumen en inglés
Computer pattern recognition is one of the most important Artificial Intelligence tools present in numerous knowledge areas with applications in several themes, including the character recognition. The aim of this dissertation is the investigation of an automated computational process - Paraconsistent Computational System - able to recognize Handwritten Numeric Characters and Magnetic Ink Character Recognition used on Brazilian bank checks furnishing a technical basis to recognize digital documents, digital images and biological signals. Although there are several studies on character recognition, it was chosen to study this theme due to its intrinsic importance and constant improvement, besides enabling adjustments to the recognition of different kinds of signals such as, biological signals. The methodology employed for the task is based on Paraconsistent Artificial Neural Networks for being a tool with the ability to work with imprecise, inconsistent and paracomplete data without trivialization. The recognition process of this system is performed from some previously selected character features based on some Graphics techniques and, it performs the analysis of these features as well as the character recognition are performed through the Paraconsistent Artificial Neural Networks. The system was built to recognize numeric characters with a previously defined pattern where it was chosen the Magnetic Ink Character Recognition used on Brazilian bank checks and then the system was improved to recognize handwritten numeric characters. It was presented real data as checks' batches and scanned handwritten numeric characters to validate the proposed study and the system reached 97.85% hits for Magnetic Ink Character Recognition and 91.62% hits for Handwritten Numeric Characters. The obtained result demonstrates that the system is robust enough for signal analysis study in correlated areas with similar precision level
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2014-01-16
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.