Gabriela Pintar de Oliveira

Análise da participação das células neuronais e não-neuronais na Esclerose Lateral Amiotrófica em camundongos transgênicos para SOD1 humana utilizando técnicas de microdissecção a laser e PCR em tempo real

> Tese apresentada à Faculdade de Medicina da Universidade de São Paulo para obtenção do título de Doutor em Ciências

Programa de Neurologia

Orientador: Prof. Dr. Gerson Chadi

São Paulo 2013

Gabriela Pintar de Oliveira

Análise da participação das células neuronais e não-neuronais na Esclerose Lateral Amiotrófica em camundongos transgênicos para SOD1 humana utilizando técnicas de microdissecção a laser e PCR em tempo real

> Tese apresentada à Faculdade de Medicina da Universidade de São Paulo para obtenção do título de Doutor em Ciências

Programa de Neurologia

Orientador: Prof. Dr. Gerson Chadi

São Paulo 2013

Dados Internacionais de Catalogação na Publicação (CIP)

Preparada pela Biblioteca da Faculdade de Medicina da Universidade de São Paulo

©reprodução autorizada pelo autor

Anális Lateral An técnicas de Oliveira.	e da participação das células neuronais e não-neuronais na Esclerose niotrófica em camundongos transgênicos para SOD1 humana utilizando e microdissecção a laser e PCR em tempo real / Gabriela Pintar de São Paulo, 2013.
Tese(c	loutorado)Faculdade de Medicina da Universidade de São Paulo.
Program	na de Neurologia.
Orient	ador: Gerson Chadi.
Descrit de oligonuc 6.Neurônio	ores: 1.Esclerose amiotrófica lateral 2.Análise de sequência com séries eleotídeos 3.Microdissecção e captura a laser 4.Astrócitos 5.Microglia s motores
USP/FM/D	BD-444/13

Dedicatória

Aos meus pais, Maria Rosângela e Fidelis, que são meus exemplos de honestidade, força e persistência. Sem vocês nada seria possível.

Agradecimentos

Ao Prof. Dr. Gerson Chadi pela idealização deste grande projeto temático em ELA, pela orientação segura, pela oportunidade de participar de um projeto multidisciplinar com tantos desafios e também pelas valiosas correções que resultaram no texto final desta tese.

A minha família que sempre me apoiou em todas as minhas decisões e me deu força para chegar aos meus objetivos.

Ao meu companheiro Rafael, que com toda a sua paciência e cuidado me ajuda a ser uma pessoa melhor a cada dia.

Às amigas Roberta e Debora, com as quais divido, desde a época da graduação, todas as minhas alegrias e frustrações, sem vocês tudo seria mais difícil.

À Thais Moura, por todo apoio e carinho de uma grande amizade revelada durante o nosso período de convívio em laboratório.

À Juliana Scorisa e Tatiana Duobles amigas e companheiras de laboratório, que estiveram ao meu lado durante a maior parte deste doutorado. O convívio com vocês foi fundamental neste período.

À Jéssica Maximino pela dedicação incondicional em tornar o laboratório um local mais organizado e produtivo. Você é essencial para manter a motivação dos alunos em fazer o melhor que podem em seus projetos.

À minha querida amiga e funcionária Florence Dinucci pelos conselhos e por todos os momentos de descontração que fizeram os meus dias mais felizes.

Aos funcionários Sarah e Gilmar pela dedicação .

Ao colega Chrystian por toda a ajuda durante a fase de estabelecimento da colônia e pela atuação fundamental no período de escrita do artigo científico resultante deste trabalho.

Aos colegas Chary, Allan Fappi, Juliana Neves e demais alunos que passaram pelo LIM-45 pelos momentos de descontração que tornaram esta jornada mais leve e divertida.

Ao Professor Edmar Zanoteli pelos incentivos e por compartilhar comigo sua experiência profissional.

Ao Professor Chin Jia Lin, coordenador do núcleo multiusuário do microscópio de microdissecção a laser, por ter me recebido em seu laboratório como se eu fosse sua aluna.

À Dra Dirce Maria Carraro e ao Dr Alex Fiorini de Carvalho, do Centro Internacional de Pesquisa do Hospital AC Camargo, pela ajuda metodológica na execução dos experimentos de *microarray*.

À equipe da Dra Pamela J Shaw, da University of Sheffield, por dividirem comigo sua experiência em análise de *microarray*, a qual foi fundamental para a definição dos rumos deste trabalho.

Aos Professores Debora Fior-Chadi, Chin Jia Lin e Edmar Zanoteli pelas considerações feitas na qualificação, as quais foram fundamentais para a finalização deste trabalho.

À pós-graduação da Neurologia da Faculdade de Medicina da Universidade de São Paulo.

À FAPESP (2009/14214-7) pela oportunidade em prover a bolsa de estudo sem a qual não teria sido possível realizar este trabalho.

À FAPESP (2010/20457-7) e CNPq pelos apoios financeiros.

Epígrafe

"Tenho a impressão de ter sido uma criança brincando à beira-mar, divertindo-me em descobrir uma pedrinha mais lisa ou uma concha mais bonita que as outras, enquanto o imenso oceano da verdade continua misterioso diante de meus olhos". (Isaac Newton)

Normatização adotada

Esta tese está de acordo com as seguintes normas, em vigor no momento desta publicação:

Referências: adaptado de International Committee of Medical Journals Editors (Vancouver). Universidade de São Paulo. Faculdade de Medicina. Divisão de Biblioteca e Documentação. Guia de apresentação de dissertações, teses e monografias. Elaborado por Anneliese Carneiro da Cunha, Maria Julia de A. L. Freddi, Maria F. Crestana, Marinalva de Souza Aragão, Suely Campos Cardoso, Valéria Vilhena. 3a ed. São Paulo: Divisão de Biblioteca e Documentação; 2011.

Abreviaturas dos títulos dos periódicos de acordo com List of *Journals Indexed in Index Medicus*.

Índice

LISTA DE ABREVIATURAS	
LISTA DE FIGURAS	
LISTA DE TABELAS	
RESUMO	
ABSTRACT	
1. INTRODUÇÃO	1
1.1. Esclerose Lateral Amiotrófica	2
1.2. Modelo animal para o estudo da ELA	4
1.3. Evidências para o papel do astrócito	6
1.4. Evidência para o papel da microglia e neuroimunomodulação	8
1.5. Microdissecção a laser	11
2. OBJETIVOS	13
2.1. Objetivo geral	14
2.2. Objetivos específicos	14
3. MATERIAIS E MÉTODOS	15
3.1. Modelo animal da ELA	16
3.2. Colônias de animais	16
3.3. Genotipagem dos camundongos	17
3.4. Estadiamento clínico no modelo animal	18
3.4.1. Avaliação da condição geral e peso corporal	18
3.4.2 Rotarod, hangwire e plano inclinado	19
3.4.3. Análise estatística do estadiamento clínico e do comportamento motor	20
3.5. Coleta do material e realização dos experimentos do microarray	20
3.5.1. Desenho experimental	21
3.5.2. Preparação dos Spikes	21
3.5.3. Preparação da reação de marcação	21
3.5.4. Hibridização	23
3.5.5. Lavagens das lâminas e obtenção dos resultados	23
3.5.6. Pré-análise dos dados e análise estatística para identificação dos genes	
diferencialmente expressos	23
3.5.7. Análises enriquecidas pelo FunNet	24

3.6. Validação dos resultados do microarray por qPCR	25
3.6.1. Reações de transcrição reversa	25
3.6.2. PCR quantitativa	25
3.6.3 Análise estatística para as validações	
3.7. Microdissecção a laser dos tipos celulares de interesse	
3.7.1. Processamento tecidual para microdissecção a laser de astrócitos	de 40 dias
	29
3.7.2. Processamento tecidual para microdissecção a laser de neurônios	s motores
de 40 e 80 dias	29
3.7.3. Processamento tecidual para microdissecção a laser de microglia	s de 80
dias	
3.7.4. Extração e amplificação do RNA	
3.7.5. Reação de transcrição reversa e caracterização do tipo celular co	letado31
3.7.6. qPCR nas células microdissecadas	32
3.7.7. Análise estatística das qPCRs nas células microdissecadas	
4. RESULTADOS	34
4.1. Condição geral, peso corporal e sobrevida	35
4.2. Rotarod, hangwire e plano inclinado	37
4.3. Genes diferencialmente expressos pela análise do microarray	
4.4. Análises enriquecidas para vias do KEGG	42
4.5. Análises enriquecidas para o GO	51
4.6. Validação dos resultados do microarray por PRC quantitativa	54
5. Microdissecção a laser	56
6. DISCUSSÃO	62
7. CONCLUSÕES	80
ANEXO A	
ANEXO B	
ANEXO C	85
7. REFERÊNCIAS BIBLIOGRÁFICAS	112
APÊNDICE	131

LISTA DE ABREVIATURAS

°C	Graus Celsius
ALS	Do inglês, Amyotrophic Lateral Sclerosis
cDNA	Do inglês, DNA complementar ao RNA
COX2	Ciclooxigenase 2
cRNA	RNA conjugado à cianina
Ct	Do inglês, Cycle threshold
Cy3	Do inglês, Cyanine 3 dye
Cy5	Do inglês, Cyanine 5 dye
DNA	Ácido Desoxirribonucléico
DTT	Ditiotreitol
dNTP	Desoxirribonucleosídeos-Trifosfato
EDTA	Do inglês, Ethylene Diamine TetrAcetic Acid
ELA	Esclerose Lateral Amiotrófica
GO	Do inglês, Gene Onthology
IL8	Interleucina 8
KEGG	Do inglês, Kyoto Encyclopedia of Genes and Genomes
LPS	Lipopolissacarídeo
MCP1	do inglês, monocyte chemotactic protein 1
MHCI	Complexo principal de histocompatibilidade I
MHCII	Complexo principal de histocompatibilidade II
mL	Mililitro
mM	Milimolar
NaCl	Cloreto de Sódio
ng	Nanograma
NGF	Do inglês, Nerve Growth Factor
nM	Nanomolar
NTP	Nucleosídeo-Trifosfato
pb	pares de base
PBS	Do inglês, Phosphate Buffered Saline
PCR	Do inglês, Polymerase Chain Reaction
PGE2	Prostaglandina E2

qPCR	Do inglês, Quantitative PCR
RNA	Ácido Ribonucléico
RNAm	RNA mensageiro
rpm	Rotações Por Minuto
SDS	Sulfato Dodecil de Sódio
SNC	Sistema Nervoso Central
SOD1	Superóxido Dismutase 1
SUMO	do inglês, small ubiquitin like molecule
TE	Tris-EDTA
TG	Transgênico
TNFα	Do inglês, Tumor Necrosis Factor alfa
Tris	Do inglês, Trishydroxymethylaminomethane
Tris-HCl	Do inglês, Tris-Hydrocloride
UV	Ultravioleta
VEGF	Do inglês, Vascular Endothelial Growth Factor
WT	Do inglês, Wild Type
U	Unidade
μJ	Microjoule
μm	Micrômetro
μg	Micrograma
μL	Microlitro

LISTA DE FIGURAS

LISTA DE TABELAS

Tabela 1. Pontuações e seus respectivos sintomas utilizados na avaliação da condição
geral das colônias G93A e selvagem19
Tabela 2. Sequências dos oligonucleotídeos utilizados nos experimentos de validação
do microarray e seus respectivos tamanhos de amplificados
Tabela 3. Sequência dos iniciadores para a avaliação do enriquecimento celular das
amostras submetidas à microdissecção a laser
Tabela 4. Sequências de iniciadores utilizadas nas análises de expressão gênica das
células microdissecadas utilizando o método SYBR
Tabela 5. Genes diferencialmente expressos nos camundongos transgênicos
SOD1G93A de ambas as idades, 40 e 80 dias 41
Tabela 6. Vias KEGG super-representadas para os genes diferencialmente super ou
subexpressos na idade de 40 dias
Tabela 7. Vias KEGG super-representadas para os genes diferencialmente super ou
subexpressos na idade de 80 dias 45
Tabela 8. Processos biológicos apresentados como super-representados para genes
super e subexpressos em animais de 40 dias
Tabela 9. Processos biológicos apresentados como super-representados para genes
super e subexpressos em animais de 80 dias
Tabela 10. Todos os genes diferencialmente expressos no animal transgênico
SOD1G93A de 40 dias com seus respectivos valores de p e <i>Fold</i>
Tabela 11. Todos os genes diferencialmente expressos no animal transgênico
SOD1G93A de 80 dias com seus respectivos valores de p e <i>Fold</i>

RESUMO

Oliveira GP. Análise da participação das células neuronais e não-neuronais na Esclerose Lateral Amiotrófica em camundongos transgênicos para SOD1 humana utilizando técnicas de microdissecção a laser e PCR em tempo real [tese]. São Paulo: Faculdade de Medicina, Universidade de São Paulo; 2013

A Esclerose Lateral Amiotrófica (ELA) é a doenca neurodegenerativa do neurônio motor que acomete indivíduos adultos e promove a perda progressiva das funções motoras. A evolução é rápida (2 a 5 anos) e culmina na morte por complicações e falência dos músculos respiratórios. Descrições recentes sugerem a contribuição de tipos celulares não neuronais, particularmente o astrócito e a microglia, para a morte do neurônio motor. O camundongo transgênico SOD1^{G93A}, que carrega a SOD1 humana mutada, foi utilizado neste trabalho. Estudos comportamentais apontaram alterações motoras importantes no animal transgênico a partir de 90 dias de vida e permitiram selecionar, então, as idades pré-sintomáticas de 40 dias e 80 dias para os estudos moleculares. A análise da expressão gênica nos animais transgênicos e selvagens destas duas idades foi realizada por microarray utilizando-se a plataforma que contém o genoma completo do camundongo e detectou 492 e 1105 transcritos diferencialmente expressos nos animais de 40 e 80 dias, respectivamente. Estes resultados foram validados por PCR quantitativa (qPCR). As análises bioinformáticas dos resultados identificaram 17 e 11 vias moleculares super-representadas nas idades de 40 dias e 80 dias, respectivamente. Destas, as vias endocitose, sinapse glutamatérgica, proteólise mediada por ubiquitina, via de sinalização de quimiocina, fosforilação oxidativa, processamento e apresentação de antígeno e junção oclusiva foram comuns a ambas as idades. Ainda, as vias sinapse glutamatérgica e fagossomo foram sugeridas como potencialmente mais importantes em animais transgênicos de 40 dias e 80 dias, respectivamente. Transcritos específicos foram analisados em amostras enriquecidas de células (astrócito, microglia e neurônio motor) microdissecadas a laser do corno anterior da medula espinal dos animais. Os transcritos Cxcr4, Slc1a2 e Ube2i foram avaliados por qPCR nas amostras enriquecidas de astrócitos dos animais de 40 dias, enquanto que Cxcr4 e Slc17a6 foram avaliados nas amostras de neurônios motores dos animais desta idade. Cxcr4 apresentou expressão diminuída nos astrócitos transgênicos e aumentada nos neurônios destes animais. Slc1a2, Ube2i e Slc17a6 estavam aumentados nos tipos celulares estudados nos animais transgênicos. Tap2 e Tubala foram avaliados nas amostras enriquecidas de microglias dos animais de 80 dias e mostraram-se aumentados nas amostras dos transgênicos. Finalmente, Akt1 apresentou expressão diminuída nos neurônios motores microdissecados dos animais transgênicos em comparação aos selvagens. Os resultados sugerem que alterações na sinalização glutamatérgica podem exercer papel essencial em fases pré-sintomáticas mais precoces da doença (40 dias), enquanto que em fases pré-clínicas mais próximas ao aparecimento dos sintomas (80 importantes dias). respostas mais parecem estar relacionadas as à neuroimmunomodulação. Dessa forma, este trabalho aponta para novas perspectivas para o estudo da ELA.

Descritores: 1.Esclerose amiotrófica lateral; 2.Análise de sequência com séries de oligonucleotídeos; 3.Microdissecção e captura a laser; 4.Astrócitos; 5.Microglia; 6.Neurônios motores

ABSTRACT

Oliveira GP. Analysis of neuronal and non-neuronal cells participation in Amyotrophic Lateral Sclerosis in transgenic SOD1 mice by means of laser microdissection and real time PCR [tese]. São Paulo: "Faculdade de Medicina, Universidade de São Paulo"; 2013

Amyotrophic Lateral Sclerosis (ALS) is an adult onset motor neuron neurodegenerative disease that leads to the progressive loss of muscular functions. It is a fast progression disorder (2 to 5 years) culminating in death by respiratory failure. Recent findings suggest that non neuronal cell types, especially astrocytes and microglia, might contribute to the neuronal death. The transgenic mouse SOD1^{G93A}, carring human mutant SOD1, was used in this study. Behavioral studies pointed to the onset of the clinical symptoms occurring at 90 days in the animal model, thus, allowing the selection of the pre-symptomatic ages of 40 and 80 days to the molecular studies. Gene expression analysis of transgenic mice and their non-transgenic littermates at those ages was performed by using a microarray platform containing the whole mouse genome and has detected 492 and 1105 differentially expressed genes at 40 days and 80 days old mice, respectively. These results were validated by quantitative PCR (qPCR). Bioinformatic analysis of the results identified 17 and 11 over-represented molecular pathways at 40 days and 80 days, respectively. Of these, endocytosis, glutamatergic synapse, ubiquitin-mediated proteolysis, chemokine signaling pathway, oxidative phosphorylation, antigen processing and presentation and also tight junction were common to both ages. Furthermore, glutamatergic synapse and fagosome were suggested as potentially more important at 40 and 80 days, respectively. Specific transcripts were analyzed on enriched samples of cells (astrocytes, microglia and motor neuron) obtained by laser microdissection from the ventral horn of mouse spinal cord. The transcripts Cxcr4, Slc1a2 and Ube2i were evaluated by qPCR in enriched samples of astrocytes of the 40 days old mice, and Cxcr4 and Slc17a6 were analyzed in motor neuron samples at this age. Cxcr4 has been found decreased in astrocytes from transgenic mice and increased in the motor neurons of these animals. Slc1a2, Ube2i and Slc17a6 have increased in the cell type in which they were evaluated in the transgenic mice. Tap2 and Tuba1a were evaluated at microglia enriched samples of 80 days old mice and were found to be increased. Finally, Akt1 has decreased in enriched samples of motor neurons from 80 days old mice. The results suggest that glutamatergic signaling might play essential role in early stages of the disease (40 days), while in phases closer to the appearance of the symptoms (80 days), the neuroimmunomodulation takes place. Thus, this study points to new perspectives for ALS study.

Descriptors: 1. Amyotrophic lateral sclerosis; 2. Oligonucleotide array sequence Analysis; 3. Laser capture microdissection; 4. Astrocytes; 5. Microglia; 6. Motor neurons.

1. INTRODUÇÃO

1.1. Esclerose Lateral Amiotrófica

A Esclerose Lateral Amiotrófica (ELA) foi primeiramente descrita no ano de 1869 pelo notável cientista francês Jean-Martin Charcot¹, quando o mesmo correlacionou a síndrome de paralisia progressiva com lesões nas substâncias branca e cinzenta do sistema nervoso central (SNC)². A denominação da doença (do inglês, Amyotrophic Lateral Sclerosis - ALS), entretanto, foi usada pela primeira vez apenas 5 anos mais tarde em 1874 quando dois aspectos anatomopatológicos, o envolvimento da substância cinzenta (amiotrofia) e o dano na substância branca (esclerose lateral), foram incorporados². A designação semântica da denominação *amyotrophic lateral sclerosis* sugere, tanto em inglês quanto em francês, que o distúrbio primário é a esclerose piramidal, com a amiotrofia sendo utilizada como modificador. Essa colocação foi proposital, uma vez que Charcot acreditava que a amiotrofia era decorrente da disseminação da doença das colunas laterais para as substâncias cinzentas espinal e bulbar. Mais de um século depois, a causa da ELA, bem como o sítio de início e a relação entre as lesões nas substâncias branca e cinzenta, ainda são objeto de debate pela comunidade científica.

Atualmente, a ELA é a doença do neurônio motor de início na vida adulta mais comum, com incidência e prevalência mundiais variando de 0,46 a 2,39 e 2,01 a 11,3 por cem mil habitantes, respectivamente³. Conforme descrito por Charcot, a doença decorre da degeneração dos neurônios motores superiores, do córtex motor, e inferiores, do tronco encefálico e da medula espinal, que inervam o músculo estriado esquelético. A apresentação clínica dos sintomas pode variar, mas comumente consiste de fraqueza muscular, fasciculações e/ou hiperreflexia dos músculos inervados pelo tronco encefálico (início bulbar) ou pela medula espinal (início espinal)⁴, culminando na morte do indivíduo no período de 2 a 5 anos a partir do início dos sintomas, em geral relacionada à falência do controle respiratório.

O diagnóstico é acessado pela combinação do exame clínico e da eletromiografia. Neste exame complementar para o diagnóstico, as ondas positivas e intensas, bem como os potenciais de fibrilação fornecem a evidência da desnervação⁴. Os critérios do teste clínico El Escorial foram desenvolvidos na década de noventa⁵ e são utilizados para diagnosticar e classificar casos de ELA como possível, provável ou definido. As diretrizes deste teste são revisadas periodicamente com o intuito de direcionar ênfase maior às anormalidades eletrofisiológicas, estas que podem ser detectadas precocemente, acelerando assim o diagnóstico⁶.

A maior parte dos casos de ELA, aproximadamente 90 % deles, não apresentam herdabilidade aparente, e esta forma da doença é classificada como esporádica. O restante dos casos apresenta uma forma dominante inerente, chamada de forma familiar³. Ambas as formas mostram, indistintamente, os sinais clássicos da doença como fraqueza e atrofia musculares progressivas, decorrentes da degeneração e da morte dos neurônios motores superiores e inferiores. A morte dos pacientes se dá, em geral, como dito acima, por problemas respiratórios. O fato de estas duas formas da doença mostrarem-se neuropatologicamente idênticas implica que a patogênese das mesmas deva convergir em uma via comum e/ou envolver fatores tóxicos similares³, entretanto tais fatores ainda são alvo de investigações.

Os indivíduos agrupados na forma genética da doença possuem histórico familiar evidente⁷. A identificação, em humanos, de genes diversos que contêm as mutações relacionadas à patogenia do neurônio motor semelhantes à ELA possibilitou a classificação das formas familiares em 20 grupos conhecidos como ALS1 a 18, ELA com demência frontotemporal (ALS-FTD) e a mesma ligada à doença de Parkinson (ALS-FTDPD)⁸. Mutações nos genes que codificam a valosina (*VCP*) ou ainda a ubiquilina 2 (*UBQLN2*), relacionados ao sistema ubiquitina proteossomo, e D-amino ácido oxidase (DAO), relacionada à excitotoxicidade glutamatérgica, foram recentemente descritas associadas à degeneração do neurônio motor⁹⁻¹¹. Ainda, a expansão de hexanucleotídeos no cromossomo 9 (*C90RF72*) foi descrita recentemente em pacientes com ELA familiar e esporádica e também nos pacientes com ELA associada à demência frontotemporal^{12, 13}.

Aproximadamente vinte porcento dos casos de ELA com histórico familiar, correspondente a um a dois porcento de todos os casos da doença, são da forma ALS1³ e causados por mutações dominantes no gene que codifica a enzima Cu/Zn⁺² superóxido dismutase (*SOD1*). Esta enzima é responsável pela conversão do ânion superóxido, um bioproduto da respiração celular, em peróxido de hidrogênio¹⁴. A substituição da leucina pela fenilalanina na porção 144 da cadeia de aminoácidos (SOD1^{L144F}) é a mutação no gene da SOD1 mais reportada atualmente de acordo com os dados do banco de mutações da ELA (<u>http://alsod.iop.kcl.ac.uk</u>).

A SOD1 é uma enzima expressa em abundância no citoplasma das células. Sabendo-se que a mesma atua na conversão do ânion superóxido em peróxido de hidrogênio, conforme descrito anteriormente, a hipótese inicial era de que seu mecanismo de patogenicidade na ELA devia-se à perda de sua capacidade detoxificante. Entretanto, experimentos mostraram que os animais que expressam as formas ativas da enzima humana mutada (SOD1^{G97R} e SOD1^{G93A})¹⁵⁻¹⁷ e aqueles que expressam as formas inativas da mesma (SOD1^{G85R} e SOD1^{G86R})^{18, 19} desenvolvem patologias comparáveis àquelas vistas nos pacientes, incluindo a retração da sinapse motora²⁰, as alterações mitocondriais²¹ e ativação a microglial e astrocitária^{22, 23}. Adicionalmente, a deleção do gene que codifica para a SOD1 nos camundongos não foi capaz de promover distúrbios no neurônio motor destes animais²⁴. Ainda, a deleção e a superexpressão da SOD1 endógena de camundongos SOD1^{G85R} que expressam a forma inativa da enzima não promoveram alteração no curso da doença¹⁸. Essas evidências levaram a comunidade científica a aceitar a hipótese de que a proteína SOD1 humana (hSOD1) mutada adquire propriedades tóxicas independentes da sua função enzimática, como aquelas subsequentes ao dobramento incorreto da proteína e à formação de agregados⁴.

Estudo *in silico* recente sugeriu que a maioria das mutações da SOD1 possui capacidade de desestabilizar o dobramento ou a estrutura quaternária originais da proteína²⁵, algo que foi demonstrado experimentalmente por outros estudos²⁶⁻²⁹. Adicionalmente, a presença de inclusões proteicas nos neurônios motores de pacientes com ELA esporádica indica que a oligomerização aberrante é um aspecto comum da ELA, independentemente do genótipo³⁰.

1.2. Modelo animal para o estudo da ELA

Número superior a 170 mutações na SOD1 humana já foi descrito (http://alsod.iop.kcl.ac.uk/) e mais de 10 linhagens de camundongos carregando algumas delas foram estabelecidas, sendo que a linhagem SOD1^{G93A}, que apresenta substituição da glicina pela alanina na posição 93 da cadeia de aminoácidos, é a mais utilizada nos estudos, seguida pelas linhagens SOD1^{G85R} e SOD1^{G37R 31}. Uma vez que as diversas mutações ligadas à SOD1 promovem um fenótipo semelhante, parece plausível que modificações pós-traducionais tenham influência no desenvolvimento da doença³². Por exemplo, distúrbios de modificações pós-traducionais normais, como dimerização de subunidades, formação de pontes dissulfeto entre resíduos de cisteína (Cys57 e

Cys146) e a coordenação entre cobre e zinco, promoveram agregação de SOD1 selvagem³². Além disso, modificações pós-traducionais aberrantes, como a oxidação, mostraram efeitos adversos sobre a conformação da proteína SOD1 selvagem. Recentemente, Bosco e colaboradores³² descreveram que proteínas selvagens processadas pós-traducionalmente de forma aberrante encontradas em pacientes com a forma esporádica da ELA ativam os mesmos mecanismos neurotóxicos que aqueles acessados pela SOD1 mutada de pacientes com a forma familiar da doença. Estas observações sugeriram que as anormalidades conformacionais e as modificações pós-traducionais na SOD1 selvagem podem contribuir para a patogênese da ELA em pacientes com a forma esporádica da doença levando-se em conta os dados obtidos a partir do estudo das formas familiares³².

O fenótipo clínico no modelo animal SOD1^{G93A}, eleito para desenvolvimento do presente trabalho, foi caracterizado inicialmente pelo aparecimento dos sinais motores clássicos nas patas traseiras, como o tremor e a fraqueza muscular, por volta de 90 dias de idade. Estes sintomas progridem rapidamente e levam o animal à morte na idade de 130-150 dias³³.

A despeito de os sintomas clássicos da doença manifestarem-se por volta de 90 dias, evidências mostram as disfunções no sistema motor ocorrendo antes do início dos sinais clínicos clássicos³⁴⁻³⁷. Vacúolos pequenos foram vistos acumulados nos axônios dos neurônios motores do animal SOD1^{G93A} de 37 dias de idade, sendo que, nestes animais, a desnervação da musculatura esquelética e a morte do neurônio motor antecederam a paralisia^{20, 38, 39}. A existência de mecanismos compensatórios, como a reinervação por brotamento dos neurônios motores das adjacências após a desnervação parcial do músculo, podem ajudar a explicar o intervalo entre o início dos eventos celulares e o aparecimento dos sintomas⁴⁰. O tipo de morte do neurônio motor na ELA é controverso. O modelo atual mostra características tanto de apoptose quanto de necrose, em magnitudes diferentes dependendo do estágio da patologia^{41, 42}. O paradoxo aparente dos efeitos início/evolução da doença abre especulações sobre os mecanismos pelo menos parcialmente distintos nas diversas fases de evolução da patologia. De fato, a paralisia progressiva na ELA surge da degeneração e morte do neurônio motor e evidências recentes apontam para a toxicidade parácrina, ou seja, aquela induzida por outros tipos celulares próximos a esses neurônios.

Dentre os principais mecanismos que contribuem para a morte do neurônio motor na ELA, destacam-se a excitoxicidade glutamatérgica^{16, 43, 44}, os insultos inflamatórios⁴⁵, a disfunção mitocondrial e o estresse oxidativo^{17, 46, 47}, a desregulação de fatores neurotróficos e de proteínas de guiamento axonal⁴⁸⁻⁵⁰, os defeitos de transporte axonal^{51, ⁵², a formação de agregados proteicos⁵³ e o processamento aberrante de RNA⁴. De fato, estes processos são os mais estudados dentre os vários propostos.}

Estudos mostraram que a expressão seletiva e em quantidades suficientes da hSOD1 mutada nos neurônios motores foi capaz de promover o fenótipo da doença^{54, 55}. Adicionalmente, os neurônios motores selvagens circundados por células gliais contendo a enzima mutada desenvolveram fenótipo de degeneração, enquanto que os neurônios expressando a hSOD1 mutada demoraram mais a manifestar este fenótipo quando circundados por células gliais selvagens⁵⁶. Resultados similares foram obtidos pelos estudos que utilizaram co-culturas de neurônios motores, estes derivados de células tronco obtidas de animais selvagens e transgênicos, com astrócitos que expressavam a hSOD1 mutada, estes, por sua vez, coletados de animais transgênicos^{57, 58}. Estas análises mostraram o efeito tóxico desses astrócitos transgênicos, já que estas células promoveram a degeneração dos neurônios selvagens e também exacerbaram a degeneração dos neurônios transgênicos^{57, 58}. Ainda, estudos com camundongos transgênicos construídos para não expressar⁵⁹ ou expressar níveis reduzidos²³ da enzima mutada na microglia sugeriram que esta célula da glia também estaria envolvida na patogênese da ELA.

1.3. Evidências para o papel do astrócito

O astrócito é a celula glial mais abundante no SNC e exerce alí funções fundamentais como a manutenção da homeostase e do controle iônico, o suporte metabólico e nutricional aos neurônios, a manutenção da barreira hematoencefálica e das defesas locais e também a influência na neurotransmissão⁶⁰. Deste modo, razoável é considerar-se que qualquer alteração na fisiologia astrocitária seja capaz de promover distúrbios neuropatológicos, incluindo a ELA, levando-se em consideração a complexidade e a multiplicidade de funções exercidas por estas células⁶¹.

Notavelmente, os astrócitos exercem funções importantes na manutenção dos níveis de glutamato no meio extracelular. O astrócito retira o excesso de glutamato da fenda sináptica através do transportador de glutamato glial, também conhecido como

EAAT2 ou GLT-1. O excesso do neurotransmissor na fenda sináptica leva à excitotoxicidade neuronal causada por influxo excessivo de cálcio⁶². Observações iniciais apontaram para desregulação deste transportador na medula espinal dos pacientes com ELA e no modelo experimental^{16, 43, 44, 63-66}, dessa forma, a excitotoxicidade pelo glutamato foi introduzida como um dos mecanismos patogênicos da doença. Evidências adicionais para a hipótese de excitotoxicidade na ELA vieram das observações in vivo de que astrócitos que expressam a hSOD1 mutada são capazes de liberar níveis altos do aminoácido D-serina, um co-ativador de receptores NMDA, exacerbando, assim, a toxicidade do glutamato nos neurônios motores^{67, 68}. A produção aumentada de espécies reativas de oxigênio (EROs), decorrente da disfunção mitocondrial presente nos astrócitos que carregam a hSOD1 mutada, também foi proposta como mecanismo de toxicidade capaz de exacerbar o dano ao neurônio motor⁶⁷. Neste sentido, a manutenção da atividade mitocondrial astrocitária⁶⁹ ou, ainda, a potencialização das defesas antioxidantes destas células⁷⁰ por intervenções farmacológicas⁶⁷ ou genéticas⁷⁰ mostraram-se neuroprotetivas. Dessa forma, estas descrições correlacionaram a produção de radicais livres pelos astrócitos à morte do neurônio motor.

Evidências recentes acerca da morfologia atípica e de células em degeneração^{71, 72} sugerem, adicionalmente, que a hSOD1 mutada possui efeitos tóxicos diretos aos próprios astrócitos^{63, 73}. Mais recentemente, análise da expressão gênica dos astrócitos transgênicos e neurônios motores cultivados revelou alteração complexa na interação entre estes dois tipos celulares e sugeriu que a diminuição da sinalização neuroprotetora do TGFβ na ELA, a qual ocorreu antes do início dos sintomas, poderia desempenhar papel importante na fisiopatologia da doença⁷⁴. A capacidade reduzida na liberação de lactato é outra disfunção astrócitária presente na ELA⁷⁵.

Estudos também mostraram que astrócitos transgênicos liberam fatores tóxicos aos neurônios, tais como o fator de crescimento do nervo $(NGF)^{76}$, o óxido nítrico⁷⁷ e a prostaglandina E2 (PGE2)⁷⁸. Ainda, os receptores do fator de necrose tumoral-alpha (TNF- α), o p75 do NGF e o receptor do ligante Fas/CD95 foram relacionados aos mecanismos tóxicos parácrinos aos neurônios motores na ELA⁷⁹. As células gliais são a fonte principal do TNF- α no SNC e, interessantemente na ELA, o aumento da expressão de RNA mensageiro (RNAm) do TNF- α foi correlacionado ao início da astrogliose na medula espinal do camundongo transgênico SOD1^{G93A} de 4 meses com número

reduzido de cópias da enzima mutada⁸⁰. Ainda, o aumento da imunorreatividade para o ligante de Fas foi evidente nos neurônios e nos astrócitos da região lombar da medula espinal do camundongo SOD1^{G93A} antes do aparecimento dos sintomas. O mesmo foi demonstrado na medula espinal de pacientes das formas esporádicas e familiares da ELA⁸¹⁻⁸³.

Dessa forma, os achados expostos acima sugerem que, na ELA, os astrócitos atuam contribuindo diretamente para a morte do neurônio motor através da liberação de fatores tóxicos e/ou da perda de suas funções fisiológicas autócrinas e parácrinas⁸⁴.

1.4. Evidência para o papel da microglia e neuroimunomodulação

Microglias são células com propriedades neuroimunomodulatórias residentes no SNC. Durante situações de lesão ou doença neste tecido, estas células tornam-se massivamente ativadas nas regiões de perda neuronal, condição comum conhecida como microgliose reativa. A microglia reativa é capaz de liberar variedade grande de substâncias que podem limitar ou exacerbar o dano neuronal⁸⁵. A microgliose foi descrita como marcador da ELA em pacientes e em modelos animais⁸⁶, uma vez que microglias reativas foram encontradas no cérebro e na medula espinal de pacientes com ELA, bem como nos camundongos que carregam a hSOD1 mutada⁸⁷⁻⁸⁹, inclusive antes da fase da perda neuronal. Investigações mecanísticas sugeriram que a ativação fosse dirigida pela secreção da hSOD1 mutada⁹⁰, e a proteína agregada pareceu ser mais eficiente que a forma monomérica nesta atividade⁹¹. A relevância da participação da microglia na ELA foi reforçada por estudos *in vivo* que utilizaram estratégias genéticas^{23, 92} e transplante de células⁹³. Estes achados propuseram o papel da microglia na modulação da progressão da ELA, mais do que a influência desta célula glial no início da doença.

Mais recentemente, o diálogo entre a microglia e células imunocompetentes periféricas é extensivamente investigado na ELA, mostrando efeitos benéficos e prejudiciais⁹⁴. Nesse contexto, a microglia da medula espinal mostrou-se capaz de recrutar monócitos periféricos para o SNC, processo que impactou negativamente sobre a viabilidade neuronal e sobrevivência do animal transgênico⁹⁵. Ainda, células dendríticas apresentadoras de antígenos implicadas nas respostas imunes também foram encontradas na medula espinal de pacientes e do camundongo SOD1^{G93A} durante o curso da doença⁸⁷. Células T regulatórias (TREG) CD4+CD25+ interagem com a

microglia no SNC e estimulam a secreção de citocinas anti-inflamatórias, atenuando a neuroinflamação⁹⁶. No contexto da ELA, animais duplo transgênicos que carregam a hSOD1 mutada e também deficientes em CD4+ desenvolveram fenótipo de ELA mais agressivo, o qual foi revertido por transplante de medula óssea⁵⁹. Tais evidências acerca da interação entre a neuroimunomodulação e a ativação da resposta imune descritas acima estimularam o uso CD40L na terapia da doença, uma vez que o mesmo é um ligante expresso por células T que ativa a resposta imune quando ligado pelo CD40 em células apresentadoras de antígeno. Os resultados mostraram-se promissores, uma vez que a injeção intraperitoneal do anticorpo monoclonal específico de CD40L nos camundongos SOD1^{G93A} retardou o início da doença, estendeu a sobrevida e reduziu a astrogliose e a ativação microglial⁹⁷. Estes achados sugeriram efeitos neuroprotetivos e neurotóxicos da resposta neuroimunomodulatória na ELA. Dessa forma, a proposição de uma estratégia terapêutica esbarra no desafio de suprimir a resposta neurotóxica sem interferir com a resposta neuroprotetiva⁸⁴.

Muitas substâncias com propriedades pró-inflamatórias ou relacionadas à inflamação mostraram-se aumentadas na medula espinal do camundongo transgênico antes da morte dos neurônios motores^{80, 98, 99}, e também no líquido cerebrospinal e no soro de pacientes com ELA. Destacam-se a interleucina-8 (IL-8), as proteínas do complemento e a proteína quimiotática de monócito (MCP-1 α)¹⁰⁰⁻¹⁰², e índices bioquímicos de ativação da resposta imune estão presentes no sangue¹⁰³.

A minociclina, um derivado de tetraciclina com ação inibidora da ativação microglial, foi capaz de aumentar a sobrevida do camundongo modelo da ELA¹⁰⁴, mas com efeitos pouco expressivos nos pacientes tratados pela droga¹⁰⁵. Ainda, a ciclooxigenase-2 (COX-2), que é produzida em abundância pela microglia, tal como pelos neurônios e astrócitos, estimulou a produção de citocinas pró-inflamatórias. A produção de COX-2 está aumentada na medula espinal de pacientes com ELA¹⁰⁶, o que estimulou o emprego do celecoxibe, um inibidor da COX-2, que interferiu com o início da doença e prolongou a sobrevida dos neurônios transgênicos experimentalmente¹⁰⁷, mas não clinicamente¹⁰⁸. Outras evidências da participação da microglia na ELA foram obtidas com a observação da exacerbação da sintomatologia nos camundongos SOD1 submetidos ao tratamento crônico com lipopolissacarídeo (LPS), classicamente utilizado como ativador microglial¹⁰⁹.

A Figura 1 sumariza os principais mecanismos descritos acerca da influência das células gliais sobre a morte do neurônio motor na ELA.

Estas descrições sugerem que as células gliais estão implicadas na ELA, despertando questões adicionais que precisam ser esclarecidas para o melhor entendimento da participação das células não neuronais na fisiopatologia da doença. Dentre eles, por exemplo, quais são os fatores promotores da toxicidade, quais as sinalizações celulares envolvidas e como este conhecimento pode contribuir para novas abordagens terapêuticas.

Figura 1. Esquema ilustrando os principais mecanismos descritos para as ações autócrinas e parácrinas ao neurônio motor na ELA (adaptado de Ilieva et al.¹¹⁰ e também com base em Ferraiuolo et al.¹¹¹). (A) Excitotoxicidade resultante da deficiência na remoção rápida do neurotransmissor glutamato das sinapses promovida por alteração de expressão/atividade do transportador de glutamato EAAT2 em astrócitos. (B) Estresse no retículo endoplasmático (RE) induzido por interações anormais entre a SOD1 mutada e proteínas do RE. (C) Inibição do proteassoma decorrente de super-estimulação da via de degradação proteassomal com agregados proteicos ubiquitinados capazes de danificar neurônios motores e astrócitos. (D) Disfunção mitocondrial mediada pela deposição de SOD1 mutada na membrana da mitocôndria provoca liberação do citocromo c em neurônios e estresse nitroxidativo em astrócitos. (E) Os neurônios motores e os astrócitos secretam SOD1 mutada para o meio extracelular. (F) A produção de ânion superóxido pela microglia ou astrócitos pode danificar neurônios motores. (G) Neurônios motores expressando SOD1 apresentaram transporte axonal alterado. (H) Neurônios motores também apresentam desregulação transcricional e processamento anormal de RNA. (I) Defeitos de proteassoma e estresse do retículo endoplasmático podem também levar à autofagia. (J) A perda de proteínas de junção oclusiva pelas células endoteliais resulta em rompimento da barreira hemato-encefálica com consequente ocorrência de microhemorragias na medula espinal mesmo antes do aparecimento dos sintomas. A secreção de MCP1 e outras citocinas pela microgia é outro mecanismo de toxicidade parácrina, além da liberação de fatores inflamatórios pelos astrócitos, como óxido nítrico (NO) e prostaglandina E2 (PGE2). Os astrócitos transgênicos também apresentam liberação reduzida de lactato e ativação da sinalização de morte pro-NGF-p75.

A maioria dos estudos realizados até o momento analisou a função das células neuronais e não neuronais em animais quiméricos, animais que expressam a SOD1 mutada em tipos celulares específicos, e culturas/co-culturas de células. Entretanto, tais estudos são limitados no esclarecimento da contribuição individual real de cada uma das células, especialmente o neurônio motor, o astrócito e a microglia, no seu microambiente *in vivo* na ELA.

1.5. Microdissecção a laser

A microdissecção a laser é um método que permite a obtenção de tipos celulares definidos citologicamente ou fenotipicamente de tecidos com celularidade heterogênea. A tecnologia, desenvolvida em 1996 por pesquisadores do *National Cancer Institute*, nos Estados Unidos, é versátil e permite o estudo do RNA, DNA ou proteína a partir de isolados homogêneos nas técnicas mais diversas de biologia molecular, como a reação em cadeia da polimerase (do inglês, PCR) quantitativa (qPCR), o *microarray*, o western blot e a espectrometria de massa. No sistema Palm® MicroBean (Zeiss), pulso de laser UV-A definido é acoplado ao microscópio e focado através do sistema óptico em uma região micrométrica. O feixe do laser é gerado em condições que permitem a retirada individual das células enquanto o tecido ao redor permanece intacto¹¹². A foto do sistema e a representação esquemática do processo de microdissecção estão apresentados na Figura 2.

Figura 2. (A) Sistema Palm® MicroBean (P.A.L.M. Microlaser Technologies AG, Germany) utilizado nos experimentos de microdissecção. (B) O esquema ilustra o procedimento de microdissecção. Primeiramente, as secções são imunomarcadas e imediatamente submetidas ao processo de seleção dos tipos celulares e subequente aplicação do pulso de laser UV, o qual é responsável por transferir as células de interesse para a tampa de um microtubo contendo o tampão de extração adequado. Após a microdissecção, as células são centrifugadas da tampa para o fundo do microtubo e submetidas ao protocolo de extração adequado ao tipo de material a ser avaliado (RNA, DNA ou proteína).

Métodos manuais de microdissecção tecidual existem há muitos anos e vão de processos mais rudimentares com lâmina de bisturi até métodos mais precisos, por exemplo, usando uma fina agulha de aço inoxidável presa a um micromanipulador^{113, 114}. Entretanto, estes métodos são lentos e requerem destreza considerável, levando à obtenção de amostras celulares contaminadas por células indesejadas e, consequentemente, material com menor grau de enriquecimento celular. Poucos estudos significativos usaram esta metodologia na obtenção de amostras. Desta forma, o desenvolvimento de métodos de microdissecção empregando o laser possibilitou as análises moleculares de células específicas obtidas de tecidos sólidos.

Levando-se em conta as evidências experimentais da contribuição de diferentes tipos celulares na morte do neurônio motor na ELA, a técnica de microdissecção a laser revela-se como ferramenta útil no estudo da patologia.

2. OBJETIVOS

2.1. Objetivo geral

Identificar vias moleculares envolvidas na fisiopatogenia da neurodegeneração da ELA no período pré-sintomático da doença no camundongo transgênico SOD1^{G93A}.

2.2. Objetivos específicos

1. Determinar o período pré-sintimático da doença no modelo do camundongo transgênico SOD1^{G93A} e eleger duas idades para os estudos moleculares subsequentes, sendo um próximo ao início dos sintomas e outro distante deste, empregando testes comportamentais específicos.

2. Determinar o perfil de expressão gênica da porção lombar da medula espinal dos animais do modelo nas idades pré-sintomáticas, empregando plataforma de *microarray* contendo o genoma completo do camundongo.

3. Descrever as vias de sinalização reguladas nas idades pré-sintomáticas a partir do padrão de expressão gênica observado, empregando ferramentas bioinformáticas específicas e eleger as vias a serem detalhadas no estudo.

 Avaliar transcritos das vias selecionadas em amostras enriquecidas de tipos celulares específicos obtidas por microdissecção a laser da medula espinal do modelo animal.

3. MATERIAIS E MÉTODOS

O projeto, ao qual o presente trabalho é vinculado, foi submetido e aprovado pela Comissão de Ética e de Biossegurança em Organismos Geneticamente Modificados da Faculdade de Medicina/Hospital das Clínicas da Universidade de São Paulo (0113/08). Cópia do aceite está apresentada no ANEXO A deste trabalho.

3.1. Modelo animal da ELA

Camundongos transgênicos B6SJL-TgN(SOD1-G93A)1 Gur que expressam o gene da hSOD1 mutada, originalmente produzidos por Gurney e colaboradores¹⁵, foram obtidos do Laboratório Jackson (Bar Harbor, ME, USA). Estes animais são largamente utilizados como modelo experimental para o estudo da ELA¹¹⁵.

3.2. Colônias de animais

A colônia de camundongos transgênicos (SOD1^{G93A}) foi implantada no Biotério Central da Faculdade de Medicina da Universidade de São Paulo (FMUSP). A reprodução e o alojamento dos animais são feitos em ambiente *specific pathogen free* (*spf*) para garantir a estabilidade das colônias e o controle sobre a reprodução. Esta parte dos experimentos foi realizada por técnicos especializados do Biotério Central da FMUSP e supervisionado por pesquisador da Instituição.

O regime *spf* compreende gaiolas ventiladas com filtros especiais, bem como a manipulação dos camundongos e suas proles em ambiente estéril dentro da câmara de fluxo laminar. Temperatura ambiente controlada entre 21 e 22 °C, umidade do ar em torno de 55 % e iluminação sob ciclo claro/escuro de 24 horas, sendo cada fase do ciclo de 12 horas, foram itens que também receberam atenção. A ração, a água e a maravalha foram autoclavadas antes da utilização. Para garantir a não contaminação da colônia por agentes patogênicos, os animais foram periodicamente submetidos a controles bacteriológico e parasitológico segundo a rotina *spf* estabelecida no Biotério da FMUSP.

Os cruzamentos foram sempre realizados entre machos heterozigotos G93A e fêmeas da linhagem B6/SJL-F1 com o intuito de gerar uma prole aproximadamente 50 % heterozigota G93A (transgênica) e 50 % não transgênica (selvagens), segundo orientações do Laboratório Jackson que forneceu os machos para o início das colônias. As melhores condições controle e experimentais foram obtidas com este desenho de reprodução. As proles foram mantidas com suas respectivas matrizes até 20 dias de idade, após este período, os animais foram separados por sexo e depois separados pelo genótipo. Os animais transgênicos foram utilizados como experimentais e os selvagens como controles.

3.3. Genotipagem dos camundongos

A identificação dos camundongos como transgênicos ou selvagens utilizados para a manutenção das colônias ou nos procedimentos experimentais foi realizada através da genotipagem. O primeiro passo constituiu-se na extração de amostras de DNA de cada um dos animais a partir de pequeno fragmento da cauda.

O procedimento da extração de DNA foi realizado de acordo com o protocolo descrito a seguir. Volume de 500 µl de tampão contendo 1 mg/ml proteinase K, 20 mM TrisHCl (pH 8,0), 10 mM NaCl, 30 mM EDTA (pH8,0) e 0,5 % SDS foram adicionados a cada tubo contendo as amostras individuais das caudas dos animais. As amostras em solução foram incubadas à 55 °C sob agitação de 1.400 rpm durante 1 hora e centrifugadas à 14.000 rpm por 10 minutos. Os sobrenadantes foram transferidos para outros tubos para a precipitação com 500 µl de isopropanol gelado. As amostras foram novamente centrifugadas à 14.000 rpm por 2 minutos e os sobrenadantes desprezados. Os precipitados foram lavados a seguir por 2 vezes com 500 µl de etanol 70 %. Após a centrifugação final de 14.000 rpm por 5 minutos, os sobrenadantes foram descartados e os precipitados deixados para secar com os tubos em posição invertida. Após a secagem do precipitado de DNA, cada amostra foi eluída em 200 µl de tampão TE, composto por 10 mM Tris-HCl (pH 7,4), 1 mM EDTA e água deionizada livre de nucleotídeos. As amostras de DNA foram armazenadas à 4 °C até realização da PCR e determinação do genótipo.

Os seguintes iniciadores IMR113 (5'-ATCAGCCCTAATCCATCTGA-3') e IMR114 (5'-CGCGACTAACAATCAAAGTGA-3') foram utilizados para amplificação do fragmento da hSOD1 mutada enquanto que IMR042 (5'-CTAGGCCACAGAA TTGAAAGATCT-3') e IMR043 (5'-GTAGGTGGAAATTCTAGCATCATCC-3') foram utilizados para amplificação de um fragmento da interleucina-2 de murino como controle positivo, como descrito anteriormente¹¹⁶. Estes iniciadores foram descritos no protocolo do Laboratório Jackson (<u>http://jaxmice.jax.org/pub-</u> cgi/protocols/protocols.sh?objtype=protocol&protocol_id=523). A reação de PCR foi composta por 1X PCR Master Mix (Fermentas Life Sciences), 500 nM de cada iniciador, 50 ng de DNA e água livre de nucleotídeos para o volume final de 25 µl. A ciclagem compreendeu o período inicial de 3 minutos à 95 °C, seguidos por 35 ciclos de 95 °C por 30 segundos, 60 °C por 30 segundos e 72 °C por 45 segundos, seguidos pelo período de 2 minutos à 72 °C e resfriamento posterior até a temperatura de 10 °C.

Os produtos das PCRs foram visualizados sob exposição à luz ultravioleta após eletroforese em gel de agarose 1 % contendo brometo de etídeo e fotografados para documentação. Os resultados obtidos estão ilustrados na Figura 3, esta correspondente à genotipagem de uma das ninhadas.

Figura 3. Figura ilustra o resultado da PCR para a determinação dos genótipos, transgênico (SOD1) e selvagem (Wild-Type, WT) para a enzima superóxido dismutase 1 humana mutada (hSOD1m) das proles da colônia de camundongos estabelecidas em nosso biotério. A banda de 324pb corresponde à interleucina-2, enquanto que a banda de 236pb corresponde à hSOD1m. O marcador de peso molecular está representado por M.

3.4. Estadiamento clínico no modelo animal

Os testes descritos abaixo foram aplicados em 15 machos transgênicos e o mesmo número de animais selvagens.

3.4.1. Avaliação da condição geral e peso corporal

A condição geral foi avaliada semanalmente pela pontuação neurológica, iniciando-se nos animais com 20 dias de vida (P20) e realizada por inspeção visual. A pontuação neurológica foi baseada na escala descrita originalmente por Gurney¹⁵ e modificada por outros grupos¹¹⁷. A pontuação de 0 a 5 foi definida conforme a Tabela 1.
O acesso à água e à comida pelos animais foi facilitado com a colocação da ração no chão da gaiola assim que os mesmos atingiam a pontuação 4. Os animais foram submetidos à eutanásia ao apresentaram a pontuação 5 por razões éticas.

Ainda, os animais foram pesados após P20 com uma balança digital normal. Os procedimentos de registro de massa corporal foram realizados entre 11 e 14 hs para evitar variações diurnas.

Tabela 1. Pontuações e seus respectivos sintomas utilizados na avaliação da condição geral das colônias G93A e selvagem.

Pontuação	Sintomas
0	Animal saudável sem sintomas clássicos de ELA
1	Presença de tremores nas patas traseiras
2	Dificuldade em separar as patas traseiras quando suspenso pela cauda
3	Dificuldade de andar ou andar tropeçando ou cambaleando
4	Incapacidade de andar apoiado sobre as quatro patas, ou seja, arrastando as patas traseiras
5	Incapacidade de desvirar em 30 segundos quando colocado em decúbito dorsal

3.4.2 Rotarod, hangwire e plano inclinado

A progressão da doença nos animais foi avaliada através dos testes *rotarod*, *hangwire* e plano inclinado, os quais permitiram acessar a força muscular e a coordenação motora.

As funções motoras foram analizadas semanalmente no *rotarod*, a partir de P20. Os animais foram treinados no aparelho durante 3 dias antes do início dos testes e da coleta de resultados. Durante a realização dos experimentos, 3 tentativas foram permitidas para cada animal e o período máximo que ele pôde permanecer sobre o eixo de 3,5 cm de diâmetro em rotação de 15 rpm foi mensurado. O teste foi interrompido após o tempo limite de 180 segundos, este escolhido arbitrariamente.

O teste do *hangwire* começou também em P20 e foi realizado semanalmente, porém no dia anterior ao teste do *rotarod*. Os animais foram colocados sobre a grade convencional da gaiola-moradia. A grade era então lentamente virada de cabeça para baixo, 50 cm acima de uma superfície coberta com maravalha, a fim de evitar lesões aos animais durante a queda. A latência de queda foi registrada. Três tentativas foram permitidas a cada camundongo e o tempo máximo que cada animal conseguiu permanecer suspenso pelas patas foi anotado, de forma que o tempo máximo de medição foi de 180 segundos.

O aparato do plano inclinado consistiu da superfície inclinável presa à base por dobradiças afixadas em um de seus lados. A superfície em questão era posicionada no ângulo de 0 ° no início do teste, ou seja, paralela à base. Os animais foram colocados sobre a superfície com a cabeça voltada para a extremidade da dobradiça. O ângulo entre a superfície e a base era então aumentado sob velocidade constante e o valor máximo que os animais conseguiam permanecer sobre a superfície foi registrado. Os animais começaram a ser avaliados por este teste em P20, assim como nos demais testes.

3.4.3. Análise estatística do estadiamento clínico e do comportamento motor

Os resultados da sobrevida, em dias, foram analisados pelo teste de Kaplan-Meier. Os demais testes do comportamento motor foram submetidos à análise de variância de duas vias (Two Way-ANOVA) seguida pelo pós-teste de Bonferroni. Nos casos em que os animais precisaram ser sacrificados antes da data final da coleta de dados, por atingirem a pontuação 5, seus valores foram preenchidos com a média das medidas dos demais camundongos do mesmo grupo no período¹¹⁸. Todas as análises estatísticas deste trabalho, incluindo aquelas dos experimentos de qPCR apresentados adiante, foram realizadas utilizando o programa GraphPad Prism versão 5,0 (GraphPad Software Inc., San Diego, CA). Os dados estão apresentados como a média \pm erro padrão e o nível de significância foi determinado como p < 0,05.

3.5. Coleta do material e realização dos experimentos do microarray

As idades pré-sintomáticas de 40 e 80 dias foram escolhidas para a realização dos experimentos do *microarray* com objetivo de identificar as sinalizações iniciais que pudessem ser responsáveis por desencadear a morte do neurônio motor. Para isso, a porção lombar da medula espinal dos animais trangênicos das duas idades e de seus respectivos controles (n=5 para cada grupo) foi retirada e imediatamente congelada em gelo seco para evitar degradação excessiva do RNA. Kit específico foi utilizando na extração do RNA total de acordo com o protocolo do fabricante (Minispin kit for RNA extraction, GE Life Sciences). Os RNAs foram quantificados no NanoDrop 1000 (Thermo Scientific) e tiveram sua qualidade acessada pelo RNA 6000 Nano Bioanalyzer (Agilent Tecnologies). As amostras apresentaram qualidades de RNA com

o número de integridade maior do que 7, índice este que permitiu a utilização delas nos experimentos.

O protocolo do experimento do *microarray* foi seguido de acordo com as recomendações do fabricante, estas descritas brevemente abaixo. Os procedimentos experimentais do *microarray* foram realizados no Centro Internacional de Pesquisa e Ensino (CIPE) do Hospital AC Camargo em colaboração com a equipe da pesquisadora Dr^a Dirce Maria Carraro e supervisão do Dr Alex Fiorini Carvalho.

3.5.1. Desenho experimental

A hibridização competitiva foi utilizada neste estudo. Nesse caso, utilizou-se a amostra referência, que era comum a todas as hibridizações e marcada com molécula fluorescente distinta daquela empregada nas amostras experimentais. As amostras experimentais e a referência marcadas foram então misturadas e hibridizadas nos *arrays* individuais para cada animal em uma mesma lâmina. Os valores de fluorescência obtidos revelaram níveis relativos da expressão de cada transcrito na amostra experimental comparada com a amostra referência já que, conforme dito anteriormente, a hibridização realizada foi do tipo competitiva. Dessa forma, o uso da amostra referência permitiu normalização mais eficaz entre os diferentes *arrays*¹¹⁹.

3.5.2. Preparação dos Spikes

Primeiramente, os *spikes* A e B foram preparados por diluição seriada. O estoque foi diluído 20 vezes, seguido de diluição subsequente de 40 vezes e esta última solução foi então diluída 4 vezes para que se chegasse à solução de uso. Os *spikes* são necessários para as análises do controle de qualidade das hibridizações e, consequentemente, dos resultados obtidos, uma vez que eles devem ser marcados e hibridizados da mesma forma que as amostras.

3.5.3. Preparação da reação de marcação

Quantidades de 250 ng do RNA total das amostras e 500 ng do RNA total da referência foram utilizadas nas reações. A referência foi composta pela mistura do RNA extraído dos órgãos rim, pulmão, coração e fígado, em conjunto, de camundongos neonatos transgênicos e selvagens. A referência foi utilizada para aumentar a robustez da análise bioinformática subsequente, bem como, caso fosse necessário, aumentar o

número de amostras experimentais. As amostras foram então misturadas ao *spike* A prédiluído e a referência foi misturada ao *spike* B pré-diluído antes de proceder com a marcação. Após esta etapa, a reação de transcrição reversa foi realizada utilizando-se o iniciador do promotor T7, a se anelar na cauda poliA do RNA mensageiro, AffinityScript Rnase Block mix e os demais constituintes básicos da reação de transcrição reversa como dNTPs, o tampão da enzima e ditiotreitol (DTT). A reação foi incubada à 40 °C durante 2 horas em termociclador, seguida da incubação à 70 °C durante 15 minutos, tempo de incubação este necessário para a desnaturação das enzimas.

A transcrição *in vitro* foi realizada em seguida utilizando-se a enzima T7-RNA polimerase, os NTPs, o DTT e os fluoróforos cianina 3 (Cy3 – amostras experimentais) ou a cianina 5 (Cy5 – referência). Esta reação foi incubada à 40 °C durante 2 horas e permitiu que as amostras fossem marcadas com os fluoróforos. Uma vez marcadas, as amostras de RNA complementar (cRNA) foram purificadas utilizando-se o protocolo do Mini spin kit (GE Life Sciences) e quantificadas para eficiência de incorporação do fluoróforo em NanoDrop 1000. Os valores obtidos foram submetidos a cálculos matemáticos específicos, necessários para avaliação da eficiência da incorporação do fluoróforo, conforme as equações I e II abaixo.

4. $\frac{(Concentração de cRNA) x 30\mu l (volume de eluição)}{1000} = \mu g de cRNA$

A equação I foi utilizada na determinação da quantidade de cRNA em µg.

II)
$$\frac{Concentração de Cy3 (ou Cy5)}{Concentração de cRNA em \mu g} x 1000 = pmol Cy3 (ou Cy5) por \mu g de cRNA$$

A equação II foi utilizada na determinação da quantidade de fluoróforo incorporada, ou seja, a eficiência da marcação do cRNA (atividade específica).

Tanto as quantificações quanto a atividade específica das amostras e da referência se apresentaram dentro dos parâmetros recomendados de hibridização eficiente.

3.5.4. Hibridização

As amostras marcadas foram submetidas à fragmentação de acordo com o protocolo do fabricante. Após, o tampão de hibridização foi adicionado e esta reação foi depositada sobre a lâmina contendo o genoma total do camundongo (4x44k – G4122F – Agilent Technologies), e o aparato de vedação adequado foi utilizado para que a contaminação entre os *arrays* fosse evitada. As lâminas foram incubadas à 65 °C durante 17 horas. As amostras foram distribuídas de forma que cada lâmina contivesse ao menos um representante de cada grupo.

3.5.5. Lavagens das lâminas e obtenção dos resultados

As lâminas foram lavadas sequencialmente com as soluções de lavagem 1 e 2 e, na sequência, com a solução de secagem (Agilent Technologies). As lâminas foram escaneadas imediatamente e os dados foram extraídos utilizando-se o programa *Feature Extraction versão 9,5,3,1* (Agilent Technologies). Os dados obtidos foram submetidos ao controle de qualidade por comparação com padrões e controles internos da própria lâmina conforme as recomendações do fabricante. Os arquivos de controle de qualidade de hibridização gerados por este programa permitiram que os *arrays* problemáticos fossem detectados, o que pôde ser percebido pelos valores dos coeficientes de variação entre sondas replicadas. Uma vez que, para algumas sondas, cópias idênticas de sequência são distribuídas pela lâmina. Esperava-se que o sinal obtido em determinada amostra não variasse muito entre estas cópias, desta forma, *arrays* que apresentaram coeficiente de variação elevado entre as sondas replicadas foram considerados de baixa qualidade e, portanto, retirados da análise.

3.5.6. Pré-análise dos dados e análise estatística para identificação dos genes diferencialmente expressos

Os dados obtidos a partir do Feature Extraction foram analisados com os pacotes *Agi4x44PreProcess* e *limma* do Bioconductor utilizando-se o software *R*. O pacote *Agi4x44PreProcess* foi desenvolvido para pré-processamento dos dados de *array* de expressão gênica das lâminas da Agilent no formato 4x44k em ambiente *R* (<u>http://www.bioconductor.org/packages/release/bioc/manuals/Agi4x44PreProcess/man/Agi4x44PreProcess.pdf</u>). As etapas de pré-processamento implementadas no pacote foram a correção de *background* e a normalização entre as amostras, a filtragem de sondas por qualidade, a sumarização de sondas replicadas e a criação da matriz de expressão com os dados processados. Esta matriz de expressão pôde então ser analisada por modelos lineares. O ajuste de background foi uma etapa essencial porque parte das intensidades das fluorescências medidas são decorrentes de hibridização não específica e ruído no sistema óptico de detecção. As intensidades observadas precisaram ser ajustadas para dar medidas acuradas de hibridizações específicas. O método normexp, o qual foi desenvolvido para produzir intensidades corrigidas positivas, foi utilizado para esta função¹²⁰. O background foi corrigido e os dados foram normalizados para que as variáveis que pudessem influenciar a análise fossem controladas. Isso inclui diferentes eficiências de transcrição reversa, marcação, reações de hibridação, problemas físicos nos arrays, efeitos de lote de reagentes e condições experimentais. O método quantile foi utilizado nesta etapa¹²¹. Os dados foram então filtrados e transcritos cujos sinais não se destacaram do background, apresentaram-se saturados e/ou não apresentaram padrão de marcação uniforme foram retirados da análise. Os dados filtrados foram sumarizados, ou seja, as médias dos valores obtidos para as sondas replicadas foram calculdas, para obtensão da matriz de expressão definitiva.

A matriz de expressão foi submetida ao modelo de regressão linear seguido de teste t moderado Bayes utilizando-se o pacote *limma*¹²¹. Transcritos com valor de p menor do que 0,05 foram aceitos como diferencialmente expressos e utilizados nas análises subsequentes. O código completo criado para estas análises está apresentado no ANEXO B.

Os resultados foram enviados para o repositório GEO sob número de acesso GSE50642.

3.5.7. Análises enriquecidas pelo FunNet

A interface bioinformática disponível na internet *Functional Analysis of Transcriptional Networks* (FunNet) foi utilizada na identificação das vias e dos processos biológicos super-representados de acordo com as bases de dados *Kyoto Encyclopedia of Genes and Genomes* (KEGG) e *Gene Ontology* (GO)¹²². Para isso, as listas de genes diferencialmente expressos (p < 0,05) apontadas para as análises de 40 e 80 dias, estas continham os valores de expressão para cada amostra obtidos a partir da matriz de expressão normalizada, foram separadas de acordo com a regulação dos genes. Deste modo, listas diferentes de genes super-expressos e subexpressos para cada idade foram obtidas.

Esta ferramenta, além de permitir a organização dos genes apontados como diferencialmente expressos em vias e processos biológicos super-representados, também aplicou algoritmos específicos que permitiram a sugestão matemática de vias mais significativas dentro de cada análise com base nas medidas de centralidade topológicas das redes de co-expressão dos transcritos que as compõem¹²³. O método de Pearson foi utilizado para os cálculos que permitiram a construção da rede de co-expressão entre as vias super-representadas para as idades de 40 e 80 dias com base nos valores de expressão normalizada dos seus transcritos.

3.6. Validação dos resultados do microarray por qPCR

3.6.1. Reações de transcrição reversa

As reações de transcrição reversa foram realizadas a partir de um segundo lote de amostras de RNA obtidas da porção lombar da medula espinal de animais transgênicos e selvagens de ambas as idades (40 e 80 dias). Amostras independentes àquelas do *microarray* foram utilizadas para assegurar a confiabilidade dos resultados (n=6). Assim, 1.000 ng de RNA total foram submetidos à reação de transcrição reversa utilizando-se o kit RT-transcription reagents (Applied Biosystems), o qual utiliza a enzima Multriscribe como transcriptase, como recomendado pelo fabricante. A reação foi incubada no termociclador por 10 minutos à 25 °C, seguidos de 30 minutos à 42 °C, e etapa final subsequente de 5 minutos à 70 °C para inativação da enzima. O cDNA foi armazenado à -20 °C até a utilização nos experimentos de qPCR.

3.6.2. PCR quantitativa

I- Padronização das Reações para qPCR SYBR

As reações de qPCR foram realizadas no aparelho PikoReal Real-Time PCR System (Thermo Scientific) no volume final de 20 μ l, e continham 1X Dynamo Color Flash SYBR Green qPCR kit (Thermo Scientific), 400 nM de oligonucleotídeos e 60 ng de cDNA. As sequências dos iniciadores escolhidos para validação estão apresentadas na Tabela 2. Os transcritos foram escolhidos por apresentarem valores de *Fold* maiores em comparação aos demais e possível participação dos seus produtos nos mecanismos da doença¹²⁴⁻¹²⁸.

As reações foram realizadas nas condições de ciclagem recomendadas pelo fabricante que, resumidamente, compreenderam 7 minutos à 95 °C, para a ativação da enzima *Tbr* DNA Polymerase modificada, seguidos de 45 ciclos de desnaturação à 95 °C durante 10 segundos e 30 segundos à 60 °C, para o pareamento dos iniciadores e extensão. Etapa de 20 minutos de duração foi adicionada ao final da amplificação, na qual a temperatura aumentou gradualmente de 60 °C para 98 °C a 0,3 °C por segundo com a contínua aquisição da fluorescência¹²⁹, a partir da qual se obteve uma curva de dissociação. Assim, a presença de um pico único confirmou a especificidade da amplificação. As reações foram realizadas em placas de 96 poços com qualidade óptica.

O nível de fluorescência emitida aumenta gradualmente, uma vez que a cada ciclo da reação novas moléculas de fita dupla são formadas, sendo que, o ciclo no qual a fluorescência atinge um determinado limite é inversamente proporcional ao nível de expressão do transcrito analisado¹²⁹. O parâmetro utilizado foi o Ct (*Cycle Threshold* ou ciclo limite), uma linha aleatória fixa na região exponencial das reações e usada na determinação do ciclo em que cada reação atinge o máximo de sua eficiência¹³⁰. O uso de uma amostra comum utilizada em todas as placas foi importante nos casos em que houve necessidade de repetições de reações cujas duplicatas eventualmente apresentaram desvio padrão maior do que 0,5.

Os oligonucleotídeos foram selecionados utilizando-se a ferramenta disponível na internet <u>http://www.idtdna.com/scitools/Applications/RealTimePCR/</u>, a qual forneceu as sequências dos iniciadores e também as temperaturas de anelamento e tamanhos dos fragmentos. A especificidade das sequências foi verificada utilizando-se o BLAST (<u>http://blast.ncbi.nlm.nih.gov/Blast.cgi</u>).

Diferentes concentrações (400 nM, 800 nM e 1000 nM) foram testadas para cada par de oligonucleotídeos, de forma que as quantidades ideais foram padronizadas individualmente. Considerou-se a utilização da menor concentração de oligonucleotídeos capaz de fornecer menores valores de Ct, a fim de evitar a formação de estruturas secundárias.

A eficiência para cada par de oligonucleotídeos foi então calculada usando cinco diluições seriadas de cDNA convertido de RNA total (100 ng, 20 ng, 4 ng, 0,8 ng e 0,16 ng). A curva foi então gerada em logaritmo de base 10 dos resultados dos Cts obtidos

para cada concentração de cDNA e o software calcula as eficiências de cada par de iniciadores. Para isso, o valor correspondente ao coeficiente angular (*slope*) da equação da curva padrão (y = ax + b, a = slope) foi utilizado para cálculo da eficiência da reação através da seguinte equação:

$$Ef = 10^{\left(-\frac{1}{slope}\right)} - 1$$

Todos os primers apresentaram eficiência entre 100 ± 5 %.

Gene ID	Sequências dos iniciadores (5'-3')	Fragmento (pb)
40 dias		
Glg1	A: GAGTGAGATTGCAGCCAGAG	143
-	R: CAGGATGTAGTTCTTTGAGGGAG	
Aqp4	A: GCTCGATCTTTTGGACCCG	112
	R: AGACATACTCATAAAGGGCACC	
Calca	A: TGCAGATGAAAGCCAGGG	149
	R: CTTCACCACACCTCCTGATC	
Gria3	A: GTGCAGTTATACAACACCAACCA	113
	R: GAGCAGAAAGCATTAGTCACAGA	
80 dias		
Eef2	A: CATGTTTGTGGTCAAGGCATAC	141
U U	R: TTGTCAAAAGGATCCCCAGG	
Nsg1	A: AAGTGTACAAGTATGACCGCG	128
0	R: GACAGTGTAAAATTTCTCCCGG	
Svt10	A: AGACCATTGGAACGAGATGC	148
	R: TGGAGGCTTTTATGGTGTGG	
Normaliza	dor	
Gapdh	A: GAGTAAGAAACCCTGGACCAC	109
*	R: TCTGGGATGGAAATTGTGAGG	

Tabela 2. Sequências dos oligonucleotídeos utilizados nos experimentos de validação do *microarray* e seus respectivos tamanhos de amplificados.

A expressão diferencial dos transcritos alvo foi determinada pela quantificação relativa em relação ao *Gapdh*, uma vez que o experimento do *microarray* não apontou nenhuma expressão diferencial entre transgênicos e selvagens para este transcrito nas duas idades analisadas. O modelo matemático $\Delta\Delta$ Ct foi utilizado para os cálculos das medidas relativas de expressão para este e para os demais experimentos de qPCR descritos adiante (ABI PRISM 7700 Sequence Detection System protocol; Applied Biosystems).

II. Reações utilizando-se o método Taqman

As reações foram realizadas no aparelho StepOnePlus[™] Real-Time PCR System (Applied Biosystems). Os ensaios Taqman são inventoriados pela empresa Applied Biosystems e contam com eficiência de 100 %. O transcrito *Ube2i* (Mm04243971_g1) foi escolhido para ser avaliado nas amostras de animais 80 dias. O transcrito *Gapdh* (Mm99999915_g1) foi utilizado como controle endógeno.

As reações seguiram conforme recomendações do fabricante, foram usados 1X TaqMan® Universal PCR Master Mix (Applied biosystems), 1X ensaio a ser avaliado e 60 ng cDNA. As reações foram realizadas nas condições universais de ciclagem que consiste em 2 minutos à 50 °C, seguidos de 10 minutos à 95 °C para a ativação da enzima AmpliTaq Gold® DNA polymerase, seguidos de 50 ciclos de desnaturação à 95 °C durante 15 segundos e 1 minuto à 60 °C para o pareamento dos iniciadores e sonda e extensão. As reações foram realizadas em placas de 96 poços (Fast MicroAmp® Optical, Applied Biosystems).

A expressão diferencial dos transcritos alvo foi determinada pela quantificação relativa em relação à média de *Gapdh*, uma vez que o experimento do *microarray* não apontou nenhuma expressão diferencial entre os animais transgênicos e selvagens para este transcrito nas duas idades analisadas, conforme descrito acima.

3.6.3 Análise estatística para as validações

Os dados gerados pelas análises do qPCR para os camundongos transgênicos de ambas as idades e seus respectivos controles foram comparados pelo teste-t de Student unilateral. O critério para que os transcritos fossem considerados diferencialmente expressos entre os grupos foi valor de p < 0,05 para cada um deles.

3.7. Microdissecção a laser dos tipos celulares de interesse

A porção lombar da medula espinal dos animais transgênicos e selvagens com 40 dias de idade foi congelada com meio de congelamento em isopentano à -45 °C e armazenada à -80 °C até a utilização. Secções de 5 µm foram montadas em lâminas préesterilizadas por incubação à 180 °C durante 8 horas em forno próprio. Cada lâmina foi montada de forma a conter secções de um único animal (3 a 5 animais por grupo). As lâminas foram armazenadas em -80 °C até o momento do uso. O aparelho utilizado nas microdissecções faz parte do núcleo de multiusuários da FMUSP, sob responsabilidade do Prof. Chin Jia Lin, no laboratório de Patologia Molecular (LIM-22).

3.7.1. Processamento tecidual para microdissecção a laser de astrócitos de 40 dias

As secções foram marcadas com anticorpo anti-glial fibrillary acidic protein (GFAP). Resumidamente, as secções foram fixadas em acetona gelada durante 2 minutos, posteriormente incubadas com solução triton 3 % durante 3 minutos e, logo após, lavadas brevemente em solução salina tamponada (do inglês, PBS). Então, o anticorpo primário anti-GFAP feito em coelho (Dako) foi diluído em solução triton 0,3 % acrescida de albumina bovina 1 % e incubado na concentração de 1:50 durante 3 minutos. O anticorpo foi retirado após 3 lavagens com PBS durante 15 segundos cada. O anticorpo secundário fluorescente anti-coelho feito em cabra conjugado ao Texas red, foi incubado também na concentração de 1:50, utilizando-se o mesmo diluente que o primário, durante 3 minutos. Após lavagem das lâminas em PBS para a retirada do excesso do anticorpo, as mesmas passaram por período breve de secagem antes da sua visualização no microscópio.

As secções foram então observadas no microscópio do microdissector (PALM MicroBeam, Zeiss) para seleção dos astrócitos marcados. Aproximadamente 150 astrócitos foram selecionados e coletados por lâmina. Os parâmetros utilizados no laser foram 89 µJ para a energia da UV e 67 µJ para foco da UV. Estes parâmetros foram sempre os mesmos para os demais tipos celulares descritos abaixo, uma vez que são dependentes do tipo de tecido e espessura da secção.

3.7.2. Processamento tecidual para microdissecção a laser de neurônios motores de 40 e 80 dias

As secções foram marcadas com anticorpo anti-*Choline Acetyltranferase* (ChAT). Resumidamente, as secções foram fixadas em acetona gelada durante 2 minutos, posterimormente incubadas com solução triton 3 % durante 3 minutos e logo após lavadas brevemente com PBS. Então, o anticorpo primário anti-ChAT feito em cabra (Abcam) foi diluído em solução de triton 0,3 % acrescida de albumina bovina 1 %, inibidor de RNAse 0,1 U/µl e DTT 1 mM e incubado na concentração de 1:100 *over night* à 4 °C. O anticorpo foi retirado após 3 lavagens com PBS durante 15 segundos cada. O anticorpo secundário fluorescente anti-cabra conjugado ao Alexa 594 (Invitrogen), foi incubado no mesmo diluente que o primário, na concentração de 1:200, durante uma hora em temperatura ambiente. Após lavagem das lâminas em PBS para retirada do excesso de anticorpo, as mesmas passaram por período breve de secagem antes da sua visualização no microscópio. As secções foram então observadas no microscópio do microdissector para seleção dos neurônios motores marcados. Aproximadamente 100 neurônios motores foram selecionados e coletados por lâmina.

3.7.3. Processamento tecidual para microdissecção a laser de microglias de 80 dias

As secções foram fixadas em acetona gelada durante 2 minutos, posterimormente incubadas com solução triton 3 % durante 3 minutos e logo após lavadas brevemente com PBS. Então, o anticorpo primário anti-Iba1 feito em coelho (Wako) foi diluído em solução de triton 0,3 % acrescida de albumina bovina 1 %, inibidor de RNAse 0,1 U/µl e DTT 1 mM e incubado na concentração de 1:100 *over night* à 4 °C. O anticorpo foi retirado por lavagem com PBS durante 15 segundos por 3 vezes. O anticorpo secundário fluorescente anti-coelho feito em cabra conjugado ao Texas red foi incubado no mesmo diluente que o primário, na concentração de 1:50, durante uma hora em temperatura ambiente. Após lavagem das lâminas em PBS para a retirada do excesso do anticorpo, as mesmas passaram por período breve de secagem antes da sua visualização no microscópio. As secções foram então observadas no microscópio do microdissector para seleção das microglias marcadas. Aproximadamente 30 microglias foram selecionadas e coletadas por lâmina.

3.7.4. Extração e amplificação do RNA

Após a coleta das células descrita acima, o RNA foi extraído com o kit PicoPure RNA isolation (Arcturus) de acordo com recomendações do fabricante. Imediatamente após a extração, o RNA foi submetido ao protocolo de amplificação utilizando-se o kit RiboAmpHS^{plus} (Arcturus) na tentativa de minimizar possíveis degradações decorrentes da armazenagem. O protocolo usado para amplificação baseia-se na amplificação guiada pela T7-RNA polimerase e promotor T7^{131, 132}. Resumidamente, o cDNA foi sintetizado a partir do RNA total, utilizando-se oligonucleotídeos que ancoram na cauda poli-A dos RNA mensageiros e possuem sítio para T7 RNA Polimerase. Este cDNA foi submetido à transcrição *in vitro* em dois ciclos de amplificação para produção exponencial de RNA. O RNA amplificado (RNAa) foi quantificado pelo NanoDrop 1000 e a qualidade da amplificação foi avaliada com o kit Pico6000 Bioanalyzer conforme descrito anteriormente.

3.7.5. Reação de transcrição reversa e caracterização do tipo celular coletado

Quantidade de 1 µg de RNAa foi utilizado nas reações de transcrição reversa. O kit RT-transcription reagents (Applied Biosystems Life Technologies) foi utilizado com protocolo modificado do original para aumentar a eficiência da transcrição. Assim, o iniciador Oligo(dT)16 foi adicionado às amostras e esta solução foi incubada à 70 °C durante 5 minutos, então, os demais reagentes necessários, como o tampão de reação, MgCl₂, dNTPs, inibidor de RNAse, nas mesmas concentrações recomendadas pelo fabricante, e 156,25 U de transcriptase reversa, foram adicionados e a reação foi incubada à 37 °C por 60 minutos, seguidos de 95 °C por 5 minutos.

Os cDNAs das amostras enriquecidas dos 3 tipos celulares foram submetidos à PCRs para certificação da pureza celular. Os iniciadores utilizados na avaliação da presença de neurônios motores, astrócitos e microglias, respectivamente o *Chat*, o *Gfap* e o *Cd68*, estão apresentados na Tabela 3. As reações foram preparadas para o volume final de 20 µl, utilizando a enzima GoTaq Flexi DNA Polymerase (Promega), de acordo com as recomendações do fabricante, e 500 nM de cada iniciador. O protocolo das PCRs consistiu-se na incubação à 95 °C por 5 minutos, seguidos por 35 ciclos de 95 °C por 30 segundos, 30 segundos à 60 °C, 72 °C por 45 segundos, finalizando com 72 °C por 7 minutos.

Tabela 3. Sequência dos iniciadores para a avaliação do enriquecimento celular das amostras submetidas à microdissecção a laser.

Gene	Iniciador de avanço 5'-3'	Iniciador de retrocesso 5'-3'	Fragmento (pb)
Chat	CAAATAAGTCATAAAGGCAGAGGC	CTCAAGGAAGACTGTGCTATGG	140
Gfap	CAGACTTTCTCCAACCTCCAG	CTCCTGCTTCGAGTCCTTAATG	138
Cd68	ACTTCGGGCCATGTTTCTC	TGGTAGGTTGATTGTCGTCTG	136

Os produtos das PCRs foram submetidos à eletroforese em gel de agarose 3 % contendo brometo de etídeo e visualizados sob exposição à luz UV.

3.7.6. qPCR nas células microdissecadas

As reações foram realizadas no aparelho PikoReal Real-Time PCR System (Thermo Scientific) no volume final de 20 µl de solução contendo o Maxima SYBR Green qPCR Master Mix 1X (Thermo Scientific), 800 nM de oligonucleotídeos e 12 ng de cDNA. As sequências de oligonucleotídeos utilizadas nos experimentos e em quais tipos celulares os transcritos foram avaliados estão apresentados na Tabela 4.

As reações foram realizadas nas condições de ciclagem recomendadas pelo fabricante, as quais consistiram de 10 minutos à 95 °C para a ativação da enzima Maxima® Hot Start Taq DNA Polymerase, seguidos de 50 ciclos de desnaturação à 95 °C durante 15 segundos e um minuto à 60 °C para o pareamento dos iniciadores e extensão. Os critérios de controle de qualidade das reações foram descritos anteriormente para o método SYBR.

O cDNA proveniente dos astrócitos microdissecados foi avaliado também para o gene *Ube2i* (Mm04243971_g1) por PCR quantitativa. *Gapdh* (Mm999999915_g1) foi utilizado como controle endógeno. As reações foram realizadas no aparelho StepOnePlus[™] Real-Time PCR System (Applied Biosystems).

As reações seguiram conforme recomendações do fabricante, nas quais foram usados 1X TaqMan® Universal PCR Master Mix (Applied biosystems), 1X ensaio a ser avaliado e 40 ng de cDNA. As reações foram realizadas nas condições universais de ciclagem conforme descrito anteriormente para método Taqman.

A expressão diferencial dos transcritos alvo foi determinada pela quantificação relativa em relação à média de *Gapdh*. Para cálculo da medida relativa de expressão foi utilizado o modelo matemático $\Delta\Delta$ Ct conforme descrito acima.

Gene	Iniciadores (5'-3')	Fragmento (pb)
Astrócito	s 40 dias	
Cxcr4	F: TGTTGGGAGTTTATGTTCCTCTAG	147
Slc1a2	R: AGTCCTACACACAGATAAACAGC F: TCTGTCGTAATAGATGAGTGCAAG	119
	R: AGAATTGGCTGAGAATCGGG	
Neurônio	s 40 dias	
Slc17a6	F: GTGTTTACCTGTCAGTTTTGGG R: AAGGTCAGGAGTGGTTTGC	123
Cxcr4	F: TGTTGGGAGTTTATGTTCCTCTAG R: AGTCCTACACACAGATAAACAGC	147
Neurônio	s 80 dias	
Akt l	F: GAGGATGTTTCTACTGTGGGC R: TCTAATTGTTCTGGGCACTGAG	132
Microglia	s 80 dias	
Tubala	F: GGAGGAAGAAGGAGAGGAATAC R: GTCAGTAACTGTATGAAAGCACAC	142
Tap2	F: GATGTCTACGCCCACCTG R: ACGGTCCCAATCTTTATCCTG	141
Normaliz	ador	
Gapdh	F: GAGTAAGAAACCCTGGACCAC R: TCTGGGATGGAAATTGTGAGG	109

Tabela 4. Sequências de iniciadores utilizadas nas análises de expressão gênica das células microdissecadas utilizando o método SYBR.

3.7.7. Análise estatística das qPCRs nas células microdissecadas

Os dados gerados pelas qPCRs, para cada tipo celular, foram analisados pelo teste-t de Student bilateral comparando-se as amostras de animais transgênicos àquelas de seus respectivos controles. O critério para que os genes fossem considerados diferencialmente expressos foi valor de p < 0.05.

4. RESULTADOS

4.1. Condição geral, peso corporal e sobrevida

Os primeiros sintomas foram registrados e a progressão da doença foi avaliada através do monitoramento semanal usando a pontuação neurológica. Declínio das condições gerais foi observado por volta dos 80 dias de vida dos camundongos transgênicos. O teste ANOVA de duas vias mostrou diferenças entre os selvagens e os transgênicos a partir do dia 90 (p < 0,001), estas que se acentuaram nos dias subsequentes (Figura 4A), sendo que o início dos tremores ocorreu no 100° dia de vida do animal. Os animais selvagens não mostraram disfunção motora em nenhum momento.

Os animais selvagens ganharam peso continuamente durante o período de análise, enquanto que os camundongos transgênicos deixam de ganhar peso por volta do 90° dia de vida (p < 0,001) (Figura 4B).

Com relação à sobrevida, os animais transgênicos começaram a morrer por volta da idade de 100 dias e o tempo máximo de sobrevivência destes animais foi de 140 dias (Figura 4C).

Ressalta-se que pelos parâmetros analisados de pontuação neurológica, os animais apresentaram-se indistinguíveis até a idade de 60 dias e diferenças estatísticas não foram apontadas no dia 80. Isto motivou a escolha das idades de 40 e 80 dias como períodos pré-sintomáticos de análise deste trabalho.

Figura 4. Condição geral, peso corporal e sobrevida. (A) Mudanças na condição geral dos animais selvagens (WT) e transgênicos (TG) monitorada semanalmente e mostrada como a média em cada período de 20 a 130 dias de vida. (B) Peso corporal dos animais WT e TG monitorado semanalmente e mostrado como a média em cada período de 20 a 130 dias de vida. (B) O dias de vida. Para (A e B) os dados encontram-se expressos como média \pm erro padrão. (***) p < 0,001, de acordo com ANOVA de duas vias, seguido do pós-teste de Bonferroni. (C) O gráfico mostra correlação entre a idade e a probabilidade de sobrevivência para os animais WT e TG.

4.2. Rotarod, hangwire e plano inclinado

O teste ANOVA de duas vias mostrou que animais transgênicos começaram a ter sua performance reduzida no *rotarod* aos 90 dias (p < 0.05) e no *hangwire* em 100 dias (p < 0.01) (Figura 5A e B, respectivamente).

Diferenças significativas entre os selvagens e os transgênicos apareceram na idade de 130 dias no teste do plano inclinado (p < 0,001), mais tarde que nos outros testes (Figura 5C).

Figura 5. *Rotarod, hangwire* e plano inclinado. (A) Mudanças na performance dos animais selvagens (WT) e transgênicos (TG) no *rotarod* monitorada semanalmente durante 180 segundos e mostrada como a média para cada período de 20 a 130 dias de vida. (B) Mudanças na performance dos animais WT e TG no *hangwire* monitorada semanalmente durante 180 segundos e mostrada como a média para cada período de 20 a 130 dias de vida. (C) Mudanças na performance dos animais WT e TG no *hangwire* monitorada semanalmente durante 180 segundos e mostrada como a média para cada período de 20 a 130 dias de vida. (C) Mudanças na performance dos animais WT e TG no plano inclinado monitorada semanalmente e mostrada como a média para cada período de 20 a 130 dias de vida. Dados expressos em média ± erro padrão. (*) p < 0,05, (**) p < 0,01 e (***) p < 0,001, de acordo com ANOVA de duas vias, seguido do pós-teste de Bonferroni.

4.3. Genes diferencialmente expressos pela análise do microarray

A análise da qualidade dos resultados obtidos para cada array, fundamentada no coeficiente de variação das sondas replicadas, identificou uma lâmina que continha valores altos em todos os arrays para aquele parâmetro. Em decorrência disto, as amostras desta lâmina não puderam ser utilizadas nas análises estatísticas, de forma que cada grupo prosseguiu com número amostral de 4. As amostras os animais trangênicos foram comparadas àquelas dos animais selvagens da mesma idade, possibilitando a identificação dos transcritos com expressão desregulada. As análises apontaram 492 transcritos diferencialmente expressos (p < 0.05) nos transgênicos com 40 dias, sendo 155 e 337 transcritos super e subexpressos, respectivamente. Enquanto que na idade de 80 dias, 1105 transcritos apresentaram-se diferencialmente expressos nos animais transgênicos, sendo que, entre eles, 433 e 672 transcritos estavam super e subexpressos, respectivamente. O perfil da distribuição dos transcritos diferencialmente expressos em função de seus valores de "p" e fold são encontrados no Volcanoplot da Figura 6. Observa-se a presença de transcritos com magnitudes maiores de *fold* nos resultados obtidos das análises de 80 dias (Figura 6B) em comparação aos resultados de 40 dias (Figura 6A). A diferença de expressão variou de -1,68 para Ocell até 1,37 para Gadd45gip1 para os animais de 40 dias (Tabela 10, ANEXO C) e -1,93 para Ocel1 e 1,82 para Mzt1 para os animais de 80 dias (Tabela 11, ANEXO C). Nem todas as sequências espotadas nas lâminas são genes com símbolo ou função conhecida, desta forma, para fins didáticos, as mesmas não serão representadas nas descrições dos resultados abaixo. Nosso grupo busca maneiras de avaliar a influência destas sequências na ELA.

Figura 6. *Volcanoplots* representativos da distribuição da expressão dos genes diferencialmente expressos em função dos valores de *fold* logaritimizados na base 2 (eixo das abscissas) e dos valores de p logaritmizados na base 10 (eixo das ordenadas) de acordo com as análises do *microarray* nas idades de 40 dias (**A**) e 80 dias (**B**). Os pontos em verde representam os transcritos que apresentaram valores de *Fold* maiores que 1,45 ou menores que -1,45 e valor de p menor que 0,05. Os pontos em vermelho representam os demais transcritos diferencialmente expressos (p < 0,05) com valores de *fold* entre -1,45 e 1,45.

Sessenta genes foram apontados como diferencialmente expressos em ambas as idades do estudo (Tabela 5). Alguns deles mostraram regulação na mesma direção em ambas as idades, enquanto que outros apresentaram regulação inversa (Tabela 5).

Tabela 5. Genes diferencialmente expressos nos camundongos transgênicos SOD1^{G93A} de ambas as idades, 40 e 80 dias. Os valores positivos e negativos representam genes super e subexpressos, respectivamente.

Gene	Fold 40 dias	Fold 80 dias
Ocell	-1,68	-1,92
Fam32a	-1,45	-1,61
Trim37	1,22	-1,34
Lsm6	-1,3	-1,29
Map1a Brugg2	1,2	-1,15 & -1,28
Empr2	1,21	-1,20
Eij5j2 Forn3	1,29	-1,20
Plekha5	1,20	-1.25
Rfxank	-1,12	-1,22
Malatl	1,1	-1,21
Ddx6	1,3	-1,19
Huwe1	1,12	-1,19
Snx27	1,19	-1,19
Srrm3	1,18	-1,19
Dzip1 Hook3	1,14	-1,17
Nemf	1,14	-1,17
Pdlim5	1,09	-1.16
Plvap	-1,14	-1,16
Thrap3	1,15	-1,16
Srsf11	-1,1	-1,15
Azin1	1,12	-1,14
Eif5b	1,19	-1,14
Hspa4 Kyaa	1,1	-1,14
Sn4	1,19	-1,14
Tusc3	-1.1	-1.14
Vegfa	1,12	-1,14
Fam133b	1,09	-1,13
Fam81a	1,12	-1,13
Prkrir	-1,1	-1,13
Ptrf 6220411E07B:h	-1,3	-1,13
Gria4	1,09	-1,12
Zfp866	1,07	-1,12
Marc-2	-1,07	-1,11
Hadh	1,12	-1,11
Mtf2	1,1	-1,11
Dhps	-1,09	-1,1
Nsa1 Miarl	1,12	-1,1
1/2 surn	1,13	-1,09
2610507B11Rik	1,07	1,1
Ncam1	1,17	1,12
Rtn1	-1,17	1,12
Chd5	1,12	1,13
Dhcr7	-1,08	1,15
Strbp	1,15	1,15
Synm Man7d1	-1,12	1,15
Specc1	1.1	1,10
Maea	1,1	1,19
Ncl	1,1 & -1,1	1,19
Glg1	1,29	1,2
Dnajc27	1,17	1,21
Ncdn I peat?	1,14	1,21
$D17W_{SP}02_{\rho}$	1,10	1,22
Nisch	1,08	1.24
Tkt	-1,1	1,25
Tmem591	1,29	1,26
Mast3	1,24	1,28
Plac9a	-1,45	1,35
Nsg1	-1,17	1,22 & 1,35
1 rappc3	-1,2	1,32 & 1,41

Os transcritos *Map1a*, *Ncl*, *Nsg1* e *Trappc3* foram representados por duas sondas diferentes.

Todos os genes diferencialmente expressos e seus respectivos valores de *fold* estão apresentados no ANEXO C.

4.4. Análises enriquecidas para vias do KEGG

Termos KEGG enriquecidos (p < 0,05) obtidos a partir dos genes diferencialmente expressos entre animais transgênicos e selvagens foram identificados nas análises dos animais nas idades de 40 e 80 dias. Vias KEGG superepresentadas, bem como os genes que fazem parte das mesmas, estão mostrados nas Tabelas 6 e 7, para as vias apontadas aos 40 e 80 dias, respectivametne. Ressalta-se que os genes diferencialmente expressos das idades de 40 e 80 dias permitiram a identificação das vias KEGG endocitose, sinapse glutamatérgica, proteólise mediada por ubiquitina, via de sinalização de quimiocina, fosforilação oxidativa, processamento e apresentação de antígeno e junção oclusiva em ambos os períodos (Figura 7). Adicionalmente, outras vias interessantes puderam ser identificadas apenas nas idades de 40 (Tabela 6) ou 80 dias (Tabela 7).

Número de transcritos

Figura 7. Classificação das vias KEGG e número de transcritos super e subexpressos das idades présintomáticas de 40 e 80 dias. Barras à esquerda indicam número de genes subexpressos e barras à direita representam número de genes super-expressos para cada categoria.

Ainda, as vias proteólise mediada por ubiquitina, via de sinalização de quimiocina e endocitose foram apontadas como super-representadas em ambas as idades entre os genes super-expressos (Figura 7). Por outro lado, fosforilação oxidativa foi apontada em ambas as idades pelos genes subexpressos (Figura 7). Adicionalmente, sinapse glutamatérgica e junção oclusiva foram apontadas por genes super-expressos em 40 dias e por genes super e subexpressos em 80 dias (Figura 7), enquanto que, a via processamento e apresentação de antígeno foi apontada por genes subexpressos em 40 dias e super-expressos em 80 dias (Figura 7).

Algumas vias apontadas não foram levadas em consideração por serem compostas por genes também apontados em outras vias ou genes possivelmente não relacionados à ELA. São elas, melanoma, sarampo, hepatite C, melanogênese, vias em câncer e câncer de próstata em 40 dias e miocardite viral e melanogênese em 80 dias.

Vias apontadas para os genes super-expressos			
ID do Gene	Símbolo do Gene	Nome do Gene	
Metabolismo d	le frutose e manose		
170768	Pfkfb3	6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3	
18640	Pfkfb2	6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2	
18642	Pfkm	phosphofructokinase, muscle	
230163	Aldob	aldolase B, fructose-bisphosphate	
54384	Mtmr7	myotubularin related protein 7	
Junção oclusiv	<u>'a</u>		
14677	Gnai1	guanine nucleotide binding protein (G protein), alpha inhibiting 1	
16653	Kras	v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog	
18176	Nras	neuroblastoma ras oncogene	
18417	Cldn11	claudin 11	
192195	Ash11	ash1 (absent, small, or homeotic)-like (Drosophila)	
Sinapse glutan	natérgica		
140919	Slc17a6	solute carrier family 17 (sodium-dependent inorganic phosphate cotransporter), member 6	
14677	Gnail	guanine nucleotide binding protein (G protein), alpha inhibiting 1	
14802	Gria4	glutamate receptor, ionotropic, AMPA4 (alpha 4)	
14810	Grin1	glutamate receptor, ionotropic, NMDA1 (zeta 1)	
20511	Slc1a2	solute carrier family 1 (glial high affinity glutamate transporter), member 2	
Guiamento axo	onal		
12767	Cxcr4	chemokine (C-X-C motif) receptor 4	
14677	Gnail	guanine nucleotide binding protein (G protein), alpha inhibiting 1	
16653	Kras	v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog	
18176	Nras	neuroblastoma ras oncogene	
22253	Unc5c	unc-5 homolog C (C. elegans)	
56637	Gsk3b	glycogen synthase kinase 3 beta	
Proteólise med	liada por ubiquitina		
107568	Wwp1	WW domain containing E3 ubiquitin protein ligase 1	
17999	Nedd4	neural precursor cell expressed, developmentally down-regulated 4	
22210	Ube2b	ubiquitin-conjugating enzyme E2B	
59026	Huwe l	HECT, UBA and WWE domain containing 1	

Tabela 6. Vias KEGG super-representadas para os genes diferencialmente super ou subexpressos na idade de 40 dias.

<u>niocina</u>	tripartite motif-containing 37 ubiquitin protein ligase E3 component n-recognin 5
<u>niocina</u>	ubiquitin protein ligase E3 component n-recognin 5
niocina	
	chemokine (C-X-C motif) receptor 4
	guanine nucleotide binding protein (G protein), alpha inhibiting 1
	v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
	neuroblastoma Ras oncogene
	phosphatidylinositol 3-kinase, regulatory subunit, polypeptide 1 (p85
	alpha)
	glycogen synthase kinase 3 beta
	Wiskott-Aldrich syndrome-like
	WW domain containing E3 ubiquitin protein ligase 1
	chemokine (C-X-C motif) receptor 4
	epsin 1
	neural precursor cell expressed, developmentally down-regulated 4
	heat shock protein 1a
	G protein-coupled receptor kinase-interactor 2
	ArfGAP with coiled-coil, ankyrin repeat and PH domains 2
Vias apo	ntadas para os genes subexpressos
do Gene	Nome do Gene
leotídeo	
	replication factor C (activator 1) 2
	polymerase (DNA-directed), epsilon 4 (p12 subunit)
	Vias apo do Gene cleotídeo

Replicação d	le DNA	
19718	Rfc2	replication factor C (activator 1) 2
66979	Pole4	polymerase (DNA-directed), epsilon 4 (p12 subunit)
Metabolismo	o de ácido graxo	
11363	Acadl	acyl-Coenzyme A dehydrogenase, long-chain
74205	Acsl3	acyl-CoA synthetase long-chain family member 3
Via de sinali	zação de TGF-beta	
12167	Bmpr1b	Bmpr1b bone morphogenetic protein receptor, type 1B
15902	Id2	inhibitor of DNA binding 2
19651	Rbl2	retinoblastoma-like 2
Processamer	uto e a nr esentação de a	antígeno
12010		
12010	B2m	beta-2 microglobulin
12317	Calr	
19727	Rfxank	regulatory factor X-associated ankyrin-containing protein
Interação ma	triz-receptor	
11603	Agrn	Agrin
12814	Colllal	collagen, type XI, alpha 1
16773	Lama2	laminin, alpha 2
Via de sinali	zação GnRH	
12314	Calm2	calmodulin 2
16440	Itpr3	inositol 1 4 5-triphosphate receptor 3
16476	Jun	Jun oncogene
17390	Mmp2	matrix metallopeptidase 2
Doenca de P	arkinson	
<u>104120</u>	N L (L 1 1	NADU debedre en er (ekiminene) 1 hete enheemeler 11
104130	Naufb11 Caudil	NADH denydrogenase (ubiquinone) I beta subcomplex, 11
12857	Cox411	cytochrome c oxidase subunit IV isoform I
005/0	Uqcrn	NA DI de bude seguer (chiming and 1 hete sub-seguer les 9
0/204	Ndufb8	NADH denydrogenase (ubiquinone) i beta subcomplex 8
Fosforilação	oxidativa	
104130	Ndufh11	NADH dehydrogenase (ubiquinone) 1 beta subcompley 11
12857	Cox4i1	cytochrome c oxidase subunit IV isoform 1
66576	Uacrh	ubiquinol-cytochrome c reductase hinge protein
00070	eyen	adquitor estochionic e reductuse ininge proteini

Tabela 6. Co	nclusão.	
67264	Ndufb8	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 8
Doenca de	Alzheimer	
104130	Ndufh11	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 11
12314	Calm2	calmodulin 2
12857	Cox4i1	cytochrome c oxidase subunit IV isoform 1
16440	Itpr3	inositol 1,4,5-triphosphate receptor 3
66576	Ûqcrh	ubiquinol-cytochrome c reductase hinge protein
67264	Ndufb8	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 8

 Tabela 7. Vias KEGG super-representadas para os genes diferencialmente super ou subexpressos na idade de 80 dias.

 Vias apontadas pelos genes super-expressos

	<u> </u>	
ID do Gene	Simbolo do Gene	Nome do Gene
Contração de 1	musculo liso vascular	
104111	Adcy5	adenyiate cyclase 3
12315	Calm3	calmodulin 3
14673	Gna12	guanine nucleotide binding protein, alpha 12
14674	Gna13	guanine nucleotide binding protein, alpha 13
18751	Prkcb	protein kinase C, beta
213498	Arhgef11	Rho guanine nucleotide exchange factor 11
224129	Adcy5	adenylate cyclase 5
26413	Mapk1	mitogen-activated protein kinase 1
Processamento	o e apresentação de antíg	geno
14963	H2-Bl	histocompatibility 2, blastocyst
14972	H2-K1	histocompatibility 2, K1, K region
15006	H2-Q1	histocompatibility 2, Q region
15007	H2-O10	histocompatibility 2, Q region
15013	H2-Q2	histocompatibility 2, Q region
15018	H2-Õ7	histocompatibility 2. O region
15039	H2-T22	histocompatibility 2. T region
15040	H2-T23	histocompatibility 2 T region
15481	Hspa8	heat shock protein 8
21355	Tap2	transporter 2, ATP-binding cassette, sub-family B (MDR/TAP)
Juncão oclusiv	78	
11465	Actel	actin, gamma, cytoplasmic 1
13043	Cttn	Cortactin
13821	Enh4 111	erythrocyte protein hand 4 1-like 1
13822	Epb4.111 Epb4.112	erythrocyte protein band 4.1-like 2
14924	Magil	membrane associated guanylate kinase, WW and PDZ domain
		containing 1
16897	Llgl1	lethal giant larvae homolog 1
17475	Mpdz	multiple PDZ domain protein
18751	Prkcb	protein kinase C, beta
67374	Jam2	junction adhesion molecule 2
71960	Myh14	myosin, heavy polypeptide 14
Via de sinaliza	ação de quimiocina	
104111	Adcv3	adenvlate cvclase 3
14083	Ptk2	PTK2 protein tyrosine kinase 2
14688	Gnbl	guanine nucleotide binding protein (G protein) beta 1
14693	Gnb2	guanine nucleotide binding protein (G protein), beta 2
14697	Gnb5	guanine nucleotide binding protein (G protein), beta 5
14701	Gnol?	guanine nucleotide binding protein (G protein), com 5
14708	Gno7	guanine nucleotide binding protein (G protein), gamma 7
18751	Prkch	protein kinase C heta
224129	Adev5	adenvlate cyclase 5
224123	Mankl	auchynaic cyclast J mitogen activated protein kinase 1
20413	таркі Dnovl	nitogen-activated protein kinase i phosphotidulinosital 2.4.5 triaphosphota dependent Des aval-
277360	11021	phosphartuymiosnoi-5,4,5-uisphosphare-dependent kac exchange factor
Proteólise mec	liada por ubiquitina	
103583	Fhrw11	F-box and WD-40 domain protein 11
15204	Herc2	heet (homologous to the E6-AP (UBE3A) carboxyl terminus) domain rd BCGU(CUCI) like domain (UDE) 2
17007	14 1	and KUC1 (UHU1)-like domain (KLD) 2
17237	Mgrn1	mahogunin, ring tinger l
19823	Rnf7	ring finger protein 7

Tabela 7. Contini	uação	
217342	Ube2o	ubiquitin-conjugating enzyme E2O
22192	Ube2m	ubiquitin-conjugating enzyme E2M
22196	Ube2i	ubiquitin-conjugating enzyme E2I
22213	Ube2g2	ubiquitin-conjugating enzyme E2G 2
229615	Pias3	protein inhibitor of activated STAT 3
50754	Fbxw7	F-box and WD-40 domain protein 7
63958	Ube4b	ubiquitination factor E4B, UFD2 homolog (S. cerevisiae)
Regulação do c	itoesqueleto de actina	
11465	Actg1	actin, gamma, cytoplasmic 1
14083	Ptk2	PTK2 protein tyrosine kinase 2
14673	Gna12	guanine nucleotide binding protein, alpha 12
14674	Gnal3	guanine nucleotide binding protein, alpha 13
14701	Gng12	guanine nucleotide binding protein (G protein), gamma 12
18/1/	Pip5k1c	phosphatidylinositol-4-phosphate 5-kinase, type I gamma
192897	IIgD4	Integrin beta 4
220970	Arngej4 Gsn	Gelselin
26/13	Mank1	mitogen-activated protein kinase 1
67771	Arnes	actin related protein 2/3 complex subunit 5
71960	Myh14	myosin, heavy polypeptide 14
Sinansa alutam	atárgica	
104111	Adev3	adenvlate cyclase 3
110637	Grik4	slutamate receptor ionotronic kainate 4
14645	Glul	glutamate-ammonia ligase (glutamine synthetase)
14688	Gnbl	guanine nucleotide binding protein (G protein), beta 1
14693	Gnb2	guanine nucleotide binding protein (G protein), beta 2
14697	Gnb5	guanine nucleotide binding protein (G protein), beta 5
14701	Gng12	guanine nucleotide binding protein (G protein), gamma 12
14708	Gng7	guanine nucleotide binding protein (G protein), gamma 7
18751	Prkcb	protein kinase C, beta
216456	Gls2	glutaminase 2 (liver, mitochondrial)
224129	Adcy5	adenylate cyclase 5
26413	Mapk1	mitogen-activated protein kinase 1
<u>Fagossomo</u>		
11465	Actg1	actin, gamma, cytoplasmic 1
14963	H2-Bl	histocompatibility 2, blastocyst
14972	H2-KI	histocompatibility 2, K1, K region
15000	$H_2 - Q_1$	histocompatibility 2, Q region
15013	$H_2 - Q_1 0$ $H_2 - Q_2$	histocompatibility 2, Q region
15018	H_{2-07}	histocompatibility 2, Q region
15039	H2-T22	histocompatibility 2, 3 region
15040	H2-T23	histocompatibility 2, T region
15239	Hgs	HGF-regulated tyrosine kinase substrate
17113	M6pr	mannose-6-phosphate receptor, cation dependent
21355	Tap2	transporter 2, ATP-binding cassette, sub-family B (MDR/TAP)
22142	Tubala	tubulin, alpha 1a
22151	Tubb2a	tubulin, beta 2A class IIA
Processamento	de proteína no retículo	endoplasmático
100037258	Dnajc3	DnaJ (Hsp40) homolog, subfamily C, member 3
108687	Edem2	ER degradation enhancer, mannosidase alpha-like 2
12955	Cryab	crystallin, alpha B
15481	Hspa8	heat shock protein 8
20014	Rpn2	ribophorin II
20338	Selll	sel-1 suppressor of lin-12-like (C. elegans)
216440	Os9	amplified in osteosarcoma
22213	Ube2g2	ubiquitin-conjugating enzyme E2G 2
269523	Vcp	valosin containing protein
50907	Preb	prolactin regulatory element binding
56452	KNJS Mhtmal	mambrana bound transcription factor partidage site 1
56812	Draih?	Dra (Hep/0) homolog, subfamily B, member 2
63958	Dimij02	Lines (115p+t0) noniolog, subtaining D, internoet 2
00/00	Uhe4h	ubiquitination factor E4B, UED2 homolog (S, cerevisiae)
	Ube4b	ubiquitination factor E4B, UFD2 homolog (S. cerevisiae)
Moléculas de ac	Ube4b desão celular H2-Bl	histocompatibility 2 blastocyst
<u>Moléculas de ao</u> 14963 14972	Ube4b desão celular H2-Bl H2-K1	histocompatibility 2, blastocyst
<u>Moléculas de ao</u> 14963 14972 15006	Ube4b desão celular H2-Bl H2-K1 H2-O1	histocompatibility 2, blastocyst histocompatibility 2, K1, K region histocompatibility 2, O region
Moléculas de ac 14963 14972 15006 15007	Ube4b desão celular H2-Bl H2-K1 H2-Q1 H2-Q1 H2-010	histocompatibility 2, blastocyst histocompatibility 2, K1, K region histocompatibility 2, Q region histocompatibility 2, O region

Tabela 7. Contin	nuação	
15013	H2-Q2	histocompatibility 2, Q region
15018	H2-Q7	histocompatibility 2, Q region
15039	H2-T22	histocompatibility 2, T region
15040	H2-T23	histocompatibility 2, T region
17967	Ncam1	neural cell adhesion molecule 1
18007	Neol	neogenin
19274	Ptprm	protein tyrosine phosphatase, receptor type, M
20340	Glg1	golgi apparatus protein 1
20970	Sdc3	syndecan 3
58235	Pvrl1	poliovirus receptor-related 1
67374	Jam2	junction adhesion molecule 2
Endocitose		
11771	Ap2a1	adaptor-related protein complex 2, alpha 1 subunit
12757	Clta	clathrin, light polypeptide
13196	Asap 1	ArfGAP with SH3 domain, ankyrin repeat and PH domain1
13429	Dnm1	dynamin 1
14963	H2-Bl	histocompatibility 2, blastocyst
14972	H2-K1	histocompatibility 2, K1, K region
15006	H2-Q1	histocompatibility 2, Q region
15007	H2-Q10	histocompatibility 2, Q region
15013	H2-Q2	histocompatibility 2, Q region
15018	H2-Q7	histocompatibility 2, Q region
15039	H2-T22	histocompatibility 2, T region
15040	H2-T23	histocompatibility 2, T region
15239	Hgs	HGF-regulated tyrosine kinase substrate
15481	Hspa8	heat shock protein 8
16835	Ldlr	low density lipoprotein receptor
18717	Pip5k1c	phosphatidylinositol-4-phosphate 5-kinase, type 1 gamma
234852	Chmp1a	charged multivesicular body protein 1A
243621	Iqsec3	IQ motif and Sec7 domain 3
67588	Rnf41	ring finger protein 41
98366	Smap1	stromal membrane-associated protein 1

Vias apontadas para os genes subexpressos

ID do Gene	Símbolo do Gene	Nome do Gene
Via de sinaliza	ção do VEGF	
11651	Aktl	thymoma viral proto-oncogene 1
16653	Kras	v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
19056	Ppp3cb	protein phosphatase 3, catalytic subunit, beta isoform
22339	Vegfa	vascular endothelial growth factor A
Long-term dep	ression	
14678	Gnai2	guanine nucleotide binding protein (G protein), alpha inhibiting 2
14683	Gnas	GNAS (guanine nucleotide binding protein, alpha stimulating) complex locus
16653	Kras	v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
18795	Plcb1	phospholipase C, beta 1
60596	Gucy1a3	guanylate cyclase 1, soluble, alpha 3
Gap junction		
14678	Gnai2	guanine nucleotide binding protein (G protein), alpha inhibiting 2
14683	Gnas	GNAS (guanine nucleotide binding protein, alpha stimulating) complex locus
16653	Kras	v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
18795	Plcb1	phospholipase C, beta 1
60596	Gucy1a3	guanylate cyclase 1, soluble, alpha 3
Degradação de	RNA	
104625	Cnot6	CCR4-NOT transcription complex, subunit 6
13209	Ddx6	DEAD (Asp-Glu-Ala-Asp) box polypeptide 6
66373	Lsm5	LSM5 homolog, U6 small nuclear RNA associated (S. cerevisiae)
72662	Dis3	DIS3 mitotic control homolog (S. cerevisiae)
78651	Lsm6	LSM6 homolog, U6 small nuclear RNA associated (S. cerevisiae)
Doença de Parl	kinson	
12866	Cox7a2	cytochrome c oxidase subunit VIIa 2
333182	Cox6b2	cytochrome c oxidase subunit Vib polypeptide 2
66142	Cox7b	cytochrome c oxidase subunit VIIb
66495	Ndufb3	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 3
66916	Ndufb7	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 7
68202	Ndufa5	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5

Tabela 7. Conclu	são.	
Fosforilação ox	vidativa	
12866	Cor7a2	cytochrome c oxidase subunit VIIa 2
333182	Cor6h2	cytochrome c oxidase subunit Vih polypentide 2
66142	Cox7b	cytochrome c oxidase subunit VID
66405	Ndufh2	NADH dahudraganasa (uhiguinana) 1 hata suhaamplay 2
66016	NULLER7	NADH dehydro genese (ubiquinone) 1 beta subcomplex 5
(8202	NaujD7	NADH denydrogenase (ubiguinone) 1 oleta subcomplex, 7
68202	NaufaS	NADH denydrogenase (ubiquinone) I alpha subcomplex, 5
Junção oclusiva	a	
11651	Akt1	thymoma viral proto-oncogene 1
1/678	Gnai?	guanine nucleotide hinding protein (G protein) alpha inhibiting?
16653	Kras	v Ki ras2 Kirstan rat sarcoma viral oncogana homolog
17999	Krus Muh6	wyosin heavy polypentide 6 cardiac muscle alpha
20060	Vana	nyosin, neavy polypeptide 0, cardiac muscle, aipha
50900		vesicie-associated memorane protein, associated protein A
38187	Clan10	
Sinapse Glutan	natérgica	
14678	Gnai2	guanine nucleotide binding protein (G protein). alpha inhibiting 2
		GNAS (guanine nucleotide binding protein, alpha stimulating) complex
14683	Gnas	locus
14702	Gno?	guanine nucleotide hinding protein (G protein) gamma 2
14802	Gria4	glutamate recentor ionotronic AMPA4 (alpha 4)
14805	Grikl	glutamate receptor, ionotropic, rain r4 (april 4)
18705	Plchl	phospholipase C beta 1
10755	Ppp3ch	protein phosphatase 3 catalytic subunit beta isoform
19050	1 pp5cb	solute corrier family 17 (codium dependent inorganic phosphate
216227	Sla17a8	solute carrier family 17 (solutifi-dependent morganic phosphate
210227	5101740	contailsporter), member 8
Doenca de Hur	ntington	
12866	Cox7a2	cytochrome c oxidase subunit VIIa 2
18795	Plchl	phospholinase C beta 1
333182	Cor6h?	cytochrome c oxidase subunit Vib polypentide 2
66142	Cox7h	cytochrome c oxidase subunit VIIb
66/95	Ndufb3	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 3
66016	Ndufb7	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 5
68202	Ndufa5	NADH dehydrogenese (ubiquinone) 1 olea subcomplex, 7
600202	Naujas Polr2;	nable deliyer ogenase (dolquinone) i alpha subcomplex, 5
09920	FOUZI	polymerase (RIVA) II (DIVA directed) polypeptide I
Doenca de Alz	heimer	
11820	App	amyloid beta (A4) precursor protein
12866	Cox7a2	cytochrome c oxidase subunit VIIa 2
18795	Plchl	phospholinase C beta 1
19056	Ppn3ch	protein phosphatase 3 catalytic subunit, beta isoform
333182	Cox6h?	cytochrome c oxidase subunit Vib polypeptide 2
66142	Cox7h	cytochrome c oxidase subunit VIIb
66/95	Ndufb3	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 3
66016	Ndufb7	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 5
68202	Ndufa5	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 7
00202	raajas	With denyth ogenase (dolquinone) i alpha subcomplex, s
Ribossomo		
19951	Rpl32	ribosomal protein L32
19981	Rpl37a	ribosomal protein L37a
19982	Rpl36a	ribosomal protein L36A
20068	Rps17	ribosomal protein S17
20085	Rps19	ribosomal protein S19
22186	Ûba52	ubiquitin A-52 residue ribosomal protein fusion product 1
57294	Rps27	ribosomal protein S27
66489	Rpl35	ribosomal protein L35
67945	Rpl41	ribosomal protein L41
68028	Rpl2211	ribosomal protein L22 like 1
75617	Rps25	ribosomal protein S25

A implementação de cálculos matemáticos capazes de permitir a construção de redes de co-expressão destas vias com base nos valores de expressão de cada gene nas amostras do estudo é outro recurso importante da ferramenta *online* FunNet, além da organização dos genes diferencialmente expressos em vias KEGG e processos biológicos super-representados. Para a análise a partir dos resultados dos animais de 40 dias, a via sinapse glutamatérgica apresentou o maior grau de centralidade (Figura 8A), enquanto que para aqueles da análise de 80 dias esta posição de centralidade foi ocupada pela via fagossomo (Figura 8B). Os detalhes sobre centralidade são encontrados na Figura 8. Adicionalmente, nota-se a maior complexidade na rede construída para a idade de 80 dias, esta formada por 4 módulos funcionais, quando comparada à de 40 dias, a qual apresentou apenas 2 módulos funcionais.

Figura 8. Redes de co-expressão de vias baseadas na análise do FunNet para as análises dos camundongos SOD1^{G93A} e selvagens da idade de 40 e 80 dias. (A) Organização das vias KEGG da idade de 40 dias em dois módulos. (B) Organização das vias KEGG da idade de 80 dias em quatro módulos. Em ambas as redes, o grau de centralidade está representado de forma que os valores mais altos apresentam cor mais escura, enquanto que valores mais baixos apresentam cor mais clara, sendo que processos que apresentaram valores de centralidade abaixo de 20 estão representados em branco para facilitar a representação. Processos apontados por genes super-expressos estão representados por triângulos, enquanto que processos representados por genes subexpressos estão representados por círculos. Os losangos foram usados para representar processos apontados por genes super e subexpressos.

4.5. Análises enriquecidas para o GO

A análise FunNet utilizando a base de dados GO apontou 4 processos biológicos super-representados nos animais de 40 dias, 3 para os genes super-expressos e 1 para os genes subexpressos, genes estes que estão apresentados na Tabela 8.

Tabe	la	8.	Processos	biológicos	apresentados	como	super-representados	para	genes
super	e s	sube	expressos e	em animais o	de 40 dias.				

Processos biológicos para os genes super-expressos			
ID do Gene	Símbolo do Gene	Nome do Gene	
Formação de	nucleossomo		
26914	H2afy	H2A histone family, member Y	
		SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a,	
67155	Smarca2	member 2	
72480	Tspyl4	TSPY-like 4	
Iniciação da t	radução		
217869	Eif5	eukaryotic translation initiation factor 5	
218629	Dhx29	DEAH (Asp-Glu-Ala-His) box polypeptide 29	
226982	Eif5b	eukaryotic translation initiation factor 5B	
56347	Eif3c	eukaryotic translation initiation factor 3, subunit C	
66892	Eif4e3	eukaryotic translation initiation factor 4E member 3	
<u>Organização</u>	de projeção celular		
11758	Prdx6	peroxiredoxin 6	
235442	Rab8b	RAB8B, member RAS oncogene family	
243548	Prickle2	prickle homolog 2 (Drosophila)	
26562	Ncdn	Neurochondrin	
382406	Poclb	POC1 centriolar protein homolog B (Chlamydomonas)	
78514	Arhgap10	Rho GTPase activating protein 10	
Processos biológicos para os genes subexpressos			
ID do Gene	Símbolo do Gene	Nome do Gene	
Regulação da organização de componente celular			
16568	Kif3a	kinesin family member 3A	
55942	Sertad1	SERTA domain containing 1	
56213	Htral	HtrA serine peptidase 1	
78558	Htra3	HtrA serine peptidase 3	

A análise dos dados nos animais com 80 dias de vida apontou 20 processos biológicos superrepresentados, sendo 12 deles para os genes super-expressos e 8 para os genes subexpressos. Tais genes estão apresentados na Tabela 9.

	Processos	biológicos para os genes super-expressos		
ID do Gene	Símbolo do Gene	Nome do Gene		
processo cata	bólico dependente o	<u>de ubiquitina mediado por SCF</u>		
103583	Fbxw11	F-box and WD-40 domain protein 11		
242960	Fbxl5	F-box and leucine-rich repeat protein 5		
50754 76454	FDXW/ Ebus 21	FDXW/F-DOX and WD-40 domain protein /		
/0454	FDX031	F0x031 F-b0x protein 31		
polimerização	o de proteína			
12345	Capzb	capping protein (actin filament) muscle Z-line, beta		
22142	Tubala	tubulin, alpha IA		
22151	Tubb2a	tubulin, beta 2A class IIA		
277360	Drax 1	factor 1		
67771	Arne5	actin related protein 2/3 complex subunit 5		
0///1	Агрез	actin related protein 2/3 complex, subunit 5		
transporte pó	s-Golgi mediado po	or vesícula		
11764	Apibi	adaptor protein complex AP-1, beta 1 subunit		
11769	Apisi	adaptor protein complex AP-1, sigma 1		
11840	Arj1 Cha	ADF-HOOSYIAHON LACIOF 1		
12/3/	Cita Dtubu 1	ciaurin, light polypeptide		
94245	Dtnbp1	dystrobrevin binding protein 1		
Ciclo do ácid	o tricarboxílico			
12974	Cs	citrate synthase		
18293	Ogdh	oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide)		
66052	Sdhc	succinate dehydrogenase complex, subunit C, integral membrane protein		
66945	Sdha	succinate dehydrogenase complex, subunit A, flavoprotein (Fp)		
78920	Dlst	dihydrolipoamide S-succinyltransferase (E2 component of 2-oxo-		
		glutarate complex)		
Regulação de	e morfologia celular			
104445	Cdc42ep1	CDC42 effector protein (Rho GTPase binding) 1		
11674	Aldoa	aldolase A, fructose-bisphosphate		
14673	Gna12	guanine nucleotide binding protein, alpha 12		
14674	Gna13	guanine nucleotide binding protein, alpha 13		
235611	Plxnb1	plexin B1		
Processamen	to de proteína			
107522	Ēce2	endothelin converting enzyme 2		
11545	Parp1	poly (ADP-ribose) polymerase family, member 1		
20340	Glg1	golgi apparatus protein 1		
243853	Fkrp	fukutin related protein		
66887	Lonp2	lon peptidase 2, peroxisomal		
Processo biossintético de glicoproteína				
171212	Galnt10	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-		
		acetylgalactosaminyltransferase 10		
20014	Rpn2	ribophorin II		
20443	St3gal4	ST3 beta-galactoside alpha-2,3-sialyltransferase 4		
243853	Fkrp	fukutin related protein		
50935	St6galnac6	ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-		
(9)72	D	acetylgalactosaminide alpha-2,6-sialyltransferase 6		
68273	Pomgnt1	protein O-linked mannose beta1,2-N-acetylgiucosaminyltransferase		
Resposta celu	alar ao estímulo con	n glucagon		
104111 14688	Aucys Cubl	auenylale cyclase 5 guanina nucleotida hinding protoin (C protoin) hoto 1		
14000	Gnb1 Gnb2	guanne nucleotide binding protein (G protein), beta 2		
14701	Gno12 Gno12	guanine nucleotide binding protein (G protein), beta 2 guanine nucleotide binding protein (G protein), gamma 12		
14708	Gng7	guanine nucleotide binding protein (G protein), gamma 7		
224129	Adcv5	adenylate cyclase 5		

Tabela 9. Processos biológicos apresentados como super-representados para genes super e subexpressos em animais de 80 dias.

Tabela 9. Con	tinuação	
Adesão celul	lar homofílica	
12563	Cdh6	cadherin 6
19274	Ptprm	protein tyrosine phosphatase, receptor type, M
232370	Clstn3	calsyntenin 3
23836	Cdh20	cadherin 20
53883	Celsr2	cadherin, EGF LAG seven-pass G-type receptor 2 (flamingo homolog, Drosophila)
58235	Pvrl1	poliovirus receptor-related 1
65945	Clstnl	calsyntenin 1
_		
Processo cata	abólico de ATP	
11305	Abca2	ATP-binding cassette, sub-family A (ABC1), member 2 ATP synthase, H+ transporting, mitochondrial F1 complex, alpha
11946	Atp5a1	subunit 1 ATP synthase, H+ transporting mitochondrial F1 complex, beta
11947	Atp5b	subunit
15481	Hspa8	heat shock protein 8
269523	Vcp	valosin containing protein
71960	Myh14	myosin, heavy polypeptide 14
74772	Atp13a2	ATPase type 13a2
	1	51
Endocitose		
11764	Ap1b1	adaptor protein complex AP-1, beta 1 subunit
11769	Aplsl	adaptor protein complex AP-1, sigma 1
11771	Ap2a1	adaptor-related protein complex 2, alpha 1 subunit
13043	Cttn	Cortactin
13429	Dnm1	dynamin 1
14269	Fnbp1	formin binding protein 1
16443	Itsn1	intersectin 1 (SH3 domain protein 1A)
16835	Ldlr	low density lipoprotein receptor
19261	Sirpa	signal-regulatory protein alpha
22174	Tyro3	TYRO3 protein tyrosine kinase 3
232089	Elmod3	ELMO/CED-12 domain containing 3
66147	Necap2	NECAP endocytosis associated 2
98402	Sh3bp4	SH3-domain binding protein 4
	to do DNAm	
15292	<u>Iloue KNAIi</u>	hatara concerns avelage ribenvale arratain A 1
10655	пппрат Пата	DNA hinding motif protein. Y shromosome
19033	KDMX EGuil2	kind binding mour protein, A chromosome
20624	Ejtuaz Sum h	elongation factor fu GTP binding domain containing 2
20638	Snrpb	small nuclear ribonucleoprotein B
224903	Safb	Scarroid attachment factor B
233208	Scafl	SR-related CTD-associated factor 1
24128	Xrn2	5'-3' exoribonuclease 2
53607	Snrpa	small nuclear ribonucleoprotein polypeptide A
53610	Nono	non-POU-domain-containing, octamer binding protein
54451	Cpsf3	cleavage and polyadenylation specificity factor 3
70465	Wdr77	WD repeat domain 77
70616	Sugp1	SURP and G patch domain containing 1
71713	Cdc40	cell division cycle 40
94230	Cpsfl	cleavage and polyadenylation specific factor 1
	Process	sos biológicos para os genes subexpressos
ID do Gene	Símbolo do Gene	Nome do Gene
Monoubiqui	tinação de proteína	
109331	Rnf20	ring finger protein 20
59026	Huwel	HECT LIBA and WWE domain containing 1
66105	Ube2d3	ubiquitin-conjugating enzyme E2D 3
ь		
<u>Remodelame</u>	ento de cromatina	
12648	ChdI	chromodomain helicase DNA binding protein 1
15353	Hmg20b	high mobility group 20B
93761	Smarca1	SWI/SNF related, matrix associated, actin dependent regulator of
		chromatin, subfamily a, member 1
Via de sinali	zação GABA	
14394	Gabral	gamma-aminobutyric acid (GABA) A receptor, subunit alpha 1

Tabela 9. Con	clusão.	
14395	Gabra2	gamma-aminobutyric acid (GABA) A receptor, subunit alpha 2
14678	Gnai2	guanine nucleotide binding protein (G protein), alpha inhibiting 2
<u>Ubiquitinaçã</u>	o de protein	
226098	Hectd2	HECT domain containing 2
59026	Huwe1	HECT, UBA and WWE domain containing 1
67345	Herc4	hect domain and RLD 4
Processo met	tabólico de glicoprot	eína
108155	Ogt	O-linked N-acetylglucosamine (GlcNAc) transferase
17156	Man1a2	mannosidase, alpha, class 1A, member 2
20451	St8sia3	ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 3
26878	B3galt2	UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 2
Processamen	to de rRNA	
14300	Frg1	FSHD region gene 1
66181	Nop10	NOP10 ribonucleoprotein
67973	Mphosph10	M-phase phosphoprotein 10 (U3 small nucleolar ribonucleoprotein) protein (peptidyl-prolyl cis/trans isomerase) NIMA-interacting, 4
69713	Pin4	(parvulin)
73736	Fcfl	FCF1 small subunit (SSU) processome component homolog (S. cerevisiae)
75416	Non14	NOP14 nucleolar protein
78651	Lsm6	LSM6 homolog, U6 small nuclear RNA associated (S. cerevisiae)
Elongação da	a tradução	
19951	Rn132	ribosomal protein L32
19981	Rp137a	ribosomal protein L37A
19982	Rp136a	ribosomal protein L36A
22186	Uba52	ubiquitin A-52 residue ribosomal protein fusion product 1
57294	Rns27	ribosomal protein \$27
66489	Rp327 Rn135	ribosomal protein L 35
67945	Rp133 Rp141	ribosomal protein L41
71787	Trnaulap	tRNA selenocysteine 1 associated protein 1
Processamen	to de RNAm	
19134	Prnf4h	PRP4 pre-mRNA processing factor 4 homolog B (yeast)
2185/3	Srokl	splicing regulatory glutamine/lysine_rich protein 1
210343	Tdrd3	54 ossu domain containing 3
328110	Prnf30	PRP30 pre_mPNA processing factor 30 homolog (yeast)
6635A	Snul	SNW domain containing 1
66373	Jam5	I SMS homolog. U6 small nuclear DNA associated (S. cerevisiae)
66637	LSIIIJ Tson 15	tRNA splicing endopuclease 15 homolog (S. cerevisiae)
67684	1 sen13 I 110712	LUC7 like 3 (S. correctione)
67707	LUC/IJ SummanA8	small nuclear ribonucleon rotain 48 (1111/112)
U//9/ 69011	Snrnp40	small nuclear rikenveleenstein nelvnentide C
69272	Shrpg Dhur 20	Sman nuclear noonucleoprotein polypeptide G
00212	KDINZO	NNA DIHUHIY MOUL DIOLEHI Za

4.6. Validação dos resultados do microarray por PRC quantitativa

Oito genes foram escolhidos e avaliados pela metodologia de qPCR para a validação dos resultados apontados pelo *microarray*. Os genes acima mostraram regulação em sentidos coincidentes àqueles encontrados no *microarray*. Deste modo, houve correlação adequada entre as metodologias, mesmo quando utilizadas amostras independentes. Os genes *Gria3* (*Fold*=-1,14; p=0,11 – Figura 9A), *Glg1* (*Fold*=1,87; p=0,007 – Figura 9B), *Aqp4* (*Fold*=1,45; p=0,011 – Figura 9C) e *Calca* (*Fold*=-1,57; p=0,048 – Figura 9D) foram avaliados na idade de 40 dias. E os genes *Ube2i*
(*Fold*=1,18; p=0,26 – Figura 10A), *Nsg1* (*Fold*=2,04; p=0,047 – Figura 10B), *Eef2* (*Fold*=2,24; p=0,049 – Figura 10C) e *Syt10* (*Fold*=-2,06; p=0,005 – Figura 10D) foram avaliados na idade de 80 dias.

Figura 9. Gráficos dos resultados de qPCR, em *Fold* relativo, para verificação das análises de *microarray* na idade de 40 dias nos animais SOD1^{G93A} (TG) em relação aos selvagens (WT) para os 4 genes selecionados *Gria3* (**A**), *Glg1* (**B**), *Aqp4* (**C**) e *Calca* (**D**). Os valores são representados como média \pm erro padrão. * p < 0,05 de acordo com o teste t unilateral.

Figura 10. Gráficos dos resultados de qPCR, em *Fold* relativo, para verificação das análises de *microarray* na idade de 80 dias nos animais SOD1^{G93A}(TG) em relação aos selvagens (WT) para os 4 genes selecionados *Ube2i* (**A**), *Nsg1* (**B**), *Eef2* (**C**) e *Syt10* (**D**). Os valores são representados como média \pm erro padrão. * p < 0,05 de acordo com o teste t unilateral.

5. Microdissecção a laser

Os tipos celulares de interesse no estudo foram selecionados por microdissecção a laser da medula espinal lombar de camundongos transgênicos e controles nas idades de 40 (astrócito e neurônio) e 80 dias (neurônio e microglia). A escolha dos tipos celulares a serem avaliados baseou-se nos resultados apontados pelas análises de FunNet do *microarray*. Os perfis de marcação obtidos que permitiram o reconhecimento de cada tipo celular estão representados nas Figuras 11, 12 e 13.

Figura 11. Fotomicrografias de astrócitos durante o processo de microdissecção a laser em secções da medula espinal do camundongo. (A) Astrócitos GFAP positivos (setas). (B) Seleção dos astrócitos GFAP positivos para microdissecção. (C) Tecido remanescente após a retirada dos astrócitos. Barra de escala 20µm.

Figura 12. Fotomicrografias de neurônios motores durante o processo de microdissecção a laser em secções da medula espinal do camundongo. (A) Neurônios motores ChAT positivos (setas). (B) Seleção dos neurônios motores ChAT positivos para microdissecção. (C) Tecido remanescente após a retirada dos neurônios motores. Barras de escala 20µm.

Figura 13. Fotomicrografias de microglias durante o processo de microdissecção a laser em secções da medula espinal do camundongo. (A) Microglias Iba1 positivas (setas). (B) Seleção das microglias Iba1 positivas para microdissecção. (C) Tecido remanescente após a retirada das microglias. (D) Representação dos perfis observados utilizando-se o mesmo protocolo de marcação (cabeças de setas), mas utilizando o microsópio Olympus AX70, que possui melhor resolução. Barras de escala 10µm.

A análise do RNA amplificado obtido das células microdissecadas mostrou perfil adequado nos eletroferogramas respectivos (Figura 14), observado a partir da presença de fragmentos com múltiplos tamanhos. Isto sugeriu variabilidade adequada dos RNAs mensageiros.

Figura 14. Eletroferograma dos RNAs mensageiros amplificados em dois ciclos (linha vermelha) com suas representações do marcador de peso molecular (M) e *smear* das amostras (A) de astrócitos (A), neurônios motores (B) e microglias (C) microdissecados. A linha preta representa o marcador de peso molecular.

As amostras enriquecidas dos tipos celulares selecionados por microdissecção a laser foram submetidas à PCRs para certificação de não contaminação por outros tipos celulares. Os marcadores *Gfap*, *Chat* e *Cd68* foram utilizados na avaliação da presença dos astrócitos, dos neurônios motores e das microglias, respectivamente, presentes em cada amostra. Amostra adicional da medula lombar foi utilizada como controle positivo. Os resultados mostraram grau de pureza elevado nas amostras dos 3 tipos celulares (Figura 15).

Figura 15. PCRs para a certificação de pureza das amostras submetidas à microdissecção a laser. Bandas representativas das PCRs para amplificação dos transcritos específicos relativos aos marcadores dos neônios motores (*Chat*), das microglia (*Cd68*) e dos astrócitos (*Gfap*) nas amostras enriquecidas e no tecido total da medula.

As amostras enriquecidas dos atrócitos dos animais de 40 dias foram analisadas por qPCR para os transcritos *Slc1a2*, *Ube2i* e *Cxcr4*. Os resultados mostraram o aumento da expressão dos transcritos *Slc1a2* (*Fold*=16,98; p=0,019) e *Ube2i* (*Fold*=5,53; p=0,048) nas amostras enriquecidas dos astrócitos de animais transgênicos em comparação aos selvagens (Figura 16A e B), enquanto que o transcrito *Cxcr4* mostrou-se com expressão diminuída naquelas amostras (*Fold*=-16,16; p=0,033 – Figura 16C). Por sua vez, os transcritos *Slc17a6* e *Cxcr4* foram analisados qPCR nas amostras enriquecidas dos neurônios motores dos animais de 40 dias. Os resultados mostraram aumento da expressão dos transcritos *Slc17a6* (*Fold*=7,35; p=0,0005) e *Cxcr4* (*Fold*=1,90; p=0,033) nas amostras dos neurônios motores dos animais transgênicos em comparação aos selvagens (Figura 17).

Figura 16. Análise da qPCR dos transcritos *Slc1a2* (A), *Ube2i* (B) e *Cxcr4* (C) em amostras obtidas a partir de astrócitos microdissecados de animais com 40 dias. O gráfico mostra aumento da expressão dos transcritos *Slc1a2* (A) e *Ube2i* (B) e diminuição da expressão de *Cxcr4* (C) nos astrócitos dos animais transgênicos (TG) quando comparados aos selvagens (WT). Resultados são apresentados como média \pm erro padrão. (*) p < 0,05 de acordo com teste-t bilateral.

Figura 17. Análise da qPCR dos transcritos *Slc17a6* (A) e *Cxcr4* (B) em amostras obtidas a partir de neurônios motores microdissecados de animais com 40 dias. O gráfico mostra aumento da expressão de ambos os transcritos nos neurônios motores dos animais transgênicos (TG) quando comparados aos selvagens (WT). Resultados são apresentados como média \pm erro padrão. (*) p < 0,05 de acordo com teste-t bilateral.

Adicionalmente, os transcritos Tap2 e Tuba1a foram analisados por qPCR nas amostras enriquecidas das microglias microdissecadas dos animais de 80 dias. Os resultados mostraram aumento da expressão de ambos os transcritos (Tap2 - Fold=15,17; p=0,015; Tuba1a - Fold=2,01; p=0,041) nas microglias dos animais transgênicos em comparação àquelas dos selvagens (Figura 18A e B).

Figura 18. Análise da qPCR dos transcritos *Tap2* (A) e *Tuba1a* (B) em amostras obtidas a partir de microglias microdissecadas de animais de 80 dias. O gráfico mostra aumento da expressão de ambos os transcritos avaliados nas microglias dos animais transgênicos (TG) quando comparados aos selvagens (WT). Resultados são apresentados como média \pm erro padrão. (*) p < 0,05 de acordo com teste-t bilateral.

Por sua vez, o transcrito *Akt1* foi analisado por qPCR nas amostras enriquecidas dos neurônios motores dos animais de 80 dias. O resultado mostrou diminuição da expressão deste transcrito (*Fold*=-17,04; p=0,0081) nos neurônios de animais transgênicos em comparação aos selvagens (Figura 19).

Figura 19. Análise da qPCR do transcrito *Akt1* em amostras obtidas a partir de neurônios motores microdissecados de animais com 80 dias. O gráfico mostra diminuição da expressão deste transcrito nos neurônios motores dos animais transgênicos (TG) quando comparados aos selvagens (WT). Resultados são apresentados como média \pm erro padrão. (*) p < 0,05 de acordo com teste-t bilateral.

6. DISCUSSÃO

Recentemente, diversos grupos apontam para a participação das células gliais na toxicidade ao neurônio motor na ELA^{22, 58, 133}. A determinação do papel do astrócito e da microglia no início e durante a progressão da doença é dificultada pela complexidade das interações que ocorrem entre as células não neuronais e os neurônios motores. Por outro lado, os modelos *in vitro*, nos quais os mecanismos moleculares podem ser investigados mais facilmente, representam sistemas experimentais demasiadamente simplificados. O uso da metodologia do *microarray* na avaliação da expressão gênica da medula espinal de camundongos transgênicos, aliada à microdissecção a laser dos principais tipos celulares descritos no SNC como envolvidos na patogênese da ELA, cosolida-se como ferramenta valiosa na compreensão dos mecanismos de sinalização dessa patologia complexa.

A avaliação do aparecimento dos sintomas foi realizada por testes que verificaram a condição geral, a força e a coordenação motora dos animais transgênicos e selvagens apartir de 20 dias de vida. Estes testes auxiliaram na escolha das idades investigadas nos estudos moleculares subsequentes e mostraram que as colônias dos animais utilizadas neste estudo comportaram-se da mesma forma que àquelas equivalentes descritas na literatura³³.

Os primeiros sintomas clínicos da doença no animal SOD1^{G93A} são tremores finos em uma ou ambas as patas quando o camundongo é suspenso pela cauda³⁹. Neste modelo, a condição geral dos animais transgênicos, assim como seu peso corporal, começou a diferir dos selvagens na idade de 90 dias. O peso corporal foi de avaliação fácil e não requereu treinamento ou familiaridade com o modelo da ELA¹³⁴. Entretanto, as descrições sobre o peso dos animais SOD1^{G93A} são divergentes na literatura^{20, 39}. Nossos resultados estão de acordo com Weydt e colaboradores¹¹⁷ que também descreveram a perda de peso significativa dos animais transgênicos a partir de 90 dias de vida.

Os testes *rotarod*, *hangwire* e plano inclinado foram aplicados na avaliação da força e da coordenação motora. O *rotarod* foi especificamente desenvolvido para a realização de medidas automáticas de déficits neurológicos nos roedores¹³⁵, e é empregado largamente nas análises da função motora em camundongos. Nossos resultados mostraram que enquanto a habilidade do camundongo SOD1^{G93A} de se manter no *rotarod* foi sempre menor que nos controles, as diferenças entre os grupos apareceram apenas na idade de 90 dias. Esses dados estão de acordo com Kirkinezos e

colaboradores¹³⁶. O *hangwire*, por sua vez, é um teste motor de medida básica simples e de baixo custo e requer apenas a utilização da grade de gaiola-moradia comum³⁴. Da mesma forma que para o *rotarod*, o desempenho dos animais transgênicos foi sempre menor que o dos animais selvagens, apontando diferenças significativas do desempenho apartir da idade de 100 dias, mostrando-se menos sensível que o *rotarod* na avaliação dos sintomas motores.

O teste do plano inclinado requer coordenação das patas traseiras e força muscular para evitar a queda do animal à medida que a plataforma vai sendo inclinada³⁴. O plano inclinado mostrou-se o menos sensível na avaliação dos déficits motores no modelo animal, uma vez que apontou para diferenças entre ambos os grupos apenas na idade de 120 dias. Barneoud et al.¹³⁷ descreveram o déficit precoce no desempenho do plano inclinado nos animais de 60 dias deste modelo, utilizando, entretanto, um protocolo diferente daquele adotado pelo nosso estudo.

Estas análises permitiram a detecção dos déficits motores a partir da idade de 90 dias, conforme descrito acima. Uma vez que o objetivo do estudo foi a identificação das alterações precoces relacionadas ao início da doença, as idades pré-sintomáticas de 40 e 80 dias, respectivamente mais distante e mais próxima do aparecimento dos sintomas, foram escolhidas para as análises moleculares.

A análise do *microarray* apontou 492 genes diferencialmente expressos na medula espinal dos animais SOD1^{G93A} em comparação aos selvagens na idade de 40 dias, enquanto que 1105 foram encontrados diferenciamente expressos nos transgênicos da idade de 80 dias. Assim, mais do que o dobro de genes diferencialmente expressos foram apontados na idade de 80 dias com relação à idade de 40 dias. Esse resultado indica mudanças progressivas, compatíveis com uma doença neurodegenerativa em curso ainda antes do aparecimento dos sintomas. Entre os genes diferencialmente expressos, 60 apareceram em ambas as idades, alguns com a mesma regulação e outros com regulação inversa entre as idades. Interessantemente, esses genes que se repetem em ambas as idades relacionam-se com a via de degradação de RNA (*Lsm6*, *Ddx6*), a via de sinalização de VEGF (*Vegfa, Kras*), processamento e apresentação de antígeno (*Hspa4*, *Rfxank*), proteólise mediada por ubiquitina (*Huwe1*, *Trim37*) e moléculas de adesão celular (*Glg1*, *Ncam1*). Estas vias serão discutidas mais adiante.

A qPCR foi utilizada como ferramenta para verificação dos resultados do *microarray*. Dos 8 genes selecionados para esta etapa, 6 mostraram diferenças

significativas em linha com os resultados apontados pelo *microarray*, enquanto que outros 2 mostraram a mesma regulação que o *microarray*, mas sem diferenças significativas. Grande parte dos trabalhos de *microarray* publicados indicam que *arrays* e qPCR se corroboram qualitativamente¹³⁸. Entretanto, diferenças quantitativas entre ambas as metodologias também são conhecidas¹³⁹. Isto pode estar relacionado à variação na cinética de hibridação entre as metodologias, baixos valores de *fold* ou sinais de hibridização no experimento do *microarray*, ou ainda falta de concordância entre os transcritos acessados por sequências do *microarray* e qPCR¹³⁸. O número de genes validados neste estudo é comparável a outros estudos da literatura^{140, 141}.

Estudos de expressão gênica são realizados na busca das vias moleculares relacionadas à morte do neurônio motor na ELA utilizando modelos animais em diferentes fases da doença e material *post-mortem* de pacientes^{75, 99, 138, 142-153}. Alguns estudos focaram na análise da porção lombar do animal adulto^{99, 143, 145, 150, 152} enquanto outros se basearam na análise de expressão gênica de tipos celulares específicos por meio da microdissecção a laser de neurônios motores^{138, 144, 147, 151} e astrócitos⁷⁵.

As análises dos mecanismos que desencadeiam a morte do neurônio motor na ELA podem incluir avaliação das vias moleculares alteradas nas regiões comumente comprometidas antes do evento da morte do neurônio motor, objetivando o encontro dos alvos terapêuticos capazes de prevenir a progressão da doença. Em 2002, Yoshihara e colaboradores⁹⁹ analisaram as alterações de expressão gênica na medula espinal de animais SOD1^{G93A} pré-sintomáticos de 7 e 11 semanas utilizando uma plataforma restrita representativa de poucas categorias funcionais. Ferraiuolo e colaboradores¹⁴⁴ analisaram o perfil de expressão gênica de neurônios motores microdissecados de animais SOD1^{G93A} pré-sintomáticos de 60 dias empregando arrays que continham cerca de 14.000 genes e Guipponi e colaboradores¹⁴⁵ avaliaram a expressão gênica na medula espinal em um período pré-sintomático de um modelo animal SOD1^{G93A} que desenvolve a doença de forma mais lenta (6 mêses) aplicando uma tecnologia conhecida como SAGE. Ainda, outro trabalho¹⁴³ analisou o perfil de expressão gênica na medula espinal de camundongos SOD1^{G93A} na idade de 55 dias através da plataforma contendo genes considerados relevantes para fisiopatologia do SNC. Este estudo foi o primeiro que avaliou o perfil de expressão gênica da porção lombar da medula espinal em fases présintomáticas da doença no modelo animal em uma plataforma contendo o genoma total do camundongo.

Os genes diferencialmente expressos apontados pela análise estatística foram submetidos às análises enriquecidas de acordo com as bases de dados GO e KEGG, as quais organizam genes em vias e processos biológicos fundamentados em descrições da literatura. A base de dados GO é largamente utilizada na pesquisa molecular em ELA em diferentes estudos^{75, 138, 144}. Os termos apontados pela análise do GO evidenciaram processos biológicos que podem ter relação com a ELA, sobretudo na idade de 80 dias. Os termos transporte pós-Golgi mediado por vesícula, processo catabólico dependente de ubiqutina, ciclo do ácido tricarboxílico e adesão celular, apontados pelos genes super-expressos destacaram-se na idade de 80 dias. Processamento de RNAm foi apontado tanto para genes super quanto para genes subexpressos nesta idade.

Autores também utilizam a base de dados KEGG para identificar vias superrepresentadas baseadas em genes diferencialmente expressos apontados pelas análises de *microarrray*^{154, 155}. KEGG é a base de dados que integra as informações funcionais genômica, química e sistêmica, oferecendo a vantagem de ser fundamentada no conhecimento das interações moleculares e das redes de reação para metabolismo, processamento de informação genética, processos celulares, doenças humanas e desenvolvimento de fármacos¹⁵⁶. A análise KEGG neste estudo apontou vias que podem estar relacionadas à ELA nas idades pré-sintomáticas de 40 e 80 dias do camundongo SOD1^{G93A}. As vias sinapse glutamatérgica, proteólise mediada por ubiquitina, via de sinalização de quimiocina, endocitose, fosforilação oxidativa, processamento e apresentação de antígeno e junção oclusiva foram apontadas para ambas as idades, sugerindo que atividade tóxica possa ocorrer antes do início dos sintomas clássicos. A detecção destas vias complementa as análises anteriores que utilizaram a medula espinal de camundongos SOD1^{G93A} em idade pré-sintomática^{99, 143, 145, 150, 152}.

Em estruturas celulares complexas, como é o caso do SNC, as funções biológicas não podem ser compreendidas sem que se leve em consideração o sistema como um todo. As interações moleculares permitem o funcionamento adequado dos componentes celulares, de forma que determinadas influências podem ter impacto maior que outras. Portanto, a classificação destas interações de acordo com sua importância relativa pode ser útil na exploração da arquitetura funcional de ambientes celulares¹²³.

A análise de redes de co-expressão ganha importância crescente nos estudos de sistemas complexos em diversos domínios, a exemplo daqueles relacionados ao transcriptoma, proteoma, metaboloma, metiloma e outros sistemas celulares¹²³. Estas

redes ilustram as relações complexas entre genes individuais ou vias moleculares, relacionando-os de acordo com seus perfis de expressão¹⁵⁷ e organizando estes em módulos representativos de suas interações¹²³. Medidas de centralidade topológica computadas para estes modelos de redes, como grau de centralidade, são usadas para identificar alvos, uma vez que componentes com maior grau de centralidade têm sido apontados como fundamentais na propagação e modulação de influências funcionais¹²³.

Neste estudo, o grau de centralidade das vias KEGG foi utilizado como parâmetro para seleção de genes a serem avaliados nas células microdissecadas com base nas vias apontadas com maior grau de centralidade. Enfoque foi direcionado à idade de 40 dias, uma vez que o perfil de expressão gênica alí sugere eventos de desencadeamento da doença, enquanto que na idade de 80 dias, as vias super-representadas apontadas são mais sugestivas de cenário reflexo de sinalizações desencadeadas nas fases pré-clínicas anteriores.

A microdissecção a laser de tipos celulares específicos ganha destaque nos estudos que envolvem análise de sistemas biológicos. Esta ferramenta mostra-se particularmente útil na ELA, já que tipos celulares diferentes parecem participar dos eventos relacionados à morte do neurônio motor. A obtenção do RNA íntegro e em quantidade suficiente para análises moleculares, como a qPCR, é o desafio. Muitos grupos que utilizaram a ferramenta empregaram a coloração histoquímica e critérios morfológicos para identificação dos tipos celulares de interesse^{144, 146}. O desenvolvimento da metodologia capaz de permitir a seleção eficiente dos tipos celulares antígeno-específicos e obter RNA com padrão de qualidade nas análises subsequentes foi imprescindível para realização deste trabalho.

KEGG apontou a via sinapse glutamatérgica como aquela de maior grau de centralidade na análise da idade de 40 dias, sendo que a via sinalização de quimiocina também apresentou valor elevado neste parâmetro. Recentemente, *Cxcr4*, apontado na via de sinalização de quimiocina, foi implicado com a regulação da liberação de glutamato pelos astrócitos em situações fisiológicas¹⁵⁸. Ainda, a proteína codificada pelo transcrito *Ube2i* atuou sobre fragmento clivado do transportador de glutamato astroglial EAAT2. Assim, alguns transcritos da categoria sinapse glutamatérgica e os transcritos *Cxcr4* e *Ube2i* foram selecionados para o estudado nos astrócitos e/ou neurônios motores microdissecados de animais da idade pré-sintomática de 40 dias, conforme será discutido a seguir. Com relação à análise de 80 dias, a via fagossomo foi

apontada com alto grau de centralidade, assim os transcritos *Tap2* e *Tuba1a* identificados nesta via foram selecionados para a avaliação nas amostras enriquecidas de microglia desta idade. Por sua vez, o transcrito *Akt1* foi avaliado em neurônios motores dos camundongos de 80 dias.

Interessantemente, a via sinapse glutamatérgica foi destacada por genes superexpressos na idade de 40 dias, enquanto que, nas análises dos animais de 80 dias, esta via foi super-representada tanto pelos genes super quanto pelos subexpressos.

A perda seletiva dos neurônios motores na ELA foi correlacionada aos mecanismos excitotóxicos do neurotransmissor excitatório glutamato nestas células, os quais parecem ser altamente sensíveis à estimulação excessiva dos receptores de glutamato. A modulação do receptor AMPA GluR4, codificado pelo transcrito *Gria4*, sugeriu comportamento dinâmico desta subunidade no curso das fases pré-sintomáticas da ELA, uma vez que sua expressão foi encontrada aumentada nos animais transgênicos de 40 dias e diminuída nos transgênicos de 80 dias.

Redução de GluR4 foi descrita no camundongo SOD1 em fases mais tardias, sem alterações em períodos pré-sintomáticos¹⁵⁹. De fato, outros trabalhos descreveram essa mudança de função sináptica excitatória para inibitória precedendo a degeneração neuronal¹⁶⁰. O aumento da expressão deste transcrito na idade pré-sintomática de 40 dias pode contribuir para toxicidade ao neurônio motor. Enquanto que sua diminuição na idade mais próxima ao aparecimento dos sintomas pode representar um mecanismo transiente reativo à condição de excitotoxicidade.

Ainda, achados interesseantes deste estudo foram o aumento de expressão gênica dos transcritos *Slc17a6* e *Slc1a2*, transcritos estes que codificam para o transportador vesicular de glutamato VGLUT2 e o transportador de glutamato astrocitário EAAT2, respectivamente, na medula espinal de camundongos transgênicos na idade présintomática de 40 dias. Ambos os transcritos não mostraram expressão diferencial na idade de 80 dias. Os transportadores vesiculares de glutamato (VGLUTs) exercem papel essencial na sinalização dos neurônios glutamatérgicos no SNC¹⁶¹, denotando a relevância do nosso achado principalmente por que o transcrito *Slc17a6* foi descrito inalterado nas fases pré-sintomáticas e também diminuído na fase sintomática tardia do modelo animal de ELA^{159, 160, 162}. Outro estudo mostrou que a redução do VGLUT2 por manipulação genética no modelo animal de ELA foi capaz de reduzir a morte neuronal¹⁶³. A avaliação de *Slc17a6* nos neurônios motores microdissecados dos animais de 40 dias mostrou o aumento da sua expressão nos camundongos transgênicos quando comparados aos controles, resultado compatível com aquele do *microarray*. Apesar de alguns estudos descreverem VGLUT2 como expresso principalmente nos interneurônios da medula espinal¹⁶³, outros também apontaram para sua expressão nos neurônios motores do órgão¹⁶⁴. O aumento da expressão gênica do *Slc17a6* na idade de 40 dias pode exacerbar o estado tóxico ao neurônio motor. Estudos adicionais são necessários para esclarecer este aspecto.

O transportador de glutamato glial de alta afinidade EAAT2, ou GLT1, desempenha função essencial na manutenção da homeostase do neurotransmissor na sinapse, evitando a excitotoxicidade ao neurônio motor^{165, 166}. Evidências da sinalização glutamatérgica foram descritas no tecido neuronal de pacientes que morreram de ELA, mas não de Alzheimer ou Huntington, sugerindo uma base molecular específica da ELA⁶⁶. Este fenômeno foi posteriormente atribuído à perda seletiva do transportador de glutamato EAAT2¹⁶⁷. Níveis reduzidos da proteína EAAT2 funcionante e aumento de glutamato foram encontrados no plasma¹⁶⁸ e líquido cerebrospinal de pacientes com as formas familiar e esporádica da ELA e também no modelo animal que expressava a SOD1 mutada^{16, 43, 44, 169}. Outros grupos correlacionaram o aumento do glutamato no líquor à magnitude do dano na medula espinal dos pacientes com ELA^{170, 171}. Níveis aumentados de glutamato e aspartato em microdialisados corticais foram detectados nos animais SOD1 transgênicos em fase final da doença, entretanto este efeito não foi acompanhado da diminuição do EAAT2, sugerindo que outros mecanismos podem contribuir para o aumento dos níveis extracelulares de glutamato nesta região ¹⁷². Os mecanismos que desencadeiam a diminuição de EAAT2 ainda não estão elucidados, e não está claro se síntese/estabilidade reduzida do RNAm pode ser um fator. Níveis normais de RNAm foram reportados nos pacientes com ELA¹⁷³. Entretanto, análise posterior no camundongo SOD1^{G93A} usando hibridização in situ e qPCR revelou redução substancial na atividade do promotor do EAAT2 e da quantidade do transcrito concomitante com o início da doença¹⁷⁴. EAAT2 é diretamente afetado por diversos processos deletérios que ocorrem na ELA, sugerindo que a deficiência de sua função de transporte que resulta no aumento do glutamato extracelular pode ser evento secundário na patogênese da doença⁴. A ativação de caspase-3, ocorrência relativamente tardia¹⁷⁵, resulta na forma truncada inativa do transportador¹⁷⁶ e dano oxidativo na porção Cterminal do EAAT2 diminui a capacidade de transporte do receptor¹⁷⁷. Há também a hipótese de que a diminuição da expressão de EAAT2 seja consequência da disfunção sináptica¹⁷⁴. Interessantemente, quando astrócitos em cultura são transfectados com SOD1^{G93A} ocorre a rápida, seletiva e marcante perda nos níveis protéicos de EAAT2, mas sem redução na transcrição¹⁷⁸. Recentemente, novo sítio de edição do pré-RNAm do EAAT2 foi descrito no íntron 7, o qual foi capaz de ativar um sítio crítico de poliadenilação alternativa, gerando transcrição e níveis reduzidos da proteína. A expressão de *Slc1a2* foi avaliada em astrócitos microdissecados de animais transgênicos e selvagens da idade de 40 dias neste estudo, mostrando-se aumentada nos transgênicos. O aumento da expressão de *Slc1a2* nos astrócitos da idade pré-sintomática de 40 dias pode estar relacionado à tentativa de manutenção dos níveis proteicos do EAAT2 corretamente traduzidos. A ausência desse aumento na fase pré-sintomática de 80 dias pode potenciar a perda da função do transportador, contribuindo para a morte neuronal por excitotoxicidade.

A análise KEGG também apontou para via de sinalização de quimiocinas como super-representada entre os genes super-expressos no camundongo transgênico nas idades de 40 e 80 dias. Quimiocinas exercem funções diversas no SNC e a importância delas na interação entre as células é alvo de investigação¹⁸⁰⁻¹⁸³. Ainda, número crescente de evidências aponta para a correlação entre a desregulação da sinalização de quimiocinas nos pacientes com ELA e o curso clínico da doença^{101, 184-186}.

A super-expressão de quimiocinas nos modelos animais de ELA, como MCP-1, foi correlacionada à ativação glial precoce^{45, 87} e também à infiltração de células dendríticas no início dos sintomas⁸⁷, o que pode contribuir para a toxicidade ao neurônio motor antes da fase de morte neuronal. Interessantemente, a elevação da quimiocina CCL5 (RANTES) foi encontrada no soro e no líquor de pacientes com ELA e na medula espinal de camundongos SOD1^{G93A} em fases mais tardias ^{98, 187}.

O aumento da expressão de *Cxcr4* na medula espinal do camundongo transgênico de 40 dias é particularmente interessante. A análise nas células microdissecadas de animais de 40 dias mostrou diminuição de sua expressão nos astrócitos e aumento nos neurônios motores dos animais transgênicos. Sinalização deficitária de CXCR4 por seu ligante de alta afinidade, o SDF-1/CXCL12, foi descrita nas células progenitoras gliais no modelo animal SOD1^{G93A} e correlacionada às alterações da capacidade de migração destas células¹⁸⁸, sugerindo a presença de alterações gliais na ELA muito precocemente,

já no desenvolvimento. Ainda com relação ao papel do CXCR4 nos astrócitos, este receptor foi implicado na exocitose do glutamato dependente do TNF- α e da PGE2 nestas células¹⁵⁸. A liberação de quantidades aumentadas da PGE2 foi descrita em cultura de astrócitos transgênicos SOD1^{G93A}, mesmo na ausência de estimulação por citocinas⁷⁸. Desta forma, a diminuição do Cxcr4 nos astrócitos microdissecados dos animais de 40 dias pode representar a tentativa de redução da sinalização glutamatérgica nesta idade, algo que também foi sugerido pela regulação do Slc1a2 discutida anteriormente. Contrariamente ao observado nas amostras enriquecidas de astrócitos e consistentemente ao observado nos resultados do *microrarray*, o aumento do transcrito Cxcr4 foi observado nos neurônios motores microdissecados da idade de 40 dias. Estudos descreveram a importância da expressão do CXCR4 no estabelecimento adequado da inervação dos músculos pelos neurônios motores durante o desenvolvimento¹⁸⁹ e no direcionamento adequado dos neurônios motores para sua localização ventral¹⁹⁰. A função desta sinalização no neurônio motor adulto na medula espinal ainda permanece pouco estudada. O seu aumento nos neurônios motores na idade pré-sintomática de 40 dias pode representar a resposta do neurônio motor à retração axonal, uma vez que a sinalização SDF-1/CXCR4 já foi descrita como importante para o guiamento axonal, atuando inclusive na redução da efetividade de múltiplas moléculas que atuam como repelentes axonais¹⁹¹. De fato, intervenções in vivo neste sistema precisam ser cuidadosamente planejadas, tendo em vista a regulação diferencial da expressão deste transcrito em astrócitos e neurônios motores.

A via KEGG proteólise mediada por ubiquitina foi apontada pelos genes superexpressos das idades de 40 e 80 dias. De fato, inclusões intracelulares positivas para a ubiquitina presentes na ELA levam à disfunção do sistema ubiquitina-proteossomo¹⁹²⁻ ¹⁹⁶, evento que ocorre nos astrócitos e nos neurônios motores já nas fases présintomáticas do modelo animal¹⁹⁷. Estudo recente de metanálise apresentou a lista de genes correlacionados à disfunção do sistema ubiquitina-proteossomo nos modelos animais e pacientes com ELA¹⁹⁸. De fato, a atividade proteassomal reduzida foi descrita nos neurônios motores do animal SOD1^{G93A} nas fases pré-sintomáticas da doença¹⁹², sugerindo um papel importante para esta via nas fases pré-sintomáticas da ELA, uma vez que ela pode ser relevante no desencadeamento da morte do neurônio motor.

Nossos resultados do *microarray* apontaram aumento da expressão de *Nedd4*, que codifica para uma E3 ubiquitinta-ligase, na medula espina de camundongos SOD1^{G93A}

da idade de pré-sintomática de 40 dias. A elevação da NEDD4 decorrente de estresse oxidativo *in vivo* foi correlacionada com neuroproteção¹⁹⁹.

Interessantemente, expressão aumentada do transcrito Ube2i foi detectada nas amostras enriquecidas de astrócitos transgênicos de 40 dias. Ube2i codifica a proteína Ubc9, uma enzima conjugadora de moléculas modificadoras do tipo ubiquitina (do inglês, smal ubiquitin-like modifier - SUMO). A modificação do tipo SUMOilação é a principal reguladora da função de proteínas, exerce papel importante em vários processos celulares e envolve a ligação covalente da molécula SUMO aos resíduos de lisina em proteínas específicas através de uma cascata enzimática análoga, mas distinta da via de ubiquitinação²⁰⁰. Estudos demonstraram que a ativação de caspase-3 nos neurônios e astrócitos contribuiu para patogênese da ELA⁷². A caspase-3 é capaz de clivar o receptor de glutamato EAAT2 na sequência consenso 'DTID', bloqueando sua atividade¹⁷⁶. Ainda, o fragmento proteolítico de aproximadamente 25kDa derivado da clivagem da porção C-terminal citoplasmática do receptor EAAT2 (CTE) pela caspase-3 é conjugada à molécula SUMO1 e acumula-se na medula espinal de camundongos SOD1^{G93A} antes mesmo do início dos sintomas. O acúmulo da CTE-SUMO1 em núcleos de astrócitos faz com que os mesmos adquiram propriedades tóxicas que afetam neurônios²⁰¹. O acúmulo prolongado de CTE-SUMO1 no núcleo destes astrócitos é também gliotóxico²⁰¹. Ainda, SUMOilação está envolvida na resposta celular ao estresse oxidativo, à hipóxia, à excitotoxicidade ao glutamato e ao defeito proteossomal, os quais foram relacionados à toxicidade neuronal na ELA²⁰². O aumento da expressão gênica do Ube2i encontrado neste estudo nos astrócitos microdissecados dos animais transgênicos de 40 dias, quando comparados aos animais selvagens, é interessante, uma vez que, apesar de estudos *in vitro* mostrarem efeito tóxico de astrócitos neonatais⁵⁸, experimentos in vivo detectaram astrogliose reativa próxima ao início dos sintomas, após a morte neuronal²⁰³. Dessa forma, estudos adicionais são necessários para a avaliação da implicação precisa da SUMOilação na regulação do balanço entre a resposta adaptativa e a neuroprotetiva ao estresse²⁰⁴ com importância especial na fase pré-sintomática da ELA.

O aumento da expressão do transcrito *Fbxw7* na idade de 80 dias pode estar implicado na proteção do neurônio motor nesta fase que antecede o início dos sintomas clínicos^{205, 206}. A FBXW7, outro membro da família E3 ubiquitina-ligase, é responsável pela conjugação da molécula de ubiquitina ao substrato, portanto podendo estar

envolvido na proteção neuronal. Desta forma, o aumento da expressão de genes relacionados à ubiquitinação nas fases pré-sintomáticas pode refletir a contraposição à formação dos agregados.

As análises também mostraram a diminuição da expressão de genes relacionados à fosforilação oxidativa em ambas as idades pré-sintomáricas do estudo. A fosforilação oxidativa é inerentemente ligada à produção de espécies reativas de oxigênio (EROs) ²⁰⁷. Os níveis de EROs mitocondriais e citosólicos são controlados por sistemas antioxidantes e exercem função de sinalização, sob condições fisiológicas. Entretanto, quando os sistemas antioxidantes falham em manter os níveis de EROs dentro dos limites seguros, então, aumenta-se o risco de danos a moléculas de lipídeos, proteínas e DNA. Adicionalmente, a deterioração progressiva das funções mitocondriais e do sistema de fosforilação oxidativa são também associados à ELA^{41, 207, 208}, eventos que, de fato, ocorrem nas fases pré-sintomáticas da doença^{46, 209}. A disfunção mitocondrial pode agir sobre os mecanismos que desencadeiam a morte do neurônio motor na ELA, por predispô-los à excitotoxicidade mediada por cálcio, por aumentar a produção de EROs e por estimular vias apoptóticas intrínsecas, eventos estes presentes nas fases présintomáticas da doença²¹⁰, portanto favorecendo a vulnerabilidade neuronal. Ressalta-se que o ciclo do ácido tricarboxílico (ATC) foi apontado como termo GO superrepresentado pelos genes super-expressos na idade de 80 dias. O ciclo ATC é responsável por fornecer substrato à fosforilação oxidativa²⁰⁷ e seu aumento foi descrito previamente nos neurônios motores microdissecados do modelo VEGF da ELA no período pré-sintomático da doença¹³⁸.

O rompimento da bareira hematoencefálica foi descrito como evento inicial na ELA²¹¹. Experimentos utilizando a técnica da microscopia eletrônica revelaram o rompimento da junção oclusiva, alterações endoteliais e astrogliais, ruptura de capilares e dano à membrana basal de células endoteliais no camundongo SOD1^{G93A} présintomático²¹². Ainda, toda a unidade neurovascular, que é constituída pelo endotélio, pela junção oclusiva e pela membrana basal, está alterada nos pacientes com ELA e na fase pré-sintomática do modelo animal²¹³⁻²¹⁶. Adicionalmente, níveis reduzidos das moléculas de junção oclusiva zona ocludente-1, ocludina e claudina-5 foram detectados no tecido *post mortem* de pacientes e modelos animais com ELA^{213, 217, 218}. A análise pelo KEGG deste trabalho apontou o aumento da expressão de genes relacionados à junção oclusiva nos animais transgênicos da idade de 40 dias, bem como o aumento e a diminuição de genes desta categoria nos animais transgênicos da idade de 80 dias. A regulação diferencial de genes de junção oclusiva foi correlacionada às características específicas da evolução clínica da ELA²¹⁹, entretanto, estudos adicionais são necessários para o detalhamento da influência da desregulação de junção oclusiva sobre a morte do neurônio motor na doença.

Endocitose foi outra via KEGG apontada como super-representada entre os genes super-expressos nos animais transgênicos de 40 e 80 dias. Os genes apontados para essa via estão relacionados à endocitose dependente/independente de clatrina, à autofagia e também à neurotransmissão^{188, 220-223}. Autofagia é um processo fisiológico necessário para a nenovação/reparo de processos moleculares, envolvendo o sistema ubiquitina proteossomo e atuando na manutenção da estrutura e da função celular²²⁴. Defeitos nesses processos foram implicados na patogênese da ELA²²⁵, embora os estudos em fases pré-sintomáticas sejam escassos^{226, 227}. Nossos resultados mostraram a via endocitose dependente de clatrina nas fases pré-sintomáticas. Os transcritos da proteína adaptadora epsina 1 (Epn1) e da E3 ligase (Wwp1) foram identificados como superexpressos nos animais transgênicos da idade de 40 dias, enquanto que os transcritos da clatrina (*Clta*) e das proteínas adaptadoras relacionadas, a Ap2a1a e a Dnm1, foram diferencialmente expressos nos animais transgênicos de 80 dias. A endocitose mediada por clatrina relaciona-se a diversas funções fisiológicas, a exemplo da regulação de proteínas de superfície, da nutrição, da ativação de vias de sinalização, do tráfego de proteínas, da degradação de componentes de membrana²²³, e também é fundamentalmente importante na reciclagem de vesículas sinápticas²²⁸.

O aumento dos transcritos das proteínas de choque térmico, a *Hspa1a*, também conhecida como Hsp70-3, e a *Hspa8*, chamada ainda de Hsc70 foi observado nos animais de 40 e 80 dias, respectivamente. Trabalhos recentes descreveram que o tratamento com Hsp70 recombinante humana foi capaz de aumentar a sobrevida²²⁹ e diminuir a desnervação da junção neuromuscular²³⁰ no camundongo transgênico SOD1^{G93A}. Este papel protetivo da Hsp70 foi também descrito por outros autores²³¹⁻²³³. Adicionalmente, a regulação da Hsc70 pode ter papel marcante, já que as chaperonas são relacionadas à autofagia^{221, 222}. Ressalta-se que aumento da Hsc70 foi descrito nas frações insolúveis de medula espinal do camundongo transgênico em diferentes fases pré-sintomáticas da doença²³⁴, assim como a ubiquitinação da Hsc70 foi capaz de induzir a degradação da SOD1 mutada¹⁹⁵. Deve-se destacar que a correlação existente

na literatura científica entre autofagia e ELA²³⁵ é mais frequente nas fases sintomáticas, sendo a sua importância nos processos mais precoces da doença objeto para estudos futuros.

A via do processamento e apresentação de antígeno foi apontada pelas análises enriquecidas para ambas as idades deste estudo. Interessantemente, os genes desta categoria mostraram expressão diminuída na idade pré-sintomática de 40 dias e aumentada na de 80 dias nos animais transgênicos. O transcrito B2m, este que parece estar implicado na plasticidade sináptica e na regeneração axonal após axotomia do nervo periférico²³⁶ destacou-se na idade de 40 dias. Sabe-se que após a tradução no retículo endoplasmático, a β2-microglobulina (B2m) se associa com a porção extracelular da cadeia pesada de classe I e esta interação é necessária para expressão da molécula de complexo principal de histocompatibilidade (MHC-I) completa na superfície celular. A diminuição da expressão gênica de B2m na medula espinal do camundongo transgênico na idade pré-sintomática de 40 dias pode estar relacionada à capacidade reduzida do neurônio motor transgênico de responder à retração axonal e desmantelamento da junção neuromuscular, eventos descritos em animais transgênicos de 40 dias²⁰. Esses resultados corroboram achados anteriores que mostraram a redução de MHC-I nos neurônios motores da medula espinal de camundongos transgênicos SOD1^{G93A} de 1 e 2 meses de idade²³⁷. Ainda, estudos mostraram a diminuição da proteína B2m no fluido cerebrospinal dos pacientes com ELA²³⁸, ressaltando a influência deste gene na patologia. A diminuição da expressão de Rfxank nos animais transgênicos da idade de 40 dias apontada por nossas analises está de acordo com descrições anteriores de diminuição da expressão de MHC-II neuronal co-ocorrendo com abundante quantidade de microglias MHC-II positivas circundando neurônios motores SOD1^{G93A} de um mês de idade²³⁷. A proteína RFXANK é uma subunidade constitutivamente expressa no complexo RFX, que se liga diretamente aos promotores dos genes de MHC de classe II²³⁹. Dessa forma, a regulação de *Rfxank*, pode levar a neuroimunomodulação pelas células gliais, especialmente a microglia^{240, 241}.

Por outro lado, na idade de 80 dias, os transcritos apontados para essa categoria relacionam-se principalmente ao MHC-I (*H2-Bl, H2-K1, H2-Q1, H2-Q10, H2-Q2, H2-Q7, H2-T22, H2-T23*) e às moléculas associadas ao transporte de peptídeos $(Tap2)^{242}$. Estudos ainda são necessários para elucidar se as respostas desencadeadas pelo MHC – I são direcionadas pelos neurônios motores ou pela glia vizinha²⁴³. Recentemente, o

aumento da expressão de RNAm que codifica MCH-I, B2m e Tap na microglia e densidades neuronais pós-sinápticas foi correlacionado com a disfunção hipocampal mediada pelo envelhecimento²⁴⁴. Moléculas de MHC-I apresentam peptídeos derivados de antígenos endógenos. Estes peptídeos, originários principalmente de proteínas citosólicas ou nucleares, são gerados pelo proteossomo e translocados para o lúmen do retículo endoplasmático pelo transportador associado com processamento de antígeno (TAP). TAP2 é um membro da família de proteínas transportadoras ligadoras de ATP localizada no retículo endoplasmático²⁴⁵. No retículo endoplasmático, chaperonas geram um complexo heterotrimérico estável contendo a cadeia pesada de MHC-I, B2m e o peptídeo. Este complexo MHC-I sai do retículo endoplasmático através de uma via secretória constitutiva até a superfície celular. Estudo recente mostrou que de cada 10⁴ proteínas degradadas apenas 1 peptídeo é ligado ao MCH-I²⁴⁶. Foi sugerido que isto seja decorrente da degradação destes peptídeos antes da associação à TAP devido à curta meia-vida destes peptídeos determinada pela atividade das aminopeptidases²⁴⁷. Isto explica a relativa ineficiência de moléculas MHC-I em apresentar anígeno.

A expressão de MHC-I pelos neurônios e, particularmente, pelas microglias pode também contribuir para o processo de *stripping* sináptico, ou seja, o desligamento de terminais pré-sinápticos do soma e dendritos de neurônios danificados²⁴⁸, função esta realizada por aquela célula glial ²⁴⁹. A indução de MHC–I na medula espinal de camundongos transgênicos de 80 dias pode contribuir para a morte do neurônio motor por aumentar a sinalização neuroimune ou por alterar a homeostase sináptica, nas suas funções relacionadas à neurotransmissão, neuroplasticidade e neurotrofismo.

Uma vez que o transcrito Tap2 foi também apontado na via KEGG fagossomo na idade de 80 dias, a qual apresentou maior grau de centralidade nesta idade, este transcrito e Tuba1a foram escolhidos para serem avaliados em microglias microdissecadas de animais transgênicos e selvagens. A regulação destes transcritos nas amostras microgliais enriquecidas corrobora descrições das ações tóxicas destas células ativadas, como mobilidade e apresentação de antígeno, aos neurônios ainda na fase présintomática da doença²⁵⁰.

A via do metabolismo de frutose e manose também foi apontada como enriquecida na idade de 40 dias, com destaque para o aumento da expressão gênica do *Pfkfb3*. Lactato e corpos cetônicos são substratos oxidativos excelentes para neurônios^{251, 252}, ao lado da glicose²⁵³, o que ressalta a importância dos astrócitos na

manutenção da homeostase bioenergética do SNC²⁵⁴. A glicose pode ser metabolizada tanto pela glicólise quanto pela via das pentoses²⁵⁵, de forma que a primeira é a forma mais eficiente de produção de ATP²⁵⁶. Número crescente de evidências sugere a existência do balanço entre a glicólise e a via das pentoses. O regulador chave deste processo é a 6-fosfofruto-2-quinase/frutose-2,6-bisfosfatase 3 (PFKFB3)²⁵⁶.

Dados sugerem que, em comparação aos astrócitos, os neurônios possuem capacidade reduzida de metabolizar a glicose através da glicólise²⁵⁷, usando preferivelmente a via das pentoses para este fim^{257, 258}, apesar das controvérsias²⁵⁹. A capacidade glicolítica neuronal reduzida deve-se a níveis negligíveis de PFKFB3 nestas células, resultante de sua degradação constitutiva pelo complexo APC/Cdh1, uma ubiquitina E3-ligase²⁵⁸, isto favorece a via das pentoses em detrimento da glicólise nestas células. Este "roteiro metabólico" possui enorme impacto para sobrevida neuronal²⁵⁸. Neurônios são altamente sensíveis ao estresse oxidativo por possuirem sistema antioxidante dependente de glutationa (GSH) pouco eficiente²⁶⁰, o que ressalta a importância da via das pentoses nestas células ²⁶¹. Dessa forma, a superexpressão de PFKFB3 ou inibição de sua degradação leva a seu acúmulo no citoplasma, aumento da glicólise e inibição da via das pentoses, culminando com baixa regeneração de GSH, levando ao estresse oxidativo e à morte neuronal²⁵⁸.

Em astrócitos, por outro lado, a baixa atividade APC/Cdh1 é responsável por acúmulo de PFKFB3, contribuindo para taxas glicolíticas mais altas nestas células²⁵⁸. Dessa forma, astrócitos produzem lactato, a ser utilizado pelos neurônios para seu metabolismo energético²⁵⁴. Níveis reduzidos de lactato foram descritos na medula espinal do modelo animal da ELA a partir de 40 dias⁷⁵.

Adicionalmente, o Metilglioxal (MG) é outro produto inevitável da glicólise²⁶². O sistema glioxalase, responsável pela degradação do MG, é altamente importante para proteger o SNC dos elementos de glicação avançados. Estudo recente mostrou que o sistema glioxalase dos atrócitos é mais eficiente do que o dos neurônios²⁶³, de forma que os astrócitos se mostraram capazes de proteger os neurônios da toxicidade do MG em cultura²⁶³. Dessa forma, a regulação do metabolismo energético de astrócitos e neurônios motores em fases pré-sintomáticas na ELA precisa ser melhor investigado.

A presença de agregados proteicos na medula espinal de pacientes com ELA familiar e esporádica sugere que o funcionamento deficitário da maquinaria de controle de qualidade de proteína é um fator comum à neurodegeneração⁴. Controle de qualidade

de proteína por degradação associada ao retículo endoplasmático (do inglês, ERAD) também se apresenta desregulado na ELA, levando à sinalização de estresse capaz de induzir a morte neuronal por apoptose²⁶⁴. A SOD1 mutada interfere diretamente com ERAD por ligar-se à derlina-1, uma proteína responsável pela translocação de proteínas maldobradas do lúmen do retículo endoplasmático²⁶⁵ após o início dos sintomas no modelo animal. Estresse sustentado de retículo endoplasmático no animal que expressa a SOD1 mutada leva à ativação de ASK1, uma proteína quinase apoptótica, e a sobrevivência pode ser prolongada por ablação desta proteína²⁶⁵. Adicionalmente, ativação de resposta à proteína não dobrada já foi descrita em fases pré-sintomáticas no modelo animal da SOD1 mutada²⁶⁶. O aumento de expressão gênica de transcritos que fazem parte da via de processamento de proteína no retículo endoplasmático na idade pré-sintomática de 80 dias, mas não na idade de 40 dias, sustenta a hipótese de que o estresse do retículo endoplasmático não deve ser um evento desencadeador da morte neuronal na ELA, e sim um reflexo de outros processos que culminam na sua desregulação em uma idade já próxima ao aparecimento dos sintomas.

A regulação acurada da expressão gênica requer controle apropriado dos níveis de RNAm, que são determinados por taxas relativas da síntese do pré-RNAm, processamento nuclear e *turnover* de RNAm citoplasmático²⁶⁷. A principal via de degradação de RNAm em eucariotos inicia-se com deadenilação, seguida por *decapping* e digestão por exonuclease 5'-3' ou degradação por exonuclease 3'-5'²⁶⁸. A via de degradação de RNA foi apontada como super-representada pelos genes subexpressos na idade de 80 dias a expemplo do *Cnot6* e do *Ddx6*, envolvidos respectivamente nas etapas de deadenilação e *decapping*²⁶⁷⁻²⁶⁹. Com relação ao *Lsm6*, que apresentou-se subexpresso em ambas as idades, a literatura aponta funções para este transcrito tanto relacionadas à degradação de RNAm quanto para a via de spliceossomo. A desregulação das vias de processamento de RNAm é um dos mecanismos patogênicos envolvidos em doenças do neurônio motor²⁷⁰, entretanto, quais RNAs estão afetados em neurônios motores e/ou outros tipos celulares e como essa desregulação do processamento de RNA podem contribuir para a morte neuronal ainda precisa ser melhor estudado.

O VEGF, que está envolvido na manutenção das redes neuronais e da vasculatura, também foi implicado na patogênese da ELA^{271, 272}. A redução de VEGF em animais transgênicos é suficiente para desencadear a neurodegeneração²⁷³. Adicionalmente,

pacientes com ELA apresentam níveis circulantes reduzidos de VEGF no líquido cerebrospinal quando comparados aos controles saudáveis²⁷⁴. A SOD1 contribui diretamente para a deficiência de VEGF por ligar-se à região 3'-não traduzida do seu RNAm, desestabilizando os transcritos e diminuindo sua expressão^{275, 276}. Estas descrições estão em linha com a diminuição da expressão do transcrito *Vegfa* na idade pré-sintomática de 80 dias observada em nossas análises. O transcrito *Akt1*, implicado na via de sinalização do VEGF, foi avaliado em neurônios motores microdissecados de animais de 80 dias e mostrou expressão reduzida nos neurônios obtidos de animais transgênicos. O Akt participa das vias que promovem a sobrevivência neuronal, por aumentar a expressão das proteínas anti-apoptóticas e por suprimir a atividade das pró-apoptóticas²⁷⁷⁻²⁸⁰. Estes resultados corroboram estudos anteriores que descrevem a supressão da via PI3K/Akt em animais SOD1^{G93A} como sendo causa importante da morte do neurônio motor²⁸¹.

7. CONCLUSÕES

 O período sintomático da doença iniciou-se em P90 pela presença dos sinais neurológicos clássicos do modelo nesta idade. As idades pré-sintomáticas eleitas para os estudos moleculares foram P40 e P80.

2. As análises do *microarray* apontaram 492 e 1105 transcritos diferencialmente expressos nos animais de P40 e P80, respectivamente.

3. As análises bioinformáticas apontaram 17 vias super-representadas em P40 e 11 em P80. Destas, as vias sinapse glutamatérgica, endocitose, sinalização de quimiocinas, proteólise mediada por ubiquitina, fosforilação oxidativa, processamento e apresentação de antígeno e junção oclusiva foram comuns a ambas as idades. As vias sinapse glutamatérgica e fagossomo foram apontadas como potencialmente mais importantes em P40 e P80, respectivamente e, portanto, eleitas para análise de alguns de seus transcritos nas amostras enriquecidas obtidas por microdissecção a laser.

4. A análise da via glutamatérgica nas amostras enriquecidas dos astrócitos e dos neurônios motores dos animais de P40 mostraram aumento da expressão do Slc17a6 nos neurônios motores e os aumentos dos Slc1a2 e Ube2i nos astrócitos dos animais transgênicos quando comparados aos selvagens. Aumento e diminuição do Cxcr4 nos neurônios e astrócitos destes animais, respectivamente, foram também observados. Estes resultados indicam a ocorrência de sinalizações capazes de reduzir e também promover o dano neuronal nesta idade. A análise da via fagossomo realizada nas amostras enriquecidas de microglias e neurônio motores de animais de P80 apontou aumento da expressão de Tap2 e Tubala nas microglias e diminuição de Aktl nos neurônios dos animais transgênicos quando comparados aos selvagens. Este perfil dos animais observado nas amostras de 80 dias sugere papel para a neuroimunomodulação nesta idade.

ANEXO A

Ao Departamento de Neurologia

A Comissão de Ética para Análise de Projetos de Pesquisa - CAPPesq da Diretoria Clínica do Hospital das Clínicas e da Faculdade de Medicina da Universidade de São Paulo, em 19.08.09, tomou conhecimento que o Protocolo de Pesquisa nº **0113/08**, intitulado: "Análise de novos mecanismos envolvidos na neurodegeneração da esclerose lateral amiotrófica. Estudo molecular no modelo experimental da doença e avaliação preliminar da possível relação com a clínica" contempla o <u>subprojeto</u> intitulado: "Análise da participação células neuronais e nãoneuronais na esclerose lateral amiotrófica em camundongos transgênicos para SOD1 humana utilizando técnicas de microdissecção a laser e PCR em tempo real " que será <u>tese de doutorado</u> de <u>GABRIELA PINTAR DE OLIVEIRA</u>, tendo como orientador o <u>PROF. DR. GERSON CHADI;</u> bem como tomou CIENCIA do relatório científico parcial nº 1 – referente ao período entre março/08 e agosto/09.

CAPPesq, em 19 de agosto de 2009.

Cas

PROF. DR. EDUARDO MASSAD Presidente da Comissão Ética para Análise de Projetos de Pesquisa

Comissão de Ética para Análise de Projetos de Pesquisa do HCFMUSP e da FMUSP Diretoria Clínica do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo Rua Ovidio Pires de Campos. 225, 5° andar - CEP O5430 010 - São Paulo - SP Fone: 011 - 30696442 fax : 011 - 3069 6492 - e-mail : <u>cappesq@hcnet.usp.br</u> / <u>secretariacappesq2@hcnet.usp.br</u> matc

ANEXO B

```
## Importação dos arquivos .txt
targets <- read.targets("Targets.txt")
dd <- read.AgilentFE(targets, makePLOT=FALSE)</pre>
```

```
## Avaliação do coeficiente de variação de probes replicadas
cv <- CV.rep.probes(dd, "mgug4122a.db", foreground="MeanSignal",
raw.data=TRUE,writeR=FALSE, targets)
genes.rpt.agi(dd, "mgug4122a.db", raw.data=TRUE, WRITE.html=FALSE, REPORT=
FALSE)
```

```
## Correção de background e normalização
ddNORM <-
BGandNorm(dd,BGmethod="normexp",NORMmethod="quantile",foreground="Mean
Signal",background="BGMedianSignal",offset=50,makePLOTpre=FALSE,makePL
OTpost=FALSE)
```

Filtragem das probes por qualidade
ddFILT <- filter.probes(ddNORM,</pre>

```
control=TRUE,
wellaboveBG=TRUE,
isfound=TRUE,
wellaboveNEG=TRUE,
sat=TRUE,
PopnOL=TRUE,
NonUnifOL=T,
nas=TRUE,
limWellAbove=75,
limISF=75,
limSAT=75,
limSAT=75,
limPopnOL=75,
limNonUnifOL=75,
limNAS=100,
```

makePLOT=F,annotation.package="mgug4122a.db",flag.counts=T,targets)

Sumarização das sondas replicadas
ddPROC=summarize.probe(ddFILT, makePLOT=FALSE, targets)

Inserção do símbolo do gene na tabela
obtendo os ID a partir da matriz de expressão
ID <- featureNames(eset)</pre>

Procura dos símbolos para cada ID
Symbol <- getSYMBOL(ID, "mgug4122a.db")</pre>

Construção de um quadro temporário de identificação tmp <- data.frame(ID=ID, Symbol=Symbol, stringsAsFactors=F)</p>

Adicionando NA aos ID que não possuem símbolo
tmp[tmp=="NA"] <- NA</pre>

Montagem da matriz usando os dados criados acima
fData(eset) <- tmp</pre>

limpesa do console para as variáveis usadas rm(ID, Symbol, tmp)

Aplicação da regressão linear design <- cbind("wt-Ref"=1,"tg-wt"=targets\$Cy3=="tg") design fit <- lmFit(eset, design) fit <- eBayes(fit) exp <- topTable(fit,coef="tg-wt")</pre>

ANEXO C

Tabela 10. Todos os genes diferencialmente expressos no animal transgênico SOD1^{G93A} de 40 dias com seus respectivos valores de p e *Fold*. Valores positivos representam genes super-expressos e valores negativos representam genes subexpressos.

ProbaID	Símbolo do Cono	Fold absoluto	Fold Logado	Média de	D Valor
FIODEID	Simbolo do Gene		Fold Logado	Expressão	r.vai01
A_51_P422030	Ocel1	-1.684203903	-0.752066813	7.693641523	0.0193
A_51_P471520	Stk25	-1.511899275	-0.596362028	9.484702689	0.0041
A_51_P468140	Serpind1	-1.50002447	-0.584986036	7.888358881	0.0086
A_51_P366672	Slc36a2	-1.495442306	-0.580572253	6.896484761	0.0434
A_51_P391668	D8Ertd738e	-1.480233806	-0.56582507	9.634933923	0.0358
A 52 P472233	Fcho1	-1.477685061	-0.563338821	8.468305393	0.0108
A_51_P104897	Itpr3	-1.465660969	-0.551551423	9.279208281	0.0310
A 52 P549977	Fam32a	-1.452688813	-0.53872569	8.441035643	0.0483
A_51_P215627	Plac9a	-1.451160261	-0.537206855	8.164177195	0.0258
A 52 P154101	Calca	-1.361205621	-0.444885014	10.50696082	0.0152
A 51 P505521	Hist1h4i	-1.340073761	-0.422312412	7.904763841	0.0123
A 51 P349495	Mboat1	-1.32114865	-0.401792801	7.997191901	0.0257
A 51 P237752	Ptrf	-1.317196395	-0.397470469	9.113590063	0.0401
A 52 P328492	Gas2l3	-1.314062023	-0.394033372	6.758856308	0.0411
A 52 P593268	Lsm6	-1.307745691	-0.387082016	10.03455332	0.0064
A 52 P655743	Lsm6	-1.303050917	-0.381893459	10.28659924	0.0116
A 51 P186703	Fbln5	-1.296806637	-0.37496338	7.802687575	0.0224
A 51 P239654	Nr4a1	-1 29562563	-0 373648913	8 529709806	0.0004
A 51 P501730	Crispld?	-1 282919321	-0 359430447	6732376704	0.0030
A 51 P463552	Wdr78	-1.267688279	-0.342200034	7.930739463	0.0071
A 52 P652859	Lama2	-1 247474731	-0 319010593	6 54549276	0.0318
A 52 P472302	Exvd6	-1 240253353	-0.310634858	10 51150932	0.0346
A 51 P354652	Slc25a30	-1 232895793	-0.302050866	6 665239626	0.0260
A 51 P106538	Htra3	-1 225962661	-0 29391504	7 691205265	0.0200
A 51 P204387	Tmem63c	-1 223706721	-0 291257837	7.505569353	0.0375
A 52 P240542	Id2	-1 21148868	-0 276780925	9 755582691	0.0399
A 51 P431852	Uaerh	-1 21133136	-0 276593568	12 87071714	0.0026
A 51 P448479	Slc10a4	-1 210603032	-0 275725869	9 801 98 20 49	0.0313
A 51 P197850	Nr2c1	-1 208632133	-0 273375203	6 527456847	0.0504
A 51 P432930	Tranne3	-1 204846397	-0.268849233	7 922602777	0.0418
A 51 P291062	Coll6a1	-1 200543621	-0 263687824	8 743457606	0.0351
A 52 P33202	Shisa3	-1 197557086	-0.260094428	6 549308425	0.0383
A 51 P149455	Acadl	-1 196028066	-0 258251244	7 676178571	0.0303
A 51 P246066	Slamf9	-1 195248863	-0 257311033	6783212915	0.0165
A 51 P440923	Sh3nyd2a	-1 19279686	-0 254348365	8 705582483	0.0385
A 51 P173961	Pdrg1	-1 187068491	-0.234348383	10 22646006	0.0303
A 52 P560728	Serhl	-1 185881532	-0 245959893	7 81046069	0.0504
A 51 P295286	1700066M21Rik	-1 182519279	-0.243959695	6 614938881	0.0503
A 51 P482571	Wnt6	-1 181702454	-0 240866819	6 607 549263	0.0046
A 51 P511270	Pou3f1	-1 181446461	-0.240554253	9.640979356	0.0040
A 51 P356760	Micall	-1 180314804	-0.239171694	8 856263311	0.0409
A 51 P129012	B2m	-1 17990474	-0.239171094	8 921867312	0.0407
A 51 P444264	Rtn1	-1.1790474	-0.236906206	12 73174614	0.0074
A_51_P406157	Calch	-1.176665896	-0.230700200	7 647561606	0.0023
A_51_P151862	Lime?	-1.176656605	-0.234704738	9.418441063	0.0252
Δ 51 P101865	Lama?	-1.175510/02	_0.234035340	6740000352	0.0270
Δ 52 P318532	Thy?	-1.1736/8322	-0.233207417	6 805/68010	0.0392
Δ 52 ΡΔ67726	Neg1	-1.1/5040552	-0.251000189	11 83708885	0.0407
Δ 52 D02161	Drn2	-1.107555200	-0.223900038	6700260822	0.0417
A 51 D185071	Calm?	-1.1652/0772	-0.22+002413	12 70660429	0.0278
A 51 P516125	NA	-1.103347773	-0.220703037	0 31/597205	0.0027
A 51 P230439	Pnfihn?	_1 1588511	-0.213727709	9 1 1 3 5 7 1 4 4 0	0.0394
A 51 P316103	Limal	_1 157310414	-0 210775877	8 190774021	0.0324
I 010100		1.10/010414	0.210110011	0.170774021	0.0 <i>52</i> -T

Tabela 10. Continu	ação				
A_52_P640413	Igflr1	-1.155944446	-0.209072064	7.231814262	0.0242
A_52_P117325	Rbl2	-1.155494332	-0.208510183	7.060601177	0.0423
A_52_P475170	4931432P07Rik	-1.154634782	-0.207436591	6.509332538	0.0276
A_51_P181922	Yjefn3	-1.154599579	-0.207392605	7.456058711	0.0167
A_51_P205573	Ndufb11	-1.154046257	-0.206701052	11.95395442	0.0466
A 51 P517982	Gabarapl2	-1.153578907	-0.206116691	10.59975993	0.0329
A 52 P163640	Ccdc126	-1.151889618	-0.204002474	6.730158785	0.0219
A 52 P981680	Rfc2	-1.151798012	-0.203887737	9.677069998	0.0021
A 51 P416419	Calr	-1.150902263	-0.202765322	9.576280091	0.0450
A 52 P590665	Tmem161a	-1 150855496	-0 202706696	8 066935632	0.0333
A 51 P225224	Htra1	-1 150174679	-0.201852983	12 92334571	0.0342
A 52 P677718	Tatdn?	-1 149841808	-0.201435393	6 774786236	0.0342
A 51 P199725	Arhgan24	-1.149194993	-0.201433573	8 24831 5797	0.0324
A 52 P2/1510	Myo1c	-1.149194993	-0.200025012	6.93/629803	0.010
A_52_D562617	Schp4	-1.140/19010	0.100276027	0.934029803 9.655105275	0.0414
A_32_F 303017	580p4	-1.140201044	-0.1993/002/	7.266202021	0.0403
A_32_P341820	Ell4a1	-1.148021009	-0.199149798	7.300202031	0.0331
A_52_P586944	Bmprib	-1.14/23153	-0.198156581	6.709881296	0.0328
A_51_P362429	Myh11	-1.14648192	-0.19/213604	6./91138141	0.0022
A_52_P131254	NA DAW 52	-1.143654516	-0.193651297	12.03548/16	0.0137
A_51_P346715	D4W su53e	-1.142552941	-0.192261015	11.76184176	0.0386
A_51_P414653	Plvap	-1.1400321	-0.189074447	7.388246355	0.0117
A_52_P56751	Lcpl	-1.1400032	-0.189037874	7.721925252	0.0258
A_51_P483180	Snx7	-1.138793936	-0.187506716	7.448905482	0.0435
A_52_P222350	NA	-1.136847658	-0.18503894	7.149428133	0.0039
A_52_P577019	Rps15a	-1.136110947	-0.184103728	10.60917565	0.0483
A_51_P397934	Grin3b	-1.134676342	-0.182280839	8.682239412	0.0225
A_52_P335478	Pole4	-1.134280479	-0.181777426	8.353686974	0.0286
A_52_P562807	3110052M02Rik	-1.134206208	-0.181682958	6.972088679	0.0089
A_52_P362161	Rab3b	-1.133581449	-0.180888054	7.884499914	0.0218
A_51_P292276	Agrn	-1.133564319	-0.180866253	10.96310735	0.0164
A_52_P694988	Zfp933	-1.132539112	-0.179560874	6.445424832	0.0429
A_51_P100063	Lnx1	-1.129828851	-0.176104247	8.056583053	0.0458
A_51_P141136	Тпгсба	-1.129721412	-0.17596705	7.900249839	0.0503
A_51_P153124	Emcn	-1.129320362	-0.175454803	7.924206905	0.0360
A_51_P459477	Coll1a1	-1.1287304	-0.174700935	7.036338775	0.0482
A_51_P394515	Tkt	-1.128632436	-0.174575718	11.97122811	0.0157
A_51_P115178	Scara3	-1.127709761	-0.173395809	6.564525693	0.0296
A_52_P322962	NA	-1.126929489	-0.17239725	6.61055956	0.0219
A 52 P96360	NA	-1.126859871	-0.172308122	8.156790445	0.0482
A 51 P507778	Sdr42e1	-1.126669688	-0.172064614	8.499648072	0.0069
A 52 P484838	Rfxank	-1.126455932	-0.171790875	7.365826798	0.0307
A 51 P319551	Kif3a	-1.12640871	-0.171730395	7.884179598	0.0096
A 52 P272364	Gria3	-1.125954659	-0.171148733	6.452039429	0.0199
A 52 P480141	Plxna1	-1.12547476	-0.170533703	6.971589255	0.0346
A 51 P436878	Sertad1	-1.124149093	-0.16883339	7.508588517	0.0209
A 51 P404875	Synm	-1.122891839	-0.167218969	9.913507348	0.0441
A 52 P473966	Kdelr3	-1 122875907	-0 167198499	6 611004032	0.0236
A 51 P341736	Mmp?	-1 120313494	-0 163902494	6 970641561	0.0230
A 51 P165435	Cox4il	_1 110811506	-0 163255908	12 99347746	0.0242
A 51 P451574	Acot1	-1.119011300	-0.163250533	8 700608108	0.0417
A 52 P/38350	Dnaic10	-1.119571163	-0.162946233	7.070370/01	0.0243
Δ 52 Ρ13/075	Oshnl5	-1.11/5/1105	-0.102740233	9.216608262	0.0404
A 51 P22050	Ktn1	-1.116055505	-0.15915041	11 22066162	0.0142
A 52 D218500	NA	-1.110222394	0.150024755	6 / 57 /07 / 6	0.0130
A_32_F210390	Nal	-1.113//00/0	-0.136039703	0.43/40/400	0.0237
A_32_P02333/	INCI Eth 1	-1.114/88521	-0.150//0052	11.00049059	0.0172
A_32_P49001	run Nyon1	-1.114320981	-0.1501/203	14.80327232	0.0121
A_52_P2/95/9	туарт	-1.1142/9/95	-0.150111538	9.40/302003	0.0400
A_52_P453650	NA O (1	-1.112/1514	-0.154084304	9.3743494	0.0346
A_51_P2/7345	Ustr1	-1.112175795	-0.153384844	8.418080013	0.0397
A_52_P198898	Samd5	-1.111861678	-0.15297732	6.769812595	0.0195
A_52_P179599	NA	-1.111715053	-0.152787054	13.07017311	0.0230
A_51_P331021	Ttc32	-1.110571279	-0.151301992	7.249097334	0.0441

Tabela 10. Continuação..

Tahela 10 Continua	ncão				
A 51 P234113	Nod1	-1.108684025	-0.148848256	8.538987806	0.0376
A 52 P400999	Arhgan31	-1.108404774	-0.14848483	7.510853157	0.0486
A 51 P437426	Lrrc33	-1 107047899	-0 146717645	7 339477658	0.0402
A 51 P153423	NA	-1.105753195	-0.145029411	7.050478404	0.0415
A 52 P515347	Tusc3	-1.104896246	-0.143910902	8.596401451	0.0480
A 51 P247873	Ndufb8	-1 103122379	-0 14159285	12 39090077	0.0151
A 51 P290921	Svtl2	-1 10308751	-0 141547247	8 024316605	0.0292
A 51 P487105	Bud31	-1.103059773	-0.141510971	7.704943805	0.0237
A 52 P685971	Srsf11	-1.101814325	-0.139881125	9.25257059	0.0340
A 52 P324566	Midn	-1.101162374	-0.13902722	8.119583408	0.0321
A 52 P405193	Prkrir	-1.100571066	-0.138252305	6.891052808	0.0188
A 51 P386304	Ccnl2	-1.097999153	-0.134876941	8.534202552	0.0363
A 51 P273843	Spcs2	-1.09726909	-0.13391737	9.995090394	0.0432
A 52 P42380	Tmem106c	-1.097016012	-0.133584584	7.113249978	0.0191
A 51 P293938	Rasl11b	-1.095890876	-0.132104148	8.01933226	0.0250
A 52 P555089	NA	-1.095885221	-0.132096704	9.242270375	0.0430
A 52 P305307	Sh3bp5	-1.094988578	-0.13091582	8.918811607	0.0148
A 52 P424585	Ctnnb1	-1.094700947	-0.130536804	9.827308238	0.0250
A 52 P654604	NA	-1.093764322	-0.129301908	6.938714739	0.0312
A 51 P279851	Dhps	-1.092760706	-0.127977513	8.346201884	0.0156
A 51 P420731	Thy1	-1.088498518	-0.122339443	7.554144872	0.0268
A 52 P53596	Sesn1	-1.088199405	-0.121942945	6.978765026	0.0333
A 51 P325914	Jun	-1.086946108	-0.120280411	7.77928671	0.0428
A 51 P441837	Tmem53	-1.086816145	-0.120107902	7.758364613	0.0496
A 52 P218058	Clec5a	-1.085135891	-0.117875721	6.709141334	0.0284
A 51 P290986	Dhcr7	-1.085029493	-0.117734258	9.819274469	0.0489
A 51 P520936	Bcar3	-1.084056	-0.116439286	7.52614621	0.0419
A 51 P447595	Scube1	-1.083079713	-0.115139427	7.126570672	0.0439
A_52_P112721	Commd8	-1.080863208	-0.112183949	7.741206098	0.0238
A_52_P52964	Hist1h4f	-1.080506219	-0.111707376	9.335413596	0.0442
A_51_P123077	Nubp1	-1.080217197	-0.111321421	7.726310934	0.0485
A_51_P450123	Mrpl36	-1.079043887	-0.109753543	9.061627839	0.0413
A_52_P61691	Cd59b	-1.07739746	-0.107550569	6.438355205	0.0401
A_52_P400355	3110035E14Rik	-1.076535933	-0.106396475	8.581471851	0.0391
A_51_P359333	Fh1	-1.074925128	-0.104236176	10.1440364	0.0451
A_52_P661731	2-Mar	-1.073201431	-0.101920884	9.317653666	0.0397
A_51_P511560	Acsl3	-1.072372389	-0.100805979	10.20132422	0.0345
A_51_P310548	Osgep	-1.070125307	-0.09777974	9.404860589	0.0289
A_51_P465600	Usp48	-1.069989955	-0.097597253	8.09082632	0.0356
A_51_P115159	Fam162a	-1.06785814	-0.094720004	10.04945669	0.0503
A_51_P306160	Map3k13	1.06000923	0.084076826	6.459207426	0.0482
A_52_P342836	NA	1.063238115	0.088464729	7.67427738	0.0503
A_52_P477286	Rab8b	1.063783487	0.089204547	6.480474084	0.0485
A_51_P428781	Pbx4	1.066316259	0.092635391	6.441723827	0.0465
A_51_P451176	Bhlhe41	1.067763349	0.094591934	6.436438696	0.0386
A_52_P354286	Dab1	1.068095347	0.095040439	6.79100819	0.0457
A_52_P971290	NA	1.069426509	0.096837344	6.388147176	0.0414
A_52_P308681	Atxn3	1.069625291	0.097105484	7.143599768	0.0500
A_52_P142912	Pfkfb2	1.069921059	0.097504356	6.563841053	0.0386
A_51_P237548	Dzank1	1.069931708	0.097518715	6.552715259	0.0456
A_52_P400509	Atm	1.070560861	0.098366815	6.648937292	0.0480
A_51_P399653	Crhr2	1.071257523	0.099305335	6.474436128	0.0371
A_52_P475886	Rc3h1	1.07129541	0.099356359	6.462070776	0.0404
A_52_P169181	Auts2	1.071525568	0.099666275	6.448417719	0.0486
A_52_P796682	Ccne1	1.072077481	0.100409175	6.507993066	0.0358
A_52_P156932	Wac	1.072169989	0.100533659	6.594795584	0.0499
A_52_P138126	Ptktb3	1.072316732	0.1007311	6.415542702	0.0347
A_51_P437847	Kctd1	1.072460377	0.100924347	8.346472068	0.0353
A_52_P213004	Pacs2	1.073560622	0.102403659	6.833703418	0.0487
A_52_P201482	Prickle2	1.073812473	0.102742069	6.501700788	0.0287
A_52_P585124	Cxcr4	1.073857874	0.102803065	6.402537647	0.0488
	1/fm149	1 07388/1167	0 102838387	6 6/11158600	0.0485

Tabela 10. Continua	açao				
A_52_P710826	NA	1.074069357	0.103087157	6.590939122	0.0503
A_52_P323074	Epn1	1.074148036	0.103192835	6.516347779	0.0279
A_51_P351948	NA	1.074288187	0.10338106	7.317065768	0.0476
A_52_P423859	Nvl	1.074648261	0.103864535	6.537103582	0.0296
A_52_P367760	Calml4	1.074668881	0.103892216	6.615731351	0.0460
A_52_P336080	Eif5	1.074684921	0.103913748	6.57280199	0.0501
A_52_P69292	Grin1	1.075566303	0.105096461	6.969950477	0.0412
A_51_P260008	NA	1.076006592	0.105686916	6.682705801	0.0439
A_52_P22781	Zfp866	1.076512564	0.106365158	6.907296691	0.0431
A_51_P363525	Fbrsl1	1.076770864	0.106711279	8.258417296	0.0252
A_52_P500077	Zfp551	1.077496328	0.107682953	7.288904681	0.0397
A_51_P185141	Myole	1.077531668	0.107730269	6.742450971	0.0378
A_51_P164895	Slc25a36	1.077626994	0.107857895	6.718675553	0.0314
A_52_P581390	Kif1c	1.077892322	0.108213064	6.60746979	0.0276
A_52_P16209	2610507B11Rik	1.0779773	0.108326798	6.523147977	0.0465
A_52_P155302	Ankib1	1.078182678	0.108601637	6.599670552	0.0447
A_52_P675039	Fhad1	1.078580346	0.10913365	6.548780338	0.0225
A_52_P250278	Dhx29	1.078871379	0.10952288	7.065128526	0.0463
A_51_P511612	NA	1.078895089	0.109554585	6.497744878	0.0443
A_52_P214630	Sox9	1.079332129	0.110138875	7.56642132	0.0361
A_51_P320650	C77370	1.079821367	0.110792669	6.623724702	0.0323
A_52_P459657	Pcsk1n	1.079969242	0.110990225	6.692500328	0.0504
A_51_P352005	Hsd3b4	1.080084326	0.111143954	6.502004016	0.0210
A_51_P285779	Asphd2	1.080109026	0.111176945	9.679522967	0.0445
A_52_P496497	Abhd6	1.080174702	0.111264665	7.753295415	0.0427
A_51_P437608	Tulp3	1.080210077	0.111311912	6.757037836	0.0336
A_51_P459741	Gprasp1	1.080555773	0.111773539	6.802390062	0.0449
A_51_P143103	Pprc1	1.0806461	0.111894134	7.309051064	0.0297
A_52_P303491	Grid2	1.080726417	0.112001355	7.408870504	0.0463
A_52_P168549	Fgf14	1.080767317	0.112055952	6.503691572	0.0403
A_52_P297212	Zkscan3	1.081472863	0.112997465	7.171825888	0.0301
A_52_P550884	Samd12	1.081685368	0.113280921	6.505505258	0.0365
A_52_P380301	Unc5c	1.08174632	0.113362213	7.103945431	0.0477
A_52_P145033	Nisch	1.081915037	0.113587209	6.897340535	0.0345
A_52_P395149	Smtnl2	1.082395231	0.114227387	7.187672298	0.0377
A_52_P561236	Bri3bp	1.082463478	0.114318349	6.932265918	0.0306
A_51_P244154	Lrrc8b	1.082545511	0.114427678	7.238964025	0.0430
A_51_P346893	Extl1	1.082625314	0.114534027	6.685628725	0.0291
A_51_P233267	NA	1.082674133	0.114599082	6.825737504	0.0386
A_52_P947423	NA	1.082993731	0.115024892	6.443921427	0.0174
A_51_P275591	Zfp292	1.083233102	0.115343732	7.05019541	0.0421
A_51_P178575	Brd3	1.083762708	0.11604891	8.930068417	0.0368
A_52_P649296	Nras	1.083837783	0.116148847	6.719202515	0.0248
A_51_P294156	4930422G04Rik	1.083875629	0.116199222	6.6325791	0.0177
A_52_P679711	4930538K18Rik	1.084132684	0.116541336	6.395477475	0.0384
A_51_P437050	Hegl	1.084242532	0.116687507	6.536603336	0.0472
A_51_P332359	Med6	1.084253195	0.116701695	7.155800767	0.0281
A_51_P205820	Klt11	1.084488252	0.117014425	6.469622806	0.0285
A_51_P476900	NA	1.084516882	0.11705251	7.529614971	0.0284
A_51_P156222	Eltnl	1.084828372	0.117/466815	7.722203308	0.0277
A_51_P343350	Amn	1.084980987	0.117669762	7.09/276805	0.0126
A_52_P/38/98	NA L 00	1.085272989	0.118057983	6.476066349	0.0274
A_52_P533724	Ino80	1.08/465512	0.120969648	6.522569488	0.0249
A_52_P118638	Senp5	1.08/738393	0.121331623	6.857888853	0.0347
A_51_P416243	Exosc9	1.08/761545	0.121362329	7.571865451	0.0423
A_52_P51564	Arhgap10	1.08/892308	0.121535749	6.561122387	0.0235
A_51_P393748	Ddx58	1.08/896163	0.121540862	6.502722954	0.0342
A_51_P2/5915	Ubr5	1.088160967	0.121891984	6.723347244	0.0434
A_52_P539414	Gtf2h3	1.088197365	0.12194024	7.200936622	0.0466
A_52_P6120/9	Prepi	1.088308111	0.122087056	8.418121513	0.0503
A_51_P152797	2810039B14Rik	1.088416534	0.122230778	6.588098557	0.0430
A_52_P198289	NA	1.088717408	0.122629531	6.592297673	0.0146

Tabela 10. Continuação.

Tabela 10. Continuação						
A_51_P417758	Fut9	1.088834558	0.122784762	6.403301375	0.0289	
A_52_P582384	Narf	1.089006739	0.123012882	6.720126668	0.0307	
A_52_P527977	Sdk2	1.089072146	0.123099529	7.03488123	0.0199	
A_52_P457028	Mia3	1.089142496	0.123192719	6.417400325	0.0333	
A_51_P408881	Pdlim5	1.089836895	0.124112237	6.638607246	0.0503	
A_52_P459399	Tnrc6b	1.089889086	0.124181325	6.780039284	0.0334	
A 51 P264956	Kif1b	1.089953713	0.124266869	6.545731536	0.0243	
A 52 P574214	Rrp1b	1.090082967	0.124437943	6.570424443	0.0215	
A 52 P627306	Mtf2	1.091288676	0.126032785	7.707880463	0.0270	
A 51 P507851	Gcc1	1 091420049	0.126206451	7 099094354	0.0341	
A 52 P24696	Mgat5	1 091 51 7488	0.126335245	6 4 3 9 9 8 5 4 7 5	0.0138	
A 52 P111145	NA	1.091756086	0.126650573	6 55947474	0.0503	
A 52 P596360	ΝΔ	1.091870408	0.126801636	6 4 5 4 1 4 1 6 6 5	0.0273	
A 52 P266106	Lien38	1.091070400	0.126872667	6 57602032	0.0273	
A_51_D211210	Sorra 2	1.091924108	0.1208/200/	6 725 61 64 10	0.0244	
A_51_F311519	Still5	1.092771147	0.12/991298	7 22428544	0.0434	
A_51_P155054		1.095115955	0.128440440	7.22438344	0.0303	
A_52_P3/9631	Steap2	1.093228073	0.128594413	6.6435/0391	0.0184	
A_52_P333749	Rmdn3	1.093493464	0.128944597	6./5//10651	0.0230	
A_51_P381440	Zfp40	1.093516964	0.1289/5602	6.621030526	0.0334	
A_52_P411358	NA	1.093822534	0.129378689	6.534411904	0.0349	
A_51_P101621	Creb1	1.093834256	0.129394149	7.243676625	0.0502	
A_51_P273044	Baz2a	1.094006336	0.129621093	8.333217638	0.0243	
A_51_P459873	6330411E07Rik	1.094073717	0.129709947	6.844400572	0.0301	
A_52_P5549	Fam133b	1.094180114	0.129850241	7.427069026	0.0470	
A_51_P459091	Ybey	1.094293234	0.129999384	6.630118927	0.0149	
A_51_P520412	Rabl6	1.094552884	0.130341661	8.271860075	0.0483	
A_51_P170987	Rgs7bp	1.095375246	0.131425182	7.710453526	0.0272	
A_52_P545255	Cpsf2	1.095454323	0.13152933	7.043433663	0.0313	
A_52_P462366	NA	1.095787151	0.131967592	6.723106913	0.0120	
A_51_P377045	Malat1	1.095944378	0.13217458	7.214187153	0.0487	
A_52_P662600	Pdlim5	1.096467955	0.132863648	6.601390607	0.0222	
A_51_P355589	Fjx1	1.096966255	0.133519146	7.253413145	0.0293	
A_52_P539434	Lbh	1.097006976	0.1335727	6.551972129	0.0225	
A_52_P287692	Stk32c	1.097803781	0.134620213	6.593477472	0.0233	
A 51 P456466	Mlxipl	1.098291296	0.135260746	6.681335625	0.0206	
A 52 P367294	Fsd11	1.098859243	0.136006597	6.695014527	0.0175	
A 51 P278843	NA	1.099032127	0.13623356	6.917853509	0.0441	
A 52 P348189	Krtcap3	1.099213793	0.136472013	6.455975989	0.0279	
A 52 P540855	Prdx6	1 099271268	0 1 3 6 5 4 7 4 4 5	8 07508804	0.0482	
A 52 P318683	NA	1 099692685	0.137100411	6 673574769	0.0277	
A 52 P22180	Usn38	1 099730448	0.137149952	6 515267626	0.0266	
Δ 52 P218976	Cyld	1 100068973	0.137593982	6 769154602	0.0260	
Δ 52 P497553	Dhfr	1.100000575	0.138049711	6.830856421	0.0204	
A 52 P74368	Slc43a2	1.100410320	0.138244006	7 193275614	0.0220	
Δ 52 P617817	Hsna4	1.100904793	0.138744098	7.006740376	0.0400	
A 51 P1/1290	Ploh?	1 101/81937	0.130/44090	7 186340428	0.0271	
A_52_D416122	1 ICH2 Melet1	1.101401937	0.139443837	7.180340428	0.0323	
A_52_F410125	Ivialat I	1.1010/7499	0.139701930	9 411761070	0.0380	
A_32_P142903	DIU4	1.101700302	0.13973208	8.411/010/9	0.0383	
A_32_P267336	Ell4e5	1.101/3/3/	0.139800809	0.007027152	0.0389	
A_31_P242043	Uncr24	1.102535041	0.140388933	9.00/05/132	0.0192	
A_51_P48/300	Hpcall	1.102010913	0.140923785	9.1230/0934	0.0316	
A_31_P430334	1W11 01-25-11	1.103549951	0.142151934	0.581332991	0.0421	
A_31_P266964	5103501	1.103/03861	0.142353128	6.783821099	0.0300	
A_51_P3/8381	4933436C20R1k	1.104342271	0.14318/378	6.540995642	0.0285	
A_52_P307938	Pik3r1	1.10457173	0.143487109	6.867673555	0.0130	
A_52_P274238	Maea	1.104589372	0.143510152	9.216517126	0.0423	
A_51_P153982	Specc1	1.10496513	0.144000842	10.36876278	0.0412	
A_52_P641849	Khnyn	1.104976735	0.144015994	6.646357294	0.0307	
A_52_P429650	Ncl	1.105305089	0.144444641	7.762715417	0.0501	
A_52_P106251	Git2	1.105704757	0.144966212	6.533630492	0.0350	
A_52_P494230	Brd4	1.106035124	0.145397202	7.652129206	0.0442	
A_52_P381430	NA	1.106212339	0.14562834	6.774465425	0.0167	

Tabela 10. Continua	ıção				
A_51_P418859	Zfp599	1.106683916	0.146243228	6.857594508	0.0401
A_51_P396570	Plod2	1.106784874	0.146374833	6.980406425	0.0066
A_51_P263004	Bcl11a	1.106820882	0.146421768	7.348113464	0.0380
A 52 P54297	Rbm27	1.107246655	0.146976638	6.718332815	0.0079
A 52 P593361	Ash11	1.108127733	0.148124189	6.919764814	0.0129
A 51 P264995	Mtf2	1.108212172	0.148234119	7.808125148	0.0076
A 52 P296913	Cnnm1	1 10911223	0 149405358	10 81097588	0.0118
A 51 P293901	Dhrs1	1 110838798	0.151649472	8 053468511	0.0186
Δ 52 P558713	4930414I 22Rik	1 110935993	0.151775698	6 554407526	0.0367
A 52 P487598	Ncor1	1 112147332	0.153347922	7 5/800601/	0.0263
A 51 P427017	170002011/1Rik	1.112147332	0.153/3223	7.520301780	0.0205
A_52_D247722	Drupo	1.112212323	0.15345225	6 972002227	0.0080
A_32_F24/733	Fluite NA	1.112333361	0.153589507	6 750140902	0.0381
A_52_F 590557	NA	1.11230030	0.153024239	7.029050225	0.0443
A_52_P515459	NA D17W02-	1.11519509	0.154707227	7.038930355	0.0380
A_52_P52263	D1/wsu92e	1.113529151	0.155139327	7.419442866	0.0334
A_51_P5038//	NA	1.113632347	0.1552/3021	7.936411269	0.0198
A_52_P185664	Nipal4	1.113990024	0.155736313	7.403786125	0.0065
A_52_P654108	Dync1li2	1.114046438	0.155809372	7.438670867	0.0354
A_52_P113250	Insig2	1.114743023	0.15671117	7.780341089	0.0347
A_51_P174996	Slc17a6	1.114884714	0.156894534	9.661117151	0.0160
A_51_P247614	Ncrna00086	1.115997395	0.15833366	8.624346081	0.0430
A_52_P328044	Tle1	1.11609064	0.158454196	8.546660005	0.0097
A_51_P443322	Eif3c	1.117044489	0.159686645	8.80385483	0.0434
A_52_P507479	Fam73a	1.117531203	0.160315114	8.032553514	0.0145
A_51_P295022	Nedd4	1.117669233	0.160493295	10.68749727	0.0500
A_51_P480855	Rad18	1.117745696	0.160591991	7.204079109	0.0126
A_52_P69867	Ppme1	1.118136728	0.161096614	7.282451887	0.0356
A_51_P383599	NA	1.118294613	0.161300314	7.976652341	0.0233
A_51_P221510	Fam81a	1.118661088	0.16177302	7.19119251	0.0486
A 52 P407871	Lsm12	1.118875006	0.162048876	7.501752281	0.0103
A 51 P206153	Ptprd	1.11919689	0.162463858	10.866322	0.0339
A 51 P156882	Adarb1	1,119574587	0.162950645	7.020148601	0.0044
A 52 P402989	H2afy	1 119798142	0.163238692	7 658984475	0.0311
A 52 P565940	Nsd1	1 119897579	0.163366795	7 255314113	0.0130
A 51 P201390	NA	1 120018467	0 16352252	6 777798895	0.0066
A 51 P234544	A zin 1	1 120302472	0.1638883	8 682072395	0.0380
A 51 P409452	Cldn11	1.120302472	0.163915282	11 68900386	0.0087
Δ 51 P410581	Hdafm3	1.120323424	0.165316957	7 214797808	0.0280
A 52 P131015	Acap?	1.121412423	0.165358006	0.023574054	0.0200
A 52 P205282	Huwel	1.121444401	0.165953070	7.4/3012756	0.0370
A_51_D470758	Sp/	1.1220/3733	0.168162076	6 600540476	0.0130
A_51_D259009	JU20f2	1.123020127	0.168/28201	6741500526	0.0031
A_52_D147779	U2a12 Eafr1an	1.123041332	0.108438391	6.741390320	0.0102
$A_32_{14//\delta}$	Pama	1.124041438	0.100093222	0.04/933229	0.0102
A_51_P3114/0	Rgma Dhm 10	1.12477702	0.109039899	10.79795087	0.0479
A_31_P203321	KUIIIIU Varfa	1.124902382	0.109/99812	9.143/123/	0.0263
A_52_P249424	Vegra	1.124939165	0.169846985	6.920272007	0.0060
A_51_P196590	Hadn	1.125141415	0.17010634	8.452964723	0.0278
A_52_P3/816/	Pcdha9	1.125482/01	0.170543882	7.032258/18	0.0168
A_52_P383913	Trim35	1.125602906	0.170697958	6.512756669	0.0345
A_52_P18299	Chd5	1.125941849	0.171132319	8.164651351	0.0395
A_51_P406527	Kend2	1.126028057	0.171242776	7.931109216	0.0048
A_51_P202040	Fam98b	1.126032101	0.171247956	7.558490442	0.0486
A_52_P41175	Med131	1.126246743	0.171522934	8.120490845	0.0052
A_52_P470373	Nlk	1.126393655	0.171711112	8.759443215	0.0309
A_51_P463791	Srrm3	1.126466748	0.171804728	8.782258289	0.0393
A_52_P529446	NA	1.127499514	0.173126811	7.583891884	0.0339
A_52_P91346	Mier1	1.127836982	0.173558555	7.359142249	0.0022
A_52_P367791	Mri1	1.128529355	0.174443946	7.237866266	0.0238
A_52_P409778	Wdfy3	1.129515391	0.175703929	7.950130064	0.0334
A_51_P396364	Cdk5rap2	1.12955516	0.175754724	7.177488674	0.0140
A_52_P110257	Wdr83	1.129567152	0.17577004	7.58457257	0.0107
A_52_P108952	Ppp2r5a	1.129728355	0.175975917	7.642048084	0.0448
Tabela 10. Continu	ação				
--------------------	-----------------	-------------	-------------	---------------------------	--------
A_52_P448357	Tspyl4	1.130307107	0.17671481	7.44457408	0.0051
A_52_P294174	U2surp	1.1316316	0.178404369	7.061330014	0.0055
A_52_P585028	Cnep1r1	1.132016053	0.178894417	8.164653801	0.0163
A_51_P251245	Pkp4	1.133180936	0.180378236	8.954950047	0.0501
A_52_P482875	Trak2	1.133192675	0.180393182	6.929500709	0.0029
A_52_P391639	1600029I14Rik	1.133777407	0.181137426	6.50932652	0.0200
A_51_P168762	Tnfrsf21	1.134067349	0.18150632	8.977285037	0.0386
A_52_P271725	Rtn3	1.134249156	0.181737586	8.53186647	0.0465
A 51 P229599	Etnk1	1.135103888	0.182824343	7.446990095	0.0466
A 51 P438293	Smarcal1	1.135257538	0.183019616	7.774412093	0.0166
A 52 P247513	Hook3	1,135578748	0.183427755	7.38564258	0.0245
A 51 P310164	2810459M11Rik	1.135658955	0.183529651	6.631043773	0.0028
A 51 P189343	Map7d1	1.136447547	0.184531097	11.15588338	0.0451
A 52 P322658	Ubaln1	1.136981211	0.185208413	8,789657699	0.0269
A 51 P485391	Parn	1 137175188	0 185454527	7 565714788	0.0221
Δ 51 P441970	Stox2	1 138190901	0.186742551	7 948774003	0.0221
A 52 D535212	Creh3	1.138632402	0.187302175	8 024762386	0.0001
A 52 P1/8/28	Nfix	1.138032472	0.187605376	7.0442366	0.0071
A_52_1140420	Stord 4	1.130071010	0.180238573	7.0442300	0.0023
A_52_D90205	Stalu4	1.140101801	0.189238575	8 720141527	0.0228
A_32_F 69303	Fillius Use5	1.140440777	0.109391329	7.09526201	0.0122
A_32_P022630	Kifle	1.141022810	0.19032704	7.98520501 8 200070281	0.0409
A_51_P458549	KII IC	1.141/65/15	0.191269569	0.005006241	0.0048
A_51_P238090	Scigi Wow 1	1.14162/33/	0.191344783	9.903900341	0.0230
A_52_P404570	W WPI	1.1418/0345	0.191400081	7.340481203	0.0288
A_51_P31/0/6	Usel	1.142132446	0.191729961	8.63048982	0.0386
A_51_P125825	Dzipi	1.1432/2/36	0.19316961	7.526890454	0.0231
A_52_P568028	Ncan	1.14455437	0.194785997	9.358803485	0.0386
A_52_P459143	Cello	1.144/3911	0.195018841	7.709897982	0.0065
A_52_P108089	BC030336	1.145139758	0.195523682	9.023113148	0.0253
A_51_P432432	Pcdn9	1.145169626	0.19556131	8.849190334	0.0114
A_52_P461517	Ubap21	1.145189184	0.19558595	7.450202802	0.0205
A_51_P3/3142	A1854/03	1.145346742	0.195784425	9.61934/433	0.0207
A_51_P504037	Smarca2	1.145849278	0.196417288	8.350059829	0.0416
A_52_P160518	Sfmbt1	1.146332247	0.197025247	6.975984214	0.0154
A_52_P529013	Paip2b	1.146/2/319	0.197522372	6.51314266	0.0385
A_52_P121525	Strbp	1.148112669	0.199264226	6.958952178	0.0186
A_51_P393761	Nduts2	1.148832416	0.200168362	9.480059624	0.0198
A_51_P146063	Nemf	1.149116647	0.200525253	8.942409071	0.0476
A_51_P385258	Miox	1.149365982	0.200838255	6.558471608	0.0425
A_52_P647393	E130308A19Rik	1.150282201	0.201987844	7.732666236	0.0153
A_51_P193379	Mtmr7	1.151546589	0.20357278	7.075658447	0.0469
A_51_P437068	Cnnm1	1.151609298	0.203651343	8.966903305	0.0014
A_51_P184398	Ttbk2	1.151631829	0.203679567	7.121035973	0.0300
A_52_P471088	Ctage5	1.152344218	0.20457173	7.20034488	0.0008
A_52_P345946	NA	1.152602252	0.204894744	6.766469125	0.0458
A_51_P337269	Aldob	1.152717323	0.205038769	7.101947797	0.0293
A_51_P158400	NA	1.153519141	0.206041944	7.22052715	0.0041
A_51_P473383	Tenm4	1.153760139	0.206343326	10.27050127	0.0286
A_52_P79763	Thrap3	1.154622758	0.207421567	7.99299822	0.0298
A_51_P494430	Id4	1.155695559	0.208761403	9.060728487	0.0382
A_51_P117995	Pfkm	1.157042763	0.210442186	11.16043619	0.0380
A_52_P676108	Rnaseh2a	1.158245711	0.21194134	7.454346739	0.0313
A_52_P355276	Smg6	1.158590479	0.212370715	7.522025566	0.0419
A_52_P429944	Apba1	1.159486939	0.213486569	6.816278071	0.0184
A_51_P256246	Tspan13	1.159539831	0.213552379	10.25891092	0.0374
A_52_P7041	Odc1	1.160217354	0.214395104	9.572466104	0.0377
A_52_P559770	Aplp2	1.160240191	0.214423501	7.699855244	0.0125
A_51_P233367	Fzd10	1.160418994	0.214645815	6.855972104	0.0013
A_52_P53948	Srpr	1.160453291	0.214688455	7.598631024	0.0107
A 52 P96782	Wasl	1.160586005	0.214853437	7.99229398	0.0029
A 51 P169061	Lpcat2	1,16122379	0.215646034	8.400541524	0.0486
A 51 P135416	Mpped2	1.161227067	0.215650105	7.892057777	0.0332

Tabela 10. Continue	açao				
A_51_P205545	Creld1	1.162230513	0.216896236	8.462711018	0.0229
A_51_P412835	Daxx	1.162351091	0.217045904	8.774230572	0.0125
A_52_P64601	Msl1	1.162415408	0.217125732	7.241721538	0.0446
A_52_P454950	Ube2b	1.164010963	0.219104646	9.200084473	0.0257
A_52_P493620	Fgfr1op2	1.164231197	0.219377582	8.943154757	0.0411
A_51_P243900	Nell2	1.165558693	0.221021655	9.135431911	0.0157
A_51_P348325	Poc1b	1.166005402	0.221574473	6.763290377	0.0115
A_51_P182572	Phactr1	1.168588356	0.224766819	10.97076802	0.0324
A_52_P239052	Zfp148	1.169052681	0.225339943	8.821128233	0.0074
A_52_P73703	Dnajc27	1.171438925	0.228281738	9.419298513	0.0030
A_51_P406105	Rps4y2	1.171857503	0.22879715	9.728765059	0.0309
A_52_P646312	Plekha5	1.172033713	0.229014068	8.088474634	0.0126
A_52_P447477	Prepl	1.17225475	0.229286125	9.362909227	0.0086
A_52_P75568	Hspa4l	1.173208212	0.230459075	7.561452244	0.0135
A_51_P326764	Acbd3	1.173413943	0.230712039	7.537829577	0.0193
A_52_P382754	Ncam1	1.173624695	0.230971133	10.32414274	0.0498
A_52_P157150	Rassf4	1.17602721	0.233921441	7.380282963	0.0105
A_52_P399175	Rffl	1.176929052	0.235027354	7.926231236	0.0124
A_51_P257885	Mmd2	1.178881888	0.237419182	9.945632967	0.0032
A_52_P516034	Ptp4a1	1.179474175	0.238143831	8.796148684	0.0340
A_51_P125935	Syt11	1.179840406	0.238591724	10.69588436	0.0413
A_51_P323712	Agt	1.182500494	0.241840786	11.8077946	0.0101
A_52_P513167	Larp4b	1.182520602	0.241865319	7.235803649	0.0328
A_51_P501735	Gria4	1.182863197	0.24228323	8.588995508	0.0019
A_52_P536947	Cyfip2	1.183160693	0.242646029	10.31480834	0.0479
A_51_P340200	G3bp2	1.183411583	0.242951921	10.38375846	0.0484
A_52_P168496	Slc1a2	1.185479647	0.245470894	9.157389192	0.0065
A_52_P641629	Gsk3b	1.185692093	0.245729411	7.280433015	0.0089
A_52_P240152	Snx27	1.187467646	0.247888207	8.358103263	0.0077
A_51_P463789	Srrm3	1.187526668	0.247959912	9.732121121	0.0264
A_51_P454280	Chd4	1.190007151	0.250970243	8.114276243	0.0007
A_52_P82741	Hspala	1.190469624	0.251530809	8.2218115	0.0191
A_51_P377237	Kras	1.190898136	0.252050017	7.580098801	0.0063
A_51_P249544	Haus8	1.193622545	0.255346691	8.381915399	0.0160
A_51_P498640	Pdxk	1.19531363	0.257389206	9.207620776	0.0078
A_52_P592305	Kene1	1.19533885	0.257419645	8.9397215	0.0437
A_52_P243658	Edil3	1.197187585	0.259649223	7.463260626	0.0056
A_52_P45708	Vezf1	1.197265464	0.25974307	8.724976195	0.0017
A_51_P479659	Eif5b	1.197466842	0.259985708	8.633395821	0.0483
A_52_P317393	Gpr56	1.204563832	0.268510846	8.955/96891	0.0019
A_52_P136275	Tgs1	1.205867032	0.270070833	8.279374759	0.0076
A_51_P492528	D3Bwg0562e	1.209901382	0.27488946	8.558949354	0.0283
A_52_P599728	Mapla	1.214205888	0.280013075	8.958328595	0.0035
A_52_P636830	G3bp2	1.216434846	0.282659049	9.820957461	0.0290
A_52_P053585	Gnail	1.21/2068/6	0.2835/4389	8.9818/8886	0.0223
A_51_P419389	Bmpr2	1.218509776	0.285117825	7.805445259	0.0498
A_52_P18/855	1rim3/	1.220822007	0.28/8528/4	10.25064594	0.0108
A_32_P413363	ram120a	1.2250/1882	0.292866403	7.005110245	0.0361
A_52_P846109	Mapia	1.230327776	0.29904272	7.995119245	0.0140
A_51_P518528	Dpy1911	1.2316/9953	0.300627426	10.019/5596	0.0018
A_32_P38000	ACDUS Most2	1.2541/9419	0.303552141	1.38321373	0.01//
A_52_P031391	Mast5	1.23/306964	0.307203463	8.824230038	0.0442
A_31_P300981	Map/	1.259100402	0.3093/0003	1.130/20120	0.0124
A_51_P102789		1.25/881858	0.330996429	8.255815989	0.0134
A_32_P133100	SICIII I Klbda10	1.282454468	0.338907605	11.33220309	0.041/
A_31_F4/9328	KIIIUCIU Eovn2	1.28443013	0.301133132	0.7/100002	0.0282
A 52 D270750	Clg1	1.204/2//01	0.301402011	0.703030070	0.0074
A 51 D1/2175	Lancl1	1.2001/001/	0.30308220	7.504041009	0.0014
A 57 D654065	Fif3i2	1.291133910	0.36806444	7 082257500	0.0001
A_J2_F0J490J	Tmom501	1.29100098	0.30000441	11 5265 2204	0.010/
A_31_P213038	Ddy6	1.293148039	0.376011222	11.52053294	0.0019
A J2 FJ/349/	DUXU	1.296008/9/	0.3/0911331	1.732120910	0.0019

Tabela 10. Conclusão.	la 10. Conclus	são
-----------------------	----------------	-----

A_51_P419319	Aqp4	1.307324867	0.386617691	10.1316974	0.0113
A_52_P250517	Zfp106	1.307554575	0.386871163	7.129419128	0.0233
A_51_P509997	Cox6a2	1.345903439	0.428574909	7.663388985	0.0203
A_52_P191567	Plc11	1.346240062	0.428935695	7.853744491	0.0333
A_51_P419086	Gadd45gip1	1.365883402	0.449834334	9.64219593	0.0444

Tabela 11. Todos os genes diferencialmente expressos no animal transgênico SOD1^{G93A} de 80 dias com seus respectivos valores de p e *Fold*. Valores positivos representam genes super-expressos e valores negativos representam genes subexpressos.

Ductor	Símbolo do			Média de	D.V.1.
ProbeID	Gene	Fold absoluto	Fold Logado	Expressão	P. valor
A_51_P422030	Ocel1	-1.926137195	-0.945710467	7.380022796	0.004
A_52_P567281	NA	-1.802418196	-0.849933783	10.48723334	0.015
A_52_P442031	Klf2	-1.757929594	-0.813877291	11.42533989	0.013
A_52_P527944	Ptprz1	-1.729486407	-0.790343675	14.69646178	0.000
A_52_P586928	Pdyn	-1.679497739	-0.748029853	10.16510915	0.017
A_51_P318830	Syt10	-1.66243188	-0.733295226	8.958153717	0.005
A 52 P549977	Fam32a	-1.617644597	-0.693894677	8.317250618	0.008
A_52_P336748	NA	-1.604941822	-0.682521002	11.6145284	0.001
A_51_P128075	Tescl	-1.5519168	-0.634051215	6.67612467	0.016
A_52_P292251	NA	-1.532726727	-0.616100499	6.791582186	0.044
A_52_P313382	Tfap2e	-1.419602225	-0.505486741	8.82959688	0.049
A_52_P2670	Rmrp	-1.417508964	-0.503357858	7.381494135	0.047
A 51 P180747	Ctla2a	-1.400991151	-0.486447844	7.934491912	0.011
A 51 P440682	Cap1	-1.388451673	-0.473476963	7.262431519	0.038
A 51 P309618	Yae1d1	-1.383809679	-0.468645537	7.006236848	0.000
A 51 P300759	Ppih	-1.381266607	-0.46599181	8.120232642	0.000
A 51 P178083	Resp18	-1.361433559	-0.445126578	10.4724229	0.003
A 52 P187855	Trim37	-1.345616344	-0.428267134	10.06505455	0.011
A 52 P676406	Cdc3711	-1.320687689	-0.401289345	9.386810779	0.013
A 51 P259118	Klh11	-1.319513878	-0.400006525	8.413875297	0.002
A 52 P176983	9530080011Rik	-1.317211804	-0.397487345	10.27860007	0.009
A 52 P513624	NA	-1.316198465	-0.396377044	7.561510257	0.024
A 52 P425634	2610005L07Rik	-1.312715864	-0.39255468	9.013941293	0.008
A 51 P267544	Fro1	-1 308483728	-0 387895983	7 614467992	0.009
A 51 P358894	Ttc9b	-1 303669965	-0 382578686	8 144690401	0.028
A 52 P555537	2810008D09Rik	-1 298972997	-0 377371441	9 599079269	0.003
A 51 P403704	2610100L16Rik	-1.298511238	-0.376858499	7.578343661	0.016
A 52 P94874	Gnas	-1 294467869	-0 372359155	7 463768948	0.017
A 52 P655743	Lsm6	-1 292192803	-0.369821345	10 34870526	0.019
A 52 P846109	Manla	-1 288507184	-0.365700581	8 006607885	0.019
A 52 P482124	Fam32a	-1.287988029	-0.365119185	8.119495815	0.024
A 51 P449824	Exoc3l2	-1 285364759	-0.362177823	6 550582038	0.021
A 52 P127892	NA	-1 283170792	-0 359713208	7 66589616	0.001
A 51 P383644	Amv1	-1 282838864	-0 359339967	9 219959673	0.025
A 51 P400269	Slc38a5	-1 280588961	-0 356807478	8 289531475	0.003
A 51 P493234	Cn	-1 28044151	-0 356641352	7 491880958	0.046
A 52 P335089	2610005L07Rik	-1 279291893	-0 355345479	7 515241667	0.009
A 52 P258959	NA	-1 275018075	-0 350517699	8 504297755	0.0024
A 51 P489522	Ctla2h	-1 274483469	-0 34991266	7 272573401	0.017
A 51 P456465	Cldn10	-1 270406101	-0 345289746	9 55478568	0.025
A 52 P593268	Lsm6	-1.269121132	-0.343829775	10.08061305	0.023
A 52 P654965	Eif3i2	-1.268678859	-0.343326925	8.026880979	0.023
A 52 P477752	Csnklal	-1.266366548	-0.340695051	7.95235847	0.007
A 52 P94201	Svt1	-1 26512546	-0 339280461	7 517121807	0.013
A 52 P490874	Srrm4	-1 261495052	-0 335134548	7 439101524	0.013
A 51 P319562	Ank2	-1 260915604	-0 334471716	8 206160891	0.001
A 52 P392456	Rnd3	-1.260901561	-0.334455648	6.403321542	0.002

	çuo				
A_51_P323443	Vapb	-1.260828176	-0.334371681	8.484951047	0.024
A_51_P419389	Bmpr2	-1.257009377	-0.329995412	7.756211883	0.032
A_52_P646312	Plekha5	-1.254382578	-0.326977427	8.27636289	0.042
A_51_P147684	Nr2f2	-1.252326426	-0.324610657	7.225899386	0.041
A_52_P289835	Foxn3	-1.251587844	-0.323759552	8.582021884	0.019
A 51 P227866	Tmx4	-1.247608537	-0.319165329	9.100258112	0.011
A 51 P278018	Vps36	-1.247199457	-0.318692205	9.161045819	0.002
A 52 P588483	Fbln1	-1.246878255	-0.318320608	7.220161224	0.019
A 51 P448458	Dnm3	-1.246042528	-0.317353309	8.340725849	0.019
A 51 P366867	Gas5	-1 245204965	-0 316383235	10 75795389	0.004
Δ 52 P103929	Suss Svt1	-1 244545289	-0.315618731	9.832449582	0.043
A 52 D423128	Arghul	1 235103648	0.304737230	10.0844030	0.045
A_51_D445487	2410066E13Dil	-1.233193048	0.304737239	7 525047862	0.007
A_51_P460002	2410000ETJKIK	-1.234023098	-0.304073720	7.925047802	0.022
A_31_F409902	Drf214	-1.233773983	-0.303078131	7.093272730	0.015
A_52_P300387	Kn1214	-1.231280384	-0.300159320	10.47544202	0.020
A_52_P6/0399	NA	-1.2294/4863	-0.298042239	10.4/544302	0.000
A_52_P684050	Fam110a	-1.228010841	-0.296323297	6.714388179	0.016
A_51_P269634	Zfp14	-1.226/10333	-0.294794621	7.333505148	0.014
A_51_P388587	AY036118	-1.225439893	-0.293299723	10.38182508	0.005
A_52_P683146	Cdh11	-1.222173101	-0.289448634	7.642475688	0.016
A_52_P484838	Rfxank	-1.219505847	-0.286296675	7.251116711	0.017
A_52_P75384	B230219D22Rik	-1.218343286	-0.28492069	8.731694671	0.033
A_51_P377045	Malat1	-1.213035689	-0.278621997	6.947858181	0.014
A_51_P224843	Tmsb4x	-1.211999378	-0.277388958	12.40158994	0.041
A_52_P490863	Nop10	-1.209357326	-0.274240577	10.27543386	0.010
A_51_P351923	A030009H04Rik	-1.208325062	-0.273008619	9.088167808	0.005
A_51_P328769	Rnf20	-1.206884388	-0.271287481	8.596512199	0.030
A 51 P204831	Crip1	-1.206237313	-0.270513769	7.110367028	0.024
A 51 P243596	Mllt6	-1.205499707	-0.2696313	6.719634729	0.032
A 52 P997449	NA	-1.203613133	-0.267371753	7.116169877	0.003
A 51 P160625	Wanal	-1.201231429	-0.264514127	7.809250055	0.025
A 52 P199905	Slc27a1	-1 200134033	-0.263195537	8 39802795	0.003
A 51 P184024	Tsen15	-1 20019737	-0.263058135	9 122772489	0.031
A 51 P114462	Ccl17	-1 198968516	-0.261793775	6 399026857	0.041
Δ 51 P476820	Calr3	-1 197903921	-0.260512201	6 698374672	0.034
Δ 51 P516833	Inf?	-1 196682325	-0 25904022	7 67443927	0.022
A 51 P133953	NA	-1.196/3136	-0.259737631	0 150072806	0.022
A_51_P206775	NA	1 106124670	0.258367777	10.0854274	0.013
A_52_D5204	1910022V00D:1	-1.190124079	-0.238307777	0.892614221	0.007
A_51_D441262	1010022K09KIK	-1.194/0030/	11 156 110 150		0.007
A $11 F441/03$		1 102072075	-0.256/28458	9.885014221	0.007
A 52 D572407	Rp13/a	-1.193972975	-0.256728458 -0.255770182	9.885014221 12.1711159	0.007
A_52_P573497	Ddx6	-1.193972975 -1.193944312	-0.256728458 -0.255770182 -0.255735548	9.885014221 12.1711159 7.80357614	0.007 0.014 0.004
A_51_P463789	Rpi3/a Ddx6 Srrm3	-1.193972975 -1.193944312 -1.192897791	-0.256728458 -0.255770182 -0.255735548 -0.254470436	9.883614221 12.1711159 7.80357614 9.587991167	$ \begin{array}{r} 0.007 \\ 0.014 \\ 0.004 \\ 0.020 \\ 0.022 \end{array} $
A_52_P573497 A_51_P463789 A_51_P305843	Kp137a Ddx6 Srrm3 Chordc1	-1.193972975 -1.193944312 -1.192897791 -1.192029846	-0.256/28458 -0.255770182 -0.255735548 -0.254470436 -0.253420358	9.883014221 12.1711159 7.80357614 9.587991167 8.382468622	$ \begin{array}{r} 0.007 \\ 0.014 \\ 0.004 \\ 0.020 \\ 0.002 \\ 0.002 \\ 0.042 \\ 0.002 \\ 0.002 \\ 0.042 \\ 0.002 $
A_52_P573497 A_51_P463789 A_51_P305843 A_52_P205282	Rp137a Ddx6 Srrm3 Chordc1 Huwe1	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415	-0.256/28458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156	9.883014221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052	$ \begin{array}{r} 0.007 \\ 0.014 \\ 0.004 \\ 0.020 \\ 0.002 \\ 0.043 \\ 0.043 \end{array} $
A_51_P13397 A_51_P463789 A_51_P463789 A_51_P305843 A_52_P205282 A_51_P337662	Rp137a Ddx6 Srrm3 Chordc1 Huwe1 Ddx26b	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197	-0.256/28458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252858156	9.883014221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278	$\begin{array}{r} 0.007\\ 0.014\\ 0.004\\ 0.020\\ 0.002\\ 0.043\\ 0.043\\ 0.043\\ 0.043\\ \end{array}$
A_51_P463789 A_51_P463789 A_51_P305843 A_52_P205282 A_51_P337662 A_51_P441942 A_51_P441942	Rp137a Ddx6 Srrm3 Chordc1 Huwe1 Ddx26b Tial1	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197 -1.191345725	-0.256/28458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252854259 -0.252592139	9.883014221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278 9.861748833	0.007 0.014 0.004 0.020 0.002 0.043 0.043 0.043
A_51_P11283 A_52_P573497 A_51_P463789 A_51_P305843 A_52_P205282 A_51_P337662 A_51_P441942 A_51_P317443	Rp137aDdx6Srrm3Chordc1Huwe1Ddx26bTial1Cd3eap	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197 -1.191345725 -1.190534179	-0.256/28458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252854259 -0.252592139 -0.251609039	9.883014221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278 9.861748833 8.069760011	0.007 0.014 0.004 0.020 0.002 0.043 0.043 0.019 0.033
A_51_P11283 A_52_P573497 A_51_P463789 A_51_P305843 A_52_P205282 A_51_P337662 A_51_P441942 A_51_P317443 A_52_P163820	Rp137aDdx6Srrm3Chordc1Huwe1Ddx26bTial1Cd3eap2810006K23Rik	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197 -1.191345725 -1.190534179 -1.189848731	-0.256/28458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252854259 -0.252592139 -0.251609039 -0.250778171	9.883614221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278 9.861748833 8.069760011 6.988481155	0.007 0.014 0.004 0.020 0.002 0.043 0.043 0.019 0.033 0.024
A_51_P463789 A_51_P463789 A_51_P305843 A_52_P205282 A_51_P337662 A_51_P441942 A_51_P317443 A_52_P163820 A_51_P460710	Rp137aDdx6Srrm3Chordc1Huwe1Ddx26bTial1Cd3eap2810006K23RikTdrd3	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197 -1.191345725 -1.190534179 -1.189848731 -1.189155799	-0.256/28458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252854259 -0.252854259 -0.252592139 -0.251609039 -0.250778171 -0.249937745	9.883614221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278 9.861748833 8.069760011 6.988481155 8.290330903	0.007 0.014 0.004 0.020 0.043 0.043 0.043 0.019 0.033 0.024 0.008
A_51_P463789 A_51_P463789 A_51_P305843 A_52_P205282 A_51_P337662 A_51_P41942 A_51_P317443 A_52_P163820 A_51_P460710 A_52_P26976	Rp137aDdx6Srrm3Chordc1Huwe1Ddx26bTial1Cd3eap2810006K23RikTdrd3Rbm28	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197 -1.191345725 -1.190534179 -1.189848731 -1.189155799 -1.188151111	-0.256/28458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252858156 -0.252854259 -0.252692139 -0.251609039 -0.250778171 -0.249937745 -0.248718332	9.883614221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278 9.861748833 8.069760011 6.988481155 8.290330903 7.443662957	$\begin{array}{c} 0.007\\ 0.014\\ 0.004\\ 0.020\\ 0.002\\ 0.043\\ 0.043\\ 0.043\\ 0.019\\ 0.033\\ 0.024\\ 0.008\\ 0.015\\ \end{array}$
A_51_P463789 A_51_P463789 A_51_P305843 A_52_P205282 A_51_P337662 A_51_P317443 A_52_P163820 A_51_P460710 A_52_P26976 A_52_P239023	Rp137aDdx6Srrm3Chordc1Huwe1Ddx26bTial1Cd3eap2810006K23RikTdrd3Rbm28Zfp955a	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197 -1.191345725 -1.190534179 -1.189848731 -1.189155799 -1.188151111 -1.187666777	-0.256728458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252858156 -0.252854259 -0.252692139 -0.251609039 -0.250778171 -0.249937745 -0.248718332 -0.248130117	9.883014221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278 9.861748833 8.069760011 6.988481155 8.290330903 7.443662957 7.058780904	$\begin{array}{c} 0.007\\ 0.014\\ 0.004\\ 0.020\\ 0.002\\ 0.043\\ 0.043\\ 0.043\\ 0.019\\ 0.033\\ 0.024\\ 0.008\\ 0.015\\ 0.018\\ \end{array}$
A_51_P463789 A_51_P463789 A_51_P305843 A_52_P205282 A_51_P337662 A_51_P317443 A_52_P163820 A_51_P460710 A_52_P26976 A_52_P239023 A_51_P337708	Rp137aDdx6Srrm3Chordc1Huwe1Ddx26bTial1Cd3eap2810006K23RikTdrd3Rbm28Zfp955aOvgp1	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197 -1.191345725 -1.190534179 -1.189848731 -1.189155799 -1.188151111 -1.187666777 -1.186589713	-0.256728458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252858156 -0.252854259 -0.252592139 -0.251609039 -0.250778171 -0.249937745 -0.248718332 -0.248130117 -0.246821181	9.883014221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278 9.861748833 8.069760011 6.988481155 8.290330903 7.443662957 7.058780904 7.903334269	0.007 0.014 0.004 0.020 0.002 0.043 0.043 0.043 0.019 0.033 0.024 0.008 0.015 0.018 0.014
A_51_P11203 A_52_P573497 A_51_P463789 A_51_P305843 A_52_P205282 A_51_P337662 A_51_P317443 A_52_P163820 A_51_P460710 A_52_P26976 A_52_P239023 A_51_P337708 A_52_P124812	Rp137aDdx6Srrm3Chordc1Huwe1Ddx26bTial1Cd3eap2810006K23RikTdrd3Rbm28Zfp955aOvgp1Usp15	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197 -1.191345725 -1.190534179 -1.189848731 -1.189155799 -1.188151111 -1.187666777 -1.186589713 -1.186550829	-0.256728458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252858156 -0.252854259 -0.252692139 -0.251609039 -0.250778171 -0.249937745 -0.248718332 -0.248130117 -0.246821181 -0.246773904	9.883014221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278 9.861748833 8.069760011 6.988481155 8.290330903 7.443662957 7.058780904 7.903334269 7.787086065	0.007 0.014 0.004 0.020 0.002 0.043 0.043 0.043 0.019 0.033 0.024 0.008 0.015 0.018 0.014 0.006
A_51_P1203 A_52_P573497 A_51_P463789 A_51_P305843 A_52_P205282 A_51_P337662 A_51_P317443 A_52_P163820 A_51_P460710 A_52_P20923 A_51_P337708 A_52_P124812 A_52_P240152	Rp137aDdx6Srrm3Chordc1Huwe1Ddx26bTial1Cd3eap2810006K23RikTdrd3Rbm28Zfp955aOvgp1Usp15Snx27	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197 -1.191345725 -1.190534179 -1.189848731 -1.189155799 -1.188151111 -1.187666777 -1.186589713 -1.186550829 -1.185609522	-0.256728458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252858156 -0.252854259 -0.252692139 -0.251609039 -0.250778171 -0.249937745 -0.248718332 -0.248130117 -0.246821181 -0.246773904 -0.245628939	9.883014221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278 9.861748833 8.069760011 6.988481155 8.290330903 7.443662957 7.058780904 7.903334269 7.787086065 8.133965308	0.007 0.014 0.004 0.020 0.002 0.043 0.043 0.043 0.019 0.033 0.024 0.008 0.015 0.018 0.014 0.006 0.047
A_51_P1233 A_52_P573497 A_51_P463789 A_51_P305843 A_52_P205282 A_51_P337662 A_51_P317443 A_52_P163820 A_51_P460710 A_52_P20923 A_51_P337708 A_52_P124812 A_52_P240152 A_51_P459240	Rp137aDdx6Srrm3Chordc1Huwe1Ddx26bTial1Cd3eap2810006K23RikTdrd3Rbm28Zfp955aOvgp1Usp15Snx27Gstk1	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197 -1.191345725 -1.190534179 -1.189848731 -1.189155799 -1.188151111 -1.187666777 -1.186589713 -1.186550829 -1.185609522 -1.184776589	-0.256728458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252858156 -0.252854259 -0.252692139 -0.251609039 -0.251609039 -0.250778171 -0.249937745 -0.248718332 -0.248130117 -0.246821181 -0.246773904 -0.245628939 -0.244615038	9.883614221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278 9.861748833 8.069760011 6.988481155 8.290330903 7.443662957 7.058780904 7.903334269 7.787086065 8.133965308 8.902797691	0.007 0.014 0.004 0.020 0.043 0.043 0.043 0.019 0.033 0.024 0.008 0.015 0.018 0.014 0.006 0.047 0.017
A_51_P1233 A_52_P573497 A_51_P305843 A_52_P205282 A_51_P337662 A_51_P317443 A_52_P105820 A_51_P460710 A_52_P20923 A_51_P337708 A_52_P124812 A_52_P240152 A_51_P459240 A_52_P387458	Rp137aDdx6Srrm3Chordc1Huwe1Ddx26bTial1Cd3eap2810006K23RikTdrd3Rbm28Zfp955aOvgp1Usp15Snx27Gstk1Slirp	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197 -1.191345725 -1.190534179 -1.189848731 -1.189155799 -1.188151111 -1.187666777 -1.186589713 -1.186550829 -1.185609522 -1.184776589 -1.182019711	-0.256/28458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252854259 -0.252854259 -0.252592139 -0.251609039 -0.250778171 -0.249937745 -0.248718332 -0.248718332 -0.248130117 -0.246821181 -0.246773904 -0.245628939 -0.244615038 -0.241254094	9.883614221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278 9.861748833 8.069760011 6.988481155 8.290330903 7.443662957 7.058780904 7.903334269 7.787086065 8.133965308 8.902797691 6.968040383	0.007 0.014 0.004 0.020 0.043 0.043 0.043 0.019 0.033 0.024 0.008 0.015 0.018 0.014 0.006 0.047 0.017 0.009
A_51_P1233 A_52_P573497 A_51_P463789 A_51_P305843 A_52_P205282 A_51_P337662 A_51_P317443 A_52_P163820 A_51_P460710 A_52_P20923 A_51_P337708 A_52_P124812 A_52_P240152 A_51_P459240 A_52_P387458 A_51_P216702	Rp137aDdx6Srrm3Chordc1Huwe1Ddx26bTial1Cd3eap2810006K23RikTdrd3Rbm28Zfp955aOvgp1Usp15Snx27Gstk1SlirpEogt	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197 -1.191345725 -1.190534179 -1.189848731 -1.189155799 -1.188151111 -1.187666777 -1.186589713 -1.186550829 -1.185609522 -1.184776589 -1.182019711 -1.181957394	-0.256/28458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252854259 -0.252854259 -0.252592139 -0.251609039 -0.250778171 -0.249937745 -0.248718332 -0.248718332 -0.24871831 -0.246773904 -0.24628939 -0.244615038 -0.241178032	9.883614221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278 9.861748833 8.069760011 6.988481155 8.290330903 7.443662957 7.058780904 7.903334269 7.787086065 8.133965308 8.902797691 6.968040383 6.819174729	0.007 0.014 0.004 0.020 0.043 0.043 0.043 0.043 0.019 0.033 0.024 0.008 0.015 0.018 0.014 0.006 0.047 0.017 0.009 0.005
A_51_P11233 A_52_P573497 A_51_P463789 A_51_P305843 A_52_P205282 A_51_P337662 A_51_P317443 A_52_P163820 A_51_P460710 A_52_P20923 A_51_P337708 A_52_P124812 A_52_P240152 A_51_P459240 A_52_P387458 A_51_P160664	Rp137a Ddx6 Srrm3 Chordc1 Huwe1 Ddx26b Tial1 Cd3eap 2810006K23Rik Tdrd3 Rbm28 Zfp955a Ovgp1 Usp15 Snx27 Gstk1 Slirp Eogt Cox7b	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197 -1.191345725 -1.190534179 -1.189848731 -1.189155799 -1.188151111 -1.187666777 -1.186589713 -1.186550829 -1.186550829 -1.185609522 -1.184776589 -1.182019711 -1.181957394 -1.181933907	-0.256728458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252854259 -0.252854259 -0.252592139 -0.251609039 -0.251609039 -0.250778171 -0.249937745 -0.248718332 -0.248718332 -0.248718332 -0.246773904 -0.24628939 -0.244615038 -0.244615038 -0.241254094 -0.241178032 -0.241149363	9.883614221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278 9.861748833 8.069760011 6.988481155 8.290330903 7.443662957 7.058780904 7.903334269 7.787086065 8.133965308 8.902797691 6.968040383 6.819174729 10.90904971	0.007 0.014 0.004 0.020 0.043 0.043 0.043 0.043 0.043 0.019 0.033 0.024 0.008 0.015 0.018 0.014 0.006 0.047 0.007 0.009 0.005 0.001
A_51_P11233 A_52_P573497 A_51_P463789 A_51_P305843 A_52_P205282 A_51_P337662 A_51_P317443 A_52_P163820 A_51_P460710 A_52_P20923 A_51_P337708 A_52_P124812 A_52_P240152 A_51_P459240 A_52_P387458 A_51_P160664 A_52_P323111	Rp137a Ddx6 Srrm3 Chordc1 Huwe1 Ddx26b Tial1 Cd3eap 2810006K23Rik Tdrd3 Rbm28 Zfp955a Ovgp1 Usp15 Snx27 Gstk1 Slirp Eogt Cox7b Cers6	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197 -1.191345725 -1.190534179 -1.189848731 -1.189155799 -1.188151111 -1.187666777 -1.186589713 -1.186550829 -1.186550829 -1.185609522 -1.184776589 -1.182019711 -1.181957394 -1.181933907 -1.181498509	-0.256728458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252854259 -0.252854259 -0.252592139 -0.251609039 -0.250778171 -0.249937745 -0.248718332 -0.248718332 -0.24871831 -0.246773904 -0.246628939 -0.244615038 -0.244615038 -0.241178032 -0.241149363 -0.240617809	9.883614221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278 9.861748833 8.069760011 6.988481155 8.290330903 7.443662957 7.058780904 7.903334269 7.787086065 8.133965308 8.902797691 6.968040383 6.819174729 10.90904971 8.625330244	0.007 0.014 0.004 0.020 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.019 0.033 0.024 0.008 0.015 0.018 0.047 0.007 0.009 0.005 0.001 0.016
A_51_P11233 A_52_P573497 A_51_P463789 A_51_P305843 A_52_P205282 A_51_P337662 A_51_P317443 A_52_P163820 A_51_P460710 A_52_P20923 A_51_P337708 A_52_P124812 A_52_P240152 A_51_P459240 A_52_P387458 A_51_P160664 A_52_P323111 A 52_P481880	Rp137a Ddx6 Srrm3 Chordc1 Huwe1 Ddx26b Tial1 Cd3eap 2810006K23Rik Tdrd3 Rbm28 Zfp955a Ovgp1 Usp15 Snx27 Gstk1 Slirp Eogt Cox7b Cers6 Rp136a	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197 -1.191345725 -1.190534179 -1.189848731 -1.189155799 -1.188151111 -1.187666777 -1.186589713 -1.186550829 -1.186550829 -1.185609522 -1.184776589 -1.182019711 -1.181957394 -1.181933907 -1.181498509 -1.175992679	-0.256728458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252854259 -0.252854259 -0.252592139 -0.251609039 -0.250778171 -0.249937745 -0.248718332 -0.248718332 -0.248718332 -0.24871831 -0.246773904 -0.24628939 -0.244615038 -0.244615038 -0.241178032 -0.241149363 -0.240617809 -0.233879079	9.883614221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278 9.861748833 8.069760011 6.988481155 8.290330903 7.443662957 7.058780904 7.903334269 7.787086065 8.133965308 8.902797691 6.968040383 6.819174729 10.90904971 8.625330244 11.41342863	0.007 0.014 0.004 0.020 0.043 0.043 0.043 0.043 0.019 0.033 0.024 0.008 0.015 0.018 0.014 0.006 0.047 0.007 0.009 0.005 0.001 0.016 0.004
A_51_P11233 A_52_P573497 A_51_P463789 A_51_P305843 A_52_P205282 A_51_P337662 A_51_P317443 A_52_P163820 A_51_P460710 A_52_P20923 A_51_P337708 A_52_P124812 A_52_P240152 A_51_P459240 A_52_P387458 A_51_P160664 A_52_P323111 A_52_P481880 A_52_P47513	Rp137a Ddx6 Srrm3 Chordc1 Huwe1 Ddx26b Tial1 Cd3eap 2810006K23Rik Tdrd3 Rbm28 Zfp955a Ovgp1 Usp15 Snx27 Gstk1 Slirp Eogt Cox7b Cers6 Rp136a Hook3	-1.193972975 -1.193944312 -1.192897791 -1.192029846 -1.191565415 -1.191562197 -1.191345725 -1.190534179 -1.189848731 -1.189155799 -1.188151111 -1.187666777 -1.186589713 -1.186550829 -1.186550829 -1.185609522 -1.184776589 -1.182019711 -1.181957394 -1.181933907 -1.181498509 -1.175992679 -1.174753582	-0.256728458 -0.255770182 -0.255735548 -0.254470436 -0.253420358 -0.252858156 -0.252854259 -0.252854259 -0.252592139 -0.251609039 -0.250778171 -0.249937745 -0.248718332 -0.248718332 -0.248130117 -0.246821181 -0.246773904 -0.246628939 -0.244615038 -0.244615038 -0.244615038 -0.241178032 -0.241178032 -0.240617809 -0.233879079 -0.232358166	9.883614221 12.1711159 7.80357614 9.587991167 8.382468622 7.324053052 9.030350278 9.861748833 8.069760011 6.988481155 8.290330903 7.443662957 7.058780904 7.903334269 7.787086065 8.133965308 8.902797691 6.968040383 6.819174729 10.90904971 8.625330244 11.41342863 7.377469147	0.007 0.014 0.004 0.020 0.043 0.043 0.043 0.043 0.043 0.024 0.008 0.015 0.018 0.014 0.006 0.047 0.007 0.009 0.005 0.001 0.0016 0.004 0.004 0.004 0.004 0.000 0.005 0.001 0.005 0.005 0.001 0.005 0

Tubeta 11. Communiq	<u>,</u> uo	-			
A_52_P27725	D930016D06Rik	-1.174310089	-0.231813418	7.145653668	0.017
A_51_P178646	Rpp21	-1.174287582	-0.231785767	10.04771198	0.031
A_51_P357195	NA	-1.173189134	-0.230435614	6.828033273	0.004
A 51 P374549	Spata1	-1.171791901	-0.228716383	6.502249349	0.003
A 52 P55053	Ssbp1	-1.171460276	-0.228308034	7.868696033	0.002
A 51 P132625	Hsd17b11	-1 171299055	-0 228109471	6 760097711	0.033
A 52 P0/37	Psmb3	-1 1712/3151	-0.228040611	11 33/8882	0.035
A 52 P295201	Rpl/1	-1.171245151	-0.223040011	12 02/00115	0.040
A_51_D440705	Crin1	-1.170052007	0.227570528	7 216800521	0.021
A_31_F449793	NA	-1.1/000209/	-0.220383098	7.210699521	0.010
A_52_P255517	NA D 2	-1.108385724	-0.224510035	8.291129139	0.015
A_52_P466147	Rarres2	-1.168369512	-0.224496618	8.3/54040/8	0.035
A_52_P129624	Dgkk	-1.168033938	-0.224082194	7.065185502	0.014
A_51_P199367	Esd	-1.16723927	-0.223100327	10.47249636	0.008
A_51_P246215	Polr2i	-1.166561576	-0.22226246	9.653881627	0.015
A_51_P431047	St8sia3	-1.166260449	-0.221890007	8.293933953	0.016
A_52_P566681	Gpm6a	-1.164841012	-0.220133057	10.86561356	0.023
A_51_P282609	Grik1	-1.163297831	-0.218220507	6.85141025	0.014
A_51_P146063	Nemf	-1.162696379	-0.217474408	8.928338983	0.009
A_52_P61774	Cinp	-1.1626408	-0.217405442	6.745356907	0.015
A_52_P457411	Ub15	-1.162316488	-0.217002955	10.4591209	0.023
A_51_P318104	Арр	-1.16203245	-0.216650357	10.117858	0.041
A 52 P469939	Gcc2	-1.161902202	-0.216488641	7.142932462	0.004
A 51 P133737	Luc713	-1.161811204	-0.216375647	11.45114057	0.011
A 51 P511199	Rps27	-1 161592256	-0.216103741	11.35063731	0.010
A 51 P225048	7ranh1	-1.161507813	-0.215008858	7 11731/676	0.010
A_51_D202161	Saapar	1 161222400	0.215575630	7.672102146	0.000
A_31_F 393101	There 2	-1.101223499	-0.215045072	7.073192140	0.015
A_52_P/9/03	Inrap3	-1.101200953	-0.215025110	7.943201048	0.008
A_51_P408881	Palimo	-1.160893109	-0.21523514	6.508101588	0.042
A_52_P387598	BC023202	-1.160662041	-0.21494/953	8.724028328	0.020
A_52_P481202	Dpp8	-1.160402708	-0.214625568	7.1956/1995	0.050
A_52_P37894	Cox7a2	-1.1602222/3	-0.214401221	11.04212857	0.006
A_51_P305437	Rcn1	-1.160103589	-0.214253633	8.17737509	0.023
A_52_P263518	Gng2	-1.160039594	-0.214174048	8.375000867	0.021
A_51_P512210	Myh6	-1.159874413	-0.213968604	8.237198938	0.018
A_51_P193475	Ccdc88a	-1.158999694	-0.212880185	8.07139233	0.035
A_51_P100787	Snw1	-1.158677616	-0.212479215	8.939783219	0.023
A_51_P270478	Pin4	-1.158120317	-0.211785143	9.228154793	0.017
A_51_P117162	Cbx3	-1.15788857	-0.211496421	8.154163704	0.011
A 52 P684857	Srek1	-1.157536468	-0.211057646	7.48773889	0.031
A 51 P414653	Plyap	-1.157349602	-0.210824727	7.281910965	0.019
A 51 P220723	B230118H07Rik	-1.156497642	-0.209762324	11,29227661	0.018
A 52 P599728	Manla	-1 15637329	-0 209607191	8 879741631	0.022
A 51 P472241	R9d1	-1 155954668	-0 209084823	8 354426648	0.022
Δ 52 Ρ6/3350	Prnf4b	_1 155020002	_0.207004025	6 878/77192	0.020
Δ 51 P20292	Ftv4	-1.155002274	-0.207042791	6 50671 102	0.004
A 51 D510470	Tto 14	-1.133903370	-0.209020600	7 975902200	0.004
A_31_P3184/U	11014	-1.155824721	-0.208922632	1.823806009	0.050
A_52_P545643	AI39/408	-1.155/23101	-0.208/95/84	8.589480/57	0.049
A_51_P465082	10x3	-1.154392061	-0.207133283	6.95469469	0.011
A_52_P62775	A230057D06Rik	-1.154183707	-0.206872871	6.706278202	0.022
A_51_P225832	2700097009Rik	-1.15381166	-0.206407748	7.767983123	0.003
A_52_P474949	Chd1	-1.153804454	-0.206398738	6.946662987	0.002
A_52_P629112	NA	-1.153633915	-0.206185483	9.721524874	0.025
A_51_P250465	Mettl5	-1.153509061	-0.206029337	7.628091512	0.038
A_51_P250358	Prpf39	-1.153258833	-0.205716342	7.238897488	0.013
A_51_P323620	Thyn1	-1.152420586	-0.204667337	10.76870925	0.040
A_51_P143142	Mrpl12	-1.151943756	-0.204070279	10.37611529	0.014
A_52_P197926	Rpl36a	-1.151609052	-0.203651035	11.18613843	0.005
A_52_P123384	Cib1	-1.151598048	-0.203637248	8.508748048	0.021
A 52 P431894	Pknox1	-1.151570918	-0.20360326	7,28381146	0.018
A 51 P149818	Srsf11	-1.151539284	-0.203563628	8.39055076	0.036
Δ 51 P21216/	Swt1	_1 151/8/010	-0 203/0/380	7 144861713	0.009
A 51 P334570	Liba52	-1 151207822	-0.203494309	12 04814021	0.008
11 21 1224210	00002	-1,1,1,1,2,07,0,1,1	-0.20314031.)	12.07017021	0.044

Tabela 11. Continua	cão				
A 52 P535012	NA	-1.150689624	-0.202498747	10.69684422	0.011
A 51 P131164	Enkur	-1.150376736	-0.202106405	6.160920892	0.004
A 52 P599317	Hs6st2	-1.149709553	-0.201269444	9.163054784	0.036
A 51 P234544	Azin1	-1.149327692	-0.200790192	8.686949975	0.022
A 52 P582394	Mrps11	-1.148912395	-0.200268797	7,752531873	0.003
A 51 P441091	NA	-1 148826638	-0.200161107	7 669741203	0.025
Δ 51 P175988	Htr3a	-1 148553902	-0.199818565	7.009741203	0.025
Δ 52 P241032	NΔ	-1.148395819	-0.199619983	10 88372322	0.020
Δ 52 P112791	Farl	-1 147977054	-0 199093805	8 717351323	0.030
A 52 D560218	I dr I Utrn	1 1/7713775	0.108762807	8.068800260	0.021
A_52_F505537	Mrp147	-1.147713773	-0.198702897	6 846736340	0.037
A_51_D210921	Mipi47	-1.147330392	-0.198532304	7 22068286	0.029
A_31_P310621	HOXAJ Esha2	-1.14/12048/	-0.198024478	7.55908580	0.005
A_51_P440011	Crate	-1.14000965	-0.197450009	9.081337823	0.040
A_31_P449911		-1.140399841	-0.19/301984	6.005505922	0.010
A_52_P212597	HOOKI	-1.145802075	-0.196434156	0.872393842	0.046
A_51_P434527	NA	-1.145381369	-0.195828042	6.884036065	0.006
A_51_P159565	Arhget9	-1.145339536	-0.1957/5348	7.962492736	0.033
A_52_P657324	Rnf32	-1.145325922	-0.195758201	7.260343148	0.026
A_51_P138141	Angel2	-1.145210779	-0.195613155	7.8/1262311	0.021
A_52_P358963	Hmg20b	-1.145059226	-0.195422221	7.960367765	0.049
A_51_P117752	Asgr1	-1.144747286	-0.195029144	6.874326897	0.022
A_51_P225186	Calcrl	-1.144346649	-0.194524144	7.614539416	0.022
A_51_P509489	Kras	-1.144093767	-0.194205297	9.3315898	0.027
A_51_P127841	Pdss1	-1.143953697	-0.194028658	7.13265224	0.014
A_52_P540045	NA	-1.143835914	-0.193880109	6.630440802	0.009
A_51_P387379	Tshz3	-1.143809668	-0.193847005	7.875456841	0.040
A_51_P461404	Smarca1	-1.143779993	-0.193809575	7.543397144	0.015
A_52_P663303	Wdr60	-1.143502738	-0.19345982	7.453372878	0.032
A_52_P379126	Arhgef9	-1.143497754	-0.193453532	7.060220831	0.028
A_51_P299195	Hnrnph1	-1.142847988	-0.192633521	9.475976384	0.034
A_52_P445387	Clk4	-1.142354967	-0.192011013	9.143354994	0.012
A_52_P521507	NA	-1.142055676	-0.191632985	8.67443817	0.040
A_52_P249424	Vegfa	-1.141763192	-0.191263459	6.696997222	0.026
A_52_P376841	NA	-1.141575687	-0.191026515	7.60080186	0.032
A_51_P275989	Ccdc107	-1.141368826	-0.190765065	7.544263402	0.013
A 52 P118100	NA	-1.14130678	-0.190686636	9.278233725	0.048
A 51 P482473	Rps17	-1.141225459	-0.190583836	11.01786759	0.016
A 52 P212336	2610005L07Rik	-1.141170162	-0.190513931	7.527029348	0.019
A 51 P168459	Ifitm2	-1.141072834	-0.19039088	7.008403933	0.012
A 52 P286928	NA	-1.140983335	-0.19027772	7.233407613	0.012
A 52 P258439	Mau2	-1.140898543	-0.190170503	6.567777278	0.027
A 52 P515347	Tusc3	-1.140800802	-0.190046901	8.562399928	0.023
A 52 P365741	Cdc3711	-1 140727922	-0 189954732	9.02069311	0.040
A 52 P623690	NA	-1 140140086	-0.189211096	10 46940575	0.048
A 51 P128287	2010107E04Rik	-1.140044648	-0.189090327	10.52273491	0.039
A 51 P278252	1700049103Rib	_1 13001876	-0 188030376	7 610460437	0.035
Δ 52 P313780	Pnm1a	_1 1306077	-0.1886//877	8 504701/82	0.030
Δ 51 D212249	Krt7	-1.1370727	-0.100044077	8 335/80865	0.013
A 52 PAA0627	Nek1	-1.137003390	-0.188033031	7 582/72/	0.027
A_51_D470759	Sp4	-1.139307032	-0.188233327	6 571275600	0.027
Δ 51 0/76792	Sp4 Sptan1	-1.1391/319/	-0.10/90/100	6738676607	0.029
A 52 D210774	Konin/	1 120260000	-0.10/03/113	8 607012024	0.047
A_32_F319//4	Mei2	-1.130200998	-0.100031399	6 012777700	0.033
A_31_F221449	IVISIZ	-1.138102952	-0.100031009	0.915/4//22	0.043
A_51_P442986	INA Diffi	-1.13///2653	-0.186212311	0./3003113/	0.027
A_51_P4/9659	EIIDD	-1.13/536556	-0.185912909	8.052556264	0.011
A_52_P582309	INUDI	-1.13/52296	-0.185895665	8.394068441	0.045
A_52_P336171	Gabra2	-1.13635638	-0.184415358	8.2/6381988	0.046
A_51_P221510	Fam81a	-1.136221918	-0.184244638	/.055/49484	0.017
A_51_P485756	Nts Di l 1	-1.135966648	-0.183920477	8.655311718	0.015
A_52_P351574	Plcb1	-1.135861911	-0.183/87454	7.73192567	0.025
A_51_P280532	Supt16	-1.135835841	-0.183754342	7.124089711	0.045
A 51 P180754	Map2	-1.135718496	-0.183605287	6.755292906	0.022

Tabela 11. Continua	ção				
A_51_P397426	Timm8b	-1.135429029	-0.183237532	10.8874128	0.034
A 52 P617817	Hspa4	-1.135310904	-0.183087432	6.899260799	0.018
A 51 P377237	Kras	-1.134782829	-0.182416226	7.514925485	0.028
A 51 P474367	Ptges3	-1.134376662	-0.181899756	9.524373527	0.009
A 52 P62530	NA	-1 133740219	-0.181090104	6742489678	0.041
A 51 P101777	Herc4	-1 133291335	-0.180518782	7 700700653	0.015
Δ 52 P193440	NΔ	-1 133037374	-0 18019545	6 389705636	0.040
Δ 51 P237752	Ptrf	-1.133037374	-0.180032971	9 298255121	0.040
A 51 P200134	Snrng	-1.13270717812	-0.170788/05	9.857/1/773	0.032
A_51_P420547	Clio5	-1.132/17012	0.17072010	7.044249706	0.022
A_52 D280640	Delevie	-1.132072033	0.170660025	7.044348700	0.047
A_51_D249624	Timm 10	-1.13201093	-0.179000023	10 60020475	0.031
A_31_P348024	Dammi 1	-1.132434297	-0.179432828	7 500444868	0.010
A_51_P110/15	Kspiyi Storig 2	-1.132313033	-0.17927302	7.399444606	0.010
A_52_D5540	Stosias Eau 122h	-1.132039993	-0.178924929	7.810752027	0.040
A_52_P5549	Fam1550	-1.131940069	-0.1/8/9/5//	1.2/80/0/3/	0.014
A_51_P108478	Mrps18c	-1.13191978	-0.1/8//1/1/	8.685696178	0.029
A_52_P26626	Fam92b	-1.131819635	-0.17864407	7.001057755	0.034
A_51_P50/899	Ttc8	-1.131/4656/	-0.178550931	7.092947536	0.021
A_51_P4/8061	Cadm1	-1.13133589	-0.178027325	8.931351368	0.039
A_52_P28/219	Man2a2	-1.130960612	-0.177548685	9.80/215691	0.021
A_51_P242399	Krt8	-1.130757831	-0.177289987	7.34066702	0.027
A_52_P346231	Azi2	-1.130485496	-0.176942483	7.488017217	0.039
A_51_P219109	Il12rb1	-1.130416563	-0.176854509	6.479155897	0.049
A_52_P558259	Dtna	-1.129930005	-0.176233405	8.278734924	0.021
A_51_P153787	Fcf1	-1.129861311	-0.176145694	8.250603608	0.048
A_51_P238933	Nudc	-1.12977608	-0.176036861	12.38535303	0.014
A_51_P261107	Ogt	-1.129290036	-0.175416062	8.017240697	0.013
A_51_P279997	Slc4a7	-1.128860472	-0.174867178	7.198206194	0.041
A_51_P249867	Snrnp48	-1.128834422	-0.174833886	7.641202008	0.013
A_51_P465292	Hnmt	-1.128712485	-0.174678037	7.677007035	0.050
A_52_P67444	Arih1	-1.128641495	-0.174587296	6.722595526	0.044
A_52_P544523	Myl4	-1.128505671	-0.174413669	7.810172012	0.043
A_51_P459873	6330411E07Rik	-1.128235252	-0.174067921	6.609988073	0.017
A_52_P356093	B3galt2	-1.128047417	-0.173827712	6.873754357	0.047
A_51_P141772	Uhrf2	-1.127862336	-0.173590987	7.940298257	0.048
A_52_P650215	Nop14	-1.127829037	-0.173548393	6.956401632	0.031
A_52_P301223	Brwd1	-1.127594937	-0.173248905	8.177733988	0.026
A_52_P24320	Rpgrip11	-1.127574666	-0.17322297	6.352953219	0.012
A_52_P573161	Rpl32	-1.127241161	-0.172796197	11.75633282	0.015
A_51_P416869	Nedd8	-1.127228014	-0.172779371	11.24034471	0.021
A_52_P177161	NA	-1.127045364	-0.172545586	6.888991696	0.033
A_52_P306396	Ppp3cb	-1.126548559	-0.171909502	9.126236572	0.034
A_51_P170156	Ndufa5	-1.126499354	-0.171846486	12.09172294	0.030
A_51_P270364	Mmaa	-1.126088692	-0.171320461	9.003559632	0.033
A_51_P314521	Smim11	-1.125960242	-0.171155887	8.74253513	0.027
A_51_P337020	Senp7	-1.125539285	-0.170616413	6.592726426	0.048
A_51_P280192	Tmem256	-1.125481397	-0.17054221	8.56244029	0.010
A_52_P140497	Golga3	-1.125185463	-0.170162819	7.729240598	0.044
A 51 P255565	Smarcad1	-1.125004272	-0.169930479	6.78616172	0.012
A 51 P259064	Ube2d3	-1.12461685	-0.169433567	8.978003742	0.032
A_52_P402960	B230337E12Rik	-1.124329998	-0.169065538	8.001259363	0.029
A 52 P124105	Rab14	-1.124016111	-0.168662714	6.459482502	0.017
A 52 P270145	Zfp329	-1.123111853	-0.167501616	8.717921823	0.033
A 52 P533402	Zfp607	-1.122941368	-0.167282602	7.573627007	0.049
A 51 P160744	Ndufb3	-1.12273191	-0.167013476	11.51134416	0.011
A 51 P353592	Commd4	-1.122520927	-0.166742342	9.225583363	0.026
A 51 P110341	Sceb3a1	-1.122179378	-0.166303306	7.321426146	0.037
A 51 P337290	Rns19	-1 122112696	-0.166217577	7.345320635	0.045
A 51 P219542	Gnpnat1	-1 122014193	-0 166090926	6 887871956	0.040
A 52 P522157	Snho5	-1 122014175	-0 165390432	8 186611813	0.035
Δ 52 D563340	NA	_1 101160740	-0.16500342	8 63//0/202	0.035
A 52 P502141	Hectd2	-1.121100742	-0.164942231	6 583093709	0.020
1.1_0_1002171	-100004	1.121121104	0.107/74401	0.0000000000000000000000000000000000000	0.017

ANEXOS - 97

Tabela II. Commuaç	çao				
A_52_P120842	Man1a2	-1.120999606	-0.164785772	7.28694719	0.042
A_52_P507310	Mrps24	-1.120948722	-0.164720283	9.183253342	0.038
A_52_P234910	NA	-1.120720925	-0.164427071	8.326941923	0.044
A_52_P451378	Twsg1	-1.120450119	-0.164078424	6.664396942	0.017
A_51_P159122	Kndc1	-1.1202907	-0.16387314	6.312034979	0.033
A_51_P184806	Elmod2	-1.119792076	-0.163230876	8.024930183	0.020
A 51 P321086	Amz2	-1.119679872	-0.16308631	8.945840095	0.014
A 51 P261001	Mtf2	-1.119613552	-0.163000855	8.366050799	0.046
A 51 P336790	Lsm5	-1 119545573	-0 162913257	7 89845894	0.040
A 51 P464149	Eam45a	-1 119483135	-0.162832795	7 785234314	0.045
A 52 P845245	Gnai?	-1 11020758/	-0.162593652	6 376801738	0.045
A_52_D672060	Comk4	1 110228502	0.162517614	7.050890278	0.005
A_52_P072900	Callik4	-1.119236392	-0.102317014	9 424525169	0.025
A_32_P230378	Faiii11Ja	-1.11922/028	-0.162302707	6.424323108	0.040
A_52_P412405		-1.118838087	-0.162001271	6.8//99/049	0.043
A_51_P129929	Zip866	-1.118422681	-0.161465523	6.4/91/9/38	0.013
A_51_P501735	Gria4	-1.118155227	-0.161120483	8.631/13842	0.034
A_51_P314323	Lsmd1	-1.118099038	-0.161047983	11.198031	0.021
A_52_P336594	NA	-1.117889475	-0.160777557	6.374117543	0.041
A_52_P394755	Usp45	-1.117636264	-0.160450737	6.673656489	0.046
A_51_P189905	NA	-1.117566671	-0.160360901	9.575172432	0.037
A_52_P72354	NA	-1.117411129	-0.160160094	8.524396252	0.049
A_51_P351481	Ccnl1	-1.117215751	-0.159907819	6.966086822	0.027
A_52_P396917	Eml5	-1.117151018	-0.159824225	6.955258696	0.044
A 52 P518434	Hmbox1	-1.117126718	-0.159792842	6.443631283	0.012
A 52 P406864	Fam179b	-1.116854229	-0.159440899	8.104739275	0.048
A 51 P205278	Tmem161b	-1 116765273	-0 159325986	678426147	0.016
A 51 P445555	NA	-1 11659476	-0 159105691	8 503538069	0.037
Δ 52 P661731	2-Mar	-1 115940513	-0.158260124	9 289888234	0.031
A 51 P320980	Sfyn/	-1.115660846	-0.157808523	7 259281687	0.031
A_51_P117664	NA NA	1 115217030	0.157325673	0.261108344	0.017
A_51_D492600	INA Dif2	-1.115217959	-0.157325075	6 60078 4706	0.030
A_31_F462000	DUJ	-1.113207411	-0.137312034	0.000784700	0.006
A_52_P394111	NA 4022424015D'I	-1.114970277	-0.15/005251	7.804702078	0.036
A_51_P128786	4833424015R1k	-1.114552468	-0.156464533	6.9084/1303	0.038
A_52_P384392	Tsc22d4	-1.114474201	-0.15636322	6.964310559	0.040
A_52_P319123	NA	-1.114205757	-0.156015676	7.272787079	0.044
A_51_P366277	Nol8	-1.113612265	-0.155247006	8.089577351	0.046
A_51_P199987	Gucy1a3	-1.11346624	-0.155057816	7.86653418	0.016
A_51_P407209	Rapgef6	-1.113364242	-0.154925654	6.98303772	0.026
A_51_P210350	Slc17a8	-1.113264582	-0.154796509	7.60501457	0.033
A_51_P274768	Rps25	-1.112331975	-0.153587425	11.81583536	0.041
A_51_P112662	Sp3	-1.112273301	-0.153511322	8.389924807	0.038
A_51_P262230	Ggact	-1.111944976	-0.153085399	7.075837091	0.022
A 52 P348522	NĂ	-1.111794145	-0.152889689	7.647417009	0.024
A 52 P551526	NA	-1.111642746	-0.152693217	11.25502363	0.048
A 51 P404077	Fzd2	-1.111605426	-0.152644782	6.924787524	0.040
A 52 P369271	Zfp280d	-1.111603268	-0.152641981	6.427820807	0.019
A 52 P941128	NA	-1 111032944	-0 151901596	6 375254795	0.041
A 52 P260864	Arhgan5	_1 11070821	-0 151596758	8 545378006	0.045
Δ 51 P160567	Nfkbil1	-1.110750/06	_0 151550/62	7 713670870	0.045
A 52 D78022	ΝΔ	-1.110/09490	-0.151559405	6 801 810772	0.017
A 51 D220042	LIFA11	-1.110/0//92	-0.1314/9318	7 400260702	0.043
A_31_F320903	Ebyo22	-1.1101/1280	-0.130/82284	1.400209/93 9.460609106	0.041
A_52_P005740	F0X033	-1.110020098	-0.150594376	8.469628196	0.024
A_51_P132/15	крізэ	-1.110020318	-0.150586084	11.28489099	0.035
A_52_P5/1350	H19	-1.110002205	-0.150562543	6.604468102	0.050
A_52_P795474	NA	-1.109813337	-0.150317046	6.15317776	0.049
A_52_P98452	Hadh	-1.109672129	-0.150133471	7.165618389	0.032
A_51_P192783	Ccdc167	-1.108947942	-0.149191641	7.292610655	0.017
A_51_P391871	N4bp2l2	-1.10894489	-0.149187671	6.377034096	0.031
A_51_P142046	Oxld1	-1.108649576	-0.148803428	8.01767977	0.026
A_52_P531175	Fkbp3	-1.108627065	-0.148774133	11.07716807	0.024
A_52_P268134	NA	-1.108155129	-0.148159857	8.678044607	0.038
A_52_P181394	NA	-1.108077128	-0.148058304	6.631019465	0.029

Tabela 11. Continua	ção				
A_52_P65286	Lrp1b	-1.107814826	-0.147716752	6.200877347	0.017
A_51_P142113	Bloc1s1	-1.1077389	-0.14761787	9.235167829	0.021
A_51_P197378	Atg12	-1.107035334	-0.14670127	9.569618758	0.043
A_51_P202623	Mterfd3	-1.106216114	-0.145633263	8.46354557	0.047
A 51 P396708	Med21	-1.106035721	-0.14539798	8.280716498	0.026
A 52 P6404	NA	-1.105915799	-0.145241548	6.527462943	0.024
A 51 P321579	NA	-1.105779274	-0.145063436	8.187156138	0.050
A 52 P350301	NA	-1.105292544	-0.144428267	10.64091028	0.032
A 52 P654604	NA	-1.104819866	-0.143811166	6.703490344	0.041
A 51 P199435	NA	-1.104334638	-0.143177407	7.150255652	0.033
A 51 P416152	Cartpt	-1.104106905	-0.142879868	8.195193478	0.023
A 51 P361788	Vapa	-1.104050081	-0.142805616	11.05622746	0.037
A 52 P571403	Minos1	-1.103806755	-0.14248762	10.7645778	0.048
A 51 P475891	Trnau lap	-1.103000591	-0.141433564	9.397044645	0.039
A 51 P495171	Pbdc1	-1.102627602	-0.140945621	8.518711896	0.048
A 51 P488718	Zfand2b	-1.102192024	-0.140375593	8.570420153	0.034
A 52 P259184	Gabra1	-1.102105556	-0.140262407	6.665881199	0.041
A 51 P155323	Hc	-1.102016325	-0.140145595	6.740694593	0.031
A 52 P97417	Tubgen5	-1.101940681	-0.140046563	7.46326058	0.031
A 51 P279851	Dhps	-1.101907502	-0.140003124	8.308375939	0.032
A 51 P240363	Zfp422	-1.101701647	-0.139733578	7.388672193	0.026
A 52 P6070	Exp122	-1 101438499	-0 139388942	6 330738854	0.026
A 52 P268549	Rhnol	-1 101304155	-0 139212963	8 608618827	0.030
A 52 P269461	NA	-1 100956093	-0.138756935	7 262276347	0.042
A 51 P478952	N4bn211	-1 100656572	-0 138364388	6767365186	0.041
A 51 P505719	Dmx11	-1.100050572	-0.130304300	6 8 5 6 4 6 3 5 0 2	0.044
A 52 P565940	Nsd1	-1.099248296	-0.137575029	7 128536928	0.042
A 52 P556602	NA	-1.099201214	-0.136455503	6 325764589	0.042
A 51 P214449	Polr2k	-1.098881595	-0.136035944	9 111412629	0.020
Δ 52 P338479	NA	-1.098712963	-0.135814533	6 536879175	0.046
A 51 P218814	Rpl2211	-1.09819815	-0.135138387	11 44585856	0.049
A_51_P222543	NA	1.007600020	0.134470716	7 555384042	0.047
A 52 P537907	Tegal0	-1.097628212	-0.134380468	6 536712541	0.024
A_52_P3754	Immp11	-1.097620387	-0.134389408	7 381037942	0.039
A 51 P1/706/	1600014C23Bik	-1.097246025	-0.134377103	6 270034354	0.022
A 52 P405340	Fort?	-1.097170756	-0.133700008	6 20710653	0.020
A 52 P463578	Mphosph10	-1.097070842	-0.133668525	7 295727259	0.017
A_51_P360381	Slo18b1	1.006776301	0.133260303	7.0553120	0.045
A_51_D272212	Mrp154	-1.090770301	-0.133209303	0.202229176	0.020
A_51_P120360	Pthlb	-1.090014001	-0.133030387	9.302238170	0.027
A_52_D202041	Tmo7	-1.0902087	-0.13232249	10.02873347	0.035
A_52_F303041	IIIIa/	-1.09393300	-0.132103104	0.710040007	0.028
A_51_D201254	NA	-1.093709333	-0.131803420	9.710049097	0.045
A_52_D527627	INA Str.1b	-1.095504592	-0.13141113	6 922121242	0.043
A_32_P32/03/	SIX10 Vanin1	-1.093030490	-0.1309/1049	6 752206262	0.032
A 52 D419014		-1.094633330	-0.130/11332	6 227029651	0.020
A_52_P418014	AKTI	-1.09453199	-0.13031412	6.22/028651	0.015
A_51_P101719		-1.094114598	-0.129/63855	7.526738438	0.036
A_52_P345548	Pcdna4-g	-1.093925751	-0.12951482	6.606730645	0.044
A_52_P91346	Mieri	-1.093535443	-0.128999981	1.2/8845/6	0.023
A_51_P253633	Mrps9	-1.093166185	-0.128512/38	8.645612409	0.027
A_51_P515754	DIS5	-1.09312456	-0.12845/803	/.3439960/6	0.041
A_52_P14938	NA	-1.092919017	-0.128186505	6.56/186009	0.042
A_52_P294174	U2surp	-1.092490445	-0.12/620662	7.005546833	0.048
A_51_P22/962	Dynlrb2	-1.092444771	-0.12/560345	7.429798654	0.049
A_51_P520857	Gm12060	-1.092080927	-0.127079769	10.94865332	0.036
A_52_P521710	Dph3	-1.091101509	-0.125785326	8.63337876	0.042
A_51_P519276	Ndutb'/	-1.09107238	-0.125746811	11./8595956	0.045
A_51_P312175	Inks	-1.090685602	-0.125235295	6.303073861	0.036
A_51_P100099	2610002J23Rik	-1.090125398	-0.124494099	8.637492437	0.047
A_52_P642012	BC006965	-1.088931928	-0.122913771	6.252032412	0.031
A_52_P617020	Ap3s1	-1.088312059	-0.12209229	8.590108507	0.037
A_52_P65506	Cxxc4	-1.088084621	-0.12179076	7.329018387	0.040

Tabela II. Continua	çao				
A_51_P118720	Rspry1	-1.087540891	-0.121069646	7.374478486	0.038
A_52_P371063	Iqcc	-1.086058134	-0.119101329	6.179235334	0.040
A_52_P411780	Hdac9	-1.085216602	-0.117983024	6.560549142	0.045
A_52_P641597	Zc3h7a	-1.084139537	-0.116550455	6.42105274	0.047
A_52_P660400	Grik1	-1.083795054	-0.116091968	6.230069066	0.045
A_52_P315280	Nktr	-1.083427169	-0.115602174	6.494034388	0.044
A_51_P193682	1700012B09Rik	-1.081634369	-0.113212899	6.216830517	0.044
A_51_P419226	S100a14	-1.080749037	-0.112031551	6.429996868	0.049
A 51 P300506	Cox6b2	-1.079776027	-0.110732092	6.46165825	0.047
A 51 P121288	Mkks	-1.079581097	-0.110471621	6.425789597	0.049
A 52 P160057	Gm3373	-1.07862991	-0.109199944	6.798656392	0.048
A 51 P371091	Resd1	-1.075768072	-0.105367077	7.178465589	0.047
A 52 P241742	2010003002Rik	-1.075433766	-0.104918675	6.868355907	0.046
A 51 P443359	Trappc?l	-1 07225045	-0 100641922	9 375651696	0.049
A 52 P328304	Plekhg3	1.074845567	0.104129389	8 724389267	0.040
A 51 P354572	Rah35	1.079370648	0.110190361	9.932712757	0.048
A 52 P462013	Cln8	1.079370040	0.110190501	6 324714826	0.045
A_51_P276500	AU040320	1.080872075	0.112190585	8 077725045	0.045
A_52 D185242	Gno12	1.082176562	0.115268420	6 707742050	0.045
A_32_F163343	Mm144	1.063170303	0.115447195	6.755086607	0.039
A_32_P008030	MIPI44 Zmm 111	1.065510762	0.11344/163	0.733080007	0.047
A_32_P009903		1.084//0401	0.112000525	1.423021078	0.026
A_51_P350214	Amz2	1.085446437	0.118288535	8.2/3693/38	0.034
A_52_P89756	NA	1.08554957	0.118425606	6.091/4633	0.049
A_52_P219314	Vasp	1.0859/9828	0.11899/305	6.191494745	0.040
A_52_P502754	Ampd3	1.086106354	0.119165382	6.21484/128	0.046
A_52_P406459	Ndufaf/	1.086550457	0.119/551/1	6.589461743	0.047
A_52_P209101	Abli	1.08659/1/1	0.11981/196	6.150424942	0.037
A_52_P287917	Dcaf10	1.087726345	0.121315642	6.501916875	0.046
A_51_P497463	Dedd	1.087/5234	0.12135012	6.538923458	0.044
A_51_P249824	Smap1	1.088406698	0.122217/41	7.641717001	0.032
A_51_P294169	Cdc40	1.089169158	0.123228035	6.353890149	0.026
A_51_P432764	Sirpa	1.089234569	0.123314674	6.935133305	0.039
A_51_P343556	Cdv3	1.089254257	0.123340751	8.56353141	0.048
A_51_P197321	Clta	1.089952507	0.124265273	11.71983554	0.040
A_51_P471219	6430571L13Rik	1.090323421	0.124756143	6.156327161	0.026
A_51_P307316	Syde1	1.090787119	0.125369569	7.674658375	0.030
A_51_P362013	Rexo1	1.091086186	0.125765066	6.136942913	0.025
A_51_P277416	Fam3c	1.091569808	0.126404397	6.653816368	0.028
A_52_P605455	Eef2	1.091708052	0.126587098	6.280930294	0.031
A_52_P331883	Gng7	1.091750158	0.12664274	6.620249487	0.022
A_51_P217227	NA	1.091866751	0.126796803	9.063525026	0.038
A_52_P182659	Cs	1.09223779	0.127286979	11.82514444	0.048
A_51_P458852	NA	1.092608686	0.127776797	7.708528948	0.033
A_52_P363452	NA	1.09311703	0.128447865	6.148117448	0.037
A_52_P63343	Gm129	1.093885084	0.129461187	6.396783076	0.035
A_52_P403764	4930402H24Rik	1.093987125	0.12959576	6.274451465	0.030
A_51_P299339	Klf15	1.094648289	0.130467406	6.189070596	0.016
A_52_P402786	Prom1	1.095459724	0.131536442	6.231700032	0.037
A_51_P450459	NA	1.096293556	0.132634163	6.22587471	0.046
A_52_P350519	H2-Bl	1.096546899	0.132967518	6.204115859	0.031
A_52_P499980	Pias3	1.09717176	0.133789395	6.634089328	0.047
A_52_P449130	Ppfia1	1.097293269	0.133949161	6.306298111	0.050
A_51_P485688	Cdh6	1.097309555	0.133970572	6.120553931	0.018
A_51_P348636	Osbp2	1.097425947	0.134123591	6.981990127	0.027
A 52 P592639	Gabbr1	1.097844674	0.134673953	6.567879722	0.047
A_52_P141715	Dtna	1.099238147	0.136503976	6.852638435	0.040
A_52_P56658	Emc3	1.09925861	0.136530833	8.875616115	0.047
A 51 P233825	Akap1	1.099660991	0.137058831	6.133542574	0.032
A 51 P157554	Brd7	1.099893325	0.137363609	7.152975938	0.016
A 51 P488383	NA	1.100110087	0.1376479	6.341436564	0.015
A 52 P229709	Ube2d3	1.10043719	0.138076802	7.1318966	0.036
A 51 P240864	Sppl3	1.10085857	0.138629135	11.29138574	0.028
	1 ··· P P ···				

Tabela 11. Continua	çao				
A_52_P240470	Aplar	1.10153889	0.13952043	6.65183317	0.040
A_51_P503542	Zfp414	1.10185091	0.139929027	8.310225182	0.029
A_51_P141860	Fbxw11	1.101948482	0.140056777	10.65785558	0.024
A_51_P231587	NA	1.102257452	0.140461231	8.059958558	0.025
A_51_P484671	Adcy3	1.102810019	0.14118428	6.411605001	0.043
A_51_P244543	2610507B11Rik	1.102973418	0.141398022	6.545891297	0.019
A_51_P174396	Aifm1	1.103033389	0.141476462	6.666217725	0.038
A_51_P268439	Mcam	1.103476698	0.142056165	8.889993641	0.044
A_51_P360622	Elmod3	1.104457336	0.14333769	7.301709316	0.033
A 52 P205991	Gnb1	1.104753611	0.143724647	7.833774244	0.034
A_51_P518298	Rnf187	1.104872083	0.143879351	11.29893997	0.015
A 52 P518014	Snrpa	1.105127435	0.14421274	6.506555053	0.036
A_51_P148093	Ptprm	1.105345654	0.144497587	6.771787448	0.040
A_51_P200291	Golga3	1.105408243	0.144579276	7.028348125	0.040
A_52_P442414	Dclk3	1.105456029	0.144641642	6.439849389	0.023
A_52_P397012	Tars	1.10547652	0.144668383	6.849314237	0.020
A 52 P413161	Cdyl2	1.105830109	0.145129758	6.520071169	0.014
A 52 P481793	Snx2	1.106009436	0.145363695	6.476206454	0.048
A_51_P138548	Hmgb3	1.106067611	0.145439577	9.536955256	0.020
A 52 P11441	Rab6b	1.106139542	0.145533396	12.48482909	0.045
A 52 P654021	Tex261	1.106362187	0.145823755	6.996266347	0.040
A 52 P539161	Rdh11	1.106377046	0.145843131	7.77415424	0.024
A 51 P435239	Asap1	1.106517438	0.146026188	7.949961165	0.016
A_52_P571591	Ash2l	1.106768984	0.146354119	7.049520068	0.023
A 52 P650325	Slc35e1	1.106840356	0.146447151	6.887779643	0.042
A 51 P160576	Brsk2	1.107190206	0.146903087	10.39163179	0.024
A 52 P189888	Dennd4b	1.107515331	0.14732667	6.271937808	0.018
A_51_P345362	Arhgef11	1.107661934	0.147517628	7.198399673	0.038
A_52_P243599	Hsd17b12	1.107836178	0.147744557	8.612384619	0.046
A_52_P514336	Trappc11	1.10792611	0.147861669	6.306906723	0.020
A_51_P496054	Zcchc14	1.108056922	0.148031996	6.836938856	0.048
A 52 P228398	Eif4h	1.108246844	0.148279255	11.9078686	0.030
A 52 P269384	1110018G07Rik	1.108641223	0.148792559	6.949800375	0.026
A_51_P205968	Snx15	1.10872578	0.148902589	8.114142337	0.042
A_51_P152685	Pcnxl2	1.10908757	0.149373281	10.50605021	0.032
A_51_P169087	Gls2	1.109368847	0.149739118	9.441828051	0.049
A_52_P647919	Usf2	1.10943272	0.14982218	7.310735654	0.027
A_51_P124505	Iars	1.109834577	0.150344656	6.983598517	0.026
A_51_P407193	Clp1	1.109876129	0.15039867	6.61868473	0.031
A_52_P235108	Vps35	1.109903125	0.15043376	6.363927004	0.027
A_52_P362670	Adam15	1.110114247	0.150708159	6.480436232	0.036
A_51_P348804	Amotl2	1.11058853	0.151324401	6.920160155	0.019
A_51_P418375	Jam2	1.110610412	0.151352827	8.339137139	0.031
A_51_P502964	Tmem63a	1.110846814	0.151659883	9.860320801	0.037
A_52_P213402	Dhx34	1.110900118	0.151729108	7.004367153	0.050
A_52_P556111	4933426M11Rik	1.11119915	0.1521174	6.874908138	0.028
A_52_P554267	Ilf3	1.111276368	0.152217652	8.908769749	0.029
A_52_P550932	H1f0	1.111319962	0.152274245	6.33807284	0.035
A_52_P375598	Rai1	1.111371596	0.152341275	7.532924715	0.048
A_51_P322871	Sh3bp4	1.111601282	0.152639404	6.486139611	0.038
A_52_P618173	Limch1	1.111645973	0.152697404	6.72453328	0.027
A_52_P496935	Armc9	1.111757431	0.152842048	6.123551371	0.032
A_51_P362104	Enpp5	1.111985129	0.153137494	9.443317416	0.016
A_51_P246705	Nop14	1.112068175	0.153245235	7.760103674	0.030
A_52_P637440	Hnrnpa1	1.112350055	0.153610873	6.470506877	0.023
A_51_P112817	Cyp27a1	1.112476943	0.153775435	6.595949261	0.014
A_52_P642879	Fbxo21	1.113100585	0.154583968	6.474777717	0.020
A_51_P235311	Rpl13a	1.113422914	0.155001679	11.32338739	0.033
A_51_P345714	Tsc2	1.113495066	0.155095166	9.851366432	0.015
A_52_P617963	Fbxl5	1.113593869	0.155223173	7.451766848	0.033
A_51_P120201	Eif5a	1.113666874	0.15531775	9.7935341	0.037
A_52_P141662	Tcf3	1.114212837	0.156024842	6.306202024	0.011

Tabala 11 Continua	cão				
Δ 51 P177897	çuo Ube?i	1 114220123	0 156034276	8 704414861	0.035
A 52 P423357	Vinf3	1.114225672	0.156041461	7 307855458	0.034
Δ 52 P477369	Csnkld	1.114223072	0.157324564	6.479358252	0.034
A 51 P110395	NA	1 115756156	0.158021766	8 722675181	0.020
A 52 P626772	IIf3	1.115963052	0.158289262	6 268754905	0.042
A 51 P305753	Chp1	1.115903032	0.158339636	6 508111456	0.042
A 51 P135137	St3gal/	1.116069605	0.158357050	6 330170185	0.040
$A_{51} P440242$	Pogk	1.116072262	0.15843044	6 848786323	0.014
A 52 P479179	Cnot8	1 116195941	0.158590306	6 520145163	0.030
A 52 P577329	Tmem88h	1 116294275	0.158717398	7 211900491	0.044
A 52 P262275	Atxn?	1.116475256	0.158951278	6487777211	0.036
A 51 P510817	Camk2d	1 11683154	0.159411589	7 710745461	0.022
A 51 P296100	Rhot2	1,116977524	0.159600156	10.31023738	0.022
A 52 P455494	M6pr	1,117470707	0.160237013	9.777131018	0.014
A 51 P148122	Klhdc3	1,11794938	0.160854866	10.37061138	0.016
A 52 P584293	Atrn11	1,118031165	0.160960403	7.517652684	0.039
A 51 P444264	Rtn1	1 118483243	0 161543642	12 77543104	0.036
A 51 P342805	Ptpru	1.118611046	0.161708482	6.490887082	0.046
A 51 P186469	Sik3	1.119177248	0.162438539	9.426800784	0.031
A 51 P191601	2510039018Rik	1 119429766	0.162764015	8 968631457	0.031
A 51 P268186	8430419L09Rik	1,119601794	0.162985704	6.429217002	0.025
A 51 P201609	Rnf26	1,119718136	0.163135612	9.328969929	0.019
A 51 P480290	Caszl	1,119840491	0.163293251	6.702098702	0.047
A 51 P394244	NA	1 120201025	0.163757653	8 129164533	0.036
A 52 P119393	Mta3	1.120201023	0.163857665	7 691457466	0.031
A 52 P684037	Ncam1	1 120311557	0.163899999	6 900869778	0.027
A 52 P108845	NA	1 121459483	0.165377498	10 59249146	0.027
A 51 P211980	Ros3	1 121768955	0.165775563	7 818307708	0.035
A 52 P649170	Lonp2	1.122376423	0.166556608	6.703129849	0.024
A 52 P359381	Ptk2	1.122448682	0.166649487	6.576183429	0.007
A 51 P492676	Sardh	1.122887646	0.167213582	7.271018883	0.020
A 51 P183853	Polr2m	1.12293452	0.167273804	11.39948734	0.022
A 51 P156434	Slc25a33	1.123132817	0.167528545	8.169457531	0.038
A 51 P106373	Sdhc	1.123250615	0.167679852	8.833325301	0.046
A 51 P443723	Slc35c1	1.123267718	0.167701818	8.922965361	0.042
A 51 P406346	Magil	1.12343703	0.167919262	9.24735644	0.049
A 52 P396884	2010300C02Rik	1.123577869	0.168100113	6.617044305	0.033
A 51 P155675	Sel11	1.123846049	0.168444421	6.773810229	0.016
A 51 P504114	Atp11a	1.123928502	0.168550262	6.699161635	0.012
A 51 P466371	Pitpna	1.123992925	0.168632954	11.31361445	0.020
A 51 P511112	H1f0	1.12414548	0.168828753	6.129136432	0.007
A 52 P226407	NA	1.124190678	0.168886757	7.523447234	0.030
A 52 P48398	Rnf41	1.124387783	0.169139683	6.703316546	0.029
A 52 P350477	Mcfd2	1.124454791	0.169225658	6.478067284	0.033
A_51_P114049	Tmem109	1.124887031	0.169780123	10.47014261	0.007
A_51_P308557	Ncln	1.125174941	0.170149328	6.799718438	0.032
A_52_P231691	Wnt7b	1.125271429	0.170273039	7.096599672	0.039
A_51_P209225	Tada3	1.125294695	0.170302868	7.316398415	0.038
A_52_P652212	Psmd14	1.12551193	0.170581348	9.217721691	0.037
A_52_P686136	Prrc2b	1.125598596	0.170692434	11.14412105	0.032
A_52_P517247	Iqsec3	1.125987408	0.171190694	10.69669669	0.020
A_51_P224564	Ppm1f	1.1262665	0.171548242	10.40960359	0.044
A_52_P166952	Ppp2r5c	1.126394482	0.171712172	7.211759286	0.015
A_52_P676956	Tirap	1.126692084	0.172093292	6.634590226	0.048
A_52_P268104	NA	1.126721864	0.172131425	11.58491122	0.048
A_52_P235631	Herc2	1.126797792	0.172228642	7.196672255	0.021
A_51_P223776	Nr1d1	1.126809581	0.172243736	6.762205871	0.044
A_52_P925246	NA	1.126822118	0.172259787	6.58284719	0.014
A_51_P432420	Azi1	1.127016193	0.172508244	8.70048172	0.049
A_51_P491470	Ddx47	1.12705668	0.172560071	7.828382946	0.017
A_52_P404403	Xrn2	1.127086314	0.172598004	6.693411198	0.018
A_51_P219918	Tmem125	1.127219954	0.172769055	9.930818426	0.027

Tubeni II. Commun	çuo				
A_52_P427024	Ldlr	1.12767559	0.173352092	9.818374578	0.018
A_52_P45606	2510003E04Rik	1.127775198	0.173479521	7.121195521	0.021
A_52_P555688	Trappc12	1.127962933	0.173719658	7.697783533	0.047
A_52_P261322	Tanc1	1.128613811	0.174551909	6.322691302	0.013
A_51_P282630	Pacsin3	1.128969963	0.175007103	10.7330216	0.014
A_51_P427934	NA	1.129007659	0.175055274	9.220337571	0.028
A 52 P442234	H1f0	1.129056312	0.175117443	7.303514424	0.046
A 52 P677822	Tmem5	1.12906582	0.175129592	7.12998297	0.035
A 52 P314548	Zhth9	1,129364531	0.175511228	6.293921069	0.011
A 52 P589065	Mhtns1	1 129643135	0.175867084	6.948566522	0.037
A 52 P566406	Xnc	1.120073372	0.175007004	6.971880299	0.037
A_51_D177084	Itfa3	1.130073372	0.176470886	8 050151032	0.017
A_52_P300241	Doom?	1.130110017	0.17657377	7 288830547	0.038
A_52_D599520	Daalii2 Snanin	1.130190012	0.176799006	7.2888333347	0.040
A_52_F 300339	Thur	1.130304430	0.170788000	9.409240090	0.050
A_52_P000930		1.130442779	0.176887907	8.498349989	0.015
A_52_P264902	Dnajc3	1.13044/3/9	0.1/6893838	1.33/8/3/83	0.015
A_52_P42976	Gorasp2	1.130570307	0.17/050/12	6.638937863	0.040
A_52_P582424	9130221H12R1k	1.130/5344	0.17/284385	6.610378957	0.022
A_51_P269375	Ankl	1.130754168	0.177285314	10.95866071	0.008
A_52_P335606	Prima1	1.131085366	0.177707818	6.241020031	0.041
A_51_P462533	Syt7	1.131330461	0.178020402	9.38730707	0.010
A_51_P295708	Ints1	1.131563156	0.178317109	8.55109635	0.010
A_52_P18299	Chd5	1.131913006	0.178763083	8.340713815	0.027
A_52_P173197	Dusp7	1.131953819	0.178815101	9.693120086	0.032
A_52_P317040	Edem2	1.132295456	0.179250457	6.687256878	0.014
A_51_P371311	Slc1a4	1.132300827	0.1792573	6.955530778	0.007
A_52_P600038	Dlgap4	1.132433495	0.179426327	7.394538009	0.049
A 51 P277270	Rbmx	1.132581227	0.179614522	7.232181018	0.041
A 52 P587441	Ctnnd2	1.13270744	0.179775284	6.44341534	0.005
A 51 P126327	Otud7a	1.132770215	0.179855237	9.267535274	0.012
A 51 P506093	Clip3	1.132914454	0.180038928	7.577588645	0.043
A 52 P89425	Pent	1 133698829	0 181037434	8 184797144	0.020
A 52 P837662	2310057M21Rik	1 13388238	0 181270994	7 710400845	0.020
A 51 P236287	Safh	1.13300230	0.181601338	7 292491909	0.043
A 52 P393056	Wdr77	1.134142042	0.182/31709	6 669209389	0.013
A_51_D333860	Ndn12	1.134775000	0.182508848	7 35824406	0.017
A_51_D115027	A fg212	1.134920404	0.182398848	7.33624490	0.045
A_52_D201024	Alg512	1.135100092	0.102030704	7.550057555	0.022
A_32_P291924		1.135201007	0.182948330	0.702130937	0.051
A_52_P85403	Heximi	1.135234144	0.182989886	9.6/0585563	0.041
A_51_P16/452	Snap4/	1.135688603	0.18356/314	12.95830835	0.010
A_52_P461292	Oazl	1.135721647	0.18360929	11.00529986	0.031
A_51_P495641	Stmn1	1.135953092	0.183903262	13.41739608	0.049
A_51_P185259	Gnb5	1.136004849	0.183968992	7.637153097	0.024
A_52_P101184	Fbxw7	1.136196511	0.184212378	7.370155619	0.045
A_52_P654130	Oaz2	1.136492068	0.184587616	10.38852691	0.028
A_51_P426739	Gpt	1.136676579	0.184821819	8.102788065	0.037
A_52_P371946	Eif6	1.136708609	0.184862472	7.492676483	0.048
A_52_P438188	Itsn1	1.137100353	0.185359583	7.745986044	0.027
A_51_P360836	Txnl4a	1.137222526	0.185514582	10.78216018	0.049
A_52_P43111	Rnf7	1.137954042	0.186442293	9.73187 <mark>9819</mark>	0.029
A_51_P166394	Ap1s1	1.138087258	0.186611175	11.99170496	0.032
A_51_P505472	Ece2	1.138267749	0.186839956	6.907214197	0.028
A_52_P121960	NA	1.138672457	0.187352811	12.10637858	0.019
A_51_P161429	Snx11	1.138844118	0.187570288	6.644501191	0.034
A_52_P571707	Extl3	1.138877958	0.187613156	9.260331961	0.018
A_52_P421417	Vps36	1.139058052	0.187841276	7.192359292	0.042
A 51 P114062	Ncs1	1.139124504	0.18792544	9.920641759	0.008
A 52 P180972	NA	1.139167978	0.187980498	11.67912301	0.034
A 51 P177819	Rnf114	1,139620856	0.188553929	7.117737618	0.043
A 52 P656434	Dirc2	1.139735388	0.188698913	7.349022929	0.045
A 52 P271910	Pin5k1c	1 1 3 9 7 8 9 4 0 8	0 188767291	7 158870465	0.008
A 52 P331523	Brd9	1,139813319	0.188797557	7.134700477	0.049
<i></i>		1.1.0/01001/	0.100171001	/	0.047

Tubeta 11. Communuq	,uo				
A_51_P180629	Cdc42ep1	1.140070799	0.18912342	7.241301633	0.049
A_52_P256569	Dbndd2	1.140115961	0.189180568	10.20304748	0.019
A_51_P466221	Amhr2	1.140586443	0.18977579	6.875807386	0.028
A_51_P372418	Zfp706	1.140776466	0.190016124	9.818627116	0.014
A_52_P409833	Plat	1.140871487	0.190136289	7.356037008	0.047
A_52_P628455	Ewsr1	1.140876203	0.190142253	6.704731354	0.044
A 52 P445969	2810407C02Rik	1.140942489	0.190226073	10.43367832	0.045
A 52 P261562	Cpsf3	1.141121311	0.19045217	7.986718982	0.048
A 52 P277854	Snrph	1 141151214	0 190489976	7 216260222	0.046
Δ 51 P329413	Poment1	1 141347816	0 190738508	7 965141203	0.043
A 52 P614762	Bad	1 1/1711315	0.190750500	6 102/158063	0.045
A_51_D164405	Dda1	1.141711515	0.101020225	0.172450705 9 561907097	0.013
A_51_P250555	Dua1 Gnatah2	1.141730301	0.191232333	6 77665860	0.037
A_31_P239333	Trans2	1.141//2981	0.1912/3828	0.77003809	0.039
A_52_P108//	Timees	1.141/91112	0.191298737	/.144883800	0.010
A_51_P223404	Plin3	1.141868248	0.191396198	9.88/244318	0.050
A_52_P548940	Trim11	1.141963533	0.191516582	6.963976242	0.044
A_52_P244572	Map4	1.142101256	0.191690563	9.993405114	0.044
A_52_P572447	Agpat5	1.142380379	0.192043106	7.867659843	0.048
A_51_P372874	Dpf2	1.142503371	0.192198422	8.935103264	0.008
A_51_P504423	Cryab	1.142818573	0.192596389	8.151804827	0.036
A_51_P303675	Slc18a3	1.142911842	0.192714126	6.591296337	0.026
A_52_P323315	Tmem151a	1.143252714	0.193144345	11.19914198	0.037
A_51_P282297	Naa11	1.143271968	0.193168641	7.047316181	0.015
A 51 P186899	Egln1	1.143286816	0.193187378	6.50055583	0.013
A 51 P346704	Sox10	1.143867065	0.193919399	8.578256609	0.047
A 52 P436700	Gltp	1.143975423	0.194056057	7.606117421	0.046
A 52 P572178	D130043K22Rik	1 144040615	0 194138271	7 351021421	0.045
A 52 P79038	Scaf1	1 144323212	0.194494596	6 87840611	0.029
Δ 51 P275679	Rassf5	1 144456545	0.194662685	6 896057887	0.022
A 51 P100034	Mif/ad	1.144525076	0.194002003	8 0503/001	0.022
A_52_D260515	Color?	1.144041001	0.105274505	7.009645092	0.000
A_52_D515026	Utatin 2	1.144741771	0.195274505	7.908043083	0.020
A_52_P515036	Htatip2	1.14515175	0.19553879	6.624820389	0.031
A_51_P391996	Pgd	1.145521342	0.196004337	7.271859204	0.039
A_51_P296292	Nono	1.145797402	0.196351971	9.912466055	0.038
A_52_P353038	Trim26	1.146197592	0.19685577	6.471670401	0.045
A_51_P404875	Synm	1.146566635	0.197320202	9.786758827	0.023
A_52_P258194	Crtac1	1.146598138	0.197359841	10.17267622	0.042
A_51_P470769	Pcdhga9	1.146657556	0.197434601	9.961377535	0.034
A_51_P271425	Lhfpl4	1.147008233	0.197875747	10.92328535	0.024
A_52_P143287	Itgb4	1.147053018	0.197932076	9.875413684	0.040
A_51_P108334	Slc25a4	1.147272572	0.198208192	11.83070248	0.017
A_51_P338615	Adprh	1.147599012	0.198618631	8.254766377	0.041
A 51 P140211	Ndufv3	1.147659596	0.198694791	7.374100818	0.042
A 51 P144926	Cops8	1.147793872	0.198863577	8.512223081	0.030
A 51 P218953	Zfp536	1.14781902	0.198895186	9.910549559	0.037
A 51 P288839	Otud5	1.147875531	0,198966213	7.856260159	0.012
A 52 P136808	Dtymk	1 147888565	0.198982594	8.04111123	0.012
A 51 P188845	Adora1	1 147960954	0 199073572	6 740744045	0.019
A 52 P366105	Tmem55h	1 1/8356521	0.199570613	8 3/695/629	0.035
A_51_P432544	Пісії 550	1.140550521	0.100647087	6.040584602	0.035
A_31_F432344	FI2-122	1.14041011	0.199047987	0.949384092	0.047
A_31_P209032	SIC2585	1.146303333	0.199833177	10.81387381	0.040
A_51_P150277		1.148043828	0.199934028	7.062697445	0.012
A_51_P215496	INA TR TO C	1.148/38853	0.200050862	8.605412639	0.045
A_52_P194805	Ztp/06	1.148746338	0.200060263	8.509043151	0.018
A_52_P226788	Rogdi	1.148753799	0.200069632	7.343010749	0.035
A_51_P335350	Ankrd40	1.148928474	0.200288987	8.603773449	0.017
A_52_P315988	Ccdc88c	1.14907418	0.200471936	6.442274385	0.004
A_52_P364279	Iqcc	1.149227628	0.200664581	6.383054557	0.009
A_51_P173858	Apba2	1.149426487	0.2009142	8.574137701	0.015
A_51_P249268	D130043K22Rik	1.149717238	0.201279087	6.842909551	0.045
A_52_P184304	Dst	1.150099423	0.201758584	6.647557678	0.011
A_51_P483658	Trim3	1.150563663	0.202340813	8.004135484	0.017

Tubeni II. Commun	çu0				
A_52_P524426	Epb4.111	1.150785121	0.202618473	9.517427496	0.047
A_51_P216905	Aldoa	1.151078803	0.202986604	13.60883259	0.045
A_52_P102207	NA	1.151087825	0.202997912	8.622140462	0.004
A_51_P363801	Pgpep1	1.151330355	0.20330185	7.155772531	0.032
A 51 P343818	Pgbd5	1.151374766	0.203357499	6.62358974	0.007
A 51 P326542	Dnaia3	1.151597266	0.203636269	6.8262623	0.023
A 52 P327381	Endc4	1,15174337	0.203819293	8.169261385	0.033
A 51 P280404	Epdr1	1.151795597	0.203884712	8.938637198	0.050
A 51 P155152	Ank	1 151921868	0 204042866	9 564209864	0.042
A 51 P479769	Ampd2	1 151964083	0.201012000	9.844593756	0.031
A 51 P264634	Strbp	1.151980007	0.2040/5735	6 950691838	0.031
A_51_D260020	Duff112	1.15100000	0.204110717	7 526855522	0.031
A_51_P402406	Atp5a1	1.152021781	0.204107994	11 50406405	0.010
A_51_D256255	Cdo2	1.152301872	0.204515995	10.27745547	0.020
A_52_D262069	Cus2 Dhog	1.152291875	0.204500194	8 702608507	0.020
A_51_D210522	Kil0g	1.152550534	0.204334023	8.702098307	0.040
A_51_P219552	FDX031	1.152917249	0.205288967	11.8/921192	0.047
A_52_P2/4184	Vps39	1.153308293	0.205778213	6.4320126	0.024
A_52_P614582	Ube4b	1.153/56593	0.206338892	7.423067056	0.029
A_52_P120424	vcp	1.1538158/1	0.206413014	10.43800/3	0.042
A_52_P594355	Ibcld5	1.154055283	0.206712336	/.32816/84	0.011
A_52_P339912	Inpp5j	1.154199941	0.206893162	6.867762269	0.042
A_51_P420415	Srd5a1	1.154618877	0.207416718	8.019237876	0.028
A_51_P501312	Gm16515	1.154732241	0.207558358	8.711800058	0.022
A_51_P187612	Desil	1.154948121	0.207828049	7.85886328	0.006
A_51_P473252	Zyx	1.155265939	0.208224995	10.08816582	0.009
A_52_P27103	Necap2	1.155291939	0.208257463	6.959271343	0.008
A_51_P174864	Rnf41	1.15531415	0.208285198	6.539064286	0.034
A_51_P138348	Ap1b1	1.155365013	0.208348712	10.18117341	0.017
A_51_P180905	NA	1.155503854	0.208522071	6.330433802	0.026
A_51_P433194	Bcas1	1.155934413	0.209059543	12.62542534	0.043
A_51_P251508	Lemd2	1.156175562	0.209360484	9.006104886	0.031
A_51_P135423	Capzb	1.156401471	0.209642349	10.37898943	0.003
A_52_P22365	Cnot1	1.156604031	0.209895036	6.864153196	0.017
A_52_P167958	Gripap1	1.156708586	0.210025446	8.689413184	0.032
A_52_P535946	Dhcr7	1.156719432	0.210038974	6.527116071	0.021
A_52_P537492	Tmx2	1.157218465	0.210661248	8.082056169	0.049
A_51_P109171	Os9	1.157223161	0.210667103	9.844961723	0.038
A_52_P81980	Micu1	1.157237946	0.210685536	7.393089288	0.039
A_52_P247388	NA	1.157299311	0.210762035	6.774198775	0.003
A_52_P344376	Eif4a2	1.15873328	0.212548522	9.725902937	0.013
A_52_P377326	Plekhb2	1.158990436	0.212868662	6.647752387	0.027
A 52 P514306	Spata2	1.159125568	0.213036862	7.909660242	0.029
A 51 P209930	Rtn2	1.159143993	0.213059794	9.150625821	0.024
A 52 P16232	Gabbr1	1.159157824	0.213077008	10.35419058	0.025
A 51 P281806	NA	1.159503848	0.213507608	10.50966201	0.031
A 52 P120022	Prosapip1	1.159516993	0.213523963	8.535142898	0.015
A 51 P247665	Trappc12	1.159803845	0.213880826	7.866157705	0.026
A 52 P172619	Egln1	1.160007015	0.21413353	8.270687566	0.007
A 52 P614731	Gng12	1 16008	0.214224298	8.558604622	0.033
A 51 P126177	Map1lc3h	1.160273978	0.214465512	11.97701169	0.013
A 51 P116130	Uhe2g2	1.160297037	0.214494184	6.46105368	0.036
A 52 P378719	Effud1	1 160382164	0.214400026	6 57414248	0.007
A 52 P587606	2310022A10Rik	1 160747207	0.215053922	6 419593782	0.007
Δ 51 D358112	Fads1	1 16074057	0.215055722	9 65006000	0.030
A 51 D1/0211	Gnb2	1.100/493/	0.215050747	10 07225792	0.040
A 52 P2650	NA	1.101342939	0.210042408	11 30361366	0.043
A 52 D212400	Dhy34	1.1010/2032	0.210203389	7 275215559	0.030
$A_{52} D_{42601}$	Megel	1.101911493	0.210300177	6 619020714	0.030
A_32_P442091	IVICCC1	1.10251/581	0.217252287	0.018932/14	0.015
A_31_P1419/U		1.102847012	0.217001303	0.334/3/411	0.002
A_52_P408530	INA G 2	1.162892264	0.21//1/445	9.53581981	0.033
A_51_P42/444	Snx3	1.162940921	0.21777/808	9.489499025	0.041
A_52_P369310	Ugdh	1.163214755	0.21811/4/5	7.923464769	0.042

Tabela 11. Continua	cão				
A 52 P385801	Snock2	1 163526534	0218504112	8 976149671	0.010
A 52 P123738	Rnf41	1 16404147	0.219142456	6 561025835	0.029
A 51 P186735	Tesk?	1 16/050006	0.219165306	7 / 00355101	0.02)
A_51_P303034	Cd82	1.164037700	0.21035157	0 127466741	0.011
A 52 D227527	Mpdz	1.164512860	0.210726582	6.070866224	0.020
A_32_F327337	Enh 4 112	1.104512809	0.219720383	6.979800224	0.022
A_52_P621940	Ep04.112	1.104591985	0.219824595	0.82990952	0.011
A_52_P589568	Foxo6	1.164812267	0.220097454	7.852263066	0.023
A_51_P189343	Map/d1	1.164996013	0.220325017	11.32642308	0.027
A_51_P2230/8	Gm10033	1.16541425	0.220842856	6.561932842	0.032
A_51_P219868	Dnm1	1.16560576	0.221079911	9.249443997	0.037
A_51_P427432	Grhpr	1.16585545	0.221388925	10.51848271	0.009
A_52_P18665	Dtnbp1	1.166664639	0.222389913	7.680849486	0.041
A_51_P259879	Fkrp	1.167140122	0.222977776	7.94598216	0.022
A_51_P153982	Specc1	1.16822951	0.224323734	10.5501296	0.045
A_51_P189927	Tm7sf3	1.168252222	0.224351781	6.509984939	0.021
A_51_P341789	Sugp1	1.168618018	0.224803439	9.990696018	0.030
A_51_P187171	Smim12	1.168707661	0.224914101	10.68498759	0.031
A_51_P442402	Mgrn1	1.168955709	0.225220268	11.75227772	0.031
A 52 P600087	NĂ	1.169138754	0.22544616	11.95704955	0.045
A 51 P371993	Tmed10	1.169156799	0.225468426	11.10888508	0.008
A 52 P268880	Rell2	1.169587185	0.22599941	8,394838257	0.025
A 51 P191669	Chop	1 170495788	0.227119742	12 97564793	0.018
Δ 51 P307721	Chln1	1 17094165	0.227669185	9 574210045	0.044
A 51 P201224	Mohn	1.17004105	0.227607250	0 102101758	0.071
A_51_D250812	Cankid	1.170904430	0.227097239	10 82444028	0.021
A_51_P102501	Csiikiu Cromd2	1.170904624	0.227097738	7 559209466	0.030
A_51_P192501	Granius Cala90	1.1/119001/	0.227980001	7.538598400	0.018
A_51_P248780		1.1/1800/33	0.228/34043	1.705752795	0.049
A_52_P229648	Pacsin2	1.172507272	0.22959687	6.738333396	0.013
A_52_P504236	SIC20a2	1.172690931	0.229822834	6.685/28646	0.035
A_51_P1/4906	Prpsap1	1.1/3691341	0.231053056	8.625454259	0.005
A_51_P416046	Trim41	1.173914752	0.231327646	7.624093362	0.007
A_52_P266540	Ubr4	1.175024654	0.232691027	9.548505104	0.038
A_51_P178063	Rasa3	1.175391613	0.233141509	9.764417094	0.010
A_51_P321126	Fasn	1.176418367	0.234401214	12.25697324	0.003
A_52_P272811	Cpsf1	1.176648447	0.234683344	8.204123732	0.040
A_52_P495318	Tomm40	1.176854446	0.234935898	6.800005275	0.025
A_51_P447976	Fam46c	1.176892778	0.234982888	6.487763539	0.012
A_52_P58041	Arpc5	1.177003382	0.235118466	7.370453744	0.016
A_51_P238523	Shisa4	1.177441681	0.235655605	9.931990845	0.004
A_52_P123485	Tcf25	1.17809151	0.236451607	12.93124646	0.009
A_52_P473172	NA	1.178144529	0.236516533	9.706228991	0.008
A_51_P202801	Abcb9	1.178382329	0.2368077	10.82469927	0.003
A 51 P439612	Dnajb2	1.178931655	0.237480085	10.51858514	0.012
A_51_P365008	NA	1.179349061	0.237990787	9.282875772	0.008
A_52_P282279	Mthfd1	1.179450494	0.238114865	7.025558121	0.037
A 52 P308465	Plxnb1	1.179638727	0.238345092	7.825737359	0.047
A 52 P193925	Sulf2	1 180012991	0.238802743	9.264855479	0.022
A 52 P138727	Sirt7	1 180382397	0.239254311	8.068354329	0.050
Δ 51 P318580	Myh14	1 180/27/24	0.239234311	10 46645204	0.030
A 51 PA60622	Has	1.100427424	0.237307343	7 / 2017289	0.027
Δ 52 Ρ27077	Ncam1	1.100752479	0.237330312	6 926600512	0.017
Δ 52 D07880	R/galnt/	1.101223700	0.240202213	7.211216042	0.020
A 51 D294004	D4gaill(4 Grik4	1.101030300	0.240013104	0.121740042	0.017
A_51_P304994	UIIK4	1.10254089/	0.24103338	9.131/4990/	0.008
A_31_P4/3628	Paqro	1.182568/35	0.24192404	9.0009/1094	0.005
A_51_P356705	Plekhb2	1.182721853	0.242110827	10.26338483	0.008
A_51_P154222	Kars	1.185327385	0.242849272	8.9/1150015	0.014
A_52_P320032	Fus	1.183753797	0.243369054	7.70706229	0.024
A_52_P674530	Hk1	1.184917257	0.244786319	7.405528637	0.027
A_51_P433733	Nucb1	1.185044214	0.244940887	8.825085947	0.022
A_52_P262080	Snurf	1.185310206	0.245264674	8.518779484	0.038
A_51_P262340	Rbm3	1.185739336	0.245786894	9.629994897	0.015
A_52_P352131	Acvr1	1.185771321	0.24582581	7.270621908	0.011

Tabela 11. Continua	ção				
A_52_P171064	Wnk1	1.186821419	0.247102869	8.886687175	0.034
A_52_P568257	Sort1	1.18709464	0.247434957	8.535318405	0.021
A_51_P300717	Stxbp1	1.187312096	0.24769921	11.36644989	0.016
A 51 P144438	Znfx1	1.187374305	0.247774799	7.611579359	0.050
A 52 P290369	Usp19	1.18754489	0.247982049	7.184651832	0.039
A 51 P239766	Plcd1	1.18754758	0.247985317	8.39796341	0.024
A 51 P358940	Wbp2	1.187891358	0.248402897	10.56860371	0.017
A 52 P522097	Adipor1	1.187938467	0.24846011	7.53818378	0.014
A 51 P411645	Maea	1.188063598	0.248612066	7.825473774	0.036
A 51 P114094	Clstn3	1.188496022	0.249137075	11.95771567	0.044
A 51 P311945	Oaz2	1.189520709	0.250380389	10.03134506	0.031
A 51 P323878	Coro7	1.190115309	0.251101361	9.650991063	0.027
A 51 P490023	Tubb2a	1.190121241	0.251108553	13.28086786	0.031
A 52 P166694	Vamp1	1.190158648	0.251153898	12.04102212	0.050
A 52 P377160	Galnt6	1.190285178	0.251307268	6.975783599	0.001
A 52 P419298	Lasp1	1.191862874	0.253218261	7.058144556	0.004
A 52 P508985	Ash8	1.192485512	0.253971738	7.65121114	0.046
A 52 P485971	Scap	1,19260325	0.254114174	10.58903886	0.004
A 51 P360840	Zfpm1	1.192650233	0.254171008	9.064252842	0.005
A 52 P510647	Chtop	1.193395006	0.255071644	9.595897448	0.006
A 51 P125695	Scn8a	1 193474393	0.255167613	7 646627665	0.038
A 52 P86176	Tan?	1 193757882	0.255510259	6732532076	0.009
A 51 P170371	Hspa8	1.193769096	0.255523811	13 27071209	0.005
A 51 P142057	An2a1	1 193884444	0.255663205	7 56138107	0.009
A 52 P305230	Igsf21	1 194323925	0.256194178	9 678978126	0.005
A 51 P409919	Emc1	1.194704735	0.256654108	6 682439457	0.040
A 52 P633597	Rftn1	1 194929822	0.256925892	7 438238923	0.040
A 52 P566718		1.195120409	0.257155978	6 943049897	0.000
A 51 P185794	Preh	1.195204564	0.257257562	9.921623988	0.050
A 51 P386638	I loll	1.195292201	0.257257502	9.675677948	0.038
A 51 P175018	Ancdd1	1.195686778	0.257839511	8 896068616	0.030
A 52 P6/2109	Prosen1	1 19582376	0.258004782	8 511015374	0.021
A 51 P51/022	2610301G10Bik	1 105010814	0.258109804	7 658158524	0.035
A 52 P683572	Wsh2	1.196286646	0.258563119	7 738695893	0.007
A 52 P623337	Ncl	1.196991967	0.259413471	11 71539374	0.024
A 51 P512364	Fus	1.1970/7/55	0.259480347	0 125012352	0.044
A 51 P381683	Aatk	1 10710632	0.259460547	12 48530965	0.037
A_52_P656024	Sirt?	1.17713076	0.257057747	8 600005586	0.004
A_52_D282500	Vif21b	1.197/13970	0.260557022	0.047152222	0.017
A_51_P180402	NII210	1.19/941094	0.200337933	9.047132332	0.005
A_52_D112016	D0p	1.19041199	0.201123903	6.216218024	0.025
A_32_F113910	MA NA	1.199023783	0.201802084	0.210210934	0.010
A_32_F370374	INA Drav 1	1.199109202	0.202033309	9.393780471	0.035
A_31_P346372	Fiex1	1.200043938	0.203089034	8.220379339	0.034
A_32_P400320	Ell4g2	1.200104552	0.203231984	8.575495514	0.038
A_51_P4(4200	Gigi	1.200332074	0.203098703	11 92579(27	0.045
A_51_P464300	Gdf1	1.200632835	0.263795028	11.835/863/	0.006
A_52_P90289	Oaz2	1.201694236	0.265069857	1.9/584/3/3	0.024
A_52_P322389	Strn4	1.201765575	0.265155501	0.0733188	0.005
A_52_P1/8998	Fam168b	1.201/95104	0.26519095	10.82529848	0.010
A_52_P2/8/1	Fnbp1	1.20218207	0.265655408	7.8205401	0.028
A_52_P5/8562	SIC4181	1.202/21303	0.200302377	1.939031092	0.024
A_52_P268206	Mcam	1.202806657	0.266404758	6.5632/1983	0.001
A_51_P168862	Snrpn	1.203024409	0.266665915	9.235505107	0.003
A_51_P260051	Artl	1.203547/47	0.26/293378	8.554523242	0.009
A_51_P343566	Gaint10	1.203566135	0.26731542	7.994829494	0.034
A_52_P28651	Pvrll	1.203985557	0.26/818086	8.564524924	0.022
A_52_P354390	Snrpn	1.204457079	0.268382983	9.855355693	0.044
A_52_P473813	NA	1.20485294	0.268857068	9.594001953	0.016
A_51_P234833	Strn4	1.204865854	0.26887253	8.409276419	0.003
A_51_P263503	Mapkl	1.205373581	0.26948035	6.852293435	0.003
A_52_P642662	Efhd1	1.20576984	0.269954548	6.679781262	0.013
Tabela II. Continua	cão				

Tabela 11. Continuad	cão				
A 51 P519756	Rusc1	1.205866934	0.270070717	10.3933183	0.029
A 51 P488399	Acss2	1.205888269	0.270096241	8.305337327	0.034
A 52 P177847	Tril	1 205999257	0 270229018	7 667070214	0.014
A 52 P157170	Rnf157	1 206505114	0.270834031	9 106858014	0.032
A 52 P140072	Dlst	1 206883693	0.271286651	7 582395986	0.002
A 51 P259603	Adevan1r1	1.200003033	0.271665549	9 902023504	0.040
A 52 P189235	Dnaic27	1.207286857	0.271888002	7 693184741	0.050
A 51 P354272	Club	1 207458754	0.271973908	9 834236504	0.015
A 52 P461378	Tmbim1	1 207 690526	0.272250807	7 646820215	0.022
A 52 P675996	Klf9	1 208021776	0.272646461	8 223921774	0.013
A 52 P383753	Tom112	1 208190831	0.272848344	10 41172448	0.010
A 51 P425749	Cdc37	1 20868497	0.272040344	7 759264919	0.026
A 52 P179272	Usp30	1 209049054	0.273872779	6 622779407	0.013
A 52 P772918	Laml	1.211402765	0.276678609	6.868305127	0.015
A 51 P510567	Zfyve28	1 211464196	0.276751767	7 469057731	0.002
A 51 P483946	Dmwd	1 211718284	0.277054321	8 508718296	0.038
A 51 P499061	Libe20	1 212186712	0.277611933	11 61909614	0.005
A 52 P568028	Ncdn	1.212755607	0.278288849	9.653465164	0.010
A 51 P442097	Slc41a3	1.213450219	0.279114924	7.451172346	0.004
A 51 P507942	Atp13a2	1.21412486	0.279916795	11.28578781	0.005
A 52 P143866	Glul	1.215082656	0.281054456	7.364518328	0.005
A 52 P463143	Cdc37	1 215462807	0.281505747	11 87296318	0.028
A 51 P439746	Vmn1	1 217 10 2007	0.283637489	8 974874002	0.020
A 52 P193611	Pkd2l1	1 217637538	0 284084741	6 6836589	0.045
A 52 P670978	Nkain1	1 218025398	0.284544216	7 933324414	0.037
A 52 P676744	St6galnac6	1 219102495	0.285819425	8 734591851	0.025
A 51 P133229	Sulf2	1.219507717	0.286298887	9.383014718	0.025
A 51 P193176	Slc25a25	1 219864144	0.286720484	8 514670413	0.016
A 51 P169061	Lpcat2	1.220242465	0.287167843	7.939793697	0.005
A 52 P557129	Slc12a5	1.220567605	0.287552206	13.40589404	0.014
A 52 P661327	Phyhipl	1.221339768	0.288464604	7.192995855	0.003
A 52 P347176	Nat81	1,222,032709	0.289282901	12,79350354	0.004
A 52 P116384	Usp4	1.222292829	0.289589958	8.185939106	0.020
A 52 P467726	Nsg1	1.222459168	0.289786278	11.95523024	0.016
A 52 P650855	Mvold	1.223499869	0.291013947	10.3228362	0.047
A 52 P352187	Acsl6	1.224396755	0.292071126	6.835289552	0.026
A 52 P604618	Sbf1	1.224765848	0.29250596	7.227562051	0.013
A 51 P194249	Stmn4	1.226381746	0.294408128	13.90919597	0.021
A 52 P350664	Pvgb	1.226771478	0.29486653	9.771442267	0.048
A 51 P216742	Arhgap23	1.226871486	0.294984135	8.859622731	0.023
A 51 P161582	Ddr1	1.227486129	0.295706721	10.58632352	0.005
A 52 P282741	Sdc3	1.227868603	0.296156183	8.396446058	0.039
A_52_P269003	Neo1	1.227980434	0.296287574	7.525883511	0.003
A_51_P130459	Vdac1	1.228468092	0.296860386	9.995869047	0.001
A_51_P257640	NA	1.228963916	0.297442557	7.39821965	0.010
A_52_P429909	Dynll2	1.230629167	0.299396092	11.80778112	0.033
A_51_P244453	Kctd3	1.231173965	0.300034629	8.21738305	0.039
A_52_P109503	Sdha	1.232038494	0.301047332	9.274912563	0.005
A_51_P411007	Cdk2ap1	1.232267175	0.301315089	9.132643702	0.028
A_52_P546135	NA	1.232448297	0.301527125	7.119644343	0.002
A_52_P54976	NA	1.233358764	0.302592518	7.873469204	0.040
A_51_P124285	Nkd1	1.233813554	0.3031244	8.25781992	0.002
A_51_P362638	Trf	1.234029251	0.303376592	12.34321398	0.041
A_52_P485007	Abca2	1.236514248	0.306278863	9.111611377	0.006
A_52_P518233	Ndrg3	1.236842263	0.306661523	7.615724541	0.010
A_52_P85040	Mog	1.237603509	0.307549193	8.034547364	0.010
A_51_P241465	Gsn	1.238331017	0.308397011	12.29743954	0.008
A_51_P363396	Klc2	1.238413863	0.308493526	6.757388615	0.023
A_51_P314277	Parp1	1.23886123	0.309014594	7.890391969	0.007
A_51_P397920	D17Wsu92e	1.239188233	0.30939535	9.458906024	0.021
A_51_P436719	Eftud2	1.239255786	0.309473994	8.323356826	0.030
A_51_P500135	Ndrg4	1.239725125	0.310020278	13.23465452	0.002

Tabela II. Confinua	ıçao				
A_51_P228883	Htatip2	1.239869965	0.310188822	7.527049042	0.031
A_51_P506513	Qdpr	1.239995336	0.310334694	11.98704614	0.011
A_52_P376829	Rpl4	1.240261753	0.310644628	9.403469598	0.005
A_52_P276302	Tshz1	1.240802024	0.311272944	7.060904364	0.010
A_51_P433837	Slc22a23	1.241158431	0.311687284	9.104436035	0.019
A_52_P111715	Galnt6	1.242032952	0.31270345	8.127554755	0.007
A_51_P355416	Nisch	1.242802266	0.313596777	10.46741731	0.038
A 52 P674489	Atp5a1	1.243863999	0.314828754	12.35749123	0.042
A 52 P49378	Kif1a	1.244493399	0.315558578	12.55121955	0.002
A 51 P339200	Abhd16a	1.246131011	0.317455753	8.202939512	0.048
A 51 P169745	Tubala	1.246150027	0.317477768	13.31823311	0.010
A 52 P326214	Cttn	1.246940592	0.318392733	7 418090527	0.017
A 51 P195506	Csfl	1.240940992	0.318586442	8 18626987	0.041
A 52 P128068	Kazn	1.247463983	0.318998162	8 246019223	0.027
A 52 P220044	Slc20a2	1.247403903	0.3103008/17	6.017106706	0.027
A_51_D167212	Dabd5	1.247011339	0.319399847	10 24015265	0.010
A_51_P10/515	Fg0u3	1.240/42990	0.320470389	11.12967996	0.034
A_51_P12800/		1.248/85//	0.320523093	11.1280/880	0.035
A_51_P394515	T Kt	1.250686481	0.322720183	12.00966603	0.023
A_52_P448205	Clstn1	1.25192978	0.324153645	12.78360005	0.005
A_51_P349341	Npcl	1.253028316	0.325419018	7.321206144	0.003
A_51_P160870	Ktn4	1.253202891	0.325620003	9.962956627	0.019
A_51_P274992	Garl	1.253784536	0.326289441	6.90286089	0.039
A_51_P226645	Cacng2	1.255419053	0.328169009	8.176599432	0.022
A_52_P482849	NA	1.256753885	0.329702148	7.922307503	0.009
A_51_P215038	Tmem591	1.257815518	0.33092034	11.68281033	0.006
A_51_P485810	Pygb	1.258611272	0.331832769	8.384300049	0.029
A_52_P436564	Cdh20	1.25925708	0.332572842	9.043535732	0.019
A_52_P379337	Rtn4	1.259532434	0.332888273	10.2254835	0.002
A_52_P381846	Rasa3	1.260706223	0.33423213	6.814348956	0.004
A_51_P450632	Usp5	1.261458155	0.335092351	8.061219565	0.026
A_52_P621603	Tubb2a	1.261566686	0.335216469	13.10356256	0.008
A_52_P581056	Tyro3	1.262261132	0.336010401	8.324602714	0.014
A_51_P483908	Dctn1	1.262960584	0.336809615	10.79503277	0.026
A_51_P204582	Rnf5	1.263130215	0.337003373	8.492084816	0.030
A_51_P199041	Adcy5	1.26337299	0.337280633	7.427299504	0.035
A_51_P509518	Ralgds	1.263839941	0.337813765	10.62683303	0.020
A_52_P428354	H2-Q10	1.264043747	0.338046394	6.629508471	0.003
A_51_P193011	Klc1	1.266229105	0.340538463	13.62181281	0.007
A_51_P260504	Arhgef4	1.269911775	0.344728272	11.48965422	0.025
A_51_P372141	Pnkd	1.271595893	0.346640262	8.046950437	0.022
A_51_P454949	Gstm3	1.272301135	0.347440176	10.68061004	0.027
A_51_P232901	Cnp	1.27307928	0.348322265	12.07838927	0.002
A 52 P57651	Rpn2	1.273354392	0.348633997	7.436950327	0.017
A_51_P102809	Gnl1	1.274397686	0.349815552	8.926087024	0.011
A_52_P449208	Adcy5	1.274438367	0.349861605	7.144834166	0.027
A 51 P356353	Cds2	1.275300655	0.350837405	12.88541095	0.003
A 52 P282035	Rnf5	1.276931002	0.352680572	8,97776296	0.013
A 51 P281835	Inf2	1.276945275	0.352696698	9.631683927	0.002
A 52 P12877	Hspa8	1.277097385	0.352868542	11.56003611	0.007
A 52 P495565	Ffnb3	1 278952951	0.354963193	10 46919414	0.004
A 51 P172054	Gas6	1 279354045	0.355415567	11.47533906	0.008
A 51 P111902	Slc22a17	1 279824248	0 355945706	8 285987903	0.030
A 51 P515623	Onctl	1.27902-240	0 356124543	7 133447303	0.032
Δ 52 D112188	Gnas	1 280826290	0.357024343	9 600728705	0.032
A 52 D262020	Demd?	1.200030309	0.357060201	9.000720703	0.019
A 52 D621501	r sinu2 Mast3	1.20123320	0.337338002	9.01401009	0.003
A 51 D222452	Tmom 254c	1.20337722	0.3377/0011	7 67024161	0.040
A_31_F222433	11110111234a	1.204307249	0.262690402	11 5202 401	0.021
A_31_P20/030	Atpoo Katalo	1.28581260/	0.302080402	11.5322491	0.021
A_52_P245102	Keid3	1.28602174	0.362915031	0.9802/3003	0.032
A_52_P248378	Cry2	1.288840093	0.3660/32/8	7.940210568	0.033
A_51_P246844	Abca2	1.288901858	0.366142415	8.880033547	0.023
A_51_P431870	Mapls	1.289392094	0.366691042	8.099589497	0.003

Tabela II. Continua	çao				
A_51_P386189	Tnk2	1.289416053	0.36671785	9.176925083	0.012
A_52_P310140	Wsb2	1.290351886	0.36776455	7.214393771	0.012
A_52_P665386	Ube2m	1.292776304	0.37047266	9.158852792	0.021
A_51_P100246	Ube2m	1.292878051	0.370586201	8.974821763	0.029
A 51 P171107	Tmem35	1.293064142	0.370793841	10.19535007	0.002
A 52 P174313	Aktip	1.293335266	0.371096308	8.392622697	0.006
A 52 P227267	Atp1a2	1.295273607	0.373256878	10.95347608	0.036
A 52 P57582	NA	1.29662.0984	0.374756827	8.453910905	0.044
A 52 P395397	Aars	1.290020901	0.375329966	9.016966086	0.020
A 51 P1/5220	Nefm	1 208328081	0.376655001	12 66/480/6	0.020
A_52_D420208	Efbd2	1.298328981	0.370033991	0.062824222	0.000
A_51_D246472		1.299333011	0.377794104	9.903624332	0.038
A_51_P340472	NA Crat2	1.300044888	0.379227121	/.855407	0.028
A_31_P303231	Gila12	1.300813780	0.37941007	0.995500794	0.001
A_52_P491700	Gnii	1.301/39201	0.380462671	9.11595299	0.021
A_52_P267256	NA	1.304847361	0.383881053	11.44321684	0.038
A_51_P454993	Tmcc2	1.31067628	0.390311403	8.280647195	0.000
A_51_P472726	Pdlim2	1.313924558	0.393882442	10.79348405	0.003
A_51_P200068	Arf3	1.31663006	0.396850042	9.761513394	0.028
A_51_P444565	NA	1.321580694	0.402264517	8.905914627	0.036
A_51_P162176	Trappc3	1.324411899	0.405351878	8.59937122	0.025
A_51_P401659	Sspn	1.324944936	0.405932404	8.6910528	0.016
A_51_P287986	Clstn1	1.32559924	0.40664468	7.609298857	0.012
A_52_P328867	Prkcb	1.327053711	0.408226763	8.311493695	0.003
A_52_P238556	Ubc	1.327358551	0.40855813	12.27636609	0.016
A_52_P320553	NA	1.327441829	0.408648641	10.1269749	0.002
A 52 P178470	Ndrg4	1.32849794	0.40979599	7.575482238	0.045
A 51 P155294	Ppp1r16b	1.33061642	0.412094742	7.606020267	0.020
A 52 P112182	Gnas	1.33406194	0.415825652	10.89271186	0.011
A 52 P205572	Sumo3	1.334394785	0.416185555	8.369830292	0.026
A 51 P385906	NA	1 335532949	0.417415569	9 624538468	0.002
Δ 51 P128148	Chmp1a	1 33563489	0.417525686	9 214055345	0.002
A 52 P72237	Actal	1 337078107	0.419083842	10.48505671	0.020
A_51_D251972	Sla6a0	1.337078137	0.419083842	12 025014	0.000
A_52_D248627	Nbr1	1.337321047	0.419992983	7 421621926	0.000
A_51_D215627	Dlaa0a	1.342133203	0.42434930	7.421031820	0.005
A_51_P215027	Plac9a	1.349773887	0.432717749	/./1//50//0	0.049
A_52_P578200		1.351284924	0.434331905	0.280721719	0.040
A_52_P604849	Cspg5	1.352442274	0.43556/01/	8.603917292	0.002
A_51_P425048	H2-Q1	1.352703094	0.435845216	7.11192639	0.003
A_52_P81562	Eef2	1.358189996	0.441685311	11.16068292	0.003
A_51_P358755	Nsgl	1.358702296	0.442229383	9.045671646	0.006
A_51_P264388	Mapk8ip3	1.358717888	0.442245939	13.10375473	0.002
A_51_P433192	Bcas1	1.36128999	0.444974431	9.599218712	0.006
A_51_P456266	Tyro3	1.362512521	0.446269488	7.751403915	0.029
A_52_P424767	Rbbp4	1.366599937	0.450590965	6.321170475	0.018
A_52_P479539	Cit	1.367958161	0.452024106	9.056795522	0.050
A_52_P474242	H2-K1	1.378767451	0.463379146	7.065934196	0.010
A_51_P201187	Pllp	1.390394181	0.475493949	7.851987054	0.009
A_52_P443435	B930095G15Rik	1.391494152	0.476634845	7.499830808	0.020
A_52_P299505	Eef1a1	1.391925615	0.477082115	10.64179922	0.006
A_51_P276142	Gpr37l1	1.3919714	0.477129569	13.18304435	0.001
A_51_P400752	ŇĂ	1.40382716	0.489365321	8.877811447	0.015
A_51_P432930	Trappc3	1.410001138	0.495696327	8.098000015	0.004
A 51 P497937	Gic2	1.410547646	0.496255399	7.149088529	0.001
A 52 P445239	Plp1	1.410645302	0.496355277	10.56198161	0.001
A 51 P496997	H2-010	1 430190222	0.516207045	8 944996158	0.001
A 51 P303307	Pend	1 449040794	0 535098211	9 617289316	0.015
Δ 52 Ρ1157070	Calm3	1.452656221	0.538603327	11 00685444	0.020
Δ 52 D218621	Fef?	1.45755205	0.535095552	10 157/0770	0.001
A 51 D210790		1.437332393	0.545547945	8007647602	0.004
A_31_F219/89	112-Q2	1.409389934	0.555217290	0.90/04/023	0.020
A_31_P202079	П2-Q/ DC02(7/2	1.4/3309/0	0.5012/2128	0.319/0/4/9	0.011
A_51_P2/5496	BC026/62	1.485969563	0.5/1404565	0.885/03003	0.028
A_51_P304757	GabarapII	1.494006795	0.57918671	8.597662667	0.035

Tabela 11. Conclusão.

A_51_P237754	H2-T23	1.514868269	0.599192344	8.583927174	0.012
A_51_P496996	NA	1.522136355	0.606097603	8.7293637	0.029
A_52_P329451	Mbp	1.551906797	0.634041916	11.25358176	0.004
A_52_P313279	NA	1.61951588	0.695562614	9.291974672	0.015
A_52_P644972	Mzt1	1.818842169	0.863020357	7.234335262	0.002

7. REFERÊNCIAS BIBLIOGRÁFICAS

- 1. Charcot JM, Joffroy A. Deux cas d'atrophie musculaire progressive avec lesion de la substance grise et des faisceaux antero-lateraux de la moelle epiniere. *Arch Physiol Neurol Path.* 1869;2:744–54.
- 2. Goetz CG. Amyotrophic lateral sclerosis: early contributions of Jean-Martin Charcot. *Muscle Nerve*. 2000;23(3):336-43.
- 3. Chio A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, White LA. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. *Neuroepidemiology*. 2013;41(2):118-30.
- 4. Redler RL, Dokholyan NV. The complex molecular biology of amyotrophic lateral sclerosis (ALS). *Prog Mol Biol Transl Sci.* 2012;107:215-62.
- 5. Brooks BR. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial "Clinical limits of amyotrophic lateral sclerosis" workshop contributors. *J Neurol Sci.* 1994;124 Suppl:96-107.
- 6. de Carvalho M, Dengler R, Eisen A, England JD, Kaji R, Kimura J, Mills K, Mitsumoto H, Nodera H, Shefner J, et al. Electrodiagnostic criteria for diagnosis of ALS. *Clin Neurophysiol*. 2008;119(3):497-503.
- 7. Ince PG, Lowe J, Shaw PJ. Amyotrophic lateral sclerosis: current issues in classification, pathogenesis and molecular pathology. *Neuropathol Appl Neurobiol*. 1998;24(2):104-17.
- 8. Dion PA, Daoud H, Rouleau GA. Genetics of motor neuron disorders: new insights into pathogenic mechanisms. *Nature reviews*. 2009;10(11):769-82.
- 9. Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. *Nature*. 2011;477(7363):211-5.
- 10. Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, Gibbs JR, Brunetti M, Gronka S, Wuu J, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. *Neuron*. 2010;68(5):857-64.
- 11. Mitchell J, Paul P, Chen HJ, Morris A, Payling M, Falchi M, Habgood J, Panoutsou S, Winkler S, Tisato V, et al. Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase. *Proc Natl Acad Sci U S A*. 2010;107(16):7556-61.
- 12. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. *Neuron*. 2011;72(2):245-56.
- 13. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. *Neuron*. 2011;72(2):257-68.
- 14. Musaro A. Understanding ALS: new therapeutic approaches. *FEBS J*. 2013;280(17):4315-22.
- 15. Gurney ME. Transgenic-mouse model of amyotrophic lateral sclerosis. *N Engl J Med.* 1994;331(25):1721-2.
- 16. Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, Erickson J, Kulik J, DeVito L, Psaltis G, et al. Focal loss of the glutamate transporter EAAT2 in a

transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). *Proc Natl Acad Sci U S A*. 2002;99(3):1604-9.

- 17. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. *Neuron*. 1995;14(6):1105-16.
- 18. Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, Reaume AG, Scott RW, Cleveland DW. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. *Science*. 1998;281(5384):1851-4.
- 19. Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. *Proc Natl Acad Sci U S A*. 1995;92(3):689-93.
- 20. Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A, Khan J, Polak MA, Glass JD. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. *Exp Neurol*. 2004;185(2):232-40.
- 21. Higgins CM, Jung C, Xu Z. ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. *BMC Neurosci*. 2003;4:16.
- 22. Boillee S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. *Neuron*. 2006;52(1):39-59.
- 23. Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW. Onset and progression in inherited ALS determined by motor neurons and microglia. *Science*. 2006;312(5778):1389-92.
- 24. Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RH, Jr., et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. *Nat Genet*. 1996;13(1):43-7.
- 25. Khare SD, Caplow M, Dokholyan NV. FALS mutations in Cu, Zn superoxide dismutase destabilize the dimer and increase dimer dissociation propensity: a large-scale thermodynamic analysis. *Amyloid*. 2006;13(4):226-35.
- 26. Furukawa Y, O'Halloran TV. Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo- and reduced form of SOD1, leading to unfolding and oxidative aggregation. *J Biol Chem.* 2005;280(17):17266-74.
- 27. Hough MA, Grossmann JG, Antonyuk SV, Strange RW, Doucette PA, Rodriguez JA, Whitson LJ, Hart PJ, Hayward LJ, Valentine JS, et al. Dimer destabilization in superoxide dismutase may result in disease-causing properties: structures of motor neuron disease mutants. *Proc Natl Acad Sci U S A*. 2004;101(16):5976-81.
- Rodriguez JA, Shaw BF, Durazo A, Sohn SH, Doucette PA, Nersissian AM, Faull KF, Eggers DK, Tiwari A, Hayward LJ, et al. Destabilization of apoprotein is insufficient to explain Cu,Zn-superoxide dismutase-linked ALS pathogenesis. *Proc Natl Acad Sci U S A*. 2005;102(30):10516-21.
- 29. Shaw BF, Valentine JS. How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? *Trends Biochem Sci.* 2007;32(2):78-85.
- 30. Gruzman A, Wood WL, Alpert E, Prasad MD, Miller RG, Rothstein JD, Bowser R, Hamilton R, Wood TD, Cleveland DW, et al. Common molecular signature in SOD1 for both sporadic and familial amyotrophic lateral sclerosis. *Proc Natl Acad Sci U S A*. 2007;104(30):12524-9.

- 31. Neusch C, Bahr M, Schneider-Gold C. Glia cells in amyotrophic lateral sclerosis: new clues to understanding an old disease? *Muscle Nerve*. 2007;35(6):712-24.
- 32. Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, Goolsby H, Fontaine BA, Lemay N, McKenna-Yasek D, et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. *Nat Neurosci*. 2010;13(11):1396-403.
- 33. Dal Canto MC, Gurney ME. Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. *Am J Pathol*. 1994;145(6):1271-9.
- 34. Alves CJ, de Santana LP, dos Santos AJ, de Oliveira GP, Duobles T, Scorisa JM, Martins RS, Maximino JR, Chadi G. Early motor and electrophysiological changes in transgenic mouse model of amyotrophic lateral sclerosis and gender differences on clinical outcome. *Brain Res*. 2011;1394:90-104.
- 35. Browne SE, Yang L, DiMauro JP, Fuller SW, Licata SC, Beal MF. Bioenergetic abnormalities in discrete cerebral motor pathways presage spinal cord pathology in the G93A SOD1 mouse model of ALS. *Neurobiol Dis.* 2006;22(3):599-610.
- Niessen HG, Debska-Vielhaber G, Sander K, Angenstein F, Ludolph AC, Hilfert L, Willker W, Leibfritz D, Heinze HJ, Kunz WS, et al. Metabolic progression markers of neurodegeneration in the transgenic G93A-SOD1 mouse model of amyotrophic lateral sclerosis. *Eur J Neurosci*. 2007;25(6):1669-77.
- 37. Ringer C, Weihe E, Schutz B. Pre-symptomatic alterations in subcellular betaCGRP distribution in motor neurons precede astrogliosis in ALS mice. *Neurobiol Dis.* 2009;35(2):286-95.
- 38. Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neuron degeneration in ALS. *Annu Rev Neurosci*. 2004;27:723-49.
- 39. Chiu AY, Zhai P, Dal Canto MC, Peters TM, Kwon YW, Prattis SM, Gurney ME. Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis. *Mol Cell Neurosci*. 1995;6(4):349-62.
- 40. Hayworth CR, Gonzalez-Lima F. Pre-symptomatic detection of chronic motor deficits and genotype prediction in congenic B6.SOD1(G93A) ALS mouse model. *Neuroscience*. 2009;164(3):975-85.
- 41. Martin LJ. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases. *Pharmaceuticals (Basel)*. 2010;3(4):839-915.
- 42. Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis. *Brain Res Bull*. 1998;46(4):281-309.
- 43. Fray AE, Ince PG, Banner SJ, Milton ID, Usher PA, Cookson MR, Shaw PJ. The expression of the glial glutamate transporter protein EAAT2 in motor neuron disease: an immunohistochemical study. *Eur J Neurosci.* 1998;10(8):2481-9.
- 44. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. *Ann Neurol*. 1995;38(1):73-84.
- 45. Sargsyan SA, Blackburn DJ, Barber SC, Monk PN, Shaw PJ. Mutant SOD1 G93A microglia have an inflammatory phenotype and elevated production of MCP-1. *Neuroreport*. 2009;20(16):1450-5.
- 46. Martin LJ. Mitochondrial pathobiology in ALS. J Bioenerg Biomembr. 2011;43(6):569-79.

- 47. Jaarsma D, Haasdijk ED, Grashorn JA, Hawkins R, van Duijn W, Verspaget HW, London J, Holstege JC. Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. *Neurobiol Dis.* 2000;7(6 Pt B):623-43.
- 48. Dupuis L, Gonzalez de Aguilar JL, di Scala F, Rene F, de Tapia M, Pradat PF, Lacomblez L, Seihlan D, Prinjha R, Walsh FS, et al. Nogo provides a molecular marker for diagnosis of amyotrophic lateral sclerosis. *Neurobiol Dis*. 2002;10(3):358-65.
- 49. Grundstrom E, Lindholm D, Johansson A, Blennow K, Askmark H. GDNF but not BDNF is increased in cerebrospinal fluid in amyotrophic lateral sclerosis. *Neuroreport*. 2000;11(8):1781-3.
- 50. Yamamoto M, Mitsuma N, Inukai A, Ito Y, Li M, Mitsuma T, Sobue G. Expression of GDNF and GDNFR-alpha mRNAs in muscles of patients with motor neuron diseases. *Neurochem Res.* 1999;24(6):785-90.
- 51. Collard JF, Cote F, Julien JP. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. *Nature*. 1995;375(6526):61-4.
- 52. Julien JP. Neurofilaments and motor neuron disease. *Trends Cell Biol*. 1997;7(6):243-9.
- 53. Puttaparthi K, Wojcik C, Rajendran B, DeMartino GN, Elliott JL. Aggregate formation in the spinal cord of mutant SOD1 transgenic mice is reversible and mediated by proteasomes. *J Neurochem.* 2003;87(4):851-60.
- 54. Jaarsma D, Teuling E, Haasdijk ED, De Zeeuw CI, Hoogenraad CC. Neuronspecific expression of mutant superoxide dismutase is sufficient to induce amyotrophic lateral sclerosis in transgenic mice. *J Neurosci*. 2008;28(9):2075-88.
- 55. Lino MM, Schneider C, Caroni P. Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. *J Neurosci.* 2002;22(12):4825-32.
- 56. Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillee S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante RJ, et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. *Science*. 2003;302(5642):113-7.
- 57. Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. *Nat Neurosci*. 2007;10(5):608-14.
- 58. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. *Nat Neurosci.* 2007;10(5):615-22.
- 59. Beers DR, Henkel JS, Zhao W, Wang J, Appel SH. CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. *Proc Natl Acad Sci U S A*. 2008;105(40):15558-63.
- 60. Rossi D, Martorana F, Brambilla L. Implications of gliotransmission for the pharmacotherapy of CNS disorders. *CNS Drugs*. 2011;25(8):641-58.
- 61. Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF, Jr., Spray DC, Reichenbach A, Pannicke T, et al. Glial cells in (patho)physiology. *J Neurochem*. 2012;121(1):4-27.

- 62. Choi DW. Glutamate neurotoxicity and diseases of the nervous system. *Neuron*. 1988;1(8):623-34.
- 63. Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, Sisodia SS, Rothstein JD, Borchelt DR, Price DL, et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. *Neuron*. 1997;18(2):327-38.
- 64. Guo H, Lai L, Butchbach ME, Stockinger MP, Shan X, Bishop GA, Lin CL. Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. *Hum Mol Genet*. 2003;12(19):2519-32.
- 65. Pardo AC, Wong V, Benson LM, Dykes M, Tanaka K, Rothstein JD, Maragakis NJ. Loss of the astrocyte glutamate transporter GLT1 modifies disease in SOD1(G93A) mice. *Exp Neurol*. 2006;201(1):120-30.
- 66. Rothstein JD, Martin LJ, Kuncl RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. *N Engl J Med.* 1992;326(22):1464-8.
- 67. Cassina P, Cassina A, Pehar M, Castellanos R, Gandelman M, de Leon A, Robinson KM, Mason RP, Beckman JS, Barbeito L, et al. Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. *J Neurosci*. 2008;28(16):4115-22.
- 68. Sasabe J, Miyoshi Y, Suzuki M, Mita M, Konno R, Matsuoka M, Hamase K, Aiso S. D-amino acid oxidase controls motoneuron degeneration through D-serine. *Proc Natl Acad Sci U S A*. 2012;109(2):627-32.
- 69. Miquel E, Cassina A, Martinez-Palma L, Bolatto C, Trias E, Gandelman M, Radi R, Barbeito L, Cassina P. Modulation of astrocytic mitochondrial function by dichloroacetate improves survival and motor performance in inherited amyotrophic lateral sclerosis. *PLoS One*. 2012;7(4):e34776.
- 70. Vargas MR, Johnson DA, Sirkis DW, Messing A, Johnson JA. Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. *J Neurosci*. 2008;28(50):13574-81.
- 71. Martorana F, Brambilla L, Valori CF, Bergamaschi C, Roncoroni C, Aronica E, Volterra A, Bezzi P, Rossi D. The BH4 domain of Bcl-X(L) rescues astrocyte degeneration in amyotrophic lateral sclerosis by modulating intracellular calcium signals. *Hum Mol Genet*. 2012 Feb;21(4):826-40.
- 72. Rossi D, Brambilla L, Valori CF, Roncoroni C, Crugnola A, Yokota T, Bredesen DE, Volterra A. Focal degeneration of astrocytes in amyotrophic lateral sclerosis. *Cell Death Differ*. 2008;15(11):1691-700.
- 73. Diaz-Amarilla P, Olivera-Bravo S, Trias E, Cragnolini A, Martinez-Palma L, Cassina P, Beckman J, Barbeito L. Phenotypically aberrant astrocytes that promote motoneuron damage in a model of inherited amyotrophic lateral sclerosis. *Proc Natl Acad Sci U S A*. 2011;108(44):18126-31.
- 74. Phatnani HP, Guarnieri P, Friedman BA, Carrasco MA, Muratet M, O'Keeffe S, Nwakeze C, Pauli-Behn F, Newberry KM, Meadows SK, et al. Intricate interplay between astrocytes and motor neurons in ALS. *Proc Natl Acad Sci U S A*. 2013;110(8):E756-65.
- 75. Ferraiuolo L, Higginbottom A, Heath PR, Barber S, Greenald D, Kirby J, Shaw PJ. Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. *Brain*. 2011;134(Pt 9):2627-41.

- Pehar M, Cassina P, Vargas MR, Castellanos R, Viera L, Beckman JS, Estevez AG, Barbeito L. Astrocytic production of nerve growth factor in motor neuron apoptosis: implications for amyotrophic lateral sclerosis. *J Neurochem*. 2004;89(2):464-73.
- 77. Schiffer D, Fiano V. Astrogliosis in ALS: possible interpretations according to pathogenetic hypotheses. *Amyotroph Lateral Scler Other Motor Neuron Disord*. 2004;5(1):22-5.
- 78. Hensley K, Abdel-Moaty H, Hunter J, Mhatre M, Mou S, Nguyen K, Potapova T, Pye QN, Qi M, Rice H, et al. Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory phenotype and provide a cellular system for studies of glial inflammation. *J Neuroinflammation*. 2006;3:2.
- 79. Haase G, Pettmann B, Raoul C, Henderson CE. Signaling by death receptors in the nervous system. *Curr Opin Neurobiol*. 2008;18(3):284-91.
- 80. Elliott JL. Cytokine upregulation in a murine model of familial amyotrophic lateral sclerosis. *Brain Res Mol Brain Res*. 2001;95(1-2):172-8.
- 81. Barbeito LH, Pehar M, Cassina P, Vargas MR, Peluffo H, Viera L, Estevez AG, Beckman JS. A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. *Brain Res Brain Res Rev.* 2004;47(1-3):263-74.
- Raoul C, Estevez AG, Nishimune H, Cleveland DW, deLapeyriere O, Henderson CE, Haase G, Pettmann B. Motoneuron death triggered by a specific pathway downstream of Fas. potentiation by ALS-linked SOD1 mutations. *Neuron*. 2002;35(6):1067-83.
- 83. Sengun IS, Appel SH. Serum anti-Fas antibody levels in amyotrophic lateral sclerosis. *J Neuroimmunol*. 2003;142(1-2):137-40.
- 84. Valori CF, Brambilla L, Martorana F, Rossi D. The multifaceted role of glial cells in amyotrophic lateral sclerosis. *Cell Mol Life Sci.* 2013.
- 85. Aguzzi A, Barres BA, Bennett ML. Microglia: scapegoat, saboteur, or something else? *Science*. 2013;339(6116):156-61.
- 86. Hall ED, Oostveen JA, Gurney ME. Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. *Glia*. 1998;23(3):249-56.
- 87. Henkel JS, Beers DR, Siklos L, Appel SH. The chemokine MCP-1 and the dendritic and myeloid cells it attracts are increased in the mSOD1 mouse model of ALS. *Mol Cell Neurosci*. 2006;31(3):427-37.
- 88. Henkel JS, Engelhardt JI, Siklos L, Simpson EP, Kim SH, Pan T, Goodman JC, Siddique T, Beers DR, Appel SH. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. *Ann Neurol*. 2004;55(2):221-35.
- Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, Leigh PN, Banati RB. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. *Neurobiol Dis*. 2004;15(3):601-9.
- 90. Urushitani M, Sik A, Sakurai T, Nukina N, Takahashi R, Julien JP. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. *Nat Neurosci.* 2006;9(1):108-18.
- 91. Roberts K, Zeineddine R, Corcoran L, Li W, Campbell IL, Yerbury JJ. Extracellular aggregated Cu/Zn superoxide dismutase activates microglia to give a cytotoxic phenotype. *Glia*. 2013;61(3):409-19.

- 92. Gowing G, Dequen F, Soucy G, Julien JP. Absence of tumor necrosis factor-alpha does not affect motor neuron disease caused by superoxide dismutase 1 mutations. *J Neurosci.* 2006;26(44):11397-402.
- 93. Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA, Siklos L, McKercher SR, Appel SH. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. *Proc Natl Acad Sci U S A*. 2006;103(43):16021-6.
- 94. Appel SH, Zhao W, Beers DR, Henkel JS. The microglial-motoneuron dialogue in ALS. *Acta Myol.* 2011;30(1):4-8.
- 95. Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G, Doykan CE, Wu PM, Gali RR, Iyer LK, et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. *J Clin Invest*. 2012;122(9):3063-87.
- 96. Kipnis J, Avidan H, Caspi RR, Schwartz M. Dual effect of CD4+CD25+ regulatory T cells in neurodegeneration: a dialogue with microglia. *Proc Natl Acad Sci U S A*. 2004;101 Suppl 2:14663-9.
- 97. Lincecum JM, Vieira FG, Wang MZ, Thompson K, De Zutter GS, Kidd J, Moreno A, Sanchez R, Carrion IJ, Levine BA, et al. From transcriptome analysis to therapeutic anti-CD40L treatment in the SOD1 model of amyotrophic lateral sclerosis. *Nat Genet*. 2010;42(5):392-9.
- 98. Hensley K, Fedynyshyn J, Ferrell S, Floyd RA, Gordon B, Grammas P, Hamdheydari L, Mhatre M, Mou S, Pye QN, et al. Message and protein-level elevation of tumor necrosis factor alpha (TNF alpha) and TNF alpha-modulating cytokines in spinal cords of the G93A-SOD1 mouse model for amyotrophic lateral sclerosis. *Neurobiol Dis.* 2003;14(1):74-80.
- 99. Yoshihara T, Ishigaki S, Yamamoto M, Liang Y, Niwa J, Takeuchi H, Doyu M, Sobue G. Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis. *J Neurochem*. 2002;80(1):158-67.
- 100. Goldknopf IL, Sheta EA, Bryson J, Folsom B, Wilson C, Duty J, Yen AA, Appel SH. Complement C3c and related protein biomarkers in amyotrophic lateral sclerosis and Parkinson's disease. *Biochem Biophys Res Commun.* 2006;342(4):1034-9.
- 101. Kuhle J, Lindberg RL, Regeniter A, Mehling M, Steck AJ, Kappos L, Czaplinski A. Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. *Eur J Neurol.* 2009;16(6):771-4.
- 102. Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH. Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. *Neurology*. 2004;62(10):1758-65.
- 103. Mantovani S, Garbelli S, Pasini A, Alimonti D, Perotti C, Melazzini M, Bendotti C, Mora G. Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process. J Neuroimmunol. 2009;210(1-2):73-9.
- 104. Kriz J, Nguyen MD, Julien JP. Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. *Neurobiol Dis*. 2002;10(3):268-78.
- 105. Gordon PH, Moore DH, Miller RG, Florence JM, Verheijde JL, Doorish C, Hilton JF, Spitalny GM, MacArthur RB, Mitsumoto H, et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. *Lancet Neurol*. 2007;6(12):1045-53.

- 106. Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C, Banati RR, Anand P. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. *BMC Neurol*. 2006;6:12.
- 107. Drachman DB, Frank K, Dykes-Hoberg M, Teismann P, Almer G, Przedborski S, Rothstein JD. Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. *Ann Neurol*. 2002;52(6):771-8.
- Cudkowicz ME, Shefner JM, Schoenfeld DA, Zhang H, Andreasson KI, Rothstein JD, Drachman DB. Trial of celecoxib in amyotrophic lateral sclerosis. *Ann Neurol*. 2006;60(1):22-31.
- 109. Nguyen MD, D'Aigle T, Gowing G, Julien JP, Rivest S. Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. *J Neurosci*. 2004;24(6):1340-9.
- 110. Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. *J Cell Biol*. 2009;187(6):761-72.
- 111. Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. *Nat Rev Neurol*. 2011;7(11):616-30.
- 112. Burgemeister R. New aspects of laser microdissection in research and routine. J Histochem Cytochem. 2005;53(3):409-12.
- 113. Going JJ, Lamb RF. Practical histological microdissection for PCR analysis. J Pathol. 1996;179(1):121-4.
- 114. Hernandez S, Lloreta J. Manual versus laser micro-dissection in molecular biology. *Ultrastruct Pathol*. 2006;30(3):221-8.
- 115. Miana-Mena FJ, Munoz MJ, Yague G, Mendez M, Moreno M, Ciriza J, Zaragoza P, Osta R. Optimal methods to characterize the G93A mouse model of ALS. *Amyotroph Lateral Scler Other Motor Neuron Disord*. 2005;6(1):55-62.
- 116. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. *Nature*. 1993;362(6415):59-62.
- 117. Weydt P, Hong SY, Kliot M, Moller T. Assessing disease onset and progression in the SOD1 mouse model of ALS. *Neuroreport*. 2003;14(7):1051-4.
- Smittkamp SE, Brown JW, Stanford JA. Time-course and characterization of orolingual motor deficits in B6SJL-Tg(SOD1-G93A)1Gur/J mice. *Neuroscience*. 2008;151(2):613-21.
- 119. Novoradovskaya N, Whitfield ML, Basehore LS, Novoradovsky A, Pesich R, Usary J, Karaca M, Wong WK, Aprelikova O, Fero M, et al. Universal Reference RNA as a standard for microarray experiments. *BMC Genomics*. 2004;5(1):20.
- 120. Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, Smyth GK. A comparison of background correction methods for two-colour microarrays. *Bioinformatics*. 2007;23(20):2700-7.
- 121. Smyth GK. Limma: linear models for microarray data. In: R. Gentleman VC, S. Dudoit, R. Irizarry, Huber W, editors. Bioinformatics and Computational Biology Solutions using R and Bioconductor. New York: Springer; 2005.
- 122. Prifti E, Zucker JD, Clement K, Henegar C. FunNet: an integrative tool for exploring transcriptional interactions. *Bioinformatics*. 2008;24(22):2636-8.
- 123. Prifti E, Zucker JD, Clement K, Henegar C. Interactional and functional centrality in transcriptional co-expression networks. *Bioinformatics*. 2010;26(24):3083-9.

- 124. Cao P, Maximov A, Sudhof TC. Activity-dependent IGF-1 exocytosis is controlled by the Ca(2+)-sensor synaptotagmin-10. *Cell*. 2011 Apr 15;145(2):300-11.
- 125. Kang S, Kim EY, Bahn YJ, Chung JW, Lee do H, Park SG, Yoon TS, Park BC, Bae KH. A proteomic analysis of the effect of MAPK pathway activation on L-glutamate-induced neuronal cell death. *Cell Mol Biol Lett.* 2007;12(1):139-47.
- 126. Kulangara K, Kropf M, Glauser L, Magnin S, Alberi S, Yersin A, Hirling H. Phosphorylation of glutamate receptor interacting protein 1 regulates surface expression of glutamate receptors. *J Biol Chem*. 2007;282(4):2395-404.
- 127. Verpelli C, Piccoli G, Zibetti C, Zanchi A, Gardoni F, Huang K, Brambilla D, Di Luca M, Battaglioli E, Sala C. Synaptic activity controls dendritic spine morphology by modulating eEF2-dependent BDNF synthesis. J Neurosci. 2010;30(17):5830-42.
- 128. Zeng XN, Sun XL, Gao L, Fan Y, Ding JH, Hu G. Aquaporin-4 deficiency downregulates glutamate uptake and GLT-1 expression in astrocytes. *Mol Cell Neurosci.* 2007;34(1):34-9.
- 129. Morrison TB, Weis JJ, Wittwer CT. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. *Biotechniques*. 1998;24(6):954-8, 60, 62.
- 130. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods*. 2001;25(4):402-8.
- 131. Gomes LI, Silva RL, Stolf BS, Cristo EB, Hirata R, Soares FA, Reis LF, Neves EJ, Carvalho AF. Comparative analysis of amplified and nonamplified RNA for hybridization in cDNA microarray. *Anal Biochem*. 2003;321(2):244-51.
- 132. Wang E, Miller LD, Ohnmacht GA, Liu ET, Marincola FM. High-fidelity mRNA amplification for gene profiling. *Nat Biotechnol*. 2000;18(4):457-9.
- 133. Yamanaka K, Boillee S, Roberts EA, Garcia ML, McAlonis-Downes M, Mikse OR, Cleveland DW, Goldstein LS. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. *Proc Natl Acad Sci U S A*. 2008;105(21):7594-9.
- 134. Knippenberg S, Thau N, Dengler R, Petri S. Significance of behavioural tests in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). *Behav Brain Res.* 2010;213(1):82-7.
- 135. Dunham NW, Miya TS. A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc Am Pharm Assoc (Baltim). 1957;46(3):208-9.
- 136. Kirkinezos IG, Hernandez D, Bradley WG, Moraes CT. Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis. *Ann Neurol*. 2003;53(6):804-7.
- 137. Barneoud P, Lolivier J, Sanger DJ, Scatton B, Moser P. Quantitative motor assessment in FALS mice: a longitudinal study. *Neuroreport*. 1997;8(13):2861-5.
- 138. Brockington A, Heath PR, Holden H, Kasher P, Bender FL, Claes F, Lambrechts D, Sendtner M, Carmeliet P, Shaw PJ. Downregulation of genes with a function in axon outgrowth and synapse formation in motor neurones of the VEGFdelta/delta mouse model of amyotrophic lateral sclerosis. *BMC Genomics*. 2010;11:203.
- 139. Chuaqui RF, Bonner RF, Best CJ, Gillespie JW, Flaig MJ, Hewitt SM, Phillips JL, Krizman DB, Tangrea MA, Ahram M, et al. Post-analysis follow-up and validation of microarray experiments. *Nat Genet*. 2002;32 Suppl:509-14.

- 140. Dallas PB, Gottardo NG, Firth MJ, Beesley AH, Hoffmann K, Terry PA, Freitas JR, Boag JM, Cummings AJ, Kees UR. Gene expression levels assessed by oligonucleotide microarray analysis and quantitative real-time RT-PCR -- how well do they correlate? *BMC Genomics*. 2005;6:59.
- 141. Rajeevan MS, Vernon SD, Taysavang N, Unger ER. Validation of array-based gene expression profiles by real-time (kinetic) RT-PCR. J Mol Diagn. 2001;3(1):26-31.
- 142. Dangond F, Hwang D, Camelo S, Pasinelli P, Frosch MP, Stephanopoulos G, Brown RH, Jr., Gullans SR. Molecular signature of late-stage human ALS revealed by expression profiling of postmortem spinal cord gray matter. *Physiol Genomics*. 2004;16(2):229-39.
- 143. D'Arrigo A, Colavito D, Pena-Altamira E, Fabris M, Dam M, Contestabile A, Leon A. Transcriptional profiling in the lumbar spinal cord of a mouse model of amyotrophic lateral sclerosis: a role for wild-type superoxide dismutase 1 in sporadic disease? *J Mol Neurosci.* 2010;41(3):404-15.
- 144. Ferraiuolo L, Heath PR, Holden H, Kasher P, Kirby J, Shaw PJ. Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS. *J Neurosci.* 2007;27(34):9201-19.
- 145. Guipponi M, Li QX, Hyde L, Beissbarth T, Smyth GK, Masters CL, Scott HS. SAGE analysis of genes differentially expressed in presymptomatic TgSOD1G93A transgenic mice identified cellular processes involved in early stage of ALS pathology. *J Mol Neurosci*. 2010;41(1):172-82.
- 146. Jiang YM, Yamamoto M, Kobayashi Y, Yoshihara T, Liang Y, Terao S, Takeuchi H, Ishigaki S, Katsuno M, Adachi H, et al. Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. *Ann Neurol.* 2005;57(2):236-51.
- 147. Lobsiger CS, Boillee S, Cleveland DW. Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons. *Proc Natl Acad Sci U S A*. 2007;104(18):7319-26.
- 148. Malaspina A, de Belleroche J. Spinal cord molecular profiling provides a better understanding of amyotrophic lateral sclerosis pathogenesis. *Brain Res Brain Res Rev.* 2004;45(3):213-29.
- 149. Offen D, Barhum Y, Melamed E, Embacher N, Schindler C, Ransmayr G. Spinal cord mRNA profile in patients with ALS: comparison with transgenic mice expressing the human SOD-1 mutant. *J Mol Neurosci*. 2009;38(2):85-93.
- 150. Olsen MK, Roberds SL, Ellerbrock BR, Fleck TJ, McKinley DK, Gurney ME. Disease mechanisms revealed by transcription profiling in SOD1-G93A transgenic mouse spinal cord. *Ann Neurol*. 2001;50(6):730-40.
- 151. Perrin FE, Boisset G, Docquier M, Schaad O, Descombes P, Kato AC. No widespread induction of cell death genes occurs in pure motoneurons in an amyotrophic lateral sclerosis mouse model. *Hum Mol Genet*. 2005;14(21):3309-20.
- 152. Saris CG, Groen EJ, van Vught PW, van Es MA, Blauw HM, Veldink JH, van den Berg LH. Gene expression profile of SOD1-G93A mouse spinal cord, blood and muscle. *Amyotroph Lateral Scler Frontotemporal Degener*. 2013;14(3):190-8.
- 153. Yamamoto M, Tanaka F, Sobue G. [Gene expression profile of spinal ventral horn in ALS]. *Brain Nerve*. 2007;59(10):1129-39.

- 154. Kalathur RK, Hernandez-Prieto MA, Futschik ME. Huntington's disease and its therapeutic target genes: a global functional profile based on the HD Research Crossroads database. *BMC Neurol*. 2012;12:47.
- 155. Mougeot JL, Li Z, Price AE, Wright FA, Brooks BR. Microarray analysis of peripheral blood lymphocytes from ALS patients and the SAFE detection of the KEGG ALS pathway. *BMC Med Genomics*. 2011;4:74.
- 156. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. *Nucleic Acids Res.* 2012;40(Database issue):D109-14.
- 157. Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. *Stat Appl Genet Mol Biol*. 2005;4:Article17.
- 158. Cali C, Bezzi P. CXCR4-mediated glutamate exocytosis from astrocytes. J Neuroimmunol. 2010;224(1-2):13-21.
- 159. Petri S, Schmalbach S, Grosskreutz J, Krampfl K, Grothe C, Dengler R, Van Den Bosch L, Robberecht W, Bufler J. The cellular mRNA expression of GABA and glutamate receptors in spinal motor neurons of SOD1 mice. *J Neurol Sci*. 2005;238(1-2):25-30.
- 160. Schutz B. Imbalanced excitatory to inhibitory synaptic input precedes motor neuron degeneration in an animal model of amyotrophic lateral sclerosis. *Neurobiol Dis.* 2005;20(1):131-40.
- 161. Wallen-Mackenzie A, Wootz H, Englund H. Genetic inactivation of the vesicular glutamate transporter 2 (VGLUT2) in the mouse: what have we learnt about functional glutamatergic neurotransmission? *Ups J Med Sci.* 2010;115(1):11-20.
- 162. Sunico CR, Dominguez G, Garcia-Verdugo JM, Osta R, Montero F, Moreno-Lopez B. Reduction in the motoneuron inhibitory/excitatory synaptic ratio in an early-symptomatic mouse model of amyotrophic lateral sclerosis. *Brain Pathol.* 2011;21(1):1-15.
- 163. Wootz H, Enjin A, Wallen-Mackenzie A, Lindholm D, Kullander K. Reduced VGLUT2 expression increases motor neuron viability in Sod1(G93A) mice. *Neurobiol Dis.* 2010;37(1):58-66.
- 164. Herzog E, Landry M, Buhler E, Bouali-Benazzouz R, Legay C, Henderson CE, Nagy F, Dreyfus P, Giros B, El Mestikawy S. Expression of vesicular glutamate transporters, VGLUT1 and VGLUT2, in cholinergic spinal motoneurons. *Eur J Neurosci.* 2004;20(7):1752-60.
- 165. Lin CL, Kong Q, Cuny GD, Glicksman MA. Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. *Future Med Chem*. 2012;4(13):1689-700.
- 166. Sheldon AL, Robinson MB. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. *Neurochem Int.* 2007;51(6-7):333-55.
- 167. Maragakis NJ, Dykes-Hoberg M, Rothstein JD. Altered expression of the glutamate transporter EAAT2b in neurological disease. *Ann Neurol*. 2004;55(4):469-77.
- 168. Plaitakis A, Caroscio JT. Abnormal glutamate metabolism in amyotrophic lateral sclerosis. *Ann Neurol*. 1987;22(5):575-9.
- 169. Sasaki S, Komori T, Iwata M. Excitatory amino acid transporter 1 and 2 immunoreactivity in the spinal cord in amyotrophic lateral sclerosis. *Acta Neuropathol*. 2000;100(2):138-44.

- 170. Shaw PJ, Forrest V, Ince PG, Richardson JP, Wastell HJ. CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. *Neurodegeneration*. 1995;4(2):209-16.
- 171. Spreux-Varoquaux O, Bensimon G, Lacomblez L, Salachas F, Pradat PF, Le Forestier N, Marouan A, Dib M, Meininger V. Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. *J Neurol Sci.* 2002;193(2):73-8.
- 172. Alexander GM, Deitch JS, Seeburger JL, Del Valle L, Heiman-Patterson TD. Elevated cortical extracellular fluid glutamate in transgenic mice expressing human mutant (G93A) Cu/Zn superoxide dismutase. *J Neurochem*. 2000;74(4):1666-73.
- 173. Bristol LA, Rothstein JD. Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. *Ann Neurol*. 1996;39(5):676-9.
- 174. Yang Y, Gozen O, Watkins A, Lorenzini I, Lepore A, Gao Y, Vidensky S, Brennan J, Poulsen D, Won Park J, et al. Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. *Neuron*. 2009;61(6):880-94.
- 175. Pasinelli P, Houseweart MK, Brown RH, Jr., Cleveland DW. Caspase-1 and -3 are sequentially activated in motor neuron death in Cu,Zn superoxide dismutasemediated familial amyotrophic lateral sclerosis. *Proc Natl Acad Sci U S A*. 2000;97(25):13901-6.
- 176. Boston-Howes W, Gibb SL, Williams EO, Pasinelli P, Brown RH, Jr., Trotti D. Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. *J Biol Chem.* 2006;281(20):14076-84.
- 177. Trotti D, Danbolt NC, Volterra A. Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? *Trends Pharmacol Sci.* 1998;19(8):328-34.
- 178. Tortarolo M, Crossthwaite AJ, Conforti L, Spencer JP, Williams RJ, Bendotti C, Rattray M. Expression of SOD1 G93A or wild-type SOD1 in primary cultures of astrocytes down-regulates the glutamate transporter GLT-1: lack of involvement of oxidative stress. *J Neurochem*. 2004;88(2):481-93.
- 179. Flomen R, Makoff A. Increased RNA editing in EAAT2 pre-mRNA from amyotrophic lateral sclerosis patients: involvement of a cryptic polyadenylation site. *Neurosci Lett*. 2011;497(2):139-43.
- 180. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. *N Engl J Med*. 2006;354(6):610-21.
- 181. Haas CS, Amin MA, Ruth JH, Allen BL, Ahmed S, Pakozdi A, Woods JM, Shahrara S, Koch AE. In vivo inhibition of angiogenesis by interleukin-13 gene therapy in a rat model of rheumatoid arthritis. *Arthritis Rheum*. 2007;56(8):2535-48.
- 182. Sallusto F, Baggiolini M. Chemokines and leukocyte traffic. *Nat Immunol*. 2008;9(9):949-52.
- 183. Thelen M, Stein JV. How chemokines invite leukocytes to dance. *Nat Immunol*. 2008;9(9):953-9.
- 184. Gupta PK, Prabhakar S, Sharma NK, Anand A. Possible association between expression of chemokine receptor-2 (CCR2) and amyotrophic lateral sclerosis (ALS) patients of North India. *PLoS One*. 2012;7(6):e38382.

- 185. Tateishi T, Yamasaki R, Tanaka M, Matsushita T, Kikuchi H, Isobe N, Ohyagi Y, Kira J. CSF chemokine alterations related to the clinical course of amyotrophic lateral sclerosis. *J Neuroimmunol*. 2010;222(1-2):76-81.
- 186. Zhang R, Gascon R, Miller RG, Gelinas DF, Mass J, Lancero M, Narvaez A, McGrath MS. MCP-1 chemokine receptor CCR2 is decreased on circulating monocytes in sporadic amyotrophic lateral sclerosis (sALS). *J Neuroimmunol*. 2006;179(1-2):87-93.
- 187. Rentzos M, Nikolaou C, Rombos A, Boufidou F, Zoga M, Dimitrakopoulos A, Tsoutsou A, Vassilopoulos D. RANTES levels are elevated in serum and cerebrospinal fluid in patients with amyotrophic lateral sclerosis. *Amyotroph Lateral Scler*. 2007;8(5):283-7.
- 188. Luo Y, Xue H, Pardo AC, Mattson MP, Rao MS, Maragakis NJ. Impaired SDF1/CXCR4 signaling in glial progenitors derived from SOD1(G93A) mice. J Neurosci Res. 2007;85(11):2422-32.
- 189. Odemis V, Lamp E, Pezeshki G, Moepps B, Schilling K, Gierschik P, Littman DR, Engele J. Mice deficient in the chemokine receptor CXCR4 exhibit impaired limb innervation and myogenesis. *Mol Cell Neurosci*. 2005 Dec;30(4):494-505.
- 190. Lieberam I, Agalliu D, Nagasawa T, Ericson J, Jessell TM. A Cxcl12-CXCR4 chemokine signaling pathway defines the initial trajectory of mammalian motor axons. *Neuron*. 2005;47(5):667-79.
- 191. Chalasani SH, Sabelko KA, Sunshine MJ, Littman DR, Raper JA. A chemokine, SDF-1, reduces the effectiveness of multiple axonal repellents and is required for normal axon pathfinding. *J Neurosci*. 2003;23(4):1360-71.
- 192. Cheroni C, Peviani M, Cascio P, Debiasi S, Monti C, Bendotti C. Accumulation of human SOD1 and ubiquitinated deposits in the spinal cord of SOD1G93A mice during motor neuron disease progression correlates with a decrease of proteasome. *Neurobiol Dis.* 2005;18(3):509-22.
- 193. Kato S. Amyotrophic lateral sclerosis models and human neuropathology: similarities and differences. *Acta Neuropathol*. 2008;115(1):97-114.
- 194. Strong MJ, Kesavapany S, Pant HC. The pathobiology of amyotrophic lateral sclerosis: a proteinopathy? *J Neuropathol Exp Neurol*. 2005;64(8):649-64.
- 195. Urushitani M, Kurisu J, Tateno M, Hatakeyama S, Nakayama K, Kato S, Takahashi R. CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70. *J Neurochem*. 2004;90(1):231-44.
- 196. Urushitani M, Kurisu J, Tsukita K, Takahashi R. Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. *J Neurochem*. 2002;83(5):1030-42.
- 197. Massignan T, Casoni F, Basso M, Stefanazzi P, Biasini E, Tortarolo M, Salmona M, Gianazza E, Bendotti C, Bonetto V. Proteomic analysis of spinal cord of presymptomatic amyotrophic lateral sclerosis G93A SOD1 mouse. *Biochem Biophys Res Commun.* 2007;353(3):719-25.
- 198. Saris CG, Groen EJ, Koekkoek JA, Veldink JH, van den Berg LH. Meta-analysis of gene expression profiling in amyotrophic lateral sclerosis: a comparison between transgenic mouse models and human patients. *Amyotroph Lateral Scler Frontotemporal Degener*. 2013;14(3):177-89.
- 199. Kwak YD, Wang B, Li JJ, Wang R, Deng Q, Diao S, Chen Y, Xu R, Masliah E, Xu H, et al. Upregulation of the E3 ligase NEDD4-1 by oxidative stress degrades IGF-1 receptor protein in neurodegeneration. *J Neurosci*. 2012;32(32):10971-81.

- 200. Wilkinson KA, Henley JM. Mechanisms, regulation and consequences of protein SUMOylation. *Biochem J.* 2010;428(2):133-45.
- 201. Foran E, Bogush A, Goffredo M, Roncaglia P, Gustincich S, Pasinelli P, Trotti D. Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2. *Glia*. 2011;59(11):1719-31.
- 202. Xu R, Wu C, Zhang X, Zhang Q, Yang Y, Yi J, Yang R, Tao Y. Linking hypoxic and oxidative insults to cell death mechanisms in models of ALS. *Brain Res.* 2011;1372:133-44.
- 203. Vargas MR, Johnson JA. Astrogliosis in amyotrophic lateral sclerosis: role and therapeutic potential of astrocytes. *Neurotherapeutics*. 2010;7(4):471-81.
- 204. Dangoumau A, Veyrat-Durebex C, Blasco H, Praline J, Corcia P, Andres CR, Vourc'h P. Protein SUMOylation, an emerging pathway in amyotrophic lateral sclerosis. *Int J Neurosci.* 2013;123(6):366-74.
- 205. Matsumoto A, Tateishi Y, Onoyama I, Okita Y, Nakayama K, Nakayama KI. Fbxw7beta resides in the endoplasmic reticulum membrane and protects cells from oxidative stress. *Cancer Sci.* 2011;102(4):749-55.
- 206. Nateri AS, Riera-Sans L, Da Costa C, Behrens A. The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. *Science*. 2004;303(5662):1374-8.
- 207. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH. OXPHOS mutations and neurodegeneration. *EMBO J*. 2013;32(1):9-29.
- 208. Lin J, Diamanduros A, Chowdhury SA, Scelsa S, Latov N, Sadiq SA. Specific electron transport chain abnormalities in amyotrophic lateral sclerosis. *J Neurol*. 2009;256(5):774-82.
- 209. Chen K, Northington FJ, Martin LJ. Inducible nitric oxide synthase is present in motor neuron mitochondria and Schwann cells and contributes to disease mechanisms in ALS mice. *Brain Struct Funct*. 2010;214(2-3):219-34.
- 210. Manfredi G, Xu Z. Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. *Mitochondrion*. 2005;5(2):77-87.
- 211. Miyazaki K, Ohta Y, Nagai M, Morimoto N, Kurata T, Takehisa Y, Ikeda Y, Matsuura T, Abe K. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. *J Neurosci Res.* 2011;89(5):718-28.
- 212. Garbuzova-Davis S, Haller E, Saporta S, Kolomey I, Nicosia SV, Sanberg PR. Ultrastructure of blood-brain barrier and blood-spinal cord barrier in SOD1 mice modeling ALS. *Brain Res.* 2007;1157:126-37.
- 213. Garbuzova-Davis S, Hernandez-Ontiveros DG, Rodrigues MC, Haller E, Frisina-Deyo A, Mirtyl S, Sallot S, Saporta S, Borlongan CV, Sanberg PR. Impaired blood-brain/spinal cord barrier in ALS patients. *Brain Res.* 2012;1469:114-28.
- 214. Garbuzova-Davis S, Rodrigues MC, Hernandez-Ontiveros DG, Louis MK, Willing AE, Borlongan CV, Sanberg PR. Amyotrophic lateral sclerosis: a neurovascular disease. *Brain Res*. 2011;1398:113-25.
- 215. Grammas P, Martinez J, Miller B. Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases. *Expert Rev Mol Med*. 2011;13:e19.
- 216. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. *Neuron*. 2008;57(2):178-201.
- 217. Arhart RW. A possible haemodynamic mechanism for amyotrophic lateral sclerosis. *Med Hypotheses*. 2010;75(4):341-6.
- 218. Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, O'Banion MK, Stojanovic K, Sagare A, Boillee S, Cleveland DW, et al. ALS-causing SOD1 mutants generate
vascular changes prior to motor neuron degeneration. *Nat Neurosci*. 2008;11(4):420-2.

- 219. Henkel JS, Beers DR, Wen S, Bowser R, Appel SH. Decreased mRNA expression of tight junction proteins in lumbar spinal cords of patients with ALS. *Neurology*. 2009;72(18):1614-6.
- 220. Elmer BM, McAllister AK. Major histocompatibility complex class I proteins in brain development and plasticity. *Trends Neurosci*. 2012;35(11):660-70.
- 221. Kon M, Cuervo AM. Chaperone-mediated autophagy in health and disease. *FEBS Lett.* 2010;584(7):1399-404.
- 222. Massey AC, Zhang C, Cuervo AM. Chaperone-mediated autophagy in aging and disease. *Curr Top Dev Biol*. 2006;73:205-35.
- 223. McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. *Nat Rev Mol Cell Biol.* 2011;12(8):517-33.
- 224. Polymenidou M, Cleveland DW. The seeds of neurodegeneration: prion-like spreading in ALS. *Cell*. 2011;147(3):498-508.
- 225. Otomo A, Pan L, Hadano S. Dysregulation of the autophagy-endolysosomal system in amyotrophic lateral sclerosis and related motor neuron diseases. *Neurol Res Int*. 2012;2012:498428.
- 226. Morimoto N, Nagai M, Ohta Y, Miyazaki K, Kurata T, Morimoto M, Murakami T, Takehisa Y, Ikeda Y, Kamiya T, et al. Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. *Brain Res.* 2007;1167:112-7.
- 227. Tian F, Morimoto N, Liu W, Ohta Y, Deguchi K, Miyazaki K, Abe K. In vivo optical imaging of motor neuron autophagy in a mouse model of amyotrophic lateral sclerosis. *Autophagy*. 2011;7(9):985-92.
- 228. Majumder R, Krishnan KS. Synaptic vesicle recycling: genetic and cell biological studies. *J Neurogenet*. 2010;24(3):146-57.
- 229. Gifondorwa DJ, Robinson MB, Hayes CD, Taylor AR, Prevette DM, Oppenheim RW, Caress J, Milligan CE. Exogenous delivery of heat shock protein 70 increases lifespan in a mouse model of amyotrophic lateral sclerosis. *J Neurosci*. 2007;27(48):13173-80.
- 230. Gifondorwa DJ, Jimenz-Moreno R, Hayes CD, Rouhani H, Robinson MB, Strupe JL, Caress J, Milligan C. Administration of Recombinant Heat Shock Protein 70 Delays Peripheral Muscle Denervation in the SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis. *Neurol Res Int.* 2012;2012:170426.
- 231. Bruening W, Roy J, Giasson B, Figlewicz DA, Mushynski WE, Durham HD. Upregulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. *J Neurochem*. 1999;72(2):693-9.
- 232. Kieran D, Kalmar B, Dick JR, Riddoch-Contreras J, Burnstock G, Greensmith L. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. *Nat Med*. 2004;10(4):402-5.
- 233. Takeuchi H, Kobayashi Y, Yoshihara T, Niwa J, Doyu M, Ohtsuka K, Sobue G. Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. *Brain Res.* 2002;949(1-2):11-22.
- 234. Basso M, Samengo G, Nardo G, Massignan T, D'Alessandro G, Tartari S, Cantoni L, Marino M, Cheroni C, De Biasi S, et al. Characterization of detergent-insoluble proteins in ALS indicates a causal link between nitrative stress and aggregation in pathogenesis. *PLoS One*. 2009;4(12):e8130.

- 235. Chen S, Zhang X, Song L, Le W. Autophagy dysregulation in amyotrophic lateral sclerosis. *Brain Pathol*. 2012;22(1):110-6.
- 236. Oliveira AL, Thams S, Lidman O, Piehl F, Hokfelt T, Karre K, Linda H, Cullheim S. A role for MHC class I molecules in synaptic plasticity and regeneration of neurons after axotomy. *Proc Natl Acad Sci U S A*. 2004;101(51):17843-8.
- 237. Casas C, Herrando-Grabulosa M, Manzano R, Mancuso R, Osta R, Navarro X. Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis. *Brain Behav.* 2013;3(2):145-58.
- 238. Brettschneider J, Mogel H, Lehmensiek V, Ahlert T, Sussmuth S, Ludolph AC, Tumani H. Proteome analysis of cerebrospinal fluid in amyotrophic lateral sclerosis (ALS). *Neurochem Res.* 2008;33(11):2358-63.
- 239. Garvie CW, Boss JM. Assembly of the RFX complex on the MHCII promoter: role of RFXAP and RFXB in relieving autoinhibition of RFX5. *Biochim Biophys Acta*. 2008;1779(12):797-804.
- 240. Graber DJ, Hickey WF, Harris BT. Progressive changes in microglia and macrophages in spinal cord and peripheral nerve in the transgenic rat model of amyotrophic lateral sclerosis. *J Neuroinflammation*. 2010;7:8.
- 241. Sanagi T, Yuasa S, Nakamura Y, Suzuki E, Aoki M, Warita H, Itoyama Y, Uchino S, Kohsaka S, Ohsawa K. Appearance of phagocytic microglia adjacent to motoneurons in spinal cord tissue from a presymptomatic transgenic rat model of amyotrophic lateral sclerosis. *J Neurosci Res.* 2010;88(12):2736-46.
- 242. Kimura T, Griffin DE. The role of CD8(+) T cells and major histocompatibility complex class I expression in the central nervous system of mice infected with neurovirulent Sindbis virus. *J Virol*. 2000;74(13):6117-25.
- 243. Thams S, Brodin P, Plantman S, Saxelin R, Karre K, Cullheim S. Classical major histocompatibility complex class I molecules in motoneurons: new actors at the neuromuscular junction. *J Neurosci*. 2009;29(43):13503-15.
- 244. VanGuilder Starkey HD, Van Kirk CA, Bixler GV, Imperio CG, Kale VP, Serfass JM, Farley JA, Yan H, Warrington JP, Han S, et al. Neuroglial expression of the MHCI pathway and PirB receptor is upregulated in the hippocampus with advanced aging. *J Mol Neurosci*. 2012;48(1):111-26.
- 245. Higgins CF. ABC transporters: from microorganisms to man. *Annu Rev Cell Biol*. 1992;8:67-113.
- 246. Yewdell JW. Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. *Trends Cell Biol*. 2001;11(7):294-7.
- 247. Gromme M, Neefjes J. Antigen degradation or presentation by MHC class I molecules via classical and non-classical pathways. *Mol Immunol.* 2002;39(3-4):181-202.
- 248. Cullheim S, Thams S. The microglial networks of the brain and their role in neuronal network plasticity after lesion. *Brain Res Rev.* 2007;55(1):89-96.
- 249. Graeber MB, Streit WJ, Kreutzberg GW. Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells. *J Neurosci Res.* 1988;21(1):18-24.
- 250. Abd-El-Basset EM, Prashanth J, Ananth Lakshmi KV. Up-regulation of cytoskeletal proteins in activated microglia. *Med Princ Pract*. 2004;13(6):325-33.
- 251. Bouzier-Sore AK, Voisin P, Canioni P, Magistretti PJ, Pellerin L. Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. *J Cereb Blood Flow Metab*. 2003;23(11):1298-306.

- 252. Zielke HR, Zielke CL, Baab PJ, Tildon JT. Effect of fluorocitrate on cerebral oxidation of lactate and glucose in freely moving rats. *J Neurochem*. 2007;101(1):9-16.
- 253. Sokoloff L. Energy metabolism and effects of energy depletion or exposure to glutamate. *Can J Physiol Pharmacol*. 1992;70 Suppl:S107-12.
- 254. Fernandez-Fernandez S, Almeida A, Bolanos JP. Antioxidant and bioenergetic coupling between neurons and astrocytes. *Biochem J*. 2012;443(1):3-11.
- 255. Wamelink MM, Struys EA, Jakobs C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. *J Inherit Metab Dis*. 2008;31(6):703-17.
- 256. Rodriguez-Rodriguez P, Almeida A, Bolanos JP. Brain energy metabolism in glutamate-receptor activation and excitotoxicity: role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway. *Neurochem Int.* 2013;62(5):750-6.
- 257. Garcia-Nogales P, Almeida A, Bolanos JP. Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection. *J Biol Chem.* 2003;278(2):864-74.
- 258. Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolanos JP. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. *Nat Cell Biol*. 2009;11(6):747-52.
- 259. Brekke EM, Walls AB, Schousboe A, Waagepetersen HS, Sonnewald U. Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons. *J Cereb Blood Flow Metab*. 2012;32(9):1788-99.
- 260. Dringen R, Pfeiffer B, Hamprecht B. Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. *J Neurosci.* 1999;19(2):562-9.
- 261. Flohe L, Toppo S, Cozza G, Ursini F. A comparison of thiol peroxidase mechanisms. *Antioxid Redox Signal*. 2011;15(3):763-80.
- 262. Kalapos MP. Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. *Toxicol Lett.* 1999 Nov 22;110(3):145-75.
- 263. Belanger M, Yang J, Petit JM, Laroche T, Magistretti PJ, Allaman I. Role of the glyoxalase system in astrocyte-mediated neuroprotection. *J Neurosci*. 2011;31(50):18338-52.
- 264. Vembar SS, Brodsky JL. One step at a time: endoplasmic reticulum-associated degradation. *Nat Rev Mol Cell Biol*. 2008;9(12):944-57.
- 265. Nishitoh H, Kadowaki H, Nagai A, Maruyama T, Yokota T, Fukutomi H, Noguchi T, Matsuzawa A, Takeda K, Ichijo H. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. *Genes Dev.* 2008;22(11):1451-64.
- 266. Saxena S, Cabuy E, Caroni P. A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. *Nat Neurosci*. 2009;12(5):627-36.
- 267. Mittal N, Scherrer T, Gerber AP, Janga SC. Interplay between posttranscriptional and posttranslational interactions of RNA-binding proteins. *J Mol Biol.* 2011;409(3):466-79.
- 268. Seal R, Temperley R, Wilusz J, Lightowlers RN, Chrzanowska-Lightowlers ZM. Serum-deprivation stimulates cap-binding by PARN at the expense of eIF4E,

consistent with the observed decrease in mRNA stability. *Nucleic Acids Res.* 2005;33(1):376-87.

- 269. Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Yaspo ML, Lehrach H, Krobitsch S. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. *Mol Biol Cell*. 2007;18(4):1385-96.
- 270. Ibrahim F, Nakaya T, Mourelatos Z. RNA dysregulation in diseases of motor neurons. *Annu Rev Pathol*. 2012;7:323-52.
- 271. Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. *J Neurosci*. 1999;19(14):5731-40.
- 272. Subramanian V, Feng Y. A new role for angiogenin in neurite growth and pathfinding: implications for amyotrophic lateral sclerosis. *Hum Mol Genet*. 2007;16(12):1445-53.
- 273. Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, Van Dorpe J, Hellings P, Gorselink M, Heymans S, et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. *Nat Genet*. 2001;28(2):131-8.
- 274. Devos D, Moreau C, Lassalle P, Perez T, De Seze J, Brunaud-Danel V, Destee A, Tonnel AB, Just N. Low levels of the vascular endothelial growth factor in CSF from early ALS patients. *Neurology*. 2004;62(11):2127-9.
- 275. Li X, Lu L, Bush DJ, Zhang X, Zheng L, Suswam EA, King PH. Mutant copperzinc superoxide dismutase associated with amyotrophic lateral sclerosis binds to adenine/uridine-rich stability elements in the vascular endothelial growth factor 3'untranslated region. *J Neurochem*. 2009;108(4):1032-44.
- 276. Lu L, Zheng L, Viera L, Suswam E, Li Y, Li X, Estevez AG, King PH. Mutant Cu/Zn-superoxide dismutase associated with amyotrophic lateral sclerosis destabilizes vascular endothelial growth factor mRNA and downregulates its expression. *J Neurosci*. 2007;27(30):7929-38.
- 277. Kirschenbaum F, Hsu SC, Cordell B, McCarthy JV. Glycogen synthase kinase-3beta regulates presenilin 1 C-terminal fragment levels. *J Biol Chem*. 2001;276(33):30701-7.
- 278. Koh SH, Kim SH, Kwon H, Park Y, Kim KS, Song CW, Kim J, Kim MH, Yu HJ, Henkel JS, et al. Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress-induced apoptosis through its effect on phosphoinositide 3-kinase/Akt and glycogen synthase kinase-3. *Brain Res Mol Brain Res.* 2003;118(1-2):72-81.
- 279. Martinez A, Castro A, Dorronsoro I, Alonso M. Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. *Med Res Rev.* 2002;22(4):373-84.
- 280. Pap M, Cooper GM. Role of translation initiation factor 2B in control of cell survival by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta signaling pathway. *Mol Cell Biol*. 2002;22(2):578-86.
- 281. Koh SH, Roh H, Lee SM, Kim HJ, Kim M, Lee KW, Kim HT, Kim J, Kim SH. Phosphatidylinositol 3-kinase activator reduces motor neuronal cell death induced by G93A or A4V mutant SOD1 gene. *Toxicology*. 2005;213(1-2):45-55.

APÊNDICE

Early gene expression changes in spinal cord from SOD1^{G93A} Amyotrophic Lateral Sclerosis animal model

Gabriela P. de Oliveira, Chrystian J. Alves and Gerson Chadi*

Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, São Paulo, Brazil

Edited by:

Ricardo Tapia, Universidad Nacional Autónoma de México, Mexico

Reviewed by:

Hermona Soreq, The Hebrew University of Jerusalem, Israel Takumi Takizawa, Gunma University, Japan

*Correspondence:

Gerson Chadi, Department of Neurology, University of São Paulo, Av. Dr. Arnaldo, 455, 2nd floor, room 2119, 01246-903-São Paulo, Brazil e-mail: gerchadi@usp.br

Amyotrophic Lateral Sclerosis (ALS) is an adult-onset and fast progression neurodegenerative disease that leads to the loss of motor neurons. Mechanisms of selective motor neuron loss in ALS are unknown. The early events occurring in the spinal cord that may contribute to motor neuron death are not described, neither astrocytes participation in the pre-symptomatic phases of the disease. In order to identify ALS early events, we performed a microarray analysis employing a whole mouse genome platform to evaluate the gene expression pattern of lumbar spinal cords of transgenic SOD1^{G93A} mice and their littermate controls at pre-symptomatic ages of 40 and 80 days. Differentially expressed genes were identified by means of the Bioconductor packages Aqi4×44Preprocess and limma. FunNet web based tool was used for analysis of over-represented pathways. Furthermore, immunolabeled astrocytes from 40 and 80 days old mice were submitted to laser microdissection and RNA was extracted for evaluation of a selected gene by gPCR. Statistical analysis has pointed to 492 differentially expressed genes (155 up and 337 down regulated) in 40 days and 1105 (433 up and 672 down) in 80 days old ALS mice. KEGG analysis demonstrated the over-represented pathways tight junction, antigen processing and presentation, oxidative phosphorylation, endocytosis, chemokine signaling pathway, ubiquitin mediated proteolysis and glutamatergic synapse at both pre-symptomatic ages. Ube2i gene expression was evaluated in astrocytes from both transgenic ages, being up regulated in 40 and 80 days astrocytes enriched samples. Our data points to important early molecular events occurring in pre-symptomatic phases of ALS in mouse model. Early SUMOylation process linked to astrocytes might account to non-autonomous cell toxicity in ALS. Further studies on the signaling pathways presented here may provide new insights to better understand the events triggering motor neuron death in this devastating disorder.

Keywords: ALS, SOD1^{G93A}, pre-symptomatic, spinal cord, microarray, laser microdissection, astrocytes

INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) is a fast disabling neurodegenerative disease characterized by upper and lower motor neuron loss of motor cortex, brainstem, and spinal cord leading to respiratory insufficiency and death (Turner et al., 2013). The incidence of ALS ranges from 1.7 to 2.3 cases per 100,000 population per year worldwide (Beghi et al., 2006). The mechanisms underlying neurodegeneration in ALS are multifactorial, and seem to involve neurons and non-neuronal cells (Boillee et al., 2006a,b; Yamanaka et al., 2008; Wang et al., 2011a) as well as several molecular pathways (Boillee et al., 2006a; Ferraiuolo et al., 2011b; Kiernan et al., 2011; Usuki et al., 2012). Approximately 5% of ALS cases are familial, and 20% of these have been linked to mutations in Cu/Zn superoxide dismutase 1 (SOD1) (Rosen et al., 1993; Andersen and Al-Chalabi, 2011). The first symptoms define the beginning of the clinical phase of the diagnosed cases of the more prevalent sporadic forms, consisting in muscle atrophy, weakness, fasciculations, and spasticity (Brooks et al., 2000). There is a lack of pathological studies on post mortem spinal cord from ALS patients that could add information about the triggering, initial time of motor neuron death and mechanisms of the disease. In fact, Fischer et al. (2004) reported the postmortem evaluation in a patient with a short history of ALS, whose electromyography showed signs of acute and chronic denervation, coming out with an unexpected die without peripheral and central motor neuron death together with autolytic changes and a little axonal degeneration. Histological evaluations at the neuromuscular junctions and also electrophysiological analysis at the peripheral nerves in ALS patients have allowed authors to claim that motor neuron death correlates to the begging of clinical classical symptoms (Veugelers et al., 1996; Liu et al., 2013).

As the majority of familial ALS cases are linked to the mutations in SOD1 gene (Dion et al., 2009), transgenic mice expressing human mutant SOD1 (mSOD1) developing age-dependent clinical and pathological features of human ALS are current largely employed in the physiopathological studies of the disorder (Turner and Talbot, 2008). Using this mouse model, we previously described early behavior and electrophysiological alterations, prior the classical neurological symptoms and the beginning of motor neuron death (Alves et al., 2011). In fact, several early events demonstrated in animal

models seemed to precede the neuronal death, remarkably the activation of glial cells (microglia and astrocytes) close to motor neurons (Graber et al., 2010; Wang et al., 2011b; Gerber et al., 2012), retraction of motor neuron fibers and neuromuscular junction displacement (Fischer et al., 2004; De Winter et al., 2006; Narai et al., 2009). It is still unknown whether the most claimed pathogenic processes for ALS, for instance oxidative stress, mitochondrial and neurofilament dysfunction, excitotoxicity, inflammation, non-autonomous cell toxicity, protein misfolding and abnormal RNA processing (Rothstein et al., 1992; Bergeron et al., 1994; Boillee et al., 2006a; Lemmens et al., 2010; Bendotti et al., 2012; Richardson et al., 2013) are taking place at the pre-symptomatic period of the disease.

The central question in understanding ALS facing therapeutic target development involves a further knowledge about the toxic mechanisms that trigger motor neuron death (Boillee et al., 2006a). Until scientific technology approaches do not overstep ethical limitations of clinical studies, the mutant SOD1expressing mouse model may offer opportunity for a detailed analysis of intra and intercellular signaling-related to motor neuron toxicity.

The profiling of gene expression using different platforms have been largely employed in the ALS model in several stages of the disease course (Olsen et al., 2001; Dangond et al., 2004; Malaspina and De Belleroche, 2004; Jiang et al., 2005; Perrin et al., 2005; Ferraiuolo et al., 2007, 2011a; Yamamoto et al., 2007; Offen et al., 2009; Brockington et al., 2010; D'arrigo et al., 2010; Guipponi et al., 2010; Saris et al., 2013b; Yu et al., 2013), including the early symptomatic phase (Olsen et al., 2001; Yoshihara et al., 2002; Ferraiuolo et al., 2007; Yu et al., 2013), however, there is a lack of information on differential gene expression taking place before classical clinical symptoms (Olsen et al., 2001; Yoshihara et al., 2002; Ferraiuolo et al., 2007; Guipponi et al., 2010). Olsen et al. (2001) inaugurated that issue by looking at patterns of gene expression from SOD1^{G93A} spinal cord by means of a murine restricted platform of oligonucleotide microarray and by describing negligible changes in the transcript profile at the pre-symptomatic phases. Other authors that have examined gene profiling in presymptomatic phases of ALS disease employed restricted platforms of cDNA arrays, used animals with an uncommon symptom onset (Yoshihara et al., 2002; Guipponi et al., 2010) or evaluated gene profiling in specific spinal cord cells (Ferraiuolo et al., 2007, 2011a). Authors have encountered gene expressions related to inflammation, apoptosis, oxidative stress, ATP biosynthesis, myelination, axonal transport as candidates of biological processes taking place in the pre-symptomatic periods of ALS.

By means of a high-density oligonucleotide microarrays linked to specific tools capable to identify enriched pathways, the aim of this work was to identify early molecular changes in the presymptomatic stage in the spinal cord of the SOD1^{G93A} mouse model. The data showed important alterations at early 40 days pre-symptomatic period of disease and in 80 days old presymptomatic mice.

MATERIALS AND METHODS

SAMPLES

Specific pathogen-free male SOD1^{G93A} mice of preclinical 40 and 80 days old mice and their age-paired non-transgenic wildtype controls, 20–25 g body weight, from University of São Paulo Medical School (São Paulo, Brazil) were used in the experiments. A total of 5 animals were used in each group in microarray experiments, while in the verification experiments by quantitative polymerase chain reaction (qPCR) and laser microdissection, each group was comprised for 6 and 3 different animals, respectively. Animals were kept under standardized lighting conditions (lights on at 7:00 h and off at 19:00 h), at a constant temperature of 23°C and with free access to food pellets and tap water. The colony was derived from Jackson Laboratories (Bar Harbor, ME, USA) from G93A mutant mice with 25 ± 1.5 copies of the human SOD1 transgene (Gurney, 1994). Mouse identification (SOD^{G93A} or WT) in our colony was performed by genotyping (Scorisa et al., 2010). Animals were killed by decapitation and their lumbar spinal cords were collected for molecular analysis. The study was conducted according protocols approved by the Animal Care and Use of Ethic Committee at the University of São Paulo and in accordance with the Guide for Care and Use of Laboratory Animals adopted by the National Institutes of Health.

RNA EXTRACTION

Total RNA was isolated using the MiniSpin kit for RNA extraction (GE Healthcare, USA) according to the manufacturer's instructions. RNA quantity and integrity were assessed by spectrophotometry (Nanodrop, Thermo Scientific, USA) and microfluidics—based electrophoresis (Agilent 2100 Bioanalyzer, Agilent Technologies, USA), respectively. RNA samples with OD 260/280 of approximately 2.0 and RIN > 7.0 were used for microarray experiments and qPCR. A pool of RNAs from neonatal organs (heart, kidney, liver) was employed as reference sample. A representative eletropherogram from Bioanalyzer evaluation of RNA integrity is shown in supplementary material (Figure S1).

MICROARRAY EXPERIMENTS

For samples and reference, respectively, 250 and 500 ng of RNA were reverse transcribed by the Low-input RNA Linear Amplification Kit (Agilent Technologies) and then transcribed to Cy3-labeled (samples) or Cy5-labeled (reference) cRNA according to the manufacturer. The labeled cRNA was purified (Minispin kit, GE Life Sciences), and the dye content and concentration of cRNA were measured by a NanoDrop ND-1000 spectrophotometer (Thermo Scientific). A total of 850 ng of Cy3-labeled cRNA was hybridized together with the same amount of Cy5-labeled reference to Whole Mouse Genome Oligo $4 \times 44 \text{ K}$ microarrays overnight at 65° C, and then the slides were washed and treated with Stabilizing and Drying Solution (Agilent Technologies) and scanned by Agilent Microarray Scanner. All steps were performed according to the manufacturer (Agilent Technologies).

The raw data from hybridizations and experimental conditions are available on the Gene Expression Omnibus website under accession number GSE50642.

DATA ANALYSES

The Feature Extraction Software v9.1.3.1 (Agilent Technologies) was used to extract and analyze the assay signals and subsequently determine the signal-to-noise ratios from the microarray images. Microarrays without enough quality were taken out from further analysis. The analysis proceeded with 4 samples for each group. Microarray raw data (.txt files) were imported into R v. 3.0.1 (Team RDC, 2012) and analyzed with the Bioconductor (Gentleman et al., 2004) packages Agi4×44PreProcess and limma (Smyth, 2005). Briefly, after quality check, the microarray probes were filtered and their median foreground intensity was normalized within and between arrays according to Agi4×44Preprocess and limma user guides, respectively. Finally, the probes were tested for differential expression using a linear model followed by Bayes moderated t-test (Smyth, 2005) for the comparisons of interest. Genes with nominal p < 0.05 were accepted to be differentially expressed and further considered in the analysis.

FunNet ANALYSIS

In order to further identify over-represented pathways and biological process, the lists with differentially expressed genes for both 40 and 80 days old mice were split into lists of up and down regulated genes and submitted to FunNet web based tool (Functional Analysis of Transcriptional Networks), using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) annotations (Prifti et al., 2008).

LASER MICRODISSECTION OF ASTROCYTES

The lumbar spinal cord of mice were rapidly removed and immediately frozen in ice cold isopentane at -45°C and stored at -80°C until use. The labeling procedure was performed as described previously (De Oliveira et al., 2009) and modified according to our experience. Frozen sections $(5\mu m)$ were rapidly defrosted for 30s and fixed with ice cold acetone, for 3 min. Sections were then incubated during 3 min in phosphate buffered saline (PBS) containing 3% Triton X-100 and then incubated with primary antibody, a polyclonal rabbit anti-glial fibrillary acidic protein (GFAP; Dako Cytomation; 1:100) diluted in 0.3% Triton X-100 containing 1% BSA for 5 min. Sections were then washed in PBS for 3 times of 15 s and then incubated with texas red-conjugated goat-anti-rabbit secondary antibody, in the same diluent than primary antibody, in a final concentration of 1:50 during 5 min in the dark and at room temperature. Sections were rinsed carefully three times with PBS for 15s and immediately submitted to laser microdissection.

Around 200 astrocytes were isolated from each 40 and 80 days old mice lumbar spinal cords using P.A.L.M. Microlaser Technologies (Zeiss). RNA was extracted using PicoPure RNA isolation kit (Arcturus) and linear amplification of RNA was performed following Eberwine's procedure (Van Gelder et al., 1990) using the RiboampHSplus kit (Arcturus) according to the manufacturer's protocol. The quantity (NanoDrop 1000 Spectrophotometer) and quality (Agilent 2100 bioanalyser, RNA 6000 Pico LabChip) of amplified RNA was analyzed as described above. Also, the astrocytes enriched samples were submitted to PCRs in order to access contamination from other cell types.

Protocol and results of astrocyte samples enrichment are presented in the supplementary material (Figure S2).

QUANTITATIVE PCR

A proportion of genes identified as differentially expressed were selected for verification by qPCR, on the basis of robust microarray data confirming differential gene expression. The genes were chosen for verification based on their possible involvement in ALS related mechanisms. Verification addresses the possibility of false positive microarray signals, due to cross-hybridization with related genes, concern about the accuracy of array probe sets, and uncertainty about the hybridization kinetics of multiple reactions occurring on the miniature scale of an array chip. The qPCR verification of microarray results were performed on independent sample, as described above. cDNA was synthesized from 1 µg of total RNA treated with DNAse by a reverse transcription reagent kit (Applied Biosystems Life Technologies) according to manufacturer. qPCR reactions were carried out in duplicate with 40 ng cDNA, the DvNAmo ColorFlash SYBR Green qPCR kit (Thermo Scientific, USA) and 400 nM of each primer in a final volume reaction of 20 µl, by using the PikoReal Real-Time PCR System (Thermo Scientific). The information for SYBR primers can be found in Table 1. For astrocytes enriched samples, 1 µg of amplified RNA was reverse transcribed to cDNA by a reverse transcription reagent kit (Applied Biosystems Life Technologies) modified from original protocol in order to improve efficiency. Briefly, $Oligo(dT)_{16}$ primer was added to samples and incubated at 70°C during 5 min, then the other required reagents, such as reaction buffer, MgCl₂, dNTPs, RNAse inhibitor, in the same concentrations than manufacturer protocol, and 156,25 U of Reverse transcriptase (Multiscribe), were added to reaction and incubated at 37°C for 60 min followed by 95°C for 5 min. qPCR reactions were carried out in duplicate using Taqman master mix and the

 Table 1 | Information for primers used in SYBR qPCR experiments of

 40 and 80 days old pre-symptomatic SOD1^{G93A} and wild-type mice.

Gene ID	Primer sequences (5′-3′)	Amplicon (bp)
Glg1	F: GAGTGAGATTGCAGCCAGAG	143
	R:CAGGATGTAGTTCTTTGAGGGAG	
Aqp4	F: GCTCGATCTTTTGGACCCG	112
	R: AGACATACTCATAAAGGGCACC	
Calca	F: TGCAGATGAAAGCCAGGG	149
	R: CTTCACCACACCTCCTGATC	
Eef2	F: CATGTTTGTGGTCAAGGCATAC	141
	R:TTGTCAAAAGGATCCCCAGG	
Nsg1	F: AAGTGTACAAGTATGACCGCG	128
	R: GACAGTGTAAAATTTCTCCCGG	
Syt10	F: AGACCATTGGAACGAGATGC	148
	R: TGGAGGCTTTTATGGTGTGG	
NORMALYZ	ZER	
Gapdh	F: GAGTAAGAAACCCTGGACCAC	109
	R: TCTGGGATGGAAATTGTGAGG	

The Glg1, Aqp4, Calca genes and Eef2, Nsg1, Syt10 genes were verified in 40 and 80 days mice, respectively, according to microarray results.

following assays were used: *Ube2i* (Mm04243971_g1) and *Gapdh* (Mm999999915_g1).

For SYBR reactions the cycling was composed by an initial denaturation at 95°C for 10 min, templates were amplified by 40 cycles of 95°C for 15 s and 60°C for 30 s. A dissociation curve was then generated to ensure amplification of a single product, and absence of primer dimers. For each primer pair, a standard curve was generated to determine the efficiency of the PCR reaction over a range of template concentrations from 0.032 ng/µl to 20 ng/µl, using cDNA synthesized from mouse reference RNA. The efficiency for each set of primers was $100 \pm 5\%$. For Tagman reactions, cycling was composed by an initial step of 50°C for 2 min, followed by denaturation at 95°C for 10 min, templates were amplified by 40 cycles of 95°C for 15 s and 60°C for 1 min. Gene expressions, normalized to Gapdh, could be determined using the $\Delta\Delta$ Ct mathematical model (ABI PRISM 7700 Sequence Detection System protocol; Applied Biosystems). One-tailed unpaired t-test was used to determine the statistical significance of any differences in gene expression [GraphPad (San Diego, CA) Prism 5]. Gapdh was chosen as a housekeeping gene to normalize the qPCR values because the microarray analysis showed that its expression was stable across samples.

RESULTS

GENERAL FEATURES OF DIFFERENTIAL GENE EXPRESSION BETWEEN SOD1^{G93A} AND WILD-TYPE MICE

Statistical analysis has pointed to 492 differentially expressed genes at the lumbar region of 40 days SOD1^{G93A}, compared to the age matched wild-type mice, being 155 up and 337 down regulated genes, respectively, while 1105 genes were found differentially expressed by 80 days old ALS mice compared to age matched controls, being 433 up and 672 down regulated genes, respectively. The whole list with differentially expressed gene for both age mice can be found in Tables S1 and S2 in the Supplementary material. Of interest, among differentially expressed genes, 66 are common to both ages; they are presented in the **Table 2**.

VERIFICATION OF MICROARRAY RESULTS BY qPCR

The results of qPCR verification for the six representative genes are shown in Table S3 (Supplementary material). The up and down regulations of the verified genes in the 40 days and 80 days old SOD1^{G93A} mice by means of qPCR were coincident and supported the microarray findings of correspondent animal ages (Table S3).

FunNet ANALYSIS

KEGG terms which were significantly enriched (at level p < 0.05) amongst differentially expressed genes between SOD1^{G93A} and wild-type mice were identified for both 40 days and 80 days old pre-symptomatic ALS mice. Over-represented KEGG pathways and respective genes taking part of them are given in **Tables 3**, **4**. Of importance, differentially expressed genes from 40 and 80 days old mice allowed to recognize 7 pathways common among both periods (**Figure 1**). Those were glutamatergic synapse, ubiquitin mediated proteolysis, chemokine signaling pathway, endocytosis, oxidative phosphorylation, antigen processing and presentation and tight junction. The number of transcripts in each pathway

Table 2 Differentially expressed genes common to both gene lists of	
40 and 80 days old pre-symptomatic SOD1 ^{G93A} and wild-type mice.	

Gene symbol	Fold change 40 days	Fold change 80 days
Ocel1	-1.68	-1.92
Fam32a	-1.45	-1.61
Trim37	1.22	-1.34
Lsm6	-1.3	-1.29
Map1a	1.2	-1.15 and -1.28
Bmpr2	1.21	-1.26
Eif3j2	1.29	-1.26
Foxn3	1.28	-1.25
Plekha5	1.17	-1.25
Rfxank	-1.12	-1.22
Malat1	1.1	-1.21
Ddx6	1.3	-1.19
Huwe1	1.12	-1.19
Snx27	1.19	-1.19
Srrm3	1 18	-1 19
Dzin1	1 14	_1 17
Hook3	1.14	-1 17
Nemf	1 15	_1.16
Pdlim5	1.10	_1.16
Plvan	-1.14	_1.16
Thran3	1 15	-1.10
Sref11	_11	-1.10 -1.15
Δzin1	112	-1.13 -1.14
Fif5h	1.12	-1.14 -1.14
Hsna/	1.15	-1.14 -1.14
Kras	1.1	-1.14 -1.14
Sn4	1.10	-1.14 -1.14
Tusc3	_11	_1.14
Veafa	1.1	_1.14
Fam133h	1.09	_113
Fam81a	1.00	_1.13
Prkrir	_11	-1.13
Ptrf	_13	_1.13
6330411E07Bik	1.0	_1.10
Gria4	1.00	_1.12
Zfp866	1.10	-112
Marc-2	_1.07	_1 11
Hadh	1.07	-1 11
Mtf2	1.12	_1.11
Dhns	_1.09	_11
Nsd1	1.00	-11
Mier1	1.12	-1.09
112surn	1.10	_1.00
2610507B11Bik	1.13	- 1.00
Ncam1	1.07	1.1
Rtn1	-1 17	1 12
Chd5	1 12	1 13
Dhcr7	-1.08	1.15
Strhn	1 15	1 15
Svnm	-1.12	1.15
Man7d1	1 14	1.16
Specc1	11	1.10
Specc I	1.1	1.17

(Continued)

Gene symbol	Fold change 40 days	Fold change 80 days
Maea	1.1	1.19
Ncl	1.1 and -1.1	1.19
Glg1	1.29	1.2
Dnajc27	1.17	1.21
Ncdn	1.14	1.21
Lpcat2	1.16	1.22
D17Wsu92e	1.11	1.24
Nisch	1.08	1.24
Tkt	-1.1	1.25
Tmem59l	1.29	1.26
Mast3	1.24	1.28
Plac9a	-1.45	1.35
Nsg1	-1.17	1.22 and 1.35
Тгаррс3	-1.2	1.32 and 1.41

Map1a, Ncl, Nsg1, and Trappc3 genes were represented by an additional probe.

is also shown in **Figure 1**. Moreover, other interesting pathways could also be identified to appear only in 40 days (**Table 3**) or 80 days old SOD1^{G93A} mice (**Table 4**). Furthermore, among pathways common to both ages, ubiquitin mediated proteolysis, chemokine signaling pathway and endocytosis were overrepresented by up regulated genes and oxidative phosphorylation was pointed by down regulated genes (**Figure 1**). Furthermore, glutamatergic synapse and tight junction were pointed by the genes that were up regulated in 40 days and also up or down regulated in 80 days gene expression lists (**Figure 1**). Finally, antigen processing and presentation was pointed for down regulated genes in 40 days and up regulated genes in 80 days lists (**Figure 1**).

Some pathways pointed by FunNet were omitted from table because they were composed by genes already presented in other pathways and also genes apparently not related to ALS. They were melanoma, measles, hepatitis C, melanogenesis, pathways in cancer and prostate cancer at 40 days and viral myocarditis and melanogenesis in 80 days results.

The results for GO enriched terms can be found in Tables S4 and S5 in Supplementary material.

LASER MICRODISSECTION OF ASTROCYTES AND qPCR EXPERIMENT

The profile for GFAP immunofluorescence for specific identification of astrocytes can be found in **Figure 2**. Our protocol allowed easily identifying the astrocytic profiles (**Figure 2A**) to be microdissected (**Figure 2B**). The procedure allowed a complete microdissection of the desired cell type (**Figure 2C**), the astrocytes in our case. The results of qPCR for *Ube2i*, using the two cycle amplified RNA, from 40 and 80 days mouse laser microdissected astrocytes have shown increased gene expressions in transgenic mice of both pre-symptomatic ages (**Figure 3**). The *Ube2i* expression was increased by 5.53-fold in the astrocytes from 40 days old SOD1^{G92A} mice and by 1.77-fold change in astrocytes from 80 days old SOD1^{G92A} mice compared to respective age matched wild-type samples.

Table 3 | KEGG pathways enriched amongst differentially expressed up or down regulated genes at 40 days old mice.

Gene ID	Gene symbol	Gene name
PATHW	AYS POINTED E	BY UP REGULATED GENES
Fructose	e and manose r	netabolism
170768	Pfkfb3	6-Phosphofructo-2-kinase/fructose-2,6- biphosphatase 3
18640	Pfkfb2	6-Phosphofructo-2-kinase/fructose-2,6- biphosphatase 2
18642	Pfkm	Phosphofructokinase, muscle
230163	Aldob	Aldolase B, fructose-bisphosphate
54384	Mtmr7	Myotubularin related protein 7
Tight ju	nction	
14677	Gnai1	Guanine nucleotide binding protein (G protein), alpha inhibiting 1
16653	Kras	v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
18176	Nras	Neuroblastoma ras oncogene
18417	Cldn11	Claudin 11
192195	Ash1l	Ash1 (absent, small, or homeotic)-like (Drosophila)
Glutama	atergic synapse	
140919	Slc17a6	Solute carrier family 17 (sodium-dependent
		inorganic phosphate cotransporter), member 6
14677	Gnai1	Guanine nucleotide binding protein (G protein), alpha inhibiting 1
14802	Gria4	Glutamate receptor, ionotropic, AMPA4 (alpha 4
14810	Grin1	Glutamate receptor, ionotropic, NMDA1 (zeta 1)
20511	Slc1a2	Solute carrier family 1 (glial high affinity glutamate transporter), member 2
Axon gu	ıidance	
12767	Cxcr4	Chemokine (C-X-C motif) receptor 4
14677	Gnai1	Guanine nucleotide binding protein (G protein), alpha inhibiting 1
16653	Kras	v-Ki-ras2 Kirsten rat sarcoma viral oncogene
18176	Nras	Neuroblastoma ras oncogene
22253	Unc5c	Unc-5 homolog C (<i>C. elegans</i>)
56637	Gsk3b	Glycogen synthase kinase 3 beta
Ubiquiti	n mediated pro	oteolysis
107568	Wwp1	WW domain containing E3 ubiquitin protein ligase 1
17999	Nedd4	Neural precursor cell expressed,
		developmentally down-regulated 4
22210	Ube2b	Ubiquitin-conjugating enzyme E2B
59026	Huwe1	HECT, UBA and WWE domain containing 1
68729	Trim37	Tripartite motif-containing 37
70790	Ubr5	Ubiquitin protein ligase E3 component n-recognin 5
Chemok	kine signaling p	athway
12767	Cxcr4	Chemokine (C-X-C motif) receptor 4

(Continued)

14677

Gnai1

Guanine nucleotide binding protein (G protein).

alpha inhibiting 1

Table 3 | Continued

Gene ID Gene symbol Gene name 16653 Kras v-Ki-ras2 Kirsten rat sarcoma viral oncogene homoloa 18176 Nras Neuroblastoma ras oncogene 18708 Pik3r1 Phosphatidylinositol 3-kinase, regulatory subunit, polypeptide 1 (p85 alpha) 56637 Gsk3h Glycogen synthase kinase 3 beta 73178 Wasl Wiskott-Aldrich syndrome-like (human) Endocytosis 107568 Wwp1 WW domain containing E3 ubiquitin protein ligase 1 12767 Cxcr4 Chemokine (C-X-C motif) receptor 4 13854 Epn1 Epsin 1 17999 Nedd4 Neural precursor cell expressed. developmentally down-regulated 4 193740 Hspa1a Heat shock protein 1A 26431 Git2 G protein-coupled receptor kinase-interactor 2 78618 Acap2 ArfGAP with coiled-coil, ankyrin repeat and PH domains 2

PATHWAYS POINTED BY DOWN REGULATED GENES Nucleotide excision repair

19718	Rfc2	Replication factor C (activator 1) 2
66979	Pole4	Polymerase (DNA-directed), epsilon 4 (p12 subunit)
DNA re	plication	
19718	Rfc2	Replication factor C (activator 1) 2
66979	Pole4	Polymerase (DNA-directed), epsilon 4 (p12 subunit)
Fatty a	cid metabolism	I
11363	Acadl	Acyl-Coenzyme A dehydrogenase, long-chain
74205	Acsl3	Acyl-CoA synthetase long-chain family member 3
TGF-be	ta signaling pa	thway
12167	Bmpr1b	Bmpr1b bone morphogenetic protein receptor, type 1B
15902	ld2	Inhibitor of DNA binding 2
19651	Rbl2	Retinoblastoma-like 2
Antige	n processing ar	nd presentation
12010	B2m	Beta-2 microglobulin
12317	Calr	Calreticulin
19727	Rfxank	Regulatory factor X-associated
		ankyrin-containing protein
ECM-re	ceptor interact	ion
11603	Agrn	Agrin
12814	Col11a1	Collagen, type XI, alpha 1
16773	Lama2	Laminin, alpha 2
GnRH s	signaling pathw	лау
12314	Calm2	Calmodulin 2

12314	Calm2	Calmodulin 2
16440	ltpr3	Inositol 1,4,5-triphosphate receptor 3
16476	Jun	Jun oncogene
17390	Mmp2	Matrix metallopeptidase 2

(Continued)

Table 3 | Continued

Gene ID	Gene symbol	Gene name
Parkinso	n's disease	
104130	Ndufb11	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 11
12857	Cox4i1	Cytochrome c oxidase subunit IV isoform 1
66576	Uqcrh	Ubiquinol-cytochrome c reductase hinge protein
67264	Ndufb8	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 8
Oxidativ	e phosphoryla	tion
104130	Ndufb11	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 11
12857	Cox4i1	Cytochrome c oxidase subunit IV isoform 1
66576	Uqcrh	Ubiquinol-cytochrome c reductase hinge protein
67264	Ndufb8	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 8
Alzheim	er′s disease	
104130	Ndufb11	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 11
12314	Calm2	Calmodulin 2
12857	Cox4i1	Cytochrome c oxidase subunit IV isoform 1
16440	ltpr3	Inositol 1,4,5-triphosphate receptor 3
66576	Uqcrh	Ubiquinol-cytochrome c reductase hinge protein
67264	Ndufb8	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 8

DISCUSSION

Gene-expression profiling studies have been conducted in the search of molecular pathways related to motor neuron death in ALS by employing animal models in different phases of the disease and human post mortem material at the very end stage of motor neuron degeneration (Olsen et al., 2001; Dangond et al., 2004; Malaspina and De Belleroche, 2004; Jiang et al., 2005; Perrin et al., 2005; Ferraiuolo et al., 2007, 2011a; Yamamoto et al., 2007; Offen et al., 2009; Brockington et al., 2010; D'arrigo et al., 2010; Guipponi et al., 2010; Saris et al., 2013b).

The analysis of the mechanisms that trigger motor neuron death in the ALS may include evaluation of the altered molecular pathways that are taking place in compromised regions before the occurrence of cell death. Previous works have attempted to describe gene profiling in the pre-symptomatic phases of ALS animal model by employing distinct methodologies (Ferraiuolo et al., 2007; D'arrigo et al., 2010; Guipponi et al., 2010). This is the first work to analyze gene expression profile in the whole lumbar spinal cord of early 40 and 80 days old pre-symptomatic SOD1^{G93A} mouse in a whole genome array platform, which allowed depicting enriched pathways related to possible mechanisms of neuronal toxicity in ALS. Our analysis has pointed to up to 1105 differentially expressed genes in pre-symptomatic periods of SOD1^{G93A} mouse model, a larger number of than described elsewhere (Perrin et al., 2005, 2006). It should be pointed that the average of fold change described in previous publications is about 3, which is higher than that found in our microarray analysis. However, it must be emphasized that

Table 4 | KEGG pathways enriched amongst differentially expressed up or down regulated genes at 80 days old mice.

Gene ID Gene symbol Gene name

PATHWAYS POINTED BY UP REGULATED GENES

Vascular smooth muscle contracti	on
----------------------------------	----

104111	Adcy3	Adenylate cyclase 3
12315	Calm3	Calmodulin 3
14673	Gna12	Guanine nucleotide binding protein, alpha 12
14674	Gna13	Guanine nucleotide binding protein, alpha 13
18751	Prkcb	Protein kinase C, beta
213498	Arhgef11	Rho guanine nucleotide exchange factor (GEF)
		11
224129	Adcy5	Adenylate cyclase 5
26413	Mapk1	Mitogen-activated protein kinase 1

Antigen processing and presentation

14963	H2-BI	Histocompatibility 2, blastocyst
14972	H2-K1	Histocompatibility 2, K1, K region
15006	H2-Q1	Histocompatibility 2, Q region locus 1
15007	H2-Q10	Histocompatibility 2, Q region locus 10
15013	H2-Q2	Histocompatibility 2, Q region locus 2
15018	H2-Q7	Histocompatibility 2, Q region locus 7
15039	H2-T22	Histocompatibility 2, T region locus 22
15040	H2-T23	Histocompatibility 2, T region locus 23
15481	Hspa8	Heat shock protein 8
21355	Tap2	Transporter 2, ATP-binding cassette, sub-family B (MDR/TAP)

Tight junction

11465	Actg1	Actin, gamma, cytoplasmic 1
13043	Cttn	Cortactin
13821	Epb4.111	Erythrocyte protein band 4.1-like 1
13822	Epb4.1l2	Erythrocyte protein band 4.1-like 2
14924	Magi1	Membrane associated guanylate kinase, WW
10007	11.11	
16897	Ligi i	Lethal giant larvae nomolog 1
17475	Mpdz	Multiple PDZ domain protein
18751	Prkcb	Protein kinase C, beta
67374	Jam2	Junction adhesion molecule 2
71960	Myh14	Myosin, heavy polypeptide 14

Chemokine signaling pathway

	•	•••	•
104111	Adcy3		Adenylate cyclase 3
14083	Ptk2		PTK2 protein tyrosine kinase 2
14688	Gnb1		Guanine nucleotide binding protein (G protein), beta 1
14693	Gnb2		Guanine nucleotide binding protein (G protein), beta 2
14697	Gnb5		Guanine nucleotide binding protein (G protein), beta 5
14701	Gng12		Guanine nucleotide binding protein (G protein), gamma 12
14708	Gng7		Guanine nucleotide binding protein (G protein), gamma 7
18751	Prkcb		Protein kinase C, beta

Table 4 | Continued

Gene ID	Gene symbol	Gene name
224129	Adcy5	Adenylate cyclase 5
26413	Mapk1	Mitogen-activated protein kinase 1
277360	Prex1	Phosphatidylinositol-3,4,5-trisphosphate-
		dependent Rac exchange
		factor 1
Ubiquiti	n mediated pro	iteolysis
103583	Fbxw11	F-box and WD-40 domain protein 11
15204	Herc2	Hect (homologous to the E6-AP (UBE3A)
		carboxyl terminus) domain and RCC1
		(CHC1)-like domain (RLD) 2
17237	Mgrn1	Mahogunin, ring finger 1
19823	Rnf7	Ring finger protein 7
217342	Ube2o	Ubiquitin-conjugating enzyme E2O
22192	Ube2m	Ubiquitin-conjugating enzyme E2M
22196	Ube2i	Ubiquitin-conjugating enzyme E2I
22213	Ube2g2	Ubiquitin-conjugating enzyme E2G 2
229615	Pias3	Protein inhibitor of activated STAT 3
50754	Fbxw7	F-box and WD-40 domain protein 7
63958	Ube4b	Ubiquitination factor E4B, UFD2 homolog (S.
		cerevisiae)
Regulati	on of actin cyte	oskeleton
11465	Actg1	Actin, gamma, cytoplasmic 1
14083	Ptk2	PTK2 protein tyrosine kinase 2
14673	Gna12	Guanine nucleotide binding protein, alpha 12
14674	Gna13	Guanine nucleotide binding protein, alpha 13
14701	Gng12	Guanine nucleotide binding protein (G protein), gamma 12
18717	Pip5k1c	Phosphatidylinositol-4-phosphate 5-kinase, type 1 gamma
192897	ltgb4	Integrin beta 4
226970	Arhgef4	Rho guanine nucleotide exchange factor (GEF) 4
227753	Gsn	Gelsolin
26413	Mapk1	Mitogen-activated protein kinase 1
67771	Arpc5	Actin related protein 2/3 complex, subunit 5
71960	Myh14	Myosin, heavy polypeptide 14
Glutama	tergic synapse	
104111	Adcy3	Adenylate cyclase 3
110637	Grik4	Glutamate receptor, ionotropic, kainate 4
14645	Glul	Glutamate-ammonia ligase (glutamine synthetase)
14688	Gnb1	Guanine nucleotide binding protein (G protein), beta 1
14693	Gnb2	Guanine nucleotide binding protein (G protein), beta 2
14697	Gnb5	Guanine nucleotide binding protein (G protein), beta 5
14701	Gng12	Guanine nucleotide binding protein (G protein), gamma 12
14708	Gng7	Guanine nucleotide binding protein (G protein), gamma 7
18751	Prkcb	- Protein kinase C, beta
216456	Gls2	Glutaminase 2 (liver, mitochondrial)
224129	Adcy5	Adenylate cyclase 5
26413	, Mapk1	Mitogen-activated protein kinase 1

(Continued)

Table 4 | Continued

Gene ID	Gene symbol	Gene name
Phagosom	e	
11465	Actg1	Actin, gamma, cytoplasmic 1
14963	H2-BI	Histocompatibility 2, blastocyst
14972	H2-K1	Histocompatibility 2, K1, K region
15006	H2-Q1	Histocompatibility 2, Q region locus 1
15007	H2-Q10	Histocompatibility 2, Q region locus 10
15013	H2-Q2	Histocompatibility 2, Q region locus 2
15018	H2-Q7	Histocompatibility 2, Q region locus 7
15039	H2-T22	Histocompatibility 2, T region locus 22
15040	H2-T23	Histocompatibility 2, T region locus 23
15239	Hgs	HGF-regulated tyrosine kinase substrate
17113	M6pr	Mannose-6-phosphate receptor, cation dependent
21355	Тар2	Transporter 2, ATP-binding cassette, sub-family B (MDR/TAP)
22142	Tuba1a	Tubulin, alpha 1A
22151	Tubb2a	Tubulin, beta 2A class IIA
Protein pro	cessing in end	loplasmic reticulum
100037258	Dnajc3	DnaJ (Hsp40) homolog, subfamily C, member 3
108687	Edem2	ER degradation enhancer, mannosidase alpha-like 2
12955	Cryab	Crystallin, alpha B
15481	Hspa8	Heat shock protein 8
20014	Rpn2	Ribophorin II
20338	Sel1l	Sel-1 suppressor of lin-12-like (C. elegans)

216440 Amplified in osteosarcoma Os9 22213 Ube2g2 Ubiquitin-conjugating enzyme E2G 2 269523 Vcp Valosin containing protein 50907 Preb Prolactin regulatory element binding 54197 Rnf5 Ring finger protein 5 56453 Mbtps1 Membrane-bound transcription factor peptidase, site 1 56812 Dnajb2 DnaJ (Hsp40) homolog, subfamily B, member 2 63958 Ube4b Ubiquitination factor E4B, UFD2 homolog (S. cerevisiae)

Cell adhesion molecules (CAMS)

14963	H2-BI	Histocompatibility 2, blastocyst
14972	H2-K1	Histocompatibility 2, K1, K region
15006	H2-Q1	Histocompatibility 2, Q region locus 1
15007	H2-Q10	Histocompatibility 2, Q region locus 10
15013	H2-Q2	Histocompatibility 2, Q region locus 2
15018	H2-Q7	Histocompatibility 2, Q region locus 7
15039	H2-T22	Histocompatibility 2, T region locus 22
15040	H2-T23	Histocompatibility 2, T region locus 23
17967	Ncam1	Neural cell adhesion molecule 1
18007	Neo1	Neogenin
19274	Ptprm	Protein tyrosine phosphatase, receptor type, M
20340	Glg1	Golgi apparatus protein 1
20970	Sdc3	Syndecan 3
58235	Pvrl1	Poliovirus receptor-related 1
67374	Jam2	Junction adhesion molecule 2

Table 4 | Continued

Gene ID Gene symbol Gene name

Endocytosis

-		
11771	Ap2a1	Adaptor-related protein complex 2, alpha 1 subunit
12757	Clta	Clathrin, light polypeptide (Lca)
13196	Asap1	ArfGAP with SH3 domain, ankyrin repeat and PH domain1
13429	Dnm1	Dynamin 1
14963	H2-BI	Histocompatibility 2, blastocyst
14972	H2-K1	Histocompatibility 2, K1, K region
15006	H2-Q1	Histocompatibility 2, Q region locus 1
15007	H2-Q10	Histocompatibility 2, Q region locus 10
15013	H2-Q2	Histocompatibility 2, Q region locus 2
15018	H2-Q7	Histocompatibility 2, Q region locus 7
15039	H2-T22	Histocompatibility 2, T region locus 22
15040	H2-T23	Histocompatibility 2, T region locus 23
15239	Hgs	HGF-regulated tyrosine kinase substrate
15481	Hspa8	Heat shock protein 8
16835	Ldlr	Low density lipoprotein receptor
18717	Pip5k1c	Phosphatidylinositol-4-phosphate 5-kinase, type 1 gamma
234852	Chmp1a	Charged multivesicular body protein 1A
243621	lqsec3	IQ motif and Sec7 domain 3
67588	Rnf41	Ring finger protein 41
98366	Smap1	Stromal membrane-associated protein 1

PATHWAYS POINTED BY DOWN REGULATED GENES **VEGF** signaling pathway Thymoma viral proto-oncogene 1 11651 Akt1 16653 Kras v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 19056 Ppp3cb Protein phosphatase 3, catalytic subunit, beta isoform 22339 Vegfa Vascular endothelial growth factor A Long-term depression 14678 Gnai2 Guanine nucleotide binding protein (G protein),

		alpha inhibiting 2
14683	Gnas	GNAS (guanine nucleotide binding protein, alpha stimulating) complex locus
16653	Kras	v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
18795	Plcb1	Phospholipase C, beta 1
60596	Gucy1a3	Guanylate cyclase 1, soluble, alpha 3
Gap jun	oction	
14678	Gnai2	Guanine nucleotide binding protein (G protein), alpha inhibiting 2
14683	Gnas	GNAS (guanine nucleotide binding protein, alpha stimulating) complex locus
16653	Kras	v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
18795	DL-L-1	Phaenhalinana C. hata 1
10/00	PICDI	Filospholipase C, beta T

(Continued)

(Continued)

Table 4 | Continued

Gene ID	Gene symbol	Gene name
RNA deg	gradation	
104625	Cnot6	CCR4-NOT transcription complex, subunit 6
13209	Ddx6	DEAD (Asp-Glu-Ala-Asp) box polypeptide 6
66373	Lsm5	LSM5 homolog, U6 small nuclear RNA associated (S. cerevisiae)
72662	Dis3	DIS3 mitotic control homolog (S. cerevisiae)
78651	Lsm6	LSM6 homolog, U6 small nuclear RNA associated (S. cerevisiae)
Parkinso	n's disease	
12866	Cox7a2	Cytochrome c oxidase subunit VIIa 2
333182	Cox6b2	Cytochrome c oxidase subunit VIb polypeptide 2
66142	Cox7b	Cvtochrome c oxidase subunit VIIb
66495	Ndufb3	NADH dehydrogenase (ubiquinone) 1 beta
66916	Ndufb7	NADH dehydrogenase (ubiquinone) 1 beta
68202	Ndufa5	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5
Oxidativ	e phosphoryla	tion
12866	Cox7a2	Cytochrome c oxidase subunit VIIa 2
333182	Cox6b2	Cytochrome c oxidase subunit VIb polypeptide 2
66142	Cox7b	Cytochrome c oxidase subunit VIIb
66495	Ndufb3	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 3
66916	Ndufb7	NADH dehydrogenase (ubiquinone) 1 beta
68202	Ndufa5	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5
Tight jur	nction	
11651	Akt1	Thymoma viral proto-oncogene 1
14678	Gnai2	Guanine nucleotide binding protein (G protein), alpha inhibiting 2
16653	Kras	v-Ki-ras2 Kirsten rat sarcoma viral oncogene
17888	Myh6	Myosin, heavy polypeptide 6, cardiac muscle, alpha
30960	Vapa	Vesicle-associated membrane protein, associated protein A
58187	Cldn10	Claudin 10
Glutama	itergic synapse	
14678	Gnai2	Guanine nucleotide binding protein (G protein), alpha inhibiting 2
14683	Gnas	GNAS (guanine nucleotide binding protein, alpha stimulating) complex locus
14702	Gng2	Guanine nucleotide binding protein (G protein), gamma 2
14802	Gria4	Glutamate receptor, ionotropic. AMPA4 (alpha 4)
14805	Grik1	Glutamate receptor, ionotropic, kainate 1
18795	Plcb1	Phospholipase C, beta 1
19056	Ppp3cb	Protein phosphatase 3, catalytic subunit, beta
216227	Slc17a8	Solute carrier family 17 (sodium-dependent inorganic phosphate cotransporter), member 8

(Continued)

Table 4 | Continued

Gene ID Gene symbol Gene name

Hunting	ton's disease	
12866	Cox7a2	Cytochrome c oxidase subunit VIIa 2
18795	Plcb1	Phospholipase C, beta 1
333182	Cox6b2	Cytochrome c oxidase subunit VIb polypeptide 2
66142	Cox7b	Cytochrome c oxidase subunit VIIb
66495	Ndufb3	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 3
66916	Ndufb7	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 7
68202	Ndufa5	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5
69920	Polr2i	Polymerase (RNA) II (DNA directed) polypeptide I

Alzheimer's disease

11820	Арр	Amyloid beta (A4) precursor protein
12866	Cox7a2	Cytochrome c oxidase subunit VIIa 2
18795	Plcb1	Phospholipase C, beta 1
19056	Ppp3cb	Protein phosphatase 3, catalytic subunit, beta isoform
333182	Cox6b2	Cytochrome c oxidase subunit VIb polypeptide 2
66142	Cox7b	Cytochrome c oxidase subunit VIIb
66495	Ndufb3	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 3
66916	Ndufb7	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 7
68202	Ndufa5	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5
Riboson	ne	
Riboson 19951	ne Rpl32	Ribosomal protein L32
Riboson 19951 19981	ne Rpl32 Rpl37a	Ribosomal protein L32 Ribosomal protein L37a
Riboson 19951 19981 19982	ne Rpl32 Rpl37a Rpl36a	Ribosomal protein L32 Ribosomal protein L37a Ribosomal protein L36A
Riboson 19951 19981 19982 20068	ne Rpl32 Rpl37a Rpl36a Rps17	Ribosomal protein L32 Ribosomal protein L37a Ribosomal protein L36A Ribosomal protein S17
Riboson 19951 19981 19982 20068 20085	ne Rpl32 Rpl37a Rpl36a Rps17 Rps19	Ribosomal protein L32 Ribosomal protein L37a Ribosomal protein L36A Ribosomal protein S17 Ribosomal protein S19
Riboson 19951 19981 19982 20068 20085 22186	ne Rp132 Rp137a Rp136a Rps17 Rps19 Uba52	Ribosomal protein L32 Ribosomal protein L37a Ribosomal protein L36A Ribosomal protein S17 Ribosomal protein S19 Ubiquitin A-52 residue ribosomal protein fusion product 1
Riboson 19951 19981 19982 20068 20085 22186 57294	ne Rpl32 Rpl37a Rpl36a Rps17 Rps19 Uba52 Rps27	Ribosomal protein L32 Ribosomal protein L37a Ribosomal protein L36A Ribosomal protein S17 Ribosomal protein S19 Ubiquitin A-52 residue ribosomal protein fusion product 1 Ribosomal protein S27
Riboson 19951 19981 19982 20068 20085 22186 57294 66489	ne Rpl32 Rpl37a Rpl36a Rps17 Rps19 Uba52 Rps27 Rpl35	Ribosomal protein L32 Ribosomal protein L37a Ribosomal protein L36A Ribosomal protein S17 Ribosomal protein S19 Ubiquitin A-52 residue ribosomal protein fusion product 1 Ribosomal protein S27 Ribosomal protein L35
Riboson 19951 19981 19982 20068 20085 22186 57294 66489 67945	ne Rpl32 Rpl37a Rpl36a Rps17 Rps19 Uba52 Rps27 Rpl35 Rpl41	Ribosomal protein L32 Ribosomal protein L37a Ribosomal protein L36A Ribosomal protein S17 Ribosomal protein S19 Ubiquitin A-52 residue ribosomal protein fusion product 1 Ribosomal protein S27 Ribosomal protein L35 Ribosomal protein L41
Riboson 19951 19981 19982 20068 20085 22186 57294 66489 67945 68028	ne Rp132 Rp137a Rp136a Rps17 Rps19 Uba52 Rps27 Rp135 Rp141 Rp12211	Ribosomal protein L32 Ribosomal protein L37a Ribosomal protein L36A Ribosomal protein S17 Ribosomal protein S19 Ubiquitin A-52 residue ribosomal protein fusion product 1 Ribosomal protein S27 Ribosomal protein L35 Ribosomal protein L41 Ribosomal protein L22 like 1

subtle changes in gene expression are exactly those that occur in initial stages of disease before the onset of clinical symptoms (Druyan et al., 2008). Moreover, some authors have argued that even small differences can be biologically relevant (Pedotti et al., 2008). Indeed, our qPCR verification analysis revealed higher fold changes than in the microarray, reaching values higher than 2 in the 80 days pre-symptomatic phase, which is closer to the symptom onset. The use of qPCR analysis to qualitatively verify the microarray results is largely accepted in the literature. However, it is well recognized that both methods have quantitative differences (Chuaqui et al., 2002), which are

thought to be related to the variation in the hybridization kinetics of the technologies, low fold changes or lack of concordance between transcripts accessed in each method. The number of genes employed in qPCR validation is comparable to that found by other studies (Dallas et al., 2005; Brockington et al., 2010).

The differentially expressed genes with a *p*-value lower than 0.05 were submitted to enrichment analyses based on GO and KEGG databases, which correlated genes to already described related pathways and processes. Modulated genes based on GO evidenced more general biological processes that might be implicated in the ALS mechanisms. Of interest, regulation of astrocyte differentiation, protein retention in endoplasmatic reticulum lumen, Golgi vesicle transport and fructose metabolism, among others, were pointed at the pre-symptomatic 40 days old transgenic mice. At later pre-symptomatic phase of 80 days, the pattern of gene expression identified the GO terms post-Golgi vesicle-mediated transport, tricarboxylic acid cycle (TCA) and mRNA processing, among others. GO database analyses have been largely employed in the ALS research in several phases of the disease (Ferraiuolo et al., 2007, 2011a; Brockington et al., 2010).

Authors have also used the KEGG database to identify overrepresented pathways based on differentially expressed genes obtained by the microarray technique (Mougeot et al., 2011; Kalathur et al., 2012). The KEGG database analysis in the present work pointed to pathways that might be related to ALS mechanism at the pre-symptomatic ages of SOD1^{G93A} mice. Some pathways were found to be common to both pre-symptomatic periods, emphasizing the putative toxic triggering that may last before the onset of classical ALS symptoms with possible significance to mechanisms of initiation of motor neuron degeneration. Those pathways are going to be discussed below. It should be mentioned that alternative splicing have been recently implicated in ALS mechanisms (Lenzken et al., 2011; Singh and Cooper, 2012), however we could not access this biological event because the present analysis employed a platform designed to gene expression studies on 3'UTR that does not allow evaluation of alternative splicing variants.

GLUTAMATERGIC SYNAPSE

The microarray profiling study by means of KEEG enriched analvsis pointed to the category of glutamatergic synapse pathway in the lumbar spinal cord of ALS SOD1^{G93A}. The large number of up regulated genes at 40 and 80 days underlines the excitotoxicity estate mediated by glutamatergic synapse of motor neurons in the pre-symptomatic condition of ALS disease (Bendotti et al., 2001; Gibb et al., 2007; Zhao et al., 2008; Jiang et al., 2009; Sunico et al., 2011). The modulation of GluR4, by means of Gria4 findings in our microarray analysis, might reflect the dynamic state of the AMPA receptor subunit in the course of pre-symptomatic stages of ALS. At the early phases of the pre-symptomatic period, highly expressed Gria4 gene might contribute to the AMPA receptormediated motor neuron toxicity, being a very early mechanism of the disease. The down regulation of the Gria4 at the late presymptomatic stage could reflect a transient reactive mechanism to excitotoxic condition preceding motor neuron death. Reductions of GluR4 have been described at cellular level in the late disease stage of SOD1 mice, without alterations at the pre-symptomatic periods (Petri et al., 2005) thus, reflecting a disappearance of GluR4 containing neurons. In fact, imbalance of excitatory to inhibitory synaptic function precedes motor neuron degeneration

as described in the spinal cord motor neurons in the late stage of pre-symptomatic phase of SOD1 ALS model by means of cellular analyses (Schutz, 2005). It should be mentioned that Ca²⁺ permeability of the AMPA receptor seems to occur mainly by the presence of the GluR2 subunit in the receptor complex. In fact, GluR2 deficiency clearly accelerated the motor neuron degeneration and shortened the life span of mutant SOD1^{G93A} double transgenic mice (Tateno et al., 2004). Synaptic GluR1 increases/mRNA up regulation, and decreases of synaptic and total GluR2 were found at early ages prior to disease onset thus prompting motor neurons to a higher Ca²⁺-permeable AMPA

microdissected astrocytes from 40 and 80 days old SOD1^{G93A} mice compared to the age matched wild-type controls (WT). Significant increases are seen in both transgenic astrocytes enriched samples. Results are presented as means \pm s.e.m. from 3 samples used for each group. **p*-value < 0.05, according to unpaired *t*-test.

receptors -induced excitotoxicity (Zhao et al., 2008). The variant C-terminus of GluR4 (GluR4c), an alternative splicing isoform, stabilizes and locates AMPA receptors in the cell membrane, and also seems to potentate actions of GluR2 (Kawahara et al., 2004), thus highlighting the pivotal role of GluR4 subunit in regulating channel properties and trafficking of AMPA receptors. It must be then further clarified the role of GluR4 in the ALS mechanisms and possible dynamic interaction with that subunit with other AMPA receptor subtypes, especially GluR2.

The regulation of Slc1a2 glial glutamate transporter (named EAAT2 or glial glutamate transporter GLT1) has not been evaluated in details. Excitotoxicity caused by a down-regulation of EAAT2 is thought to be a contributing factor to motor neuron death in ALS. Several mechanisms may account for impairment of EAAT2 function, for instance altered transcription/splicing, posttranslational modifications, accelerated degradation, intracelular trafficking and inactivation by caspase-3 cleavage (Heath and Shaw, 2002; Boston-Howes et al., 2006) but not directly to gene regulation processes. It is possible that the impaired EAAT2 function could take place at the very early period of the pre-symptomatic stage, a matter that remains to be elucidated (Bendotti et al., 2001; Sasaki et al., 2001), thus, explaining the Slc1a2 expression possibly related to motor neuron protection at those ages. The absence of this genomic process in the late pre-symptomatic period might potentiate loss of function of GLT1 thus culminating with the motor neuron death in ALS. Furthermore, the vesicular glutamate transporter 2 (VGLUT2), codified by Slc17a6 gene, was found to be regulated and related

to neuronal death in the pre-symptomatic stage of ALS model (Schutz, 2005; Sunico et al., 2011). The genetic reduction of VGLUT2 protein level in the ALS mouse model accounted for motor neuron rescue without modifying functional impairment (Wootz et al., 2010). It is possible that the up regulation of the *Slc17a6* gene at the early pre-symptomatic stage of the 40 days old SOD1^{G93A} mice potentiates the toxic state of motor neurons.

UBIQUITIN MEDIATED PROTEOLYSIS AND OXIDATIVE PHOSPHORYLATION

A recent meta-analysis study of the reported gene lists has described the evidences for a shared dysfunction in protein turnover in the ubiquitin-proteasome system in ALS mouse models and ALS patients (Saris et al., 2013a). Moreover, constitutive proteasome was decreased in motor neurons at the pre-symptomatic stage of SOD1^{G93A} (Cheroni et al., 2005), an alternative processes to decrease aggregate formation, thus an attempt to neuroprotect motor neurons of preclinical SOD1^{G93A} mice before the onset of clinical symptoms (Bendotti et al., 2012). That should be the case of *Nedd4* and *Fbxw7* expressions described here, whose encoded molecules have been already correlated to neuroprotection in ALS (Nateri et al., 2004; Matsumoto et al., 2011; Kwak et al., 2012). Moreover, it should be taken into attention the elevation of Ubc12 in the spinal cord of SOD1G93A mice at the pre-symptomatic phase (Massignan et al., 2007). Ubc12 is an ubiquitin E2 ligase that adds NEDD-8 to substrates. Ubc12 elevation in pre-symptomatic ALS was correlated to a tentative response to protein aggregation (Massignan et al., 2007). Interestingly, Nedd8 gene was down regulated in our microarray analysis only in 80 days old mice, possibly representing a failure of the above described process close to the period of clinical onset.

The down regulation of genes over-representing the oxidative phosphorylation category at both pre-symptomatic ages of ALS mice seen in this work may be related to the progressive deteriorations of mitochondrial function and oxidative phosphorylation system described at pre-symptomatic ALS phases (Lin et al., 2009; Chen et al., 2010; Martin, 2010, 2011; Koopman et al., 2013), thus triggering reactive oxygen species (ROS) production (Manfredi and Xu, 2005) and motor neuron vulnerability before the onset of clinical symptoms. It is also interesting to notice that the TCA was seen as an over-represented GO term (Table S5, Supplementary material) in the up-regulated 80 days gene expression list. The TCA cycle is responsible to provide substrate to oxidative phosphorylation (Koopman et al., 2013) and its up regulation was previously seen in laser microdissected motor neurons from a VEGF model of ALS already in the pre-symptomatic period (Brockington et al., 2010). All in all, a possible mechanism of oxidative phosphorylation in the astrocyte-neuronal unit taking place in pre-symptomatic ALS might amplify motor neuron vulnerability to ROS damage.

CHEMOKINE SIGNALING PATHWAY AND TIGHT JUNCTION

The up regulation of all genes in the category chemokine signaling pathway in the pathogenesis of ALS is in agreement to previous publications (Henkel et al., 2006; Zhang et al., 2006; Rentzos et al., 2007; Kuhle et al., 2009; Sargsyan et al., 2009; Tateishi et al., 2010; Gupta et al., 2012). The up regulation of *Cxcr4* and *Pik3r1* described in this work is an important finding because the genes might be involved in non-autonomous toxicity in the early phase of ALS (Shideman et al., 2006; Luo et al., 2007; Manzano et al., 2011). Furthermore, disruption of blood-brain barrier and blood-spinal cord barrier are described as early events in ALS, thus impairing neurovascular unit prior motor neuron degeneration (Garbuzova-Davis et al., 2011, 2012; Grammas et al., 2011; Miyazaki et al., 2011). Indeed, reduced levels of adhesion molecules and the tight junction proteins zona occludens-1, occludin and claudin-5 are shown in post mortem tissue from patients and in ALS animal models (Zhong et al., 2008; Arhart, 2010; Garbuzova-Davis et al., 2012).

Our KEGG enriched analysis also demonstrated the modulation of tight junction related genes. Of substantial interest, we might point out the up regulation of *Cldn11* at 40 days and the down regulation of *Cldn10* at 80 days pre-symptomatic ALS mice, in agreement to previous description on differential regulation of tight junction genes related to specific characteristics of ALS clinical evolution (Henkel et al., 2009).

It is also important to highlight the particular modulation of the Kras gene, which has been up regulated at the age of 40 days and down regulated at the age of 80 days. The Kras gene is an oncogene that was located in the tight junction category by the KEGG analysis probably due its relation to topography of invading/proliferating cells in the scenario of neurodegenerative processes. Moreover, Kras proteins regulate cell activities such as proliferation, differentiation, apoptosis, and cell migration, those taking place in neurodegenerative processes-induced astroglial/microglial activation as well as expression of inflammatory and neurotrophic/neurotoxic mediators (Rotshenker, 2009). There is a marked proliferation/activation of both microglia and astrocytes at specific disease stages in ALS mouse models (Hall et al., 1998; Weydt et al., 2002) leading to the production of neuroprotective or pro-inflammatory molecules, which can decrease or increase the rate of primary motor neuron degeneration, respectively. Taken all together, up regulation of Kras gene at the early pre-symptomatic phase is in line with the early glial proliferative and reactivity events that will initiate the toxic triggering of nonautonomous cells and also the glial neuroprotective mechanisms to maintain temporarily the motor neurons. Later in that period, still before neuronal degeneration taking place, Kras gene down regulation might allow glial cells to drive toxic insult.

ENDOCYTOSIS AND ANTIGEN PROCESSING AND PRESENTATION

Endocytosis was an additional over-represented pathway in the pre-symptomatic stage of ALS. Genes found before clinical onset pointing to endocytosis have been related to clathrindependent/independent endocytosis, autophagy and also neurotransmission (Massey et al., 2006; Luo et al., 2007; Kon and Cuervo, 2010; McMahon and Boucrot, 2011; Elmer and McAllister, 2012), thus, related to extracellular turnover, repair of molecular processes and neuroprotection (Le Roy and Wrana, 2005; Doherty and McMahon, 2009; McMahon and Boucrot, 2011; Polymenidou and Cleveland, 2011). Disruption of these processes has been implicated as a general feature in the pathogenesis of ALS (Otomo et al., 2012), whereas there is a lack of information on that issue in pre-symptomatic periods (Morimoto et al., 2007; Tian et al., 2011). Clathrin-mediated endocytosis has a range of different physiological functions, remarkably the regulation of surface proteins, nutrition, activation of signaling pathways, protein trafficking and degradation of membrane components, in fact, mechanisms that might occur at the pre-symptomatic phases of ALS.

It is likely that the regulation of the genes for the heat shock proteins *Hspa1a* and *Hspa8* (also known as Hsp70-3 and Hsc70, respectively), described in our work is related to neuro-protective events before neurodegeneration, once treatment with recombinant human Hsp70 was able to both increase lifespan (Gifondorwa et al., 2007) and decrease neuromuscular junction denervation (Gifondorwa et al., 2012) in the SOD1^{G93A} mouse model. This protective role of Hsp70 has been also supported by other authors (Bruening et al., 1999; Takeuchi et al., 2002; Kieran et al., 2004). Actually, the increase of Hsc70 in the spinal cord of transgenic mice at pre-symptomatic ages of disease (Basso et al., 2009) and the demonstration of ubiquitinated Hsc70-induced degradation of mutant SOD1 (Urushitani et al., 2004) emphasized the possible neuroprotective role of heat shock protein regulation described in our work.

Furthermore, antigen processing and presentation pathway was also pointed as enriched among down regulated genes in 40 days old and up regulated genes in 80 days old pre-symptomatic SOD1^{G93A} mice. Genes presented in 40 and 80 days lists are mostly related to major histocompatibility complex (MHC) class I (H2-Bl, H2-K1, H2-Q1, H2-Q10, H2-Q2, H2-Q7, H2-T22, H2-T23—80 days ALS mice), molecules necessary for peptide loading (Tap2-80 days ALS mice) and to surface expression (B2m-40 days ALS mice) (Kimura and Griffin, 2000). B2m gene, possibly via cell surface MHC class I molecules, has been implicated in the synaptic plasticity at dendrites and axonal regeneration after peripheral nerve axotomy (Oliveira et al., 2004). It is possible that the down regulation of B2m in spinal cord from SOD1^{G93A}at pre-symptomatic ages is related to axonal and dendritic retractions and displacement of neuromuscular junction described as one of the earliest events faced by motor neurons in ALS models (Fischer et al., 2004). Our findings are in line with a description of down regulation of B2m protein reported in cerebrospinal fluid of ALS patients (Brettschneider et al., 2008), thus emphasizing the importance of its regulation in ALS. Additionally, *Rfxank* was down regulated at 40 days in our analysis, which is in agreement to a loss of MHC-II neuronal expression concurrent with abundant MHCII-positive microglia surrounding motor neurons in the pre-symptomatic SOD1^{G93A} mice (Casas et al., 2013), thus, interfering with the neuroimmunemodulation mediated by microglia (Graber et al., 2010; Sanagi et al., 2010). All in all, dysregulation of genes related to antigen processing and presentation might account for a number of intercellular mechanisms able to amplify the harmful non-autonomous cell toxicity at the pre-symptomatic stages of ALS.

LASER MICRODISSECTION OF ASTROCYTES

We performed laser microdissection of GFAP positive astrocytes from lumbar spinal cord ventral horn of SOD1^{G93A} transgenic and wild-type mice in the same pre-symptomatic ages of microarray analysis. The use of laser microdissection has been gained importance in recent years, once it allows specific cell enrichment from complex tissues, revealing to be a powerful tool in the study of neurodegenerative disorders in which individual cell types are known to be differentially involved in disease stages. The advantage of the methodology is the possibility to address molecular biology in the context of in vivo cellular analysis. The method is of substantial importance to evaluate changes in the astrocytes, the glial cell involved remarkably in toxic mechanisms of ALS. A previous study has employed laser microdissection of astrocytes to perform microarray experiments in ALS mouse model (Ferraiuolo et al., 2011a). The pattern of gene expression was first evaluated in the lumbar regions of the spinal cord in the present analysis, thus, taking into account all cell types from tissue. The depicted pathways represented the state of intercellular interaction in the pre-symptomatic studied periods of the ALS mouse model. The selected genes to be evaluated in typespecific cell, which is the case of Ube2i in the laser microdissected astrocytes described herein, would allow a closer analysis of astrocyte participation in the context of the neighbor cell toxicity. The Ube2i gene was then chosen for further evaluation in astrocytes by qPCR because astrocytes exert a non-autonomous cell toxicity to motor neurons and because SUMOylation pathway has gained importance in ALS mechanisms recently (for review, see Dangoumau et al., 2013). Increases of gene expression for Ube2i were found in enriched astrocytes samples from 40 and 80 days old pre-symptomatic mice, a regulation still not presented in the literature in that stage of disease, thus, entering in the context of ALS pathogenesis. In fact, conjugation of small ubiquitin-like modifier (SUMO) molecules involves a series of steps, being the ubiquitin conjugating enzyme E2, codified by Ube2i gene, responsible for the recognition of the target protein. SUMOylation is involved in the cellular response to oxidative stress, hypoxia, glutamate excitotoxicity and proteasome impairment, events that have been linked to motor neuron toxicity in ALS (Xu et al., 2011). Moreover, studies are required to determine the precise implication of the SUMO pathway in regulating the balance between cellular adaptive and neuroprotective response to stress (Fei et al., 2006; Dangoumau et al., 2013) with a special importance to motor neuron in the pre-symptomatic stage of ALS. Nevertheless, as discussed previously in this report, glutamate astroglial excitotoxicity faced by motor neurons in ALS is also hamfull by the cleavage of EAAT2 in the ventral horn of the spinal cord (Martin et al., 2007; Foran et al., 2011). The proteolytic fragments may be SUMOylated and accumulated in the nucleus of astrocytes (Boston-Howes et al., 2006; Foran et al., 2011) as described in SOD1^{G93A} mice, worsening the gliotoxic effects of astrocytes to motor neurons (Foran et al., 2011). Taking together, SUMOylation process and expression of Ube2i might participate in complex events related to the astrocyte-neuron unit in ALS, and future works are required to address specific cellular events.

In conclusion, the present work gives further evidence about molecular events taking place in the spinal cord from ALS mouse model before the onset of classical symptoms. The gene expression changes reflect responses for both neuroprotection and toxicity at the spinal cord in the evaluated periods. Indeed, the study of Ube2i expression in astrocytes adds novel insights for the participation of this cell type on the early mechanisms in ALS.

AUTHOR CONTRIBUTIONS

Gabriela Pintar de Oliveira and Chrystian J. Alves performed the experiments. All authors designed the study, analyzed the results and wrote the manuscript. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS

Grant #2010/20457-7, São Paulo Research Foundation (FAPESP). I would like to thanks Dr. Jessica Ruivo Maximino for establishing the SOD1^{G93A} mouse colony in the Animal Facility of FMUSP and advices on animal handling and tissue processing. We also thanks Drs. Dirce Maria Carraro and Alex Fiorini de Carvalho from Laboratory of Genomics and Molecular Biology, A.C. Camargo Hospital, São Paulo, Brazil, for expertise on microarray experiments and Dr. Chin Jia Lin, responsible for Laser Microdissection Microscope Facility at FMUSP, for his expertise on laser microdissection experiments. Indeed, we thank Dr. Pamela J Shaw, from Sheffield University, and her research team for the support in the microarray analysis.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://www.frontiersin.org/journal/10.3389/fncel.2013. 00216/abstract

REFERENCES

- Alves, C. J., De Santana, L. P., Dos Santos, A. J., De Oliveira, G. P., Duobles, T., Scorisa, J. M., et al. (2011). Early motor and electrophysiological changes in transgenic mouse model of amyotrophic lateral sclerosis and gender differences on clinical outcome. *Brain Res.* 1394, 90–104. doi: 10.1016/j.brainres.2011.02.060
- Andersen, P. M., and Al-Chalabi, A. (2011). Clinical genetics of amyotrophic lateral sclerosis: what do we really know? *Nat. Rev. Neurol.* 7, 603–615. doi: 10.1038/nrneurol.2011.150
- Arhart, R. W. (2010). A possible haemodynamic mechanism for amyotrophic lateral sclerosis. *Med. Hypotheses* 75, 341–346. doi: 10.1016/j.mehy.2010.03.017
- Basso, M., Samengo, G., Nardo, G., Massignan, T., D'alessandro, G., Tartari, S., et al. (2009). Characterization of detergent-insoluble proteins in ALS indicates a causal link between nitrative stress and aggregation in pathogenesis. *PLoS ONE* 4:e8130. doi: 10.1371/journal.pone.0008130
- Beghi, E., Logroscino, G., Chio, A., Hardiman, O., Mitchell, D., Swingler, R., et al. (2006). The epidemiology of ALS and the role of population-based registries. *Biochim. Biophys. Acta* 1762, 1150–1157. doi: 10.1016/j.bbadis.2006.09.008
- Bendotti, C., Marino, M., Cheroni, C., Fontana, E., Crippa, V., Poletti, A., et al. (2012). Dysfunction of constitutive and inducible ubiquitinproteasome system in amyotrophic lateral sclerosis: implication for protein aggregation and immune response. *Prog. Neurobiol.* 97, 101–126. doi: 10.1016/j.pneurobio.2011.10.001
- Bendotti, C., Tortarolo, M., Suchak, S. K., Calvaresi, N., Carvelli, L., Bastone, A., et al. (2001). Transgenic SOD1 G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels. *J. Neurochem.* 79, 737–746. doi: 10.1046/j.1471-4159.2001.00572.x
- Bergeron, C., Beric-Maskarel, K., Muntasser, S., Weyer, L., Somerville, M. J., and Percy, M. E. (1994). Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. *J. Neuropathol. Exp. Neurol.* 53, 221–230. doi: 10.1097/00005072-199405000-00002
- Boillee, S., Vande Velde, C., and Cleveland, D. W. (2006a). ALS: a disease of motor neurons and their nonneuronal neighbors. *Neuron* 52, 39–59. doi: 10.1016/j.neuron.2006.09.018
- Boillee, S., Yamanaka, K., Lobsiger, C. S., Copeland, N. G., Jenkins, N. A., Kassiotis, G., et al. (2006b). Onset and progression in inherited ALS determined by motor neurons and microglia. *Science* 312, 1389–1392. doi: 10.1126/science.1123511
- Boston-Howes, W., Gibb, S. L., Williams, E. O., Pasinelli, P., Brown, R. H. Jr., and Trotti, D. (2006). Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. J. Biol. Chem. 281, 14076–14084. doi: 10.1074/jbc.M600653200

- Brettschneider, J., Mogel, H., Lehmensiek, V., Ahlert, T., Sussmuth, S., Ludolph, A. C., et al. (2008). Proteome analysis of cerebrospinal fluid in amyotrophic lateral sclerosis (ALS). *Neurochem. Res.* 33, 2358–2363. doi: 10.1007/s11064-008-9742-5
- Brockington, A., Heath, P. R., Holden, H., Kasher, P., Bender, F. L., Claes, F., et al. (2010). Downregulation of genes with a function in axon outgrowth and synapse formation in motor neurones of the VEGFdelta/delta mouse model of amyotrophic lateral sclerosis. *BMC Genomics* 11:203. doi: 10.1186/1471-2164-11-203
- Brooks, B. R., Miller, R. G., Swash, M., and Munsat, T. L. (2000). El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. *Amyotroph. Lateral Scler. Other Motor Neuron Disord.* 1, 293–299. doi: 10.1080/146608200300079536
- Bruening, W., Roy, J., Giasson, B., Figlewicz, D. A., Mushynski, W. E., and Durham, H. D. (1999). Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J. Neurochem. 72, 693–699. doi: 10.1046/j.1471-4159.1999.0720693.x
- Casas, C., Herrando-Grabulosa, M., Manzano, R., Mancuso, R., Osta, R., and Navarro, X. (2013). Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis. *Brain Behav* 3, 145–158. doi: 10.1002/brb3.104
- Chen, K., Northington, F. J., and Martin, L. J. (2010). Inducible nitric oxide synthase is present in motor neuron mitochondria and Schwann cells and contributes to disease mechanisms in ALS mice. *Brain Struct. Funct.* 214, 219–234. doi: 10.1007/s00429-009-0226-4
- Cheroni, C., Peviani, M., Cascio, P., Debiasi, S., Monti, C., and Bendotti, C. (2005). Accumulation of human SOD1 and ubiquitinated deposits in the spinal cord of SOD1G93A mice during motor neuron disease progression correlates with a decrease of proteasome. *Neurobiol. Dis.* 18, 509–522. doi: 10.1016/j.nbd.2004.12.007
- Chuaqui, R. F., Bonner, R. F., Best, C. J., Gillespie, J. W., Flaig, M. J., Hewitt, S. M., et al. (2002). Post-analysis follow-up and validation of microarray experiments. *Nat. Genet.* 32(Suppl.), 509–514. doi:10.1038/ng1034
- Dallas, P. B., Gottardo, N. G., Firth, M. J., Beesley, A. H., Hoffmann, K., Terry, P. A., et al. (2005). Gene expression levels assessed by oligonucleotide microarray analysis and quantitative real-time RT-PCR—how well do they correlate? *BMC Genomics* 6:59. doi:10.1186/1471-2164-6-59
- Dangond, F., Hwang, D., Camelo, S., Pasinelli, P., Frosch, M. P., Stephanopoulos, G., et al. (2004). Molecular signature of late-stage human ALS revealed by expression profiling of postmortem spinal cord gray matter. *Physiol. Genomics* 16, 229–239. doi: 10.1152/physiolgenomics.00087.2001
- Dangoumau, A., Veyrat-Durebex, C., Blasco, H., Praline, J., Corcia, P., Andres, C. R., et al. (2013). Protein SUMOylation, an emerging pathway in amyotrophic lateral sclerosis. *Int. J. Neurosci.* 123, 366–374. doi: 10.3109/00207454.2012.761984
- D'arrigo, A., Colavito, D., Pena-Altamira, E., Fabris, M., Dam, M., Contestabile, A., et al. (2010). Transcriptional profiling in the lumbar spinal cord of a mouse model of amyotrophic lateral sclerosis: a role for wild-type superoxide dismutase 1 in sporadic disease? J. Mol. Neurosci. 41, 404–415. doi: 10.1007/s12031-010-9332-2
- De Oliveira, G. P., Maximino, J. R., Lin, C. J., and Chadi, G. (2009). A method to immunolabel rodent spinal cord neurons and glia for molecular study in specific laser microdissected cells involved in neurodegenerative disorders. J. Mol. Histol. 40, 217–225. doi: 10.1007/s10735-009-9233-2
- De Winter, F., Vo, T., Stam, F. J., Wisman, L. A., Bar, P. R., Niclou, S. P., et al. (2006). The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. *Mol. Cell. Neurosci.* 32, 102–117. doi: 10.1016/j.mcn.2006. 03.002
- Dion, P. A., Daoud, H., and Rouleau, G. A. (2009). Genetics of motor neuron disorders: new insights into pathogenic mechanisms. *Nat. Rev. Genet.* 10, 769–782. doi: 10.1038/nrg2680
- Doherty, G. J., and McMahon, H. T. (2009). Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902. doi: 10.1146/annurev.biochem.78.081307. 110540
- Druyan, S., de Oliveira, J. E., and Ashwell, C. M. (2008). Focused microarrays as a method to evaluate subtle changes in gene expression. *Poult. Sci.* 87, 2418–2429. doi: 10.3382/ps.2007-00513

- Elmer, B. M., and McAllister, A. K. (2012). Major histocompatibility complex class I proteins in brain development and plasticity. *Trends Neurosci.* 35, 660–670. doi: 10.1016/j.tins.2012.08.001
- Fei, E., Jia, N., Yan, M., Ying, Z., Sun, Q., Wang, H., et al. (2006). SUMO-1 modification increases human SOD1 stability and aggregation. *Biochem. Biophys. Res. Commun.* 347, 406–412. doi: 10.1016/j.bbrc.2006.06.092
- Ferraiuolo, L., Heath, P. R., Holden, H., Kasher, P., Kirby, J., and Shaw, P. J. (2007). Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS. J. Neurosci. 27, 9201–9219. doi: 10.1523/JNEUROSCI.1470-07.2007
- Ferraiuolo, L., Higginbottom, A., Heath, P. R., Barber, S., Greenald, D., Kirby, J., et al. (2011a). Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. *Brain* 134, 2627–2641. doi: 10.1093/brain/awr193
- Ferraiuolo, L., Kirby, J., Grierson, A. J., Sendtner, M., and Shaw, P. J. (2011b). Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. *Nat. Rev. Neurol.* 7, 616–630. doi: 10.1038/nrneurol.2011.152
- Fischer, L. R., Culver, D. G., Tennant, P., Davis, A. A., Wang, M., Castellano-Sanchez, A., et al. (2004). Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. *Exp. Neurol.* 185, 232–240. doi: 10.1016/j.expneurol.2003.10.004
- Foran, E., Bogush, A., Goffredo, M., Roncaglia, P., Gustincich, S., Pasinelli, P., et al. (2011). Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2. *Glia* 59, 1719–1731. doi: 10.1002/glia.21218
- Garbuzova-Davis, S., Hernandez-Ontiveros, D. G., Rodrigues, M. C., Haller, E., Frisina-Deyo, A., Mirtyl, S., et al. (2012). Impaired bloodbrain/spinal cord barrier in ALS patients. *Brain Res.* 1469, 114–128. doi: 10.1016/j.brainres.2012.05.056
- Garbuzova-Davis, S., Rodrigues, M. C., Hernandez-Ontiveros, D. G., Louis, M. K., Willing, A. E., Borlongan, C. V., et al. (2011). Amyotrophic lateral sclerosis: a neurovascular disease. *Brain Res.* 1398, 113–125. doi: 10.1016/j.brainres.2011.04.049
- Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. *Genome Biol.* 5:R80. doi: 10.1186/gb-2004-5-10-r80
- Gerber, Y. N., Sabourin, J. C., Rabano, M., Vivanco, M., and Perrin, F. E. (2012). Early functional deficit and microglial disturbances in a mouse model of amyotrophic lateral sclerosis. *PLoS ONE* 7:e36000. doi: 10.1371/journal.pone.0036000
- Gibb, S. L., Boston-Howes, W., Lavina, Z. S., Gustincich, S., Brown, R. H. Jr., Pasinelli, P., et al. (2007). A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. J. Biol. Chem. 282, 32480–32490. doi: 10.1074/jbc.M704314200
- Gifondorwa, D. J., Jimenz-Moreno, R., Hayes, C. D., Rouhani, H., Robinson, M. B., Strupe, J. L., et al. (2012). Administration of recombinant heat shock protein 70 delays peripheral muscle denervation in the SOD1(G93A) mouse model of Amyotrophic Lateral Sclerosis. *Neurol. Res. Int.* 2012, 170426. doi: 10.1155/2012/170426
- Gifondorwa, D. J., Robinson, M. B., Hayes, C. D., Taylor, A. R., Prevette, D. M., Oppenheim, R. W., et al. (2007). Exogenous delivery of heat shock protein 70 increases lifespan in a mouse model of amyotrophic lateral sclerosis. *J. Neurosci.* 27, 13173–13180. doi: 10.1523/JNEUROSCI.4057-07.2007
- Graber, D. J., Hickey, W. F., and Harris, B. T. (2010). Progressive changes in microglia and macrophages in spinal cord and peripheral nerve in the transgenic rat model of amyotrophic lateral sclerosis. *J. Neuroinflammation* 7, 8. doi: 10.1186/1742-2094-7-8
- Grammas, P., Martinez, J., and Miller, B. (2011). Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases. *Expert Rev. Mol. Med.* 13, e19. doi: 10.1017/S1462399411001918
- Guipponi, M., Li, Q. X., Hyde, L., Beissbarth, T., Smyth, G. K., Masters, C. L., et al. (2010). SAGE analysis of genes differentially expressed in presymptomatic TgSOD1G93A transgenic mice identified cellular processes involved in early stage of ALS pathology. J. Mol. Neurosci. 41, 172–182. doi: 10.1007/s12031-009-9317-1
- Gupta, P. K., Prabhakar, S., Sharma, N. K., and Anand, A. (2012). Possible association between expression of chemokine receptor-2 (CCR2) and amyotrophic lateral sclerosis (ALS) patients of North India. *PLoS ONE* 7:e38382. doi: 10.1371/journal.pone.0038382

- Gurney, M. E. (1994). Transgenic-mouse model of amyotrophic lateral sclerosis. N. Engl. J. Med. 331, 1721–1722. doi: 10.1056/NEJM199412223312516
- Hall, E. D., Oostveen, J. A., and Gurney, M. E. (1998). Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. *Glia* 23, 249–256. doi: 10.1002/(SICI)1098-1136(199807)23:3
- Heath, P. R., and Shaw, P. J. (2002). Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. *Muscle Nerve* 26, 438–458. doi: 10.1002/mus.10186
- Henkel, J. S., Beers, D. R., Siklos, L., and Appel, S. H. (2006). The chemokine MCP-1 and the dendritic and myeloid cells it attracts are increased in the mSOD1 mouse model of ALS. *Mol. Cell. Neurosci.* 31, 427–437. doi: 10.1016/j.mcn.2005.10.016
- Henkel, J. S., Beers, D. R., Wen, S., Bowser, R., and Appel, S. H. (2009). Decreased mRNA expression of tight junction proteins in lumbar spinal cords of patients with ALS. *Neurology* 72, 1614–1616. doi: 10.1212/WNL.0b013e3181a41228
- Jiang, M., Schuster, J. E., Fu, R., Siddique, T., and Heckman, C. J. (2009). Progressive changes in synaptic inputs to motoneurons in adult sacral spinal cord of a mouse model of amyotrophic lateral sclerosis. *J. Neurosci.* 29, 15031–15038. doi: 10.1523/JNEUROSCI.0574-09.2009
- Jiang, Y. M., Yamamoto, M., Kobayashi, Y., Yoshihara, T., Liang, Y., Terao, S., et al. (2005). Gene expression profile of spinal motor neurons in sporadic amvotrophic lateral sclerosis. Ann. Neurol. 57, 236–251. doi: 10.1002/ana.20379
- Kalathur, R. K., Hernandez-Prieto, M. A., and Futschik, M. E. (2012). Huntington's disease and its therapeutic target genes: a global functional profile based on the HD Research Crossroads database. *BMC Neurol.* 12:47. doi: 10.1186/1471-2377-12-47
- Kawahara, Y., Ito, K., Sun, H., Ito, M., Kanazawa, I., and Kwak, S. (2004). Regulation of glutamate receptor RNA editing and ADAR mRNA expression in developing human normal and Down's syndrome brains. *Brain Res. Dev. Brain Res.* 148, 151–155. doi: 10.1016/j.devbrainres.2003.11.008
- Kieran, D., Kalmar, B., Dick, J. R., Riddoch-Contreras, J., Burnstock, G., and Greensmith, L. (2004). Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. *Nat. Med.* 10, 402–405. doi: 10.1038/nm1021
- Kiernan, M. C., Vucic, S., Cheah, B. C., Turner, M. R., Eisen, A., Hardiman, O., et al. (2011). Amyotrophic lateral sclerosis. *Lancet* 377, 942–955. doi: 10.1016/S0140-6736(10)61156-7
- Kimura, T., and Griffin, D. E. (2000). The role of CD8(+) T cells and major histocompatibility complex class I expression in the central nervous system of mice infected with neurovirulent Sindbis virus. J. Virol. 74, 6117–6125. doi: 10.1128/JVI.74.13.6117-6125.2000
- Kon, M., and Cuervo, A. M. (2010). Chaperone-mediated autophagy in health and disease. FEBS Lett. 584, 1399–1404. doi: 10.1016/j.febslet.2009.12.025
- Koopman, W. J., Distelmaier, F., Smeitink, J. A., and Willems, P. H. (2013). OXPHOS mutations and neurodegeneration. *EMBO J.* 32, 9–29. doi: 10.1038/emboj.2012.300
- Kuhle, J., Lindberg, R. L., Regeniter, A., Mehling, M., Steck, A. J., Kappos, L., et al. (2009). Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. *Eur. J. Neurol.* 16, 771–774. doi: 10.1111/j.1468-1331.2009. 02560.x
- Kwak, Y. D., Wang, B., Li, J. J., Wang, R., Deng, Q., Diao, S., et al. (2012). Upregulation of the E3 ligase NEDD4-1 by oxidative stress degrades IGF-1 receptor protein in neurodegeneration. J. Neurosci. 32, 10971–10981. doi: 10.1523/JNEUROSCI.1836-12.2012
- Lemmens, R., Moore, M. J., Al-Chalabi, A., Brown, R. H. Jr., and Robberecht, W. (2010). RNA metabolism and the pathogenesis of motor neuron diseases. *Trends Neurosci.* 33, 249–258. doi: 10.1016/j.tins.2010.02.003
- Lenzken, S. C., Romeo, V., Zolezzi, F., Cordero, F., Lamorte, G., Bonanno, D., et al. (2011). Mutant SOD1 and mitochondrial damage alter expression and splicing of genes controlling neuritogenesis in models of neurodegeneration. *Hum. Mutat.* 32, 168–182. doi: 10.1002/humu.21394
- Le Roy, C., and Wrana, J. L. (2005). Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat. Rev. Mol. Cell Biol. 6, 112–126. doi: 10.1038/nrm1571
- Lin, J., Diamanduros, A., Chowdhury, S. A., Scelsa, S., Latov, N., and Sadiq, S. A. (2009). Specific electron transport chain abnormalities in amyotrophic lateral sclerosis. J. Neurol. 256, 774–782. doi: 10.1007/s00415-009-5015-8
- Liu, J. X., Brannstrom, T., Andersen, P. M., and Pedrosa-Domellof, F. (2013). Distinct changes in synaptic protein composition at neuromuscular junctions

of extraocular muscles versus limb muscles of ALS donors. *PLoS ONE* 8:e57473. doi: 10.1371/journal.pone.0057473

- Luo, Y., Xue, H., Pardo, A. C., Mattson, M. P., Rao, M. S., and Maragakis, N. J. (2007). Impaired SDF1/CXCR4 signaling in glial progenitors derived from SOD1(G93A) mice. J. Neurosci. Res. 85, 2422–2432. doi: 10.1002/jnr.21398
- Malaspina, A., and De Belleroche, J. (2004). Spinal cord molecular profiling provides a better understanding of amyotrophic lateral sclerosis pathogenesis. *Brain Res. Brain Res. Rev.* 45, 213–229. doi: 10.1016/j.brainresrev.2004.04.002
- Manfredi, G., and Xu, Z. (2005). Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. *Mitochondrion* 5, 77–87. doi: 10.1016/j.mito.2005. 01.002
- Manzano, R., Toivonen, J. M., Olivan, S., Calvo, A. C., Moreno-Igoa, M., Munoz, M. J., et al. (2011). Altered expression of myogenic regulatory factors in the mouse model of amyotrophic lateral sclerosis. *Neurodegener. Dis.* 8, 386–396. doi: 10.1159/000324159
- Martin, L. J. (2010). Mitochondrial and cell death mechanisms in neurodegenerative diseases. *Pharmaceuticals (Basel)* 3, 839–915. doi: 10.3390/ph3040839
- Martin, S., Wilkinson, K. A., Nishimune, A., and Henley, J. M. (2007). Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. *Nat. Rev. Neurosci.* 8, 948–959. doi: 10.1038/nrn2276
- Martin, L. J. (2011). Mitochondrial pathobiology in ALS. J Bioenerg Biomembr 43, 569–579. doi: 10.1007/s10863-011-9395-y.
- Massey, A. C., Zhang, C., and Cuervo, A. M. (2006). Chaperone-mediated autophagy in aging and disease. *Curr. Top. Dev. Biol.* 73, 205–235. doi: 10.1016/S0070-2153(05)73007-6
- Massignan, T., Casoni, F., Basso, M., Stefanazzi, P., Biasini, E., Tortarolo, M., et al. (2007). Proteomic analysis of spinal cord of presymptomatic amyotrophic lateral sclerosis G93A SOD1 mouse. *Biochem. Biophys. Res. Commun.* 353, 719–725. doi: 10.1016/j.bbrc.2006.12.075
- Matsumoto, A., Tateishi, Y., Onoyama, I., Okita, Y., Nakayama, K., and Nakayama, K. I. (2011). Fbxw7beta resides in the endoplasmic reticulum membrane and protects cells from oxidative stress. *Cancer Sci.* 102, 749–755. doi: 10.1111/j.1349-7006.2011.01851.x
- McMahon, H. T., and Boucrot, E. (2011). Molecular mechanism and physiological functions of clathrin-mediated endocytosis. *Nat. Rev. Mol. Cell Biol.* 12, 517–533. doi: 10.1038/nrm3151
- Miyazaki, K., Ohta, Y., Nagai, M., Morimoto, N., Kurata, T., Takehisa, Y., et al. (2011). Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J. Neurosci. Res. 89, 718–728. doi: 10.1002/jnr.22594
- Morimoto, N., Nagai, M., Ohta, Y., Miyazaki, K., Kurata, T., Morimoto, M., et al. (2007). Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. *Brain Res.* 1167, 112–117. doi: 10.1016/j.brainres.2007.06.045
- Mougeot, J. L., Li, Z., Price, A. E., Wright, F. A., and Brooks, B. R. (2011). Microarray analysis of peripheral blood lymphocytes from ALS patients and the SAFE detection of the KEGG ALS pathway. *BMC Med. Genomics* 4:74. doi: 10.1186/1755-8794-4-74
- Narai, H., Manabe, Y., Nagai, M., Nagano, I., Ohta, Y., Murakami, T., et al. (2009). Early detachment of neuromuscular junction proteins in ALS mice with SODG93A mutation. *Neurol. Int.* 1:e16. doi: 10.4081/ni.2009.e16
- Nateri, A. S., Riera-Sans, L., Da Costa, C., and Behrens, A. (2004). The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. *Science* 303, 1374–1378. doi: 10.1126/science.1092880
- Offen, D., Barhum, Y., Melamed, E., Embacher, N., Schindler, C., and Ransmayr, G. (2009). Spinal cord mRNA profile in patients with ALS: comparison with transgenic mice expressing the human SOD-1 mutant. *J. Mol. Neurosci.* 38, 85–93. doi: 10.1007/s12031-007-9004-z
- Oliveira, A. L., Thams, S., Lidman, O., Piehl, F., Hokfelt, T., Karre, K., et al. (2004). A role for MHC class I molecules in synaptic plasticity and regeneration of neurons after axotomy. *Proc. Natl. Acad. Sci. U.S.A.* 101, 17843–17848. doi: 10.1073/pnas.0408154101
- Olsen, M. K., Roberds, S. L., Ellerbrock, B. R., Fleck, T. J., McKinley, D. K., and Gurney, M. E. (2001). Disease mechanisms revealed by transcription profiling in SOD1-G93A transgenic mouse spinal cord. *Ann. Neurol.* 50, 730–740. doi: 10.1002/ana.1252
- Otomo, A., Pan, L., and Hadano, S. (2012). Dysregulation of the autophagyendolysosomal system in amyotrophic lateral sclerosis and related motor neuron diseases. *Neurol. Res. Int.* 2012, 498428. doi: 10.1155/2012/498428
- Pedotti, P., 't Hoen, P. A., Vreugdenhil, E., Schenk, G. J., Vossen, R. H., Ariyurek, Y., et al. (2008). Can subtle changes in gene expression be consistently detected

with different microarray platforms? *BMC Genomics* 9:124. doi: 10.1186/1471-2164-9-124

- Perrin, F. E., Boisset, G., Docquier, M., Schaad, O., Descombes, P., and Kato, A. C. (2005). No widespread induction of cell death genes occurs in pure motoneurons in an amyotrophic lateral sclerosis mouse model. *Hum. Mol. Genet.* 14, 3309–3320. doi: 10.1093/hmg/ddi357
- Perrin, F. E., Boisset, G., Lathuiliere, A., and Kato, A. C. (2006). Cell death pathways differ in several mouse models with motoneurone disease: analysis of pure motoneurone populations at a presymptomatic age. J. Neurochem. 98, 1959–1972. doi: 10.1111/j.1471-4159.2006.04024.x
- Petri, S., Schmalbach, S., Grosskreutz, J., Krampfl, K., Grothe, C., Dengler, R., et al. (2005). The cellular mRNA expression of GABA and glutamate receptors in spinal motor neurons of SOD1 mice. *J. Neurol. Sci.* 238, 25–30. doi: 10.1016/j.jns.2005.06.005
- Polymenidou, M., and Cleveland, D. W. (2011). The seeds of neurodegeneration: prion-like spreading in ALS. *Cell* 147, 498–508. doi: 10.1016/j.cell.2011.10.011
- Prifti, E., Zucker, J. D., Clement, K., and Henegar, C. (2008). FunNet: an integrative tool for exploring transcriptional interactions. *Bioinformatics* 24, 2636–2638. doi: 10.1093/bioinformatics/btn492
- Rentzos, M., Nikolaou, C., Rombos, A., Boufidou, F., Zoga, M., Dimitrakopoulos, A., et al. (2007). RANTES levels are elevated in serum and cerebrospinal fluid in patients with amyotrophic lateral sclerosis. *Amyotroph. Lateral Scler.* 8, 283–287. doi: 10.1080/17482960701419232
- Richardson, K., Allen, S. P., Mortiboys, H., Grierson, A. J., Wharton, S. B., Ince, P. G., et al. (2013). The effect of SOD1 mutation on cellular bioenergetic profile and viability in response to oxidative stress and influence of mutation-type. *PLoS ONE* 8:e68256. doi: 10.1371/journal.pone.0068256
- Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. *Nature* 362, 59–62. doi: 10.1038/362059a0
- Rothstein, J. D., Martin, L. J., and Kuncl, R. W. (1992). Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 326, 1464–1468. doi: 10.1056/NEJM199205283262204
- Rotshenker, S. (2009). The role of Galectin-3/MAC-2 in the activation of the innateimmune function of phagocytosis in microglia in injury and disease. J. Mol. Neurosci. 39, 99–103. doi: 10.1007/s12031-009-9186-7
- Sanagi, T., Yuasa, S., Nakamura, Y., Suzuki, E., Aoki, M., Warita, H., et al. (2010). Appearance of phagocytic microglia adjacent to motoneurons in spinal cord tissue from a presymptomatic transgenic rat model of amyotrophic lateral sclerosis. J. Neurosci. Res. 88, 2736–2746. doi: 10.1002/jnr.22424
- Sargsyan, S. A., Blackburn, D. J., Barber, S. C., Monk, P. N., and Shaw, P. J. (2009). Mutant SOD1 G93A microglia have an inflammatory phenotype and elevated production of MCP-1. *Neuroreport* 20, 1450–1455. doi: 10.1097/WNR.0b013e328331e8fa
- Saris, C. G., Groen, E. J., Koekkoek, J. A., Veldink, J. H., and Van Den Berg, L. H. (2013a). Meta-analysis of gene expression profiling in amyotrophic lateral sclerosis: a comparison between transgenic mouse models and human patients. *Amyotroph. Lateral Scler. Frontotemporal Degener.* 14, 177–189. doi: 10.3109/21678421.2012.729842
- Saris, C. G., Groen, E. J., Van Vught, P. W., Van Es, M. A., Blauw, H. M., Veldink, J. H., et al. (2013b). Gene expression profile of SOD1-G93A mouse spinal cord, blood and muscle. *Amyotroph. Lateral Scler. Frontotemporal Degener.* 14, 190–198. doi: 10.3109/21678421.2012.749914
- Sasaki, S., Warita, H., Abe, K., Komori, T., and Iwata, M. (2001). EAAT1 and EAAT2 immunoreactivity in transgenic mice with a G93A mutant SOD1 gene. *Neuroreport* 12, 1359–1362. doi: 10.1097/00001756-200105250-00014
- Schutz, B. (2005). Imbalanced excitatory to inhibitory synaptic input precedes motor neuron degeneration in an animal model of amyotrophic lateral sclerosis. *Neurobiol. Dis.* 20, 131–140. doi: 10.1016/j.nbd.2005.02.006
- Scorisa, J. M., Duobles, T., Oliveira, G. P., Maximino, J. R., and Chadi, G. (2010). The review of the methods to obtain non-neuronal cells to study glial influence on Amyotrophic Lateral Sclerosis pathophysiology at molecular level *in vitro*. *Acta Cir. Bras.* 25, 281–289. doi: 10.1590/S0102-86502010000300011
- Shideman, C. R., Hu, S., Peterson, P. K., and Thayer, S. A. (2006). CCL5 evokes calcium signals in microglia through a kinase-, phosphoinositide-, and nucleotidedependent mechanism. J. Neurosci. Res. 83, 1471–1484. doi: 10.1002/jnr.20839
- Singh, R. K., Cooper, T. A. (2012). Pre-mRNA splicing in disease and therapeutics. *Trends Mol. Med.* 18, 472–82. doi: 10.1016/j.molmed.2012.06.006
- Smyth, G. K. (2005). "Limma: linear models for microarray data," in *Bioinformatics* and Computational Biology Solutions using R and Bioconductor, eds V. C. R.

Gentleman, S. Dudoit, R. Irizarry, and W. Huber (New York, NY: Springer), 397-420.

- Sunico, C. R., Dominguez, G., Garcia-Verdugo, J. M., Osta, R., Montero, F., and Moreno-Lopez, B. (2011). Reduction in the motoneuron inhibitory/excitatory synaptic ratio in an early-symptomatic mouse model of amyotrophic lateral sclerosis. *Brain Pathol.* 21, 1–15. doi: 10.1111/j.1750-3639.2010.00417.x
- Takeuchi, H., Kobayashi, Y., Yoshihara, T., Niwa, J., Doyu, M., Ohtsuka, K., et al. (2002). Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Brain Res. 949, 11–22. doi: 10.1016/S0006-8993(02)02568-4
- Tateishi, T., Yamasaki, R., Tanaka, M., Matsushita, T., Kikuchi, H., Isobe, N., et al. (2010). CSF chemokine alterations related to the clinical course of amyotrophic lateral sclerosis. *J. Neuroimmunol.* 222, 76–81. doi: 10.1016/j.jneuroim.2010.03.004
- Tateno, M., Sadakata, H., Tanaka, M., Itohara, S., Shin, R. M., Miura, M., et al. (2004). Calcium-permeable AMPA receptors promote misfolding of mutant SOD1 protein and development of amyotrophic lateral sclerosis in a transgenic mouse model. *Hum. Mol. Genet.* 13, 2183–2196. doi: 10.1093/hmg/ddh246
- Tian, F., Morimoto, N., Liu, W., Ohta, Y., Deguchi, K., Miyazaki, K., et al. (2011). In vivo optical imaging of motor neuron autophagy in a mouse model of amyotrophic lateral sclerosis. Autophagy 7, 985–992. doi: 10.4161/auto.7.9.16012
- Turner, B. J., and Talbot, K. (2008). Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. *Prog. Neurobiol.* 85, 94–134. doi: 10.1016/j.pneurobio.2008.01.001
- Turner, M. R., Hardiman, O., Benatar, M., Brooks, B. R., Chio, A., De Carvalho, M., et al. (2013). Controversies and priorities in amyotrophic lateral sclerosis. *Lancet Neurol.* 12, 310–322. doi: 10.1016/S1474-4422(13)70036-X
- Urushitani, M., Kurisu, J., Tateno, M., Hatakeyama, S., Nakayama, K., Kato, S., et al. (2004). CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70. J. Neurochem. 90, 231–244. doi: 10.1111/j.1471-4159.2004.02486.x
- Usuki, S., Kamitani, T., Matsuo, Y., and Yu, R. K. (2012). Pathobiochemical effect of acylated steryl-beta-glucoside on aggregation and cytotoxicity of alphasynuclein. *Neurochem. Res.* 37, 1261–1266. doi: 10.1007/s11064-011-0662-4
- Van Gelder, R. N., Von Zastrow, M. E., Yool, A., Dement, W. C., Barchas, J. D., and Eberwine, J. H. (1990). Amplified RNA synthesized from limited quantities of heterogeneous cDNA. *Proc. Natl. Acad. Sci. U.S.A.* 87, 1663–1667. doi: 10.1073/pnas.87.5.1663
- Veugelers, B., Theys, P., Lammens, M., Van Hees, J., and Robberecht, W. (1996). Pathological findings in a patient with amyotrophic lateral sclerosis and multifocal motor neuropathy with conduction block. *J. Neurol. Sci.* 136, 64–70. doi: 10.1016/0022-510X(95)00295-D
- Wang, L., Gutmann, D. H., and Roos, R. P. (2011a). Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. *Hum. Mol. Genet.* 20, 286–293. doi: 10.1093/hmg/ddq463
- Wang, R., Yang, B., and Zhang, D. (2011b). Activation of interferon signaling pathways in spinal cord astrocytes from an ALS mouse model. *Glia* 59, 946–958. doi: 10.1002/glia.21167
- Weydt, P., Weiss, M. D., Moller, T., and Carter, G. T. (2002). Neuro-inflammation as a therapeutic target in amyotrophic lateral sclerosis. *Curr. Opin. Investig. Drugs* 3, 1720–1724. doi: 10.1016/0022-510X(95)00295-D

- Wootz, H., Enjin, A., Wallen-Mackenzie, A., Lindholm, D., and Kullander, K. (2010). Reduced VGLUT2 expression increases motor neuron viability in Sod1(G93A) mice. *Neurobiol. Dis.* 37, 58–66. doi: 10.1016/j.nbd.2009. 09.006
- Xu, R., Wu, C., Zhang, X., Zhang, Q., Yang, Y., Yi, J., et al. (2011). Linking hypoxic and oxidative insults to cell death mechanisms in models of ALS. *Brain Res.* 1372, 133–144. doi: 10.1016/j.brainres.2010.11.056
- Yamamoto, M., Tanaka, F., and Sobue, G. (2007). [Gene expression profile of spinal ventral horn in ALS]. *Brain Nerve* 59, 1129–1139.
- Yamanaka, K., Chun, S. J., Boillee, S., Fujimori-Tonou, N., Yamashita, H., Gutmann, D. H., et al. (2008). Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. *Nat. Neurosci.* 11, 251–253. doi: 10.1038/nn2047
- Yoshihara, T., Ishigaki, S., Yamamoto, M., Liang, Y., Niwa, J., Takeuchi, H., et al. (2002). Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis. *J. Neurochem.* 80, 158–167. doi: 10.1046/j.0022-3042.2001.00683.x
- Yu, L., Guan, Y., Wu, X., Chen, Y., Liu, Z., Du, H., et al. (2013). Wnt signaling is altered by spinal cord neuronal dysfunction in amyotrophic lateral sclerosis transgenic mice. *Neurochem. Res.* 38, 1904–1913. doi: 10.1007/s11064-013-1096-y
- Zhang, R., Gascon, R., Miller, R. G., Gelinas, D. F., Mass, J., Lancero, M., et al. (2006). MCP-1 chemokine receptor CCR2 is decreased on circulating monocytes in sporadic amyotrophic lateral sclerosis (sALS). *J. Neuroimmunol.* 179, 87–93. doi: 10.1016/j.jneuroim.2006.06.008
- Zhao, P., Ignacio, S., Beattie, E. C., and Abood, M. E. (2008). Altered presymptomatic AMPA and cannabinoid receptor trafficking in motor neurons of ALS model mice: implications for excitotoxicity. *Eur. J. Neurosci.* 27, 572–579. doi: 10.1111/j.1460-9568.2008.06041.x
- Zhong, Z., Deane, R., Ali, Z., Parisi, M., Shapovalov, Y., O'banion, M. K., et al. (2008). ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. *Nat. Neurosci.* 11, 420–422. doi: 10.1038/ nn2073

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 02 August 2013; accepted: 29 October 2013; published online: 18 November 2013.

Citation: de Oliveira GP, Alves CJ and Chadi G (2013) Early gene expression changes in spinal cord from SOD1^{G93A} *Amyotrophic Lateral Sclerosis animal model. Front. Cell. Neurosci.* **7**:216. doi: 10.3389/fncel.2013.00216

This article was submitted to the journal Frontiers in Cellular Neuroscience.

Copyright © 2013 de Oliveira, Alves and Chadi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.