Emerson Danguy Cavassin

Estudo da ação in vitro de nanopartícula de prata

Tese apresentada à Faculdade de Medicina da Universidade de São Paulo para a obtenção do título de Doutor em Ciências

Programa de Doenças Infecciosas e Parasitárias Orientadora: Profa. Dra. Silvia Figueiredo Costa

São Paulo 2013

Emerson Danguy Cavassin

Estudo da ação in vitro de nanopartícula de prata

Tese apresentada à Faculdade de Medicina da Universidade de São Paulo para a obtenção do título de Doutor em Ciências

Programa de Doenças Infecciosas e Parasitárias Orientadora: Profa. Dra. Silvia Figueiredo Costa

São Paulo 2013

Dados Internacionais de Catalogação na Publicação (CIP)

Preparada pela Biblioteca da Faculdade de Medicina da Universidade de São Paulo

©reprodução autorizada pelo autor

Cavassin, Emerson Danguy Estudo da ação <i>in vitro</i> de nanopartícula de prata / Emerson Danguy Cavassin São Paulo, 2013. Tese(doutorado)Faculdade de Medicina da Universidade de São Paulo. Programa de Doenças Infecciosas e Parasitárias. Orientadora: Silvia Figueiredo Costa.
Descritores: 1.Nanopartículas/microbiologia 2.Nanopartículas metálicas 3.Compostos de prata 4.Testes de sensibilidade microbiana
USP/FM/DBD-204/13

Emerson Danguy Cavassin

Estudo da ação in vitro de nanopartícula de prata

Comissão Julgadora da Tese para obtenção do grau de Doutor

Profa. Dra. Silvia Figueiredo Costa Orientador/Presidente

Dra. Silvia Figueiredo Costa

São Paulo, 28 de maio de 2013.

A Deus.

À minha família e meus amores Larissa, Miguel e Matheus. Meus pais Luiz e Maria Tereza e meu irmão Marcelo.

AGRADECIMENTOS

Agradeço enormemente à Dra. Silvia Costa pela confiança, compreensão e orientação ao longo do trabalho. Deste trabalho e de outros, desde os tempos do mestrado.

Obrigado ao pessoal do IPD/Fleury, representados pelo Dr. Edgard Rizzatti que possibilitou a parceria na utilização do laboratório. Agradeço também a compreensão da Maria Emilia G. Moura no desenvolvimento das atividades no laboratório

Ao pessoal do LIM-54 o meu carinho. O mesmo com que sempre me trataram e auxiliaram com cepas e informações. Representados pela Inneke e Camila.

Agradeço também à Andreia por todo o suporte e atenção com que sempre me atendeu, da mesma forma que o pessoal da secretaria da Pós, Roseli e Vania

Às equipes do IPT e IFSCIFSC meu muito obrigado. Em especial à Valéria Marangoni pela "assessoria" química e ao Professor Marcelo Seckler, Prof. Valtencir Zucolotto e ao Roberto.

Por fim, ao Miguel, Matheus e, especialmente, à Larissa por entenderem meus projetos apoiando sempre!!

LISTA DE TABELAS

Tabela 1 –	Campos de aplicação para derivados de prata na prática médica			
Tabela 2 –	Casuística e principais resultados de estudos com nanoAg e a			
	relação com resistência antimicrobiana	13		
Tabela 3 –	Comparação da nova classificação das β-lactamases com a			
	classificação de 1995.	19		
Tabela 4 –	Micro-organismos utilizados na avaliação comparativa das			
	diferentes nanoAg sintetizadas	80		
Tabela 5 – Primers utilizados na caracterização prévia dos isolados clínic				
	de Stenotrophomonas maltophilia MR e Enterococcus spp.			
	utilizados neste estudo	82		
Tabela 6 –	Primers utilizados na caracterização prévia dos isolados clínicos			
	de Enterobacterias MR utilizadas neste estudo	83		
Tabela 7 –	Métodos utilizados na avaliação das nanoAg em cada um dos			
	lotes produzidos	27		
Tabela 8 – Número de variações de síntese em cada lote produzido pela				
	IFSC e IPT/USP	29		
Tabela 9 –	Potencial zeta de nanoAg citrato, quitosana e PV	31		
Tabela 10 -	Concentração original e concentrações alcançadas anós diluição	01		
	seriada com nanoAd, sulfadiazina de Ad, Nitrato de Ad e			
	nanoAg Sigma	34		
Tabola 11 -	Micro-organismos utilizados nos tostos com nanoAg produzidas	54		
	polo IPT/LISP o IESC	11		
Tabola 12 -	Laboratório do origom o caractorísticas do síntoso das papoAg	41		
	avaliadas durante o estudo	12		
Tabola 13 -		42		
	20213 S aureus INCOS 030 P aeruginosa ATCC 27853 e P			
	29213, 3. aureus incego 039, 7. aeruginosa ATCC 27033 e 7.			
	a = a = a = a = a = a = a = a = a = a =	11		
Tabalat	J/0, CUIT I ⁻ , Z ⁻ e J ⁻ IULES UE HAHUAY IFOU E IF I	44		
i abeia14 –	20212 Discriminant ATCO 27252 - Discriminant NCC			
	29213, P. aeruginosa ATCC 27853 e P. aeruginosa INCQS			

	230, S. epidermidis INCQS 198, C. albicans INCQS 40175 e C.		
	parapsilosis INCQS 40280 em meio sólido MHA e MHA sangue		
	5% com 3º lote de nanoAg IFSC e IPT	46	
Tabela 15 –	Comparativo da CIM (em μ g/ml) entre 1°, 2° e 3° lotes de		
	nanoAg da IFSC frente a <i>S. aureus</i> ATCC 29213 e <i>P.</i>		
	aeruginosa ATCC 27853 em MHB II	84	
Tabela 16 –	Tabela 16 – Comparativo das CIM (em µg/ml) obtidas com o 1º, 2º e 3o lote		
	produzidos no IPT utilizando MHB II e MHB II com 1,25% e		
	sangue frente a diferentes micro-organismos ATCC e INCQS	85	
Tabela 17 –	Resultados de CIM (em μ g/ml) para o 4º lote de nanoAg IFSC e		
	IPT, frente a diversos micro-organismos Gram positivos,		
	negativos e leveduras.	86	
Tabela 18 –	Resultados de CIM (em μ g/ml) para o 5º lote de nanoAg IFSC,		
	frente a diferentes micro-organismos sensíveis e MR, avaliados		
	em caldo MHB II e MHB II sangue 1,25%.	88	
Tabela 19 –	Determinação da CBM com 3º Lote de nanoAg IFSC e IPT		
	contra S. aureus ATCC 29213, P. aeruginosa ATCC 27853, S.		
	epidermidis INCQS 198, C. albicans INCQS 40175 e C.		
	parapsilosis INCQS 40280	93	
Tabela 20 –	Resultados de CBM para o 4º lote de nanoAg IFSC e IPT, frente		
	a diversos micro-organismos sensíveis e MR.	94	
Tabela 21 –	Resultados de CBM para o 5º lote de nanoAg IFSC, frente a		
	diversos micro-organismos sensíveis e MR	95	

LISTA DE FIGURAS

Figura 1 –	Escala manométrica de diferentes materiais e nanodispositivos			
Figura 2 –	Liberação de prata e quantidade contida em diferentes			
	formulações biocidas (Adaptado de Nowack et al., 2011)	6		
Figura 3 –	Diferentes sítios de ação da prata	8		
Figura 4 –	Espectroscopia no ultravioleta visível para nanoAg citrato,			
	quitosana e PVA	31		
Figura 5 –	Tamanho das nanopartículas demonstrado por Dynamic light			
	Scattering (DLS)	31		
Figura 6 –	Variações na inibição do crescimento em superfície para P.			
	aeruginosa ATCC 27853 e S. aureus ATCC 29213 na			
	presença de MHA e MHA sangue 5%. Com nanoAg 3º lote IPT	45		
Figura 7 –	Variações na inibição por difusão em profundidade com nanoAg			
	do 3º lote IFSC para <i>P. aeruginosa</i> INCQS 230 e 3º lote IPT			
	para <i>P. aeruginosa</i> ATCC 27853 em agar MHA e MHA sangue			
	5%	47		
Figura 8 –	Comparativo entre CIM em MHII e CIM em MH II Sg 1,25%,			
	para o 5º lote de nanoAg IFSC e controles, frente a isolados			
	sensíveis, MR e candidas	92		
Figura 9 –	Comparativo entre CIM e CBM em MHII para o 5º lote de			
	nanoAg IFSC e controles, frente a 107 isolados sensíveis, MR			
	e candidas	101		
Figura 10 –	Comparativo entre CIM e CBM em MHII Sg 1,25% para o 5º			
	lote de nanoAg IFSC e controles, frente a isolados sensíveis,			
	MR e candidas	103		
Figure 11 –	Comparação entre o tempo de morte para S. aureus MRSA			
	(MO1) e <i>S. aureus</i> MSSA03, para o 5º lote de nanoAg IFSC e			
	controles. Para MRSA (MO1) foi montada uma curva			
	comparativa com caldo MHII e MHII sangue 1,25%	56		
Figure 12 –	Comparação entre o tempo de morte para K. pneumoniae (K3)			
	MR e Enterobacteria (ENB3) sensível, para o 5º lote de			
	nanoAg IFSC e controles	57		

Figura 13 –	Interpretação dos resultados possíveis de					
	inibição/descolamento de biofilme	58				
Figura 14 –	Curva de calibração com a DO de violeta de genciana 0,1% em					
	concentrações de 0 a 100% e 0 a 10%	60				

LISTA DE GRÁFICOS

Gráfico 1 –	 Distribuição cumulativa da medida dos halos de inibição 						
	obtidos por difusão em profundidade frente isolados clínicos,						
	cepas ATCC e INCQS em meio MHA e MHA sangue 5%						
	para o 4º lote de nanoAg* IFSC e IPT	48					
Gráfico 2 –	Gráfico 2 – Distribuição cumulativa dos halos de inibição (mm) obtidos						
	por difusão em profundidade frente isolados MR, sensíveis e						
	candida em meio sólido MHA e MHA sangue 5%, para o 5o						
	lote de nanoAg IFSC	49					
Gráfico 3 – Resultados de CIM50 (em mg/ml) para o 4º lote de nand							
	IFSC e IPT, frente a diversos micro-organismos Gram						
	positivos, negativos e leveduras.	51					
Gráfico 4 –	Distribuição da Concentração Inibitória mínima 50 e 90						
	(CIM50 e CIM90) de nanoAg IFSC 5º lote estratificados entre						
	isolados bacterianos sensíveis e resistentes	52					
Gráfico 5 –	Distribuição proporcional de isolados bacterianos MR e						
	sensíveis e Candida spp. frente às nanoAg do 5º lote IFSC e						
	controles testados	52					
Gráfico 6 –	Modelo de efeito inibitório estratificado em morte ou inibição						
	celular (CBM/CIM) entre Gram negativo, positivo e leveduras						
	para o 5º lote de nanoAg IFSC	54					
Gráfico 7 –	Modelo de efeito inibitório estratificado em morte ou inibição						
	celular (CBM/CIM) entre micro-organismos multirresistentes						
	e sensíveis para o 5º lote de nanoAg IFSC	54					
Gráfico 8 –	Porcentagem de inibição do biofilme após incubação de 16 a						
	18 horas com nanoAg e controles, frente a isolados de A.						
	baumannii sensíveis	61					
Gráfico 9 –	Porcentagem de inibição do biofilme após incubação de 2						
	horas com nanoAg e controles, frente a isolados de A.						
	baumannii sensíveis	62					

ABREVIATURAS E SIGLAS

ATCC	American Type Culture Collection				
CBM	concentração bactericida minima				
CDC	Centers for Diseases Control and Prevention				
CIM	concentração inibitória mínima				
DNA	ácido desoxirribonucleico				
DO	densidade óptica				
EPA	Environmental protection agency				
ESBL	Extended spectrum betalactamase				
EUA	Estados Unidos da América				
IMP	Imipenemase				
INCQS	Instituto Nacional de Controlde de Qualidade em Saúde				
IRAS Infecções relacionadas à assistência à saúde					
KPC	Klebsiella pneumoniae carbapenemase				
MHA	Mueller Hinton agar				
MHB	Mueller Hinton caldo				
MHII	Mueller Hinton cátion ajustado				
MRSA	Methicilin resistant S. aureus				
MYSTIC	Meropenem Yearly Susceptibility Test Information Collection				
NanoAg	nanopartícula de prata				
NDM	New Delhi metallo beta lactamase				
OXA	oxacilinase				
PVA	Polivinil álcool				
PBS	tampão fosfato				
SPM	São Paulo imipenemase				
TSB Tripticase soy broth					
UFC	unidades formadoras de colônias				
UTI	unidade de tratamento intensivo				
VIM	Verona imipenemase				
VRE	Vancomycin resistant Enterococcus				
WHO	World health organization				

SUMÁRIO

2 INTRODUÇÃO	1
3 OBJETIVOS	24
3.1 Objetivo geral	25
3.2 Objetivos específicos	25
4 MATERIAL E MÉTODO	26
4.1 Contexto	27
4.2 Micro-organismos	28
4.3 NanoAg produzidas	28
4.3.1 Síntese de nanoAg citrato, PVA e quitosana (IFSC)	29
4.3.1.1 NanoAg Citrato:	29
4.3.1.2 NanoAg PVA	29
4.3.1.3. NanoAg Quitosana	30
4.3.2 Caracterização de nanoAg (IFSC)	30
4.3.3. Controles	32
4.4 Inibição do crescimento por difusão	32
4.5 Determinação da Concentração Inibitória Mínima (CIM)	33
4.6 Determinação da concentração bactericida mínima (CBM)	34
4.7 Determinação do tempo de morte (time kill)	35
4.8 Teste de inibição de biofilme com cristal violeta	36
4.9 Aprovação pelo Comitê de Ética em Pesquisa	38
4.10 Auxílio CAPES	38
5 RESULTADOS	39
5.1 Micro-organismos	40
5.2 NanoAg produzidas	42
5.3 Inibição do crescimento por difusão	43
5.3.1 Inibição do crescimento por difusão em superfície	43
5.3.2 Inibição do crescimento por difusão em profundidade	45
5.4 Determinação da concentração inibitória mínima (CIM)	49
5.5 Determinação da concentração bactericida mínima (CBM)	53

5.6 Determinação do tempo de morte (time kill)	55
5.7 Teste de inibição de biofilme com violeta	58
6 DISCUSSÃO	63
7 CONCLUSÃO	77
8 ANEXOS	79
ANEXO -A	80
ANEXO B	82
ANEXO C	84
BIBLIOGRAFIA	104
Apêndice	118
Apêndice A - Aprovação do estudo pelo Comitê de Ética em Pesquisa	
da FM/USP	119
Apêndice B - Divulgação de resumo publicado no European Congress	
of Clinical Microbiology and Infectious Diseases - 2013	120

Cavassin E D. *Estudo da ação in vitro de nanopartícula de prata* [Tese]. São Paulo: Faculdade de Medicina, Universidade de São Paulo; 2013.

O presente estudo avaliou a ação in vitro de diferentes nanopartículas de prata (nanoAg) sintetizadas pelo Instituto de Pesquisas Tecnológicas (IPT) e Universidade Federal de São Carlos (IFSC) e controles de sulfadiazina de prata, nitrato de prata e nanoAg comercial Sigma, frente a bactérias e leveduras. Os objetivos do estudo foram avaliar a ação in vitro de NanoAg sintetizadas no Brasil frente a bactérias sensíveis aos antimicrobianos e multirresistentes (MR), incluindo Gram positivos e negativos, além de candidas isoladas de amostras clínicas. Definir as condições de síntese que resultem em nanoAg com melhor efeito antimicrobiano in vitro frente a isolados sensíveis e MR. Foram utilizadas diferentes metodologias tais como agar well diffusion, determinação de concentração inibitória mínima CIM, concentração bactericida mínima (CBM), curva do tempo de morte e inibição da formação de biofilme. Ao todo, foram avaliados 110 isolados, sendo 37 sensíveis aos antimicrobianos, 54 MR, e 19 candidas frente a 29 nanoAg com diferentes características de síntese. Os testes de difusão em meio sólido apresentaram heterogeneidade de resultados frente aos micro-organismos avaliados. Enquanto as informações de CIM50 e CIM90 evidenciaram não existir variações no efeito inibitório frente isolados sensíveis ou resistentes aos antimicrobianos. As curvas do tempo de morte ilustraram a dinâmica de inibição dos compostos de prata e a interferência do sangue nos testes in vitro. A partir dos testes com biofilme foi possível observar efeito inibitório e de descolamento de biofilme previamente formado. Os resultados permitiram concluir a maior eficácia para nanoAg com Citrato e Quitosana, seguido por nitrato de prata, sulfadiazina de prata e PVA. A NanoAg comercial (Sigma, 60 nm) apresentou resultados inferiores ao de nanoAg Citrato, nanoAg Quitosana e nitrato de prata. Estes resultados abrem caminho para novas análises de nanoAg sintetizadas no Brasil em busca de produtos com maior eficácia com ação contra bactérias MR e candidas.

Descritores: Nanopartículas/microbiologia; Nanopartículas metálicas; Compostos de prata; Testes de sensibilidade microbiana

Cavassin E D. *Study of in vitro action of silver nanoparticle* [Tese]. São Paulo: "Faculdade de Medicina, Universidade de São Paulo"; 2013.

The present study evaluated the *in vitro* action of different silver nanoparticles (nanoAg) synthesized by "Instituto de Pesquisas Tecnológicas" (IPT) and "Universidade Federal de São Carlos" (IFSC) and silver sulfadiazine, silver nitrate and commercial nanoAg Sigma against bacteria and yeasts. The objectives of the study were to evaluate the in vitro action of NanoAg synthesized in Brazil against antimicrobial susceptible bacteria and multidrugresistant (MDR), including Gram positive and negative, as well as some candida isolates from clinical source. Define the conditions that result in nanoAq synthesis with best in vitro antimicrobial effect against sensitive isolates and MDR. Different methodologies were used such as agar well diffusion, determination of minimum inhibitory concentration (MIC), minimum bactericidal concentration (CBM), the time-kill curve and inhibition of biofilm formation. Altogether 110 isolates were evaluated, being 37 antimicrobial sensitive, 54 MDR, and 19 candidas, against 29 nanoAg with different synthesis. The solid medium diffusion tests showed heterogeneity of results against the evaluated microorganisms. While the information of MIC50 and MIC90 showed no changes in inhibitory effect against sensitive isolates or MDR. The time-kill curve illustrated the dynamics of inhibition of silver compounds and the interference of blood on the in vitro tests. From the tests with biofilm was possible to observe biofilm inhibitory effect and detachment of biofilm previously formed. The conclusion defined to greater effectiveness for nanoAg with Chitosan and Citrate, followed by silver nitrate, silver sulfadiazine and PVA. The commercial NanoAg (Sigma, 60 nm) presented lower performance than nanoAg citrate, nanoAg Chitosan and silver nitrate. These results open the way for new analyses of Brazil synthetized nanoAg with better efficiency against MDR bacterial and candida.

Descriptors: Nanoparticles/microbiology; Metal nanoparticles; Silver compounds; Microbial sensitivity tests

INTRODUÇÃO

De acordo com EPA (2007), Uma das definições de nanotecnologia inclui Desenvolvimento de pesquisa e tecnologia em níveis atômicos, moleculares ou macromoleculares, usando uma escala tridimensional de aproximadamente 1 a 100 nm. A criação e uso de estruturas, equipamentos e sistemas que apresentem propriedades e funções inéditas em função do seu tamanho reduzido e a habilidade de controlar ou manipular a matéria em uma escala atômica.

As nanopartículas metálicas podem derivar de diferentes materiais e são classificadas quanto ao efeito antimicrobiano frente a bactérias, vírus e outros organismos eucarióticos em: Ag > Hg > Cu > Cd > Cr >Pb > Co > Au > Zn > Fe > Mn > Mo > Sn (Zhao and Stevens, 1998). Nanopartículas de prata (nanoAg) apresentam maior atividade antimicrobiana que íons de prata e sais de prata . (Ansari et al, 2011; Rai et al., 2009; Gong et al., 2007; Lok et al.,2006).

Produtos contendo prata em nanoescala são utilizados há mais de 100 aános em pigmentos, fotografia, tratamento de feridas, compostos condutores e antiestáticos, catalisadores e como biocidas (Nowack et al., 2011).

NanoAg foram descritas pela primeira vez em 1889, por Lea MC, como a síntese de um coloide estabilizado com citrato. Apresentava entre 7 a 9 nm de diâmetro. Tanto a nanoescala quanto a estabilização com citrato assemelhavam-se à produção atual. Em 1897, surgiu um produto comercial com partículas de 10 nm que foi utilizado clinicamente (Collargol). Nos processos de síntese destes materiais sempre esteve presente a preocupação em dispersar a prata com partículas de tamanho inferior a 250 nm, conforme descrito por Manes M (1968): "*for proper efficiency, the silver must be dispersed as particles of coloidal size less than 250 angstrons [less than 25 nm] in crystallite size*" Ou seja, mesmo que não conhecida como nanotecnologia, há mais de um século nanoAg é produzida deliberadamente (Nowack et al., 2011).

NanoAg são agregados de átomos de prata que variam seu diâmetro até 100 nm e apresentam alterações quando comparadas à prata metäálica em suas propriedades químicas, mecânicas, elétricas, óticas, atividade catalítica, condutividade e efeito biológico (Schacht et al., 2013). Estima-se a presença de 10.000 a 15.000 átomos de prata em uma nanoAg de 100 nm (Warheit et al., 2007) (Figura 1). Nos últimos anos estão sendo aplicadas em uma grande variedade de materiais e com diversas finalidades.

Manes, M. Silver impregnated carbon. United States Patent 3,374,608, 1968. Apud Nowack et al., 2011.

Figura 1 – Escala manométrica de diferentes materiais e nanodispositivos **Fonte**:http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/Nanotechnology/UCM153731.pdf

Desde a indústria de vestuário, para redução de odores, aos recipientes de alimentos na tentativa de reduzir a sua deterioração. Passando a revestimento de refrigeradores, tintas e embalagens plásticas. Na prática médica a prata teve seu primeiro uso publicado como colírio de nitrato de prata 1% para prevenir oftalmia gonocócica neonatal no século 19, pelo obstetra alemão, Carl Crede (Kalishwaralal et al., 2010). Além do seu efeito inibitório frente a micro-organismos, estudos sugerem outras ações, tais como anti-inflamatória e cicatrizante (Chaloupka, 2010). A Tabela 1 traz aplicações clinicas corrente para derivados de prata.

Tabela 1 – Campos de aplicação para derivados de prata na prática médica

Ação profilática ambiental Adicionado a tintas e desinfetantes para reduzir a carga microbiana no ambiente hospitalar	nanoAg
Efeito profilático em próteses Como revestimento de cateteres vasculares e <i>shunts</i> neurocirúrgicos	nanoAg
Ação protetora em regeneração óssea Enriquecimento de cimento ósseo para processos de reconstrução e implantes	nanoAg
Proteção de ferimentos Curativos impregnados para feridas	nanoAg
Cauterização Utilizado para estancar epistaxe	nitrato de Ag
Profilaxia de oftalmia Prevenção de oftalmia gonocócica neonatal	nitrato de Ag
Efeito inflamatório Indução de adesão tecidual em pleurodese	nitrato de Ag
Efeito regenerativo Cobertura de queimaduras	nanoAg
Cauterização Controle do crescimento de granulomas pós traumáticos	nitato de Ag

Fonte: Adaptado de Chaloupka et al., 2010

A prata pode existir no ambiente em quatros estados de oxidação: Ag⁰, Ag⁺, Ag2⁺ e Ag3⁺. Sendo a prata livre Ag⁺ o estado mais abundante, encontrado no ambiente associado a sulfito, bicarbonato, sulfato ou com cloretos e sulfatos adsorvidos em material particulado na fase aquosa (WHO, 2002). Aditivos de prata são primariamente diferenciados pelo modo como os íons são armazenados no produto. Produtos comuns de prata variam entre aditivos que podem ser armazenados em cerâmica ou matriz de vidro e liberam baixa quantidade de íons de prata (Ag⁺) (por exemplo, zeolito) até produtos que armazenam íons de prata como sais de prata (cloreto de prata) ou prata elementar (prata metálica em nanoescala). Ou ainda os liberadores de

Ag⁺ diametralmente opostos sulfito de Ag⁺ (altamente insolúvel) e nitrato de Ag⁺ (altamente solúvel). Assim, o potencial biocida do composto é diretamente proporcional à capacidade de liberar íons Ag⁺. No caso de nanoAg, a grande proporção entre a área superficial e o volume das partículas aumenta a capacidade de libração de Ag⁺. Em outras palavras, quanto maior a proporção superfície/volume, maior a exposição da prata e interface com o sítio alvo (Nowack et al., 2011). Neste caso, portanto, as interações são mais complexas e resultantes de características da superfície e formato da partícula (Figura 2).

As formas mais comuns de uso da prata incluem nitrato de prata, sulfadiazina de prata, zeolito de prata, óxido de prata, cloreto de prata e pó de cádmium de prata. O nitrato de prata é utilizado no tratamento de doenças venéreas, fístula de glândula salivares e abscesso anal desde 1700 (Landsdown 2002). A sulfadiazina de prata é classificada como antimicrobiano no grupo das sulfas sendo utilizada no tratamento de queimaduras de segundo e terceiro graus, embora apresente efeito bactericida comprovado, sua eficácia como cicatrizante tem sido questionada (Wasiak et al., 2008).

O mecanismo de ação da nanoAg não é totalmente elucidado. Acredita-se que em solução aquosa sejam liberados íons Ag⁺ biologicamente ativos que promovem o efeito antimicrobiano. Evidencias apontam para a interação com três componentes vitais às células: parede celular de peptidoglicanos e membrana citoplasmática, onde modificam propriedades químicas e físicas que resultam em desequilíbrio de osmolaridade, permeabilidade, transporte de elétrons e respiração celular; DNA ribossomal e grupamentos de fósforo e enxofre presentes em proteínas, especialmente em enzimas envolvidas na cadeia de transporte de elétrons. Há discussão sobre qual alvo seria o de maior impacto, mas é certo que a combinação destes efeitos cria uma ação inespecífica e potencializada ação da nanoAg (Schacht et al., 2013; Chaloupka et al., 2010). Morones et al. (2005), registraram por meio de microscopia eletrônica três situações que auxiliam na compreensão da ação sobre Gram negativos. Primeiro, ocorre o ataque de nanoAg sobre a superfície da célula bacteriana, especialmente nanoAg entre 1 e 10 nm, causando distúrbios na sua função protetora e interferindo na respiração celular. Em um segundo momento as nanoAg são capazes de penetrar a célula microbiana para exercer seu efeito no espaço citoplasmático, possivelmente interagindo com compostos contendo enxofre e fosforo, como o DNA. Por fim, liberam Ag⁺ que contribuem para o efeito bactericida (Figura 3). Assim temos interferência na síntese da parede celular, síntese proteica, de DNA, biofilme e sinalização celular, na ação de enzimas e produção de radicais livres que atuam de maneira combinada.

Figura 3 - Diferentes sítios de ação da prata

Fonte: Adaptado de Rai (2012)

Considerando que nanoAg atua sinergicamente em alvos distintos espera-se que não haja interferência com mecanismos de resistência antimicrobiana habituais.

O quadro mais comum de intoxicação por prata é denominado de agíria, quando o paciente apresenta despigmentação irreversível da pele que assume uma coloração cinza azulada, bem como de conjuntiva e mucosas. O limite tóxico *in vivo* de prata é relativamente alto e efeitos adicionais à argíria são observados somente em exposição a concentrações muito elevadas. A dose letal 50 oral para ratos ultrapassa 1.600 mg/kgdia (Wijnhoven et al., 2009). Entretanto, a elevada proporção entre superfície e volume e o tamanho reduzido das nanoAg podem potencializar o contato direto com estruturas celulares, como DNA (com 2 nm), desnaturando proteínas estruturais, enzimas e produzindo radicais livres (Hsin et al., 2008; Reijnders, 2006).

Estudos *in vitro* demonstram citotoxicidade a diferentes linhagens celulares, incluindo fibloblastos de rato NIH3T3, monócitos THP-1, células de fígado BRL3A (Hussain et al., 2005) e células de linhagem germinativa de rato fêmea C18-4 (Braydich-Stolle et al., 2005). Evidencias sugerem que nanoAg exercem sua citotoxicidade em função de interação com as mitocôndrias (Carlson et al., 2008; Hsin et al., 2008) e ativação da apoptose via produção de espécimes reativos de oxigênio (Hsin et al., 2008). Existindo relação entre efeito tóxico e tamanho da nanoAg com maior efeito para partículas de 15 nm em comparação às de 55 nm (Carlson et al., 2008). As evidencias de toxicidade *in vitro* nem sempre são verificadas em animais e estudos *in vivo* após longos períodos de exposição, como com usuários de curativos impregnados de nanoAg para queimaduras (Asharani et al., 2009). De qualquer forma, são necessários estudos que delimitem os riscos ao indivíduo. Bem como, os riscos ao ambiente, com o acúmulo crescente destas substâncias quando descartadas (Chaloupka et al., 2010).

É sabido crescimento que o microbiano apresenta comportamento distinto quando em suspensão (estado planctônico livre) e quando aderido em superfícies (biofilmes) (Davey e O'toole, 2000). Estas diferenças sempre foram percebidas, mas sua compreensão se iniciou na década de 30. Em um dos trabalhos pioneiros, Henrici (1933) estudava microorganismos aquáticos em suspensão e em suas análises in vitro os microorganismos não reproduziam o comportamento apresentado no ambiente. Desta forma, passou a mergulhar lâminas de vidro em aquários por períodos de tempo e a entender as inúmeras diferenças existentes entre os dois modelos (Studies of freshwater bacteria. I. A direct microscopic technique). E entre suas conclusões verificou que a multiplicação de micro-organismos em biofilme envolve características de comunidade. Incluindo a produção de autoindutores que promovem regulação da expressão genica e diferenciação celular (quorum sensing) (Miller e Bassler, 2001). Biofilmes são caracterizados pelo agrupamento denso e altamente hidratado de micro-organismos que produzem uma matriz polimérica extracelular composta por uma mistura de componentes, denominada substancia polimérica extracelular (extracelular *polymeric substance*, EPS), proteínas, ácidos nucleicos, entre outras substâncias. Esta configuração cria a necessidade de diferenciação entre as células e formação de canais para a nutrição da biomassa (Stewart e Franklin, 2008). A produção de EPS varia de acordo com a espécie microbiana e desempenha diferentes funções, entre elas a proteção frente a situações de estresse ambiental tais como radiação UV, alterações de pH, choque osmótico e dissecação. O impacto clínico dos biofilmes pode ser traduzido em dificuldade de tratamento, escape ao sistema imune e aumento da resistência aos antimicrobianos (Mah e O'toole, 2001; Davey e O'toole, 2000).

Nas emergência patógenos últimas décadas. а de multirresistentes (MR) tornou-se uma ameaça ao redor do mundo, independente de idade, sexo, ou condição socioeconômica. As infecções causadas por MR podem ser adquiridas em ambientes de assistência à saúde, como nas pneumonias associadas à ventilação mecânica por P. aeruginosa MR nas Unidades de Terapia Intensiva (UTI) (Planquette et al., 2013). Na comunidade, como pneumonia comunitária por S. pneumoniae MR (Postma et al., 2012). Ou mesmo através de alimentos, como Salmonella sp. pelo consumo de carne ou ovos (Brichta-Harhay, 2011; Tatavarthy et al., 2012). Seja de maneira doméstica, no contato com animais de estimação (Lloyd, 2007, Schwarz et al., 2010), ou ao redor do mundo, como a disseminação de New Delhi metallo-β-lactamase (NDM) associada ao turismo de saúde (Interagency Task Force on Antimicrobial Resistance, 2012; Kumarasamy et al., 2010; Yong et al., 2009).

Embora todos estejam expostos, alguns pacientes apresentam fatores de risco ainda mais preocupantes, como os internados em unidades críticas, sob tratamento antimicrobiano de longa duração, imunossuprimidos, idosos, neonatos de baixo peso ou com histórico de colonização prévia (Drinka et al. 2011; Paterson, 2002).

Na medida em que a resistência aos antimicrobianos se mostra como um problema médico mundial e que reduz drasticamente as possibilidades terapêuticas, aumentam as taxas de mortalidade e morbidade, tempo de internação e custos de tratamento, novos produtos e novas aplicações vêm sendo estimuladas (Humberto et al.,2010).

A ação antimicrobiana das nanoAg vem chamando atenção para o seu uso frente a micro-organismos MR, em especial para Gram negativos, pela ausência de novas drogas disponíveis no mercado. Obrigando, inclusive,ao retorno para antigas drogas como polimixina E/B e fosfomicina (Pogue et al., 2011; Rizek et al., 2012). Entretanto, é importante considerar que alguns dos estudos de nanoAg frente MR foram conduzidos com casuísticas reduzidas, conforme ilustra a Tabela 2. **Tabela 2 –** Casuística e principais resultados de estudos com nanoAg e a relação com resistência antimicrobiana

Referência	Casuística e resultados
Ayala-Nuñez et al., 2009	Demonstraram a influência do tamanho da nanoAg utilizada e a igualdade de efeito entre um isolado de <i>S. aureus</i> MRSA e um isolado de <i>S. aureus</i> MSSA.
Stefan et al., 2011	Descreveram o uso de difusão em meio sólido com nanoAg em poliamida-hidroxiuretano para um isolado de <i>E. coli</i> e um de <i>S. aureus.</i> Relataram halos de inibição de 23 mm para a solução de nanoAg avaliada e forte efeito bactericida frente <i>S. aureus.</i>
Panacek et al., 2006	Avaliados 4 isolados MR: <i>Staphylococcus epidermidis</i> (MRSE), <i>Staphylococcus aureus</i> (MRSA), Enterococcus faecium (VRE) e <i>Klebsiella pneumonia</i> produtora de ESBL.
Nanda e Saravanan 2009	Analisadas uma cepa de <i>S. aureus</i> MRSA e uma de <i>S. epidermidis</i> MRSE com halos de inibição de 17,5 e 18 mm respectivamente.
Humberto et al. ,2010	Avaliado um isolado de <i>S. aureus</i> MRSA, <i>P. aeruginosa</i> MR, <i>S. pyogenes</i> eritromicina resistente e <i>E. coli</i> O157:H7 ampicilina resistente. Mostraram não haver diferença entre CIM e CBM para os isolados testados.
Prabakara et al., 2013	Trabalharam com três isolados clínicos obtidos de pacientes em UTI: <i>A.baumannii, K.pneumoniae</i> e <i>P. aeruginosa</i>

Dentre os Gram-positivos, destaca-se *Staphylococcus aureus* resistente a meticilina/oxacilina (MRSA) por sua alta prevalência, morbidade e mortalidade (Deurenberg e Stobberingh, 2008). O MRSA é um dos principais agentes das IRAS no mundo, em particular ICS e PAV. Dados do estudo SENTRY, programa de vigilância de resistência a antimicrobianos que envolve centros médicos em todo o mundo (Gales et al., 2009), avaliaram por meio de microdiluição, a sensibilidade de 3.907 isolados Gram-positivos em hospitais brasileiros, no período de 2005 a 2008, mostraram que *S. aureus* (20%) foi o agente mais frequente, seguido por CNS (14,7%) e *Enterococcus* spp. (5%). A resistência à oxacilina foi encontrada em 31% dos isolados de *S. aureus* e a sensibilidade a vancomicina, linezolida e daptomicina variou de 99% a 100%.

A resistência do S. aureus à oxacilina ocorre por alteração do sítio de ação da droga, decorrente da expressão da Penicillin Binding Protein (PBP) PPB2a codificada pelo gene mecA. O gene mecA é carreado em um elemento genético móvel que está integrado no cromossomo das cepas MRSA, o cassete cromossômico estafilocócico (staphylococcal cassete chromosome mec- SCCmec), do qual já foram descritas pelo menos oito formas (tipos I a VIII), que diferem entre si no tamanho (21 a 67 kb) e na composição genética (Berglund et al., 2009; Zhang et al., 2009). Os SCCmec tipos I, II e III estão associados a cepas de origem hospitalar que têm como característica a resistência a múltiplos antimicrobianos além dos β-lactâmicos, como aos macrolídeos, aminoglicosídeos, tetraciclina, rifampicina, cotrimoxazol e quinolonas (Katayama et al., 2000; Ito et al., 2001). Muitos isolados de MRSA apresentam múltipla resistência são susceptíveis que apenas aos glicopeptídeos, como a vancomicina. O SCCmec tipo IV não possui nenhum outro determinante de resistência a antimicrobianos, além do gene mecA, o que explica uma das principais características dos isolados comunitários de MRSA, que é a sensibilidade a diversos antimicrobianos não beta-lactâmicos (Duarte, Lencastre, 2002; Okuma et al., 2002). Dados nacionais mostram, entretanto, que o SCCmec tipo IV está presente nos hospitais brasileiros (de Trindade et al., 2005; Schuenck et al., 2009; Pacheco et al., 2011). Estudo de 151 casos de infecção de corrente sanguínea por MRSA conduzido no HC-FMUSP identificou SCCmec tipo IV em várias unidades do hospital, e nenhum destes casos foi comunitário (de Trindade et al., 2005).

A grande preocupação atual é, entretanto, a rápida disseminação por meio de elementos genéticos móveis da resistência aos carbapenêmicos nos bacilos Gram negativos. Como já comentado, bacilos Gram negativos não fermentadores como *P. aeruginosa* e *Acinetobacter* spp. são importantes agentes de IRAS, principalmente em pacientes graves de unidades de terapia intensiva e imunodeprimidos. *Acinetobacter* resistente aos carbapenêmicos é um problema de grande magnitude no Brasil, com descrição de vários surtos intra- e inter-hospitalares e grande dificuldade no seu controle e tratamento (Levin et al., 1996; Sader et al; 1996; Tognim et al., 2004; Gales et al., 2004; Tognim et al., 2006; Carvalho et al., 2009; Mostachio et al.,).

P. aeruginosa resistente aos carbapenêmicos vem sendo descrita no mundo todo (Tam et al., 2007; Kouda et al., 2009; Rodriguez-Martinez et al., 2009;). O estudo MYSTIC (*Meropenem Yearly Susceptibility Test Information Collection*), de isolados de *P. aeruginosa* identificados na Europa, de 1997 a 2000, mostrou que 4,7% desses isolados eram resistentes aos carbapenêmicos e que em UTI essa resistência variou de 50% na Turquia, a menos de 3% na Espanha, Reino Unido e Alemanha (Mendes et al., 2001). Dados de 2006, também do MYSTIC, que avaliaram 1.012 isolados de *P. aeruginosa* em 40 países europeus, mostraram que a resistência a imipenem foi de 32% e a meropenem foi de 22%. As maiores taxas de resistência foram encontradas na Grécia (Turner, 2008). Estudo recente de vigilância da resistência bacteriana de países europeus (*European Antimicrobial Resistance Surveillance System*, 2008), que avaliou dados de 33 países, mostrou que a resistência aos carbapenêmicos é de 50% dos isolados na Grécia, de 36% na República Checa e de 32% na Itália (www.rivm.nl/earss/). Parece haver uma relação entre o desenvolvimento do país com a velocidade de disseminação da resistência. Mesmo na Europa fica clara essa relação, quanto mais estruturado e rico o país, menores são as taxas de infecções por patógenos multirresistentes.

Dados brasileiros do programa MYSTIC, que avaliou 1.550 isolados de Gram-negativos em unidades de terapia intensiva de 20 hospitais brasileiros, mostrou que *P. aeruginosa* (N=470) foi o agente isolado com maior frequência. Sessenta e quatro porcento das cepas de *P. aeruginosa* foram sensíveis a meropenem e 58,7% ao imipenem (Kiffer et al., 2005).

Surtos de *P. aeruginosa* resistente aos carbapenêmicos também já foram descritos no Brasil (Gales et al., 2003; Carvalho et al., 2006; Ribeiro et al., 2006; Martins et al., 2007; Picão et al., 2009). Na última década foi detectada a resistência aos carbapênemicos em Enterobactérias, que são patógenos muito prevalentes nas IRAS e que também causam infecção comunitária (Monteiro et al., 2009; Zavascki et al., 2009; D'Alincourt et al., 2010; Zavascki et al., 2010).

Recentemente, foi descrito o primeiro isolamento de Gram negativo produtor de NDM no Brasil. A enzima NDM foi identificada pela primeira vez em 2008 na Índia e desde então tem sido amplamente descrita em enterobactérias causando infecções esporádicas e surtos (Yong et al., 2009). No Brasil foram detectados microrganismos produtores de NDM-1 no estado do Rio Grande do Sul, na cidade de Porto Alegre. Com O gene *bla*NDM-1 em *Providencia rettgeri* e *Enterobacter cloacae* (ANVISA, 2013)

Poucos casos de *Klebsiella pneumoniae* produtoras de NDM foram descritos na America Latina (Perez, et al., 2013, Pasteran et al., 2012) e até o momento esta carbapenemase não tinha sido detectada em nosso país (Tumbarelo et al, 2012).

O estudo de Vigilância e Controle de Patógenos de Importância Epidemiológica (SCOPE) que inclui dados de cinco regiões geográficas mostrou a importância da prevalência de bactérias Gram negativas no Brasil, especialmente quando no que diz respeito ao tratamento empírico de infecções de corrente sanguínea. A resistência aos antibióticos é preocupante, particularmente em isolados de *P. aeruginosa* e *A. baumannii*, que apresentam taxas elevadas de resistência aos carbapenêmicos respectivamente 35% e 56%. Essas taxas estão entre as mais altas na literatura e tem várias implicações para prática clinica.

Dentre os mecanismos de resistência aos carbapênemicos, destaca-se a produção de enzimas, as β -lactamases, que catalisam a hidrólise do anel β -lactâmico, impossibilitando, assim, a atividade dessa classe de antimicrobianos. Até recentemente as β -lactamases apresentavam duas

classificações, uma molecular e outra funcional. A classificação molecular é baseada na sequência de aminoácidos e divide as β -lactamases em classes A, C e D, que incluem as enzimas que utilizam serina para hidrólise dos β -lactâmicos e classe B que necessita de íons divalentes de zinco para hidrólise. A outra classificação funcional é fundamentada no substrato de hidrólise e no perfil de inibição dessas enzimas (Bush et al., 1995). Entretanto, uma nova classificação das β -lactamases foi proposta em 2010, por Bush e Jacoby (Bush, Jacoby, 2010). Esta classificação divide as β -lactamases em três grupos; Grupo 1 (classe C): cefalosporinase; Grupo 2 (classes A e D): cefalosporinases, β -lactamases de espectro ampliado e carbapenemases do grupo serina; e, Grupo 3 (classe B): metalo- β -lactamases (Tabela 3).

Bush- Jacoby 2010	Bush- Jacoby 1995	Classe Molecular	Substrato	Inibição AC ou Tazo EDTA	Enzimas
1	1	С	Cefalosporinas	Não	<i>E.coli</i> AmpC
1e	NI	С	Cefalosporinas	Não	CMY-37
2 ^a	2 ^a	А	Penicilinas	Sim Não	PC-1
2b	2b	А	Penicilinas/Cefalosporinas	Sim Não	TEM-1;SHV-1
2be	2be	А	Cefalosporina Espectro ampliado	Sim Não	TEM-3;DHV-2; CTXM-15
2br	2br	А	Penicilinas	Não	TEM-30
2ber	NI	А	Cefalosporinas espectro ampliado	Não	TEM-50
2c	2c	А	Carbenecilina	Sim Não	Carb-3
2ce	NI	А	Carbenecilina/cefepima	Sim Não	RTG-4
2d	2d	D	Cloxacilina	Variável	Oxa-1; Oxa-10
2de	NI	D	Cefalosporinas espectro ampliado	Variável	Oxa-11; Oxa-15
2df	NI	D	Carbapenêmico	Variável	Oxa-23, Oxa-58
2e	2e	А	Cefalosporinas espectro ampliado	Sim Não	СерА
2f	2f	А	Carbapenêmico	Variável	KPC, IMI-1, SME-1
3ª	3	B (B1)	Carbapenêmico	Não Sim	IMP-1;VIM-1, IND-1
3b	3	B (B3) B (B2)	Carbapenêmico Carbapenêmico	Não Sim Não Sim	L1,GOB-1 CphA
NI	4	Desconhecido	Desconhecido	Desconhecido	Desconhecido

Tabela 3 - Comparação da nova classificação das β -lactamases com a classificação de 1995.

AC: àcido clavulânico; Tazo: tazobactam

São denominadas carbapenemases as β -lactamases com capacidade de hidrolisar, principalmente, os carbapenêmicos, mas isso não significa que essas enzimas não sejam capazes de hidrolisar outras classes de antibióticos. Outra característica importante é que essas enzimas não são inibidas pela maioria dos inibidores de β -lactamases (Queenan, Bush, 2007).

De acordo com suas características, essas enzimas podem ser divididas em dois grupos: aquelas que possuem em seu sítio alvo um grupamento serina, Grupo 2f, e aquelas que possuem em seu sítio alvo um átomo de zinco, Grupo 3, também denominado metalo-β-lactamase (MβL) (Queenan, Bush, 2007).

As metalo- β -lactamases possuem maior eficiência em hidrolisar os carbapenêmicos. Além disso, são capazes de hidrolisar também, penicilinas, cefalosporinas, mas, geralmente, não possuem ação contra aztreonam e são resistentes à maioria dos inibidores de β -lactamases (Livermore, 2002; Queenan, Bush, 2007). Essas enzimas necessitam de zinco em seu sítio alvo para exercer sua função hidrolítica, por isso perdem a sua atividade na presença de EDTA, um quelante de zinco e outros cátions bivalentes (Queenan, Bush, 2007).

A primeira MβL, encontrada na bactéria *Bacillus cereus,* foi descrita por Sabath, em 1966 (Sabath, Abraham, 1966). Desde então, essa classe de enzimas vem sendo identificada em várias espécies, como *Aeromonas* spp., *Stenotrophomonas maltophilia, Enterobacter cloacae, Pseudomonas aeruginosa*, entre outras (Poirel et al., 2000; Queenan, Bush, 2007; Paez et al., 2011).
Os problemas relacionados à resistência antimicrobiana em *Acinetobacter baumannii* parecem ser mais importantes no Brasil e em outros países da América Latina, quando comparados com outras regiões do mundo (Reinert et al., 2007). Estudos mostram que a prevalência de isolados resistentes aos carbapenêmicos no Brasil varia de 6% a 11% (Sader et al., 2009; Sader et al., 2005).

Várias MβLs já foram identificadas em *Acinetobacter* spp., dentre elas as mais encontradas são IMP-1 e VIM. Isolados de *Acinetobacter* spp. produtores de MβLs já foram descritos em surtos de hospitais brasileiros e em estudos nos quais foi utilizado o banco de cepas (Dalla-Costa et al., 2003).

As oxacilinases são carbapenemases do grupo 2f da classificação de Bush. Essas enzimas estão presentes em algumas cepas de *Acinetobacter* spp. e inativam, preferencialmente, os antimicrobianos carbapenêmicos e algumas cefalosporinas (Bou et al., 2000; Heritier et al., 2005; Jeon et al., 2005; Pournaras et al., 2006). Já foram descritas 121 variantes dessa classe, que se apresentam divididas em oito grupos, e quatro desses grupamentos enzimáticos já foram identificados em *Acinetobacter* spp.: OXA 23-*like*; OXA 24-*like*; OXA 51-*like*; e, OXA 58-*like* (Brown et al., 2005; Walther-Rasmussen et al., 2006; Woodford et al., 2006; Lu et al., 2009). Os membros de cada grupo compartilham mais de 95% de genes homólogos entre si (Brown et al., 2006). Em 2009, foi relatada por Higgins et al (2009) na França

uma nova classe ou variante de oxacilinase, designada Oxa-143. Essa nova variante possui uma similaridade de 88% com a sequência de aminoácidos da Oxa-40, 63% de similaridade com a Oxa-23 e 52% de similaridade com a Oxa-58 (Higgins et al. 2009).

Assim como no Brasil, surtos de *Acinetobacter* com gene *bla_{oxa-23}* foram descritos em outras partes do mundo (Queenan, Bush., 2007; Peleg et al., 2008; Boo, Crowley 2009;). A disseminação do gene *bla_{oxa-23}* pode ser explicada por sua característica em alocar-se em plasmídios, e assim facilitar sua transferência (Queenan, Bush., 2007; Peleg et al., 2008; Boo, Crowley 2009). Além de *P. aruginosa* e *A. baumannii*, outros não fermentadores passam a expressar mecanismos de resistência, tal como *S. maltophilia* com resistência à sulfa e quinolonas (Paez, 2011).

A KPC, carbapenemase pertencente ao grupo 2f, é outra βlactamase que está preocupando o mundo todo, por sua disseminação rápida por meio de plasmídio. Essa β-lactamase, foi descoberta durante o projeto de vigilância de resistência *Intensive Care Antimicrobial Resistance Epidemiology* (ICARE), em um isolado clínico de *Klebsiella pneumoniae* na Carolina do Norte, em 1996, (Yigit et al., 2001). Villegas et al. (2007) relataram o primeiro caso da enzima KPC fora da família Enterobactérias, identificado em *P. aeruginosa,* em Medellin, Colômbia. No Brasil elas já foram detectadas na região nordeste, sudeste e sul em isolados de *K. pneumonia* e *Enterobacter cloacae* (Monteiro et al., 2009; Pavez et al., 2009; Zavascki et al., 2010; Zavascki et al., 2009; D'Alincourt et al., 2010;).

O presente estudo busca avaliar *in vitro* diferentes formulações de nanoAg produzidas em dois laboratórios brasileiros. Utilizando métodos qualitativos e quantitativos para mensurar o efeito inibitório, através de testes de difusão e determinação da concentração inibitória mínima (CIM), com determinação da concentração bactericida e fungicida mínima e ensaios de tempo de morte. Além de avaliar a interferência destas nanoAg sobre a produção de biofilme. Incluindo bactérias Gram positivas, negativas e leveduras de interesse clínico. Distribuídas entre isolados sensíveis aos antimicrobianos e MR, com genes de resistência previamente estudados.

3 OBJETIVOS

3.1 Objetivo Geral

Avaliar a ação *in vitro* de diferentes nano-partículas de prata (nanoAg) sintetizadas no Brasil frente a micro-organismos sensíveis aos antimicrobianos e multirresistentes (MR), incluindo Gram positivos, Gram negativos e Candida.

3.2 Objetivos Específicos

.

- Definir a dispersão de nanoAg que apresenta melhor efeito *in vitro* contra micro-organismos sensíveis e MR.
- Avaliar o efeito de nanoAg através de halo de inibição em profundidade (agar well diffusion).
- Determinar a capacidade de inibição (CIM) e morte (CBM) bacteriana e fúngica de nanoAg.
- Avaliar diferenças na curva de morte para micro-organismos sensíveis e MR.
- Quantificar o efeito de nanoAg sobre biofilme produzido por Acinetobacter baumannii.

4 MATERIAL E MÉTODO

O estudo foi realizado no Laboratório de Investigação Médica 54 (LIM-54), da Faculdade de Medicina da Universidade de São Paulo (USP) e Instituto de Pesquisa e Desenvolvimento do Laboratório Fleury Medicina e Saúde.

As nanoAg avaliadas foram sintetizadas em diversos lotes pelo Laboratório de Tecnologia de Partículas e Processos Químicos do Centro de Processos e Produtos do Instituto de Pesquisas Tecnológicas (IPT/LPP) USP e pelo Instituto de Física da Universidade Federal de São Carlos (IFSC).

Diferentes condições de síntese foram utilizadas pelo IPT/LPP e resultaram em nanoAg com características variadas de tamanho e carga.

Testes	1º lote	2º lote	3º lote	4º lote	5º lote
Inibição superfície	х	х	Х		
Inibição profundidade			Х	Х	х
CIM	х	х	Х	Х	х
CBM			Х	Х	х
Inibição de biofilme			Х	Х	х
Morte bacteriana			Х		х

Tabela 7 – Métodos	utilizados na	a avaliação	das nanoAg	em cada	um dos	lotes
produzidos						

4.2 Micro-organismos

Foram utilizados diferentes micro-organismos nos testes com os lotes de nanoAg sintetizadas. Incluindo isolados clínicos sensíveis aos antimicrobianos e multirresistentes (MR).

Os isolados foram provenientes de banco de cepas dos laboratórios LIM-54 (FM-USP), ALERTA (UNIFESP), *American Type Culture Collection* (ATCC) e Instituto Nacional de Controle de Qualidade em Saúde (INCQS). No Anexo A, a Tabela 4 traz a relação de todos os isolados utilizados ao longo do estudo e Anexo B, Tabelas 5 e 6 os *primers* utilizados para caracterização prévia de resistência antimicrobiana.

4.3 NanoAg produzidas

Foram sintetizadas nanoAg em diferentes condições de tempo, temperatura, pH e agente redutor que resultaram em variações em tamanho e carga, totalizando 4 lotes produzidos pelo IPT e 5 lotes produzidos pelo IFSC (Tabela 8).

Origem	Lotes	Variações de síntese
IFSC	1°,2°,3°, 4° e 5°	3
	1°	7
11/001	2°	6
	3°	9
	4 ^o	4
Total		29

Tabela 8 – Número de variações de síntese em cada lote produzido pela IFSC e IPT/USP

Todas as suspensões foram produzidas a partir de 1 mM de prata (Sigma-Aldrich, St. Louis, MO, USA), resultando em solução com 108 µg/mL de nanoAg.

4.3.1 Síntese de nanoAg citrato, PVA e quitosana (IFSC)

4.3.1.1 NanoAg Citrato:

Uma solução com 30 mL de AgNO₃ (Sigma-Aldrich) a 1 mM foi aquecida até a ebulição em um balão de fundo redondo conectado a um condensador. Após atingir a temperatura de ebulição, 13 mL de uma solução de citrato de sódio (Sigma-Aldrich) 1% m/v foi adicionada sob vigorosa agitação magnética. Após alguns minutos, a solução passou de transparente para amarelo e, então, o sistema de aquecimento foi desligado.

4.3.1.2 NanoAg PVA

Foram adicionados 30 mL de uma solução 4 g/L de PVA (Sigma-Aldrich) a 30 mL de 1 mM de AgNO₃ a temperatura ambiente e sob agitação magnética. Após 10 minutos, adicionou-se 1 mL de solução 0,1 mol/L de NaBH₄ (Sigma-Aldrich) resfriado. A coloração do sistema passou de transparente para amarelo.

4.3.1.3. NanoAg Quitosana

Foram adicionados 30 mL de uma solução 1 g/L de Quitosana (Sigma-Aldrich) a 30 mL de uma solução 1 mM de AgNO₃ a temperatura ambiente e sob agitação magnética. Após 10 minutos, adicionou-se 1 mL de uma solução 0,1 mol/L de NaBH₄ (Sigma-Aldrich) resfriado. A coloração do sistema passou de transparente para amarelo.

4.3.2 Caracterização de nanoAg (IFSC)

Os sistemas foram caracterizados por Espectroscopia no Ultravioleta-visível (HITACHI, U-2900) evidenciando a banda plasmonica de superfície em 400 nm, característica das nanopartículas (Figura 4), tamanho através de *Dynamic light Scattering* (Zetasizer Nano, ZS90), (Figura 5), carga com verificação do potencial zeta (Zetasizer Nano, ZS90), (Tabela 9). Definindo as seguintes características: nanoAg Citrato: carga negativa, tamanho aproximado de 5 nm; quitosana: positiva, 10 nm e PVA: neutra, 5 nm.

Figura 4 – Espectroscopia no ultravioleta visível para nanoAg citrato, quitosana e PVA

Figura 5 – Tamanho das nanopartículas demonstrado por *Dynamic light Scattering* (DLS)

Tabela 9 – Potencial zeta de nanoAg citrato, quitosana e PVA									
	Amostra Potencial Ze								
	nanoAG – Citrato	- 48.4 Mv							
	nanoAG – Quitosano	+ 41.1 mV							
	nanoAG – PVA	- 17.0 mV							

4.3.3. Controles

Foram utilizados como controle de ação da prata metálica Sulfadiazina de prata (*United States Pharmacopeia, USP*) e Nitrato de prata (Sigma-Aldrich) em concentração inicial de 54 μg/mL e como controle de nanoAg, a dispersão comercial (Sigma-Aldrich, cod. 730815), com partículas de 60 nm, em concentração de 20 μg/mL.

4.4 Inibição do crescimento por difusão

O teste foi realizado em paralelo através de dois modelos. O primeiro em superfície (Sadeghi et al., 2010) e o segundo em profundidade (*agar well diffusion,* AWD) (Kalishwaralal et al., 2010; Pirnay et al., 2003). Em ambos, primeiramente os micro-organismos utilizados foram aplicados com zaragatoa estéril em meio sólido Mueller Hinton Agar (MHA) (MHA, Biomerieux, Marcy L'Etoile, France) e MH agar com 5% de sangue de carneiro (MHA sangue), partindo de uma suspensão em escala 0,5 de McFarland.

Para o teste de inibição do crescimento em superfície foram instilados 50 μ L das diferentes nanoAg e controles na superfície dos meios MHA (Biomerieux) e MHA sangue (Difco, cod. 275730). Após evaporação total as placas foram incubadas a 36±1°C, por 24 horas.

Para o teste de inibição do crescimento em profundidade foram produzidos, assepticamente, no MHA e MHA sangue furos com 5 mm de

diâmetro e os espaços preenchidos com 50 μL das diferentes nanoAg e controles. Após evaporação total as placas foram incubadas a 36<u>+</u>1°C, por 24 horas.

O método de difusão, em superfície ou em profundidade (AWD), pode ser utilizado como triagem para detectar formulações com maior atividade (Pirnay et al., 2003). Sendo a potência diretamente proporcional ao tamanho do halo de inibição formado, medido em milímetros. Algumas vezes, observou-se apenas a inibição parcial no ponto de aplicação da prata no teste em superfície. Para este caso a quantificação foi definida somente pela porcentagem de inibição na área de aplicação, e não pelo tamanho do halo.

4.5 Determinação da Concentração Inibitória Mínima (CIM)

As nanoAg e controles avaliados foram diluídos de maneira seriada, logarítmica em base 2 (log₂), resultando em painel de microdiluição na faixa de 1:4 a 1:256,em MHB II cátion ajustado (BBL, Sparks, MD, USA) (2x). Acrescidos de suspensões microbianas com 10⁴ufc em MHB, segundo metodologia do *Clinical and Laboratory Standards Institute* (CLSI), documento M07-A9 (2012). A concentração original de 108 µg/ml resultou em concentrações seriadas de 27 µg/ml, 13,5 µg/ml, 6,25 µg/ml e 3,375 µg/ml para as preparações de nanoparticulas IPT e IFSC. Os controles nitrato de prata e sulfadiazina de prata partiram da concentração original de 54 µg/ml e resultaram em diluições seriadas iniciadas em 13,5 µg/ml. Por fim, a

nanopartícula comercial (Sigma) com concentração original de 20 μg/ml, e concentração inicial de 5 μg/ml na diluição seriada (Tabela 10).

Formulação	nanoAg	Sulfadiazina Ag Nitrato Ag	NanoAg Sigma
Concentração original	108 mg/ml	54 mg/ml	20 mg/ml
	<u>></u> 54 (<u><</u> 1:2)	<u>></u> 27 (<u><</u> 1:2)	<u>>10 (<1:2)</u>
Diluição	27 (1:4)	13,5 (1:4)	5 (1:4)
seriada e	13,5 (1:8)	6,7 (1:8)	2,5 (1:8)
concentrações	6,7 (1:16)	3,4 (1:16)	1,25 (1:16)
alcançadas	3,4 (1:32)	1,6 (1:32)	0,6 (1:32)
	1,6 (1:64)	0,8 (1:64)	0,3 (1:64)
	0,8 (1:128)	0,4 (1:128)	0,15 (1:128)
	0,4 (1:256)	0,2 (1:256)	0,7 (1:256)

Tabela 10 – Concentração original e concentrações alcançadas após diluição seriada com nanoAg, sulfadiazina de Ag, Nitrato de Ag e nanoAg Sigma

Para avaliar possível interferência em meio enriquecido, os testes foram realizados de maneira pareadas em caldo Mueller Hinton cátion ajustado (MHII) e MHII com 1,25% de sangue de carneiro.

Incubadas por 16 a 18 horas, as placas foram lidas visualmente com luz transmitida observando-se presença ou ausência de turvação. Para avaliar a reprodutibilidade do método alguns testes foram realizados em triplicata por amostragem, liberando o lote sempre que os resultados foram reproduzidos.

4.6 Determinação da concentração bactericida mínima (CBM)

Após leitura da CIM todos os poços sem turvação visível foram plaqueados em meio sólido de MHA com 5% de sangue, ou MHA, e incubados por 16 a 18 horas. Foi realizada a leitura visual das placas com luz refletida, observando-se presença ou ausência de crescimento bacteriano e fúngico.

A concentração bactericida e fungicida mínima foi a menor concentração com ausência de crescimento após repique em meio sólido dos poços livres de turvação na realização da CIM.

4.7 Determinação do tempo de morte (time kill)

A dinâmica do efeito inibitório frente às nanoAg foi avaliada através da determinação do tempo de morte microbiana, modificado de Hindler, 1992.

Uma vez definia a CIM das combinações NanoAg x microorganismo foram montados tubos contento 10 mL de caldo MHB II e 10 mL de caldo MHB II com 5% de sangue de carneiro, acrescidos de nanoAg em concentração final de 1xCIM da nanoAg e 10^5 ufc/mL de cada microorganismo. Para o tubo controle, o volume de nanoAg foi substituído por MHB II. Os tubos foram incubados a $36\pm1^{\circ}$ C e o número de células viáveis quantificado em MHA durante cinco intervalos de tempo programados. Sendo Tempo 0, T3, T6, T12 e T24 horas. Em cada tempo, 100 µL do caldo foram diluídos de 10^{-2} a 10^{-5} em MHB II e semeados em placas de MHA. Também foram semeadas alíquotas de 100 µL não diluídas (10^{-1}) e 1mL em cada tempo para quantificar baixas contagens (< 10^2 ufc/mL). Sendo o resultado final foi obtido pela média de quatro diluições (Leite *et al.*, 2007, Giamarellos-Bourboulis *et al.*, 1997).

O número de ufc viáveis em cada tempo foi plotado em gráfico definindo o perfil do tempo de morte, comparado à curva do controle.

4.8 Teste de inibição de biofilme com cristal violeta

Foi utilizado método descrito por Kalishwaralal *et al.* (2010). Placas de 96 poços com fundo chato foram preenchidas com 180 μ L de caldo BHI. Adicionado 10 μ L de nanoAg e 10 μ L do inóculo microbiano a 0,5 de McFarland. Como controle positivo, alguns poços receberam somente caldo BHI e micro-organismos. Como controle negativo, alguns receberam somente caldo e nanoAg. Os volumes faltantes foram completados com 10 μ L de caldo BHI. Foram preparados controles positivos para cada um dos microorganismos e controles negativos para todas as nanoAg e controles de prata.

As placas foram incubadas por 16 a 18 horas a $35\pm1^{\circ}$ C, após este período foram esvaziadas e lavadas por 3x com 200 µL de tampão PBS, pH 7,2 para remover toda a forma planctônica e deixadas para secar em posição invertida. Na sequencia, as células aderentes, sesseis, foram submetidas a fixação pelo calor, a 60°C, por uma hora.

Após este período foi adicionado acetato de sódio a 2% por 20 minutos. As placas permaneceram por 16 a 18 horas a temperatura ambiente e foram coradas com 150 μ L de cristal violeta 0,1%, por 15 minutos, a temperatura ambiente. Depois de aspirado o corante, as placas foram lavadas com água ultra pura até retirada de todo o excesso de corante. Ao secar em temperatura ambiente, receberam 150 μ L de etanol 95% por 30 minutos. As placas foram tampadas para evitar evaporação e a densidade ótica (DO) de testes e controles avaliada em 570 nm (BEP III Siemens *Healthcare Diagnostics*, Alemanha).

Em paralelo ao teste com incubação das nanoAg por 16 a 18 horas, em um segundo teste foi avaliada a inibição de biofilme com incubação das nanoAg por 2 horas. Todo o restante do experimento seguiu o mesmo protocolo.

Considerando que a concentração final de algumas nanoAg para o teste de inibição de biofilme ficou acima da CIM, também foram feitos testes com as nanoAg diluídas a 0,27 µg/ml com 16 a 18 horas e com 2 horas de incubação (6 a 12 vezes inferior aos valores de CIM).

Para curva de calibração foi montada uma série de violeta de genciana 0,1% em etanol 95% nas seguintes proporções: 0%, 2%, 4%, 6%, 8%, 10%, 20%, 30%, 40% e assim sucessivamente até 100% de violeta 0,1%.

Para definir o potencial inibitório das nanoAg foram avaliadas as DO dos controles positivos, negativos e testes. A precisão dos resultados foi observada através da média e desvio padrão das replicatas. Os resultados foram comparados à equação da reta obtida na curva de calibração.

4.9 Aprovação pelo Comitê de Ética em Pesquisa

O presente estudo foi analisado e aprovado pelo Comitê de Ética em Pesquisa (CEP) da FM/USP em sessão acontecida em 15.12.2010, sob o número de protocolo de pesquisa 378/10 (Apendice A).

4.10 Auxílio CAPES

Este projeto contou com financiamento fornecido CAPES, com a concessão de duas bolsas de doutorado.

5 RESULTADOS

5.1 Micro-organismos

Foram utilizados micro-organismos sensíveis aos antimicrobianos e MR. A Tabela 11 descreve todos os isolados utilizados ao longo dos testes. O Anexo A, Tabela 4 e Anexo B, Tabelas 5 e 6 trazem informações sobre a caracterização molecular realizada com as cepas MR em estudos prévios. Entre os MR, foram estudados A. baumannii resistente aos carbapenêmicos e Polimixina B (genes oxa-23 e oxa-143), e sensíveis, P. aeruginosa resistente aos carbapenêmicos (genes codificadores de carbapenemases SPM, VIM e GES) e sensíveis, Enterobactérias resistentes aos carbapenêmicos (genes codificadores de ESBL e KPC) e sensíveis, S. maltophilia resistente a sufametoxazol e levofoxacino (genes codificadores sul1 e sul2 e QNR), S. aureus resistente à oxacilina (genes mecA, incluindo cepas com diferentes SCCmec) e sesíveis e Enterococcus sp. resistente à vancomicina (gene vanA) e sensíveis. Além de Candida albicans, C. tropicalis e C. parapsilosis. Os isolados pertencem a diferentes clones, caracterizados anteriormente por eletroforese de campo pulsado (Pulsed field gel *electrophoresis*, PFGE)

	Total de cepas avaliadas (n)
A. baumannii MR	12
A. baumannii Sensível	5
P. aeruainosa MR	5
P. aeruginosa Sensível	8
Eterobactérias MR	12
Enterobactérias Sensíveis	9
	2
S. maltophilia MR	2
S. aureus Oxacilina Resistente	15
S. aureus Oxacilina Sensível	9
Enterococcus sp. Vancomicina Resistente	8
Enterococcus sp. Vancomicina Sensível	6
C. albicans	12
C. tropicalis	5
C. parapsilosis	2
	F 4
Iotal bactérias MR	54
Total bactérias Sensíveis	37
Total de bactérias	91
Total fungos	19
TOTAL isolados	110

Tabela 11 – Micro-organismos utilizados nos testes com nanoAg produzidas pelo IPT/USP e IFSC

Com o objetivo de triar as suspensões com maior potência, os primeiros lotes de nanoAg do IPT/USP e IFSC foram testados contra um número menor de isolados, conforme descrito a seguir. Para o 5º lote de nanoAg IFSC foram testados 107 isolados.

5.2 NanoAg produzidas

Os lotes de nanoAg IFSC foram produzidos sempre com as mesmas características de síntese. Enquanto os IPT/USP foram produzidos com variações de síntese. Ao todo foram avaliadas 29 nanoAg com diferentes características de síntese (Tabela 12).

Origem	Envio	Características de síntese
IFSC	1°,2°,3°, 4°e	pH 7 citrato
	5°	pH 6 quitosano
		pH 7 PVA
IPT	1°	20 min, 85°C, pH 8,0
		30 min, 85°C, pH 8,0
		30 min, 85°C, pH 8,0
		40 min, 85°C, pH 8,0
		40 min, 85°C, pH 8,0
		3 min, 25°C, pH 8,0
		3 min, 25°C, pH 8,0
	2°	25 min, 85°C, pH 8,0
		50 min, 85°C, pH 8,0
		20 min, 90°C, pH 8,0
		50 min, 90°C, pH 8,0
		20 min, 95°C, pH 8,0
		50 min, 95°C, pH 8,0
	3°	10 min, 90°C, pH 9,0
		20 min, 90°C, pH 9,0
		40 min, 90°C, pH 9,0
		60 min, 90°C, pH 9,0
		10 min, 90°C, pH 7,0
		20 min, 90°C, pH 7,0
		40 min, 90°C, pH 7,0
		60 min, 90°C, pH 7,0
		90 min, 90°C, pH 7,0
	4°	60 min, 85°C, pH 7,0 centrifugado
		60 min, 85°C, pH 7,0 não centrifugado
		40 min, 90°C, pH 7,0 centrifugado
		40 min, 90°C, pH 7,0 não centrifugado

 Tabela 12 – Laboratório de origem e características de síntese das nanoAg avaliadas durante o estudo

Cargas: citrato, negativa; quitosana, positiva; PVA, neutra

5.3 Inibição do crescimento por difusão

5.3.1 Inibição do crescimento por difusão em superfície

O três primeiros lotes de nanoAg produzidos foram testados quanto a inibição do crescimento em MHA frente as cepas de *S. aureus* ATCC 29213 e *P. aeruginosa* ATCC 27853. O terceiro lote IFSC foi testado ainda contra *S. aureus* INCQS 039 e *P. aerugionsa* INCQS 230. O 3º lote IPT foi testado também em MHA 5% sangue e incluiu *S. epidermidis* INCQS 198, *C. albicans* INCQS 40175 e *C. parapsilosis* INCQS 40280. Para o 4º lote (IPT/IFSC) foram avaliados 18 isolados e para o 5º (IFSC) 107 isolados.

A Tabela 13 ilustra os diferentes resultados em meio sólido MHA com as nanoAg avaliadas. Para os testes do 3º lote (IPT), foi possível verificar que na presença de sangue, os halos de inibição foram sistematicamente menores em todos os testes. Resultando na ausência de inibição para *S. aureus* ATCC 29213 e apenas pequena inibição para *P. aeruginosa* ATCC 27853 (Figura 6).

Tabela 13 - Inibição de crescimento em superfície com S. aureus ATCC 29213, S. aureus INCQS 039, P. aeruginosa ATCC 27853 e P. aeruginosa INCQS 230 em meio sólido MHA e MHA sangue 5%, com 1º, 2º e 3º lotes de nanoAg IFSC e IPT

	Inibição (%) Halo (mm)								
	S. au	reus	S. au	reus	P. aeruo	inosa	P. aeruaii	nosa	
	ATCC 2	29213	INCQ	S 039	ATCC 2	7853	INCOS 2	30	
IFSC 1º lote		MH		MH		MH		MH	
	IVINA	Sg	IVINA	Sg	IVINA	Sg	IVINA	Sg	
Citrato	0% ^a				0%				
Quitosana	90%				90%				
PVA	0%				0%				
IFSC 2° lote									
Citrato	0%				0%				
Quitosana	90%				0%				
PVA	0%				0%				
IFSC 3° lote									
Citrato	25%		14mm		10 mm*		10 mm		
Quitosana	100%		9 mm		0%		0%		
PVA	0%		9 mm		50%		50%		
IPT 1° lote									
20', 85°C, pH 8,0	90%				10 mm ^b				
30', 85°C, pH 8,0	90%				11 mm				
30', 85°C, pH 8,0	90%				10 mm				
40', 85°C, pH 8,0	50%				09 mm				
40', 85°C, pH 8,0	40%				08 mm				
3', 25°C, pH 8,0	0%b				08 mm				
<u>3', 25°C, pH 8,0</u>	10 mm				11 mm				
IPT 2° lote									
25', 85°C, pH 8,0	50 %				0%				
50', 85°C, pH 8,0	50 %				0%				
20', 90°C, pH 8,0	50 %				0%				
50', 90°C, pH 8,0	0 %				0%				
20', 95°C, pH 8,0	40 %				30 %				
<u>50', 95°C, pH 8,0</u>	20 %				0%				
IPT 3° lote									
10', 90°C, pH 9,0	- 0	-	-	-	-	-	-	-	
20', 90°C, pH 9,0	20%	0%	60%	0%	20%	0%	30%	0%	
40', 90°C, pH 9,0	0%	0%	40%	0%	10%	0%	0%	0%	
60', 90°C, pH 9,0	10%	0%	20%	0%	10%	0%	0%	0%	
10', 90°C, pH 7,0	20%	0%	30%	0%	0% 50%		90%	0%	
20 [°] , 90 [°] C, pH 7,0	50%	0%	50%	0%	50%	0%	90%	0%	
40 [°] , 90 [°] C, pH 7,0	50%	0%	/0%	0%	60%	0%	90%	0%	
60°, 90°C, pH 7,0	30%	0%	60%	0%	60%	0%	70%	0%	
90′, 90°C, pH 7,0	20%	0%	0%	0%	10%	0%	30%	0%	

^a halos registrados em % indicam inibição parcial somente no ponto de aplicação da nanoAG

^b Halos registrados em mm indicam 100% de inibição no ponto de aplicação e formação de halo medido em mm

^c Material acidentado, não foi possível avaliar a inibição de crescimento

Figura 6. Variações na inibição do crescimento em superfície para *P. aeruginosa* ATCC 27853 e *S. aureus* ATCC 29213 na presença de MHA e MHA sangue 5%. Com nanoAg 3º lote IPT

5.3.2 Inibição do crescimento por difusão em profundidade

De acordo com o método de AWD (Pirnay et al., 2003), foram testados o 3º lote e 4º lote das nanoAg IFSC e IPT e o 5º lote IFSC (Tabela 14). Na Figura 7 é possível observar a redução no tamanho do halo de inibição para *P. aeruginsa* no agar MHA sague comparado ao crescimento no MHA.

 Tabela 14 Inibição por difusão em profundidade contra S. aureus ATCC 29213, P. aeruginosa ATCC 27853 e P. aeruginosa INCQS 230, S. epidermidis INCQS 198, C. albicans INCQS 40175 e C. parapsilosis INCQS 40280 em meio sólido MHA e MHA sangue 5% com 3º lote de nanoAg IFSC e IPT

	S. aureus ATCC 29213		P. aeruginosa	ATCC 27853	P.aeruginosa	INCQS 230	S. epidermidis	INCQS 198	C. albicans	INCQS 40175	C. Daransilosis	INCQS 40280
3º lote IFSC	MHA	MH- Sg	MHA	MH- Sg	MHA	MH- Sg	MHA	MH- Sg	MHA	MH- Sg	MHA	MH- Sg
Citrato	14	0	20	0	12	0						
Quitosana	0	0	16	0	10	0						
PVA	0	0	10	0	0	0						
3° lote IPT												
10min 90°C, pH9,0	-**	-	-	-			-	-	-	-	-	-
20min 90°C, pH9,0	13	13	14	0			3	0	9	14	10	19
40min 90°C, pH9,0	0	0	0	0			0	0	0	0	0	0
60min 90°C, pH9,0	0	0	0	0			0	0	0	0	0	0
10min 90°C, pH7,0	15	16	15	10			15	0	13	18	15	20
20min 90°C, pH7,0	15	15	15	13			17	0	15	18	15	20
40min 90°C, pH7,0	15	13	15	12			18	0	15	16	13	17
60min 90°C, pH7,0	14	13	15	11			15	0	12	14	14	17
90min 90°C, pH7,0	10	12	12	0			0	0	0	0	0	16

**Material acidentado, não foi possível avaliar a inibição de crescimento

Figura 7. Variações na inibição por difusão em profundidade com nanoAg do 3º lote IFSC para *P. aeruginosa* INCQS 230 e 3º lote IPT para *P. aeruginosa* ATCC 27853 em agar MHA e MHA sangue 5%

A síntese das nanoAg do 4º lote produzidas pela IFSC as mesmas características de síntese para citrato, quitosana e PVA. A síntese das nanoAg IPT tiveram a inclusão de uma nova variável no seu preparo, a centrifugação (Gráfico 1). Com exceção de 3 isolados frente a quitosana (com halos de 10, 12 e 14 mm); uma amostra de nanoAg 60', 85°C, pH 7,0 centrifugado (10 mm) e dois isolados frente a nanoAg 60', 85°C, pH 7,0 não centrifugado (12 e 14 mm), todos os demais compostos de prata mostraram ausência de inibição em MHA 5% de sangue (< 6mm).

Gráfico 1 – Distribuição cumulativa da medida dos halos de inibição obtidos por difusão em profundidade frente isolados clínicos, cepas ATCC e INCQS em meio MHA para o 4º lote de nanoAg* IFSC e IPT

* Foram plotados somente resultados > 6mm

Os testes com o 5º lote foram realizados somente com

amostras de nanoAg IFSC frente a isolados selecionados de *A. baumannii* MR (n = 3) e *A. baumannii* sensível (n = 5), Enterobacter MR (n = 2) e sensível (n = 3), *P. aeruginosa* MR (n = 3) e sensível (n = 3), *S. maltophilia* MR (n = 2), *Staphylococcus* spp. MRSA (n = 3) e sensível (n = 4), *Enterococcus* sp. VRE (n = 3) e VSE (n = 3) e *Candida* spp. (n = 7) (Gráfico 2).

Gráfico 2 – Distribuição cumulativa dos halos de inibição (mm) obtidos por difusão em profundidade frente isolados MR, sensíveis e candida em meio sólido MHA e MHA sangue 5%, para o 5º lote de nanoAg IFSC

Todos os compostos de prata apresentaram ausência de inibição em MHA 5% (< 6mm) frente aos isolados testados

Foram plotados somente halos de inibição > 6mm

5.4 Determinação da concentração inibitória mínima (CIM)

A determinação da CIM foi realizada contra diferentes microorganismos e caldos, tais como MHB II, MHB II sangue 1,25% e TSB.

Para o 1º, 2º e 3º lotes, as CIM variaram de acordo com

características de síntese de cada NanoAg e os resultados foram reprodutíveis

independente do caldo utilizado, MHB ou TSB (resultados não detalhados),

mantendo valores mais baixos contra *P. aeruginosa* quando comparados aos de *S. aureus*. Na presença de sangue estes caldos apresentaram CIM sistematicamente mais elevadas quando comparadas às obtidas sem sangue, conforme ilustram no Anexo C, as Tabelas 15 e 16.

No Anexo C, Tabela 17 estão detalhados os valores de CIM obtidos com o 4º lote de nanoAg IFSC e IPT. Testado frente a 38 microorganismos MR e 3 sensíveis (divididos em 19 Gram positivos e 22 Gram negativos) além de 12 *Candida* spp., totalizando 53 isolados.

A determinação da CIM50 estratificada entre Gram positivos, negativos e leveduras permite observar o maior efeito inibitório de nanoAg citrato e das formulações não centrifugadas sobre Gram negativo, enquanto nanoAg quitosana e as formulações não centrifugadas apresentaram maior efeito sobre Gram positivos. Para leveduras, repetiu-se o maior efeito para as formulações não centrifugadas (Gráfico 3).

Gráfico 3 – Resultados de CIM50 (em µg/ml) para o 4º lote de nanoAg IFSC e IPT, frente a diversos micro-organismos Gram positivos, negativos e leveduras.

O Anexo C, Tabela 18, traz os resultados para o 5º lote de nanoAg IFSC. Para este lote não foram utilizadas nanoAg IPT. Foram testados 107 isolados, sendo 54 MR e 36 sensíveis além de 17 isolados de candida.

Com base nestes resultados, o Gráfico 4 ilustra a distribuição das CIM50 e CIM90 para populações bacterianas resistentes e sensíveis, permitindo comparar o potencial inibitório frente as duas populações.

Gráfico 4 - Distribuição da Concentração Inibitória mínima 50 e 90 (CIM50 e CIM90) de nanoAg IFSC 5º lote estratificados entre isolados bacterianos sensíveis e resistentes

> * para a nano Sima 60 nao foi possível estabelecer a CIM e CIM90 por que todos os resultados ficaram acima da maior concentração testada (MIC > 10 μg/ml)

Complementando os resultados de CIM50 e CIM90 o Gráfico 5

traz a distribuição da CIM para as populações sensíveis e resistentes

avaliadas.

Gráfico 5 - Distribuição proporcional de isolados bacterianos MR e sensíveis e Candida spp. frente às nanoAg do 5º lote IFSC e controles testados

Para ilustrar a questão da interferência do meio enriquecido com sangue no efeito dos compostos de prata avaliados, o Anexo C, Figura 8, traz o comparativo gráfico entre CIM em MHB II e CIM em MHBII Sg 1,25%, para isolados MR, sensíveis e Candidas, testados com as nanoAg 5º lote IFSC e controles.

5.5 Determinação da concentração bactericida mínima (CBM)

O efeito inibitório (CIM) foi complementado pela determinação da CBM. Realizada de acordo com documento CLSI, M7-A9 (2012) auxiliou na classificação do efeito de cada nanoAg como bacteriostático ou bactericida (Anexo C, Tabelas 19 e 20).

No Anexo C, a Tabela 21 apresenta os resultados de CBM para o 5º lote de nanoAg IFSC frente a micro-organismos sensíveis e MR. Estes resultados quando relacionados às CIM permitem definir o modelo de ação da prata sobre os micro-organimos entre bactericida/fungicida ou bacteriostático/fungistático

O Gráfico 6 revela o efeito antimicrobiano estratificado entre Gram positivos, negativos e leveduras nos modelos de morte microbiana ou inibição do crescimento. Fica evidente o maior efeito bactericida/fungicida de nanoAg citrato, nanoAg quitosana e nitrato de prata enquanto nanoAg PVA e sulfadiazina de Ag apresentaram efeito bactericida detectável somente frente Gram negativos.

Gráfico 6 – Modelo de efeito inibitório estratificado em morte ou inibição celular (CBM/CIM) entre Gram negativo, positivo e leveduras para o 5º lote de nanoAg IFSC

No Gráfico 7 foi realizada a mesma estratificação da relação CBM/CIM, tomando como base a característica de resistência antimicrobiana. É possível evidenciar a equivalência de efeito bactericida tanto sobre multiresistentes quanto sobre micro-organismos sensíveis.

Gráfico 7 – Modelo de efeito inibitório estratificado em morte ou inibição celular (CBM/CIM) entre micro-organismos multirresistentes e sensíveis para o 5º lote de nanoAg IFSC

O Anexo C, Figura 9, traz o comparativo gráfico entre CIM e CBM em MHB II para o 5º lote de nanoAg IFSC e controles, frente a 107 isolados MR, sensíveis e Candidas. Enquanto o Anexo C, Figura 10, ilustra o comparativo entre CIM e CBM em MHII Sg 1,25%.

5.6 Determinação do tempo de morte (time kill)

Com o tempo de morte microbiana foi possível observar a dinâmica de inibição das nanoAg frente aos diferentes micro-organismos sensíveis e MR. De acordo com as respectivas curvas (Giamarellos-Bourboulis et al. 1997). Foram avaliados *S. aureus* MRSA (MO1), *S. aureus* MSSA (MSSA3) (Figura 11), *Enterobacter* sp MR (K3) e Enterobacteria sensível (ENB3) (Figura 12).

Para as cepas com CIM indeterminada, ou seja, acima da maior concentração testada (\geq 54, \geq 27,5 e \geq 10) não foi avliada a curva de morte. Com exceção dos isolados MRSA MO1 frente a nanoAg Sigma 60 nm, e MSSA 3 a PVA e nanoAg Sigma 60. Estes foram deliberadamente testados para evidenciar o traçado das curvas em condições subinibitórias

Figura 11 –Comparação entre o tempo de morte para *S. aureus* MRSA (MO1) e *S. aureus* MSSA03, para o 5º lote de nanoAg IFSC e controles. Para MRSA (MO1) foi realizada uma curva comparativa com caldo MHII e MHII sangue 1,25% MHB II CTL-controle negativo, somente caldo; MHB II – teste

MHB II CTL SGE-controle negativo, somente caldo e sangue

MHB II SGE-micro-organismos e caldo enriquecido com sangue;

Figura 12 -Comparação entre o tempo de morte para *K. pneumoniae* (K3) MR e Enterobacteria (ENB3) sensível, para o 5º lote de nanoAg IFSC e controles.

MHB II CTL-controle negativo, somente caldo; MHB II - teste;

5.7 Teste de inibição de biofilme com violeta

Foram obtidas as DO relativas ao crescimento de *A. baumannii* Sensível (AS1, AS2, AS3, AS4 e AS5) na presença das nanoAg e controles em dois tempos de incubação, para avaliar a inibição (após 16 a 18 horas de incubação com a prata) e o descolamento do biofilme formado (após 2 horas de incubação com a prata).

Os resultados expressam a porcentagem de inibição na presença de prata, comparada aos controles positivos e negativos de cada micro-organismo. A Figura 13 ilustra a interpretação dos resultados possíveis para inibição/descolamento de biofilme. Resultados entre 0 e 100% indicam a porcentagem de redução do biofilme aderido na placa de microdiluição. Resultados > 100% são resultado de testes com a DO inferior à DO do branco. Enquanto que resultados < 0% indicam resultados de DO de testes superiores à DO do controle positivo.

Figura 13 – Interpretação dos resultados possíveis de inibição/descolamento de biofilme.

Uma vez que a concentração final de nanoAg no teste de inibição ficou superior à CIM para os isolados AS1 e AS2, os testes foram repetidos com pré-diluição das nanoAg e controles, alcançando concentração final abaixo da CIM para todos os micro-organismos (0,27 µg/ml).

Os resultados foram calculados com a média de 6 a 8 réplicas para os testes e 12 para os controles. A curva de calibração com solução de violeta de genciana foi utilizada para definir a porcentagem de redução do biofilme e resultou na equação y = 0,0404x + 0,01. Onde: y= densidade ótica e x= concentração de violeta de genciana 0,1% (Figura 14).

Foi possível visualizar efeitos inibitórios próximos a 100% com as nanoAg citrato e quitosana (Gráfico 8) e efeito de descolamento do biofilme em graus variados com todos os compostos de prata (Gráfico 9). Após diluição para 0,27 μg/ml, apenas nanoAg Citrato manteve o potencial de inibição em torno de 70% com 16 a 18 horas de incubação e 20 a 30% de descolamento do biofilme após 2 horas.

Figura 14 – Curva de calibração com a DO de violeta de genciana 0,1% em concentrações de 0 a 100% e 0 a 10%

A. baumannii Sensível (AS1, AS2, AS3, AS4 e AS5) 16 a 18 h

Gráfico 8 – Porcentagem de inibição do biofilme após incubação de 16 a 18 horas com nanoAg e controles, frente a isolados de *A. baumannii* sensíveis

A. baumannii Sensível (AS5)

A. baumannii Sensível (AS1, AS2, AS3, AS4 e AS5) 2 h

Gráfico 9 – Porcentagem de inibição do biofilme após incubação de 2 horas com nanoAg e controles, frente a isolados de *A. baumannii* sensíveis

6 DISCUSSÃO

6 Discussão

Há séculos utilizamos derivados de prata com o objetivo de tratamento antimicrobiano (Nowack et al., 2011) e desde o final do século IX no formato nanoparticulado. A utilização da nanotecnologia é capaz de potencializar características de metais encontrados nas formas tradicionais (Schacht et al., 2013). A elevada proporção entre superfície/volume permite que aconteça o contato direto entre estrutura alvo e nanopartícula (Reijnders, 2006; Hsin et al., 2008). Entre os metais utilizados a prata apresenta vantagens devido ao seu maior potencial antimicrobiano (Zhao and Stevens, 1998). Embora não esteja totalmente elucidado, o mecanismo de ação das nanoAg parece basear-se em alvos principais, tais como desequilíbrio da integridade de parede e membrana celular, interferência na duplicação do DNA e ligação com elementos de enxofre e fósforo presentes em proteínas. Uma ação complementar e inespecífica seria ainda a produção de radicais livres (Schacht et al., 2013; Chaloupka et al., 2010; Morones et al., 2005).

No presente estudo foram utilizadas bactérias Gram positivas. Gram negativas e leveduras provenientes de amostras clínicas de pacientes com complicações infecciosas relacionadas à assistência à saúde. Um ponto interessante se comparado à literatura foi a inclusão de isolados clínicos MR com genes de resistência previamente estudados, pareados com isolados sensíveis e amostras de banco de cultura tais como ATCC e INCQS. Considerando *A. baumannii, P. aeruginosa*, Enterobactérias, *S. maltophilia*, *S. aureus* e *Enterococcus* sp.. Além de *C. albicans*, *C.tropicalis* e *C.parapsilosis*, totalizaram mais de uma centena de isolados, o que reforça a representatividade dos resultados (Anexo A, Tabela 4).

Atualmente não há recomendação formal sobre como avaliar a eficácia de nanoAg *in vitro*. Os estudos utilizam métodos de difusão (Pirnay et al., 2003) em meio sólido e determinação de CIM e CBM de acordo com recomendação do documento CLSI vigente (por exemplo: CLSI M7-A9, 2012). Entretanto, não existe correlação padronizada entre os resultados *in vitro* e tampouco entre resistência e sensibilidade *in vivo*, como acontece tradicionalmente com antimicrobianos e antifúngicos (Trott et all. 2007). Buscando enriquecer esta avaliação, foram incorporados métodos que quantificam a inibição de biofilme e o estudo do tempo de morte bacteriana e fúngica.

O método de difusão, em superfície ou em profundidade (AWD), foi utilizado como triagem para detectar formulações com maior atividade (Pirnay et al., 2003) em função da sua simplicidade de execução. Sendo a potência do antimicrobiano diretamente proporcional ao tamanho do halo de inibição formado, medido em milímetros. Entretanto, os resultados obtidos em milímetros apresentam menor acurácia quando comparados aos obtidos por microdiluição, em µg/ml. Na amostra estudada foi possível verificar correlação entre os resultados dos dois métodos para algumas nanAg, por exemplo, com as nanoAg IFSC 3º lote frente a *S. aureus* ATCC 29213, nanoAg quitosana e PVA para *P. aeruginosa* ATCC 27853. Com relação ao efeito inibitório associado à presença de sangue, as nanoAg produzidas no 3º lote

IPT apresentaram a menor interferência, tanto nos testes de difusão quanto de CIM.

O Gráfico 1 ilustrou as diferenças entre as nanoAg sintetizadas no 4º lote, com predomínio de halos na faixa de 17 mm para nanoAg quitosana e 16 mm para nano IPT 60', 85°C, pH 7,0 não centrifugado. Com exceção de três isolados para quitosana (com halos de 10, 12 e 14 mm); uma amostra para nanoAg 60', 85°C, pH 7,0 centrifugado (10 mm) e duas amostras para 60', 85°C, pH 7,0 não centrifugado (12 e 14 mm), todos os demais compostos de prata deste lote apresentaram ausência de halo em MHA sangue 5% (< 6 mm).

Na medida em que a resistência aos antimicrobianos se mostra como um problema médico mundial e que reduz drasticamente as possibilidades terapêuticas, aumentam as taxas de mortalidade e morbidade, tempo de internação e custos de tratamento, assim o desenvolvimento de novos produtos e novas aplicações vêm sendo estimuladas (Humberto et al.,2010). Considerando que nanoAg atua sinergicamente em alvos distintos espera-se que não haja interferência com mecanismos de resistência antimicrobiana habituais. A ausência de uma distribuição bimodal nos Gráficos 1 e 2 vão ao encontro desta afirmação. A homogeneidade entre os halos obtidos frente a um grupo de micro-organismos sensíveis e resistentes evidenciou que a presença de genes de resistência antimicrobiana não foi uma variável a ser considerada para o efeito das nanoAg. Inclusive, para nanoAg quitosana os halos obtidos foram maiores para cepas MR quando comparados às cepas sensíveis. Os resultados de CIM para nanoAg quitosana IFSC entre os três primeiros lotes apresentaram maior reprodutibilidade, variando apenas \pm uma diluição. Enquanto citrato e PVA oscilaram entre duas ou mais (Tabela 15). As diferentes sínteses do 1º, 2º e 3º lotes de nanoAg IPT demonstraram variações entre bactérias Gram negativas e positivas, representados por *S. aureus* ATCC 29213 e *P. aeruginosa* ATCC 27853. Já os resultados para *Candida* spp. no 3º lote IPT mostraram melhor efeito inibitório (3,4 a 13,5 µg/ml) quando comparados aos obtidos com bactérias (> 27 µg/ml).

Egger et al (2009) avaliaram cepas de micro-organismos Gram negativos (n=5), positivos (n=4) e fungos (n=2) frente a nanoAg-silica e nitrato prata. As CIM destes três grupos apresentaram resultados de significativamente diversos, com CIM 90 para nanoAg-silica de 62,5 µg/ml, 500 µg/ml e 2.000 µg/ml respectivamente. Enquanto que para nitrato de prata a CIM90 foi de 7,8 µg/ml, 31,2 µg/ml e 31,2 µg/ml. Alguns estudos demonstraram que micro-organismos Gram positivos são mais tolerantes à Ag⁺ (Kim et al., 2007, Rhim, et al., 2006). Especula-se que este efeito se deva às peculiaridades de parede celular. Pois Gram positivos contém múltiplas camadas de peptidoglicano (em torno de 30 nm) comparado à parede de bactérias Gram negativas (em torno de 3 nm) (Morones et al., 2005). Outra justificativa relaciona-se aos ácidos teicóicos e lipoteicóicos com carga fortemente negativa, podendo haver sequestro de íons livres de Ag⁺. Desta forma, Gram positivos liberariam menos ions Ag⁺ para atingirem a membrana citoplasmática e os demais alvos no espaço intracelular (Egger et al., 2009). Sondi I & Salopek-Sondi B (2004), descrevem a ação nas nanoAg aderindo e formando poros na membrana celular de *E. coli*, resultando em penetração das partículas no citoplasma e lise celular.

Entretanto, no estudo de Dawy, et al., (2012) esta maior tolerância entre Gram positivos não é percebida. Comparando o efeito de nanoAg sobre *S. aureus, E. coli e P. aeruginosa,* através da difusão em agar, descrevem halos maiores para *S. aureus* em comparação com os halos obtidos para os micro-organismos Gram negativos testados. Já Kong and Jang (2008) descrevem equivalência de efeito sobre *E. coli* e *S. aureus*.

Para o 5º lote IFSC foram comparadas a CIM50 e CIM90 para micro-organismos sensíveis (n= 36) e MR (n=54) (Gráfico 4). Também para este lote os resultados mostraram equivalência entre os dois grupos. Permitindo concluir que os mecanismos de resistência antimicrobiana presentes não influenciaram o efeito inibitório dos íons Ag⁺. Baseado nos valores de MIC90, pudemos definir nanoAg citrato e nanoAg quitosana como de maior potência (6,75 µg/ml). Seguidas de sulfadiazina de Ag (27 µg/ml) e nanoAg PVA (54 µg/ml). Para nanoAg Sigma 60 nm não foi possível estabelecer a CIM50 e CIM90 pois os resultados obtidos ficaram acima da concentração máxima avaliada (CIM > 10 µg/ml).

Como complemento, o Gráfico 5 trouxe a distribuição acumulada das CIM para as populações sensíveis e MR. Demonstrando a superposição dos resultados para ambos os grupos. O mesmo aconteceu com os isolados de *Candida* spp. com CIM mais baixas para nanoAg citrato e quitosana e elevadas para a NanoAg comercial Sigma 60 nm. Chamou atenção também a menor dispersão de resultados entre a população de *Candida* spp. estudada.

Alguns trabalhos já demonstraram efeito antifúngico de nanoAg em concentrações ainda mais baixas, chegando a 0,21 μg/ml para *Candida* spp. (Panaceka et al., 2009), MIC 80 de 1 a 7 μg/ml para *T. mentagrophytes* e *Candida* spp.. Inclusive com efeito comparável ao efeito obtido com anfotericina B (MIC80 1 a 5 μg/ml) e superior ao fluconazol (MIC80 10 a 30 μg/ml) (Kim et al., 2008).

O efeito inibitório sobre fungos baseia-se na ligação de nanoAg à fração de enxofre de proteínas de membrana, como consequência, causando lesões e depletando os níveis de ATP intracelulares (Kim et al., 2009; Zheng et al., 2008). Outro mecanismo de ação é a ligação com DNA, comprometendo a multiplicação celular (Damm et al., 2008). Kim et al. (2009) demonstraram por microscopia de transmissão a formação de "lesões" na superfície da membrana celular que evoluíram mais tarde para poros e morte celular.

A ausência de associação entre mecanismos de resistência antimicrobiana e efeito de nanoAg já foi avaliada. Estudos indicam que o modo de ação de nanoAg difere do modo de ação antimicrobiana, onde existem alvos que dependem de especificidade nas reações e participação de sítios farmacofóricos (Ayala-Nuñez et al., 2009). Os íons Ag⁺ ligam-se a grupos sulfidrila levando à desnaturação proteica. Complexam-se com grupos doadores de elétrons normalmente presentes em fragmentos tiol ou fosfato de aminoácidos e ácidos nucleicos e ativam a produção de radicais livres (Chaloupka et al., 2010; Morones et al. 2005).

Embora os achados estejam em concordância com a literatura, vale ressaltar que a maior parte destes estudos utilizou casuísticas com limitado numero de isolados (Tabela 2).

Além disso, os critérios para classificação do que é MR variam de acordo com a época em que o trabalho foi realizado e com os mecanismos de resistência considerados. Dependem também dos critérios adotados pelos autores para classificarem com MR ou não-MR. Prabakara et al., (2013) estudaram três isolados clínicos obtidos de pacientes em UTI e definiram como MR a resistência às quinolonas, cefalosporinas, penicilinas e aminoglicosídeos para *Acinetobacter* sp.; resistência às cefalosporinas e fluoroquinolonas para *K. pneumonia*e e às fluoroquinolonas, cefalosporinas, gentamicina e tobramicina para *P. aeruginosa*. Considerando a recomendação de pelo menos 3 mecanismos de resistência adquiridos para se classificar um MR (Schwarz et al., 2010), o critério de cefalosporinas e fluoroquinolonas adotado não definiria *K. pneumonia*e como MR.

Na tentativa de aproveitar o efeito da Ag⁺ em tratamento antimicrobiano convencional buscando possíveis sinergias, De Souza et al. (2006) estudaram o efeito inibitório de 19 antibióticos isoladamente e combinados com nanoAg (15 nm). Encontraram efeito aditivo entre nanoAg e amoxicilina ou clindamicina frente a alguns gêneros bacterianos MR. Entretanto, evidenciaram efeito antagônico quando associados nanoAg e amoxicilina para *S. aureus* MRSA. Dentre 96 testes, cinco apresentaram efeito sinérgico, 89 com efeito aditivo e dois com antagonismo. Já, Gajbhiye et al. (2009), estudaram fungos, demonstraram aumento no efeito de fluconazol quando associado à nanoAg frente à *Candida albicans* e outras leveduras.

Embora os mecanismos de resistência antimicrobiana não afetem a ação das nanoAg, Pirnay et al. (2003) e Humberto et al. (2010), destacam a questão da resistência aos biocidas. Durante três semanas foi induzida a resistência a nanoAg com múltiplos repiques em um isolado de *S. aureus* MRSA, *S. aureus* MSSA, *P. aeruginosa* MR e *E. coli* O157H7 ampicilina resistente. O aspecto macroscópico das colônias resistentes à nanoAg tornouse diferente. Apresentavam um brilho metálico quando cresciam em meio contendo nanoAg, indicando a habilidade de incorporar a prata do substrato e acumulá-la bloqueando seu efeito. Após subcultivo em meio livre de nanoAg o fenótipo de resistência deixou de existir. Ilustrando o poder de reversão da mutação que controla a resistência a Ag⁺, principalmente quando interfere na saúde celular - *fitness costs* (Chopra 2007).

A razão entre CBM/CIM define a capacidade bactericida/fungicida de um composto (Ayala-Nuñez et al., 2009). Os resultados de CBM comprovaram a natureza do efeito de morte microbiana (bactericida/fungicida) e não apenas inibitório para algumas nanoAg testadas com valores de correlação próximo ou igual a 1 (Gráfico 6). Semelhante ao descrito por outros autores, tanto em Gram positivos, quanto em Gram negativos e leveduras (Humberto et al., 2010). O mesmo quando se avalia micro-organismos sensíveis e MR (Gráfico 7). No presente estudo, NanoAg citrato frente *A. baumannii* MR foi a exceção deste comportamento, com combinação que apresentou maior efeito bacteriostático, conforme ilustra o Anexo C, Figura 9.

Idealmente deve-se priorizar o uso de drogas com efeito bactericida no tratamento de infecções graves. A morte microbiana, e não somente inibição, deve resultar em uma evolução mais segura, reduzindo o surgimento de isolados resistentes ou a disseminação da infecção. Quando os patógenos são mortos e não somente inibidos o surgimento de resistência em decorrência da pressão seletiva é eliminada (Frinberg et al., 2004).

As Figuras 11 e 12 trazem o comportamento do tempo de morte microbiana para *S. aureus* MRSA (MO1) e em paralelo *S. aureus* MSSA (MSSA3), além de *K. pneumoniae* MR KPC+ (K3) e *E. aerogenes* sensível aos antimicrobianos (ENB3). Os testes foram desenhados para que o crescimento microbiano fosse acompanhado nos tempos 0 (T0), T3, T6, T12 e T24, sob concentração de 1 x a CIM do micro-organismo (Giamarellos-Bourboulis et al. 1997).

Com o objetivo de acompanhar o efeito inibitório causado pelo enriquecimento com sangue de carneiro, o tempo de morte para o isolado S.

72

aureus MRSA (MO1) foi analisado em paralelo com MHB II sangue. A curva com sangue mostrou uma rápida multiplicação microbiana, igualando-se a curva do controle em algumas horas. Este efeito foi observado para todos os compostos de prata avaliados. Foi possível avaliar a viabilidade microbiana após o tratamento e determinar o tempo mínimo necessário para que se alcance efeito inibitório ou bactericida. A queda mais expressiva no número de ufc no menor período de tempo aconteceu com quitosana frente *S. aureus* MSSA3 (4 diluições) e *S. aureus* MRSA (3 diluições). Entretanto, o isolado resistente retomou a multiplicação ao final de 24 horas enquanto o sensível permaneceu em baixas contagens. Para o representante Gram negativo a maior redução foi observada para quitosana tanto com *K. pneumoniae* MR (4 diluições) quanto com o isolado sensível (4 diluições). Ambos permaneceram em 10¹ ufc/ml ao final de 24 horas. A NanoAg PVA apresentou a curva com menor inibição para ambos os isolados (MR e sensível).

A inibição de biofilme revelada com uso de solução de violeta genciana demonstrou quanto da biomassa foi removida ou permaneceu após exposição a nanoAg ao final de um dado tempo. Foi possível observar efeitos inibitórios próximos a 100% com as nanoAg citrato e nanoAg quitosana (1mM) frente aos isolados de *A. baumannii* sensíveis e efeito de descolamento do biofilme de 35 a 89% e 52 a 72%, respectivamente (Kalishwaralal et al. 2010). Exceção feita ao isolado *A. baumannii* AS5, para nanoAg PVA (Gráfico 8 e Gráfico 9). Considerando que a concentração final de nanoAg citrato e quitosana ficou acima da CIM no experimento inicial, foram realizados novos testes com as nanoAg diluídas para concentrações subinibitórias que reduzissem a interferência sobre a multiplicação celular. Após diluição para a concentração final de 0,27 µg/ml, apenas nanoAg Citrato e nitrato de Ag mantiveram o potencial de inibição com 16 a 18 horas de incubação, em torno de 70% e 50% respectivamente para *A. baumannii* sensível (AS1), e 30% de descolamento do biofilme com nanoAg citrato contra *A.baumannii* (AS4) após 2 horas.

Embora existam evidências quanto aos mecanismos de ação de lesão celular, pouco se sabe sobre os mecanismos de descolamento e inibição de biofilme. Suspeita-se que seja resultado da penetração da Ag através dos canais de água do biofilme (poros) responsáveis pela nutrição da biomassa. Monteiro et al. (2011), em experimento semelhante, avaliaram o efeito de nanoAg citrato com tamanho médio de 5 nm, frente *C. albicans* (n= 2) e *C. glabrata* (n=2) sobre biofilme pré-formado com apenas 2 horas de incubação, e sobre o biofilme maduro, com 48 horas. Após estes intervalos foi aplicada a nanoAg por um período de 24 horas a 37°C e as células aderidas foram quantificadas. Verificaram que as nanoAg foram mais ativas na redução da biomassa de *C. glabrata* quando aplicada às células aderidas (2h) que sobre biofilme maduro pré-formado. Coincidindo com Chandra et al. (2001), que atribuiu este efeito da maior resistência do biofilme maduro à maior presença de matriz extracelular. Além disso, as células jovens ainda se apresentam em um estado metabólico mais ativo e por consequência mais

expostas aos efeitos deletérios da nanoAG. Outra razão seria a conversão estrutural entre formas leveduriformes para a formação de pseudo-hifas no biofilme maduro (Seneviratne, 2009). Ou ainda, que a matriz extracelular possa adsorver os íons Ag⁺ reduzindo sua ação deletéria sobre as células (Harrison et al., 2006).

Kalishwaralal et al. (2010), demonstraram que nanoAg biossintezadas com *Bacillus licheniformis* foram capazes de inibir também a produção de biofilme. Ou seja, uma ação específica anti-produção de exopolissacarídeos. Feng et al. (2000) demonstraram o efeito contra biofilme de nanoAg alcançado através da inibição da síntese da matriz exopolissacarídica em *P. aeruginosa.*

Estes efeitos de descolamento e inibição poderiam ser mais bem explorados como forma de potencializar tratamentos clínicos, uma vez que a persistência de biofilme apesenta-se como forma de resistência ao tratamento antimicrobiano (Mah e O'Toole, 2001).

A nanotecnologia vem abrindo grandes possibilidades, permitindo novas soluções para antigos recursos. Foi possível verificar a equivalência dos resultados para micro-organismos MR e sensíveis aos antimicrobianos com CIM50 e CIM90 idênticas para os dois grupos e melhor efeito inibitório para nanoAg citrato e quitosana. Combinado aos resultados de CBM permitiu descrever a característica bactericida das formulações, com exceção da nanoAg citrato, com correlação CBM/CIM de 4 a 8 frente aos

75

isolados de *A. baumannii* MR. E descrever a curva do tempo de morte para isolados. Mais uma vez, nanoAg citrato e nanoAg PVA (1mM) apresentaram maior capacidade inibidora de biofilme, próximo a 100%, e de descolamento do biofilme, com 35 a 89% e 52 a 72%, respectivamente. Com base nestes resultados novos estudos deveriam ser desenvolvidos buscando aplicações práticas para as nanoAg com melhores características.

7 CONCLUSÕES

Efeito inibitório avaliado por método de difusão (*agar well diffusioni*) equivalente também entre gram negativos, gram positivos e leveduras.

 Melhor efeito inibitório para nanoAg citrato e quitosana.baseado em CIM50 e CIM90, agindo de igual maneira sobre população de micro-organismos MR e sensíveis aos antimicrobianos.

 nanoAg citrato apresentou maior capacidade inibidora de biofilme.

 Correlação entre CBM e CIM caracterizou efeito bactericida sobre *A. baumannii*. Exceção feita a um único isolado, que sofreu efeito bacteriostático.

• A NanoAg comercial (Sigma, 60 nm) apresentou resultados inferiores ao de nanoAg Citrato, Quitosana, PVA e nitrato de prata.

 As curvas do tempo de morte ilustraram a dinâmica de inibição dos compostos de prata e a interferência de sangue nos testes *in vitro*.
 As curvas para micro-organismos sensíveis e resistentes apresentaram-se semelhantes.

• A partir dos testes de inibição de biofilme foi possível concluir a maior eficácia para nanoAg Citrato e Quitosana, seguido por nitrato de prata e baixo efeito para sulfadiazina de prata, PVA e nanoAg Sigma 60

8 ANEXO

ANEXO A-

Tabela 4 – Micro-organismos utilizados na avaliação comparativa das
diferentes nanoAg sintetizadas

A. baumannii MR (12ª)		
ID ^b	descrição do isolado ^c	
A1	LIM 61 - oxa23, oxa143, CLONE A12	
A2	LIM 65 - oxa23, oxa143, CLONE A1	
A3	LIM 69 - oxa23, oxa143, CLONE A1	
A4	LIM 73 - oxa23, oxa143, CLONE C2	
A5	LIM 76 - oxa23, oxa143, CLONE A1	
A6	LIM 77 - oxa23, CLONE A1	
A7	LIM 35 - oxa143, CLONE A7	
A8	LIM 38 - oxa143, CLONE A6	
A9	LIM 36 - oxa143	
A10	LIM 57 - oxa143, CLONE A3	
A11	LIM 30 - imp, oxa143, CLONE F	
MO12	LIMA.baumannnii polimixina R	

A. baumannii Sensível (5)		
ID	descrição do isolado	
AS1	ALERTA 55715	<u> </u>
AS2	ALERTA 55923	
AS3	ALERTA 55951	
AS4	ALERTA 55987	
AS5	ALERTA 55991	

Enterococcus sp. Vancomicina Resistente (8)		
V1	LIM 707	VSE
V2	LIM 709	VSE2
٧3	LIM 710	VSE
V4	LIM 711	VSE4
V5	LIM 713	VSE
V6	LIM 714	VSE
V7	LIM 715	
V8	LIM 716	

Enterobactérias Carbapenem Resistente (12)		
K1	LIM	1133 K. pneumoniae KPC
К2	LIΜ	1134 K. pneumoniae KPC
К3	LIM	1135 K. pneumoniae KPC
K4	LIM	1136 K. pneumoniae KPC
K5	LIM	1137 K. pneumoniae KPC
K6	LIM	1138 K. pneumoniae KPC
K7	LIM	1139 K. pneumoniae KPC
К9	LIM	1141 K. pneumoniae KPC
K14	LIM	777 K. pneumoniae KPC
M013	LIM	K. pneumoniae KPC
M08	LIM	E. aerogenes KPC
MO10	LIM	S. marcescens KPC

Entero	coccus sp. Vancomicina Sensível (6)
VSE1	ALERTA 56417
VSE2	ALERTA 56422
VSE3	ALERTA 56423
VSE4	ALERTA 56446
VSE5	ALERTA 56521
VSE6	ALERTA 56445

Enterob	actér	ias Carbapenem Sensível (9)
ENB1	LIM	55 E. aerogenes
ENB2	LΙΜ	45 E. aerogenes
ENB3	LΙΜ	40 E. aerogenes
ENB4	LΙΜ	32 E. aerogenes
ENB5	LΙΜ	65 E. aerogenes
ENB6	LΙΜ	67 E. aerogenes
ENB7	LΙΜ	69 E. aerogenes
ENB8	LΙΜ	72 E. aerogenes
ENB9	LΙΜ	73 E. aerogenes

(continua)

(conc	lusão)	

P. aeruginosa Carbapenem Resistente (5)			
P1	LIM	23 VIM, CLONE B	
P2	LIM	28 GES, CLONE A5	
Р3	LIM	29 GES, CLONE A5	
Ρ4	LIM	30 GES, CLONE A5	
Р5	LIM	81 VIM, CLONE D	

P. aerug	ginosa Carbapenem Sensível (8
PS1	LIM 1381
PS2	LIM 1380
PS3	LIM 1368
PS4	LIM 1376
PS5	LIM 1360
PS6	INCQS 0091 /ATCC 25003
PS7	INCQS 0230 / ATCC 9027
MO18	ATCC 27853

S. aureus Oxacilina Resistente (15)			
S1	LIM	AMB coA+/mecA+, tipo III (Z), CLONE A10a	
S2	LIM	KAREN coA+/mecA+, tipo II (Z), CLONE A	
S3	LIM	72l coA+/mecA+, tipo II (Z), CLONE A10b	
S4	LIM	98I-B coA+/mecA+, tipo IVa (Z), CLONE A6a	
S5	LIM	P14NA coA+/mecA+, tipo I (Z), CLONE A8a	
S6	LIM	P31N2 coA+/mecA+, tipo v (ion torrent), CLONE A3	
S7	LIM	P39NC coA+/mecA+, tipo I (Z), CLONE A6	
S8	LIM	P39N-2B coA+/mecA+, tipo I (Z), CLONE A8b	
MO1	LIM	SCCmec I (NCTC)	
MO2	LIM	SCCmec II N315	
MO3	LIM	SCCmec III 85/2082	
MO4	LIM	SCCmec IVa 1698	
MO5	LIM	SCCmec IVb 1978	
M06	LIM	SCCmec IVc MR108	
M07	LIM	SCCmec ?? 85/4547	

MO18	ATCC 27853
S.aureus	s Oxacilina Sensível (8)
MSSA1	LIM 241
MSSA2	LIM 815
MSSA3	LIM 435
MSSA4	LIM 501
MSSA5	LIM 4241
MSSA6	LIM 384
MO16	ATCC S. epidermidis INCQS 198
M017	ATCC S. aureus 29213
39	INCQS 0039 / ATCC 6538

Stenotrophomonas maltophilia Sulfametoxazol Resistente (2)

MO9 LIM *S. matophilia* Levo R 27 MO11 LIM *S. matophilia* Sul 1 e Sul 2

Candida albicans (11)

CA1	LIΜ	52 hemocultura
CA2	LIΜ	42 hemocultura
CA3	LIΜ	47 hemocultura
CA4	LIΜ	21 hemocultura
CA5	LIΜ	23 hemocultura
CA6	LIΜ	24 hemocultura
CA7	LIΜ	16 hemocultura
CA8	LIΜ	48 hemocultura
CA9	LIΜ	50 hemocultura
CA10	LIΜ	69hemocultura
MO15	INCO	QS 40175 / ATCC 14053
40277	INCO	QS 40277 / ATCC 90028

Candida tropicalis (5)CT1LIM43 hemoculturaCT2LIM45 hemoculturaCT3LIM49 hemoculturaCT4LIM64 hemoculturaCT5LIM69 hemocultura

Candida parapsilosis (1)											
MO14	INCQS 40280 / ATCC 90018										
40304	INCQS 40304 / ATCC 96139										

Legenda: ^a Número de amostras testadas

^b Identificação da cepa ao longo do estudo

^c Descrição do isolado no banco de cepas

ANEXO B -

Tabela 5 – Primers utilizados na caracterização prévia dos isolados clínicos de
Stenotrophomonas maltophilia MR e Enterococcus spp. utilizados
neste estudo

Mecanismo de resistência	genes	primers	Referência
		F-GACGGTGTTCGGCATTCT	
Resistência ao	sul 1	R-TTTGAAGGTTCGACAGC	Gene Bank
sulfametoxazol/			n°
trimetoprim		F:GCAGGCGCGTAAGCTGA3'	AJ313522 (Barbolla et
	Sul Z	R:GGCTCGTGTGTGCGGATG3'	al, 2004)
Posistância à		F:AGAGGATTTCTCACGCCAGG3'	
fluoroquinolona	multiplex	R:TGCCAGGCACAGATCTTGAC3'	
	van A1	F-5'-GCTGCGATATTCAAAGCTCA3'	
Resistência á	van A2	R-5'-CAGTACAATGCGGCCGTTA3'	(Petrich
vancomicina	van B1	F-5'ATGGGAAGCCGATAGTCTC3'	etal. 1999)
	van B3	R-5'GTTACGCCAAAGGACGAAC3'	

ANEXO B -

Mecanismo de resistência	Gene	Seqüência de oligonucleotídeos iniciadores (5'- 3')	Tamanho do Amplicon (pb)	Referência
Carbapenemase		GAATAGAATGGCTTAACTCTC		Mendes <i>et al.</i> .
MβL	bla _{IMP}	CCAAACCACTAGGTTATC	188	2007
Carbapenemase		GTTTGGTCGCATATCGCAAC		Mendes <i>et al</i>
MβL	<i>bla</i> _{VIM}	AATGCGCAGCACCAGGATAG	382	2007
Carbapenemase		TCGACACACCTTGGTCTGAA		Mendes <i>et al</i>
MβL	MβL bla_{GIM-1} AACTTCCAACTTTGCCATGC			
Carbapenemase		GTACAAGGGATTCGGCATCG		Mendes <i>et al</i>
ΜβL	bla _{SIM-1}	TGGCCTGTTCCCATGTGTGAG	569	2007
Carbapenemase		CTA AATCGAGAGCCCTGCTTG		Mendes <i>et al</i>
MβL	<i>bla</i> _{SPM}	CCT TTTCCGCGACCTTGATC	798	2007
Carbapenemase		GGCGGAATGGCTCATCACGA		Chen et al
MβL	<i>Bla</i> _{NDM}	CGCAACACAGCCTGACTTTC	287	2011
Carbapenemase		ATGCGCTTCATTCACGCAC		
Classe A	<i>bla</i> _{GES}	CTATTTGTCCGTGCTCAGG	846	Kim <i>et al., 2007</i>
Carbapenemase		ATGTCACTGTATCGCCGTCT		Bradford <i>et al.</i>
Classe A	bla _{KPC}	TTTTCAGAGCCTTACYGCCC	893	2004
Carbapenemase		TAATGCTTTGATCGGCCTTG		Woodford et al
Oxacilinase	bla _{Oxa-51}	TGGATTGCACTTCATCTTGG	353	2006
Carbapenemase		GATCGGATTGGAGAACCAGA		Woodford et al
Oxacilinase	bla _{Oxa-23}	ATTTCTGACCGCATTTCCAT	501	2006
Carbapenemase		GGTTAGTTGGCCCCCTTAAA		Woodford et al
Oxacilinase	bla _{Oxa-24}	AGTTGAGCGAAAAGGGGATT	246	2006
Carbapenemase		AAGTATTGGGGCTTGTGCTG		Woodford et al
Oxacilinase	bla _{Oxa-58}	CCCCTCTGCGCTCTACATAC	599	2006
Carbapenemase		AGTTAACTTTCAATAATTG		Higgins <i>et al</i>
Oxacilinase	bla _{Oxa-143}	TTGGAAAATTATATAATCCC	149	2009
		GCA TCC TCG GTT TTC TGG		Shibata et al
—	- GGT GTG GCG GGC TTC GTG 4		457	2003
		AGAGTTTGATCCTGGCTCAG		Mendes <i>et al</i>
-	16S	ACGGCTACCTTGTTACGACTT	1499	2007

Tabela 6 – Primers utilizados na caracterização prévia dos isolados clínicos de Enterobacterias MR utilizadas neste estudo

ANEXO C –

Tabela 15 - Comparativo da CIM (em μg/ml) entre 1º, 2º e 3º lotes de nanoAg da IFSC frente a *S. aureus* ATCC 29213 e *P. aeruginosa* ATCC 27853 em MHB II

	S. aureus	P. aeruginosa
	ATCC 29213	ATCC 27853
IFSC 1º Lote	MHB (µg/ml)	MHB (µg/ml)
Citrato	<u>></u> 54	<u>></u> 54
Quitosana	13,5	13,5
PVA	<u>></u> 54	<u>></u> 54
IFSC 2º Lote		
Citrato	13,5	3,4
Quitosana	27	27
PVA	27	27
IFSC 3º Lote		
Citrato	1,7	1,7
Quitosana	6,7	13,5
PVA	6,7	6,7

ANEXO C –

Tabela16 - Comparativo das CIM (em μg/ml) obtidas com o 1º, 2º e 3º lote produzidos no IPT utilizando MHB II e MHB II com 1,25% e sangue frente a diferentes micro-organismos ATCC e INCQS

	S. a ATCO	a <i>ureus</i> C 29213	<i>P. aer</i> ATCC	<i>P. aeruginosa</i> ATCC 27853		idermidis QS 198	C. a INCQ	<i>lbicans</i> S 40175	<i>C. pai</i> INCQ	rapsilosis S 40280
IPT 1° lote	MHB	MH-SG	MHB	IB MH-SG		MH-SG	MHB	MH-SG	MHB	MH-SG
20', 85°C, pH 8,0	3,4	<u>></u> 54	1,7	<u>></u> 54						
30', 85°C, pH 8,0	3,4	<u>></u> 54	1,7	<u>></u> 54						
30', 85°C, pH 8,0	3,4	<u>></u> 54	1,7	<u>></u> 54						
40', 85°C, pH 8,0	3,4	<u>></u> 54	1,7	<u>></u> 54						
40', 85°C, pH 8,0	3,4	<u>></u> 54	1,7	<u>></u> 54						
3', 25°C, pH 8,0	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 54						
3', 25°C, pH 8,0	13,5	<u>></u> 54	6,7	<u>></u> 54						
IPT 2° lote	MHB	MH-SG	MHB	HB MH-SG		MH-SG	MHB	MH-SG	MHB	MH-SG
25', 85°C, pH 8,0	13,5	<u>></u> 54	3,4	<u>></u> 54						
50', 85°C, pH 8,0	27	<u>></u> 54	13,5	<u>></u> 54						
20', 90°C, pH 8,0	27	<u>></u> 54	6,7	<u>></u> 54						
50', 90°C, pH 8,0	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54						
20', 95°C, pH 8,0	27	<u>></u> 54	13,5	<u>></u> 54						
50', 95°C, pH 8,0	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54						
IPT 3º lote	MHB	MH-SG	MHB	MH-SG	MHB	MH-SG	MHB	MH-SG	MHB	MH-SG
10', 90°C, pH 9,0	-*	-	-	-	-	-	-	-	-	-
20', 90°C, pH 9,0	13,5	27	6,7	13,5	13,5	27	6,7	13,5	6,7	6,7
40', 90°C, pH 9,0	> 27	> 27	> 27	> 27	>27	>27	3,4	3,4	13,5	13,5
60', 90°C, pH 9,0	> 27	> 27	> 27	> 27	> 27	> 27	3,4	3,4	13,5	13,5
10', 90°C, pH 7,0	6,7	6,7	3,4	27	3,4	3,4	3,4	6,7	6,7	6,7
20', 90°C, pH 7,0	6,7	6,7	3,4	13,5	3,4	3,4	3,4	6,7	6,7	27
40', 90°C, pH 7,0	6,7	6,7	3,4	13,5	3,4	3,4	3,4	3,4	6,7	6,7
60', 90°C, pH 7,0	13,5	6,7	3,4	27	6,7	13,5	6,7	6,7	6,7	27
90', 90°C, pH 7,0	27	27	13,5	13,5	13,5	13,5	6,7	13,5	13,5	13,5

*NanoAg 10min 90°C, pH9,0 – material acidentado, não foi possível avaliar a CIM.

Valores expressos em μ g/ml.

ANEXO C -

Tabela 17 – Resultados de CIM (em μg/ml) para o 4º lote de nanoAg IFSC e IPT, frente a diversos micro-organismos Gram positivos, negativos e leveduras.

		IFSC			ļ	PT	
Micro-organismos	Citrato	Quitosana	PVA	60', 85oC, pH 7,0 centrifugado	60', 85oC, pH 7,0, não centrifugado	40', 90oC, pH 7,0 centrifugado	40', 90oC, pH 7,0 não centrifugado
S. aureus MRSA SCC mec I	6,7	13,5	27	27	6,7	27	6,7
S. aureus MRSA SCC mec II	6,7	13,5	13,5	13,5	6,7	27	6,7
S. aureus MRSA SCC mec III	6,7	6,7	27	13,5	6,7	27	6,7
S. aureus MRSA SCC mec IVa	6,7	13,5	27	27	6,7	27	6,7
S. aureus MRSA SCC mec IVb	6,7	6,7	27	27	6,7	27	6,7
S. aureus MRSA SCC mec IVc	6,7	13,5	27	13,5	6,7	27	6,7
<i>S. aureus</i> MRSA	6,7	13,5	27	27	6,7	27	6,7
S.aureus MRSA (S1)	27	6,7	<u>></u> 54	<u>></u> 54	6,7	<u>></u> 54	13,5
S.aureus MRSA (S2)	<u>></u> 54	6,7	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 54	13,5
S.aureus MRSA (S3)	<u>></u> 54	6,7	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 54	13,5
S.aureus MRSA (S4)	27	13,5	<u>></u> 54	<u>></u> 54	6,7	<u>></u> 54	13,5
S.aureus MRSA (S5)	27	6,7	27	27	6,7	<u>></u> 54	13,5
S. aureus ATCC 29213	6,7	13,5	<u>></u> 54	27	6,7	27	13,5
S. epidermidis INCQS 198	6,7	0,4	13,5	13,5	3,4	27	6,7
S. maltophilia Levo R	3,4	13,5	6,7	13,5	3,4	13,5	3,4
S. maltophilia Sulfa R	3,4	13,5	3,4	13,5	3,4	13,5	3,4
<i>A. baumannii</i> MR (A1)	<u>></u> 54	<u>></u> 54	<u>></u> 54	27	13,5	<u>></u> 54	13,5
A. baumannii MR (A2)	27	27	<u>></u> 54	27	6,7	<u>></u> 54	13,5
A. baumannii MR (A3)	13,5	27	<u>></u> 54	13,5	6,7	<u>></u> 54	6,7
A. baumannii MR (A4)	13,5	27	<u>></u> 54	13,5	6,7	<u>></u> 54	6,7
A. baumannii MR (A5)	13,5	13,5	<u>></u> 54	13,5	3,4	<u>></u> 54	3,4
<i>A. baumannii</i> Polimixina R	3,4	13,5	6,7	13,5	3,4	13,5	6,7
Enterobactéria MR (K1)	27	13,5	<u>></u> 54	27	6,7	<u>></u> 54	13,5
Enterobactéria MR (K2)	<u>></u> 54	27	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54
Enterobactéria MR (K3)	<u>></u> 54	27	27	<u>></u> 54	13,5	<u>></u> 54	13,5
Enterobactéria MR (K4)	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 54	27
Enterobactéria MR (K5)	<u>></u> 54	27	<u>></u> 54	<u>></u> 54	6,7	<u>></u> 54	13,5
K. pneumoniae KPC	6,7	<u>></u> 54	<u>></u> 54	27	6,7	27	6,7
S. marcescens KPC	6,7	27	<u>></u> 54	<u>></u> 54	6,7	27	6,7
E. aerogenes KPC	6,7	13,5	<u>></u> 54	27	6,7	27	6,7
<i>P. aeruginosa</i> MR (P1)	13,5	13,5	<u>></u> 54	13,5	6,7	<u>></u> 54	6,7
P. aeruginosa MR (P2)	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 54	13,5
P. aeruginosa MR (P3)	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 54	27
P. aeruginosa MR (P4)	27	<u>></u> 54	27	<u>></u> 54	6,7	<u>></u> 54	13,5
P. aeruginosa MR (P5)	27	<u>></u> 54	13,5	27	6,7	<u>></u> 54	13,5
P. aeruginosa ATCC 27853	3,4	13,5	6,7	13,5	3,4	27	6,7
Enterococcus sp. VRE (V1)	27	13,5	27	27	6,7	<u>></u> 54	13,5

		IFSC			IPT				
Micro-organismos	Citrato	Quitosana	PVA	60', 85oC, pH 7,0 centrifugado	60', 85oC, pH 7,0, não centrifugado	40', 90oC, pH 7,0 centrifugado	40', 90oC, pH 7,0 não centrifugado		
Enterococcus sp. VRE (V2)	27	13,5	27	27	6,7	<u>></u> 54	13,5		
Enterococcus sp. VRE (V3)	<u>></u> 54	27	27	<u>></u> 54	6,7	<u>></u> 54	13,5		
Enterococcus sp. VRE (V4)	<u>></u> 54	13,5	27	<u>></u> 54	6,7	<u>></u> 54	13,5		
Enterococcus sp. VRE (V5)	<u>></u> 54	27	27	<u>></u> 54	13,5	<u>></u> 54	27		
C. albicans (C1)	27	27	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 54	13,5		
C. albicans (C2)	<u>></u> 54	27	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 54	27		
C. albicans (C3)	27	27	<u>></u> 54	<u>></u> 54	6,7	<u>></u> 54	13,5		
C. albicans (C4)	13,5	27	<u>></u> 54	<u>></u> 54	6,7	<u>></u> 54	13,5		
C. albicans (C5)	27	27	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 54	13,5		
C. tropicalis (T1)	<u>></u> 54	27	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 54	27		
C. tropicalis (T2)	13,5	27	27	27	6,7	<u>></u> 54	13,5		
C. tropicalis (T3)	27	27	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 54	13,5		
C. tropicalis (T4)	<u>></u> 54	27	27	<u>></u> 54	13,5	<u>></u> 54	13,5		
C. tropicalis (T5)	27	27	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 54	13,5		
C. albicans INCQS 40175	13,5	<u>></u> 54	<u>></u> 54	27	6,7	<u>></u> 54	27		
C. parapsilosis ATCC 40280	13,5	6,7	<u>></u> 54	<u>></u> 54	13,5	27	13,5		

*Valores expressos em μg/ml.

ANEXO C -

Tabela 18– Resultados de CIM (em μg/ml) para o 5º lote de nanoAg IFSC, frente a diferentes micro-organismos sensíveis e MR, avaliados em caldo MHB II e MHB II sangue 1,25%

IFSC 5º Lote	Citrato		Quitosana PVA				PVA Sulfadiazina de Ag			Nitrato de Ag)
	MHB	MH- Sg	МНВ	MH- Sg	МНВ	MH- Sg	МНВ	MH- Sg	МНВ	MH- Sg	MHB	MH- Sg
A. baumannii MR (A1)	<u>></u> 54		6,7		<u>></u> 54		6,7		3,4		<u>></u> 10	
A. baumannii MR (A2)	3,4		6,7		27		6,7		3,4		<u>></u> 10	
A. baumannii MR (A3)	3,4	27	6,7	13,5	13,5	27	6,7	<u>></u> 27	3,4	<u>></u> 27	<u>></u> 10	<u>></u> 10
A. baumannii MR (A4)	3,4		6,7		<u>></u> 54		13,5		3,4		<u>></u> 10	
A. baumannii MR (A5)	3,4	13,5	6,7	13,5	13,5	<u>></u> 54	6,7	<u>></u> 27	3,4	<u>></u> 27	<u>></u> 10	<u>></u> 10
A. baumannii MR (A6)	3,4	27	6,7	13,5	13,5	<u>></u> 54	6,7	<u>></u> 27	3,4	<u>></u> 27	<u>></u> 10	<u>></u> 10
A. baumannii MR (A7)	3,4		6,7		13,5		6,7		3,4		<u>></u> 10	
A. baumannii MR (A8)	3,4		6,7		13,5		6,7		3,4		<u>></u> 10	
A. baumannii MR (A9)	3,4		6,7		13,5		6,7		3,4		<u>></u> 10	
A. baumannii MR (A10)	3,4		6,7		13,5		13,5		3,4		<u>></u> 10	
A. baumannii MR (A11)	3,4		6,7		13,5		6,7		3,4		<u>></u> 10	
A. baumannii MR (A12)	3,4		6,7		27		13,5		3,4		<u>></u> 10	
A. baumannii S (AS1)	3,4	6,7	3,4	3,4	6,7	13,5	6,7	13,5	3,4	6,7	<u>></u> 10	<u>></u> 10
A. baumannii S (AS2)	1,6	27	1,6	27	6,7	<u>></u> 54	6,7	13,5	3,4	<u>></u> 27	<u>></u> 10	<u>></u> 10
A. baumannii S (AS3)	3,4	6,7	3,4	6,7	6,7	27	6,7	13,5	3,4	6,7	<u>></u> 10	<u>></u> 10
A. baumannii S (AS4)	3,4	27	3,4	<u>></u> 54	27	<u>></u> 54	6,7	13,5	3,4	<u>></u> 27	<u>></u> 10	<u>></u> 10
A. baumannii S (AS5)	3,4		3,4		<u>></u> 54		6,7		3,4		<u>></u> 10	
S. maltophilia (MO9)	1,6	13,5	6,7	<u>></u> 54	<u>></u> 54	<u>></u> 54	6,7	<u>></u> 27	3,4	<u>></u> 27	<u>></u> 10	<u>></u> 10
S. maltophilia (MO11)	1,6		6,7		<u>></u> 54		6,7		6,7		<u>></u> 10	
P. aeruginosa MR (P1)	3,4	13,5	6,7	13,5	27	<u>></u> 54	6,7	<u>></u> 27	1,6	<u>></u> 27	<u>></u> 10	<u>></u> 10
P. aeruginosa MR (P2)	3,4		6,7		13,5		13,5		3,4		<u>></u> 10	
P. aeruginosa MR (P3)	3,4		6,7		13,5		13,5		3,4		<u>></u> 10	
P. aeruginosa MR (P4)	3,4	13,5	6,7	13,5	13,5	<u>></u> 54	13,5	<u>></u> 27	6,7	13,5	<u>></u> 10	<u>></u> 10
P. aeruginosa MR (P5)	3,4	13,5	6,7	13,5	13,5	<u>></u> 54	6,7	<u>></u> 27	3,4	<u>></u> 27	<u>></u> 10	<u>></u> 10
P. aeruginosa S (PS1)	3,4		6,7		13,5		6,7		3,4		<u>></u> 10	
P. aeruginosa S (PS2)	3,4		6,7		13,5		13,5		6,7		<u>></u> 10	
P. aeruginosa S (PS3)	3,4		3,4		<u>></u> 54		13,5		6,7		<u>></u> 10	
P. aeruginosa S (PS4)	1,6	6,7	3,4	6,7	13,5	27	3,4	<u>></u> 27	1,6	3,4	<u>></u> 10	<u>></u> 10
P. aeruginosa S (PS5)	1,6		6,7		13,5		6,7		3,4		<u>></u> 10	

IFSC 5º Lote	Citrato		Quitosana	Quitosana PVA Sulfadiazina de Ag Nitrato de Ag)	Sigma 60 nm				
	MHB	MH- Sg	МНВ	MH- Sg	МНВ	MH- Sg	МНВ	MH- Sg	МНВ	MH- Sg	MHB	MH- Sg
P. aeruginosa S (PS6)	1,6	6,7	6,7	6,7	6,7	<u>></u> 54	6,7	<u>></u> 27	3,4	6,7	<u>></u> 10	<u>></u> 10
P. aeruginosa S (PS7)	1,6		3,4		6,7		13,5		6,7		<u>></u> 10	
P. aeruginosa 27853 (MO18)	3,4	13,5	13,5	27	13,5	13,5	6,7	<u>></u> 27	3,4	6,7	<u>></u> 10	<u>></u> 10
Enterobacteria MR (K1)	6,7		6,7		>54		13,5		6,7		>10	
Enterobacteria MR (K2)	67		67		>54		13 5		67		>10	
Enterobacteria MB (K3)	67	27	67	12 5	<u>-</u> 3- 12 5	<u>5</u> 1	12 5	\ 27	67	\ 27	<u>~10</u> \10	<u>\10</u>
Enterobactoria MR (K4)	0,7	27	0,7 C 7	13,5	13,5	<u>~</u>]4	12,5	<u>~</u> 27	0,7	<u>~</u> 27	<u>~10</u>	<u>~10</u>
	6,7		6,7		<u>></u> 54		13,5		6,7		<u>>10</u>	
Enterobacteria MR (K5)	6,7		6,7		27		13,5		6,7		<u>></u> 10	
Enterobacteria MR (K6)	6,7		6,7		27		13,5		6,7		<u>></u> 10	
Enterobacteria MR (K7)	6,7		6,7		2/		13,5		6,7		<u>>10</u>	
Enterobacteria MR (K9)	6,7		6,7		<u>></u> 54		13,5		6,7		<u>>10</u>	
Enterobacteria MR (K14)	б,/ со		0,7		<u>></u> 54		13,5		6,7		<u>>10</u>	
Enterobacteria MR (MO13)	3,3	1 D F	3,3	67	13,5	×۲4	13,5	> 27	0,7 2,4	× 77	>10	×10
Enterobacteria MR (MO10)	3,3	13,5	0,7 6 7	0,7 12 E	<u>></u> 54	<u>></u> 54	13,5	>27	5,4 6 7	>27	<u>>10</u>	<u>>10</u>
Enterobacteria S (ENP1)	3,3 2 /	<u>2</u> 54	6,7	13,5	<u>2</u> 54 27	<u>></u> 54	13,5	<u>></u> 27	0,7 6 7	<u>></u> 27	<u>>10</u>	<u>>10</u>
Enterobacteria S (ENB1)	5,4		21		~5/		12 5		125		<u>~10</u> \10	
Enterobacteria S (ENB2)	21	125	2 /	<u>5</u> 1	<u>-</u> 54 12 5	\5 1	12 5	\ 27	21	\ 27	<u>~10</u> \10	<u>\10</u>
Enterobacteria S (ENB4)	5,4 6 7	13,5	3,4	<u>~</u>]4	13,5 27	<u>~</u>]4	13,5	<u>~</u> 27	67	<u>~</u> 27	<u>>10</u>	<u>~10</u>
Enterobacteria S (ENB5)	67		67		27		13,5		67		<u>~10</u> >10	
Enterobacteria S (ENB6)	67		67		27		13,5		67		<u>>10</u>	
Enterobacteria S (ENB7)	67	13 5	3.4	>54	13 5	>54	13,5	>27	67	>27	>10 >10	>10
Enterobacteria S (ENB8)	3.4	13,5	34	<u>~</u> 54	13,5	<u>~</u> 54	13,5	>27	67	<u>-</u> / 135	>10	>10
Enterobacteria S (ENB9)	3.4	10,0	34	<u>-</u> 01	>54	<u>-</u> 9 .	13 5	<u> </u>	67	10,0	>10	<u>-</u> 10
S. aureus MRSA (S1)	6.7		3.4		<u>~</u> 54		13.5		13.5		>10	
S. aureus MRSA (S2)	6.7		3.4		>54		>27		13.5		>10	
S. aureus MRSA (S3)	6,7		3,4		>54		_ >27		13,5		>10	
S. aureus MRSA (S4)	, 6,7	6,7	, 3,4	6,7	>54	>54	>27	>27	, 13,5	>27	>10	>10
S. aureus MRSA (S5)	6,7	,	3,4		<u>></u> 54	—	 13,5	_	13,5	—	<u>></u> 10	—
S. aureus MRSA (S6)	6,7		3,4		>54		<u>></u> 27		13,5		<u>></u> 10	
S. aureus MRSA (S7)	6,7		3,4		>54		>27		13,5		>10	
S. aureus MRSA (S8)	6,7		3,4		27		>27		13,5		>10	
S. aureus MRSA (MO1)	6,7	ŝ	3,4	2	>54	;	>27	2	13,5	;	>10	
S. aureus MRSA (MO2)	6,7	>54	3,4	13,5	>54	>54	13,5	>27	13,5	>27	>10	>10
S. aureus MRSA (MO3)	6,7	27	6,7	13,5	>54	>54	>27	>27	13,5	>27	>10	>10
S. aureus MRSA (MO4)	6,7		6,7		>54		>27		13,5		>10	
S. aureus MRSA (MO5)	6,7		6,7		>54		>27		13,5		>10	
S. aureus MRSA (MO6)	13,5	ť	6,7	2	>54	;	>27	2	13,5	;	>10	
S. aureus MRSA (MO7)	13,5		6,7		>54		>27		13,5		>10	

IFSC 5º Lote	Citrato		Quitosana		PVA	PVA Sulfadiazina de Ag Nitrato de Ag				Sigma 60 nm		
	МНВ	MH- Sg	MHB	MH- Sg	MHB	MH- Sg	MHB	MH- Sg	MHB	MH- Sg	MHB	MH- Sg
S. aureus MSSA (MSSA1)	13,5		6,7		>54		>27		13,5		>10	
S. aureus MSSA (MSSA2)	6,7	>54	6,7	13,5	>54	>54	>27	>27	13,5	>27	>10	>10
S. aureus MSSA (MSSA3)	6,7	13,5	6,7	13,5	<u>></u> 54	<u>></u> 54	<u>></u> 27	<u>></u> 27	13,5	<u>></u> 27	<u>></u> 10	<u>></u> 10
S. aureus MSSA (MSSA4)	6,7		6,7		<u>></u> 54		<u>></u> 27		13,5		<u>></u> 10	
S. aureus MSSA (MSSA5)	6,7	<u>></u> 54	6,7	13,5	<u>></u> 54	<u>></u> 54	<u>></u> 27	<u>></u> 27	13,5	<u>></u> 27	<u>></u> 10	<u>></u> 10
S. aureus MSSA (MSSA6)	6,7		6,7		<u>></u> 54		<u>></u> 27		13,5		<u>></u> 10	
S. aureus ATCC29213 (MO17)	13,5		3,4		<u>></u> 54		<u>></u> 27		13,5		<u>></u> 10	
S. epidermidis 198 (MO16)	6,7	27	6,7	<u>></u> 54	27	<u>></u> 54	6,7	<u>></u> 27	6,7	<u>></u> 27	<u>></u> 10	<u>></u> 10
Enterococcus sp. VRE (V1)	6,7		6,7		<u>></u> 54		<u>></u> 27		13,5		<u>></u> 10	
Enterococcus sp. VRE (V2)	6,7		6,7		<u>></u> 54		<u>></u> 27		13,5		<u>></u> 10	
Enterococcus sp. VRE (V3)	6,7		6,7		<u>></u> 54		<u>></u> 27		13,5		<u>></u> 10	
Enterococcus sp. VRE (V4)	6,7		6,7		<u>></u> 54		<u>></u> 27		13,5		<u>></u> 10	
Enterococcus sp. VRE (V5)	6,7		6,7		27		<u>></u> 27		13,5		<u>></u> 10	
Enterococcus sp. VRE (V6)	6,7	<u>></u> 54	3,4	13,5	<u>></u> 54	<u>></u> 54	<u>></u> 27	<u>></u> 27	6,7	<u>></u> 27	<u>></u> 10	<u>></u> 10
Enterococcus sp. VRE (V7)	6,7	<u>></u> 54	3,4	6,7	27	<u>></u> 54	<u>></u> 27	<u>></u> 27	6,7	<u>></u> 27	<u>></u> 10	<u>></u> 10
Enterococcus sp. VRE (V8)	6,7	<u>></u> 54	6,7	13,5	13,5	27	<u>></u> 27	<u>></u> 27	13,5	<u>></u> 27	<u>></u> 10	<u>></u> 10
Enterococcus sp. VSE (VSE1)	6,7		6,7		27		<u>></u> 27		<u>></u> 27		<u>></u> 10	
Enterococcus sp. VSE (VSE2)	6,7		6,7		<u>></u> 54		13,5		<u>></u> 27		<u>></u> 10	
Enterococcus sp. VSE (VSE3)	13,5	<u>></u> 54	3,4	6,7	<u>></u> 54	<u>></u> 54	<u>></u> 27	<u>></u> 27	<u>></u> 27	<u>></u> 27	<u>></u> 10	<u>></u> 10
Enterococcus sp. VSE (VSE4)	6,7	<u>></u> 54	6,7	13,5	<u>></u> 54	<u>></u> 54	13,5	13,5	13,5	<u>></u> 27	<u>></u> 10	<u>></u> 10
Enterococcus sp. VSE (VSE5)	6,7	<u>></u> 54	6,7	13,5	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 27	13,5	<u>></u> 27	<u>></u> 10	<u>></u> 10
Enterococcus sp. VSE (VSE6)	6,7		6,7		<u>></u> 54		13,5		13,5		<u>></u> 10	
C. albicans (C1)	6,7		6,7		<u>></u> 54		13,5		13,5		<u>></u> 10	
C. albicans (C2)	6,7		13,5		<u>></u> 54		13,5		13,5		<u>></u> 10	
C. albicans (C3)	6,7	<u>></u> 54	6,7	6,7	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 27	6,7	<u>></u> 27	<u>></u> 10	<u>></u> 10
C. albicans (C4)	6,7	<u>></u> 54	6,7	13,5	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 27	6,7	<u>></u> 27	<u>></u> 10	<u>></u> 10
C. albicans (C5)	6,7		6,7		<u>></u> 54		13,5		13,5		<u>></u> 10	
C. albicans (C6)	6,7		6,7		<u>></u> 54		13,5		6,7		<u>></u> 10	
C. albicans (C7)	6,7		6,7		<u>></u> 54		13,5		13,5		<u>></u> 10	
C. albicans (C8)	6,7		6,7		<u>></u> 54		6,7		13,5		<u>></u> 10	
C. albicans (C9)	6,7		6,7		<u>></u> 54		13,5		13,5		<u>></u> 10	
C. albicans (C10)	6,7		6,7		<u>></u> 54		13,5		13,5		5	
C. albicans (MO15)	1,6	13,5	3,4	<u>></u> 54	6,7	13,5	3,4	<u>></u> 27	3,4	<u>></u> 27	<u>></u> 10	<u>></u> 10
C. tropicalis (T1)	6,7		6,7		<u>></u> 54		<u>></u> 27		13,5		<u>></u> 10	
C. tropicalis (T2)	6,7		6,7		<u>></u> 54		<u>></u> 27		13,5		<u>></u> 10	
C. tropicalis (T3)	6,7	<u>></u> 54	6,7	6,7	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 27	13,5	<u>></u> 27	<u>></u> 10	<u>></u> 10
C. tropicalis (T4)	6,7	<u>></u> 54	3,4	6,7	27	<u>></u> 54	13,5	<u>></u> 27	13,5	<u>></u> 27	<u>></u> 10	<u>></u> 10
C. tropicalis (T5)	6,7	<u>></u> 54	6,7	6,7	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 27	13,5	<u>></u> 27	<u>></u> 10	<u>></u> 10
C. parapsilosis (MO14)	3,4	13,5	1,6	6,7	27	<u>></u> 54	13,5	<u>></u> 27	13,5	<u>></u> 27	<u>></u> 10	<u>></u> 10

Valores expressos em mg/ml.

ANEXO C -

Figura 8 – Comparativo entre CIM em MHII e CIM em MH II Sg 1,25%, para o 5º lote de nanoAg IFSCar e controles, frente a isolados sensíveis, MR e candidas
ANEXO C -

Tabela 19. Determinação da CBM com 3º Lote de nanoAg IFSC e IPT contra *S. aureus* ATCC 29213, *P. aeruginosa* ATCC 27853, *S. epidermidis* INCQS 198, *C. albicans* INCQS 40175 e *C. parapsilosis* INCQS 40280

	S. aureus ATCC 29213	P. aeruginosa ATCC 27853	S. epidermidis INCQS 198	<i>C. albicans</i> INCQS 40175	C. parapsilosis INCQS 40280
3° lote IFSC					
Citrato	27	1,7			
Quitosana	>54	13,5			
PVA	>54	13,5			
3° Lote IPT					
10min 90oC, pH9,0	_*	-	-	-	-
20min 90oC, pH9,0	6,7	> 27	13,5	> 27	27
40min 90oC, pH9,0	> 27	> 27	>27	> 27	> 27
60min 90oC, pH9,0	> 27	> 27	> 27	> 27	> 27
10min 90oC, pH7,0	3,4	> 27	6,7	> 27	13,5
20min 90oC, pH7,0	3,4	> 27	13,5	> 27	13,5
40min 90oC, pH7,0	13,5	> 27	6,7	> 27	6,7
60min 90oC, pH7,0	27	> 27	13,5	> 27	13,5
90min 90oC, pH7,0	13,5	> 27	> 27	> 27	27

*NanoAg 10min 90°C, pH9,0 – material acidentado, não foi possível avaliar a CBM

ANEXO C –

		IFSC				IF	РТ		
Micro-organismos	Citrato	Quitosana	PVA	60', 85oC, pH 7,0 centrifugado	60', 85oC, pH 7,0, não centrifugado	40', 90oC, pH 7,0 centrifugado	40', 90oC, pH 7,0 não centrifugado	Sulfadiazina de Ag	Nitrato de Ag
S. aureus MRSA SCC mec I	<u>></u> 54	13,5	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54
S. aureus MRSA SCC mec II	27	13,5	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54
S. aureus MRSA SCC mec III	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54
S. aureus MRSA SCC mec IVa	<u>></u> 54	27	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54
S. aureus MRSA SCC mec lvb	<u>></u> 54	13,5	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54
S. aureus MRSA SCC mec lvc	6,7	<u>></u> 54	27	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54
<i>S. aureus</i> MRSA	27	27	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54
E. aerogenes KPC	6,7	13,5	<u>></u> 54	27	6,7	27	6,7	<u>></u> 54	13,5
S. maltophilia Levo R	6,7	27	27	27	6,7	27	6,7	<u>></u> 54	13,5
S. marcescens KPC	6,7	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	13,5	<u>></u> 54	13,5
S. maltophilia Sulfa R	6,7	27	6,7	13,5	3,4	13,5	6,7	13,5	6,7
<i>A. baumannii</i> Polimixina R	6,7	27	<u>></u> 54	13,5	27	27	6,7	3,5	6,7
K. pneumoniae KPC	27	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	13,5
C. parapsilosis ATCC 40280	>54	13,5	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54
C. albicans INCQS 40175	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54
S. epidermidis INCQS 198	<u>></u> 54	1,6	<u>></u> 54	<u>></u> 54	27	27	27	<u>></u> 54	<u>></u> 54
S. aureus ATCC 29213	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54	<u>></u> 54
P. aeruginosa ATCC 27853	13,5	<u>></u> 54	<u>></u> 54	27	<u>></u> 54	27	6,7	<u>></u> 54	13,5

Tabela 20 – Resultados de CBM para o 4º lote de nanoAg IFSC e IPT, frente a diversos micro-organismos sensíveis e MR.

ANEXO C –

		IFSC			Controles	
IFSC 5º Lote	Citrato	Quitosana	PVA	Sulfadiazina de Ag	Nitrato de Ag	Sigma 60 nm
	MHB	MHB	MHB	MHB	MHB	MHB
A. baumannii MR (A1)	13,5	6,7	<u>></u> 54	6,7	3,4	<u>></u> 10
A. baumannii MR (A2)	3,4	6,7	27	6,7	3,4	<u>></u> 10
A. baumannii MR (A3)	13,5	6,7	13,5	6,7	3,4	<u>></u> 10
A. baumannii MR (A4)	13,5	6,7	<u>></u> 54	13,5	3,4	<u>></u> 10
A. baumannii MR (A5)	13,5	6,7	13,5	6,7	3,4	<u>></u> 10
A. baumannii MR (A6)	13,5	6,7	13,5	6,7	3,4	<u>></u> 10
A. baumannii MR (A7)	27	6,7	27	13,5	13,5	<u>></u> 10
A. baumannii MR (A8)	27	27	13,5	13,5	13,5	<u>></u> 10
A. baumannii MR (A9)	27	6,7	13,5	6,7	3,4	<u>></u> 10
A. baumannii MR (A10)	3,4	6,7	13,5	13,5	3,4	<u>></u> 10
A. baumannii MR (A11)	13,5	6,7	27	6,7	3,4	<u>></u> 10
A. baumannii MR (A12)	3,4	6,7	27	13,5	3,4	<u>></u> 10
A. baumannii S (AS1)	3,4	6,7	13,5	6,7	3,4	<u>></u> 10
A. baumannii S (AS2)	3,4	1,6	13,5	13,5	3,4	<u>></u> 10
A. baumannii S (AS3)	3,4	3,4	13,5	6,7	3,4	<u>></u> 10
A. baumannii S (AS4)	3,4	3,4	27	6,7	3,4	<u>></u> 10
A. baumannii S (AS5)	3,4	6,7	<u>></u> 54	6,7	3,4	<u>></u> 10
S. maltophilia (MO9)	13,5	6,7	<u>></u> 54	6,7	3,4	<u>></u> 10
S. maltophilia (MO11)	3,4	6,7	<u>></u> 54	6,7	6,7	<u>></u> 10
P. aeruginosa MR (P1)	3,4	13,5	<u>></u> 54	6,7	1,6	<u>></u> 10
P. aeruginosa MR (P2)	6,7	13,5	27	13,5	6,7	<u>></u> 10
P. aeruginosa MR (P3)	3,4	13,5	27	13,5	3,4	<u>></u> 10
P. aeruginosa MR (P4)	13,5	13,5	<u>></u> 54	13,5	<u>></u> 27	<u>></u> 10
P. aeruginosa MR (P5)	3,4	13,5	27	6,7	6,7	<u>></u> 10
P. aeruginosa S (PS1)	34	13,5	13,5	6,7	13,5	<u>></u> 10
P. aeruginosa S (PS2)	3,4	6,7	<u>></u> 54	13,5	13,5	<u>></u> 10
P. aeruginosa S (PS3)	1,6	3,4	<u>></u> 54	13,5	6,7	<u>></u> 10
P. aeruginosa S (PS4)	1,6	6,7	13,5	13,5	3,4	<u>></u> 10
P. aeruginosa S (PS5)	3,4	13,5	27	6,7	3,4	<u>></u> 10
P. aeruginosa S (PS6)	3,4	13,5	<u>></u> 54	13,5	3,4	<u>></u> 10
P. aeruginosa S (PS7)	3,4	13,5	13,5	13,5	6,7	<u>></u> 10

Tabela	21	-	Resultados	de	CBM	para	0	5°	lote	de	nanoAg	IFSC,	frente	а
		di	iversos micro	o-or	ganisn	nos se	ens	síve	eis e l	MR				

		IFSC			Controles	
IFSC 5º Lote	Citrato	Quitosana	PVA	Sulfadiazina de Ag	Nitrato de Ag	Sigma 60 nm
	MHB	MHB	MHB	MHB	MHB	MHB
P. aeruginosa ATCC27853 (MO18)	6,7	13,5	<u>></u> 54	6,7	3,4	<u>></u> 10
Enterobacteria MR (K1)	6,7	6,7	<u>></u> 54	13,5	<u>></u> 27	<u>></u> 10
Enterobacteria MR (K2)	6,7	6,7	<u>></u> 54	13,5	6,7	<u>></u> 10
Enterobacteria MR (K3)	13,5	6,7	<u>></u> 54	13,5	6,7	<u>></u> 10
Enterobacteria MR (K4)	6,7	6,7	<u>></u> 54	13,5	6,7	<u>></u> 10
Enterobacteria MR (K5)	6,7	6,7	<u>></u> 54	13,5	6,7	<u>></u> 10
Enterobacteria MR (K6)	13,5	6,7	<u>></u> 54	13,5	6,7	<u>></u> 10
Enterobacteria MR (K7)	6,7	6,7	27	13,5	6,7	<u>></u> 10
Enterobacteria MR (K9)	6,7	6,7	<u>></u> 54	13,5	6,7	<u>></u> 10
Enterobacteria MR (K14)	27	13,5	<u>></u> 54	13,5	>27	<u>></u> 10
Enterobacteria MR (MO13)	3,3	3,3	13,5	13,5	>27	<u>></u> 10
Enterobacteria MR (MO8)	13,5	6,7	<u>></u> 54	13,5	3,4	<u>></u> 10
Enterobacteria MR (MO10)	3,3	6,7	<u>></u> 54	13,5	6,7	<u>></u> 10
Enterobacteria S (ENB1)	3,4	6,7	27	13,5	6,7	<u>></u> 10
Enterobacteria S (ENB2)	6,7	6,7	<u>></u> 54	13,5	13,5	<u>></u> 10
Enterobacteria S (ENB3)	3,4	3,4	13,5	13,5	6,7	<u>></u> 10
Enterobacteria S (ENB4)	6,7	6,7	27	13,5	<u>></u> 27	<u>></u> 10
Enterobacteria S (ENB5)	6,7	6,7	27	<u>></u> 27	6,7	<u>></u> 10
Enterobacteria S (ENB6)	6,7	6,7	27	13,5	6,7	<u>></u> 10
Enterobacteria S (ENB7)	6,7	3,4	13,5	13,5	6,7	<u>></u> 10
Enterobacteria S (ENB8)	3,4	3,4	27	13,5	6,7	<u>></u> 10
Enterobacteria S (ENB9)	27	3,4	<u>></u> 54	13,5	6,7	<u>></u> 10
S. aureus MRSA (S1)	6,7	27	<u>></u> 54	13,5	<u>></u> 27	<u>></u> 10
S. aureus MRSA (S2)	13,5	6,7	<u>></u> 54	<u>></u> 27	<u>></u> 27	<u>></u> 10
S. aureus MRSA (S3)	13,5	3,4	<u>></u> 54	<u>></u> 27	<u>></u> 27	<u>></u> 10
S. aureus MRSA (S4)	13,5	3,4	<u>></u> 54	<u>></u> 27	<u>></u> 27	<u>></u> 10
S. aureus MRSA (S5)	13,5	3,4	<u>></u> 54	13,5	13,5	<u>></u> 10
S. aureus MRSA (S6)	13,5	27	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
S. aureus MRSA (S7)	13,5	3,4	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
S. aureus MRSA (S8)	13,5	3,4	27	<u>></u> 27	13,5	<u>></u> 10
S. aureus MRSA (MO1)	27	27	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
S. aureus MRSA (MO2)	13,5	3,4	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
S. aureus MRSA (MO3)	13,5	6,7	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
S. aureus MRSA (MO4)	13,5	27	<u>></u> 54	<u>></u> 27	<u>></u> 27	<u>></u> 10
S. aureus MRSA (MO5)	13,5	27	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
S. aureus MRSA (MO6)	27	6,7	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10

		IFSC			Controles	
IFSC 5º Lote	Citrato	Quitosana	PVA	Sulfadiazina de Ag	Nitrato de Ag	Sigma 60 nm
	MHB	MHB	MHB	MHB	MHB	MHB
S. aureus MRSA (MO7)	13,5	6,7	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
S. aureus MSSA (MSSA1)	27	27	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
S. aureus MSSA (MSSA2)	13,5	6,7	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
S. aureus MSSA (MSSA3)	13,5	6,7	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
S. aureus MSSA (MSSA4)	13,5	<u>></u> 54	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
S. aureus MSSA (MSSA5)	13,5	6,7	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
S. aureus MSSA (MSSA6)	13,5	6,7	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
S. aureus ATCC29213 (MO17)	27	6,7	<u>></u> 54	<u>></u> 27	<u>></u> 27	<u>></u> 10
S. epidermidis INCQS 198 (MO16)	6,7	6,7	27	13,5	6,7	<u>></u> 10
Enterococcus sp. VRE (V1)	27	27	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
Enterococcus sp. VRE (V2)	27	6,7	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
Enterococcus sp. VRE (V3)	27	6,7	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
Enterococcus sp. VRE (V4)	27	13,5	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
Enterococcus sp. VRE (V5)	27	13,5	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
Enterococcus sp. VRE (V6)	13,5	13,5	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
Enterococcus sp. VRE (V7)	27	6,7	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
Enterococcus sp. VRE (V8)	27	6,7	13,5	<u>></u> 27	13,5	<u>></u> 10
Enterococcus sp. VSE (VSE1)	27	13,5	<u>></u> 54	<u>></u> 27	<u>></u> 27	<u>></u> 10
Enterococcus sp. VSE (VSE2)	6,7	13,5	<u>></u> 54	<u>></u> 27	<u>></u> 27	<u>></u> 10
Enterococcus sp. VSE (VSE3)	13,5	3,4	<u>></u> 54	<u>></u> 27	<u>></u> 27	<u>></u> 10
Enterococcus sp. VSE (VSE4)	6,7	6,7	<u>></u> 54	13,5	13,5	<u>></u> 10
Enterococcus sp. VSE (VSE5)	6,7	6,7	<u>></u> 54	13,5	13,5	<u>></u> 10
Enterococcus sp. VSE (VSE6)	6,7	6,7	<u>></u> 54	<u>></u> 27	<u>></u> 27	<u>></u> 10
C. albicans (C1)	6,7	6,7	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
C. albicans (C2)	6,7	<u>></u> 54	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
C. albicans (C3)	<u>></u> 54	6,7	<u>></u> 54	<u>></u> 27	<u>></u> 27	<u>></u> 10
C. albicans (C4)	<u>></u> 54	6,7	<u>></u> 54	<u>></u> 27	<u>></u> 27	<u>></u> 10
C. albicans (C5)	13,5	27	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
C. albicans (C6)	27	6,7	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
C. albicans (C7)	27	6,7	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
C. albicans (C8)	13,5	6,7	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
C. albicans (C9)	27	6,7	<u>></u> 54	<u>></u> 27	<u>></u> 27	<u>></u> 10
C. albicans (C10)	13,5	6,7	<u>></u> 54	<u>></u> 27	13,5	5
C. albicans (MO15)	6,7	3,4	13,5	6,7	3,4	<u>></u> 10
C. tropicalis (T1)	27	6,7	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10
C. tropicalis (T2)	13,5	6,7	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10

		IFSC		Controles			
IFSC 5º Lote	Citrato	Quitosana	PVA	Sulfadiazina de Ag	Nitrato de Ag	Sigma 60 nm	
	MHB	MHB	MHB	MHB	MHB	MHB	
C. tropicalis (T3)	27	27	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10	
C. tropicalis (T4)	13,5	3,4	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10	
C. tropicalis (T5)	13,5	27	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10	
C. parapsilosis (MO14)	27	13,5	<u>></u> 54	<u>></u> 27	13,5	<u>></u> 10	

ANEXO C -

	Citrato	Quitosana	PVA	Sulfadiazina Ag	Nitrato Ag	Sigma 60	Sigma 10	
Concentração (mcg/ml)	≥54 27 13,5 6,7 3,4 1,6 0,8	≥54 27 13,5 6,7 3,4 1,6 1,6 0,8	254 27 13,5 6,7 3,4 1,6 1,6	≥27 13,5 6,7 3,4 1,6 0,8	≥27 13,5 6,7 3,4 1,6 0,8	≥10 5 2,5 1,2 0,6 0,3 0,1	≥10 5 2,5 1,2 0,6 0,3 0,1	
Enterobactérias	s MR							×1
K2								K2
K2								K2
K4								K4
K4								K4
KE								K5
K0								K0
Kð								K9
K14								K14
M013								M013
MOS								MOS
M010								M010
Enterobactérias	Sensíveis							
ENB1								ENB1
ENB2								ENB2
ENB3								ENB3
ENB4								ENB4
ENB5								ENB5
ENB6								ENB6
ENB7								ENB7
ENB8								ENB8
ENB9								ENB9
Staphylococcus S1	aureus MRSA						_	\$1
\$2								\$2
\$3								\$3
\$4								S4
S5								S 5
S6								S6
\$7								S7
								S 8
M01								MO1
MO2								MO2
МОЗ								моз
MO4								MO4
MO5								M05
MO6								M06
M07								M07
Staphylococcus	spp. Sensível	_						
MSSAI								MSSAI
MSCAD								MSSA2
Mech4								Meena
MSSAF								MSCAF
MISSAE								MSSAG
M017								MO17
M016								MO16
1010								
							Continua.)

Figura 9 – Comparativo entre CIM e CBM em MHII para o 5º lote de nanoAg IFSCar e controles, frente a 107 isolados sensíveis, MR e candidas Legenda: verde – CIM, Vermelho – CBM

ANEXO C -

(Continua.)

Figura 10 – Comparativo entre CIM e CBM em MHII Sg 1,25% para o 5º lote de nanoAg IFSCar e controles, frente a isolados sensíveis, MR e candidas

REFERÊNCIAS BIBLIOGRÁFICAS

Ansari MA, Khan HM, Khan AA, Malik A, Sultan A, Shahid M, Shujatullah F and Azam A. Evaluation of antibacterial activity of silver nanoparticles against MSSA and MSRA on isolates from skin infections. *Biol Med.* 2011;3:141–6.

ANVISA. Agencia Nacional de Vigilância Sanitária. Nota técnica 01/2013. Medidas de prevenção e controle de infecções por enterobactérias multirresistentes. Brasilia, 17 de abril 2013.

Asharani PV, Mun GLK, Hande MP and Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. *ACS Nano* 2009;3:279–90.

Atiyeh BS, Costagliola M, Hayek SN, Dibo SA. Effect of silver on burn wound infection control and healing: review of the literature. *Burns*. 2007;33(2):139-48.

Ayala-Nunez NV, Lara HH, Turrent Liliana del CI, Padilla CR. Silver nanoparticles toxicity and bactericidal effect against Methicillin-resistant *Staphylococcus aureus*: Nanoscale does matter. *Nanobiotechnology*. 2009;5:2-9.

Berglund C, Ito T, Ma XX, Ikeda M, Watanabe S, Söderquist B, Hiramatsu K.Genetic diversity of methicillin-resistant *Staphylococcus aureus* carrying type IV SCCmec in Orebro County and the western region of Sweden. *J Antimicrob Chemother.* 2009;63(1):32-41.

Boo TW, Crowley B. Detection of *bla_{oxa58}* and *bla_{oxa23-like}* in carbapenemsuscetible *Acinetobacter* clinical isolates: should we be concerned? *J Medic Microbiol*. 2009;58(Pt 2):209-16.

Bou G, Oliver A, Martinez-Beltran J. OXA-24, a novel class D beta-lactamase with carbapenemase activity in an *Acinetobacter baumannii* clinical strain. *Antimicrob Agents Chemother*. 2000;44(6):1556-61.

Braydich-Stolle, L. et al. *In vitro* cytotoxicity of nanoparticles in mammalian germline stem cells. *Toxicol. Sci.* 2005;88:412–9.

Brichta-Harhay DM, Arthur TM, Bosilevac JM, Kalchayanand N, Shackelford SD, Wheeler TL, Koohmaraie M. Diversity of multidrug-resistant *Salmonella enterica* strains associated with cattle at harvest in the United States. *Appl Environ Microbiol*. 2011;77(5):1783-96.

Brown S and Amyes SG. OXA (beta)-lactamases in *Acinetobacter*. the story so far. *J. Antimicrob. Chemother*. 2006;57:1–3.

Brown S, Young HK, Amyes SG. Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of *Acinetobacter baumannii* from Argentina. *Clin Microbiol Infect*. 2005;11(1):15-23.

Bush K and Jacoby GA. Updated Functional Classification of β-Lactamases

Antimicrob Agents Chemother. 2010;54(3):969–76.

Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for betalactamases and its correlation with molecular structure. *Antimicrob Agents Chemother*. 1995;39(6):1211-33.

Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. *J. Phys. Chem.* 2008;B112:13608–19.

Carvalho AP, Albano RM, de Oliveira DN, Cidade DA, Teixeira LM, Marques EdeA. Characterization of an epidemic carbapenem-resistant *Pseudomonas aeruginosa* producing SPM-1 metallo-beta-lactamase in a hospital located in Rio de Janeiro, Brazil. *Microb Drug Resist.* 2006;12(2):103-8.

Carvalho KR, Carvalho-Assef AP, Peirano G, Santos LC, Pereira MJ, Asensi MD. Dissemination of multidrug-resistant *Acinetobacter baumannii* genotypes carrying bla(OXA-23) collected from hospitals in Rio de Janeiro, Brazil. *Int J Antimicrob Agents*. 2009;34(1):25-8.

Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. *Trends Biotechnol*. 2010;Nov;28(11):580-8.

Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen *Candida albicans*: development, architecture, and drug resistance. *J Bacteriol.* 2001;183:5385–94.

Chopra I. The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? *J Antimicrob Chemother*. 2007;59:587-90.

Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard— Ninth Edition. CLSI document M07-A9 (ISBN 1-56238-783-9 [Print]; ISBN 1-56238-784-7 [Electronic]). *Clinical and Laboratory Standards Institute*, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA, 2012.

Dalla-Costa LM, Coelho JM, Souza HA, Castro ME, Stier CJ, Bragagnolo KL, Rea-Neto A, Penteado-Filho SR, Livermore DM, Woodford N. Outbreak of carbapenem-resistant *Acinetobacter baumannii* producing the OXA-23 enzyme in Curitiba, Brazil. *J Clin Microbiol*. 2003;41(7):3403-6.

D'Alincourt Carvalho-Assef AP, Leão RS, da Silva RV, Ferreira AG, Seki LM, Asensi MD, Marques EA. *Escherichia coli* producing KPC-2 carbapenemase: first report in Brazil. *Diagn Microbiol Infect Dis.* 2010;68(3):337-8.

Damm C, Mu[°]nstedt H, Ro[°] sch A. The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. *Mater Chem Phys.* 2008;108:61–6.

Davey ME and O'Toole GA. Microbial Biofilms: from Ecology to Molecular Genetics. Microbiology and Molecular *Biology Reviews.* 2000; 64(4):847-67.

Dawy M, Hifaat HM, Moustafa S A and Mousa HA. Physicochemical Studies on Nano Silver Particles Preparated by Different Techniques. *Australian Journal of Basic and Applied Sciences*, 2012;6(3):257-62.

de A Trindade P, Pacheco RL, Costa SF, Rossi F, Barone AA, Mamizuka EM, Levin AS. Prevalence of SCCmec type IV in nosocomial bloodstream isolates of methicillin-resistant *Staphylococcus aureus*. *J Clin Microbiol*. 2005;43(7):3435-7.

de Souza A, Mehta D and Leavitt RW. Bactericidal activity of combinations of silver–water dispersion with 19 antibiotics against seven microbial strains. *Curr Sci*. 2006;91:926–9.

Deurenberg RH, Stobberingh EE. The evolution of *Staphylococcus aureus*. *Infect Genet Evol.* 2008;8(6):747-63.

Drinka P, Niederman MS, El-Solh AA, Crnich CJ. Assessment of Risk Factors for Multi-Drug Resistant Organisms to Guide Empiric Antibiotic Selection in Long Term Care: A Dilemma. *JAMDA*. 2011;Jun:321-5.

Duarte CO, de Lencastre H. Multiplex PCR Strategy for Rapid Identification of Structural Types and Variants of the *mec* Element in Methicillin-Resistant *Staphylococcus aureus*. *Antimicrob Agents Chemother*. 2002;46:2155-61.

Egger S, Lehmann R P, Height MJ, Loessner MJ, Schuppler M. Antimicrobial Properties of a Novel Silver-Silica Nanocomposite Material. *Applied and Environmental Microbiogy*. 2009;75:2973–6.

EPA.Nanotechnology White Paper; Report EPA 100/B-07/001; U.S. *Environmental Protection Agency*: Washington, DC, 2007.

Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on *Escherichia coli* and *Staphylococcus aureus*. *J Biomed Mater Res*. 2000;52(4):662-8.

Finberg RW, Moellering RC, Tally FP, Craig WA, Pankey GA, Dellinger EP, West MA, Joshi M, Linden PK, Rolston KV, Rotschafer JC, Rybak MJ. The Importance of Bactericidal Drugs: Future Directions in Infectious Disease. *Clinical Infectious Diseases.* 2004;39:1314–20.

Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity. *Biology, and Medicine*. 2009;5:382–6.

Gales AC, Menezes LC, Silbert S, Sader HS. Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant *Pseudomonas aeruginosa*

producing SPM metallo-beta-lactamase. *J Antimicrob Chemother*. 2003;52(4):699-702.

Gales AC, Pfaller MA, Sader HS, Hollis RJ, Jones RN. Genotypic characterization of carbapenem-nonsusceptible *Acinetobacter* spp. isolated in Latin America. *Microb Drug Resist.* 2004;10(4):286-91.

Gales AC, Sader HS, Ribeiro J, Zoccoli C, Barth A, Pignatari AC. Antimicrobial Susceptibility of Gram-Positive Bacteria Isolated in Brazilian Hospitals Participating in the SENTRY Program (2005-2008). *Braz J Infect Dis.* 2009;13(2):90-8.

Giamarellos-Bourboulis EJ, Grecka P, Giamarellou H. Comparative in vitro interactions of ceftazidime, meropenem, and imipenem with amikacin on multiresistant *Pseudomonas aeruginosa*. *Diagn Microbiol Infect Dis*.1997;29(2):81-6.

Gong P, Li H, He X, Wang K, Hu J, Tan W, Tan S, Zhang XY. Preparation and antibacterial activity of Fe 3 O 4 @Ag nanoparticles. *Nanotechnology.* 2007;18:604–11.

Henrici, AT. Studies of freshwater bacteria. I. A direct microscopic technique. *J Bacteriol*. 1933;25:277-87.

Harrison JJ, Rabiei M, Turner RJ, Badry EA, Sproule KM, Ceri H.. Metal resistance in Candida biofilms. *FEMS Microbiol Ecol.* 2006;55:479–91.

Heritier C, Poirel L, Lambert T, Nordmann P. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in *Acinetobacter baumannii. Antimicrob Agents Chemother.* 2005;49(8):3198-202.

Higgins PG, Poirel L, Lehmann M, Nordmann P, Seifert H. OXA-143, a novel carbapenem-hydrolyzing class D beta-lactamase in *Acinetobacter baumannii*. *Antimicrob Agents Chemother*. 2009;53(12):5035-8.

Hindler J. Tests to assess bactericidal activity. In *Clinical Microbiology rocedures Handbook*. Ed. Eisenberg HD. Washington, DC: American Society for Microbiology. 1992;p 5.16.14-5.16.24.

Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. *Toxicol. Lett.* 2008; 179;130–9.

Humberto H, Lara V, Ayala-Nunez NV, Carmen LD, Ixtepan T, Cristina RP. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. *World J Microbiol Biotechnol.* 2010;26:615–21. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. *Toxicol. In Vitro.* 2005;19:975–83.

Interagency Task Force on Antimicrobial Resistance . A PUBLIC HEALTH ACTION PLAN TO COMBAT ANTIMICROBIAL RESISTANCE. Interagency Task Force on Antimicrobial Resistance. Disponível em: http://www.cdc.gov/drugresistance/pdf/action-plan-2012.pdf

Ito T, Katayama Y, Asada K, Mori N, Tsutsumimoto K, Tiensasitorn C, Hiramatsu K. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant *Staphylococcus aureus*. *Antimicrob Agents Chemother*. 2001;45(5):1323-36.

Jeon BC, Jeong SH, Bae IK, Kwon SB, Lee K, Young D, Lee JH, Song JS, Lee SH. Investigation of a nosocomial outbreak of imipenem-resistant *Acinetobacter baumannii* producing the OXA-23 beta-lactamase in Korea. *J Clin Microbiol*. 2005;43(5):2241-5.

Kalishwaralal K, BarathManiKant S, Pandian SRK, *et al*: Silver nanoparticles impede the biofilm formation by *Pseudomonas aeruginosa* and *Staphylococcus epidermidis*. Colloids and Surfaces. *Biointerfaces* 2010;79:340-344.

Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, Staphylococcus cassette chromosome mec, encodes methicillin resistance in *Staphylococcus aureus*. *Antimicrob Agents Chemother*. 2000;44(6):1549-55.

Kiffer C, Hsiung A, Oplustil C, Sampaio J, Sakagami E, Turner P, Mendes C;MYSTIC Brazil Group. Antimicrobial susceptibility of Gram-negative bacteria in Brazilian hospitals: the MYSTIC Program Brazil 2003. *Braz J Infect Dis*. 2005;9(3):216-24.

Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH. Antimicrobial effects of silver nanoparticles. *Nanomedicine*. 2007;3(1):95–101.

Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal activity and mode of action of silver nano-particles on *Candida* Calbicans. *Biometals*. 2009;22:235–42.

Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. *J Microbiol Biotechnol*. 2008;18(8):1482-4.

Kong H, Jang J. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. *Langmuir.* 2008;24:2051-6.

Kouda S, Ohara M, Onodera M, Fujiue Y, Sasaki M, Kohara T, Kashiyama S,Hayashida S, Harino T, Tsuji T, Itaha H, Gotoh N, Matsubara A, Usui T, Sugai M. Increased prevalence and clonal dissemination of multidrug-resistant

Pseudomonas aeruginosa with the blaIMP-1 gene cassette in Hiroshima. J Antimicrob Chemother. 2009;64(1):46-51.

Kumarasamy KK, Toleman MA, Walsh TR, Bagaria Y, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, RayU, SarmaJ, SharmaM, Sheridan E, Thirunarayan MA, Turton J, Upadhyay J, WarnerM, Welfare W, Livermore DM, Woodford N. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. *The Lancet Infect Dis.* 2010;10;597–602.

Landsdown, A.B.G. Silver I: its antibacterial properties and mechanism of action. *J Wound Care.* 2002;11:125–38.

Lea, M. C. On allotropic forms of silver. Am. J. Sci. 1889;37:476–91.

Leite AM, Lima EO, Souza EL, et al. Inhibitory effect of a-pinene, b-pinene and eugenol on the growth of potential infectious endocarditis causing Grampositive bacteria. *Rev. Bras Cienc.Farm.* 2007;43(1):121-6.

Levin AS, Mendes CM, Sinto SI, Sader HS, Scarpitta CR, Rodrigues E, Sauaia N, Boulos M. An outbreak of multiresistant *Acinetobacter baumanii* in a university hospital in São Paulo, Brazil. *Infect Control Hosp Epidemiol*. 1996;17(6):366-8.

Livermore DM. The impact of carbapenemases on antimicrobial development and therapy. *Curr Opin Investig Drugs*. 2002;3(2):218-24.

Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. *Journal of Proteome Research.* 2006;5:916–24.

Lu PL, Doumith M, Livermore DM, Chen T, Woodford N. Diversity of carbapenem resistance mechanisms in *Acinetobacter baumannii* from a Taiwan hospital: spread of plasmid-borne OXA-72 carbapenemase. *J. Antimicrob. Chemother*. 2009;63(4):641-7.

Mah, T. F. C. and O'Toole, G. A. Mechanisms of biofilm resistance to antimicrobial agents. *Trends in Microbiology.* 2001;9:34-9.

Manes, M. Silver impregnated carbon. United States Patent 3,374,608, 1968.

Martins AF, Zavascki AP, Gaspareto PB, Barth AL. Dissemination of *Pseudomonas aeruginosa* producing SPM-1-like and IMP-1-like metallo-beta-lactamases in hospitals from southern Brazil. *Infection*. 2007;35(6):457-60.

Mendes C, Turner PJ; MYSTIC Study Group (Europe). Unit differences in pathogen occurrence arising from the MYSTIC program European database (1997-2000). *Diagn Microbiol Infect Dis*. 2001;41(4):191-6.

Miller MB and Bassler BL. Quorum Sensing in Bacteria. *Annu. Rev.Microbiol.* 2001;55:165-99.

Monteiro DR, Gorup LF, Silva S, Negri M, de Camargo ER, Oliveira R, Barbosa DB, Henriques M. Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of *Candida albicans* and *Candida glabrata*. Biofouling: *The Journal of Bioadhesion and Biofilm Research*. 2011;27(7);711-9.

Monteiro J, Santos AF, Asensi MD, Peirano G, Gales AC. First report of KPC-2producing *Klebsiella pneumoniae* strains in Brazil. *Antimicrob Agents Chemother*. 2009;53(1):333-4.

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri J B, Ramírez JT and Yacaman M J. The bactericidal effect of silver nanoparticles. *Nanotechnology.* 2005;16(10):2346-53.

Mostachio AK, Levin AS, Rizek C, Rossi F, Zerbini J, Costa SF. High prevalence of OXA-143 and alteration of outer membrane proteins in carbapenem-resistant *Acinetobacter* spp. isolates in Brazil. *Int J Antimicrob Agent*s. 2012;39(5):396-401.

Nanda, A. and Saravanan, M. Biosynthesis of silver nanoparticles from *Staphylococcus aureus* and its antimi- crobial activity against MRSA and MRSE. *Nanomedicine*.2009;5:452–56.

National Committee for Clinical Labarotory Standards (NCCLS) - Performance standards for antimicrobial suceptibility testing. Twelfth informational supplement M100-S22. Wayne, PA, 2012.

Nowack B, Krug HF and Height M. 120 Years of Nanosilver History: Implications for Policy Makers. Environmental Science and Technology. *Environ. Sci. Technol.* 2011;45:1177–83.

Okuma K, Iwakawa K, Turnidge JD, Grubb WB, Bell JM, O`Brien FG, Coombs GW, Peraman JW, Tenover FC, Kapi M, Tiensasitorn C, Ito T, Hiramatsu K. Dissemination of New Methicillin-resistant *Staphylococcus aureus* Clones in the Community. *J Clin Microbiol.* 2002;40:4289-94.

Pacheco RL, Lobo RD, Oliveira MS, Farina EF, Santos CR, Costa SF, Padoveze MC,Garcia CP, Trindade PA, Quitério LM, Rivitti EA, Mamizuka EM, Levin AS. Methicillin-resistant *Staphylococcus aureus* (MRSA) carriage in a dermatology unit. *Clinics* (Sao Paulo). 2011;66(12):20717.

Paez J. Caracterização de mecanismos de resistência as quinolonas e sulfametoxazol/trimetoprima de isolados clínicos de *Stenotrophomonas*

maltophilia. Tese de Doutorado Departamento de Molestia Infecciosa e Parasitária da Faculdade de Medicina da USP. 2011

Paez J, Levin AS, Fu L, Basso M, Fonseca GH, Dulley FL, Rossi F, Guimarães T, Costa SF. Clusters of infection due to metallo-β-lactamase-producing *Pseudomonas aeruginosa* in stem cell transplant and haematology units. *J Hosp Infect.* 2011;77(1):76-7.

Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T. et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. *J Phys Chem.* 2006;110:16248–53.

Panáčeka A, Kolářb M, Večeřováb R, Pruceka R, Soukupováa J, Kryštofc V, Hamalb P, Zbořila R and Kvíteka L., Antifungal activity of silver nanoparticles against *Candida* spp. *Biomaterials*. 2009;30(31):6333-40.

Pasteran F. et al. Emergence of NDM-1-producing *Klebsiella pneumoniae* in Guatemala. *J Antimicrob Chemother*. 2012;67(7):1795-7.

Paterson DL. Looking for Risk Factors for the Acquisition of Antibiotic Resistance: A 21st-Century Approach. *Clin Infect Dis.* 2002;34(12):1564-7.

Pavez M, Mamizuka EM, Lincopan N. Early dissemination of KPC-2-producing *Klebsiella pneumoniae* strains in Brazil. *Antimicrob Agents Chemother*. 2009;53(6):2702.

Peleg AY, Seifert H, Paterson D. *Acinetobacter baumannii*: Emergence of a successful pathogen. *Clin. Microbiol. Rev.* 2008;21(3):538-82.

Perez, JAE. et al. Outbreak of NDM-1-Producing *Klebsiella pneumoniae* in a Neonatal Unit in Colombia. *Antimicrob Agents Chemother*, 2013;57(4);1957-60.

Petica A, Gavriliu S, Lungu M, Buruntea N, Panzaru C. Colloidal silver solutions with antimicrobial properties. *Materials Science and Engineering*. 2008;B152:22-7.

Picão RC, Poirel L, Gales AC, Nordmann P. Diversity of beta-lactamases produced by ceftazidime-resistant *Pseudomonas aeruginosa* isolates causing bloodstream infections in Brazil. *Antimicrob Agents Chemother*. 2009;53(9):3908-13.

Pirnay JP, De Vos D, Cochez C, Bilocq F, Pirson J, Struelens M, Duinslaeger L, Cornelis P, Zizi M, Vanderkelen, A. Molecular Epidemiology of *Pseudomonas aeruginosa* Colonization in a Burn Unit: Persistence of a Multidrug-Resistant Clone and a Silver Sulfadiazine-Resistant Clone. *J Clin Microbiol.* 2003;41(3):1192–1202.

Planquette B, Timsit JF, Misset B, Schwebel C, Azoulay E, Adrie C, Vesin A, Jamali S, Zahar JR, Allaouchiche B, Souweine B, Darmon M, Dumenil AS,

Goldgran-Toledano D, Mourvillier B, Bédos JP. *Pseudomonas Aeruginosa* Ventilator-Associated Pneumonia: Predictive Factors of Treatment Failure. *Am J Respir Crit Care Med.* 2013;188(1):69-76.

Pogue JM, Marchaim D, Kaye D, Kaye KS, Revisiting "Older" Antimicrobials in the Era of Multidrug Resistance. *Pharmacotherapy*. 2011;31(9):912-21.

Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo JD, Nordmann P. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a *Pseudomonas aeruginosa* clinical isolate in France. *Antimicrob Agents Chemother*. 2000;44(4):891-7.

Postma DF, van Werkhoven CH, Huijts SM, Bolkenbaas M, Oosterheert JJ, Bonten MJ. New trends in the prevention and management of community-acquired pneumonia. *Neth J Med*. 2012 Oct;70(8):337-48.

Pournaras S, Markogiannakis A, Ikonomidis A, Kondyli L, Bethimouti K, Maniatis AN, Legakis NJ, Tsakris A. Outbreak of multiple clones of imipenem-resistant *Acinetobacter baumannii* isolates expressing OXA-58 carbapenemase in an intensive care unit. *J Antimicrob Chemother*. 2006;57(3):557-61.

Prabakara K, Sivalingamb P, Rabeeka SIM, Muthuselvamb M, Devarajana N, Arjunanb A, Karthicka R, Sureshd MM, PoteWembonyamac J. Evaluation of antibacterial efficacy of phyto fabricated silver nanoparticles using Mukia scabrella (Musumusukkai) against drug resistance nosocomial gram negative bacterial pathogens Colloids and Surfaces *B: Biointerfaces.* 2013;104:282–8.

Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. *Clin Microbiol Rev.* 2007;20(3):440-58.

Rai M, Yadav A, Gade A, Silver nanoparticles as a new generation of antimicrobials. *Biotechnology Adv.* 2009;27:76–83.

Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. *J Appl Microbiol.* 2012;112(5):841-52.

Reijnders, L Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. *J. Cleaner Prod.* 2006;14:124–133.

Reinert RR, Low DE, Rossi F, Zhang X, Wattal C, Dowzicky MJ. Antimicrobial susceptibility among organisms from the Asia/Pacific Rim, Europe and Latin and North America collected as part of TEST and the in vitro activity of tigecycline. *J Antimicrob Chemother*. 2007;60(5):1018-29.

Rhim, J.W., Hong, S.I., Park, H. M. and Ng, P.K. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. *J. Agric. Food Chem.* 2006; 54:5814–5822.

Ribeiro J, Mendes RE, Domingos R, França E, Silbert S, Jones RN, Sader HS. Microbiological and epidemiological characterization of imipenem-resistant *Pseudomonas aeruginosa* strains from a Brazilian tertiary hospital: report from the SENTRY Antimicrobial Surveillance Program. *J Chemother*. 2006;18(5):461-7.

Rizek C, Ferraz K, van der Heijden I, Giudice M, Mostachio K, Paez J, Rossi F, Carrilho C, Levin A S, Costa S. Potential old and new drugs for treatment of multidrug-resistant Gram-negative infections. P1828. ID week, 17 a 21 de outubro de 2012, San Diego, EUA.

Rodríguez-Martínez JM, Poirel L, Nordmann P. Molecular epidemiology and mechanisms of carbapenem resistance in *Pseudomonas aeruginosa*. *Antimicrob Agents Chemother*. 2009;53(11):4783-8

Sabath, LD and Abraham, EP. Zinc as a cofactor for cephalosporinase from *Bacillus cereus* 569. *Biochem J.*1966;98:11c-13c.

Sadeghi, B, Jamali M, Kia SH, Amini nia A, Ghafari S. Synthesis and characterization of silver nanoparticles for antibacterial activity. *Int.J.Nano.Dim.* 2010;1(2):119-24.

Sader HS, Moet GJ, Jones RN. Antimicrobial resistance among Gram-positive bacteria isolated in Latin American hospitals. *J Chemother*. 2009;21(6):611-20.

Sader HS, Castanheira M, Mendes RE, Toleman M, Walsh TR, Jones RN. Dissemination and diversity of metallo- β -lactamases in Latin America: report from the SENTRY Antimicrobial Surveillance Program. *Int J Antimicrob Agents*. 2005;25(1):57-61.

Sader HS, Mendes CF, Pignatari AC, Pfaller MA. Use of macrorestriction analysis to demonstrate interhospital spread of multiresistant *Acinetobacter baumannii* in São Paulo, Brazil. *Clin Infect Dis.* 1996;23(3):631-4

Schacht VJ, Neumann LV, Sandhi SK, Chen L, Henning T, Klar PJ, Theophel K, Schnell S, Bunge M. Effects of silver nanoparticles on microbial growth dynamics. *J Appl Microbiol.* 2013;114(1):25-35.

Schuenck RP, Nouér SA, Winter Cde O, Cavalcante FS, Scotti TD, Ferreira AL, Giambiagi-de Marval M, dos Santos KR. Polyclonal presence of nonmultiresistant methicillin-resistant *Staphylococcus aureus* isolates carrying SCCmec IV in health care-associated infections in a hospital in Rio de Janeiro, Brazil. *Diagn Microbiol Infect Dis*. 2009;64(4):434-41.

Schwarz S, Silley P, Simjee S, Woodford N, van Duijkeren , Johnson A P and Gaastra W. Editorial: Assessing the antimicrobial susceptibility of bacteria obtained from animals. *J Antimicrob Chemother.* 2010;65:601–4.

Seneviratne CJ, Silva WJ, Jin LJ, Samaranayake YH, Samaranayake LP... Architectural analysis, viability assessment and growth kinetics of *Candida albicans* and *Candida glabrata* biofilms. *Arch Oral Biol* 2009;54:1052–60.

Shrivastava S, Bera T, Arnab R, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. *Nanotechnology.* 2007;18:225103-225111.

Sondi I and Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study of *E. coli* as a model for gram-negative bacteria. *J. Colloid Interface Sci.* 2004;275:177-82

Stefan M, Lucian H, Marius M, Daniela P, Irina G, Romeo-Iulian O, Simona D. and Viorel M. Enhanced antibacterial effect of silver nanoparticles obtained by synthesis in poly amide-hydroxyurethane media. *J Mater Sci Mater Med*. 2011;22:789–96.

Stewart PS and Franklin MJ. Physiological heterogeneity in biofilms. *Nature Reviews Microbiology*. 2008;6:199-210.

Tam VH, Chang KT, LaRocco MT, Schilling AN, McCauley SK, Poole K, Garey KW. Prevalence, mechanisms, and risk factors of carbapenem resistance in bloodstream isolates of *Pseudomonas aeruginosa*. *Diagn Microbiol Infect Dis*. 2007;58(3):309-14.

Tatavarthy A, Sanderson R, Peak K, Scilabro G, Davenhill P, Cannons A, Amuso P.. Molecular typing and resistance analysis of travel-associated *Salmonella enterica* serotype Typhi. *J Clin Microbiol.* 2012; Aug;50(8):2631-8.

Tognim MC, Gales AC, Penteado AP, Silbert S, Sader HS. Dissemination of IMP-1 metallo-beta-lactamase-producing *Acinetobacter* species in a Brazilian teaching hospital. *Infect Control Hosp Epidemiol*. 2006;27(7):742-7.

Tognim MC, Andrade SS, Silbert S, Gales AC, Jones RN, Sader HS. Resistance trends of Acinetobacter spp. in Latin America and characterization of international dissemination of multi-drug resistant strains: five-year report of the SENTRY Antimicrobial Surveillance Program. *Int J Infect Dis.* 2004;8(5):284-91.

Trott DJ, Moss SM, See AM, Rees R. Evaluation of disc diffusion and MIC testing for determining susceptibility of *Pseudomonas aeruginosa* isolates to topical enrofloxacin/silver sulfadiazine. *Aust Vet J.* 2007;85(11):464-6.

Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, Spanu T, Ambretti S, Ginocchio F, Cristini F, Losito AR, Tedeschi S, Cauda R, Bassetti M. Predictors of mortality in bloodstream infections caused by *Klebsiella pneumoniae* carbapenemase-producing *K. pneumoniae*: importance of combination therapy. *Clin Infect Dis.* 2012;55(7): 943-50. Turner PJ. Meropenem activity against European isolates: report on the MYSTIC (Meropenem Yearly Susceptibility Test Information Collection) 2006 results. *Diagn Microbiol Infect Dis.* 2008;60(2):185-92.

Villegas MV, Lolans K, Correa A, Kattan JN, Lopez JA, Quinn JP; Colombian Nosocomial Resistance Study Group. First identification of *Pseudomonas aeruginosa* isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. *Antimicrob Agents Chemother*. 2007;51(4):1553-5.

Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. *Antimicrob Agents Chemother*. 2001;45(4):1151-61.

Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. Characterization of a new metallo-beta-lactamase gene, *bla*(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in *Klebsiella pneumoniae* sequence type 14 from India. *Antimicrob Agents Chemother*, Dec 2009;53(12):5046-54.

Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR.Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in *Klebsiella pneumoniae* sequence type 14 from India. *Antimicrob Agents Chemother*. 2009;53(12):5046-54.

Walther-Rasmussen J, Hoiby N. Oxa-type carbapenemases. *J. Antimicrob. Chemother*. 2006;57:373-83.

Warheit DB, Borm PJ, Hennes C, Lademann J. Testing strategies to establish the safety of nanoma-terials: conclusions of an ECETOC Workshop. *Inhal Toxicol.* 2007;19:631–43.

Wasiak J, Cleland H, Campbell F. Dressings for superficial and partial thickness burns. *Cochrane Database of Systematic Reviews*. 2008;Issue 4. Art. No.: CD002106.

Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, van de Meent D, Dekkers S, deJong WH, van Zijverden M, Sips AJAM, Geertsma RE. Nano-silver: A review of available data and knowledge gaps in human and environmental risk assessment. *Nanotoxicology*. 2009;3:109-38.

Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SG,Livermore DM. Multiplex PCR for genes encoding prevalent OXA carbapenemases in *Acinetobacter* spp. *Int J Antimicrob Agents*. 2006;27(4):351-3.

World Health Organization (WHO). 2002. Silver and silver compounds: Environmental aspects. (Concise international chemical assessment document; 44).ISBN 92 4 153044 8. Acesso em março de 2013. Disponível em: http://www.who.int/ipcs/publictions/cicad/en/cicad44.pdf

World Health Organization. WHO Global strategy for containment of antimicrobial resistance. 2001. Acesso em março de 2002. Disponível em: http://www.who.int/csr/drugresist/execsumE.pdf.

Zavascki AP, Zoccoli CM, Machado AB, de Oliveira KR, Superti SV, Pilger DA, Cantarelli VV, Barth AL. KPC-2-producing *Klebsiella pneumoniae* in Brazil: a widespread threat in waiting? *Int J Infect Dis.* 2010;14(6):539-40.

Zavascki AP, Machado AB, de Oliveira KR, Superti SV, Pilger DA, Cantarelli VV, Pereira PR, Lieberkmecht AC, Barth AL. KPC-2-producing *Enterobacter cloacae* in two cities from Southern Brazil. *Int J Antimicrob Agents*. 2009;34(3):286-8.

Zhang K, McClure JA, Elsayed S, Conly JM. Novel staphylococcal cassette chromosome mec type, tentatively designated type VIII, harboring class A mec and type 4 ccr gene complexes in a Canadian epidemic strain of methicillin-resistant Staphylococcus aureus. *Antimicrob Agents Chemother*. 2009;53(2):531-40.

Zhao GJ, Stevens SE. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. *Bimetals*. 1998;11:27-32.

Zheng J, Wu X, Wang M, Ran D, Xu W, Yang J.. Study on the interaction between silver nanoparticles and nucleic acids in the presence of cetyltrimethylammonium bromide and its analytical application. *Talanta*. 2008;74:526–532.

12 APÊNDICE

APÊNDICE A- Aprovação do estudo pelo Comitê de Ética em Pesquisa da FM/USP

MEDICINA

O Comitê de Ética em Pesquisa da Faculdade de Medicina da Universidade de São Paulo, em sessão de 15.12.2010, APROVOU o Protocolo de Pesquisa nº 378/10 intitulado: "Estudo da ação in vitro de cateteres venosos centrais impregnados com nanopartículas de prata." e seus anexos, apresentado pelo Departamento de Moléstias Infecciosas e Parasitárias.

Cabe ao pesquisador elaborar e apresentar ao CEP-FMUSP, os relatórios parciais e final sobre a pesquisa .

Pesquisador (a) Responsável: Silvia Figueiredo Costa Pesquisador (a) Executante: Emerson Danguy Cavassin

CEP-FMUSP, 15 de dezembro de 2010.

8-1-

Prof. Dr. Eduardo Massad Coordenador Comitê de Ética em Pesquisa

Comité de Ética em Pesquisa da Faculdade de Medicina da Universidade de São Paulo Av. Dr. Arnaldo , 455 – Instituto Oscar Freire 1º andar CEP 01246903 – Fone : 3061-8004 mail: cep.fmusp@honet.usp.br

APÊNDICE B – Divulgação de resumo publicado no *European Congress of Clinical Microbiology and Infectious Diseases -* 2013

R2625

Abstract (publication only) In vitro action of silver nanoparticles against multidrug-resistant microorganisms E.D. Cavassin*, R.A. Oliveira, I.M. Heijden, V. Zucolotto, L.F.P. Figueiredo, M.M. Seckler, S.F. Costa (Sao Paulo, BR)

Objectives: To evaluate the antibacterial effect of silver nanoparticleser synthesized under conditions varied of time, temperature, pH and reducing agent, against ATCC and clinical multi-drug resistant (MDR) microorganisms. Methods: 22 variations of nanoparticles had been produced. We evaluated the action of silver nanoparticles on MDR microorganisms through the measure of halos of inhibition in millimeters produced in surface and depth with solid Mueller Hinton Agar. Determination of the minimum inhibitory concentration (MIC) of silver nanoparticles by microdilution against different ATCC strains and clinical MDR isolates were performed. The following MDR microorganisms were evaluated: K pneumoniae harboring KPC, P. aeruginosa e A. baumannii carbapenem resistant harboring carbapenemase genes, VRE, MRSA. With different PFGE paterns. And yeast isolated from blood: C. albicans and C. tropicalis. Results: The evaluation of halos of inhibition carried against P. aeruginosa ATCC 27853 and S. aureus ATCC 29213 had shown greater effect of the formularizations with citrate (NanoAg5) against P. aeruginosa, with halo of 10 mm in the test in surface and 20 mm in the test in depth. However, against MDR strains this NanoAg showed poor results. On the other hand, NanoAg2 (produced under 85oC, pH7, 60 minutes) showed the best results, with MIC90 of 13,5 microgramas/ml. The MIC results are shown in Table 1, in micrograms/ml. Conclusion: The methods of evaluation of the halo of inhibition of silver nanoparticles presented low reprodutibility and greater difficulty. The evaluation of the MIC showed the best effect of nanoAg2 syntethezed under 85oC, pH7, 60 minutes. The development of NanoAg with inhibiting effect against MDR bacteria associated with healthcare associated infection can be a use to treat these infections in the future.

	A boumanny		K. BOR	umen/se	P. aeruginosa		S. <u>aureus</u>		Enterococcus spp.		C. <u>albitans</u>		C trapicalis	
	MIC50	MIC90	MIC50	MIC90	MIC50	MIC90	MIC50	MIC90	MIC50	MIC90	MIC50	MIC90	MIC50	MIC90
NanoAg1	13,50	27,00	27	>27	>27	>27	>27	>27	>27	>27	>27	>27	>27	>27
NanoAg2	6,75	13,50	13,5	>27	6,75	13,5	6,75	13,5	6,75	13,5	13,5	13,5	13,5	13,5
NanoAg3	>27	>27	>27	>27	>27	>27	>27	>27	>27	>27	>27	>27	>27	>27
NanoAg4	13,50	13,50	27	>27	13,5	13,5	13,5	13,5	13,5	27	13,5	27	13,5	27
NanoAg5	27,00	>27	>27	>27	27	>27	27	>27	27	>27	27	27	27	>27
NanoAg6	27,00	>27	27	>27	>27	>27	6,75	6,75	13,5	27	27	27	27	27
NanoAg7	>27	>27	>27	>27	>27	>27	>27	>27	27	27	>27	>27	27	>27
Silver Sulfaciazine	27,00	>27	>27	>27	>27	>27	>27	>27	>27	>27	>27	>27	>27	>27

Table 1. Minimum inhibitory concentration (MIC) MIC50 and MIC90 for MDR organisms against different NanoAg nanoparticles

Disponível em:

http://www.escmid.org/escmid_library/online_lecture_library/?search=1¤t _page=1&search_term=cavassin