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Velasco, S. M. (2009). Simetria e transitividade em discriminações condicionais de 

humanos e pombos (Columba livia) avaliadas sob condições de reforçamento 

diferencial. Tese de Doutorado. Instituto de Psicologia, Universidade de São Paulo. 80 p. 

 

Resumo: A demonstração da formação de classes de equivalência é dificultada pela 

ausência de reforçamento durante os testes de relações emergentes que documentam 

suas propriedades, em particular quando se trata de sujeitos não-humanos e humanos 

com desenvolvimento atípico. O presente trabalho propõe uma alternativa 

metodológica para testar a formação de classes de equivalência sob condições de 

reforçamento diferencial. O primeiro estudo testou simetria e transitividade em 

humanos adultos verbalmente competentes com o propósito de avaliar o procedimento 

em condições favoráveis à demonstração da formação de classes de equivalência. O 

segundo estudo aplicou o procedimento na avaliação de simetria em pombos. Em 

termos gerais, os sujeitos foram treinados em uma linha de base de relações 

condicionais antes de serem submetidos a testes reforçados de simetria ou 

transitividade. Durante o teste de simetria, dois conjuntos de relações condicionais 

foram adicionalmente reforçados: um constituído das contrapartes simétricas de 

relações da linha de base, o outro de relações inéditas não simétricas formadas pela 

recombinação de estímulos da linha de base. Desempenhos mais precisos nas 

relações simétricas em comparação às relações inéditas sugeririam um controle 

condicional por simetria. A mesma estratégia foi empregada para avaliar transitividade. 

Em relação aos resultados, os participantes humanos responderam com acurácia 

superior nas relações simétricas e transitivas do que nas relações inéditas no 

transcorrer de cada teste. Esses achados demonstram a efetividade do procedimento 

em avaliar a emergência de relações que definem equivalência de estímulos. Os 

pombos, por sua vez, desempenharam ao nível do acaso tanto nas relações 

simétricas quanto nas relações inéditas em um primeiro teste envolvendo a metade 

dos estímulos da linha de base. Entretanto, depois que essas relações foram treinadas 

até alta acurácia, todos os sujeitos responderam com precisão superior nas relações 

simétricas durante um segundo teste envolvendo os estímulos restantes da linha de 

base. Esses resultados contrastam a maioria dos resultados de estudos anteriores 

com sujeitos não-verbais e sugerem que formação de classes de equivalência pode 

ser verificada em tais populações sob condições adequadas de treino e teste. 

 Palavras-chave: discriminação condicional, equivalência de estímulos, simetria, 

transitividade, treino de exemplares múltiplos, testes reforçados, humanos, pombos. 
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Velasco, S. M. (2009). Symmetry and transitivity in conditional discriminations of 

humans and pigeons (Columba livia) evaluated under differential reinforcement 

conditions. Ph.D. Thesis. Instituto de Psicologia, Universidade de São Paulo. 80 p. 

 

Abstract: The lack of reinforcement in tests of emergent relations interferes with the 

demonstration of equivalence-class formation in nonhuman animals and humans with 

developmental disabilities. The present work proposes an alternative methodology to 

test equivalence-class formation under differential reinforcement conditions. The first 

study assessed symmetry and transitivity in verbally-able human adults in order to 

evaluate the proposed procedure. In the second study, such a procedure was applied 

to assess symmetry in pigeons. After subjects have been trained on the baseline 

conditional relations they were given either a symmetry or a transitivity reinforced test. 

During the symmetry test, two sets of conditional relations were additionally reinforced:  

symmetrical versions of the baseline relations and novel relations, formed by 

recombining stimuli from the baseline. Evidence for symmetry would be indicated by 

higher accuracies on the symmetrical than on the novel relations. Similar strategy was 

used to test transitivity. The results showed that human participants performed with 

higher levels of accuracy on the symmetrical and transitive relations than on the novel 

relations throughout each test. These founds indicate the efficacy of the procedure to 

test emergent relations that define stimulus equivalence. Pigeons, in turn, performed at 

chance-level in both symmetrical and novel relations in the first test involving half of the 

baseline stimuli. Nevertheless, after such relations have been trained to a high 

accuracy, all the pigeons matched at higher levels of accuracy on the symmetrical 

relations in the second test involving the remaining baseline stimuli. This result 

contrasts with the lack of symmetry reported in most of previous studies with nonverbal 

subjects and indicates that symmetry can emerge in such a population under adequate 

conditions of training and testing. 

 Key words: conditional discrimination, stimulus equivalence, symmetry, 

transitivity, multiple exemplar training, reinforced tests, humans, pigeons.
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 Em muitos contextos, nos comportamos diante de palavras e outros símbolos 

do mesmo modo em que o faríamos se estivéssemos diante dos eventos ou objetos a 

que eles se referem. Isso permite, por exemplo, que aprendamos algo novo e nos 

comportemos adequadamente em relação a eventos ausentes ou distantes no tempo. 

Assim, lidamos com quantidades que estão representadas apenas por números em 

um papel e desviamos de um congestionamento com base em instruções ditadas por 

um operador de trânsito. Do mesmo modo, uma criança chora ao escutar uma história 

de terror e a mãe se emociona ao ler uma carta do filho distante. Tudo isso parece 

possível apenas porque palavras e seus referentes podem se tornar membros de uma 

mesma classe de estímulos equivalentes. 

 Em uma classe de equivalência, estímulos perceptualmente dissimilares são 

mutuamente substituíveis, de modo que relações condicionais não treinadas 

diretamente podem emergir entre os membros da classe a partir de relações que 

foram explicitamente reforçadas (e.g., Lazar, Davis-Lang, & Sanches, 1984; Sidman, 

1971; Sidman & Cresson, 1973; Sidman & Tailby, 1982). Mais que disso, funções 

comportamentais adquiridas individualmente por cada membro da classe podem se 

estender para todos os demais membros sem a necessidade de qualquer treino 

adicional (e.g., de Rose, McIlvane, Dube, Galpin, & Stoddard, 1988; Silverman, 

Anderson, Marshall, & Baer, 1986). 

 No estudo inicial de Sidman (1971), a partir do reforçamento de relações entre 

palavras ditadas e figuras, bem como entre palavras ditadas e impressas, um indivíduo 

com retardo severo demonstrou a emergência de relações não reforçadas envolvendo 

figuras e palavras impressas. Além disso, uma vez que o participante já sabia nomear 

as figuras oralmente, ele foi capaz de ler cada palavra impressa em voz alta sem ter 

sido diretamente treinado nessa tarefa. 

 Os trabalhos iniciais de Sidman e colaboradores no início da década de 70 e a 
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posterior sistematização metodológica no início da década de 80 (Sidman, Rausin, 

Lazar, Cunninghan, Tailby, & Carrigan, 1982; Sidman & Tailby, 1982) forneceram um 

paradigma operacional para determinar se relações arbitrárias estabelecidas em treino 

de discriminações condicionais são também relações de equivalência. Por exemplo, em 

um procedimento de emparelhamento ao modelo (MTS1), um sujeito é treinado a 

escolher o estímulo de comparação B1 dado o modelo A1 e B2 dado o modelo A2, (i.e., 

relações condicionais A–B), assim com é treinado a escolher C1 e C2 dados os modelos 

B1 e B2, respectivamente (i.e., relações condicionais B–C). Na sequência, a formação 

de classes de equivalência é atestada caso o sujeito demonstre que aquelas relações 

inicialmente treinadas possuem as propriedades de reflexividade, simetria e 

transitividade. A propriedade de reflexividade é verificada pela emergência de um 

controle pela identidade dos estímulos, o qual é verificado caso o sujeito relacione 

condicionalmente cada estímulo do treino inicial a outro idêntico a ele mesmo (i.e., A–A, 

B–B, e C–C). Simetria é demonstrada quando dois estímulos previamente relacionados 

continuam a exercer controle conjunto mesmo depois que seus papéis de modelo e 

comparação são invertidos (i.e., B–A e C–B). Deste modo, verifica-se que as funções de 

modelo e comparação são intercambiáveis entre os estímulos condicionalmente 

relacionados. A propriedade de transitividade é demonstrada pela emergência de uma 

relação envolvendo dois estímulos nunca antes relacionados entre si (i.e., A–C), mas 

que, em contrapartida, foram relacionados a um terceiro estímulo em comum. Em todos 

esses casos, as relações emergentes que documentam as propriedades definidoras da 

equivalência são avaliadas na ausência de qualquer reforçamento programado.  

 Por envolver relações arbitrárias, intercambialidade de funções e emergência 

de relações não treinadas entre estímulos, a formação de classes de equivalência tem 

sido apontada como um requisito comportamental crítico para o desenvolvimento de 

                                                
1  Do inglês matching-to-sample. 
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funções cognitivas complexas como formação de conceitos, categorização simbólica e 

linguagem (e.g., de Rose, 1993; Galvão, 1993; Mackay, & Sidman, 1984; Schusterman 

& Kastak, 1993; Sidman, 1994). Na prática, a aplicação do modelo de equivalência na 

análise da comunicação simbólica e na explicação da emergência de comportamentos 

novos no repertório dos organismos tem conduzido ao desenvolvimento de um corpo 

conceitual e metodológico empiricamente consistente para lidar com fenômenos 

comportamentais complexos a partir da perspectiva científica da Análise Experimental 

do Comportamento. 

 Nesses quase quarenta anos que se sucederam ao primeiro estudo de Sidman 

(1971), a pesquisa em equivalência de estímulos tem se concentrado em pelo menos 

dois eixos ou níveis de investigação. De um lado, impulsionados pelo estudo inicial de 

Sidman, muitos esforços têm sido destinados à produção de tecnologias 

comportamentais para o ensino de leitura e escrita a indivíduos apresentam 

dificuldade em aprender pelos métodos tradicionais de ensino (e.g., de Rose, de 

Souza, & Hanna, 1996; de Rose, de Souza, Rossito, & de Rose, 1989; de Souza & de 

Rose, 2006; Matos, Peres, Hübner, & Malheiros, 1997; Medeiros, Antonakopoulu, 

Amorim, & Righetto, 1997; Melchiori, de Souza, & de Rose, 2000). De outro lado, 

diante dos repetidos insucessos em demonstrar a formação de classes de 

equivalência em organismos não-verbais, sobretudo em não-humanos, a busca por 

refinamentos metodológicos que possibilitem tal demonstração tem sido incessante 

(e.g., D'Amato, Salmon, Loukas, & Tomie, 1985; Frank & Wasserman, 2005; Lionello-

DeNolf & Urcuioli, 2002; Lipkens, Kop, & Matthijs, 1988; Schusterman & Kastak, 1993; 

Sidman et al., 1982; Tomonaga, Matsuzawa, Fujita, & Yamamoto, 1991, Urcuioli, 2008; 

Yamamoto & Asano, 1995). 

 Essa discrepância entre os resultados obtidos com sujeitos verbais e não-verbais 

tem sido palco de um caloroso debate a respeito do papel da linguagem na formação de 
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classes de equivalência. Por um lado, os inúmeros insucessos obtidos com sujeitos não-

verbais poderiam indicar que a formação de classes de equivalência estaria 

condicionada à aquisição de competências lingüísticas, e não o contrário (cf. Devany, 

Hayes, & Nelson, 1986; Dugdale & Lowe, 2000; Hayes, 1989; Hayes, Barnes-Homes, & 

Roche, 2001). Por outro lado, para os que consideram que equivalência possa constituir 

as próprias bases do desenvolvimento da linguagem, as dificuldades em tal 

demonstração refletiriam a inadequação dos procedimentos às especificidades de cada 

organismo estudado (cf. Dube, McIlvane, Callahan, & Stoddard, 1993). 

 Independentemente de qualquer teorização acerca das relações envolvendo 

equivalência de estímulos e linguagem, a busca por um modelo animal para o estudo da 

formação de classes de equivalência e a conseqüente identificação das condições 

necessárias e suficientes para sua ocorrência em organismos não-verbais trarão 

contribuições imediatas para o ensino de competências lingüísticas a indivíduos com 

necessidades educacionais especiais. Assim, o presente trabalho busca aprimorar uma 

estratégia metodológica por meio da qual a formação de classes de equivalência possa 

ser avaliada sob condições permanentes de reforçamento diferencial, uma vez que com 

tais populações essa avaliação parece prejudicada pela ausência de reforçamento que 

vigora durante os testes (e.g., Devany et al., 1986; Kuno, Kitadate, & Iwamoto, 1986; 

Sidman et al., 1982; Tomonaga et al., 1991, Yamamoto & Asano, 1995). Dando 

continuidade aos trabalhos de Velasco e Tomanari (2008; 2009) a presente 

investigação pretende fornecer subsídios tanto para a produção de tecnologias de 

ensino dirigidas a populações com as quais os testes em extinção imprimem 

dificuldades, quanto para a investigação dos requisitos onto- e filogenéticos da 

formação de classes de equivalência em animais não-humanos. 

 A seguir, serão descritos dois estudos que exemplificam esses esforços. O 

primeiro, projetado para testar simetria e transitividade em humanos adultos 
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verbalmente competentes, tratou do desenvolvimento da metodologia e de sua 

validação pela comparação de seus resultados com aqueles produzidos utilizando-se 

o paradigma tradicional de equivalência de estímulos. O segundo envolveu a aplicação 

dessa metodologia na busca pela demonstração de simetria em pombos. Embora 

metodologicamente relacionados, os estudos são independentes entre si de modo que 

serão apresentados separadamente como dois artigos distintos. Sob o ônus de 

parecer redundante, mas a fim de se preservar a coesão interna de cada estudo, 

eventuais repetições de temas considerados centrais não puderam deixar de ocorrer, 

embora tenham sido abordados em diferentes níveis de aprofundamento em cada 

artigo.
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STUDY 1 

 

Testing Symmetry and Transitivity under Differential Reinforcement Conditions 

 

Abstract: A new strategy is proposed to evaluate the effects of baseline conditional 

discrimination training on the emergence of its correspondent symmetrical and 

transitive relations. Experiment 1 evaluated symmetry. Four verbally able adults were 

trained on two independent baseline-matching tasks (A–B and C–D). Next, two sets of 

testing relations were reinforced for each participant — symmetrical versions of the 

baseline relations (BA and DC) and novel recombinations of the baseline stimuli (BC 

and AD). All the participants showed high levels of accuracy in the symmetrical 

relations in the first test block and performed approximately at chance in the novel 

relations. Additionally, they all reached the performance criterion for the symmetrical 

relations earlier than for the novel relations. Experiment 2 assessed transitivity. Two 

sets of interconnected baseline matching tasks (AB-BC and DE-EF) were trained, 

following by the reinforcement of two sets of testing relations — transitive (AC and DF) 

and novel (AF and DC) with respect to the baseline. All but one of the participants was 

more accurate for the transitive relations in the first test block, and reached the 

accuracy criterion earlier than they did for the novel relations. Comparative analysis 

between individual performances on both sets of testing relations showed symmetry 

and transitivity under differential reinforcement conditions. 

 Key words: conditional discrimination, stimulus equivalence, arbitrary matching-

to-sample, symmetry, transitivity, reinforced tests, button press, humans. 
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A subject taught to relate physically dissimilar stimuli can establish new 

conditional relations among them without any additional training (Sidman, Kirk, & 

Willson-Morris, 1985; Sidman & Tailby, 1982; Sidman, Willson-Morris, & Kirk, 1986; 

Spradlin, Cotter, & Baxley, 1973). The emergence of conditional relations not directly 

trained has been taken as evidence of equivalence-class formation (Sidman et al., 

1982; Sidman & Tailby, 1982).  According to this paradigm, following reinforcement for 

choosing B after A and C after B (i.e., A–B and B–C baseline training), the formation of 

an equivalence class is verified when — in the absence of any scheduled differential 

reinforcement — a subject shows the emergence of untaught conditional relations that 

indicate the properties of reflexivity (A–A, B–B, and C–C), symmetry (B–A and C–B), 

and transitivity (A–C). 

Experimental results have shown equivalence-class formation in human 

subjects with typical or atypical development (Devany, et al., 1986; Lazar et al., 1984; 

Sidman & Cresson, 1973; Sidman & Tailby, 1982; Spradlin et al., 1973). In contrast, 

among nonhuman animals and even nonverbal humans, it has proven difficult to 

demonstrate equivalence-class formation (e.g., D’Amato et al., 1985; Devany et al., 

1986; Hogan & Zentall, 1977; Lionello-DeNolf & Urcuioli, 2002; Lipkens, et al., 1988; 

Sidman et al., 1982; Tomonaga, et al., 1991; Yamamoto & Asano, 1995).  

On the one hand, the demonstration of stimulus equivalence may involve 

behavioral prerequisites that humans could have acquired in preexperimental 

contingencies. Some researchers suggest, for instance, that linguistic abilities could be 

a necessary prerequisite for demonstrating emergent relations (Devany et al., 1986; 

Dugdale & Lowe, 2000; Hayes, 1989; Hayes et al., 2001). On the other hand, it has 

also been argued that stimulus equivalence could constitute the basic foundations of 

language development, and not the inverse (Galvão, 1993; Mackay & Sidman, 1984; 

Schusterman & Kastak, 1993). Sidman (1990; 1994; 2000), for example, suggests that 
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equivalence could be a basic stimulus function and, therefore, not derived from other 

behavioral processes. In this case, the difficulty in demonstrating equivalence-class 

formation in nonverbal humans and nonhuman animals would have methodological 

roots, such as inadequate training or testing conditions, or both (cf. Dube et al., 1993). 

Methodologically, the lack of differential reinforcement during equivalence tests 

may constitute an important variable responsible for the negative results usually 

reported with these populations. Compared to the former training situation, the 

extinction condition employed in testing may change significantly the sources of 

stimulus control, thus preventing the emergence of conditional relations consistent with 

equivalence-class formation (Dube & McIlvane, 1996; Galvão, Calcagno, & Sidman 

1992; Kuno et al., 1994; Schusterman & Kastak, 1993; Sidman, 1994; Sidman et al., 

1982). Moreover, the suspension of the reinforcement is usually accompanied by 

resurgent behavior (Villas-Boas, Murayama, & Tomanari, 2005, Wilson & Hayes, 1996) 

and other behavioral effects, such as aggression and agitation (Azrin, Hutchinson & 

Hake, 1966), responses of physical attack, urination and defecation (Keller & 

Schoenfeld, 1950; Skinner, 1938), as well as increases in behavioral variability 

(Antonitis, 1951; Lerman & Iwata, 1996). All of these effects can, in some way, interfere 

with the demonstration of the testing relations, especially given that the lack of 

reinforcement in testing reproduces the same consequences of incorrect responses 

during the baseline training. 

The observation of negative effects in conducting testing in the absence of 

reinforcement has incited the development of methodological strategies that allow for 

the evaluation of equivalence properties under differential reinforcement conditions 

(e.g., D'Amato et al., 1985; Urcuioli, Zentall, Jackson-Smith, & Steirn, 1989). Usually, 

after the acquisition of the baseline training relations, subjects’ performances are 

compared across reinforced test trials of conditional relations that are either consistent 
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or inconsistent with equivalence-class formation. For example, to evaluate transitivity, 

following the training of A1–B1, A2–B2, B1–C1 and B2–C2 relations, subjects are 

exposed to the reinforcement of A1–C1 and A2–C2 relations (both consistent with the 

formation of A1B1C1 and A2B2C2 classes), as well as to the reinforcement of A1–C2 

and A2–C1 relations (both inconsistent with the formation of such classes). A similar 

strategy can be applied to evaluate symmetry. 

Both group- and single-subject designs are used in the comparison of 

consistent and inconsistent reinforced testing relations. In the former case, following 

the baseline training, subjects are divided into two experimental groups. One group is 

exposed to the reinforcement of consistent relations, the other to that of inconsistent 

relations. The accuracy in the first test session, or the acquisition speed of the 

reinforced relations, is compared between the two groups of subjects. In making use of 

this type of design in a study with twelve pigeons, Urcuioli et al. (1989) reported that 

consistent transitivity-like relations were acquired faster than inconsistent relations. In a 

single-subject design, the same organism is exposed to the reinforcement of these two 

sets of conditional relations (consistent and inconsistent with equivalence-class 

formation). D’Amato et al. (1985), using this type of experimental design, evaluated 

transitivity in three pigeons as well as symmetry and transitivity in six nonhuman 

primates. The pigeons showed no difference in performance accuracies in the 

consistent and inconsistent relations. In contrast, nonhuman primates systematically 

showed a more accurate and accelerated acquisition of conditional relations consistent 

with transitivity, but not with symmetry. 

Despite the clear advantage in conserving differential reinforcement during 

equivalence tests, the reinforcement of inconsistent relations can confound the 

interpretation of results in single-subject designs. To the extent that the same stimuli 

integrate both consistent (e.g., A1C1 and A2C2) and inconsistent (e.g., A1C2 and 
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A2C1) relations, the reinforcement of those inconsistent relations could merge these 

stimuli into a single large class (e.g., A1A2B1B2C1C2). This merge could result in 

chance-level performances in both consistent and inconsistent relations, as one can 

see in the data of some subjects of D'Amato et al. (1985). 

In light of this fact, the present study proposes an alternative methodology for 

assessing symmetry and transitivity under differential reinforcement conditions. The 

procedure employs a single-subject design (cf. D'Amato et al., 1985; unlike Urcuioli et 

al., 1989) and abandons the use of inconsistent conditional relations (unlike D'Amato et 

al., 1985 and Urcuioli et al., 1989). Instead, reinforced-test relations consistent with 

equivalence-class formation are compared to novel (not inconsistent) reinforced 

relations formed by recombining familiar stimuli from the baseline training. 
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EXPERIMENT 1 

 

Participants were initially trained on two independent arbitrary-matching tasks 

(A–B and C–D) involving four stimuli sets. Afterwards, a reinforced symmetry test was 

conducted with Set-1 and Set-2 stimuli (B1-2–A1-2 and D1-2–C1-2). Additionally, two novel 

relations (not inconsistent) were concurrently reinforced by recombining stimuli from 

Set-3 and Set-4-baseline relations (D3-4–A3-4 and B3-4–C3-4) in order to control for the 

effects of direct training of the symmetrical relations due to reinforcement in test trials. 

If symmetry emerges, then first-test-session accuracies should be above chance on the 

symmetrical relations and at chance on the novel relations. In addition, participants 

would learn the symmetrical relations faster than the novel relations over repeated test 

sessions. 
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METHOD 

 

Participants 

 Four undergraduate students (3 females and 1 male) at the University of Minho 

in Portugal were volunteers in this experiment. They were drawn from journalism and 

biology courses. None had prior familiarity with the experimental analysis of behavior. 

 

Setting and Apparatus 

The research was conducted in a room containing four experimental stations 

separated from each other by an opaque divider. Several subjects participated 

simultaneously and were instructed not to talk while in the experiment room. Each 

experiment station was equipped with a microcomputer, an LCD video monitor, a 

mouse and an earphone. The computers controlled experimental contingencies and 

recorded data through a software developed for this study (Stimulus Control 1.002). 

Sixteen colored visual stimuli, superimposed on a white background, were divided 

randomly into four 4-stimuli set (Figure 1.1). 

 

Procedure 

Two experimental phases were conducted with each participant (baseline 

training and symmetry test). In both phases, participants were exposed to a zero-

second-delayed arbitrary matching-to-sample procedure. Each trial began with the 

onset of the sample in the center of the screen. A response to the sample, 

accomplished by moving the cursor over the stimulus and pressing the left mouse 

button, replaced this screen with a new one in which four different comparison stimuli 

appear simultaneously in each of the four corners of the screen. A response to the 
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stimulus arbitrarily set as the correct comparison made all of them disappear, produced 

a sound in the earphones (“beep”), and increased by a value of one a counter located 

at the center-top portion of the screen. Such a selection was considered a correct 

response. A response to any of the other three stimuli ended the trial with the 

disappearance of the comparisons. Such a selection was considered an incorrect 

response. Between every two trials, there was a 0.5 second Inter-Trial Interval (ITI), 

during which the screen remained blank. There were no scheduled consequences for 

responses on the screen during the ITI. 

 

Figure 1.1. Monochromatic representation of the 16 colored stimuli used in Experiment 

1 (A, B, C and D), and the 24 colored stimuli used in Experiment 2 (A, B, C, D, E and 

F) of the Study 1. Stimuli component of each set were counterbalanced across 

participants. Only sample-comparison relations between stimuli from the same set 

were reinforced during each experiment. This information was available only to the 

experimenter. 

 

Each training and testing session consisted of 192 trials divided into four blocks 

of 48 trials. Each 48-trial block comprised six trials for each of the eight conditional 

relations trained in each phase (see procedure below). These trials were presented in a 
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semi-random order inside of each block according to the following criteria: 1) each 

comparison location received the same number of correct comparisons (12 scheduled 

reinforcements in each corner); 2) reinforcement in the same location was repeated in 

a maximum of two consecutive trials; 3) a given conditional relation was repeated in a 

maximum of two consecutive trials.  

At the beginning of the experiment, each participant was given the following 

written instruction (translated from the Portuguese): “This study is not about intelligence 

testing, and will not evaluate any aspect of your intellectual abilities. When it finished 

you will receive a full explanation. Please, do not to talk while in the experiment room. 

An image will be presented in the center of the screen. Your task is click, with the 

mouse, in this image. Then, four different images will be presented in the corners of the 

screen. Your task is select one of those images and click in it with the mouse. During 

the task, you will sometimes receive and sometimes not receive points. Your aim is to 

earn the maximum points as you can. Please, repeat to me the instructions you just 

read.” 

 

Baseline training. With the procedure just described, eight baseline conditional 

relations were concurrently trained for each participant in two independent matching 

tasks (top panel of Figure 1.2). On half of the trials, B comparisons were conditionally 

related to A samples. On the remaining trials, D comparisons were conditionally related 

to C samples (i.e., A–B and C–D matching). Training sessions lasted until participants 

met the criterion of 100% accuracy in two consecutive 48-trial blocks within the same 

session. 

 

Symmetry test. After participants met the accuracy criterion in baseline training, 
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they were tested for symmetry with samples from the baseline being used as 

comparisons, and vice-versa (bottom panel of Figure 1.2). Test performances were 

differentially reinforced. On half of the trials, reinforced sample-comparison relations 

were the symmetrical versions of half of baseline relations — matching A1 and A2 

comparison to B1 and B2 samples, respectively, as well as matching C1 and C2 

comparisons to D1 and D2 samples (B–A and D–C matching). In order to control for 

the effects of reinforcement of the symmetrical relations, four novel relations were 

reinforced on the remaining trials by recombining stimuli from the remaining baseline 

relations — matching A3 and A4 comparisons to D3 and D4 samples, respectively, as 

well as matching C3 and C4 comparisons to B3 and B4 samples (D–A and B–C 

matching). Symmetrical and novel relations were concurrently reinforced over the 

course of repeated test sessions until the participant met the same accuracy criterion 

described above for the baseline training. 

 

 

Figure 1.2. Schematic representation of conditional relations reinforced in both the 

baseline training (top panel) and the symmetry test (bottom panel) in the Experiment 1 

of the Study 1. Arrows point from sample to comparison stimuli. 
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RESULTS 

 

Baseline training. Participants DAC, NAA, ALC and PAR required a total of 8, 

10, 12 and 11 blocks of 48 trials, respectively, to meet the accuracy criterion in the 

baseline training. Acquisition of baseline relations trained with Set-1 and Set-2 stimuli 

was compared with the acquisition of those trained with Set-3 and Set-4 stimuli, and no 

significant difference was found with respect to the number of sessions required for 

participants to reach the performance criterion on both groups of relations (Z < .001, p 

= 1). The mean number of sessions to reach the specified criterion was 10 for Set-1 

and Set-2 relations (range, 8 to 12) as well as for Set-3 and Set-4 relations (range, 7 to 

11). Moreover, accuracies on Set-1- and Set-2-relation trials did not differ significantly 

from accuracies on Set-3- and Set-4-relation trials across training sessions (Z = - 

1.443, p = .149). 

Such results represent an important control for the reinforced symmetry test 

since symmetrical and novel relations were drawn from different sets of stimuli. 

Whereas the symmetrical relations were formed with Set-1 and Set-2 stimuli, the novel 

relations were formed with Set-3 and Set-4 stimuli. Thus possible higher accuracies on 

the symmetrical-relation than on the novel-relation trials could not be attributed to 

unknown variables, such as inherent stimulus properties. 

 

Symmetry test. Figure 1.3 shows individual matching accuracy over blocks of 

48 trials throughout the symmetry test when the reinforced test relations were the 

symmetrical versions of the baseline relations or novel combinations of baseline 

stimuli. All the participants performed well above chance-level on the symmetrical-

relation trials in the first 48-trial block (range, 83% to 100%). From the second block 
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onwards, all participants matched at 100% of accuracy in the symmetrical-relation trials 

(except for DAC, who did so on the very first 48-trial block). In contrast, accuracy levels 

on the novel relations were below chance for participants NAA and ALC (42% correct 

for both), and slightly above chance for participants DAC and PAR (67% and 63% 

correct, respectively) in the first 48-trial block. Performance accuracy on novel relations 

increased abruptly to 100% correct for participants DAC and NAA (in two trial blocks), 

while it increased only gradually for ALC and PAR (in four and six trial blocks, 

respectively). Matching accuracies in the symmetrical-relation trials were significantly 

higher than in the novel-relation trials throughout test sessions (Z = -2.809, p = .005). 

 

 

Figure 1.3.  Matching accuracy for individual participants over 48-trial blocks of the 

reinforced symmetry test in Experiment 1 of the Study 1. Reinforced relations were 

either symmetrical (solid circles) or novel (open circles) with respect to the baseline 

training relations. 
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EXPERIMENT 2 

 

Experiment 2 was conducted in order to assess transitivity. Participants were 

initially trained on two independent sets of interconnected arbitrary relations (A–B B–C 

and D–E E–F). Next, a reinforced transitivity test was given with Set-1 and Set-2 stimuli 

(A1-2–C1-2 and D1-2–F1-2). In order to control for the effects of reinforcement in test trials, 

two novel relations (not inconsistent) were concurrently reinforced by recombining 

stimuli from Set-3- and Set-4-baseline relations (A3-4–F3-4 and D3-4–C3-4). Evidence of 

transitivity would be indicated by first-test-session accuracies above chance on the 

transitive relations and at chance on the novel relations. In addition, transitive relations 

should be learned faster than the novel relations over repeated test sessions. 
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METHOD 

 

Participants 

Four undergraduate students (2 females and 2 males) at the University of 

Minho in Portugal were volunteers in this experiment. They were recruited from 

journalism and history courses and had no prior familiarity with the experimental 

analysis of behavior. 

 

Setting and Apparatus 

 Setting and apparatus were the same as those used in Experiment 1. Twenty-

four colorful visual stimuli, superimposed on a white background, were divided 

randomly into four six-stimulus sets (Figure 1.1). 

 

Procedure 

Each participant was exposed to two experimental phases (baseline training 

and transitivity test). With the exception of the reinforced conditional relations, all of the 

parameters of the matching-to-sample procedure were identical to those described in 

Experiment 1. 

 

Baseline training. Participants were concurrently trained for sixteen baseline 

conditional relations, divided into two sets of interconnected matching tasks (top panel 

of Figure 1.4). In one set, B and C comparisons were conditionally related to A and B 

samples, respectively (A–B and B–C matching). In the other set, D and E samples 

were conditionally related to E and F comparisons, respectively (D–E and E–F 



 

 

32 

matching). Each training session was composed of 192 trials, further divided into 

blocks of 48 trials. Each 48-trial block comprised three trials for each conditional 

relation. These 48 trials were presented in a semi-random order according to the 

criteria previously described in Experiment 1. Participants were trained until they reach 

the accuracy criterion (100% correct) in four consecutive 48-trial blocks within the same 

session. 

 

 

Figure 1.4. Schematic representation of the conditional relations reinforced in both the 

baseline training (top panel) and the transitivity test (bottom panel) in Experiment 2 of 

the Study 1. Arrows point from samples to comparisons. 

 

Transitivity test. Once participants met the accuracy criterion in baseline 

training, they were given a reinforced test in which transitive and novel relations were 

concurrently reinforced (bottom panel of Figure 1.4). Transitive relations comprised 

stimuli that had been related to a third stimulus in common during the baseline training 
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— matching C1 and C2 comparison to A1 and A2 samples, respectively, as well as 

matching F1 and F2 comparisons to D1 and D2 samples, respectively (A–C and D–F 

matching). Novel relations were constituted by recombining stimuli that had not been 

previously related to any stimulus in common — matching F3 and F4 comparison to A3 

and A4 samples, respectively, as well as matching C3 and C4 comparisons to D3 and 

D4 samples, respectively (A–F and D–C matching). Such relations were trained in 

order to control for the effects of the reinforcement of the transitive relations. Each 

session had 192 trials divided into blocks of 48 trials. Each 48-trial block comprised six 

trials of each conditional relation. Testing sessions were conducted until participants 

met the accuracy criterion (100% correct responses) in two consecutive trial blocks 

within the same session. 
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RESULTS 

 

 Baseline training. Participants JOO, TIS, MEG and TAB reached performance 

criterion on baseline training in 12, 24, 21 and 47 blocks of 48 trials, respectively. The 

number of sessions required for participants to reach the performance criterion on Set-

1- and Set-2-baseline relations was not significantly different from that on Set-3 and 

Set-4 relations (Z = -1.414, p = .157). The mean number of sessions to reach the 

performance criterion was 26 for Set-1 and Set-2 relations (range, 11 to 47) as well as 

for Set-3 and Set-4 relations (range, 12 to 47). Furthermore, accuracies on Set-1- and 

Set-2-relation trials did not differ significantly from accuracies on Set-3- and Set-4-

relation trials across training sessions (Z = -.767, p = .443). 

 

 Transitivity test. Figure 1.5 shows individual matching accuracy over 48-trial 

blocks of the transitivity test, when the reinforced relations were either transitive or 

novel with respect to the baseline relations. Performance accuracy on the transitive 

relations was higher than on the novel relation across all 48-trial blocks for Participants 

JOO, TIS and MEG. Both JOO and TIS matched well above chance-level in the 

transitive-relation trials in the first 48-trial block (92% and 96% correct, respectively), 

reaching 100% accuracy on the second block. Regarding the novel relations, JOO 

performed 75% and 100% correct in the first and second 48-trial blocks, respectively. 

TIS, in turn, performed below chance-level (42% correct) on the novel relations in the 

first 48-trial block, and reached 100% accuracy after five blocks. Performance of MEG 

on the transitive-relation trials increased from 79% to 100% accuracy in the first three 

48-trial blocks, while, on the novel-relation trials, she required eight blocks to improve 

accuracy from 42% to 100%. In contrast, Participant TAB performed considerably 

below that of chance-level (21% correct) with respect to the transitive relations and 
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slightly below chance (42% correct) with respect to the novel relations, in the first 48-

trial block. Performance accuracy of TAB fluctuated with respect to both the transitive 

and novel relations, increasing only gradually across eight 48-trial blocks. In general, 

matching accuracies in the transitive-relation trials were significantly higher than in the 

novel-relation trials throughout test sessions for all participants (Z = -2.019, p = .044). 

 

 

 

Figure 1.5. Matching accuracy for individual participants over 48-trial blocks of the 

reinforced transitivity test in Experiment 2 of the Study 1. Reinforced test relations were 

either transitive (solid circles) or novel (open circles) with respect to the baseline 

training relations. 
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DISCUSSION 

 

Several studies on stimulus equivalence (Sidman et al., 1982; Sidman & Tailby, 

1982) have shown that, having learned a certain number of conditional relations, 

verbally able subjects can show new derived conditional relations that have never been 

explicitly reinforced (e.g., Devany et al., 1986; Lazar et al., 1984; Sidman & Cresson, 

1973; Sidman et al., 1985; Sidman & Tailby, 1982; Spradlin et al., 1973). According to 

this paradigm, the emergence of conditional relations that document the properties of 

reflexivity, symmetry and transitivity indicates the formation of equivalence classes. 

Although assessing these properties in extinction conditions is important in revealing 

an emergent relational performance, suspending the differential reinforcement during 

testing can preclude the demonstration of equivalence-class formation in nonverbal 

humans, as well as in nonhuman subjects (Dube & McIlvane, 1996; Galvão et al., 

1992; Kuno et al., 1994; Sidman et al., 1982). 

The present study proposed a new methodological strategy to evaluate 

equivalence-class formation under differential reinforcement conditions. In Experiment 

1, which was designed to assess symmetry, participants initially received a baseline 

conditional relation training. Next, during the symmetry test, two sets of conditional 

relations were additionally reinforced for each participant. One set (symmetrical 

relations) was constituted by reversing the roles of samples and comparisons from half 

of the baseline relations. The other set (novel relations) was formed by recombining 

stimuli from the remaining half of the baseline relations. In Experiment 2, after having 

acquired the baseline relations, participants were exposed to the reinforcement of 

conditional relations both transitive and novel with respect to the baseline. Although 

conditional relations that could document the properties of symmetry and transitivity 

were reinforced directly, performance of each participant with respect to both sets of 
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relations was compared with his or her own performance during the training of novel 

conditional relations. 

All of the participants in Experiment 1 demonstrated high levels of accuracy in 

the symmetrical-relation trials in the first reinforced test block, while they performed 

only around chance in the novel-relations trials. In addition, each participant reached 

performance criterion with respect to symmetrical relations earlier than to novel 

relations. In Experiment 2, all but one participant (TAB) demonstrated greater accuracy 

with respect to the transitive relations in the first trial block, and reached accuracy 

criterion in a fewer number of trials than they did with respect to the novel relations. 

This set of results, which is in agreement with the literature (e.g., Devany et al., 1986; 

Lazar et al., 1984; Sidman & Cresson, 1973; Sidman & Tailby, 1982; Spradlin et al., 

1973) suggests the emergence of symmetry and transitivity in verbally competent 

human subjects. The fact that one participant in Experiment 2 did not exhibit evidence 

of transitivity also reveals parallels with previous studies that showed that, even in 

humans, the emergence of conditional relations can be delayed, dependent on 

remediating procedures, or in fact may never be obtained (Lazar, 1977; Lazar et al., 

1984; Sidman et al., 1985, 1986; Spradlin et al., 1973). 

In order to validate the proposed methodological strategy, the present study 

was conducted using verbally able adults in light of the fact that equivalence-class 

formation is easily demonstrated with such a population. Thus, the comparison 

between the present results and those from the established literature reveals the 

potential for the proposed procedure to demonstrate equivalence-class formation under 

differential reinforcement condition. Moreover, the present investigation provides 

parameters for subsequent studies with organisms in which such a demonstration 

seems to be affected by the exposure to extinction tests. In the present proposal, many 

of the negative consequences of testing equivalence-class formation in the absence of 
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differential reinforcement were avoided. In the laboratory, this fact could have 

immediate implications for the demonstration of stimulus equivalence in nonhuman 

animals and nonverbal humans, thus contributing to the epistemology of symbolic 

communication. In the applied field it could contribute to the development of behavioral 

techniques to teach reading and writing competences to individuals who presented 

difficulty in learning by the traditional methods. 

 

 

 



 

 

39 

STUDY 2 

 

Associative Symmetry by Pigeons after a Few-exemplar Training 

 

Abstract: The present experiment investigated whether pigeons can show associative 

symmetry in a two-alternative matching-to-sample procedure after a sequence of training 

and testing that provided exemplars of reinforced symmetrical relations, as well as all 

prerequisite discriminations among test samples and comparisons. After pigeons had 

learned two arbitrary-matching tasks (A–B and C–D), they were given a reinforced 

symmetry test for half of the baseline relations (B1–A1 and D1–C1). Two novel relations 

were concurrently reinforced using familiar stimuli from the remaining baseline relations 

(D2–A2 and B2–C2) to control for the effects of reinforcement in test trials. Pigeons 

matched at chance in both symmetrical- and novel-relation trials thus indicating no 

evidence of emergent symmetry. Both the symmetrical and novel relations were then 

trained to a high accuracy before a second symmetry test was given with stimuli that first 

integrated the symmetrical relations being now recombined on novel relations, and vice-

versa. Once the first reinforced symmetry test provided experience of samples and 

comparisons switching roles, as well as all prerequisite discriminations among current 

samples and comparisons, pigeons performed more accurately in the symmetrical-

relation trials (B2–A2 and D2–C2) than in the novel-relation trials (D1–A1 and B1–C1) 

during this second symmetry test. This result contrasts with the lack of symmetry 

reported in most of previous studies with nonhuman animals and indicates that symmetry 

can emerge in pigeons under adequate conditions of training and testing. 

Key words: associative symmetry, stimulus equivalence, exemplar training, two-

alternative matching-to-sample, reinforced tests, key peck, pigeons. 
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A subject taught to relate perceptually dissimilar stimuli in a matching-to-sample 

(MTS) task can establish new conditional discriminations among them without any 

additional training. For example, following reinforcement for choosing B1 and B2 

comparisons given A1 and A2 samples, respectively (A–B baseline training), a subject 

can keep on matching the same pair of stimuli even when their respective functional 

roles are reversed (B–A symmetry). This kind of emergent performance, also named 

backward association (Gray, 1966; Hogan & Zentall, 1977) or associative symmetry 

(Frank & Wasserman, 2005; Urcuioli, 2008), reveals that related samples and 

comparisons become mutually substitutable. Furthermore, along with other two 

emergent performances — matching each stimulus to itself (A–A and B–B identity or 

reflexivity), and matching two unpaired stimuli that had been related to a third stimulus 

in common (A–C transitivity, after additional B–C training) — emergent symmetry 

provides behavioral evidence for equivalence-class formation (cf. Sidman et al., 1982; 

Sidman & Tailby, 1982). 

Untrained conditional discriminations, such as those defining stimulus 

equivalence have been largely demonstrated in verbally able humans with both typical 

and atypical development (e.g., Devany et al., 1986; Lazar et al., 1984; Sidman & 

Cresson, 1973; Sidman & Tailby, 1982; Spradlin et al., 1973). However, such a 

demonstration has proved to be much more difficult with nonverbal subjects (e.g., 

Devany et al., 1986), especially nonhuman animals (e.g., D’Amato et al., 1985; Hogan 

& Zentall, 1977; Lionello-DeNolf & Urcuioli, 2002; Lipkens et al., 1988; Sidman et al., 

1982; Tomonaga et al., 1991; Yamamoto & Asano, 1995). Only a few studies have 

reported one kind of emergent performance separately. That is, generalized identity 

matching has been demonstrated in monkeys (Barros, Galvão, & McIlvane, 2002; 

Oden, Thompson, & Premack, 1988), pigeons (Zentall, Edwards, Moore, & Hogan, 

1981; Zentall & Hogan, 1976), sea lions (Kastak & Schusterman, 1994), dolphins 
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(Herman & Gordon, 1974; Herman, Hovancik, Gory, & Bradshaw, 1989), and rats 

(Peña, Pitts, & Galizio, 2006). Transitivity has been documented in monkeys (Barros, 

1998; D’Amato et al., 1985), in a chimpanzee, (Yamamoto & Asano, 1995), in a sea 

lion (Schusterman & Kastak, 1993), and somewhat weaker evidence was found in one 

of the pigeons that participated in Kuno et al.'s (1994) study. On the other hand, 

demonstration of symmetry has been widely unsuccessful among nonhuman animals 

(e.g., Barros, Galvão, & Fontes, 1996; D’Amato et al., 1985 with monkeys; Dugdale & 

Lowe, 2000 with chimpanzees; Gray, 1966; Hogan & Zentall, 1977; Holmes, 1979; 

Lionello-DeNolf & Urcuioli, 2002; Lipkens et al., 1988; Richards, 1988; Rodewald, 1974 

with pigeons; Sidman et al., 1982 with monkeys and baboons). This set of results 

suggests that symmetry may be the critical relation that separates the performance of 

humans from that of nonhumans in studies on stimulus equivalence (cf. Yamamoto & 

Asano, 1995). 

This discrepancy concerning results of verbal and nonverbal subjects has led 

some researchers to reason that demonstration of emergent performances, especially 

symmetry, may depend on behavioral prerequisites presumably acquired through 

exposure to training on language competences (Devany et al., 1986; Dugdale & Lowe, 

1990; Hayes, 1989; Hayes et al., 2001, Horne & Lowe, 1996). On the other hand, it has 

also been argued that equivalence could constitute the very foundations of language 

development (Galvão, 1993; Mackay & Sidman, 1984; Schusterman & Kastak, 1993; 

Sidman et al., 1982) and even that it could be a basic behavioral process not reducible 

to any other (Sidman, 1990; 1994; 2000). In this case, the difficulty in demonstrating 

equivalence-class formation in nonverbal subjects would have methodological roots, 

such as inadequate training, inadequate testing or both (cf. Dube, et al., 1993; Lionello-

DeNolf, 2009). 

Although the role of language on equivalence-class formation is so far 
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controversial, experimental results have shown that providing a history of reinforced 

symmetrical relations, an experience that is incidentally embedded on a linguistic 

training but not restricted to it, seems to encourage the demonstration of a generalized 

symmetrical responding (as Sidman et al., 1982 had suggested). It has been shown to 

be the case for both nonhuman animals (e.g., Schusterman & Kastak, 1993; 

Yamamoto & Asano, 1995) and young children who initially fail to show symmetry (e.g., 

Barnes-Holmes, Barnes-Holmes, Roche, & Smeets, 2001). 

Schusterman and Kastak (1993) provided a sea lion experience with multiple 

exemplars of samples and comparisons switching their respective functional roles (i.e., 

symmetry exemplar training) before it could spontaneously demonstrate symmetry with 

new stimuli. In addition, the sea lion also had previous experience with generalized 

identity matching with most of the same stimuli (Kastak & Schusterman, 1994). In both 

training and testing trials, the sample was presented on a center location with the 

comparisons on two adjacent side locations. During test sessions, reinforced probes 

were interspersed among the baseline trials. Only four probes were considered in the 

analysis of each emergent relation to avoid the direct training of testing performances. 

For a given relation to be considered emergent, the subject had to respond correctly on 

the first probe trial and, at least, on two of the remaining three probes of the same 

relation. After training of many A–B baseline relations, symmetry was tested with six B–A 

relations and only three emerged. All these six symmetrical relations were then trained to 

a high accuracy and a novel symmetry test were given with other six B–A relations. Now, 

the subject passed five tests and, again, all six symmetrical relations were trained to high 

accuracy levels. Finally, after the sea lion had been trained on additional B–C baseline 

relations, it passed 10 of 12 C–B symmetry tests. 

In addition to training on multiple exemplars of symmetry, Yamamoto and 

Asano (1995) also trained a chimpanzee to identity relations in order to familiarize it 
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with each stimulus in its respective testing location. As samples and comparisons are 

usually presented on different locations in a MTS task (e.g., samples in a center 

location and two comparisons in two adjacent side locations), reversing the sample-

comparison roles from the baseline training to the symmetry testing causes each 

stimulus to be presented on a novel location. Such a variation may preclude 

demonstration of symmetry if the spatial attributes of the stimuli become part of their 

defining properties (cf. Lionello-DeNolf & Urcuioli, 2002). In this case, testing relations 

would not be exactly the symmetrical versions of the baseline relations, because 

presenting a stimulus on a novel location would create a functionally different stimulus 

(cf. Iversen, 1997; Iversen, Sidman, & Carrigan, 1986; Lionello-DeNolf & Urcuioli, 1998; 

2000; Sidman, 1992). Another important issue concerning the sources of stimulus 

control in testing for symmetry refers to the fact that consistent performance in MTS 

requires successive discriminations among samples and simultaneous discriminations 

among comparisons (cf. Saunders & Green, 1999). Consequently, new discriminations 

are required during the symmetry testing since stimuli that were previously comparisons 

become samples and vice-versa. Nevertheless, since each stimulus appears as both 

sample and comparison during the identity-matching task, it provides all successive and 

simultaneous discriminations necessary for accurate performance on the symmetry test 

(as Sidman et al., 1982 had suggested).  

Yamamoto and Asano (1995) initially trained the chimpanzee on 18 identity 

relations (nine A–A and nine B–B) and then on nine arbitrary relations (A–B). Next, six 

symmetrical relations (B–A) were gradually tested and then trained, if they were not 

confirmed (which was the case for all six relations). Unreinforced test probes were 

inserted among the baseline-arbitrary-relation trials with reduced reinforcement 

probability. After the training of the first six symmetrical relations, the subject was 

tested for the remaining three B–A relations. On the first session of this test, the 
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chimpanzee demonstrated the emergence of two symmetrical relations (100% and 

83% correct). However, as test sessions progressed, subject's performance accuracy 

decreased for both relations. In a subsequent symmetry test with new stimuli (C–B 

testing, after additional B–C matching), accuracy was once again at chance level. 

Although the symmetry and identity training seem to have favored the 

emergence of two B–A relations, the lack of reinforcement on test trials may explain the 

loss of stimulus control by both relations from the second test session onwards, and 

may also explain the chimpanzee's failure to show emergent symmetry with novel 

stimuli. Compared to the previous training situation, the extinction condition of testing 

may change considerably the sources of stimulus control, thus preventing the 

demonstration of emergent relations (cf. Dube & McIlvane, 1996; Galvão et al., 1992; 

Kuno et al., 1994; Schusterman & Kastak, 1993; Sidman, 1994; Sidman et al., 1982). 

In addition, the removal of the reinforcement is usually accompanied by resurgent 

behavior (Villas-Boas et al., 2005, Wilson & Hayes, 1996), aggression (Azrin et al., 

1966), responses of physical attack, urination and defecation (Keller & Schoenfeld, 

1950; Skinner, 1938), as well as increases in behavioral variability (Antonitis, 1951; 

Lerman & Iwata, 1996). All of these effects can, in some way, interfere with the 

demonstration of emergent relations, especially given that unreinforced test trials 

reproduce the same consequences of incorrect responding during the baseline training.  

Lionello-DeNolf and Urcuioli (2002) conducted a study (Experiments 3 and 4) in 

which exemplar training was carried out and associative symmetry was tested under 

differential reinforcement conditions. Pigeons were initially trained on A–B matching. In 

addition, they were also trained on two independent arbitrary-matching tasks (i.e., B–C 

and D–A) in order to accomplish the same function as the identity matching in the 

aforementioned study (i.e., to provide the subjects experience with A and B stimuli in 

both sample and comparison roles, as well as in all locations). To further reduce the 
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likelihood that spatial attributes of stimuli became a controlling property of the subjects' 

performance, samples and comparisons were randomly presented on multiple 

locations. Since test-trial performance was reinforced, a control group was included to 

account for possible effects of direct training of tested relations. Thus, following the 

baseline training, pigeons were divided into two test groups (consistent and 

inconsistent). For the consistent group, reinforced test relations were the symmetrical 

versions of the baseline relations (i.e., pecking A1 and A2 comparisons after B1 and B2 

samples, respectively, given that subjects had been trained to peck B1 and B2 

comparisons after A1 and A2 samples, respectively). For the inconsistent group, 

reinforced relations were the opposite of the symmetrical versions of the baseline 

relations (i.e., pecking A1 and A2 comparisons after B2 and B1 samples, respectively, 

given the same baseline training as above). Each pigeon was tested until it matched at 

high accuracy level on each reinforced relation. Evidence for symmetry would be 

indicated by first-test-session accuracy well above chance for the consistent group and 

well below chance for the inconsistent group, as well as by the faster acquisition of the 

B–A relations by the former group. After reaching the accuracy criterion in this first 

symmetry test, pigeons were retrained on the additional B–C baseline matching, and 

were then given a second symmetry test for C–B relations. Finally, after completing this 

second test, pigeons were retrained on the additional D–A baseline matching and then 

tested for A–D symmetry. In short, pigeons were first tested and trained on one set of 

symmetrical relations and then were tested for symmetry with a new set of stimuli. This 

second set of symmetrical relations was then trained and a new symmetry test was done 

with a third set of stimuli. Although this sequence of training and testing had provided a 

history of reinforced symmetrical relations, no evidence of symmetry was found on any of 

these tests: first-session accuracies were at or close to chance for both consistent and 

inconsistent groups, and both groups learned the reinforced relations at the same 

speed. 
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Lionello-DeNolf and Urcuioli (2002) reasoned that the relatively limited history of 

reinforced symmetrical relations (only two sets: B–A and C–B) may have been 

insufficient to produce generalized symmetrical responding. Nevertheless, an important 

methodological issue was not controlled in this study, probably contributing for the 

pigeon's failure to demonstrate symmetry. Although the pigeons were given experience 

with the A and B stimuli as both samples and comparisons, by the training of two 

arbitrary matching (B–C and D–A) in addition to the initial A–B matching, the same was 

not true for the C and D stimuli. In other words, before the second (C–B) and third (A–D) 

symmetry tests, respectively, pigeons had never learned to discriminate among the C 

stimuli successively and the D stimuli simultaneously. 

The present study was designed to test whether pigeons can show emergent 

associative symmetry after they have experienced a relatively short history of 

reinforced symmetrical relations in a training procedure that provided all prerequisite 

successive and simultaneous discriminations among the testing stimuli. In a two-

alternative MTS procedure, pigeons were initially trained on two independent arbitrary-

matching tasks (A–B and C–D) involving two stimulus sets (Set 1 and Set 2). Then, a 

reinforced symmetry test was conducted with Set-1 stimuli (B1–A1 and D1–C1). To 

control for the effects of reinforcement during test trials, two novel relations (not 

inconsistent) were concurrently reinforced by recombining stimuli from the Set-2 

baseline relations (D2–A2 and B2–C2). If symmetry emerges, then first-test-session 

accuracies should be above chance on the symmetrical relations and at chance on the 

novel relations. Somewhat weaker evidence of symmetry would be indicated if pigeons 

learned the symmetrical relations faster than the novel relations over repeated test 

sessions. Once pigeons learned all reinforced testing relations to high accuracy levels, 

they also learned to discriminate B and D stimuli successively, as well as A and C 

stimuli simultaneously. Afterwards, pigeons were retrained in the original baseline 
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relations and were then given a second symmetry test for Set-2 relations (B2–A2 and 

D2–C2), with Set-1 stimuli being now recombined to form two novel relations used as 

experimental control (D1–A1 and B1–C1). Since the first reinforced symmetry test had 

provided experience with samples and comparisons switching roles, as well as all 

prerequisite discriminations among current samples and comparisons, one should 

expect that pigeons would show stronger evidence for associative symmetry in this 

second test. 
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METHOD 

 

Subjects 

 The subjects were four pigeons (P1, P2, P3 and P4) that had been used in a 

previous experiment on temporal discrimination. Each pigeon was individually housed 

in a stainless-steel cage and had free access to water and grit when not in the 

experimental chamber. A 13/11-h light/dark cycle was in effect in the pigeon colony 

with lights on at 8:00. Throughout the experiment, the pigeons were maintained at 80% 

of their free-feeding body weights by restricting feeding to the experimental sessions. 

 

Apparatus 

 Two custom-built operant conditioning chambers constructed of brushed 

aluminum, and measuring 37 x 45 x 44-cm were used. The front wall of each chamber 

was equipped with a 15-inch touchscreen LCD monitor (Elo Touch 1515L) that required 

approximately 100-g to be activated. A pair of speakers located behind each monitor 

emitted a sound of “click” every time the touchscreen was activated. An opaque 

Plexiglas plate, measuring 30 x 6-cm, covered the lower portion of the touchscreen 

making available to the subject only an area of 30 x 17-cm. 

 Visual stimuli were displayed individually or in pairs, on three possible locations 

of the screen (left, center and right). The three stimulus locations were spaced 6-cm 

apart, center-to-center, and were horizontally aligned in a row 24-cm from the floor of 

the chamber. Each location corresponded to an area of 5-cm2 into which pecks with 

force superior than 100-g activated the screen, and produced the outcomes specifically 

programmed to each experimental condition (see procedure below). Pecking outside 

the stimulus location or inside an empty location had no programmed consequences. 
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The background of the screen remained black across the experiment and nine visual 

stimuli were presented in different conditions. A 4 x 4-cm white square was used only 

in the preliminary training. Eight black irregular forms superimposed on a 4 x 4-cm 

white square were used both in the preliminary training and in all subsequent 

experimental phases (see procedure below). These stimuli were randomly divided into 

two four-stimulus sets (Figure 2.1). Stimuli component of Set 1 and Set 2 were 

counterbalanced across subjects. 

 

 

 

Figure 2.1. Graphic representation of the eight stimuli used in all experimental phases 

of the Study 2. Only sample-comparison relations among stimuli of the same set were 

reinforced. 

 

 A food hopper was accessible through an opening (6 x 5,5-cm) centered on the 

rear wall of the chamber, 8-cm above the floor. When activated, the food hopper was 

illuminated with a 7.5-W white light and allowed access to mixed grain. Another 7.5-W 

white light (houselight) located 16,5-cm above the food hopper opening provided 

general illumination. A blower fan mounted on the sidewall of the chamber provided 

ventilation and masking noise. A digital interface (Keithley/KPCI-PDISO8) connected 
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each chamber to a computer. All experimental events were controlled and recorded by 

software developed in Visual Basic (Pigeon 1311). 

 

Procedure 

 Preliminary training. Subjects were trained to eat immediately and consistently 

from the food hopper whenever it was activated at irregular intervals. Each pigeon was 

then trained by the method of successive approximations to peck the white square at 

the center location until 50 reinforcers were given (i.e., 50 food presentations 

contingent upon 50 pecks on the white square). A single 96-trial session was 

conducted in which the white square appeared equally often in each of the three 

locations randomly sorted. In subsequent 96-trial sessions, the eight irregular forms 

(Figure 2.1) appeared randomly and equally often in each of the three location. The 

order of stimulus presentation was randomized in successive blocks of eight trials. 

Daily sessions were conducted until response latencies to each stimulus on each 

location averaged 2-s or less. In all above described conditions, a single peck to the 

presented stimulus (i.e., fixed-ratio 1 or FR 1) turned it off and immediately produced 3-

s access to the raised food hopper. 

 Next, the FR requirement for pecking the stimulus presented at the center 

location — which would later serve as the sample location in MTS task (see below) — 

was gradually raised to 10 over the course of 6-9 sessions. Each FR training session 

comprised 96 trials in which the eight irregular forms (Figure 2.1) appeared equally 

often and randomly on the center location. The food hopper was raised contingent 

upon three pecks (FR 3) during the first session, five pecks (FR 5) during the second 

session, seven pecks (FR 7) during the third session, and ten pecks (FR 10) during the 

remaining three sessions for subjects P2, P3 and P4 and six sessions for P1. FR 10 

sessions lasted until the time to complete the response requirement averaged 10-s or 
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less in a session. During all FR sessions, the duration of the food hopper activation 

was constant within a particular session, but varied between 2 and 4 s across sessions 

in order to maintain each pigeon as close as possible to its 80% free-feeding weight. 

 During the preliminary training, each successive stimulus presentation was 

separated by a 10-s intertrial interval (ITI) initiated at once the food hopper closedown. 

The houselight was on during the initial 9-s of the ITI, but it was turned off for the last 1-

s and remained off until the onset of the next ITI. 

  

 Matching-to-sample task. A 0-s delay arbitrary MTS procedure was used in the 

subsequent 96-trial sessions. Each matching trial began with the onset of the sample 

stimulus in the center location. Pecking the sample ten times (FR 10) turned it off and 

immediately produced the presentation of two comparisons in the adjacent side 

locations (left and right). A single peck (FR 1) to the comparison arbitrarily set as the 

correct (S+) terminated both stimuli, activated the food hopper, and after its closedown 

initiated a 10-s ITI with the same light/dark circle described for the preliminary training 

(this was recorded as a correct choice). Pecking the comparison arbitrarily set as the 

incorrect (S-) produced the same consequences except for the non-activation of the 

food hopper (this was recorded as an incorrect choice). The duration of each food 

hopper activation was constant within a particular session, but varied between 2 and 4 

s across sessions in order maintain each pigeon's weight as close to 80% as possible. 

  

 Baseline training. With the procedure just described, subjects were trained to 

match A1 and A2 samples to B1 and B2 comparisons, respectively, as well as they 

were trained to match C1 and C2 samples to D1 and D2 comparisons, respectively. 

The four possible combinations involving each sample and its correct (S+) and 
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incorrect (S-) comparisons are shown in the left panel of Table 2.1. In training of each 

sample-comparison relation, the corresponding S+ and S- appeared equally often on 

both left and right locations. The eight resulting trial types were equally probable in 

each 96-trial session and were randomized in blocks of eight trials to ensure a uniform 

distribution of all possible trial types throughout a session. The only constraints on trial 

order were that a particular sample could not appear more than twice in succession, 

and that a particular location could not contain an S+ on more than three trials in a row. 

 

Table 2.1. Alphanumeric representation of the trial types presented to the pigeons in 

each experimental condition of the Study 2. 

 
Note - The first alphanumeric element represents the sample, the second represents the “correct” 
comparison (S+) and the third represents the “incorrect” comparison (S-). 

 

 During the baseline training, incorrect choices caused the trial to be repeated 

after the ITI (correction procedure) up to a maximum of three trials or until a correct 

choice was made (whichever occurred first). On the trial following the third repetition, 

only the S+ was presented. Thus, the total number of trials on a particular training 

session were the sum of 96 programmed trials and all the correction trials. Only the 

choice made on the first exposure to a given trial was scored as a correct or incorrect 

response (i.e. correction trials were not included). Each pigeon received one training 

session daily until it matched correctly on 90% or more of the 96 programmed trials for 

two consecutive sessions, and with no more than four incorrect responses on a 

particular relation.  Two pigeons (P2 and P4) showed few signs of acquisition after 50 
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sessions so a 15-s timeout period was introduced after each incorrect choice from the 

following session onwards. During the timeout period both the houselight and the 

screen reminded off. After reaching the accuracy criterion, each subject was 

overtrained for 20 sessions without the correction procedure. 

 

 Symmetry test 1. On the day following the last overtraining session, subjects 

were tested for symmetry with samples from the baseline being used as comparisons, 

and vice-versa. Test performances were differentially reinforced over the course of 96-

trial sessions. On half of the trials, reinforced sample-comparison relations were the 

symmetrical versions of half of baseline relations (i.e., pecking A1 comparison after B1 

sample, as well as pecking C1 comparison after D1 sample, given that the reversal 

relations had been reinforced in the baseline training). In order to control for the effects 

of reinforcement of the symmetrical relations, two novel relations were reinforced on 

the remaining trials by recombining stimuli from the remaining baseline relations (i.e., 

pecking A2 comparison after D2 sample, as well as pecking C2 comparison after B2 

sample, given that subjects had been trained to match D2 comparison to C2 sample 

and B2 comparisons to A2 sample). Symmetrical and novel relations were concurrently 

reinforced for each subject. The four possible combinations involving each test sample 

and its corresponding S+ and S- are shown in the center panel of Table 2.1. All 

procedural details were identical to those described for the baseline training, except 

that incorrect choices were not followed by either the correction procedure or the 

timeout period. Similar to baseline training, testing sessions were conducted daily with 

each pigeon until its overall accuracy was 90% correct or higher for two consecutive 

sessions with no more than four incorrect choices concentrated on a particular relation. 

  

 Baseline retraining. After completing the symmetry test 1, all pigeons were 
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retrained on the original baseline relations (left panel of Table 2.1). All procedural 

details were identical to those employed during the original training excepting that the 

correction procedure and the timeout period were no more in use. The performance 

criterion was also the same. 

  

 Symmetry test 2. Following the last baseline retraining session, each pigeon 

was given a new symmetry testing which was procedurally identical to the first one. 

Only the reinforced sample-comparison relations were different from those of the first 

symmetry test. Once pigeons had been previously tested on the symmetrical versions 

of Set-1 baseline relations, then they were tested for symmetry with Set-2 baseline 

relations (i.e., B2–A2 and D2–C2). Similarly, once the earlier novel relations had been 

formed by recombining stimuli from the Set-2 baseline relations, then, in this second 

test, the novel relations comprised the recombination of the Set-1 baseline stimuli (i.e., 

D1–A1 and B1–C1). The four possible combinations involving each testing sample and 

its corresponding S+ and S- are shown in the right panel of Table 2.1. This second 

symmetry test consisted of a single 96-trial session. 
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RESULTS 

 

Baseline training. Pigeons P1, P2, P3 e P4 required a total of 25, 79, 55 and 69 

sessions, respectively, to acquired the baseline relations to a criterion of 90% accuracy 

or better with no more than four errors in each particular relation on the criterion 

session. Acquisition of baseline relations trained with Set-1 stimuli was compared with 

the acquisition of those trained with Set-2 stimuli, and no significant difference was 

found with respect to the number of sessions required for pigeons to reach the 

performance criterion on both groups of relations (Z = -.368, p = .713). The mean 

number of sessions to reach the specified criterion was 50 for Set-1 and 49 for Set-2 

relations. 

Figure 2.2 shows matching accuracy by individual subjects over five-session 

blocks of the baseline training, when the reinforced training relations were composed of 

either Set-1 or Set-2 stimuli. All the pigeons performed at the chance level on both Set-

1- and Set-2-relation trials during the first five-session block. Performance accuracy on 

Set-1 and Set-2 relations improved together across five five-session blocks for P1. 

Whereas for P2, P3 and P4, accuracies fluctuated slightly with respect to both Set-1 

and Set-2 relations, gradually increasing across 18, 12, 13 five-session blocks, 

respectively. Accuracies on Set-1- and Set-2-relation trials did not differ significantly 

from one another across training sessions for all the pigeons (Z = - 1.058, p = .290). 

Such a result provided an important experimental control for the reinforced 

symmetry test since the symmetrical and the novel relations were drawn from different 

sets of stimuli: when the symmetrical relations were formed with Set-1 stimuli, the novel 

relations were formed with Set-2 stimuli, and vice-versa. To the extent that there was 

no significant difference between the acquisition of Set-1 and Set-2 relations, possible 

higher accuracies on the symmetrical-relation than on the novel-relation trials would 
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indicate associative symmetry rather than unknown controls, such as inherent stimulus 

properties. 

 

 

Figure 2.2. Matching accuracy for individual pigeons over five-session blocks of 

baseline training of the Study 2. The reinforced relations consisted of either Set-1 (solid 

circles) or Set-2 stimuli (open circles). The last four five-session blocks of each subject 

refer to the overtraining sessions. The number of sessions in the last session block 

preceding the overtraining was six for Pigeons P1 and P3, three for P2 and two for P4. 

 

In order to carryout an analysis of responding location bias, sessions in which a 

particular comparison location (right or left) was chosen in more than 70% of the trials 

were recorded as a positional-response session, and its total number was summed for 

each pigeon (2, 17 and 7 for P1, P3 and P4, respectively). Given the large number of 

sessions in which P3 showed a position bias, a laterality correction procedure was 

used for this subject: the average of right and left choices was calculated for the last 

five sessions and, for the following session, the probability that an S+ be presented in 

the preferred location was reduced proportionally to the inverse of the mean of the 

preference. For example, if during the last five sessions the right location was chosen 

in 75% of the trials in average, then, in the following session, the probability of an S+ 

be presented in that location decreased from 0.5 to 0.25 (i.e., the S+'s were presented 
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in the opposite location on 75% of the trials). This correction procedure was used until 

the mean of the location preference — updated with respect to current last five 

sessions — became less than 60%, and was reintroduced every time the location bias 

reached the 70% criterion again. The total number of sessions in which the laterality 

correction procedure was used for P3 was 12. 

Accuracies on baseline trials remained high for all pigeons during the 

overtraining. In the last two overtraining sessions that immediately preceded the first 

symmetry test session, the individual performance accuracies averaged 94%, 93%, 

91% and 95% for Subjects P1, P2, P3 and P4, respectively. 

 

Symmetry test 1. Figure 2.3 shows individual first-session performance 

accuracies when the reinforced test relations were either symmetrical versions of the 

baseline relations or novel combinations of baseline stimuli. The predictions, in line with 

symmetry, were that pigeons should perform above-chance levels of accuracy on the 

symmetrical-relation and at chance level on the novel-relation trials. Indeed, accuracies 

on symmetrical-relation were higher than on novel-relation trials for two pigeons (P1 

and P2), but the percentages of correct choices were only at chance on the former 

(51% and 54%, respectively) and below chance on the latter (38% e 40%, 

respectively). First-session performances on the symmetrical relations were not 

significantly more accurate than on the novel relations for such subjects (Z = -1.342; p 

= .180). For the remaining two pigeons (P3 and P4) accuracy was at chance level in 

the novel-relation (56% and 54%, respectively) but only below chance in the 

symmetrical-relation trials (35% and 31%, respectively). Thus, no evidence of 

symmetry was found in this first test session. 
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Figure 2.3. Matching accuracy on the first session of the symmetry test 1 by individual 

pigeons of the Study 2. The reinforced relations were either symmetrical versions of 

Set-1 baseline relations (black bars) or novel recombination of Set-2 baseline stimuli 

(gray bars). 

 

Figure 2.4 shows individual matching accuracy averaged across five-session 

blocks of the symmetry test, when the reinforced test relations were symmetrical 

versions of the baseline relations or novel combinations among baseline stimuli. 

Pigeon P1 performed above-chance level on the symmetrical-relation trials (63% 

correct), and below-chance level on the novel-relation trials (40% correct) in the first 

five-session blocks. In contrast, performances on both symmetrical- and novel-relation 

trials were at, around or slightly above chance for Pigeons P2, P3 and P4, respectively. 

Accuracies for P2 and P3 fluctuated across blocks of five sessions on both symmetrical 

and novel relations, improving gradually across 50 and 60 sessions, respectively. 

Accuracies for P1 and P4 improved across 30 sessions with less fluctuation. Contrary 

to predictions, there was no significant difference between matching accuracies on 

symmetrical- and novel-relation trials throughout test sessions (Z = -.280, p = .779). 

Furthermore, the symmetrical relations were not acquired any more quickly than the 



 

 

59 

novel relations (Z = -.365, p = .715).  

 

 

 

Figure 2.4. Matching accuracy for individual pigeons across five-session blocks in the 

symmetry test 1 of the Study 2. The reinforced relations were either symmetrical 

versions of baseline relations (solid circles) or novel recombination of baseline stimuli 

(open circles). The number of sessions in the last session block was three for Pigeon 

P3 and two for P4. 

 

 Baseline retraining. Subjects P1, P2, P3 e P4 required 4, 10, 13 and 14 

sessions, respectively, to reestablish the accuracy criterion on the baseline relations. 

Individual matching accuracy on the last two baseline retraining session preceding the 

second testing averaged 95%, 94%, 99% and 90% for Set-1 relations and 100%, 91%, 

96% and 94% for Set-2 relations, respectively. 

 

Symmetry test 2. Figure 2.5 shows percentage of correct responses on the first 

session of the second symmetry test when the reinforced relations were either 

symmetrical or novel concerning the baseline relations. All pigeons performed well 

above chance-level on the symmetrical-relation trials (range 69% to 77%). In contrast, 
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on the novel-relation trials, P4 and P1 matched close (52%) and slightly above chance 

(60%), respectively, while P2 and P3 matched well below chance-level (21% and 35%). 

A Binomial test, based on the individual difference in the proportion of correct 

responses on symmetrical- and novel-relation trials showed high levels of significance 

for Pigeons P2 (Z = 5.513, p < .001), P3 (Z = 3.477, p < .001) and P4 (Z = 1.887, p = 

.037). 

 

 

Figure 2.5. Matching accuracy on the first session of the symmetry test 2 by individual 

pigeons of the Study 2. The reinforced relations were either symmetrical versions of 

Set-2 baseline relations (black bars) or novel recombination of Set-1 baseline stimuli 

(gray bars). 

 

Table 2.2 shows individual performances on the first four trials of each 

symmetrical and novel relation in the symmetry test 2. Strong evidence of symmetry 

was found considering the emergence criteria used by Schusterman and Kastak (1993) 

— a correct choice on the first test trial and, at least, on two of the remaining three 

trials. All pigeons met this emergence criterion on every symmetrical relations but only 

one pigeon (P4) did so on a single novel relation. 



 

 

61 

Table 2.2. Performance of individual pigeons in the first four trials of each reinforced 

relation in the symmetry test 2 of the Study 2. The reinforced relations were either 

symmetrical versions of training relations or novel recombination of training stimuli. (O) 

indicates a correct response; (X) indicate an incorrect response. 
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DISCUSSION 

 

 The results indicate that pigeons can show a generalized symmetrical 

responding after a sequence of training and testing in which exemplars of symmetry 

were provided along with the prerequisite discriminations among test samples and 

comparisons. After pigeons had learned two arbitrary-matching tasks (A–B and C–D), 

they were given a reinforced symmetry test for half of the baseline relations (B1–A1 

and D1–C1). In order to control for the effects of reinforcement on test trials, two novel 

relations were concurrently reinforced using familiar stimuli from the remaining baseline 

relations (D2–A2 and B2–C2). Once pigeons matched at or close to chance on both 

symmetrical- and novel-relation trials (i.e., symmetry was not observed), such relations 

were trained to high accuracy levels, thus providing successive and simultaneous 

discriminations among samples and comparisons of the next symmetry test, 

respectively. Then, in the first session of the second test, pigeons performed more 

accurately on the remaining, untrained symmetrical relations (B2–A2 and D2–C2) than 

on two additional novel relations (D1–A1 and B1–C1). The result of this first test 

session was not as robust as those of verbally able humans (e.g., Lazar et al., 1984; 

Sidman & Cresson, 1973; Sidman & Tailby, 1982; Spradlin, et al., 1973) but was 

consistent across subjects. Nonetheless, strong evidence of emergent symmetry was 

found considering only the first four test trials. All pigeons responded correctly in the 

first trial of each symmetrical relation and, at least, on two of the subsequent three trials 

(Schusterman and Kastak's emergence criterion). In contrast, only two pigeons (P2 

and P4) made a correct response on the first trial of a single novel relation, and only 

one of them (P4) responded correctly on two of the next three trials. In short, pigeons 

did not show any evidence of symmetry in the first test but after two symmetrical 

relations were explicitly trained, associative symmetry emerged in a second test with 
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new relations. 

 This result sharply contrasts with the lack of symmetry reported in most 

nonhuman animal studies (e.g., Barros et al., 1996; D’Amato et al., 1985; Dugdale & 

Lowe, 2000; Gray, 1966; Hogan & Zentall, 1977; Holmes, 1979; Lionello-DeNolf & 

Urcuioli, 2002; Lipkens et al., 1988; Richards, 1988; Rodewald, 1974; Sidman et al., 

1982). Especially interesting is the discrepancy between our results and those reported 

by Lionello-DeNolf and Urcuioli (2002). In both studies, pigeons were given symmetry 

exemplar training and were tested for emergent symmetrical responding under 

differential reinforcement conditions (two variables identified as important for 

demonstration of symmetry in nonhuman animals). Nevertheless, unlike our pigeons, 

Lionello-DeNolf and Urcuioli's subjects had not learned all prerequisite discriminations 

among the stimuli used in the critical symmetry test. In that study, pigeons were trained 

on three arbitrary-matching tasks (A–B, B–C and D–A) during which A and B stimuli 

appeared as both samples and comparisons. Next, B–A symmetry was tested and, since 

it was not observed, B–A matching was trained to high accuracy levels. Afterwards, C–B 

symmetry was first tested and then trained before A–D symmetry testing. Despite this 

prior history of reinforced symmetrical relations, pigeons matched at chance in both C–B 

and A–D tests. It is important to note that before such tests pigeons had never learned to 

discriminate among C stimuli as samples and D stimuli as comparisons, respectively. In 

other words, symmetry may have not emerged simply because subjects lacked the 

prerequisite discriminative repertoire for that. 

 In our experiment, by contrast, all prerequisite discriminations seemed to be 

provided by reinforcing the symmetrical and novel relations to high accuracy levels over 

the course of the first symmetry test. The strategy of using novel relations as 

experimental control for the reinforced symmetry test (rather than inconsistent relations) 

allowed symmetry to be repeatedly tested using the same baseline stimuli. Thus once 
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the stimuli that first integrated the symmetrical relations were later recombined to form 

novel relations, and vice-versa, the first reinforced symmetry test provided all prerequisite 

discriminations for the next test. In other words, at the onset of the second symmetry 

test, pigeons already had experience with the current samples and comparisons in their 

respective roles and locations. 

 Another important advantage of this procedure is that both symmetrical and novel 

relations can be concurrently reinforced for the same subject (i.e., single-subject design). 

The use of inconsistent relations, in turn, would confound the interpretation of results in 

single-subject designs. The reinforcement of inconsistent relations (e.g., A1–B2 and A2–

B1) concurrently to the symmetrical relations (e.g., A1–B1 and A2–B2) would merge the 

stimuli into a single large class (e.g., A1A2B1B2C1C2) thus resulting in chance-level 

performances in both sets of relations.  

Our results, on the other hand, join those of Schusterman and Kastak (1993) 

with a sea lion, and those of Yamamoto and Asano (1995) with a chimpanzee in 

showing emergent symmetrical responding after symmetry exemplar training. Notably, 

both the sea lion and the chimpanzee were also trained on identity-matching tasks 

which provided them experience with each stimulus in both sample and comparison 

roles. Thus, just as in the present study, their subjects learned in advance all successive 

and simultaneous discriminations necessary for accurate performance in the symmetry 

test, and were also familiarized with each stimulus on its respective testing location. 

 A noteworthy question however concerns the very limited number of exemplar 

training required before our pigeons demonstrated an emergent symmetrical responding. 

Whereas Schusterman and Kastak's (1993) sea lion was trained in six symmetrical 

relations before showing emergent symmetry, only two symmetrical relations were 

trained before our pigeons showed this same kind of emergent performance. In contrast, 

Yamamoto and Asano (1995) reported only transitory evidence of emergent symmetry 
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after their chimpanzee was trained in six symmetrical relations. Afterwards, no evidence 

was found in a subsequent test with new stimuli (it is likely, however, that test 

performance was under extinction due to the lack of reinforcement on test trials). The 

limited number of exemplar training carried out in our study might lead to the conclusion 

that generalized symmetrical responding already existed in the pigeons' repertoire. In 

that sense, the exemplar training provided over the course of the first symmetry test 

would have served only to establish the prerequisite discriminations required for the 

subsequent demonstration of emergent symmetry, as well as to set the experimental 

context for such emergence. Although this hypotheses needs to be systematically 

checked, it can be partially supported by two studies that succeeded in showing 

associative symmetry in pigeons in the absence of explicit exemplar training. 

 In one such study, Frank and Wasserman (2005) reported the strongest 

evidence to date for emergent symmetry in pigeons. They used a successive MTS 

procedure in which sample and comparison appeared individually one after another in 

a single location to prevent spatial dimensions from gaining control over subjects' 

responses. To control for temporal location cues, two identity-matching tasks (A–A and 

B–B) were concurrently trained interspersed with the target arbitrary-matching task (A–B) 

so that during training each stimulus appeared as both the first (sample) and the second 

(comparison) stimulus. Half of the trials consisted of sample-comparison relations during 

which pecks to the comparison stimulus were reinforced (e.g., A1–B1 and A2–B2). The 

remaining half of the trials consisted of sample-comparison relations during which pecks 

to the comparison were extinguished (e.g., A1–B2 and A2–B1). Pigeons were trained 

until a discrimination ratio of 0.80 in a session was reached. Afterwards, symmetry-

testing sessions were conducted in which arbitrary and identity-matching trials were 

intermixed with symmetry testing trials (B–A) that involved the reversal of the arbitrary 

training relations. Even with no reinforcement in symmetry testing trials, pigeons pecked 
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much more on the reverse of the reinforced arbitrary relations (B1–A1 and B2–A2) than 

on the reverse of the nonreinforced arbitrary relations (B1–A2 and B2–A1), a clear 

evidence of emergent symmetrical responding. Similar results, although less robust, 

were reported in a replication conducted by Urcuioli (2008) also with pigeons. 

 However, although these pigeons clearly lacked an experimental history of 

reinforced symmetrical relations before the test, it is worthy mentioning that they had an 

incidental experience with nonreinforced symmetrical relations. During the identity-

matching task, pecking the A2 comparison was extinguished after the A1 sample, as well 

as pecking the A1 comparison was extinguished after the A2 sample (A1–A2 and A2–

A1). Likewise, pecking the B2 and B1 comparisons was extinguished after either the B1 

or B2 samples, respectively (B1–B2 and B2–B1). In other words, subjects were given a 

training procedure in which responding to pairs of symmetrical relations produced the 

same programmed outcome (i.e., extinction). Whether or not this history of nonreinforced 

symmetrical relations may have facilitated the subsequent demonstration of an emergent 

symmetrical responding is an experimental question that is being systematically 

investigated by Rico (2009) in an ongoing study. 

To conclude, the present study showed that associative symmetry can emerge in 

nonhuman animals under adequate conditions of training and testing. Although explicit 

reinforcement of symmetrical relations has been considered the most critical condition in 

order to bring about the emergence of symmetry (cf. Schusterman & Kastak, 1993; 

Sidman et al., 1982), such a procedure does not seem sufficient (see Lionello-DeNolf & 

Urcuioli, 2002; Yamamoto & Asano, 1995). It is also necessary to provide the subjects 

appropriate discriminations among test samples and comparisons, as well as prior 

experience with each stimulus in its corresponding test location. Furthermore, reinforced 

test trials seem to encourage demonstration of emergent symmetrical responding in 

nonhuman animals. When all these aforementioned conditions were met, our experiment 
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succeeded in providing the first evidence of associative symmetry by pigeons in a two-

alternative MTS procedure.
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CONSIDERAÇÕES FINAIS 

 

Os dois estudos aqui descritos confirmam a possibilidade de se avaliar 

relações condicionais que atestam as propriedades da equivalência em condições 

exclusivas de reforçamento, estratégia essa de grande valor quando se trata da 

investigação envolvendo sujeitos não-humanos e humanos com desenvolvimento 

atípico. Em linha gerais, o procedimento envolve a comparação dos desempenhos de 

um mesmo sujeito durante tentativas de teste em que são reforçadas tanto relações 

consistentes com a formação de classes de equivalência (e.g., simétricas e transitivas) 

quanto relações inéditas formadas pela recombinação de estímulos familiares da linha 

de base. No que se refere aos resultados obtidos, os participantes humanos (Estudo 

1) responderam com acurácia superior nas relações simétricas e transitivas no 

decorrer de todo o teste, corroborando, assim, os resultados de estudos anteriores que 

empregaram o paradigma tradicional de equivalência em sujeitos verbalmente 

competentes (e.g., Devany, et al., 1986; Lazar et al., 1984; Sidman & Cresson, 1973; 

Sidman & Tailby, 1982; Spradlin et al., 1973). Os pombos (Estudo 2), por sua vez, 

desempenharam ao nível do acaso tanto nas relações simétricas quanto nas relações 

inéditas em um primeiro teste envolvendo a metade dos estímulos da linha de base. 

Porém, depois que tais relações (simétricas e inéditas) foram treinadas até alto grau 

de acurácia, todos os pombos responderam com precisão superior nas relações 

simétricas de um segundo teste envolvendo os estímulos restantes da linha de base. 

Esses achados contrastam com a maioria dos resultados de estudos anteriores que 

investigaram simetria em sujeitos não-verbais, sobretudo em não-humanos (e.g., 

Barros et al., 1996; D’Amato et al., 1985; Devany et al., 1986; Dugdale & Lowe, 2000; 

Gray, 1966; Hogan & Zentall, 1977; Holmes, 1979; Lionello-DeNolf & Urcuioli, 2002; 

Lipkens et al., 1988; Richards, 1988; Rodewald, 1974; Sidman et al., 1982) e sugerem 
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que formação de classes de equivalência possa ser verificada em tais populações sob 

condições adequadas de treino e teste.  

A presente proposta metodológica se diferencia das demais estratégias 

utilizadas para avaliar propriedades da equivalência por meio de testes reforçados 

(e.g. D'Amato, et al., 1985; Lionello-DeNolf & Urcuioli, 2002) na medida em que as 

relações inéditas, treinadas como um controle experimental durante os testes, não são 

incompatíveis ou inconsistentes com a linha de base de relações condicionais 

previamente estabelecida. Tal estratégia tem sido aprimorada ao longo de pesquisas 

anteriores conduzidas com humanos verbalmente competentes (Velasco & Tomanari, 

2008; Velasco & Tomanari, 2009) e traz avanços metodológicos significativos para o 

estudo da formação de classes de equivalências em animais não-humanos e humanos 

com desenvolvimento atípico. 

Em primeiro lugar, a presente estratégia permite que relações consistentes e 

inéditas sejam concorrentemente reforçadas para um mesmo sujeito, evitando-se, 

assim, o emprego de delineamentos experimentais de grupo (e.g., Lionello-DeNolf & 

Urcuioli, 2002; Urcuioli et al., 1989). Por não ser inconsistente com o treino da linha de 

base, o reforçamento das relações inéditas não deveria interferir nos desempenhos 

durante as tentativas em que são avaliadas as relações consistentes com a formação 

de classes de equivalência. 

No campo aplicado, o uso de relações inéditas permite não só que repertórios 

complexos possam ser testados sob reforçamento diferencial, mas, sobretudo, que a 

condição de teste possa ser utilizada para adicionar novas relações entre estímulos ao 

repertório dos indivíduos em questão. Não sendo inconsistente com algo que o 

indivíduo tenha aprendido anteriormente, a condição de teste se configuraria, portanto, 

como uma condição adicional de ensino. Por exemplo, depois de ensinar um aluno a 

relacionar nomes em português a seus respectivos objetos (A–B), testes de simetria 
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poderiam ser conduzidos durante os quais o reforçamento de relações entre objetos e 

seus nomes em português (B–A) seria comparado ao treino de relações inéditas 

envolvendo os mesmos objetos e seus correspondentes nomes em inglês (B–C). Feito 

isso, relações transitivas entre nomes em português e nomes em inglês poderiam ser 

avaliadas (A–C) comparando-se o reforçamento dessas relações ao treino de outras 

relações inéditas envolvendo, por exemplo, nomes em português e nomes em espanhol 

(A–D) e assim por diante. Deste modo, as relações inéditas, empregadas como controle 

experimental em cada fase de teste passariam a integrar a própria linha de base de 

relações condicionais para que, posteriormente, novas relações emergentes pudessem 

ser avaliadas. Estratégia semelhante poderia ser utilizada para avaliar todas as 

propriedades definidoras de equivalência em um mesmo sujeito não-humano. 

No presente estudo, conduzido com pombos, o treino das relações inéditas 

durante o primeiro teste de simetria teve ainda um propósito adicional. Enquanto que o 

treino das relações simétricas forneceu aos sujeitos uma experiência com modelos e 

comparações alterando papéis, o treino de relações inéditas serviu para estabelecer 

as discriminações sucessivas e simultâneas entre os modelos e comparações que 

iriam compor as relações simétricas do segundo teste, bem como para familiarizar os 

sujeitos com os estímulos em suas novas localizações. Tal procedimento, portanto, 

prescindiu do treino de relações de identidade que normalmente é utilizado para esse 

fim (Frank & Wasserman, 2005; Sidman et al., 1992; Tomonaga, et al., 1991, 

Yamamoto & Asano, 1995). 

Recentemente, Urcuioli (2008) teorizou que o treino de identidade aliado ao 

procedimento de MTS sucessivo se configuraria como uma condição necessária à 

demonstração de simetria em pombos. De fato, até o presente momento as únicas 

demonstrações de simetria com essa população haviam sido obtidas empregando-se 

esses dois procedimentos em conjunto (Frank & Wasserman, 2005; Urcuioli, 2008). No 
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entanto, os resultados da presente pesquisa indicam que a demonstração de simetria 

em pombos é factível na ausência tanto do treino de identidade quanto do procedimento 

de MTS sucessivo. Para isso, entretanto, foi necessário fornecer aos sujeitos uma curta 

experiência com modelos e comparações alternando papéis (treino de exemplares de 

simetria), além de garantir que todos os pré-requisitos discriminativos necessários à 

demonstração de simetria fossem previamente estabelecidos. 

Como foi discutido anteriormente, o treino de identidade realizado tanto por 

Frank e Wasserman (2005) quanto por Urcuioli (2008), além de apresentar cada 

estímulo como modelo e comparação, forneceu aos pombos uma experiência na qual 

responder a relações simétricas produzira uma mesma conseqüência programada (i.e., 

extinção). Se estiver correta a hipótese de que tal experiência tenha cumprido o 

mesmo papel de um treino de simetria, então, esses dois estudos, juntamente com o 

que compõe o presente trabalho, foram os únicos realizados com pombos que 

forneceram exemplares de relações simétricas e garantiram os controles 

discriminativos adequados. 

Se por um lado esses resultados fortalecem a hipótese de que a linguagem não 

é um pré-requisito necessário à demonstração da formação de classes de 

equivalência, por outro, eles sugerem que uma história envolvendo relações 

simétricas, que também é fornecida ao longo da aquisição de competências 

lingüísticas, pode ser uma condição necessária à tal demonstração (ver também 

Schusterman & Kastak, 1993; Yamamoto & Asano, 1995). 

Com o emprego de estratégias inovadoras no controle de variáveis que 

dificultam a emergência de relações condicionais em organismos não-verbais, o 

presente trabalho aponta um caminho promissor na consolidação de um modelo 

animal para o estudo do funcionamento simbólico e seus precursores, além de 

fornecer um conjunto de parâmetros para o desenvolvimento de procedimentos 
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remediativos dirigidos a indivíduos que apresentam déficit no funcionamento 

lingüístico. 



 

 

73 

REFERÊNCIAS 

 

Antonitis, J.J. (1951). Response variability in the white rat during conditioning, 

extinction, and reconditioning. Journal of Experimental Psychology, 42, 273-281. 

Azrin, N.H., Hutchinson, R.R., & Hake, D.F. (1966). Extinction-induced aggression. 

Journal of the Experimental Analysis of Behavior, 9, 191-204. 

Barnes-Holmes, Y., Barnes-Holmes, D., Roche, B., & Smeets, P. M. (2001). Exemplar 

training and a derived transformation of function in accordance with symmetry: II. 

The Psychological Record, 51, 589-603.  

Barros, R.S. (1998). Controle do comportamento por relações entre estímulos em 

Cebus apella. Tese de Doutorado, Universidade de São Paulo, São Paulo. 

Barros, R.S., Galvão, O.F., & Fontes, J.C. (1996). Um teste de simetria após treino de 

relações comdicionais de posição com macaco Ateles paniscus paniscus. Acta 

Comportamentalia, 4, 181-204. 

Barros, R.S., Galvão, O.F., & McIlvane, W.J. (2002). Generalized identity matching-to-

sample in Cebus apella. The Psychological Record, 52, 441-460. 

D’Amato, M.R., Salmon, D.P., Loukas, E., & Tomie, A. (1985) Symmetry and transitivity 

of conditional relations in monkeys (Cebus apella) and Pigeons (Columbia livia). 

Journal of the Experimental Analysis of Behavior, 44, 35-47. 

de Rose, J.C., Souza, D.G., Rossito, A.L., & de Rose, T.M.S. (1989). Aquisição de 

leitura após história de fracasso escolar: equivalência de estímulos e 

generalização. Psicologia: Teoria e Pesquisa, 5, 325-346. 

de Rose, J.C., Souza, D.G., & Hanna, E.S. (1996). Teaching reading and spelling: 

Exclusion an stimulus equivalence. Journal of Applied Behavior Analysis, 29, 



 

 

74 

451-469. 

de Rose, J.C., & Souza, D.G. (2006). Desenvolvendo um programa individualizado 

para o ensino de leitura. Acta Comportamentalia, 14, 77,98. 

Devany, J.M., Hayes, S.C., & Nelson, R.O. (1986). Equivalence class formation in 

language-able and language-disable children. Journal of the Experimental 

Analysis of Behavior, 46, 243-257. 

Dube, W.V., & McIlvane, W.J. (1996). Some implications of a stimulus control 

topography analysis for emergent stimulus class. In T.R. Zental & P.M. Smeets 

(Eds.), Stimulus class formation in humans and animals (pp. 197-218). 

Amsterdam: Elsevier. 

Dube, W.V., McIlvane, W.J., Callahan, T.D., & Stoddard, L.T. (1993). The search for 

stimulus equivalence in nonverbal organisms. The Psychological Records, 43, 

761-778. 

Dugdale, N., & Lowe, C.F. (1990). Naming and stimulus equivalence. In D.E. 

Blackman, & H. Lejeune (Eds.), Behavior analysis in theory an practice (pp. 115-

138). Hove, UK: Erlbaum. 

Dugdale, N., & Lowe, C.F. (2000). Testing for symmetry in conditional discriminations 

of language-trained chimpanzees. Journal of the Experimental Analysis of 

Behavior, 73, 5-22. 

Frank, A.J., & Wasserman, E.A. (2005). Associative symmetry in the pigeon after 

successive matching-to-sample training. Journal of the Experimental Analysis of 

Behavior, 84, 147-165. 

Galvão, O.F. (1993). Classes funcionais e equivalência de estímulos. Psicologia: 

Teoria e Pesquisa, 9, 547-554. 

Galvão, O.F., Calcagno, S., & Sidman, M. (1992). Testing for emergent performances 



 

 

75 

in extinction. Experimental Analysis of Human Behavior Bulletin, 10, 18-20. 

Gray, L. (1966). Backward association in pigeons. Psychonomic Science, 4, 333-334.  

Hayes, S.C. (1989). Nonhumans have not yet shown stimulus equivalence. Journal of 

the Experimental Analysis of Behavior, 51, 385-392. 

Hayes, S.C., Barnes-Holmes, D., & Roche, B. (2001). Relational frame theory: A post-

Skinnerian account of language and cognition. New York: Plenum. 

Herman, L.M., & Gordon, J. A. (1974). Auditory delayed matching in bottlenose 

dolphin. Journal of the Experimental Analysis of Behavior, 21, 19-26. 

Herman, L.M., Hovancik, P.R., Gory, J.D., & Bradshaw, G.L. (1989). Generalization of 

visual matching by a bottlenose dolphin (Tursiops truncates): Evidence of 

invariance of cognitive performance with visual and auditory materials. Journal o 

Experimental Psychology: Animal Behavior Processes, 15, 124-136. 

Hogan, D.E., & Zentall, T.R. (1977). Backward associations in pigeon. American 

Journal of Psychology, 90, 3-15. 

Holmes, P.W., (1979). Transfer of matching performance in pigeons. Journal of the 

Experimental Analysis of Behavior, 31, 103-114. 

Horne, P.J., & Lowe, C.F. (1996). On the origins of naming and other symbolic 

behavior. Journal of the Experimental Analysis of Behavior, 65, 185-242. 

Iversen, I.H. (1997). Matching-to-sample performance in rats: A case of mistaken 

identity? Journal of the Experimental Analysis of Behavior, 68, 27-47. 

Iversen, I.H., Sidman, M., & Carrigan, P. (1986). Stimulus definition in conditional 

discriminations. Journal of Experimental Analysis of Behavior, 45, 297-304. 

Kastak, D., & Schusterman, R. J. (1994). Transfer of visual identity matching-to-sample 

in two California sea lions (Zalophus californianus). Animal Learning and 



 

 

76 

Behaviour, 22, 427–435. 

Keller, F.S., & Schoenfeld, W.N. (1950). Principles of psychology: A systematic text in 

the science of behavior. New York: Appleton-Century-Crofts. 

Kuno, H., Kitadate, T., & Iwamoto, T. (1994). Formation of transitivity in conditional 

matching to sample by pigeons. Journal of the Experimental Analysis of Behavior, 

62, 399-408. 

Lazar, R. (1977). Extending sequence-class membership with matching to sample. 

Journal of the Experimental Analysis of Behavior, 27, 381-392. 

Lazar, R., Davis-Lang, D., & Sanches, L. (1984). The formation of visual stimulus 

equivalence in children. Journal of the Experimental Analysis of Behavior, 41, 

251-266. 

Lerman, D.C., & Iwata, B.A. (1996). Developing a technology for the use of operant 

extinction in clinical settings: An examination of basic and applied research. 

Journal of Applied Behavior Analysis, 29, 345-382. 

Lionello-DeNolf, K.M. (2009). The search for symmetry: 25 years in review. Learning & 

Behavior, 37, 188-203. 

Lionello-DeNolf, K.M., & Urcuioli, P.J., (1998). Control by sample location in pigeons' 

matching-to-sample. Journal of the Experimental Analysis of Behavior, 70, 235-

251. 

Lionello-DeNolf, K.M., & Urcuioli, P.J., (2000). Transfer of pigeons' matching-to-sample 

to novel sample location. Journal of the Experimental Analysis of Behavior, 73, 

141-161. 

Lionello-DeNolf, K.M., & Urcuioli, P.J., (2002). Stimulus control topographies and test 

of symmetry in pigeons. Journal of the Experimental Analysis of Behavior, 78, 

467-495. 



 

 

77 

Lipkens, R., Kop, P.F.M., & Matthijs, W. (1988). A test for symmetry and transitivity in 

the conditional discrimination performances of pigeons. Journal of the 

Experimental Analysis of Behavior, 49, 395-409. 

Mackay, H.A., & Sidman, M. (1984). Teaching new behavior via equivalence relations. 

In P.H. Brooks, R. Sperber, & C. McCauley (Eds.), Learning and cognition in the 

mentally retarded (pp. 493-513). Hillsdale, NJ: Erlbaum. 

Matos, M.A., Peres, W., Hübner, M.M., & Malheiros, R.H. (1997). Oralização e cópia: 

efeitos sobre a aquisição de leitura generalizada recombinativa. Temas em 

Psicologia, 1, 47-64. 

Medeiros, J.G., Antonakopoulu, A., Amorim, K., & Righetto, A.C. (1997). O uso da 

discriminação condicional no ensino de leitura e escrita. Temas em Psicologia, 1, 

23-32. 

Melchiori, L.E., de Souza , D.G., & de Rose, J.C. (2000). Reading, equivalence and 

recombinations of units: A replication with students diferent learning histories. 

Journal of Applied Behavior Analysis, 33, 97-100. 

Oden, D.L., Thompson, R.K., & Premack, D. (1988). Spontaneous transfer of matching 

in infant chimpanzees. Journal of the Experimental Psychology: Animal Behavior 

Processes, 14, 140-145. 

Peña, T., Pitts, R.C., & Galizio, M. (2006). Identity matching-to-sample with olfactory 

stimuli in rats. Journal of Experimental Analysis of Behavior, 85, 203-221. 

Richards, R.R. (1988). The question of bidirectional associations in pigeons’ learning of 

conditional discrimination tasks. Bulletin of the Psychonomic Society, 26, 577-

579. 

Rodewald, H.K. (1974). Symbolic matching-to-sample by pigeons. Psychological 

Reports, 34, 987-990. 



 

 

78 

Rico, V.V. (2009). Variáveis relevantes para a emergência de simetria em pombos 

(Columba livia). Projeto de Qualificação de Doutorado, Universidade de São Paulo, 

São Paulo. 

Saunders, R.R., & Green, G. (1999). A discriminations analyses o training-structure 

effects on stimulus equivalence outcomes. Journal of Experimental Analysis of 

Behavior, 72, 117-137. 

Schusterman, R.J., & Kastak, D. (1993). A California see lion (Zlophus californianus) is 

capable of forming equivalence relations. Psychological Record, 43, 823-839. 

Sidman, M. (1971). Reading and auditory-visual equivalence. Journal of Speech and 

Hearing Research, 14, 5-13. 

Sidman, M. (1990). Equivalence relations: Where do they come from? In D.E. 

Blackman, & H. Lejeune (Eds.), Behavior analysis in theory and practice: 

Contributions and controversies (pp. 93-114). Hove, UK: Erlbaum. 

Sidman, M. (1992). Adventitious control by the location of comparison stimuli in 

conditional discriminations. Journal of the Experimental Analysis of Behavior, 58, 

143-182. 

Sidman, M. (1994). Equivalence relations and behavior: A research story. Boston: 

Authors Cooperative Pub. 

Sidman, M. (2000). Equivalence relations and the reinforcement contingency. Journal 

of the Experimental Analysis of Behavior, 74, 127-146. 

Sidman, M., & Cresson, O.Jr. (1973). Reading and crossmodal transfer of stimulus 

equivalence in severe retardation. American Journal of Mental Deficiency, 77, 

515-523. 

Sidman, M., Kirk, B., & Willson-Morris, M. (1985). Six-member stimulus classes 

generated by conditional-discrimination procedure. Journal of the Experimental 



 

 

79 

Analysis of Behavior, 43, 21-42. 

Sidman, M., Rauzin, R., Lazar, R., Cunninghan, S., Tailby, W., & Carrigan, P. (1982). A 

search for symmetry in the conditional discrimination of rhesus monkeys, 

baboons and children. Journal of the Experimental Analysis of Behavior, 37, 23-

44. 

Sidman, M., & Tailby, W. (1982). Conditional discrimination vs. matching to sample: An 

expansion of the testing paradigm. Journal of the Experimental Analysis of 

Behavior, 53, 47-63. 

Sidman, M., Willson-Morris, M., & Kirk, B. (1986). Matching-to-sample procedures and 

the development of equivalence relations: The role of naming. Analysis and 

Intervention in Developmental Disabilities, 6, 1-19. 

Silverman, K., Anderson, S.R., Marshall, A.M., & Baer, D.M. (1986). Establishing and 

generalizing audience control of new language repertoires. Analyses and 

Intervention in Developmental disabilities, 6, 21-40.  

Skinner, B.F. (1938). The behavior of organisms. New York: Appleton-Century-Crofts. 

Spradlin, J.E., Cotter, V.W., & Baxley, N. (1973). Establishing a conditional 

discrimination without direct training: A study of transfer with retarded 

adolescents. American Journal of Mental Deficiency, 77, 556-566. 

Tomonaga, M., Matsuzawa, T., Fujita, K., & Yamamoto, J. (1991). Emergence of 

symmetry in a visual conditional discrimination by chimpanzees (Pan troglodytes). 

Psychological Reports, 68, 51-60. 

Urcuioli, P.J. (2008). Associative symmetry, antisymmetry, and a theory of pigeons' 

equivalence-class formation. Journal of the Experimental Analysis of Behavior, 90, 

257-282. 

Urcuioli, P.J., Zentall, T.R., Jackson-Smith, P., & Steirn, J.N. (1989). Evidence for 



 

 

80 

common coding in many-to-one matching: Retention, intertrial interference, and 

transfer. Journal of Experimental Psychology: Animal Behavior Processes, 15, 

264–373. 

Velasco. S.M., & Tomanari, G.Y. (2008, September). The effects of symmetry training on 

the acquisition of conditional discriminations. Paper presented at the Fourth 

Conference of the European Association for Behaviour Analysis, Madrid. 

Velasco. S.M., & Tomanari, G.Y. (2009). Efeitos do treino de discriminações 

condicionais sobre a aquisição de relações simétricas e transitivas. Acta 

Comportamentalia, 17, 1, 97-116. 

Villas-Bôas, A.V., Murayama, V.K., & Tomanari, G.Y.  (2005). Ressurgência: conceitos 

e métodos que podem (ou não) contribuir para a Análise do Comportamento. In 

H. Guilhardi & N.C. de Aguirre (Eds.). Sobre comportamento e cognição (pp. 18-

28). Sant André: ESEtec Editores Associados. 

Wilson, K.G., & Hayes, S.C. (1996). Resurgence of derived stimulus relations. Journal 

of the Experimental Analysis of Behavior, 66, 267-281. 

Yamamoto, J., & Asano, T. (1995). Stimulus equivalence in a chimpanzee (Pan 

troglodytes). The Psychological Record, 45, 3-21. 

Zentall, T.R., Edwards, C.A., Moore, B.S., & Hogan, D.E. (1981). Identity: the bases for 

both matching and oddity learning in pigeons. Journal of the Experimental 

Psychology: Animal Behavior Processes, 7, 70-86. 

Zentall, T.R., & Hogan, D.E. (1976). Pigeons can learn identity or difference, or both. 

Science, 191, 408-409. 


