• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.46.2016.tde-18082016-082905
Document
Author
Full name
Nathalia D'Elboux Bernardino
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2016
Supervisor
Committee
Faria, Dalva Lucia Araujo de (President)
Azzellini, Gianluca Camillo
Bastos, Erick Leite
Oliveira, Luiz Fernando Cappa de
Souza, Luiz Antonio Cruz
Title in Portuguese
Impacto de aspectos nanoestruturais sobre a estabilidade de corantes e pigmentos de interesse arqueológico
Keywords in Portuguese
Argilas
Arqueometria
Azul Maia
Corantes
Espectroscopia vibracional
Microambiente
Abstract in Portuguese
Neste trabalho foi investigado o efeito exercido por microambientes sobre a estabilidade química e fotoquímica de corantes. Em particular, estudaram-se os fatores responsáveis pelo aumento da estabilidade química e fotoquímica de índigo quando em interação com paligorsquita, que compõem o pigmento histórico Azul Maia, sobre o qual ainda havia controvérsias na literatura. Os corantes investigados foram índigo, dehidroíndigo, alizarina, purpurina, luteolina e β-caroteno; os microambientes foram proporcionados pelas argilas paligorsquita, sepiolita, montmorilonita, laponita e HDL de Al3+ e Mg2+ (3:1). Paligorsquita e a sepiolita são as únicas argilas que apresentam microporos em sua estrutura. As técnicas de caracterização empregadas neste trabalho foram: espectroscopia vibracional (Raman e absorção no infravermelho), espectroscopia de absorção no UV-VIS, difratometria de raios X, análise térmica (TG e DSC), CG-MS, HLPC-MS, medidas de área superficial por isoterma de adsorção de N2 e SEM. Duas técnicas com resolução temporal em escala de sub-picosegundos (absorção de transiente e infravermelho resolvido no tempo) foram utilizadas. O sistema índigo+paligorsquita corresponde à mistura dos dois sólidos, seguida de aquecimento, sendo que a partir de 70 °C a coloração da mistura adquire tonalidade esverdeada e também apresenta maior estabilidade química e fotoquímica. Essa estabilidade e também a alteração na cor aumentam com a temperatura de aquecimento da mistura e o intervalo considerado engloba as temperaturas de perda de água zeolítica (70 - 150 °C) e coordenada (170 - 280 °C) da estrutura da argila. Os resultados de espectroscopia vibracional e eletrônica dos simulantes de Azul Maia indicam que o índigo interage através de ligações de hidrogênio com as moléculas de água coordenada. Essa interação, entretanto, só é possível com a remoção da água zeolítica, o que ocorre a partir de 70 °C. Com aquecimento em temperaturas acima de 170 °C o comportamento do espectro eletrônico e vibracional se altera, indicando a formação direta de complexos com os metais presentes nas bordas internas dos microporos. Os resultados de espectroscopia Raman indicam que com a interação por ligação de hidrogênio a simetria molecular do índigo diminua. Os estudos por espectroscopia com resolução temporal mostraram que o índigo apresenta transferência de próton no estado excitado (ESIPT) de um dos amino grupos para a carbonila adjacente; após esta transferência, há a formação da espécie mono-enol a qual relaxa ao estado fundamental após 120 ps, através de intersecção cônica, o que explica a alta fotoestabilidade do corante. No caso da mistura aquecida a 130 °C os resultados, obtidos pela primeira vez para uma molécula imobilizada em argila, confirmam que o índigo encontra-se em um ambiente hidrofílico, considerando o tempo de vida de decaimento do estado excitado (3,0 ps), comparável ao do índigo carmim em solução aquosa (2,7 ps). O tempo de vida também é muito curto, comparado ao em solução de DMSO (120 ps) o que pode explicar a alta estabilidade do corante quando dentro do microcanal da argila. Finalmente, constatou-se que o dehidroíndigo não é responsável pela coloração de simulantes de Azul Maia, a qual resulta de alterações no espectro de absorção no visível do corante que ocorrem com a interação com a argila
Title in English
Impact of nanostructural effects on the stability of dyes and pigments of archaeological interest
Keywords in English
Archaeometry
Clays
Dyes
Maya blue
Microenvironmental
Raman spectroscopy
Abstract in English
In this work, the role played by the microenvironment on the chemical and photochemical stability of dyes was investigated. The factors responsible for the enhanced stability of indigo when interacting with palygorskite were detailed studied; the indigo and palygorskite system constitutes a simulant of Maya Blue, a historical pigment with properties which are controversially described in the literature. The dyes here investigated were indigo, dehydroindigo, alizarin, purpurin, luteolin and β-carotene; the microenvironment was provided by palygorskite, sepiolite, montmorillonite, laponite and a layered double hydroxide (Al3+ e Mg2+, 3:1). Palygorskite and sepiolite are the only clays with micropores in their structure. Several characterization techniques were employed, namely vibrational spectroscopy (Raman and infrared), UV-VIS electronic absorption spectroscopy, X-ray diffractometry, thermal analysis (TG and DSC), CG-MS, HPLC-MS, surface area and porosity determination (N2 isotherm adsorption) and scanning electron microscopy. Two sub-picosecond time resolved techniques (transient absorption and infrared absorption) were also used. The indigo+palygorskite system corresponds to the intimate mixture of both solids, followed by heating; from 70 °C the mixture attains a greenish hue and an enhanced chemical and photochemical stability. Both stability and color change increase with the heating temperature, which also leads to loss of zeolitic and coordinated water (70 to 150 °C and 170 to 280 °C, respectively). Vibrational and electronic spectroscopies indicate that, in the Maya Blue simulants, the dye interacts with the clay through hydrogen bonds with the coordinated water molecules. Such interaction, however, is only possible with the removal of the zeolitic water, which starts at 70 °C. At temperatures above 170 °C, both vibrational and electronic spectral profiles change, indicating that the interaction is now proceeding directly with the metals that are at the internal borders of the micropores. Results from Raman spectroscopy suggest that with the hydrogen bond and metal interaction a symmetry lowering occurs. Time resolved spectroscopy results show that indigo present an excited state intramolecular proton transfer from one of the NH to the adjacent carbonyl group, originating a mono-enol species, which decays to the ground state after 120 ps through a conical intersection. Such fast decay explains the high photochemical stability of indigo. In the case of the ind+paly mixture heated at 130 °C, the time resolved data obtained for the first time for a dye+clay system confirms that indigo is in a hydrophilic environment, taking into account the excited state lifetime (3.0 ps), comparable to indigo carmine in aqueous solution (2.7 ps). The excited state lifetime of indigo in the clay is also very short when compared to the experimental data for the dye in DMSO solution (120 ps), which is possibly an explanation for the dye high stability when inside the clay micropores. Finally, dehydroindigo was not found to be responsible for the color of Maya Blue simulants, which results from the spectral changes in the dye absorption spectrum originated by the interaction with the clay.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2016-10-19
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.