• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.46.2016.tde-17082016-081843
Document
Author
Full name
Ian Pompermayer Machado
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2016
Supervisor
Committee
Brito, Hermi Felinto de (President)
Gonçalves, Rogéria Rocha
Ribeiro, Sidney José Lima
Title in Portuguese
Luminescência persistente no visível e infravermelho em oxissulfetos de terras raras preparados por síntese no estado sólido assistida por micro-ondas
Keywords in Portuguese
Európio
Itérbio
Luminescência persistente no infravermelho
Materiais luminescentes
Oxissulfetos
Síntese em micro-ondas
Abstract in Portuguese
A maioria dos materiais que apresentam o fenômeno da luminescência persistente possuem o íon Eu2+ como ativador, exibindo emissões sintonizáveis entre o azul e o verde. Entretanto, materiais com luminescência persistente na região do vermelho e infravermelho próximo (Near Infrared - NIR) são ainda pouco reportados na literatura. Portanto, foram preparados neste trabalho os materiais TR2O2S.Ln3+ e TR2O2S.Ln3+,Mg2+,Ti3+/IV (TR3+: La, Gd e Y; Ln3+: Eu e Yb) pelo método de síntese no estado sólido assistido por micro-ondas. Os materiais foram caracterizados pelas técnicas de Difração de raios X (DRX), Microscopia eletrônica de varredura (MEV), Espectroscopia de absorção no infravermelho (IV), Espectroscopia de absorção de raios X próximo a borda com radiação síncrotron (XANES), Termoluminescência (TL) e Espectroscopia de excitação na região do UV-UV vácuo com radiação síncrotron. Quando excitados na banda de absorção da matriz (band gap) ou por exemplo, nas bandas de transferência de carga LMCT O2-(2p) → Eu3+(4f6) e S2-(3p) → Eu3+(4f6), os materiais TR2O2S:Eu3+ e TR2O2S:Eu3+,Mg2+,Ti3+/IV apresentam um grande número de bandas de emissão finas atribuídas às transições 5D2,1,07FJ do íon Eu3+. Os dados espectroscópicos sugerem um alto grau de covalência e uma baixa energia de fônons para as matrizes TR2O2S. Além do mais, os materiais TR2O2S:Yb3+ e TR2O2S:Yb3+,Mg2+,Ti3+/IV apresentam bandas de emissão finas na faixa 900-1050 nm (NIR) atribuídas à transição 2F5/22F7/2 do íon Yb3+. Os mecanismos de luminescência persistente foram propostos para os materiais TR2O2S:Ln3+ e TR2O2S:Ln3+,Mg2+,Ti3+/IV (TR3+: La, Gd e Y; Ln3+: Eu, Yb) e podem ser via armadilhamento de buracos ou via armadilhamento de elétrons. O mecanismo via armadilhamento de buracos é relativo à excitação dos íons Eu3+ e Yb3+ e explica a existência do fenômeno da luminescência persistente nos materiais sem co-dopantes (TR2O2S:Eu3+ e TR2O2S:Yb3+). De outra forma, o mecanismo via armadilhamento de elétrons ocorre nos materiais TR2O2S:Eu3+,Mg2+,Ti3+/IV e TR2O2S:Yb3+,Mg2+,Ti3+/IV para a emissão oriunda do íon Ti3+. Nos materiais TR2O2S:Eu3+,Mg2+,Ti3+/IV observa-se o processo de transferência de energia Ti3+ → Eu3+, o que leva a uma luminescência persistente mais eficiente do íon Eu3+. Por outro lado, devido à grande diferença de energia entre os íons Ti3+ e Yb3+, o processo de transferência de energia Ti3+ → Yb3+ não acontece para os materiais TR2O2S:Yb3+,Mg2+,Ti3+/IV. Portanto, a luminescência persistente ocorre via mecanismo de armadilhamento de buracos simultaneamente ao de armadilhamento de elétrons, obtendo uma luminescência persistente com contribuição no visível oriunda do íon Ti3+ e no NIR do íon Yb3+. Os materiais apresentam um grande potencial em aplicações e inovação tecnológica na área de fotônica como sondas biológicas luminescentes e sensibilizadores de células solares.
Title in English
Red and infrared persistent luminescence in rare earth oxysulfides prepared by a microwave-assisted solid-state synthesis
Keywords in English
Europium
Infrared persistent luminescence
Luminescent materials
Microwave synthesis
Oxysulfides
Ytterbium
Abstract in English
Most of persistent luminescent materials have the Eu2+ ion as an activator, displaying tunable emission color from blue to green region. However, there is a few examples of red and near infrared (NIR) persistent luminescent materials reported in literature. In this work, the TR2O2S:Ln3+ and TR2O2S:Ln3+,Mg2+,Ti3+/IV (TR3+: La, Gd and Y; Ln3+: Eu and Yb) luminescent materials were prepared by microwave-assisted solid state synthesis. The materials were characterized with X-ray diffraction, Scanning electron microscopy, Infrared absorption spectroscopy, synchrotron radiation X-ray absorption spectroscopy near edge (XANES), Thermoluminescence (TL) and synchrotron radiation UV-VUV spectroscopy. When excited at the host absorption band (band gap) or at the ligand-to-metal-charge-transfer bands (LMCT), O2-(2p) → Eu3+(4f6) and S2-(3p)→ Eu3+(4f6), the materials TR2O2S:Eu3+ and TR2O2S:Eu3+,Mg2+,Ti3+/IV display a large number of narrow emission bands assigned to Eu3+ 5D2,1,07FJ transitions. Spectroscopic data indicate a high degree of covalency and low phonon energy of TR2O2S hosts. The TR2O2S:Yb3+ and TR2O2S:Yb3+,Mg2+,Ti3+/IV materials show emission bands in the range from 900 to 1050 nm (NIR) assigned to the 2F5/2→2F7/2 transitions of Yb3+ ion. The persistent luminescence mechanisms were proposed for TR2O2S:Ln3+ and TR2O2S:Ln3+,Mg2+,Ti3+/IV (TR3+: La, Gd and Y; Ln3+: Eu and Yb) materials, there are two possible ways, hole-trapping or electron-trapping mechanisms. The hole-trapping mechanism is related to the excitation of Eu3+ and Yb3+ ions and explains the persistent luminescence phenomenon in non-co-doped materials (TR2O2S:Eu3+ and TR2O2S:Yb3+). The electron-trapping mechanism governs the persistent luminescence of Ti3+ ion in TR2O2S:Eu3+,Mg2+,Ti3+/IV and TR2O2S:Yb3+,Mg2+,Ti3+/IV materials. The Ti3+ → Eu3+ energy transfer was observed in TR2O2S:Eu3+,Mg3+,Ti3+/IV materials and leads to an improvement of Eu3+ persistent luminescence. On the other hand, due to the large energy levels gap between Ti3+ and Yb3+ ions, there is no Ti3+→Yb3+ energy transfer in TR2O2S:Yb3+,Mg2+,Ti3+/IV materials. Therefore, the persistent luminescence in these materials occurs with hole-trapping and electron-trapping mechanisms simultaneously, obtaining a visible-NIR persistent luminescence composed by Ti3+ and Yb3+ emissions, respectively. The materials exhibit great potential in biological and technological innovation in photonic areas such as luminescent probes and solar cell sensitizers
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2016-10-17
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.