• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.46.2016.tde-05042016-104303
Document
Author
Full name
Ivan Guide Nunes da Silva
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2015
Supervisor
Committee
Brito, Hermi Felinto de (President)
Bizeto, Marcos Augusto
Cremona, Marco
Rodrigues, Fabio
Title in Portuguese
Nanomateriais luminescentes de terras raras utilizando complexos de benzenotricarboxilatos como precursores
Keywords in Portuguese
Complexos de terras raras
Európio
Fotoluminescência
Ítrio
Método benzenotricarboxilatos
Nanomateriais
Abstract in Portuguese
O material Y2O3:Eu3+ vem sendo usado comercialmente como luminóforo vermelho desde da década de 1960, em uma grande variedade de aplicações devido ao seu elevado rendimento quântico (próximo de 100 %), elevada pureza de cor e boa estabilidade. Portanto, este trabalho propõe um novo método de síntese baseado nos complexos benzenotricarboxilatos (BTC) de terras raras trivalentes (RE3+) dopados com íons Eu3+. O objetivo principal é produzir materiais luminescente RE2O3:Eu3+ a temperatura mais baixa (500 °C) e em escala nanométrica. Os complexos precursores [RE(BTC):Eu3+] e [RE(TLA)·n(H2O):Eu3+], onde RE3+: Y, Gd e Lu; BTC: ácido trimésico (TMA) e ácido trimelítico (TLA) foram calcinados em diferentes temperaturas de 500 a 1000 °C, a fim de obter os materiais luminescentes RE2O3:Eu3+. Os complexos foram caracterizados por análise elementar de carbono e hidrogênio, analise térmica (TG), espectroscopia de absorção no infravermelho (FTIR), difração de raios-X - método do pó (XPD) e microscopia eletrônica de varredura (SEM). Todos os complexos são cristalinos e termo estáveis até 460 °C. Dados de fosforescência dos complexos de Y, Gd e Lu mostram que o nível T1 do aníon BTC3- tem energia acima do nível emissor 5D0 do íon Eu3+, indicando que os ligantes podem atuar como sensibilizadores de energia intramolecular. O estudo das propriedades fotoluminescentes dos complexos dopados foi baseado nos espectros de excitação e emissão e curvas de decaimento de luminescência. Ademais, foram determinados os parâmetros de intensidades experimentais (Ωλ), tempos de vida (τ), taxas de decaimentos radiativo (Arad) e não-radiativo (Anrad). Os materiais luminescentes RE2O3:Eu3+ foram sintetizados de forma bem sucedida por meio do método benzenotricarboxilatos calcinados a 500, 600, 700, 800, 900 e 1000 °C, apresentando alta homogeneidade química e controle de tamanho de cristalito. Os nanomateriais foram caracterizados pelas técnicas de FTIR, XPD SEM e TEM revelando a obtenção dos materiais C-RE2O3:Eu3+ mesmo a 500 °C. Os dados de XPD dos materiais confirmaram um aumento do tamanho dos cristalitos de 5 até 52 nm (equação de Scherrer) de em função da temperatura de calcinação de 500 a 1000 °C, respectivamente, corroborados pelas técnicas de SEM e TEM. Os espectros de emissão de RE2O3:Eu3+ mostram uma banda larga atribuída a transição interconfiguracional de transferência de carga ligante-metal (LMCT) em 260 nm, i.e. O2-(2p)→Eu3+(4f6). Além disso, foram observadas linhas finas de absorção devido as transições intraconfiguracionais 4f do íon európio (7F0,15LJ; J: 0, 1, 2, 3 e 4), como esperado. As propriedades fotoluminescentes dos luminóforos foram baseadas nos espectros (excitação e emissão) e curvas de decaimento luminescente. Os parâmetros de intensidade experimental, tempos de vida, assim como as taxas de decaimentos radiativos e não radiativos foram calculados. As propriedades fotônicas dos nanomateriais são consistentes com o sítio de baixa simetria C2 ocupado pelo íon Eu3+ no C-RE2O3:Eu3+, produzindo emissão vermelha dominada pela transição hipersensível 5D07F2 do íon Eu3+ no sitio C2, ao invés do sítio centrossimétrico S6. Além disso, os nanomateriais Y2O3:Eu3+ exibem características espectroscópicas semelhantes e elevados valores de eficiência quântica (η~91 %), compatível com os luminóforos comerciais disponíveis no mercado. Este novo método pode ser utilizado para o desenvolvimento de novos nanomateriais contendo íons terras raras, assim como outros íons metálicos.
Title in English
Rare earth luminescent nanomaterials using benzenetricarboxylates complexes as precursors
Keywords in English
Benzenetricarboxylate method
Europium
Nanomaterials
Photoluminescence
Rare earths complexes
Yttrium
Abstract in English
Y2O3:Eu3+ has been used as luminophore since the early 1960s, despite the large variety of potential substitute materials tested so far, this luminophore still be used as commercial red-emission luminescent material in large range of applications due excellent quantum efficiency (close to 100 %), high color purity and good stability. Consequently, This work propose a new benzenetricarboxylate (BTC) method, which use Eu3+ ion doped in the trivalent rare earths (RE3+) complexes to produce RE2O3:Eu3+ luminescent materials at lower temperature (500 °C) and nanoscale. The [RE(BTC):Eu3+] and [RE(TLA)·n(H2O):Eu3+] complexes where RE3+: Y, Gd and Lu; BTC: trimesic acid (TMA) and trimellitic acid (TLA) and annealed materials (500, 600, 700, 800, 900 and 1000 °C) can be obtained without the need of intricate experimental setup. The complexes were characterized by carbon and hydrogen elemental analysis, thermal analyses (TG), infrared absorption spectroscopy (FTIR), X-ray powder diffraction (XPD) and scanning electron microscopy (SEM). The complexes are crystalline and thermostable up to 460°C. Phosphorescence data of the complexes with Y, Gd and Lu show that the T1 state of the BTC3- anion has energy higher than the 5D0 emitting level of the Eu3+ ion, indicating that the ligands can act as an intramolecular energy sensitizer. The photoluminescence properties of the doped complexes were studied based on the excitation and emission spectra and luminescence decay curves. The experimental intensity parameters (Ωλ), lifetimes (τ), radiative (Arad) and non-radiative (Anrad) decay rates were determined and discussed. In addition, the RE2O3:Eu3+ nanomaterials were successfully synthesized with this unprecedented method using the benzenetricarboxylate precursor complexes annealed at 500, 600, 700, 800, 900 and 1000 °C, with controllable particle size and high chemical homogeneity, crystallite size from 6 to 52 nm (Scherrer's equation), confirmed by SEM and TEM images. The nanomaterials characterized by the FTIR, XPD, SEM and TEM techniques revealed that the C-RE2O3:Eu3+ materials were obtained even at 500 °C. The RE2O3:Eu3+ excitation spectra show a broad absorption band assigned to interconfigurational ligand-to-metal charge-transfer (LMCT) band at 260 nm, i.e. O2-(2p)→Eu3+(4f6). Besides, it is observed the narrow absorption lines arising from the 4f intraconfigurational transitions of the Eu3+ ion (7F0,15LJ; J : 0, 1, 2, 3 and 4), as expected. The characterization of the photoluminescence properties of the luminophores was also based on the analysis of the emission spectra and luminescence decay curves. The experimental intensity parameters (Ωλ), lifetimes (τ), as well as radiative (Arad) and non-radiative (Anrad) decay rates were calculated and discussed. The photonic properties of the luminophores are consistent with the low C2 symmetry site occupied by the Eu3+ ion in the cubic C-type RE2O3:Eu3+, yielding the red emission color, which is dominated by the hypersensitive 5D0→7F2 transition of the Eu3+ ion in the C2 instead of the centrosymmetric S6 sites. Furthermore, the Y23:Eu3+ nanomaterials prepared by this new method exhibit similar emissions spectral features and high values of emission quantum efficiency (η~91 %), compatible with the commercial phosphors currently available in the market. This novel synthetic method can be used to produce large range of rare earth nanophotonic materials, as well as other metal ions.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2016-05-19
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.