

INSTITUTO DE QUÍMICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE QUÍMICA

"Análise Conformacional e estudo das interações eletrônicas de algumas α-fenilseleno-α-dietóxifosforilacetofenonas *para*-substituídas"

Celso Moreira

Dissertação de Mestrado

Prof. Dr. Paulo Roberto Olivato Orientador

Ficha Catalográfica

Elaborada pela Divisão de Biblioteca e Documentação do Conjunto das Químicas da USP.

Moreira, Celso

M838a Análise conformacional e estudo das interações eletrônicas de algumas α-fenilseleno-α-dietóxifosforilacetofenonas parasubstituídas / Celso Moreira. -- São Paulo, 2006.

Dissertação (mestrado) - Instituto de Química da Universidade de São Paulo. Departamento de Química Fundamental Orientador: Olivato, Paulo Roberto

 Espectroscopia no infravermelho: Química orgânica
 Síntese: Química orgânica. I. T. II Olivato, Paulo Roberto, orientador.

547.308583 CDD

BIBLIOTECA INSTITUTO DE QUÍMICA Universidade de São Paulo 22.056

"Análise conformacional e estudo das interações eletrônicas de algumas α -fenilseleno- α -dietóxifosforilacetofenonas-para-substituídas"

CELSO MOREIRA

Dissertação de Mestrado submetida ao Instituto de Química da Universidade de São Paulo como parte dos requisitos necessários à obtenção do grau de Mestre em Química - Área: Química Orgânica.

Aprovado(a) por:						
Prof. Dr. PAULO ROBERTO OLIVATO (Orientador e Presidente)						
Profa. Dra. MARCIA LAUDELINA ARRUDA TEMPERINI IQ – USP						
Prof. Dr. ROBERTO RITTNER NETO IQ - UNICAMP						

SÃO PAULO 08 DE DEZEMBRO 2006

544.208683 M838a

À minha família, em especial meus pais, pelo incentivo, apoio e dedicação nos momentos mais difíceis.

À Juliana Gualda por cada instante de compreensão, generosidade, carinho e amor que me fortaleceram nessa árdua e prazerosa jornada fazendo sua doce e radiante existência essencial para a minha vida.

Ao Professor Paulo Roberto Olivato que com sua competência e amizade tornou possível a concretização deste trabalho.

Agradecimentos

Ao Prof. Dr. Maurizio Dal Colle pelos cálculos ab initio realizados.

Ao grande amigo e colega de laboratório Nelson Luís.

À grande contribuição dos Amigos Dr. Alessandro Rodrigues, Dra. Adriana Karla Amorim Reis e Tiago Carita Correra.

Aos amigos de proveitosas discussões Dra. Mirta Gladis Mondino, José Eduardo Pandini, Roberto da Silva Gomes, Eduardo da Costa Ramos, Ricardo Corilazo, Ricardo Leme Szulc e Derisvaldo Rosa Paiva.

Aos colegas de laboratório Mario Lee, Elisângela Vinhato, Poliana Ferrera e Carlos Rogério Cerqueira Júnior.

À Nilza Gomes Xavier, Laerte Vilela da Silva e Sandra Gomes pela amizade e valorosa contribuição neste trabalho.

Aos funcionários da Central Analítica pela solicitude e vontade com que me auxiliaram.

A todos do Instituto de Química da USP-SP que direta ou indiretamente contribuíram para minha formação e concretização deste trabalho.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela bolsa concedida.

Resumo

A presente Dissertação relata a síntese e o estudo conformacional das α -fenilseleno- α -dietóxifosforilacetofenonas para-substituídas p-X- ϕ -C(O)CH[Se ϕ][P(O)(OEt)₂] (X=OMe 1, Me 2, H 3, F 4, Cl 5, Br 6 e NO₂ 7) através da banda de estiramento da carbonila no infravermelho, em solventes de polaridade crescente apoiado por cálculos ab initio HF/6-31G**.

A comparação entre a freqüência e a intensidade relativa dos componentes do dubleto, para os derivados 6 e 7, e do singleto para os derivados 1-5, no solvente apolar tetracloreto de carbono, e dos componentes do dubleto, nos solventes de polaridade crescente (clorofórmio, diclorometano e acetonitrila), para os derivados 1-7, com os dados do cálculo *ab initio* de 3 (composto de referência), indicou que ambas as conformações estáveis (g_1 e g_2) apresentam a ligação C-Se na geometria *anti-clinal* (*gauche*) em relação à carbonila (C=O), enquanto que a ligação C-P assume uma geometria *sin-periplanar* (*cis*) em relação à carbonila.

A análise dos contatos interatômicos de átomos relevante em comparação com a soma de seus raios de van der Waals, indicou que ambas as conformações g_I e g_2 são fortemente estabilizadas pelo sinergismo das interações orbitalares e eletrostáticas $\pi^*_{(CO)}$ / n_{Se} e $O^{\delta_-}_{[CO]}$ $P^{\delta_+}_{[PO]}$. Analogamente, as interações mais fracas $O^{\delta_-}_{[OR]}$ $C^{\delta_+}_{[CO]}$, o- $H^{\delta_+}_{[Se\phi]}$ $O^{\delta_-}_{[PO]}$ e o- $H^{\delta_+}_{[\phi C(O)]}$ $O^{\delta_-}_{[CO]}$ estabilizam as conformações g_I e g_2 , aproximadamente na mesma extensão. No entanto, somente a conformação g_I é estabilizada pela interação eletrostática (ligação de hidrogênio) $H^{\delta_+}_{[\alpha_-CH]}$ $O^{\delta_-}_{[OR]}$, enquanto que sómente a conformação g_2 é desestabilizada pelo Efeito de Campo Repulsivo entre os dipolos C^{δ_+} =. O^{δ_-} e P^{δ_+} - OR^{δ_-} Assim sendo, pode-se concluir que no dubleto de v_{CO} no IV, o componente de maior freqüência e de menor intensidade corresponde à conformação menos estável g_2 (do cálculo) enquanto que o componente de menor freqüência e mais intenso corresponde à conformação mais estável g_I (do cálculo). Estes dados estão de pleno acordo com os deslocamentos de freqüência mais negativos da carbonila (Δv_{CO}) do confôrmero mais estável g_I em relação ao menos estável g_2 .

ABSTRACT

This thesis reports the synthesis and the conformational study of some *para*-substituted α -phenylseleno- α -diethoxyphosphoryl-acetophenones p-X- ϕ -C(O)CH[Se ϕ][P(O)(OEt)₂] (X=OMe 1, Me 2, H 3, F 4, Cl 5, Br 6 e NO₂ 7) through the analysis of the carbonyl stretching IR band, in solvents of increasing polarity, supported by *ab initio* HF/6-31G** computations of 3 (parent compound).

The comparison between the frequency and the relative intensity of the doublet components for derivatives 6 and 7, and of the singlet for derivatives 1-5, in non polar solvent, carbon tetrachloride, and of the doublet components, in solvents of increasing polarity (chloroform, dichloromethane and acetonitrile), for derivatives 1-7, with the *ab initio* data for 3, has indicated that both stable conformations (g_1 and g_2) display the C-Se bond in an *anti-clynal* (gauche) geometry with respect to the carbonyl (C=O) bond, while the C-P bond assumes a *syn-periplanar* (cis) geometry relative to the carbonyl group.

Índice

1 – Introdução	Página 1					
2 – Revisão Bibliográfica	4					
2.1 — Análise conformacional e interações eletrônicas das α -dietoxifosforilacetofenona $para$ -substituídas.	4					
2.2 — Análise conformacional e das interações eletrônicas das α -fenilselenopropiofenonas p -substituídas.	10					
3 – Resultados e Discussão	18					
4 – Parte Experimental	37					
4.1 – Procedimentos gerais empregados nas medidas espectroscópicas.	37					
4.1.1 – Medidas no infravermelho.	37					
4.1.1.a – Região correspondente à transição fundamental da vibração de estiramento da carbonila.	37					
4.1.1.b – Região correspondente ao 1º harmônico da vibração de estiramento da carbonila.	38					
4.1.2 – Medidas de ressonância magnética nuclear de ¹ H e ¹³ C.	39					
4.2 – Pontos de fusão e análise elementar.						
4.3 – Análises Cromatográficas.	40					
4.4 – Reagentes e solventes utilizados (Purificação).	41					
4.5 – Métodos gerais de preparação	42					
4.5.1 – Método geral utilizado para a síntese dos cloretos de benzoíla para-substituídos	42					

4.5.2 – Método geral utilizado para a síntese do α-dietóxifosforilacetofenonas <i>para</i> -substituídas	42
4.5.3 – Método geral utilizado para a síntese da N-metóxi, N-metil-4-nitrobenzamida	43
4.5.4 - Método geral utilizado para a síntese do dietil 2-(4-nitrofenil)-2-oxoetilfosfonato.	44
4.5.5 - Método geral utilizado para a síntese das α -fenilseleno- α -dietóxifosforilacetofenonas $para$ -substituídas	45
4.6 – Sínteses	46
4.6.1 – Síntese dos Cloretos de benzoíla <i>para</i> –substituídos	46
4.6.1.1 – Síntese do Cloreto de <i>p</i> -nitrobenzoila	46
4.6.1.2 – Síntese do Cloreto de <i>p</i> -fluorbenzoila	47
4.6.1.3 – Síntese do Cloreto de <i>p</i> -clorobenzoila	47
4.6.1.4 – Síntese do Cloreto de <i>p</i> -bromobenzoila	47
4.6.1.5 – Síntese do Cloreto de Benzoila	48
4.6.1.6 – Síntese do Cloreto de <i>p</i> -metilbenzoila	48
4.6.1.7– Síntese do Cloreto de <i>p</i> -metoxibenzoila	48
4.6.2 – Síntese dos α-dietóxifosforilacetofenonas <i>para</i> -substituídas	49
4.6.2.1 – 2-(4-fluorofenil)-2-oxoetilfosfonato de dietila	49
4.6.2.2 – 2-(4-clorofenil)-2-oxoetilfosfonato de dietila	50
4.6.2.3 – 2-(4-bromofenil)-2-oxoetilfosfonato de dietila	50
4.6.2.4 – 2-oxo-2-feniletilfosfonato de dietila	51

4.6.2.5 – 2-(4-metilfenil)-2-oxoetilfosfonato de dietila	51
4.6.2.6 – 2-(4-metoxifenil)-2-oxoetilfosfonato de dietila	52
4.6.3 – Síntese da N-metóxi, N-metil-4-nitrobenzamida	52
4.6.4 – Síntese do 2-(4-nitrofenil)-2-oxoetilfosfonato de dietila	53
4.6.5–Síntese do α - fenilseleno- α -dietóxifosforilacetofenonas para-substituídas	54
4.6.5.1 – Etil-1-fenilselanil-2-(4-metoxifenil)-2-oxo-fosfonato de dietila	54
4.6.5.2 – Etil-1-fenilselanil-2-(4-metilfenil)-2-oxo-fosfonato de dietila	55
4.6.5.3 – Etil-1-fenilselanil-2-oxo-fosfonato de dietila	56
4.6.5.4 – Etil-1-fenilselanil-2-(4-fluorofenil)-2-oxo-fosfonato de dietila	57
4.6.5.5 – Etil-1-fenilselanil-2-(4-clorofenil)-2-oxo-fosfonato de dietila	58
4.6.5.6 – Etil-1-fenilselanil-2-(4-bromofenil)-2-oxo-fosfonato de dietila	59
4.6.5.7 – Etil-1-fenilselanil-2-(4-nitrofenil)-2-oxo-fosfonato de dietila	60
Referências Bibliográficas	61
Apêndice	63

1 - Introdução

0 presente trabalho que trata do estudo das α-fenilselenoα-dietóxifosforilacetofenonas para-substiuídas (I) esta inserido na linha de pesquisa do grupo dirigido pelo Professor Olivato que tem por objetivo o estudo da isomeria conformacional das interações eletrônicas compostos α-heterossubstituídos.O mesmo é uma extensão de trabalhos anteriores desenvolvidos pelo grupo com o suporte de cálculos ab-initio e das espectroscopias no IV e RMN. A seguir serão relatados dois trabalhos que tratam das α-fenilselenopropiofenonas- e α-dietóxifosforil-acetofenonas para-substituídas, que são de suma importância para a compreensão das interações eletrônicas que estabilizam as conformações destes compostos, uma vez que os compostos alvo (I) da presente dissertação contém ambos os fragmentos [-C(O)-C-Se] e $[-C(O)-C-P(O) (OEt)_2]$, respectivamente.

A dissertação de mestrado de Reis¹, tratou do estudo da reatividade de α -dietoxifosforilacetofenonas para-substituídas com trietilfosfito para a obtenção dos cetofosfonatos (produto de Michaelis-Arbuzov) e os enolfosfatos correspondentes (produto de Perkow). Adicionalmente, neste trabalho, foi realizado um estudo conformacional dos cetofosfonatos para-substituídos (produtos de Michaelis-Arbuzov) $p-Y-\varphi-C(O)CH_2P(O)(OEt)_2$ (Y= substituintes atraentes, hidrogênio e substituintes doadores de elétrons).

Já, a dissertação de mestrado de Ruiz Filho² apresentou um estudo conformacional de alguns compostos α-fenilseleno-carbonílicos com relação as interações π_{CO}/σ_{C-X} , π_{CO}/σ_{C-X} e σ_{CO}/n_X que favorecem a estabilização destes compostos em relação aos

¹ Reis, A. K. C. A. Dissertação de Mestrado, Instituto de Química – Universidade de São Paulo, 1999.

² Ruiz Filho, R. Dissertação de Mestrado, Instituto de Química - Universidade de São Paulo, 1995.

 α -tio-carbonílicos correspondentes, levando a uma grande diminuição na constante de força da carbonila e desta maneira nas frequências das α -fenilselenopropiofenonas p-substituídas do que nas frequências das α -feniltioacetofenonas p-substituídas em relação às cetonas correspondentes. Além disso as interações citadas são responsáveis pela alta estabilidade dos rotâmeros gauche dos compostos α -seleno-carbonílicos levando à sua grande predominância sobre os rotâmeros cis.

As α-fenilseleno-α-dietóxifosforilacetofenonas (I) foram selecionadas em função tanto de nossos estudos conformacionais anteriores das α-fenoxiacetofenonas³ e das α-fenilselenopropiofenonas⁴ para-substituídas como também pela facilidade sintética da obtenção destes últimos compostos, ao invés dos α-metilseleno-derivados correspondentes. Dando continuidade ao estudo das α-metiltio-α-dietoxifosforilacetofenonas para-substituídas [Tese Dout-Adriana] (II), pretende-se, no presente trabalho, investigar a influência conformacional exercida pelo grupo α-fenilseleno em substituição α-metiltio. Estes compostos, α-fenilseleno-α-dietoxifosforilacetofenonas para-substituídas (I), contendo na posição para substituintes atraentes de elétrons (NO₂, F, Cl e Br), hidrogênio e doadores de elétrons (Me e OMe) serão analisados através da espectroscopia no infravermelho apoiada pelo cálculo ab initio HF/6-31G**.

É de interesse no presente estudo verificar nos compostos da série (I) como a diminuição da energia de ionização 5 da ligação $\sigma_{\text{C-Se}}$ (12,0 eV) 6 e do par de elétrons isolado n_{Se} (8,4 eV) 6 em relação à ligação $\sigma_{\text{C-S}}$ (13,7 eV) 6 e ao par de elétrons isolado n_{S} (8,7 eV) 6

³ S. A. Guerreiro, P. R. Olivato and R. Rittner, Can. J. Anal. Sci. Spectr., 48, 181 (2003).

⁴ P. R. Olivato, R. R. Filho and J. C. D. Lopes, *Phosphorus, Sulfur and Silicon*, **92**, 109 (1994).

⁵ As energias de ionização dos orbitais n_x e σ_{C-X} e as afinidades eletrônicas do orbital $\sigma^*_{C-X}(X=0 \text{ e S})$ referem-se àquelas dos compostos modelo Ph-SMe (X).

⁶ S. Cradock and R. A. Whiteford, J. Chem. Soc. Faraday Trans., 2, 281 (1972).

[série (II)], e o simultâneo aumento da afinidade eletrônica do orbital σ^*_{C-Se} (2,4 eV)⁷ [série (II)] em relação ao orbital σ^*_{C-S} (3,3 eV)⁷ [série (II)], influenciam nas interações orbitalares: $\pi^*_{(CO)}/n_{Se}$, $\pi^*_{(CO)}/\sigma_{C-Se}$, $\pi_{(CO)}/\sigma^*_{C-Se}$, $\pi_{O(CO)}/\sigma^*_{C-Se}$ e nas interações eletrostáticas e de transferência de carga cruzadas $O^{\delta_{-(CO)}}$ $P^{\delta_{+(PO)}}$ e $O^{\delta_{-(PO)}}$ $C^{\delta_{+(CO)}}$, que determinam as geometrias dos grupos [SePh] e [P(O)(OEt)₂] em relação à carbonila e a estabilidade relativa das conformações mais estáveis dos compostos da série (I) em comparação àquelas da série (II).

A presente dissertação está dividida em três capítulos e apresenta: a) na primeira parte uma revisão bibliográfica de estudos conformacionais e das interações eletrônicas de compostos relevantes; b) na segunda parte uma discussão dos resultados da espectroscopia no infravermelho comparados aos fornecidos pelo cálculo *ab-initio* HF/6-31G** das α-fenilseleno-α-dietóxifosforilacetofenonas *para*-substiuídas; c) e por fim na terceira parte um relato da parte experimental realizada neste trabalho.

⁷ A. Modelli, D. Jones, G. Distefano and M. Tronc, Chem Phys. Lett., 181, 361 (1991).

2 - Revisão Bibliográfica

2.1 – Análise conformacional e interações eletrônicas das α-dietoxifosforilacetofenona para-substituídas.

Reis¹ estudando as freqüências de estiramento da carbonila das α-dietoxifosforilacetofenonas *para*-substituidas (III) em diferentes solventes de polaridade crescente (n-C₆H₁₄, CCl₄, CHCl₃ e CH₃CN) tanto na transição fundamental quanto no 1º harmônico observou somente uma banda simétrica da carbonila, cuja freqüência diminui com o aumento da polaridade do solvente.

$$Y = CH_3O, CH_3, H,$$
 CI, Br, CN, NO_2
 H_3C
 H_3C
 $(IIII)$

Tal observação levou o autor a sugerir a existência de um único confôrmero em solução, conclusão esta que foi confirmada pelo cálculo ab-initio HF/6-31G**, indicando que a única banda de v_{CO} encontrada na série estudada correspondia a um único confôrmero de baixa energia com conformação gauche (Figura 1).

Nesta conformação gauche constatou-se que a distância interatômica entre o oxigênio (negativamente carregado) do grupo fosforila e o carbono carbonílico (positivamente carregado) do grupo fenacila é próxima a soma dos raios de Van der Waals dos átomos envolvidos. Comportamento idêntico verificou-se nas distâncias entre o

oxigênio carbonílico (negativamente carregado) e o fósforo do grupo fosforila (positivamente carregado).

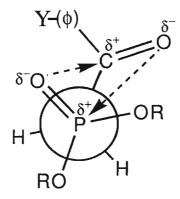


Figura 1: Conformação *gauche* da α-dietoxifosforilacetofenona mostrando os contatos entre os átomos não ligados O......C e O.......P.

Adicionalmente foi efetuada uma análise conjunta do efeito do solvente sobre as bandas de v_{CO} e v_{PO} que indicou uma diminuição progressiva da freqüência de v_{CO} com o aumento da polaridade do solvente. Isto provoca um efeito indutivo crescente, que é transmitido através da cadeia e age no grupo fosforila (P=O) aumentando progressivamente a sua constante de força e portanto sua freqüência. A "Figura 2" ilustra esse efeito.

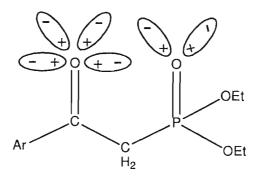


Figura 2: Solvatação diferencial no oxigênio do grupo carbonila (C=O) e do oxigênio do grupo fosforila (P=O), mostrando que a freqüência do grupo fosforila aumenta com o aumento da solvatação da carbonila.

Assim sendo, a freqüência de estiramento do grupo fosforila sofre o efeito tanto do solvente como da variação da natureza do substituinte da posição *para* do grupo fenacila constituindo o componente de mais alta freqüência. Já o componente de menor freqüência deve ser atribuído ao modo vibracional de deformação do grupo CH₂ (wagging) na posição α do grupo fosforila⁸.

Outros resultados observados como os dos deslocamentos negativos de freqüência da carbonila (Δv_{CO}), do confôrmero *gauche* das α -dietoxifosforilacetofenonas em relação às acetofenonas de referência, aumentam em valor absoluto indo-se em *para* de grupos doadores à aceptores de elétrons e acompanhado por uma diminuição da freqüência de estiramento do grupo fosforila (v_{PO}) indicam tanto a ocorrência da transferência da carga entre o par de elétrons isolado do oxigênio do grupo fosforila e o orbital π antiligante da carbonila ($O_{(PO)} \rightarrow \pi^*_{(CO)}$), bem como de uma forte atração eletrostática entre o oxigênio (negativamente carregado) do grupo fosforila e o carbono (positivamente carregado) da carbonila ($O_{(PO)}^{\delta}_{(PO)}$ $O_{(CO)}^{\delta}$).

Sabe-se que o orbital π^*_{CO} do grupo fenacila das acetofenonas para-substituidas é progressivamente mais estabilizado quanto maior for o poder atraente de elétrons do substituinte na posição para. Assim sendo, a interação de transferência de carga " $n_{O(PO)} \to \pi^*_{CO}$ " é mais importante no para-nitro-derivado e menos importante no para-metoxi-derivado.

A partir do caso do *para*-nitro-derivado dever-se-ia esperar um maior abaixamento de frequência da carbonila do β -cetofosfonato em relação a acetofenona de referência (Δv_{CO}), bem como um menor valor de frequência de v_{PO} . O comportamento inverso dever-

⁸ J. R. Durig, G. A. Guirgis e A. S. Drew; J. Raman spectroscopy, 28, 869 (1994).

se-ia esperar no para-metoxi-derivado, ou seja, um valor menos negativo de Δv_{CO} e um maior valor de v_{PO} . De fato os dados experimentais estavam de acordo com as previsões do autor.

A explicação das variações de freqüência de Δv_{CO} e v_{PO} com a variação do substituinte em *para* dos β-cetofosfonatos pode ser também analisada à luz da Teoria de Valência. Realmente pode-se sugerir que nas α-dietoxifosforilacetofenonas-*para*-substituidas, além das estruturas de ressonância (A) e (B) também existentes nas acetofenonas-*para*-substituidas, (D) e (E), também haja contribuição da estrutura dipolar (C) decorrente da interação de transferência de carga $n_{O(PO)} \rightarrow \pi^*_{CO}$ (Figura 3).

$$(A) \qquad (B) \qquad (C)$$

$$(A) \qquad (B) \qquad (C)$$

$$(B) \qquad (C)$$

Figura 3: Estruturas canônicas de ressonância das α-dietoxifosforilacetofenonas-parasubstituídas (A, B e C) e das acetofenonas-para-substituídas (D e E).

Após uma análise comparativa dos casos extremos da série, ou seja, as α-dietoxifosforilacetofenonas contendo os grupos metoxila e nitro (maior poder doador e aceptor de elétrons, respectivamente), concluiu-se:

- a) Tanto na α-dietoxifosforil para-metoxiacetofenona quanto na parametoxiacetofenona ocorre uma grande contribuição para o híbrido das estruturas
 dipolares (B) e (E), respectivamente. Este comportamento origina uma pequena
 contribuição da estrutura dipolar de transferência de carga (C) e portanto uma menor
 diminuição da constante de força da carbonila e de sua freqüência indo-se da parametoxiacetofenona para a α-dietoxifosforil para-metoxiacetofenona (Esquema I).
- α-dietoxifosforil para-nitroacetofenona b) **Tanto** da quanto da no caso para-nitroacetofenona não há contribuição para o híbrido das estruturas dipolares (B) e (E), respectivamente, favorecendo a estrutura dipolar de transferência de carga (C) nos β-cetofosfonatos. Este comportamento origina uma maior diminuição da constante de força da carbonila e de sua freqüência indo-se para-nitroacetofenona para a α-dietoxifosforil para-nitroacetofenona (Esquema I).

Esquema

* Menor diminuição da constante de força da carbonila

$$\begin{array}{c|c} O & H & & & & \\ \hline & C & H & & & \\ \hline & C & H & & \\ \hline &$$

* Maior diminuição da constante de força da carbonila

2.2 -Análise conformacional e das interações eletrônicas das α-fenilselenopropiofenonas p-substituídas.

Estudos anteriores freqüência de da estiramento da carbonila das α-fenilselenopropiofenonas p-substituídas (Estrutura IV) realizados por Ruiz² em diferentes solventes de polaridade crescente (n-C₆H₁₄, CCl₄ e CHCl₃) tanto na transição fundamental quanto no 1º harmônico (em CCl₄) indicou a existência de um dubleto que com o aumento da constante dielétrica do solvente origina um gradual diminuição da intensidade ou um desaparecimento do componente de mais alta frequência do dubleto e quando o solvente é o CHCl₃, somente o componente de mais baixa frequência é observado.

$$X = NH_2$$
, OMe, Me, H, Cl, Br e CN

Me

(IV)

O autor a principio concluiu que este efeito do solvente poderia indicar uma ressonância de Fermi⁹, entretanto a ocorrência de uma ou duas bandas na região do primeiro harmônico (em CCl₄) com uma freqüência de aproximadamente duas vezes maior que aquelas na região da transição fundamental e os valores próximos das razões das intensidades (comparando-se a transição fundamental com o primeiro harmônico) para os compostos para substituídos com Cl e Br descartaram esta possibilidade e indicou o isomerismo¹⁰ rotacional cis-gauche, sugerindo que as α-fenilselenopropiofenonas existem

⁹ L. J. Bellamy, *Advances in Infrared Group Frequencies*, Chapman e Hall, London, 1975, 127.

¹⁰ A. Gazet, L. Lafaille, A. Verdier e A. Lattes, *Bull. Soc. Chim. Fr.*, 4108, 1968.

em duas conformações diferentes, ao invés das duas gauche e uma cis anteriormente sugeridas, que correspondem as conformações (a) e (b) da Figura 4.

Me H H
$$\times$$
 Se ϕ Se ϕ H \times Me \times

Figura 4: Conformações cis (a) e gauche (b e c) das α-fenilselenopropiofenonas p-substituídas

Após a inspeção por meio de modelos moleculares, o autor concluiu que o confôrmero gauche (c) era altamente impedido estericamente devido à repulsão entre o grupo metila em gauche e os hidrogênios em orto no anel benzênico do grupo selenofenila. Com o isto o confôrmero gauche (c) deveria possuir alta energia e deveria ser desconsiderado. Assim sendo somente os confôrmeros cis (a) e gauche (b) estariam presentes no equilíbrio conformacional.

Com o aumento da polaridade do solvente houve uma diminuição na intensidade da banda de mais alta freqüência, a qual corresponde ao confôrmero *cis* (a), e simultaneamente a ocorrência do aumento da intensidade da banda de mais baixa freqüência que corresponde ao confôrmero *gauche* (b). Esta tendência indicou que o confôrmero *gauche* (b) é mais polar que o confôrmero *cis* (a). Tal observação esta em desacordo com o efeito do solvente normalmente observado nos compostos carbonílicos α-heterossubstituídos [P. R. Olivato

and R. Rittner, Rev. Heteroatom. Chem, 15, 115 (1996)] para os quais o rotâmero cis mostra ser mais polar que o rotâmero gauche.

Esta inversão de polaridade nas α-fenilselenopropiofenonas é corroborada pelo deslocamento das frequências da carbonila dos confôrmeros cis ($\Delta v_{\rm C}$), em comparação com as correspondentes propiofenonas não substituídas.

O autor em analogia aos α-tioésteres¹¹ e ésteres-tiosubstituídos¹² considerou que a proximidade espacial dos átomos α-selenio e do grupo carbonila no confôrmero cis sugere a ocorrência da interação orbitalar $n_{CO} \rightarrow \sigma *_{C-Se}$ (Figura 5) e em menor extensão a interação orbitalar $\pi_{CO} \rightarrow 4d_{Se}$ levando a uma diminuição na ordem de ligação da carbonila e com isso de sua frequência.

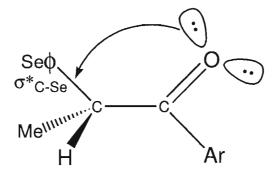


Figura 5: conformação cis das α-fenilselenopropiofenonas mostrando a interação orbitalar $n_{CO} \rightarrow \sigma *_{C\text{-Se}}$.

Tais interações originam uma diminuição da densidade eletrônica no sistema π_{CO} que foram apontadas como sendo responsáveis pela diminuição da polaridade do conformêro cis em relação ao gauche (Figura 6)

¹¹ P. R. Olivato, B. Władisław, S. A. Guerreiro e D. Russowsky, *Phosphorus and Sulfur*, **24**, 225 (1985). ¹² P. R. Olivato, F. Oike e J. C. D. Lopes, *Phosphorus, Sulfur, Silicon*, **47**, 391 (1990).

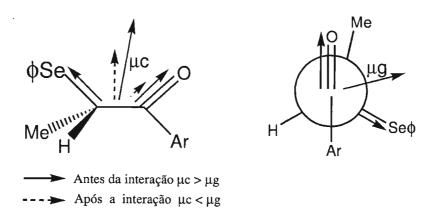


Figura 6: Variação de polaridade do confôrmero cis em relação ao gauche.

O autor ressaltou que a interação orbitalar $\pi_C \to 4d_{Se}$ deve ser menos importante para os compostos α -seleno-carbonílicos do que para os α -tio-carbonílicos devido a alta energia do orbital $4d_{Se}$ em relação ao orbital $3d_S$.

Contrariamente ao que vinha sendo observado nas α -fenilselenopropiofenonas, o deslocamento da freqüência da carbonila do confôrmero cis das α -feniltioacetofenonas p-substituídas foram positivas. Esta diferença foi justificada em decorrência da afinidade eletrônica do orbital σ^*_{C-Se} (2,4 eV) ser "0,9 eV" maior que a do orbital σ^*_{C-S} (3,25 eV)? À luz da teoria da "Perturbação Simples" dos orbitais moleculares 13 pode-se concluir que esta tendência origina uma interação entre os orbitais $n_{O(CO)}$ e σ^*_{C-Se} mais pronunciada para as α -fenilselenopropiofenonas do que aquela que ocorre entre os orbitais $n_{O(CO)}$ e σ^*_{C-S} das α -feniltioacetofenonas. Tal interação origina uma grande diminuição na freqüência da carbonila do rotâmero cis para os compostos de selênio em relação aos compostos sulfurados, entretanto, nos sulfurados o Efeito de Campo Repulsivo prevalece sobre a interação orbitalar $n_{O(CO)} \rightarrow \sigma^*_{C-S}$ ocasionando um deslocamento positivo da freqüência da carbonila cis nestes compostos.

¹³ M. J. S. Dewar, "Hyperconjugation", Ronald Press, New York, 1962.

O autor também constatou que os deslocamentos médios da freqüência da carbonila para os rotâmeros $gauche~(\Delta \nu_g)$ das fenilselenopropiofenonas são duas ou três vezes mais negativos que os deslocamentos médios da freqüência da carbonila para os rotâmeros $gauche~(\Delta \nu_g)$ das feniltioacetofenonas 14 , ocorrendo um aumento progressivo em valor absoluto dos deslocamentos carbonílicos gauche para as feniltioacetofenonas indo-se de substituintes doadores de elétrons para atraentes de elétrons. Entretanto no caso das α -fenilselenopropiofenonas não houve uma variação significativa de seus deslocamentos gauche na mesma direção, i.e. os valores de $\Delta \nu_g$ são praticamente constantes para toda a série.

Este comportamento sugeriu a existência simultânea nos seleno-derivados de duas interações que atuam em sentido contrário, i.e., π^*_{CO} / σ_{C-Se} (interação hiperconjugativa) e π_{CO} / σ^*_{C-Se} .

O comportamento diferente entre feniltioacetofenonas e fenilselenopropiofenonas pode ser explicado pelas seguintes considerações: a teoria da Valência da Ligação afirma que para ambas as séries de compostos, há também a contribuição da estrutura hiperconjugativa (IX) ao lado das estruturas de Ressonância (VII) e (VIII), que são apresentadas nas acetofenonas e propiofenonas correspondentes (Figura 5).

Figura 7: Estruturas de Ressonância para as α -feniltioacetofenonas p-substituídas ou α -fenilselenopropiofenonas p-substituídas.

¹⁴ P. R. Olivato, e S. A. Guerrero, Phosphorus, Súlfur, Silicon and Relat. Elem., 66, 207 (1992).

Esta contribuição aumenta conforme diminui a conjugação entre o substituinte na posição *para* e o grupo carbonila no grupo fenacila. De fato, os deslocamentos de frequência da carbonila para a α-feniltioacetofenonas *p*-substituídas estão de acordo com estes prognósticos.

O pequeno deslocamento de freqüência que foi observado para as α-feniltio p-metoxiacetofenona foi considerado como resultado de uma pequena diminuição da constante de força da carbonila, devido a uma menor contribuição da estrutura hiperconjugativa. O grande deslocamento de freqüência observado para a α-feniltio p-nitroacetofenona resulta de uma maior diminuição da constante de força da carbonila devido a uma grande contribuição da estrutura hiperconjugativa.

Esta análise pela teoria de Valência da Ligação concorda com a interação orbitalar baseado na Teoria de Perturbação Simples de Orbitais Moleculares, visto que, o nível de energia π^*_{CO} , relacionado ao LUMO do grupo fenacila, nas acetofenonas ou propiofenonas p-substituídas diminui progressivamente indo-se de substituintes doadores de elétrons para atraentes de elétrons. Essa tendência origina uma interação hiperconjugativa π_{CO} / σ_{C-X} crescente conforme os níveis de energia dos orbitais π^*_{CO} e σ_{C-X} se aproximam.

Como o orbital π_{CO} do grupo fenacila está mais próximo do orbital σ_{C-Se} do que do orbital σ_{C-S} devido ao menor potencial de ionização do orbital σ_{C-Se} (12,0 eV) em relação ao do orbital σ_{C-S} (12,68 eV), é esperada uma maior contribuição da interação hiperconjugativa π_{CO} quando na posição *para* do grupo fenacila temos substituintes atraentes de elétrons e mais distante com substituintes doadores de elétrons.

Tendo em vista que era esperado um aumento progressivo da contribuição da interação hiperconjugativa π_{CO} / σ_{C-X} para os derivados de selênio em relação aos derivados sulfurados, indo-se de substituintes doadores de elétrons para atraentes de elétrons, esta interação deveria levar a uma grande diminuição na constante de força da carbonila e consequentemente em sua freqüência para os compostos de selênio em relação aos compostos de enxofre, na mesma direção. Entretanto, o orbital π_{CO} do grupo fenacila está mais próximo do orbital σ_{C-Se} do que do orbital σ_{C-S} , devido à maior afinidade eletrônica do orbital σ_{C-Se} (2,4 eV) em relação à do orbital σ_{C-S} (3,3 V). Desta maneira o autor concluiu que era esperada uma grande contribuição da interação π_{CO} / σ_{C-X} para os compostos α-seleno-carbonílicos do que para os correspondentes α-tio-carbonílicos.

Contrariamente à hiperconjugação π^*_{CO} / σ_{C-X} , a interação π_{CO} / σ^*_{C-X} é favorecida quando no grupo fenacila temos substituintes doadores de elétrons que fazem com que o orbital π_{CO} , o qual é relacionado com o HOMO do grupo fenacila, se aproxime do orbital σ^*_{C-X} facilitando desta maneira a interação π_{CO} / σ^*_{C-X} .

Com isso uma grande contribuição da interação da π_{CO} / $\sigma*_{C-X}$ é esperada para as α -fenilselenopropiofenonas em relação às α -feniltioacetofenonas, indo-se de substituintes atraentes de elétrons para doadores de elétrons. Esta interação leva a uma maior diminuição da constante de força da carbonila e consequentemente na freqüência dos compostos de selênio em relação aos compostos de enxofre.

Com base nos potenciais de ionização e afinidades eletrônicas dos orbitais relevantes, a interação π_{CO} / σ_{C-Se} deveria predominar sobre a interação π_{CO} / σ_{C-Se} em uma extensão maior do que a interação π_{CO} / σ_{C-Se} prevaleceria sobre a π_{CO} / σ_{C-Se} .

Desta forma o autor concluiu que o aumento progressivo observado nos deslocamentos negativos de freqüência da carbonila (Δv_{CO}) dos rotâmeros *gauche*, indo-se de substituintes atraentes de elétrons para doadores de elétrons, é mais pronunciada para derivados de selênio do que de enxofre. Portanto os deslocamentos da freqüência da carbonila dos rotâmeros *gauche* tornam-se praticamente constantes para a série das α -fenilselenopropiofenonas.

Como a energia de ionização do par isolado n_{Se} é menor do que do par isolado n_{S} e esta mais próximo do orbital π^*_{CO} vazio há uma maior interação superjacente π^*_{CO} / n_{Se} do que π^*_{CO} / n_{S} .

Resumindo, todas as interações π_{CO} / σ^*_{C-X} , π^*_{CO} / σ_{C-X} , π^*_{CO} / σ_{X} , que agem na conformação *gauche* favorecem a estabilização dos compostos α -seleno-carbonílicos em maior extensão do que os compostos α -tio-carbonílicos, levando a uma grande diminuição nas constantes de força da carbonila e desta maneira nas freqüências das α -fenilselenopropiofenonas p-substituídas do que nas freqüências das α -feniltioacetofenonas p-substituídas em relação às suas cetonas correspondentes.

Além disso, as interações mencionadas acima são responsáveis pela alta estabilidade dos rotâmeros gauche dos compostos α -seleno-carbonílicos levando à sua grande predominância sobre os rotâmeros cis.

3 - Resultados e Discussão

Na Tabela 1 são apresentados os valores das frequências de estiramento e as porcentagens das intensidades dos componentes da banda correspondente à vibração de estiramento da carbonila (v_{CO}) no infravermelho analiticamente resolvida, na transição fundamental em solventes de polaridade crescente (tetracloreto de carbono, clorofórmio, diclorometano e acetonitrila), e na região do primeiro harmônico em tetracloreto de carbono, das α -fenilseleno- α -dietoxifosforilacetofenonas p-substituídas (1 a 7).

Para fins comparativos são apresentados na Tabela 2 os dados da freqüência de estiramento da carbonila das acetofenonas *p*-substituídas correspondentes (8 a 14) em CCl₄ e CHCl₃.

As Figuras 8, 9 e 10 ilustram o perfil da banda da carbonila analiticamente resolvida no infravermelho das α -fenilseleno- α -dietoxifosforilacetofenonas p-substituídas (1, 3 e 7) em solventes de polaridade crescente.

Constata-se genericamente em solventes de baixa polaridade (CCl₄) uma única banda simétrica de ν_{CO} nos derivados de 1 a 5, enquanto que nos derivados 6 e 7, além de uma banda intensa de ν_{CO} verifica-se a ocorrência também de uma banda de ν_{CO} de menor intensidade na região de maior frequência da carbonila.

Já, nos solventes de polaridade crescente (CH_2Cl_2 e CH_3CN) constata-se a existência de um dubleto de v_{CO} para a maioria dos compostos da série (1-7) cuja intensidade relativa é praticamente constante indo-se de p-MeO ao p-NO₂, isto é, de cerca de 25% para o componente de mais alta frequência e de cerca de 75% para o de mais baixa frequência.

Tabela 1 – Freqüências e intensidades no IV das bandas correspondentes ao estiramento da carbonila das α-fenilseleno-α-dietoxifosforilacetofenonas p-substituídas X- ϕ C(O)CHC[Se ϕ][P(O)(OEt)₂ (1-7)

	x	CCI ₄			CHCI₃		CH ₂ Cl ₂		CH₃CN		
Composto		v _{co} ^a	P _p	1ºharm ^c	P ^b	ν _{co} ª	P ^b	v _{co} ^a	Pb	ν _{co} ^a	Pp
1	MeO					1670,9	27	1670,5	30	1673,3	23
		1669,1	100	3320,5 (18) ^d	100	1661,9	73	1662,7	70	1663,9	77
2	Ме					1674,8	29	1673,1	38	1677,0	23
		1674,0	100	3329,7 (18) ^d	100	1666,8	71	1667,6	62	1668,9	77
3	H										
		1679,1	100	3337,4 (21) ^d	100	1674,4	100	1675,1	100	1675,7	100
4	F		_					1682,3	6	1681,3	17
		1676,8	100	3335,7 (18) ^d	100	1672,9	100	1673,1	94	1673,4	83
5	CI					1683,0	12	1682,6	22	1682,8	29
		1677,9	100	3336,3 (20) ^d	100	1672,6	88	1672,8	78	1673,3	71
6	Br	1684,9	23	3349,2 (21) ^d	8	1684,4	18	1681,0	32	1684,0	31
		1675,8	77	3334,8 (17) ^d	92	1672,1	82	1672,2	68	1673,4	69
7	NO ₂	1693,6	21	3362,3 (26) ^d	14	1692,4	16	1687,3	37	1692,0	24
	-	1682,1	79	3344,4 (20) ^a	86	1680,7	84	1679,6	63	1680,5	76

^a em cm^{-1; b} Intensidade relativa de cada banda expressa em porcentagem de absorbância; ^c 1º harmônico; ^d anarmonicidade.

Tabela 2 – Freqüência^{,b} da banda de estiramento da carbonila no Infravermelho das acetofenonas p-substituídas $X\phi C(O)CH_3$ em CCl_4 e $CHCl_3$.

Composto	X	CCl ₄	CHCl ₃
8	OMe	1683,2	1673,8
9	Me	1687,7	1678,3
10	H	1691,2	1683,0
11	F	1691,8	1683,3
12	Cl	1692,0	1685,6
13	\mathbf{Br}	1693,6	1685,4
14	NO_2	1700,5	1695,2

^a em cm⁻¹; ^b dados da referência [S. A. Guerrero. *Tese de Doutorado*, Instituto de Química – Universidade de São Paulo, 1995]

No caso dos derivados 3 e 4 somente uma banda é constatada em CHCl₃, enquanto que duas bandas de intensidade relativa de aproximadamente 20% (componente de mais alta freqüência) e 80% (componente de mais baixa freqüência) são constatadas nos outros derivados da série, no mesmo solvente.

O efeito do solvente sobre a banda da carbonila não é por si só uma evidência da existência da isomeria conformacional para a série 1-7. No entanto a ocorrência na região do primeiro harmônico da carbonila (em CCl₄) de um singleto, para os derivados de 1 a 5, e de um dubleto, para os derivados 6 e 7, em freqüência(s) cerca de duas vezes à(s) da região fundamental sugere fortemente a ocorrência da isomeria conformacional nos referidos compostos ^{15,16}

¹⁵ A. Gaset, L. Lafaille, A. Verdier, A. Lattes, Bull. Soc. Chim. Fr., 4108 (1968).

Adicionalmente, verificou-se também que a intensidade relativa dos componentes do dubleto (fundamental e primeiro harmônico) são aproximadamente iguais para os derivados 6 e 7. Este comportamento reforça a existência de uma única conformação estável nos compostos de 1 a 5 e de duas conformações nos derivados 6 e 7, em CCl₄.

Já, nos solventes de maior polaridade (CHCl₃, CH₂Cl₂ e CH₃CN) o componente de mais alta freqüência apresenta um confôrmero de população relativa de cerca de 10-30 %, enquanto que o componente de mais baixa freqüência corresponde a outro confôrmero de população relativa de cerca de 70-90 %.

Os cálculos *ab initio* HF/6-31G** apresentados na Tabela 3, para o composto 3, indicam a existência de duas conformações *gauche*, $g_1 e g_2$, estáveis de populações relativas de cerca de 73 a 27%, sendo suas freqüências de 1681,3 e 1696,0 cm⁻¹, respectivamente. Os valores do momento dipolar dos dois componentes são muito próximos entre si (2,8 e 2,3 D, para g_1 e g_2 , respectivamente), assim sendo pode-se, portanto, inferir que a única banda presente nos derivados de 1 a 5 em CCl₄ (Tabela 1) corresponde à conformação g_1 , mais estável obtida a partir do cálculo *ab initio*.

No caso dos derivados 6 e 7, em CCl_4 (Tabela 1), o componente de mais alta freqüência do dubleto da carbonila corresponde ao confôrmero menos estável g_2 , enquanto que o componente de mais baixa freqüência corresponde ao confôrmero mais estável g_1 . Cumpre salientar que nos solventes de maior constante dielétrica (CHCl₃, CH₂Cl₂ e CH₃CN) não é constatado uma variação significativa da população relativa dos confôrmeros g_1 e g_2 nos derivados 6 e 7.

¹⁶ L. J. Bellamy, "Advances in Infrared Group Frequencies", Chapman & Hall, London, 143 (1975).

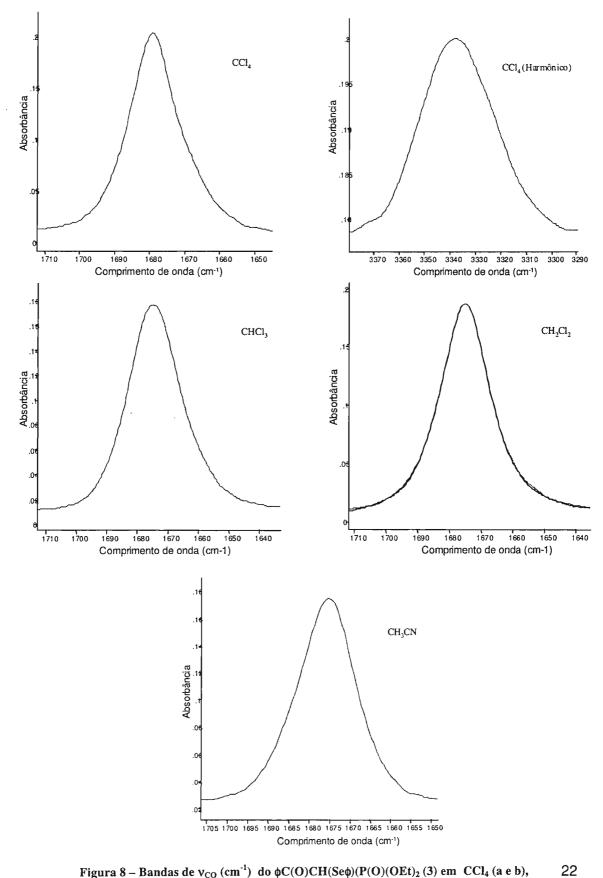


Figura 8 – Bandas de ν_{CO} (cm⁻¹) do ϕ C(O)CH(Se ϕ)(P(O)(OEt)₂ (3) em CCl₄ (a e b), CHCl₃ (c), CH₂Cl₂ (d) e CH₃CN (e)

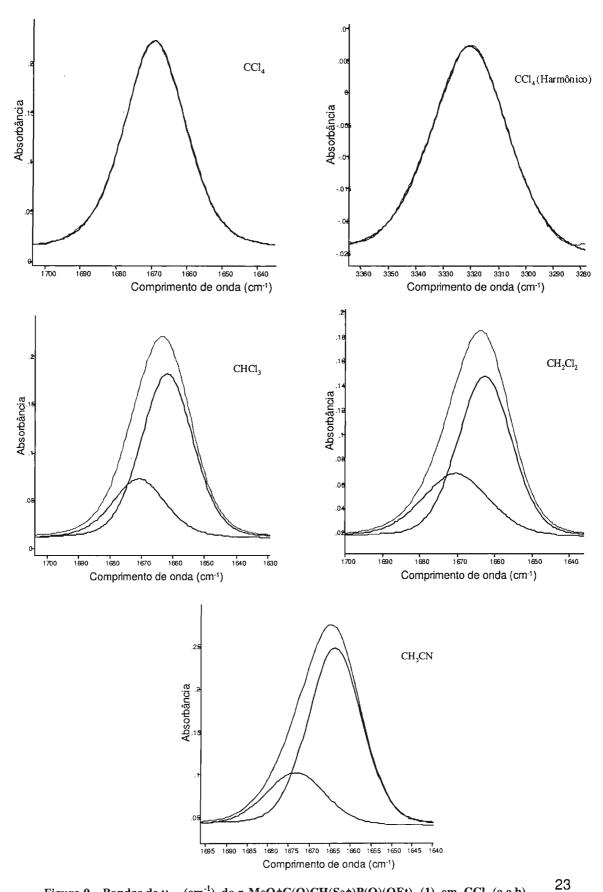


Figura 9 – Bandas de ν_{CO} (cm⁻¹) do p-MeO φ C(O)CH(Se φ)P(O)(OEt) $_2$ (1) em CCl $_4$ (a e b), CHCl $_3$ (c), CH $_2$ Cl $_2$ (d) e CH $_3$ CN (e)

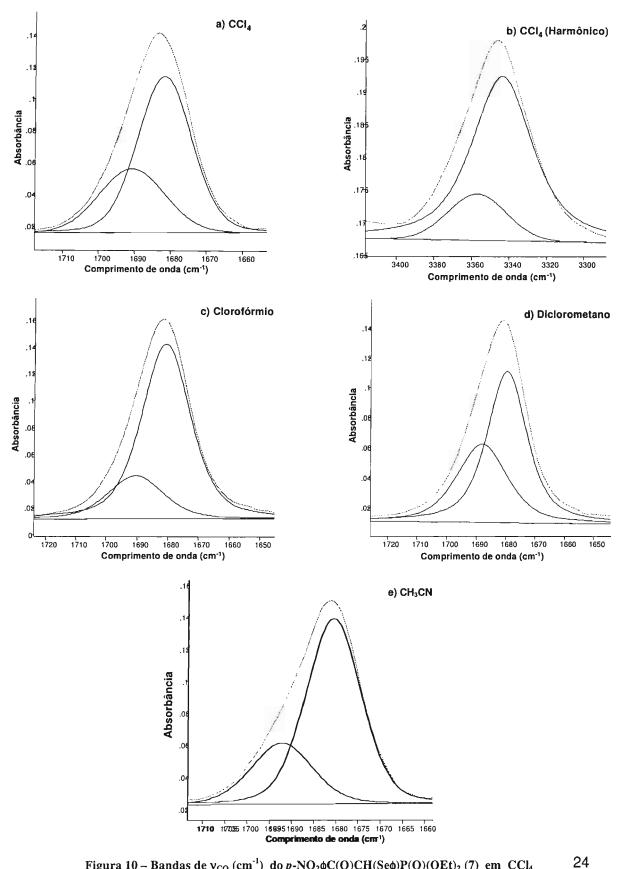


Figura 10 – Bandas de v_{CO} (cm $^{-1}$) do p-NO $_2$ ϕ C(O)CH(Se ϕ)P(O)(OEt) $_2$ (7) em CCl $_4$ (a e b), CHCl $_3$ (c), CH $_2$ Cl $_2$ (d) e CH $_3$ CN (e)

A Tabela 3 relata as energias e populações relativas, os momentos dipolares, as freqüências da carbonila e os ângulos diedros das duas conformações mais estáveis (g_1 e g_2) obtidas através do cálculo *ab initio* das α -fenilseleno- α -dimetoxifosforilacetofenonas¹⁷ 1, 3 e 7.

É digno de nota que existe uma razoável concordância entre as geometrias (ângulos diedros α , α ', β , β ', γ , γ ', ϕ e ϕ '), (Tabela 3), distâncias interatômicas (Tabelas 4a, 4b e 4c) e as cargas dos átomos selecionados (Tabela 5) para as três acetofenonas (1, 3 e 7). Assim sendo, no presente trabalho será analisada somente a α -fenilseleno- α -dietoxifosforilacetofenona (3), que será tomada como composto de referência para toda série estudada.

Os ângulos diedros (α e α ') das conformações mais e menos estáveis (g_1 e g_2 , respectivamente), evidenciaram que a ligação C-Se possui uma geometria *anti-clinal* (gauche) em relação à carbonila (C=O), enquanto que a ligação C-P tem uma geometria sin-periplanar (cis) em relação à carbonila (C=O), sendo ambas semelhantes entre si (Estruturas I e I', Esquemas 1 e 2, respectivamente).

O diferencial entre as conformações g_1 e g_2 encontra-se nos ângulos β , β ', γ e γ ', enquanto que os ângulos diedros ϕ e ϕ ' são razoavelmente próximos entre si (Tabela 3). De fato as estruturas II e III do Esquema 1 diferem das estruturas II' e III' do Esquema 2.

¹⁷ Para simplificação efetuou-se o cálculo *ab initio* com os derivados dimetoxifosforila.

Tabela 3 – Energia relativa, população relativa, momento dipolar, ângulos diedros atribuídos para os diferentes confôrmeros dos compostos 1, 3 e 7 e as freqüências da carbonila obtidas por intermédio do cálculo *ab initio* HF/6-31 G** das α-fenilseleno-α-dietoxifosforilacetofenonas *para*-substituídas

						Ângulos diedros(º) ^d									
Comp.	X	Conf. a	E ^b (kcalmol ⁻¹)	P ^c (%)	μ(D)	α_{p}	α´se	βp	β´ _{Seφ}	$\gamma_{ m p}$	γ´p	φse	ф′со	υ _{co} e	
3	Н	g ₁	0,00	73,2	2,8	-20,5	105,6	78,3	-37,7	-51,6	-157,5	-79,9	14,0	1681,3	
		g_2	0,69	26,8	2,3	-29,2	93,0	-170,7	134,4	63,0	-46,7	-118,0	17,6	1695,6	
1	MeO	g_1	0,00	77,5	3,9	-19,0	107,1	78,1	-37,7	-52,1	-157,8	-79,8	10,8	1671,8	
		g_2	0,74	22,5	2,6	-26,9	95,3	-171,2	134,3	62,6	-47,3	-116,8	13,2	1687,2	
7	NO ₂	\mathbf{g}_1	0,00	58,7	3,5	-21,6	104,5	78,4	-37,8	-51,1	-157,3	-78,9	18,6	1693,3	
		g_2	0,22	41,3	4,3	-29,9	92,4	-170,5	133,9	63,1	-46,5	-119,1	20,9	1705,8	

^a g₁ e g₂ referem-se aos dois confôrmeros *gauche* mais estáveis; ^b Energia relativa; ^c fração molar de cada confôrmero; ^d α_p = O(1)-C(2)-C(3)-P(5); α΄_{Se} = O(1)-C(2)-C(3)-Se(4); β_p = C(2)-C(3)-P(5)-O(29); β΄_{Seφ} = C(2)-C(3)-Se(4)-C(7); γ_p = C(2)-C(3)-P(5)-O(30); γ′_p = C(2)-C(3)-P(5)-O(31); φ_{Se} = C(9)-C(7)-Se(4) φ'_{CO} = C(19)-C(18)-C(2)-O(1); ^e fator de escala = 1,17.

Tabela 4a – Distâncias entre átomos selecionados para os diferentes confôrmeros da α-fenilseleno-α-dietoxifosforilacetofenona (3) obtidas pelo cálculo ab-initio HF/6-31G***

Comp.	Conf. ^a	C(2)Se(4)	Δl ^c	O(1)P(5) ^d	Δl ^c	O(30)C(2) ^e	Δl ^c	O(30)O(1) ^f	Δl ^c	O(31)C(2) ^e	Δl ^c
	g ₁	2,92	-0,68	2,95	-0,37	3,13	-0,09	3,03	~0	3,93	0,71
	g_2	2,84	-0,76	3,06	-0,26	3,35	0,13	3,06	~0	3,03	-0,19
3		O(31)O(1)	Δl ^c	H(13/14)O(29) ^g	ΔI^c	H(24/25)O(1) ^g	Δl ^c	H(6)O(31) ^g	Δl ^c		
	g ₁	4,37	1,33	2,45	-0,27	2,44	-0,28	2,53	-0,19		
	g_2	3,04	~0	2,38	-0,34	2,47	-0,25	2,94	0,22		

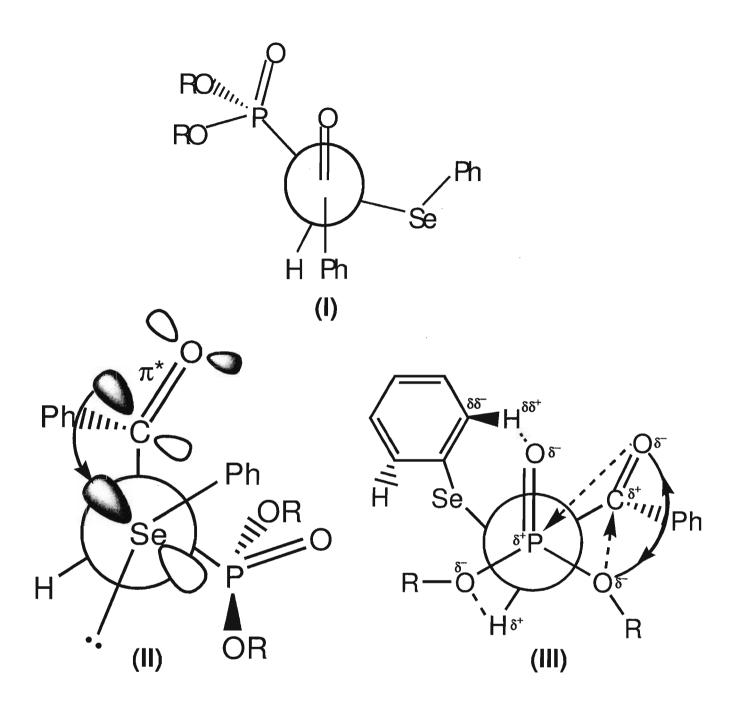
^a designação da conformação; ^b Soma dos raios de Van der Waals = 3,60 Å; ^c Diferença da distância entre átomos não ligados e a soma dos seus raios de Van der Waals; ^d Distância entre átomos não ligados = 3,32 Å; ^e Distância entre átomos não ligados = 3,22 Å; ^f Distância entre átomos não ligados = 2,72 Å.

Tabela 4b – Distâncias entre átomos selecionados para os diferentes confôrmeros da α-fenilseleno-α-dietoxifosforil p-metoxiacetofenona (1) obtidas pelo cálculo ab-initio HF/6-31G***

Comp.	Conf.a	C(2)Se(4)	Δl ^c	O(1)P(5) ^d	Δl ^c	O(30)C(2) ^e	Δl ^c	O(30)O(1) ^f	Δl ^c	O(31)C(2) ^e	Δl ^c
	g´ ₁	2,92	-0,68	2,94	-0,38	3,02	-0,20	3,02	~0	4,37	1,15
	g'_2	2,84	-0,76	3,05	-0,27	3,35	0,13	3,05	~0	3,04	-0,18
1		O(31)O(1)	Δl ^c	H(13/14)O(29) ^g	Δl^c	H(24/25)O(1) ^g	Δl ^c	H(6)O(31) ^g	Δl ^c		
	g´ı	4,37	1,33	2,45	-0,27	2,44	-0,28	2,53	-0,19		
	g´2	3,03	~0	2,38	-0,34	2,46	-0,26	2,94	0,22		

^a designação da conformação; ^b Soma dos raios de Van der Waals = 3,60 Å; ^c Diferença da distância entre átomos não ligados e a soma dos seus raios de Van der Waals; ^d Distância entre átomos não ligados = 3,32 Å; ^e Distância entre átomos não ligados = 3,04 Å; ^g Distância entre átomos não ligados = 2,72 Å.

Tabela 4c – Distâncias entre átomos selecionados para os diferentes confôrmeros da α-fenilseleno-α-dietoxifosforil p-nitroacetofenona (7) obtidas pelo cálculo ab-initio HF/6-31G***


Comp.	Conf.a	C(2)Se(4)	Δl ^c	O(1)P(5) ^d	ΔI ^c	O(30)C(2) ^e	Δlc	O(30)O(1) ^f	Δl ^c	O(31)C(2) ^e	ΔI ^c
	g" ₁	2,92	-0,68	2,97	-0,35	3,11	-0,11	3,04	-0,18	3,93	0,71
	g" ₂	2,83	-0,77	3,07	-0,25	3,34	0,12	3,07	-0,15	3,02	-0,20
7		O(31)O(1)	Δl ^c	H(13/14)O(29) ^g	Δl ^c	H(24/25)O(1) ^g	ΔI^c	H(6)O(31) ^g	Δl ^c		
	g" ₁	4,39	1,35	2,43	-0,29	2,44	-0,28	2,53	-0,19		
	g" ₂	3,05	~0	2,38	-0,34	2,48	-0,24	2,94	0,22		

^a designação da conformação; ^b Soma dos raios de Van der Waals = 3,60 Å; ^c Diferença da distância entre átomos não ligados e a soma dos seus raios de Van der Waals; ^d Distância entre átomos não ligados = 3,32 Å; ^e Distância entre átomos não ligados = 3,04 Å; ^g Distância entre átomos não ligados = 2,72 Å.

Tabela 5 – Cargas (e) dos átomos selecionados obtidas pelo cálculo ab initio HF/6-31 G** das α -fenilseleno- α -dietoxifosforilacetofenonas *para*-substituídas 1, 3 e 7.

Comp.	Conf.	O _{CO} (1)	C _{CO} (2)	C _{CH} (3)	Se(4)	H(14) ^a	H(24) ^b	P(5)	O _{P=O} (29)	O _{P-O} (30)	O _{P-O} (31)
1	g ₁	-0,553	0,591	-0,602	0,065	0,221	0,197	1,663	-0,751	-0,725	-0,722
	g_2	-0,537	0,581	-0,607	0,063	0,170	0,197	1,682	-0,762	-0,729	-0,702
3	g ₁	-0,541	0,584	-0,603	0,069	0,221	0,193	1,662	-0,750	-0,725	-0,721
	g_2	-0,524	0,574	-0,608	0,065	0,169	0,193	1,680	-0,761	-0,729	-0,703
7	g 1	-0,524	0,586	-0,605	0,077	0,223	0,209	1,662	-0,747	-0,726	-0,721
	g_2	-0,509	0,572	-0,611	0,069	0,169	0,210	1,679	-0,756	-0,728	-0,705

 $^{^{}a, b}$ Refere-se à carga no átomo de hidrogênio do grupo fenila que faz contato curto com os átomos de oxigênio de $O_{P=0}$ e O_{CO} , respectivamente

Esquema 1: Estruturas da α-fenilseleno-α-dietoxifosforilacetofenonas para o confôrmero $g_{I.}$

Esquema 2: Estruturas da α -fenilseleno- α -dietoxifosforilacetofenonas para o confôrmero g_2 .

Os contatos interatômicos da Tabela 4a indicam que as distâncias intramoleculares $C_{[CO]}$Se e $O^{\delta_{-[CO]}}$ $P^{\delta_{+}}_{[PO]}$, para as conformações g_{1} e g_{2} da α_{-} fenilseleno- α_{-} dietoxifosforilacetofenona são significativamente menores do que a soma dos raios de van der Waals para ambas conformações ($\Delta l \approx -0.7$ Å e -0.3 Å, respectivamente). Tal fato é indicativo de que as interações orbitalares n_{Se}/π_{CO}^{*} e $O^{\delta_{-[CO]}}$ $P^{\delta_{+}}_{[PO]}$ estabilizam ambas conformações aproximadamente na mesma extensão.

Já o contato $O^{\delta_{-[OR]}}$ $C^{\delta_{+}}$ [CO] é menor do que a soma dos raios de van der Waals de cerca de 0,1 Å, para o confôrmero g_{I} , enquanto que o contato $O^{\delta_{-[OR']}}$ $C^{\delta_{+}}$ [CO] é menor do que a soma dos raios de Van der Waals de cerca de 0,2 Å, para o confôrmero g_{2} , devendo desta forma as duas interações, orbitalar e coulombica, estabilizar as dois confôrmeros aproximadamente na mesma extensão.

Analogamente os contatos $H^{\delta+}_{[13/14]}$ $O^{\delta-}_{[PO]}$ e $H^{\delta+}_{[24/25]}$ $O^{\delta-}_{[CO]}$, para os confôrmeros g_I e g_2 , são menores do que as soma dos raios de van der Waals de cerca de 0,30 e 0,25 Å, respectivamente, conduzindo à estabilização coulombica (ligação de hidrogênio) de g_I e g_2 aproximadamente na mesma intensidade.

Uma outra estabilização efetivada pelo contato $H^{\delta_1}_{[\alpha CH]}$ $O^{\delta_2}_{[OR']}$, via interação coulombica, favorece significativamente a conformação g_1 , sendo a referida distância interatômica 0,20 Å menor do que a soma dos raios de van der Waals (Tabela 4). É digno de nota que o mesmo contato para a conformação g_2 é maior do que a soma dos raios de van der Waals ($\Delta l = 0,22$ Å) não conduzindo portanto a nenhuma estabilização da referida conformação.

Vale ressaltar que o contato $O_{[OR']}^{\delta}$ $O_{[CO]}^{\delta}$ na conformação g_2 é praticamente igual à soma dos raios de van der Waals ($\Delta l \approx 0$). No entanto o mesmo contato é significativamente maior do que a soma dos raios de van der Waals para a conformação g_1 ($\Delta l \approx 1,3$ Å). Assim sendo, pode ser inferido que o efeito de Campo Repulsivo entre os dipolos RO^{δ} — $P^{\delta+}$ e $O^{\delta-}$ == $C^{\delta+}$ não somente desestabiliza a conformação g_2 em relação à g_1 , como também origina uma maior ordem de ligação da carbonila e portanto um aumento na freqüência de V_{CO} para g_2 em relação a g_1 .

Do acima exposto pode-se concluir que ambas as conformações g_1 e g_2 são estabilizadas aproximadamente na mesma extensão pelo efeito sinérgico da interação n_{Se}/π^*_{CO} que aumenta a densidade de carga do oxigênio carbonílico e que por sua vez interage com o fósforo positivamente carregado do grupo dietoxifosforila $[O^{\delta}_{[CO]}....P^{\delta+}_{[PO]}]$ (Estruturas III e III' do esquema 1 e 2, respectivamente).

Deve-se salientar que as duas interações que diferenciam a estabilização relativa de g_1 e g_2 são a interação $H^{\delta+}_{[\alpha CH]}$ $O^{\delta-}_{[PO]}$ que estabiliza somente g_1 e o efeito de Campo Repulsivo entre os dipolos $C^{\delta+} == O^{\delta-}$ e $P^{\delta+}$ — $OR^{\delta-}$ que desestabiliza a conformação g_2 .

A estabilidade de ambos confôrmeros g_1 e g_2 é corroborada pelos dados da Tabela 6 onde são apresentados os deslocamentos negativos da freqüência da carbonila (Δv_{CO}) dos confôrmeros g_1 e g_2 das α -fenilseleno- α -dietoxifosforilacetofenona p-substituídas (1 a 7) em relação às correspondentes freqüências da carbonila (CO) das acetofenonas de referência (8 a 14), em CCl₄ e CHCl₃.

De fato os valores de Δv tanto para g_1 como para g_2 são negativos, sendo mais negativos para g_1 (1 a 7) de cerca de -15cm⁻¹, em CCl₄, e de cerca de -13 cm⁻¹, em CHCl₃.

Para g_2 em CCl₄, nos derivados 6 e 7, o valor é de -8 cm⁻¹, enquanto que nos derivados de 1 a 7 em CHCl₃, o valor é cerca de -3 cm⁻¹.

A despeito do forte efeito indutivo "- I_{σ} " de ambos grupos α -fenilselenila e α -dietoxifosforila, cujos valores de σ_{I} são 0.31^{18} e 0.33^{19} , respectivamente, esperar-se-ia um aumento na ordem de ligação da carbonila e portanto de sua freqüência para os derivados de 1 a 7 em relação as acetofenonas de referência (8 a 14)

No entanto, a ocorrência das interações H $^{\delta+}_{[24/25]}$ $O^{\delta-}_{[CO]}$, $O^{\delta-}_{[POR]}$ $C^{\delta+}_{[CO]}$, π^*_{CO}/n_{Se} e $O^{\delta-}_{[CO]}$ $P_{[PO]}$ justificam plenamente o abaixamento da frequência da carbonila dos confôrmeros g_1 e g_2 em relação as acetofenonas de referência.

Conforme descrito acima a menor constante de força da carbonila e da freqüência da conformação de g_1 em relação a g_2 é decorrente da ocorrência do efeito de Campo Repulsivo entre os dipolos $C^{\delta} == O^{\delta-} e P^{\delta+} - OR^{\delta-}$ que por sua vez é responsável por um maior valor da freqüência da carbonila de g_2 em relação g_1 originando por conseguinte valores mais negativos de $\Delta v g_1$ em relação a $\Delta v g_2$.

A despeito do confôrmero g_1 apresentar um discreto aumento do momento dipolar em relação a g_2 ($\Delta \mu \approx 0.4$ D), o efeito do solvente observado, ou melhor, a ocorrência do aparecimento da segunda banda de g_2 em solvente mais polares em detrimento da banda correspondente a g_1 (o mais estável) deve decorrer de uma maior solvatação específica do confôrmero g_2 em relação a g_1 . Em outras palavras deve existir na conformação g_2 uma maior janela de solvatação do que aquela existente no confôrmero g_1 .

¹⁸ M. Charton, in "Progress in Physical Organic Chemistry", 13, 119 (1981).

¹⁹ C. Hansch, A. Leo, D. Hoekman, Exploring QSAR Hydrofobic, Electronic and Steric Constants, American Chemical Society, Washington, DC, 1995.

Essa suposição somente poderá ser evidenciada pelo cálculo *ab initio* envolvendo o efeito de solvatação.

Tabela 6 – Deslocamentos da frequência de estiramento da carbonila (Δv_{CO}) das α -fenilseleno- α -dietoxifosforilacetofenonas *para*-substituídas (1-7) em relação às acetofenonas *para*-substituidas (8-14), em CCl₄ e CHCl₃.

Comp.	Х	Conf.	Δν	a,b
1	OMe	g ₂		-2,9
		9 1	-14,2	-12,8
2	Me	g ₂	_	-3,5
		91	-13,4	-11,5
3	Н	g_2	-	_
		9 ₁	-12,2	-8,6
4	F	g ₂	_	_
		9 ₁	-14,8	-10,4
5	CI	g ₂	_	-2,6
		9 ₁	-14,0	-13,0
6	Br	g ₂	-8,6	-1,0
		g ₁	-17,6	-13,3
7	NO ₂	g ₂	-6,5	-2,8
		9 1	-18,5	-14,5

^a Em cm⁻¹; ^b Refere-se a: $v_{(CO)}[p-X-\phi C(O)CH[Se\phi][P(O)(OEt_2) - v_{(CO)}[p-X-\phi C(O)CH_3]]$

4- Parte Experimental

4.1 - Procedimentos gerais empregados nas medidas espectroscópicas.

4.1.1 - Medidas no infravermelho.

As medidas no infravermelho foram registradas em um espectrofotômetro "Nicolet Magna 550 FT-IR".

As medidas dos espectros em solução foram realizadas utilizando-se os seguintes solventes espectroscópicos da Merck: CCl₄, CH₃CN, CHCl₃ e CH₂Cl₂.

As regiões de interesse analisadas nos espectros das α -fenilseleno- α -dietóxifosforilacetofenonas para-substituídas foram:

- a) Região correspondente à transição fundamental da vibração de estiramento da carbonila (1750 – 1600 cm⁻¹).
- b) Região correspondente ao 1º harmônico da banda da carbonila (3500 3200 cm⁻¹).

4.1.1.a - Região correspondente à transição fundamental da vibração de estiramento da carbonila.

As bandas correspondentes à vibração do estiramento da carbonila na transição fundamental dos compostos em estudo foram analisadas no intervalo de freqüência de 1750 à 1600 cm⁻¹ em solução de concentração cerca de 2,0 x 10⁻² mol.dm⁻³ nos solventes citados

acima, utilizando-se cela de NaCl 0,519 mm de caminho óptico. Os espectros foram

registrados à temperatura ambiente.

As condições gerais nas quais as bandas foram registradas, sendo as mesmas para os

cinco solventes, são:

• Número de scans (varreduras) por amostra: 256

Número de background (brancos) por amostra: 256

• Resolução: 1,0 cm⁻¹

Deve-se salientar que a resolução das bandas da carbonila existentes em cada

composto, em todos os solventes, foi realizada por intermédio tanto do algoritmo

matemático da auto-deconvolução de Fourier (FSD) através do aplicativo OMNIC 1.1 e do

algoritmo matemático Bomem GRAMS_32, bem como do registro da segunda derivada da

banda da carbonila.

4.1.1.b - Região correspondente ao 1º harmônico da vibração de

estiramento da carbonila.

As bandas correspondentes ao 1º harmônico da carbonila das α-fenilseleno-α-

dietóxifosforilacetofenonas para-substituídas foram analisadas em solução de tetracloreto

38

de carbono de concentração cerca de 2,0 x 10⁻² mol.dm⁻³, no intervalo de freqüência de 3500 a 3200 cm⁻¹, utilizando-se uma cela de quartzo de 1,00 cm de caminho óptico.

4.1.2 - Medidas de ressonância magnética nuclear de ¹H e ¹³C.

Os espectros de Ressonância Magnética Nuclear de ¹H foram registrados no espectrometros "Varian" modelos "DPX-300" e "Bruker" modelo "AC-200".

Os espectros de Ressonância Magnética Nuclear de ¹H e ¹³C foram determinados em soluções de concentração em torno de 5.10⁻¹ mol.dm⁻³ em CDCl₃ e tetrametilsilano (TMS), como referência interna, usando-se radiofrequência de 300 MHz num campo magnético de 7,05 Tesla e 200 MHz num campo de 4,69 Tesla.

Os espectros de Ressonância Magnética Nuclear de ¹³C foram determinados em soluções de concentração em torno de 2,0 mol.dm⁻³ em CDCl₃ e TMS como referência interna, usando-se radiofreqüência de 50 MHz num campo magnético de 4,69 Tesla. Os valores de deslocamentos químicos foram atribuídos em parte por milhão (ppm) e as constantes de acoplamento (J) em Hertz (Hz). As áreas dos picos dos espectros de RMN de ¹H foram obtidas por integração eletrônica e suas multiplicidades descritas do seguinte modo: s: singleto; d: dubleto; dd: duplo dubleto; td: triplo dubleto dt: duplo tripleto; t: tripleto; q: quarteto; dq: duplo quarteto; m: multipleto.

4.2 - Pontos de fusão e análise elementar.

O ponto de fusão da α-fenilseleno-α-dietoxifosforil *para*-nitroacetofenona (7) foi determinada utilizando-se um aparelho de microfusão do tipo "Kofler", dotado de um microscópio do tipo Dynamic Optics AHT, e não foram corrigidos.

As análises elementares foram realizadas em um Analisador Elementar "Perkin Elmer" modelo CC2400 CHN.

Genericamente as análises elementares dos compostos carbonilicos α-fenilseleno-α-dietóxifosforilacetofenonas *para*-substituídas apresentam um desvio da %C menor do que 0,3%. Os dados espectrais de RMN de ¹H e ¹³C e IV comprovam as estruturas desses compostos.

4.3 - Análises Cromatográficas.

Com a finalidade de monitorar as reações e ainda de determinar as proporções de cetofosfonatos obtidos nas reações foram efetuadas análises cromatográficas em um cromatografo "Hewlett Packard" modelo 5890A, equipado com uma coluna Megabore HP-1 (0,53nm x 5,0 m), detector de ionização de chama e nitrogênio como gás de arraste. Os cromatogramas foram obtidos utilizando-se as seguintes condições de análise:

- Temperatura do detector: 250°C;

- Temperatura de injetor: 230°C;

- Temperatura inicial: 80°C;

- Temperatura final: 220°C;

- Velocidade de aquecimento: 10°C/min.

Vale ressaltar que os produtos finais sofriam decomposição e, portanto, não foram analisados por CG.

4.4 - Reagentes e solventes utilizados (Purificação).

As acetofenonas-para-substituidas foram secas em dessecador contendo pentóxido de fósforo (Aldrich) e cloreto de cálcio (Aldrich) à pressão reduzida. O dietilmetilfosfonato (Aldrich), diisopropilamina (Aldrich), dimetilformamida, cloreto de tionila e o trietilfosfito (Aldrich) foram destilados a pressão reduzida.

Todos os solventes anidros utilizados foram obtidos empregando-se os procedimentos convencionais descritos na literatuta ²⁰.

²⁰ D. D. Perrin, W. L. F. Armarego, "Purification of Laboratory Chemicals – 3 rd. Ed." Oxford: Pergamon Press, 1998.

4.5 - Métodos gerais de preparação

4.5.1 - Método geral utilizado para a síntese dos Cloretos de benzoíla para-substituídos²¹

Método 1

Usando um balão de fundo redondo tritubulado, munido com agitador magnético, condensador de refluxo com tubo secante e funil de adição, adiciona-se 50 mL de tolueno seco junto a 70 mmol do ácido benzóico *p*-substituído correspondente. Mantendo o sistema sob agitação adiciona-se 7 mmol de dimetilformamida e 105 mmol de cloreto de tionila. A reação é mantida sob refluxo do tolueno por aproximadamente 2 horas, após realiza-se a destilação do tolueno a pressão ambiente e o cloreto de ácido benzóico *p*-substituído obtido a pressão reduzida por meio de uma bomba de vácuo.

4.5.2 - Método geral utilizado para a síntese do α -dietóxifosforilacetofenonas para-substituídas 22

Método 2

Em um balão de fundo redondo de 250 mL equipado com um agitador magnético, termômetro e atmosfera de nitrogênio, introduziu-se 55,0 mmol de butilitio (2M em *n*-hexano) em 40mL de THF. Realiza-se um resfriamento do sistema para -77°C e

²¹ D. N. Harpp, L.C. Bao, C. J. Black, J.G. Gleason, R. A. Smith, J. Org. Chem., 1975, 40, 3420.

²² E. E. Aboujaoude, N. Collignon, M. Teulade, P. Savignac, *Phosphorus and Sulfur*, 25, 57 (1985).

acrescenta-se 55,0 mmol de diisopropilamina gota a gota. Após 10 min de agitação sob a mesma temperatura, adiciona-se 36 mmol de dietilmetilfosfonato em 10 mL de THF, mantendo a temperatura e agitação por 10 min. É realizada a subsequente adição, sob as mesmas condições, de 42 mmol de cloreto de benzoíla *p*-substituído em 10 mL de THF e mantém-se o sistema sob agitação por 2 horas a temperatura ambiente. Ao final, neutralizase com uma solução de HCl 6N e procede-se a extração com diclorometano. A fase orgânica resultante é lavada com uma solução de NaCl, seca com MgSO₄ e o solvente eliminado.

As α-dietóxifosforilacetofenonas *para*-substituídas *p*-Cl (17), *p*-Br (18), *p*-H (19), *p*-Me (20), *p*-OMe (21) e *p*-NO₂ (22) já foram obtidas previamente¹ com exceção do derivado *p*-F (16) que foi preparado no presente trabalho.

4.5.3 – Método geral utilizado para a síntese da N-metóxi, N-metil-4-nitrobenzamida²³

Método 3

A um balão de três bocas de 50 ml adaptado com um dedo frio foi adicionado 28,50 mmol do cloridrato de N-metóxi, N-metilamina em 15 ml de acetonitrila seca sob atmosfera de nitrogênio a 0°C. No mesmo balão foi adaptado um funil de adição no qual foi transferido 28,50 mmol do cloreto de *p*-nitrobenzoila em 5 ml de acetonitrila. Antes do início da adição do cloreto, com a utilização de uma seringa, transferiu-se, em uma única

²³ Nahn, S., Weinreb, S. M.; Tetrahedron Lett., 22, (39), 3815 (1981).

porção, 57,00 mmol de piridina. O meio reacional foi mantido a 0°C até o término da adição do cloreto de *p*-nitrobenzoila e, então, deixado por uma noite à temperatura ambiente. Transcorrido esse tempo, rotoevaporou-se a acetonitrila à pressão reduzida, o produto bruto foi dissolvido em clorofórmio e transferido para um funil de adição onde se lavou com uma solução de 0,2 N de HCl. A fase orgânica foi separada, lavada mais duas vezes primeiramente com uma solução aquosa saturada com NaCl e posteriormente com água. A fase orgânica foi seca com sulfato de magnésio e roto-evaporada. O composto obtido foi purificado com coluna cromatográfica de sílica utilizando como eluente: n-hexano e acetona em uma proporção de 7:3, respectivamente.

4.5.4 - Método geral utilizado para a síntese do dietil 2-(4-nitrofenil)-2-oxoetilfosfonato.²²

Método 4

A um balão 100 ml com fluxo de nitrogênio foram adicionados 15 ml de THF anidro e 9,77 mmol de diisopropilamina e resfriado a – 78°C. Após foi adicionado 5,10 ml 9,77 mmol de butillítio 1,9M e a reação foi agitada por quinze minutos. Posteriormente adicionou-se através de uma seringa, gota-à-gota, uma solução de 9 ml de THF anidro contendo 9,76 mmol do dietilmetilfosfonato e deixou-se reagir por trinta minutos. Conseqüentemente adicionou-se uma solução de 8,87 mmol da N-metóxi, N-metil-4-nitrobenzamida em 4,40 ml de THF anidro. A reação se processou por 2 horas e então foi transferido para um funil de separação contendo uma solução saturada de cloreto de amônio, extraída duas vezes com clorofórmio, seca e roto-evaporada. O composto obtido

foi purificado com coluna cromatográfica de sílica utilizando como eluente: n-hexano e acetona em uma proporção de 6:3, respectivamente.

4.5.5 - Método geral utilizado para a síntese das α -fenilseleno- α -dietóxifosforilacetofenonas para-substituídas²⁴.

Método 5

Em um balão de fundo redondo tritubulado de 50 mL previamente flambado e munido de septo, agitador magnético foi adicionado 20 mL de THF sob atmosfera de N₂. O sistema foi resfriado a –77 °C (gelo seco e álcool) e adiciona-se 4,7 mmol de diisopropilamina, seguido do 2,1 mL butilitio (2M em *n*-hexano) em solução com THF, ambos gota a gota. Uma solução com 3,9 mmol do dietil 2-oxo-2-feniletilfosfonato (em 3 mL de THF) foi adicionada gota a gota e homogeneizada no sistema por 10 minutos, a seguir uma solução contendo 4,68 mmol de brometo de fenilselenila em 3 mL de THF é gotejada no sistema. A partir deste ponto adiciona-se uma solução com 10 mL de NH₄Cl saturado, filtra-se e rotoevapora-se. O passo subseqüente é adicionar 20 mL de H₂O e promover três extrações com diclorometano (20 mL cada). Ao produto extraído, lava-se a fase orgânica com 20 mL de uma solução saturada de NaCl e adiciona-se secante (MgSO₄). Na etapa final o produto bruto obtido foi filtrado e o solvente eliminado.

²⁴ H. J. Reich, J. M. Renga e I. L. Reich, J. Am. Chem. Soc., **97**, 5434 (1975).

As α -fenilseleno- α -dietóxifosforilacetofenonas para-substituídas: p-OMe (1), p-Me (2), p-H (3), p-F (4), p-Cl (5), p-Br (6) e p-NO₂ (7) obtidas no presente trabalho são todas inéditas.

4.6 - Sinteses

4.6.1 – Síntese dos Cloretos de benzoíla para-substituídos (Método-1)

* X= H, F, Cl, Br, NO₂, Me e MeO

4.6.1.1 – Síntese do Cloreto de *p*-nitrobenzoila (9)

De acordo com o método geral proposto, partiu-se de 11,7 g (70 mmol) de ácido *p*-nitrobenzóico, 50 mL de tolueno seco, 0,7 mL de dimetilformamida (7 mmol), 7,6 mL de cloreto de tionila (105 mmol). Obtiveram-se 10,8 g (58 mmol; 83%) do composto purificado por destilação (132 °C/8 mmHg;Lit. ²⁵: 202-205°C / 105mmHg).

²⁵ Aldrich Handbook of Fine Chemicals and Laboratory Equipment, 2000-2001, Brasil.

4.6.1.2 – Síntese do Cloreto de *p*-fluorbenzoila (10)

De acordo com o método geral proposto, partiu-se de 9,8 g (70 mmol) de ácido p-fluorbenzóico, 50 mL de tolueno seco, 0,7 mL de dimetilformamida (7 mmol), 7,6 mL de cloreto de tionila (105 mmol). Obtiveram-se 8,1 g (51 mmol; 73%) do composto purificado por destilação (78 °C/12 mmHg;Lit.²⁵: 82 °C / 20mmHg).

4.6.1.3 – Síntese do Cloreto de *p*-clorobenzoila (11)

De acordo com o método geral proposto, partiu-se de 10,9 g (70 mmol) de ácido p-clorobenzóico, 50 mL de tolueno seco, 0,7 mL de dimetilformamida (7 mmol), 7,6 mL de cloreto de tionila (105 mmol). Obtiveram-se 9,8 g (56 mmol; 80%) do composto. Purificado por destilação (108 °C/15 mmHg;Lit.¹⁹: 102°C / 11mmHg).

4.6.1.4 – Síntese do Cloreto de *p*-bromobenzoila (12)

De acordo com o método geral proposto, partiu-se de 14 g (70 mmol) de ácido p-bromobenzóico, 50 mL de tolueno seco, 0,7 mL de dimetilformamida (7 mmol), 7,6 mL de cloreto de tionila (105 mmol). Obtiveram-se 9,2 g (42 mmol; 84%) do composto. Purificado por destilação (108 °C/9 mmHg; Lit. 19: 174 °C / 102mmHg)).

4.6.1.5 – Síntese do Cloreto de Benzoila (13)

De acordo com o método geral proposto, partiu-se de 8,5 g (70 mmol) de ácido benzóico, 50 mL de tolueno seco, 0,7 mL de dimetilformamida (7 mmol), 7,6 mL de cloreto de tionila (105 mmol). Obtiveram-se 8,1 g (58 mmol; 83%) do composto. Purificado por destilação (95 °C/5 mmHg;Lit. 19: 177-181 °C / 760mmHg).

4.6.1.6 – Síntese do Cloreto de *p*-metilbenzoila (14)

De acordo com o método geral proposto, partiu-se de 9,5 g (70 mmol) de ácido p-metilbenzóico, 50 mL de tolueno seco, 0,7 mL de dimetilformamida (7 mmol), 7,6 mL de cloreto de tionila (105 mmol). Obtiveram-se 9,7 g (63 mmol; 90%) do composto. Purificado por destilação (99 °C/12 mmHg; Lit. 19: 95 °C / 10mmHg).

4.6.1.7 – Síntese do Cloreto de *p*-metoxibenzoila (15)

De acordo com o método geral proposto, partiu-se de 10,7 g (70 mmol) de ácido p-metoxibenzóico, 50 mL de tolueno seco, 0,7 mL de dimetilformamida (7 mmol), 7,6 mL de cloreto de tionila (105 mmol). Obtiveram-se 8,3 g (50 mmol; 70%) do composto. Purificado por destilação (136 °C/8 mmHg; Lit. 19: 145 °C / 14mmHg).

4.6.2 – Síntese dos α -dietóxifosforilacetofenonas para-substituídas (Método-2)

4.6.2.1 – 2-(4-fluorofenil)-2-oxoetilfosfonato de dietila (16)

De acordo com o método geral proposto, partiu-se de 7,7 mL de diisopropilamina (55 mmol) e 27,5 mL de butilitio em 40 mL THF. Na seqüência foi adicionado 5,3 g (35 mmol) de dietilmetilfosfonato em 10 mL de THF, finalizando com uma solução de 6,1 g (39 mmol) de cloreto de p-fluorbenzoila em 10 mL de THF. Foi obtido 7,9 g (23 mmol; 67%) sendo o mesmo purificado por destilação (125°C/0,05 mmHg).

Analise elementar	Calculado	Experimental
C %	52,56	52,43
H %	5,88	5,80

Análise de RMN de ¹H δ (200MHz; CDCl₃/TMS): 1,29 (6H, t, J=7 Hz); 3,61 (2H, d, J=8 Hz); 4,14 (4H, m); 7,13 a 8,08 (4H, m).

4.6.2.2 -2-(4-clorofenil)-2-oxoetilfosfonato de dietila (17)

De acordo com o método geral proposto, partiu-se de 3,5 mL de diisopropilamina (25 mmol) e 12,5 mL de butilitio em 30 mL THF. Na sequência foi adicionado 2,3 g (15 mmol) de dietilmetilfosfonato em 10 mL de THF, finalizando com uma solução de 3,2 g (18 mmol) de cloreto de p-clorobenzoila em 10 mL de THF. Foram obtidos 3,1 g (9 mmol; 58%) sendo o mesmo purificado por destilação (114°C/1,2 mmHg).

Análise de RMN de ¹H δ (200MHz; CDCl₃/TMS): 1,31 (6H, t, J=7 Hz); 3,63 (2H, d, J = 16 Hz); 4,12 (4H, m); 7,46 a 7,96 (4H, m).

4.6.2.3 –2-(4-bromofenil)-2-oxoetilfosfonato de dietila (18)

De acordo com o método geral proposto, partiu-se de 3,5 mL de diisopropilamina (25 mmol) e 12,5 mL de butilitio em 30 mL THF. Na seqüência foi adicionado 2,3 g (15 mmol) de dietilmetilfosfonato em 10 mL de THF, finalizando com uma solução de 3,9 g (18 mmol) de cloreto de p-bromobenzoila em 10 mL de THF. Foram obtidos 4,2 g (11 mmol; 69%) sendo o mesmo purificado por destilação (121°C/2,0 mmHg).

Análise de RMN de ¹H δ (200MHz; CDCl₃/TMS): 1,29 (6H, t, J=7 Hz); 3,54 e 3,66 (2H, d; J = 24 Hz); 4,14 (4H, m); 7,61 a 7,88 (4H, m).

4.6.2.4 - 2-oxo-2-feniletilfosfonato de dietila (19)

De acordo com o método geral proposto, partiu-se de 7,7 mL de diisopropilamina (55 mmol) e 27,5 mL de butilitio em 40 mL THF. Na seqüência foi adicionado 5,3 g (35 mmol) de dietilmetilfosfonato em 10 mL de THF, finalizando com uma solução de 5,4 g (39 mmol) de cloreto de benzoila em 10 mL de THF. Foram obtidos 5,7 g (18 mmol; 51%) sendo o mesmo purificado por destilação (128°C/9 mmHg; Lit. 19: 145°C / 14mmHg).

Análise de RMN de ¹H δ (200MHz; CDCl₃/TMS): 1,34 (6H, t, J=7,08 Hz); 4,21 (4H, m); 5,26 (2H, d, J = 12 Hz); 7,38 a 7,59 (5H, m).

4.6.2.5 – 2-(4-metilfenil)-2-oxoetilfosfonato de dietila (20)

De acordo com o método geral proposto, partiu-se de 7,7 mL de diisopropilamina (55 mmol) e 27,5 mL de butilitio em 40 mL THF. Na seqüência foi adiciona-se 5,3 g (35 mmol) de dietilmetilfosfonato em 10 mL de THF, finalizando com uma solução de 6,0 g (39 mmol) de cloreto de *p*-metilbenzoíla em 10 mL de THF. Foram obtidos 7,0 g (21 mmol; 60%) sendo o mesmo purificado por destilação (137°C/0,07 mmHg).

Análise de RMN de ${}^{1}H$ δ (200MHz; CDCl₃/TMS): 1,29 (6H, t, J=7 Hz); 2,41 (3H, s); 3,61 (2H, d, J = 24 Hz); 4,12 (4H, m); 7,3 a 7,9 (4H, m).

4.6.2.6 – 2-(4-metoxifenil)-2-oxoetilfosfonato de dietila (21)

De acordo com o método geral proposto, partiu-se de 7,7 mL de diisopropilamina (55 mmol) e 27,5 mL de butilitio em 40 mL THF. Na seqüência foi adiciona-se 5,3 g (35 mmol) de dietilmetilfosfonato em 10 mL de THF, finalizando com uma solução de 6,5 g (39 mmol) de cloreto de *p*-metoxibenzoíla em 10 mL de THF. Foram obtidos 7,3 g (21 mmol; 62%) sendo o mesmo purificado por destilação (145 °C/1,0 mmHg).

Análise de RMN de ¹H δ (200MHz; CDCl₃/TMS): 1,29 (6H, t, J=7 Hz); 3,59 (2H, d, J = 16 Hz); 3,87 (3H, s); 4,11 (4H, m); 6,96 a 8,01 (4H, m).

4.6.3 – Síntese da N-metóxi, N-metil-4-nitrobenzamida (18) (Método-3)

De acordo com o método geral proposto, partiu-se de 2,8 g do cloridrato de N-metóxi, N-metilamina (28,5 mmol) em 15 ml de acetonitrila, 5,3 g (28,5 mmol) do cloreto de *p*-nitrobenzoila em 5 ml de acetonitrila e 4,7 ml (57,0 mmol) de piridina. Sendo o mesmo purificado com coluna cromatográfica de camada delgada de sílica com n-hexano e acetona em uma proporção de "7:3" respectivamente, o rendimento foi de 4,8 g (86%).

4.6.4 – Síntese do 2-(4-nitrofenil)-2-oxoetilfosfonato de dietila (método-4)

De acordo com o método geral proposto, partiu-se de 1,4 ml (9,77 mmol) de diisopropilamina em 15 ml de THF anidro e a subsequente adição de 5,10 ml (9,77 mmol) de butillítio 1,9M. Posteriormente adicionou-se uma solução de 9 ml de THF anidro contendo 1,48 g (9,76 mmol) do dietilmetilfosfonato, sendo finalizada com a adição de 1,87g (8,87 mmol) da N-metóxi, N-metil-4-nitrobenzamida em 4,40 ml de THF anidro. O rendimento foi de 2,4 g (80%).

Análise de RMN de 1 H δ (200MHz; CDCl₃/TMS): 1,26 (6H, t, J=7,08 Hz); 4,24 (4H, m); 5,47 (2H, m); 7,45 a 8,24 (5H, m).

4.6.5 – Síntese do α -fenilseleno- α -dietóxifosforilacetofenonas para-substituídas (Método-5).

4.6.5.1 – Etil-1-fenilselanil-2-(4-metoxifenil)-2-oxo-fosfonato de dietila (1)

De acordo com o método geral proposto, partiu-se de 1,2 mL de diisopropilamina (8,6 mmol) e 4 mL de butilitio em 10 mL de THF. Na seqüência foi adicionado 2,1 g (6,0 mmol) de dietil 2-(4-metoxifenil)-2-oxoetilfosfonato em 5 mL de THF, finalizando com uma solução de 1,8 g (7,6 mmol) de brometo de fenilselenila em 5 mL de THF. Foi obtido 1,9 g (4,3 mmol; 57%) sendo o mesmo purificado em coluna cromatográfica com sílica flash sob um gradiente de eluente, primeiramente na proporção 1:1 e posteriormente 4:6 para relação n-hexano/acetato de etila.

Analise elementar	Calculado	Experimental
C %	51,71	51,49
Н %	5,25	4,89

¹H δ CDCl₃ / TMS): 1,29 (3H, t, J = 7,8 Hz); 1,31 (3H, t, J = 7,5 Hz); 3,85 (3H, s); 4,22 (4H, m); 4,75 (1H, d, J=16,2 Hz); 6,85 (2H, d, J= 9,0 Hz); 7,28 (3H, m); 7,63 (2H, m); 7,81 (2H, d, J = 9,0 Hz).

¹³C δCDCl₃ / TMS): 16,6 (s); 16,7 (s); 43,0 (d, J= 142,3 Hz); 55,8 (s); 63,9 (d, J= 13,9 Hz); 64,0 (d, J= 13,7 Hz); 113,7 (s); 128,8 (d, J= 4,5 Hz); 129,2 (s); 129,3 (d, J= 4,1 Hz); 129,5 (s); 131,7 (s); 135,5 (s); 164,1 (s); 192,5 (s).

4.6.5.2 – Etil-1-fenilselanil-2-(4-metilfenil)-2-oxo-fosfonato de dietila (2)

De acordo com o método geral proposto, partiu-se de 0,6 mL de diisopropilamina (4,3 mmol) e 2 mL de butilitio em 10 mL de THF. Na seqüência foi adicionado 1,0 g (3,0 mmol) de dietil 2-(4-metilfenil)-2-oxoetilfosfonato em 5 mL de THF, finalizando com uma solução de 0,90 g (3,8 mmol) de brometo de fenilselenila em 5 mL de THF. Foi obtido 0,9 g (2,0 mmol; 55%) sendo o mesmo purificado em coluna cromatográfica com sílica flash sob um gradiente de eluente, primeiramente na proporção 1:1 e posteriormente 4:6 para relação n-hexano/acetato de etila.

Analise elementar	Calculado	Experimental
C %	53,65	53,58
H %	5,45	5,33

¹H δ CDCl₃ / TMS): 1,30 (6H, m); 4,22 (4H, m); 4,77 (1H, d, J= 9,7 Hz); 7,32 (9H, m).

¹³C δCDCl₃ / TMS): 16,3 (d, J = 3,1 Hz); 16,4 (d, J = 3,0 Hz); 21,6 (s); 42,8 (d, J = 128,7 Hz); 63,6 (d, J = 3,9 Hz); 63,8 (d, J= 4,1 Hz); 128,9 (s); 129,0 (s); 129,1 (s); 129,2 (s); 133,1 (s); 133,2 (s); 135,3 (s); 144,5 (s); 192,5 (s).

4.6.5.3 – Etil-1-fenilselanil-2-oxo-fosfonato de dietila (3)

De acordo com o método geral proposto, partiu-se de 0,7 mL de diisopropilamina (4,7 mmol) e 2,1 mL de butilitio em 10 mL de THF. Na seqüência foi adicionado 1,0 g (3,9 mmol) de dietil-2-oxo-2-feniletilfosfonato em 5 mL de THF, finalizando com uma solução de 1,10 g (4,68 mmol) de brometo de fenilselenila em 5 mL de THF. Foi obtido 0,61 g (1,5 mmol; 38%) sendo o mesmo purificado em coluna cromatográfica com sílica flash sob um gradiente de eluente, primeiramente na proporção 1:1 e posteriormente 4:6 para relação n-hexano/acetato de etila.

Analise elementar	Calculado	Experimental
C %	52,57	52,23
H %	5,15	4,80

¹H δCDCl₃ / TMS): 1,31 (6H, m); 4,26 (4H, m); 4,80 (1H, d, J= 16,2 Hz); 7,54 (10H, m). ¹³C δCDCl₃ / TMS): 16,3 (d, J = 2,9 Hz); 16,4 (d, J = 2,8 Hz); 42,0 (d, J= 143,0 Hz); 63,7 (d, J = 6,6 Hz); 63,9 (d, J = 6,9 Hz); 128,5 (s); 128,9 (s); 129,0 (s); 129,2 (s); 133,4 (s); 135,3 (s), 135,7 (s); 135,8 (s); 192,9 (s).

4.6.5.4 – Etil-1-fenilselanil-2-(4-fluorofenil)-2-oxo-fosfonato de dietila (4)

De acordo com o método geral proposto, partiu-se de 0,8 mL de diisopropilamina (5,7 mmol) e 2,6 mL de butilitio em 10 mL de THF. Na seqüência foi adicionado 1,3 g (3,65 mmol) de dietil 2-(4-fluorofenil)-2-oxoetilfosfonato em 5 mL de THF, finalizando com uma solução de 1,2 g (5 mmol) de brometo de fenilselenila em 5 mL de THF. Foi obtido 0,8 g (2 mmol; 51%) sendo o mesmo purificado em coluna cromatográfica com sílica flash sob um gradiente de eluente, primeiramente na proporção 1:1 e posteriormente 4:6 para relação n-hexano/acetato de etila.

Analise elementar	Calculado	Experimental
C %	50,36	50,38
H %	4,70	4,83

¹H δCDCl₃ / TMS): 1,31 (3H, t, J = 7,2 Hz); 1,33 (3H, t, J = 7,2 Hz); 4,24 (4H, m); 4,73 (1H, d, J= 9,9 Hz); 7,05 (2H, t, J=5,1 Hz); 7,27 (2H, t, J= 4,6 Hz); 7,32 (1H, d, J= 4,4 Hz); 7,60 (2H, m); 7,85 (2H, m).

¹³C δ CDCl₃ / TMS): 16,3(d, J= 3,6 Hz); 42,8 (d, J= 128,7 Hz); 53,4 (s); 63,7 (d, J = 6,6 Hz); 63,9 (d, J = 7,0 Hz); 115,5 (d, J=13,0); 128,7 (d, J=2,3 Hz); 129,1 (s); 129,3 (s), 131,7 (d, J=5,7 Hz); 132,0 (s); 135,3 (s); 165,2 (d, J= 152,6 Hz); 191,4 (s).

4.6.5.5 – Etil-1-fenilselanil-2-(4-clorofenil)-2-oxo-fosfonato de dietila (5)

De acordo com o método geral proposto, partiu-se de 0,6 mL de diisopropilamina (4 mmol) e 2 mL de Butilitio em 10 mL de THF. Na seqüência foi adicionado 1,0 g (3,5 mmol) de dietil 2-(4-clorofenil)-2-oxoetilfosfonato em 5 mL de THF, finalizando com uma solução de 0,94 g (4 mmol) de brometo de fenilselenila em 5 mL de THF. Foi obtido 0,8 g (2 mmol; 51%) sendo o mesmo purificado em coluna cromatográfica com sílica flash sob um gradiente de eluente, primeiramente na proporção 1:1 e posteriormente 4:6 para relação n-hexano/acetato de etila.

Analise elementar	Calculado	Experimental
C %	48,50	48,49
H %	4,52	4,62

¹H δCDCl₃ / TMS): 1,30 (3H, t, J = 5,4 Hz); 1,33 (3H, t, J = 6,9 Hz); 4,24 (4H, m); 4,71 (1H, d, J= 16,5 Hz); 7,31 (5H, m); 7,60 (2H, d, J= 6,6 Hz); 7,76 (2H, d, J= 4,5 Hz).

¹³C δCDCl₃ / TMS): 16,6 (s); 16,7 (s); 43,2 (d, J= 143,6 Hz); 64,1 (t, J= 6,8 Hz); 129,1 (s); 129,4 (s); 129,6 (s), 130,6 (s); 134,2 (s); 135,6 (s); 140,2 (s); 191,9 (s).

$4.6.5.6-Etil-1-fenilselanil-2-(4-bromofenil)-2-oxo-fosfonato\ de\ dietila\ (6)$

De acordo com o método geral proposto, partiu-se de 0,7 mL de diisopropilamina (4,7 mmol) e 2,1 mL de butilitio em 10 mL de THF. Na seqüência foi adicionado 1,3 g (3,8 mmol) de dietil-2-oxo-2-feniletilfosfonato em 5 mL de THF, finalizando com uma solução de 1,10 g (4,68 mmol) de brometo de fenilselenila em 5 mL de THF. Foi obtido 0,65 g (1,3 mmol; 34%) sendo o mesmo purificado em coluna cromatográfica com sílica flash sob um gradiente de eluente, primeiramente na proporção 1:1 e posteriormente 4:6 para relação nhexano/acetato de etila.

Analise elementar	Calculado	Experimental
C %	44,10	44,04
Н %	4,10	4,18

¹H δCDCl₃ / TMS): 1,31 (6H, m); 4,23 (4H, m); 4,69 (1H, d, J = 16,5 Hz); 7,52 (9H, m). ¹³C δCDCl₃ / TMS): 16,2 (d, J=6,0 Hz); 42,5 (d, J=143,2 Hz); 63,8 (t, J=7,2); 128,6 (s); 128,7 (s); 128,8 (s); 129,1 (s); 129,4 (s); 130,4 (s); 131,8 (s); 134,4 (s); 134,5 (s); 135,3 (s), 191,8 (s).

4.6.5.7 – Etil-1-fenilselanil-2-(4-nitrofenil)-2-oxo-fosfonato de dietila(7)

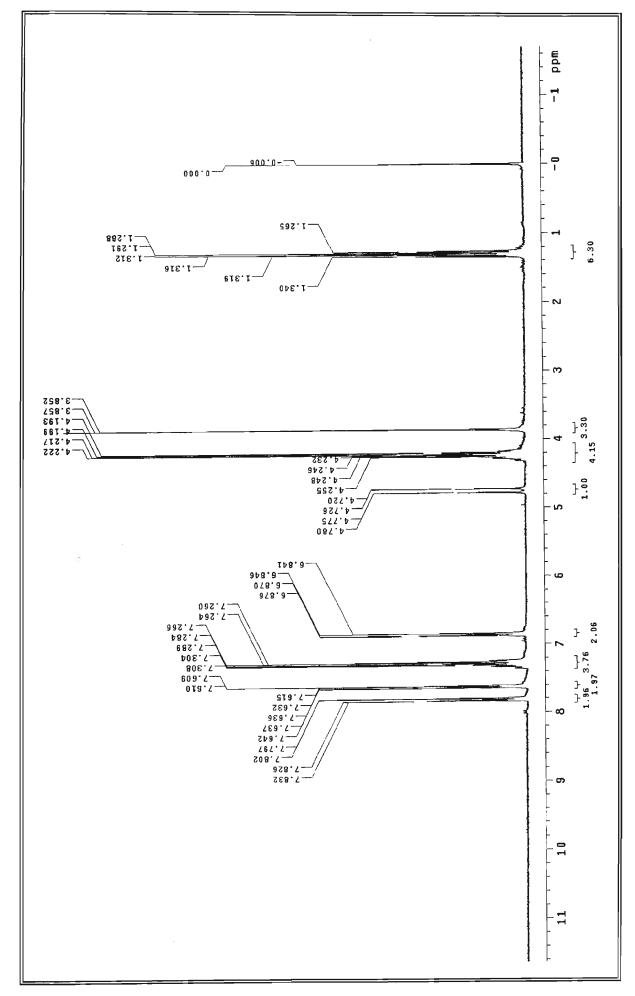
De acordo com o método geral proposto, partiu-se de 1,0 mL de diisopropilamina (7,1 mmol) e 3,0 mL de butilitio em 10 mL de THF. Na seqüência foi adicionado 1,4 g (3,8 mmol) de dietil 2-(4-nitrofenil)-2-oxoetilfosfonato em 5 mL de THF, finalizando com uma solução de 1,6 g (6,8 mmol) de brometo de fenilselenila em 5 mL de THF. Foi obtido 1,4 g (3,8 mmol; 56 %) sendo o mesmo purificado em coluna cromatográfica com sílica flash sob um gradiente de eluente, primeiramente na proporção 1:1 e posteriormente 4:6 para relação n-hexano/acetato de etila.

Ponto de fusão: 68° - 70°C

Analise elementar	Calculado	Experimental
C %	47,38	47,42
H %	4,42	4,50

¹H δCDCl₃ / TMS): 1,34 (6H, dt, J= 6,9 Hz); 4,28 (4H, m); 4,80 (1H, d, J= 16,8 Hz); 7,33 (3H, m); 7,58 (2H, d, J= 1,5 Hz); 7,97 (2H, d, J= 9,0 Hz); 8,22 (2H, d, 9,3 Hz).

¹³C δCDCl₃ / TMS): 16,2 (s); 16,3 (s); 43,2 (d, J= 144,3 Hz); 63,9 (s); 123,5 (s); 128,2 (s); 129,4 (s); 129,5 (s); 129,9 (s); 135,2 (s), 140,2 (s); 150,2 (s); 191,1 (s).


Referências Bibliográficas

- [1] Reis, A. K. C. A. Dissertação de Mestrado, Instituto de Química Universidade de São Paulo, 1999.
- [2] Ruiz Filho, R. Dissertação de Mestrado, Instituto de Química Universidade de São Paulo, 1995.
- [3] S. A. Guerreiro, P. R. Olivato and R. Rittner, Can. J. Anal. Sci. Spectr., 48, 181 (2003).
- [4] P. R. Olivato, R. R. Filho and J. C. D. Lopes, *Phosphorus, Sulfur and Silicon*, **92**, 109 (1994).
- [6] S. Cradock and R. A. Whiteford, J. Chem. Soc. Faraday Trans., 2, 281 (1972).
- [7] A. Modelli, D. Jones, G. Distefano and M. Tronc, Chem Phys. Lett., 181, 361 (1991).
- [8] J. R. Durig, G. A. Guirgis e A. S. Drew; J. Raman spectroscopy, 28, 869 (1994).
- [9] L. J. Bellamy, Advances in Infrared Group Frequencies, Chapman e Hall, London, 1975, 127.
- [10] A. Gazet, L. Lafaille, A. Verdier e A. Lattes, Bull. Soc. Chim. Fr., 4108, 1968.
- [11] P. R. Olivato, B. Wladislaw, S. A. Guerreiro e D. Russowsky, *Phosphorus and Sulfur*, **24**, 225 (1985).
- [12] P. R. Olivato, F. Oike e J. C. D. Lopes, Phosphorus, Sulfur, Silicon, 47, 391 (1990).
- [13] M. J. S. Dewar, "Hyperconjugation", Ronald Press, New York, 1962.
- [14] P. R. Olivato, e S. A. Guerrero, *Phosphorus, Súlfur, Silicon and Relat. Elem.*, **66**, 207 (1992).
- [15] A. Gaset, L. Lafaille, A. Verdier, A. Lattes, Bull. Soc. Chim. Fr., 4108 (1968).

- [16] L. J. Bellamy, "Advances in Infrared Group Frequencies", *Chapman & Hall*, London, **143** (1975).
- [18] M. Charton, in "Progress in Physical Organic Chemistry", 13, 119 (1981).
- [19] C. Hansch, A. Leo, D. Hoekman, Exploring QSAR Hydrofobic, Electronic and Steric Constants, American
- [20] D. D. Perrin, W. L. F. Armarego, "Purification of Laboratory Chemicals 3 rd. Ed." Oxford: Pergamon Press, 1998.
- [21] D. N. Harpp, L.C. Bao, C. J. Black, J.G. Gleason, R. A. Smith, J. Org. Chem., 1975, 40, 3420.
- [22] E. E. Aboujaoude, N. Collignon, M. Teulade, P. Savignac, *Phosphorus and Sulfur*, **25**, 57 (1985).
- [23] Nahn, S., Weinreb, S. M.; Tetrahedron Lett., 22, (39), 3815 (1981).
- [24] H. J. Reich, J. M. Renga e I. L. Reich, J. Am. Chem. Soc., 97, 5434 (1975).
- [25] Aldrich Handbook of Fine Chemicals and Laboratory Equipment, 2000-2001, Brasil.

Apêndice

São apresentados os espectros de RMN de 1H e 13C dos compostos 1, 3 e 7.

Figura 11 - Espectro de RMN de ¹H da p-MeO ϕ C(O)CH(Se ϕ)P(O)(OEt)₂ (1) em CDCl₃.

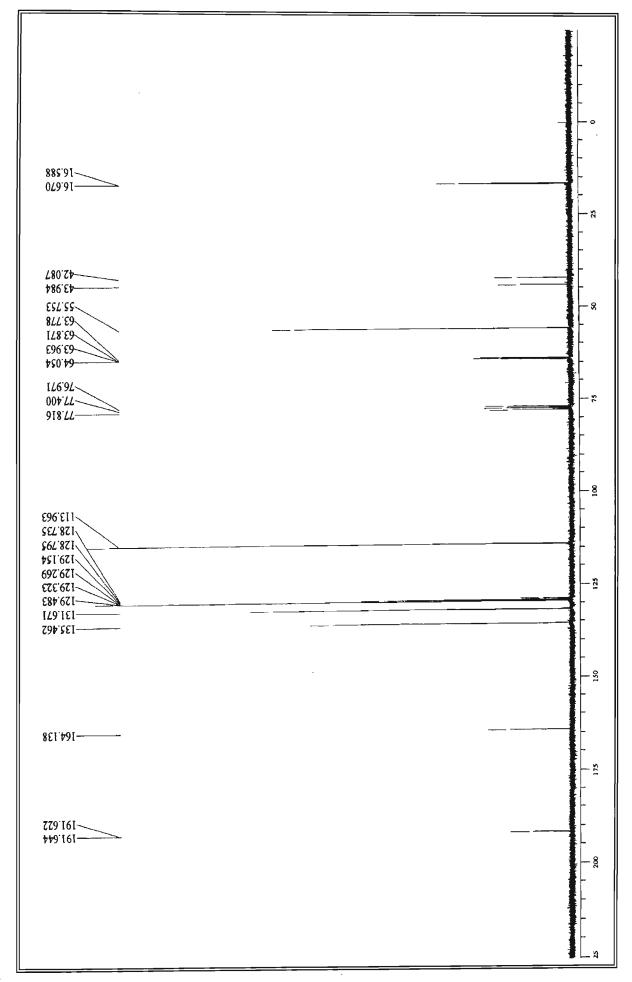


Figura 12 - Espectro de RMN de 13 C da p-MeO ϕ C(O)CH(Se ϕ)P(O)(OEt) $_2$ (1) em CDCl $_3$.

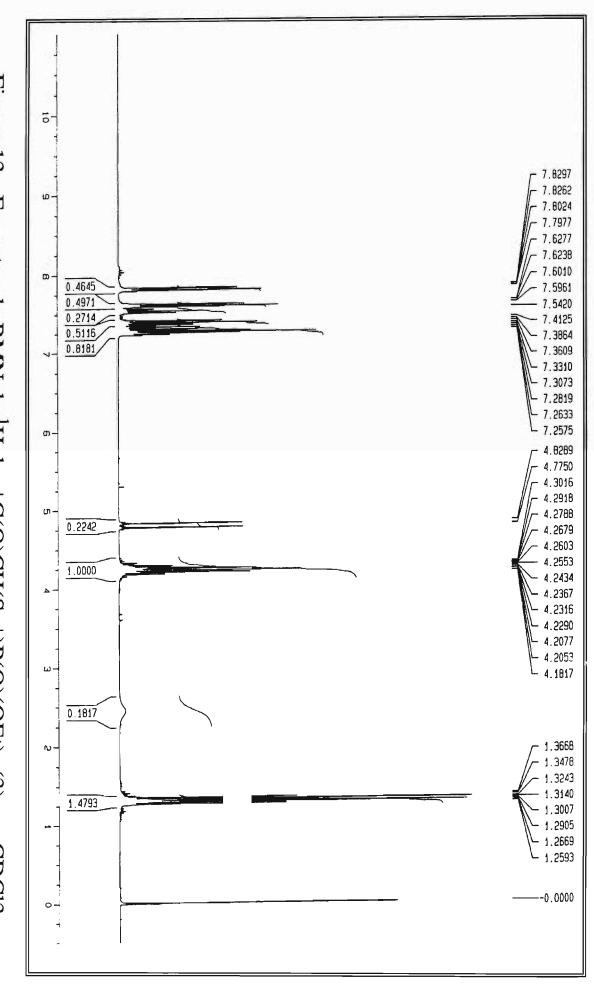


Figura 13 - Espectro de RMN de ¹H da φC(O)CH(Seφ)P(O)(OEt)₂ (3) em CDCl3.

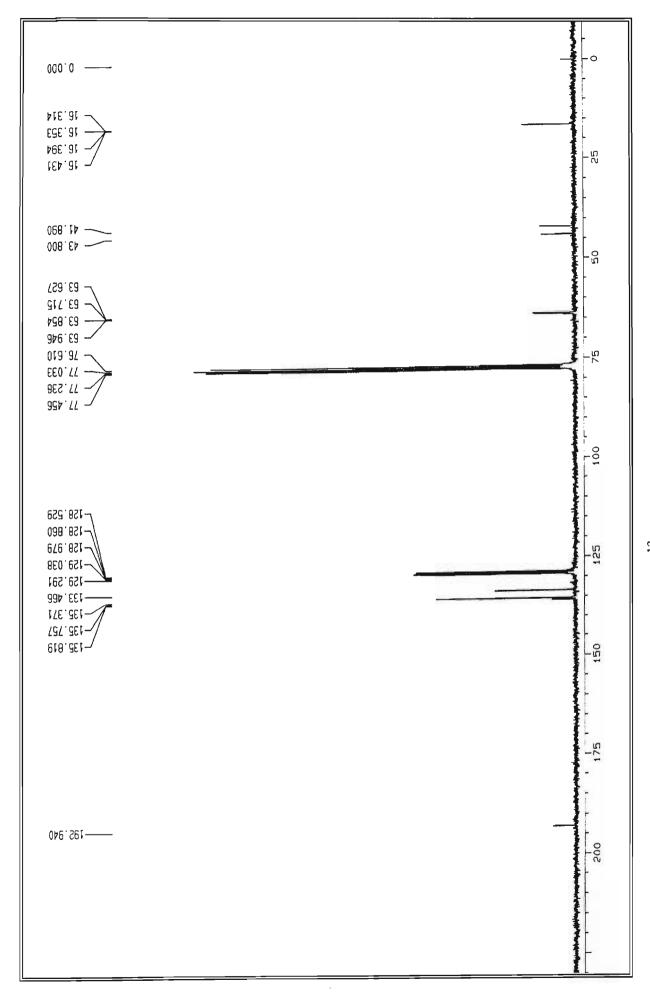


Figura 14 - Espectro de RMN de ¹³C da ϕ C(O)CH(Se ϕ)P(O)(OEt)₂ (3) em CDCl3

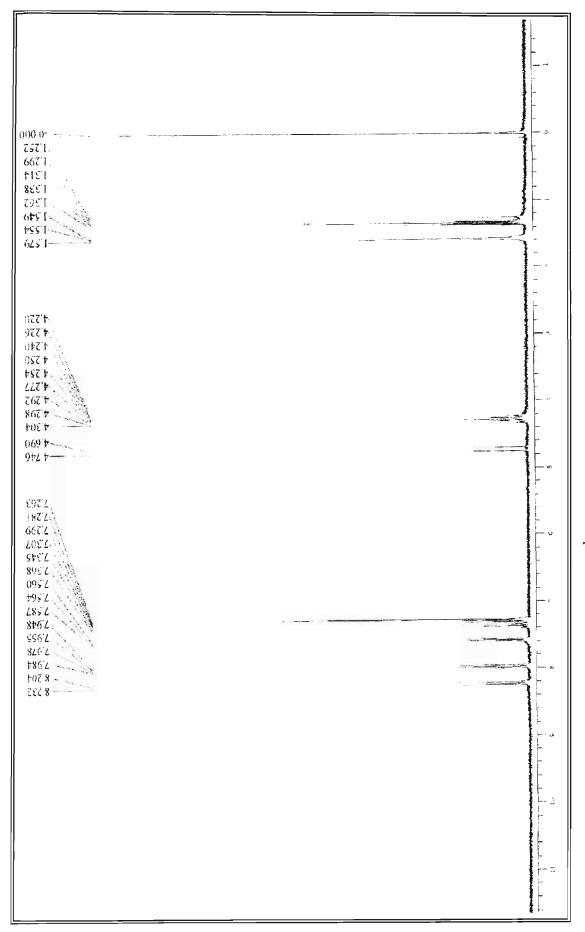


Figura 15 - Espectro de RMN de ¹H da p-NO₂ ϕ C(O)CH(Se ϕ)P(O)(OEt)₂ (7) em CDCl3.

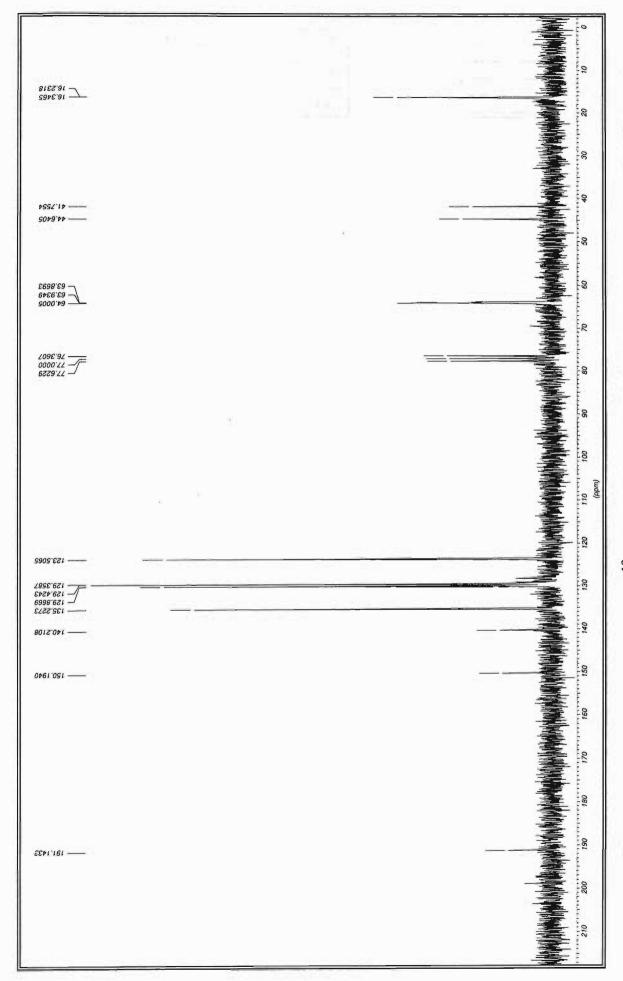


Figura 16 - Espectro de RMN de 13 C da p-NO₂ ϕ C(O)CH(Se ϕ)P(O)(OEt)₂ (7) em CDCl3.