LISTA DE FIGURAS

Figura 1 - Representação da passagem da luz através de uma amostra em solução)
dentro de uma cubeta	69
Figura 2 - Representação da transição eletrônica segundo o Princípio de	
Frank-Codon	70
Figura 3 - Diagrama de Jablonski	72
Figura 4 - Perfil do decaimento do tempo de vida de fluorescência	78
Figura 5 - Ciclo de Forster	79
Figura 6 – Representação da estrutura química do BUNDI	116
Figura 7 – Espectros de absorção na região do UV-VIS do BUNDI	
(A) H2O, (B) EtOH	.118
Figura 8 – Espectros de absorção na região do UV-VIS do BUNDI	
(C) CH3CN; (D) CHCl3	119
Figura 9 – Espectros de absorção na região do UV-VIS do BUNDI	
(E) NNDA	.120
Figura 10 – Representações gráficas para a determinação dos valores	
de ε _{max} do BUNDI - (a) H2O; (b) EtOH	.121
Figura 11 – Representações gráficas para a determinação dos valores de ϵ_{max}	do
BUNDI - (c) CH3CN; (d) CHCl3	122
Figura 12 – Representações gráficas para a determinação dos valores de ϵ_{max}	do
BUNDI - (e) NNDA	.123
Figura 13 – Representação gráfica de A1/A2 (●) e A1/A3(∎) versus SPP	
para o BUNDI	.130
Figura 14 – Representação gráfica de A1/A2 (●) e A1/A3(∎) versus E ^N	

para o BUNDI131
Figura 15 – Representação da estrutura química do CLNDI132
Figura 16 – Espectros de absorção na região do UV-VIS do CLNDI
(A) H2O; (B) EtOH133
Figura 17 – Espectros de absorção na região do UV-VIS do CLNDI
(C) CH3CN; (D) CHCl3
Figura 18 – Espectros de absorção na região do UV-VIS do CLNDI
(E) NNDA135
Figura 19 – Representações gráficas para a determinação dos valores de ϵ_{max} do
CLNDI - (a) H2O; (b) EtOH136
Figura 20 – Representações gráficas para a determinação dos valores de ϵ_{max} do
CLNDI - (c) CH3CN; (d) CHCl3137
Figura 21 – Representações gráficas para a determinação dos valores de ϵ_{max} do
CLNDI - (e) NNDA138
Figura 22 – Representação gráfica de A1/A2 (●) e A1/A3(■) versus SPP
para o CLNDI143
Figura 23 – Representação gráfica de A1/A2 (●) e A1/A3(■) versus E ^N
para o CLNDI144
Figura 24 – Representação da estrutura química do BRNDI145
Figura 25 – Espectros de absorção na região do UV-VIS do BRNDI
(A) H2O; (B) EtOH146
Figura 26 – Espectros de absorção na região do UV-VIS do BRNDI
(C) CH3CN; (D) CHCl3147

Adelsimara Ceballos Guerta

Figura 27 – Espectros de absorção na região do UV-VIS do BRNDI
(E) NNDA148
Figura 28 – Representações gráficas para a determinação dos valores de ϵ_{max} do
BRNDI - (a) H2O; (b) EtOH149
Figura 29 – Representações gráficas para a determinação dos valores de ϵ_{max} BRNDI -
(c) CH3CN; (d) CHCl3150
Figura 30 – Representações gráficas para a determinação dos valores de ϵ_{max} do
BRNDI - (e) NNDA151
Figura 31 – Representação gráfica de A1/A2 (●) e A1/A3(■) versus SPP
para o BRNDI156
Figura 32 – Representação gráfica de A1/A2 (●) e A1/A3(■) versus ETN
para o BRNDI157
Figura 33– Representação da estrutura química do OHNDI157
Figura 34 – Espectros de absorção na região do UV-VIS do OHNDI
(A) H2O; (B) EtOH159
Figura 35 – Espectros de absorção na região do UV-VIS do OHNDI
(C) CH3CN; (D) CHCl3160
Figura 36 – Espectros de absorção na região do UV-VIS do OHNDI
(E) NNDA161
Figura 37 – Representações gráficas para a determinação dos valores de ϵ_{max} do
OHNDI - (a) H2O; (b) EtOH162
Figura 38– Representações gráficas para a determinação dos valores de ϵ_{max} do
OHNDI - (c) CH3CN; (d) CHCl3163

Figura 39 – Representações gráficas para a determinação dos valores de ϵ_{max} do
OHNDI - (e) NNDA164
Figura 40 – Representação gráfica de A1/A2 (●) e A1/A3(■) versus SPP
para o OHNDI169
Figura 41 – Representação gráfica de A1/A2 (●) e A1/A3(∎) versus E _T ^N
para o OHNDI170
Figura 42 – Representação da estrutura química do DMNDI171
Figura 43 – Espectros de absorção na região do UV-VIS do DMNDI
(A) EtOH; (B) CH3CN172
Figura 44 – Espectros de absorção na região do UV-VIS do DMNDI
(C) CHCl3; (D) NNDA173
Figura 45 – Espectros de absorção na região do UV-VIS do DMNDI
(E) H2SO4; (F) H2O174
Figura 46 – Representações gráficas para a determinação dos valores de ϵ_{max} do
DMNDI - (a) EtOH; (b) CH3CN176
Figura 47 – Representações gráficas para a determinação dos valores de ϵ_{max} do
DMNDI - (c) CHCl3; (d) NNDA177
Figura 48 – Representações gráficas para a determinação dos valores de ϵ_{max} do
DMNDI - (e) H2SO4; (f) H2O178
Figura 49 – Representação gráfica de A1/A2 (●) e A1/A3(■) versus SPP
para o DMNDI183
Figura 50 – Representação gráfica de A1/A2 (●) e A1/A3(■) versus E _T ^N
para o DMNDI

Figura 51 - Representação da estrutura química do DANDI185
Figura 52 – Espectros de absorção na região do UV-VIS do DANDI
(A) H2O; (B) EtOH
Figura 53 – Espectros de absorção na região do UV-VIS do DANDI
(C) CH3CN; (D) CHCl3
Figura 54 – Espectros de absorção na região do UV-VIS do DANDI
(E) NNDA; (F) H2SO4188
Figura 55 – Representações gráficas para a determinação dos valores de ϵ_{max} do
DANDI - (a) H2O; (b) EtOH189
Figura 56 – Representações gráficas para a determinação dos valores de ϵ_{max} do
DANDI - (c) CH3CN; (d) CHCl3190
Figura 57 – Representações gráficas para a determinação dos valores de ϵ_{max} do
DANDI - (e) NNDA; (f) H2SO4191
Figura 58 – Representação gráfica de A1/A2 (●) e A1/A3(■) versus SPP
para o DANDI196
Figura 59 – Representação gráfica de A1/A2 (●) e A1/A3(■) versus E _T ^N
para o DANDI
Figura 60 – Representação da estrutura química do NDI 198
Figura 61 – Espectros de absorção na região do UV-VIS do NDI
(A) H2O; (B) EtOH199
Figura 62 – Espectros de absorção na região do UV-VIS do NDI
(C) CH3CN; (D) CHCl3200
Figura 63 – Espectros de absorção na região do UV-VIS do ND

(E) NNDA	
Figura 64 –	Representações gráficas para a determinação dos valores de ϵ_{max} do NDI
(a) H2O; (b) EtOH
Figura 65 –	Representações gráficas para a determinação dos valores de ϵ_{max} do NDI
(c) CH3CN	; (d) CHCl3203
Figura 66 -	- Representações gráficas para a determinação dos valores de ϵ_{max} do NDI
(e) NNDA	
Figura 67 -	- Representação gráfica de A1/A2 (●) e A1/A3(∎) versus SPP
para o NDI .	
Figura 68 –	Representação gráfica de A1/A2 (●) e A1/A3(∎) versus E _T ^N
para o NDI	
Figura 69 –	Espectro de emissão de fluorescência do BUNDI em CH3CN (λ_{max}^{exc} = 340
nm) – onde	a área hachurada foi integrada (A = 1,79394E7)212
Figura 70 –	Espectro de emissão de fluorescência do BUNDI em H2O (λ_{max}^{exc} = 340
nm) – onde	a área hachurada foi integrada (A = 2,42347E8)214
Figura 71 –	Espectro de emissão de fluorescência do BUNDI em EtOH (λ_{max}^{exc} = 340
nm) – onde	a área hachurada foi integrada (A = 2,23646E7)215
Figura 72 –	Espectro de emissão de fluorescência do BUNDI em CHCl3 (λ_{max}^{exc} = 340
nm) – onde	a área hachurada foi integrada (A = 4,37425E7)216
Figura 73–	Espectro de emissão de fluorescência do BUNDI em NNDA (λ_{max}^{exc} = 340
nm) – onde	a área hachurada foi integrada (A = 3,1949E7)217

Figura 74 – (A1) Espectro de emissão de fluorescência do BUNDI em H2O (λ_{max}^{exc} = 340 nm); (A2) Espectro de excitação do BUNDI em H2O (λ_{max}^{emis} = 400 nm)......218 **Figura 75** – (B1) Espectro de emissão de fluorescência do BUNDI em EtOH (λ_{max}^{exc} = 340 nm); (B2) Espectro de excitação do BUNDI em EtOH (λ_{max}^{emis} = 400 nm)......219 Figura 76 – (C1) Espectro de emissão de fluorescência do BUNDI em CH3CN (λ_{max}^{exc} = 340 nm) ; (C2) Espectro de excitação do BUNDI em CH3CN (λ_{max}^{emis} = 400 nm)...... 219 Figura 77 – (D1) Espectro de emissão de fluorescência do BUNDI em CHCl3 (λ_{max}^{exc} = 340 nm); (D2) Espectro de excitação do BUNDI em CHCl3 (λ_{max}^{emis} = 400 nm)......220 Figura 78 – (E1) Espectro de emissão de fluorescência do BUNDI em NNDA (λ_{max}^{exc} = 340 nm); (E2) Espectro de excitação do BUNDI em NNDA (λ_{max}^{emis} = 400 nm)......220 Figura 79 – (A1) Espectro de emissão de fluorescência do CLNDI em H2O (λ_{max}^{exc} = 340 nm); (A2) Espectro de excitação do CLNDI em H2O (λ_{max}^{emis} = 400 nm).....222 **Figura 80** – (B1) Espectro de emissão de fluorescência do CLNDI em EtOH (λ_{max}^{exc} = 340 nm); (B2) Espectro de excitação do CLNDI em EtOH (λ_{max}^{emis} = 400 nm)......223 Figura 81 – (C1) Espectro de emissão de fluorescência do CLNDI em CH3CN (λ_{max}^{exc} = 340 nm); (C2) Espectro de excitação do CLNDI em CH₃CN (λ_{max}^{emis} = 400 nm)......223 Figura 82 – (D1) Espectro de emissão de fluorescência do CLNDI em CHCl3 (λ_{max}^{exc} = 340 nm); (D2) Espectro de excitação do CLNDI em CHCl3 (λ_{max}^{emis} = 400 nm)......224 Figura 83 – (E1) Espectro de emissão de fluorescência do CLNDI em NNDA (λ_{max}^{exc} = 340 nm) ; (E2) Espectro de excitação do CLNDI em NNDA (λ_{max}^{emis} = 400 nm).....224 **Figura 84** – (A1) Espectro de emissão de fluorescência do BRNDI em H2O (λ_{max}^{exc} = 340 nm); (A2) Espectro de excitação do BRNDI em H2O (λ_{max}^{emis} = 400 nm)......226

Figura 85 – (B1) Espectro de emissão de fluorescência do BRNDI em EtOH (λ_{max}^{exc} = 340 nm); (B2) Espectro de excitação do BRNDI em EtOH (λ_{max}^{emis} = 400 nm)......226 **Figura 86** – (C1) Espectro de emissão de fluorescência do BRNDI em CH₃CN (λ_{max}^{exc} = 340 nm); (C2) Espectro de excitação do BRNDI em CH₃CN (λ_{max}^{emis} = 400 nm)......227 Figura 87 – (D1) Espectro de emissão de fluorescência do BRNDI em CHCl3 (λ_{max}^{exc} = 340 nm) ; (D2) Espectro de excitação do BRNDI em CHCl3 (λ_{max}^{emis} = 400 nm)......227 Figura 88 – (E1) Espectro de emissão de fluorescência do BRNDI em NNDA (λ_{max}^{exc} = 340 nm) ; (E2) Espectro de excitação do BRNDI em NNDA (λ_{max}^{emis} = 400 nm)......228 Figura 89– (A1) Espectro de emissão de fluorescência do OHNDI em H2O (λ_{max}^{exc} = 340 nm); (A2) Espectro de excitação do OHNDI em H2O (λ_{max}^{emis} = 400 nm)......229 Figura 90 – (B1) Espectro de emissão de fluorescência do OHNDI em EtOH (λ_{max}^{exc} = 340 nm); (B2) Espectro de excitação do OHNDI em EtOH (λ_{max}^{emis} = 400 nm)......230 **Figura 91** – (C1) Espectro de emissão de fluorescência do OHNDI em CH3CN (λ_{max}^{exc} = 340 nm); (C2) Espectro de excitação do OHNDI em CH3CN (λ_{max}^{emis} = 400 nm)......230 Figura 92 – (D1) Espectro de emissão d e fluorescência do OHNDI em CHCl3 (λ_{max}^{exc} = 340 nm); (D2) Espectro de excitação do OHNDI em CHCl3 (λ_{max}^{emis} = 400 nm)......231 **Figura 93** – (E1) Espectro de emissão de fluorescência do OHNDI em NNDA (λ_{max}^{exc} = 340 nm); (E2) Espectro de excitação do OHNDI em NNDA (λ_{max}^{emis} = 400 nm)......231 Figura 94 – (A1) Espectro de emissão de fluorescência do DMNDI em H2O (λ_{max}^{exc} = 340 nm); (A2) Espectro de excitação do DMNDI em H2O (λ_{max}^{emis} = 400 nm)......233

Figura 95 – (B1) Espectro de emissão de fluorescência do DMNDI em EtOH (λ_{max}^{exc} =
340 nm) ; (B2) Espectro de excitação do DMNDI em EtOH (λ_{max}^{emis} = 400 nm)233
Figura 96 – (C1) Espectro de emissão de fluorescência do DMNDI em CH3CN (λ_{max}^{exc}
= 340 nm) ; (C2) Espectro de excitação do DMNDI em CH3CN (λ_{max}^{emis} = 400
nm)234
Figura 97 – (D1) Espectro de emissão de fluorescência do DMNDI em CHCI3 (λ_{max}^{exc} =
340 nm) ; (D2) Espectro de excitação do DMNDI em CHCl3 (λ_{max}^{emis} = 400 nm)234
Figura 98 – (E1) Espectro de emissão de fluorescência do DMNDI em NNDA (λ_{max}^{exc} =
340 nm) ; (E2) Espectro de excitação do DMNDI em NNDA (λ_{max}^{emis} = 400 nm)235
Figura 99 – (F1) Espectro de emissão de fluorescência do DMNDI em H2SO4 (λ_{max}^{exc} =
340 nm) ; (F2) Espectro de excitação do DMNDI em H2SO4 (λ_{max}^{emis} = 400 nm)235
Figura 100 – (A1) Espectro de emissão de fluorescência do DANDI em
H2O(λ_{max}^{exc} =340 nm) ; (A2) Espectro de excitação do DANDI em H2O (λ_{max}^{emis} = 400
nm)237
Figura 101 – (B1) Espectro de emissão de fluorescência do DANDI em EtOH (λ_{max}^{exc} =
340 nm) ; (B2) Espectro de excitação do DANDI em EtOH (λ_{max}^{emis} = 400 nm)237
Figura 102 – (C1) Espectro de emissão de fluorescência do DANDI em CH3CN (λ_{max}^{exc}
= 340 nm) ; (C2) Espectro de excitação do DANDI em CH3CN (λ_{max}^{emis} = 400 nm)238
Figura 103 – (D1) Espectro de emissão de fluorescência do DANDI em CHCl3 (λ_{max}^{exc} =
340 nm) ; (D2) Espectro de excitação do DANDI em CHCl3 (λ_{max}^{emis} = 400 nm)238
Figura 104– (E1) Espectro de emissão de fluorescência do DANDI em NNDA(λ_{max}^{exc} =

Figura 105 – (F1) Espectro de emissão de fluorescência do DANDI em H2SO4 (λ_{max}^{exc}
= 340 nm) ; (F2) Espectro de excitação do DANDI em H2SO4 (λ_{max}^{emis} = 400
nm)239
Figura 106 – (A1) Espectro de emissão de fluorescência do NDI em H2O (λ_{max}^{exc} = 340
nm) ; (A2) Espectro de excitação do NDI em H2O (λ_{max}^{emis} = 400 nm)241
Figura 107– (B1) Espectro de emissão de fluorescência do NDI em EtOH (λ_{max}^{exc} = 340
nm) ; (B2) Espectro de excitação do NDI em EtOH (λ_{max}^{emis} = 400 nm)241
Figura 108 – (C1) Espectro de emissão de fluorescência do NDI em CH3CN (λ_{max}^{exc} =
340 nm) ; (C2) Espectro de excitação do NDI em CH ₃ CN (λ_{max}^{emis} = 400 nm)242
Figura 109 – (D1) Espectro de emissão de fluorescência do NDI em CHCI3 (λ_{max}^{exc} =
340 nm) ; (D2) Espectro de excitação do NDI em CHCl3 (λ_{max}^{emis} = 400 nm)242
Figura 110 – (E1) Espectro de emissão de fluorescência do NDI em NNDA (λ_{max}^{exc} =
340 nm) ; (E2) Espectro de excitação do NDI em NNDA (λ_{max}^{emis} = 400 nm)243
Figura Q-1 – Representação da estrutura química da HIQ264
Figura Q-2 – Espectros de absorção na região do UV-VIS da HIQ
(A) H2O, (B) MetOH266
Figura Q-3 – Espectros de absorção na região do UV-VIS da HIQ
(C) CH3CN, (D) hexano267
Figura Q-4 – Representações gráficas para a determinação dos valores de ϵ_{max} da HQI
(a) H2O; (b) EtOH269
Figura Q-5 – Representações gráficas para a determinação dos valores de ϵ_{max} da HQI
(c) CH3CN; (d) hexano270

Figura Q-6 – Espectros de absorção na região do UV-VIS da HIQ - (I) em pH = 1,3
(solução tampão HClO4 / NaOH)271
Figura Q-7 – Espectros de absorção na região do UV-VIS da HIQ - (II) em pH = 7,0
(solução tampão Na2HPO4 / NaH2PO4), (III) em pH = 12,9 (solução tampão NaOH /
HCI)
Figura Q-8 – Representações gráficas para a determinação dos valores de ϵ_{max} da HQI
(a) pH = 1,3; (b) pH = 7,0; (c) pH = 12,9273
Figura Q-9 – Representação do equilíbrio químico entre HIQ e a forma protonada
(HIQH ⁺)274
Figura Q-10 – (A)- Espectros de absorção na região do UV-VIS de HIQ em solução
tampão Mcllavaine com pH's de 3,2 a 8,0275
Figura Q-11 – (B)- Gráfico para a determinação do pKa ₁ de HIQ para λ_{max}^{abs} = 318 nm
(C)- Gráfico para a determinação do pKa ₁ de HIQ para λ_{max}^{abs} = 330 nm276
Figura Q-12 – Representação do equilíbrio químico entre HIQ e a sua forma não
protonada (HIQ ⁻)276
Figura Q-13 - (D)- Espectros de absorção na região do UV-VIS de HIQ e solução
tampão com pH's de 6,4 a 12,1277
Figura Q-14 – (E)- Gráfico para a determinação do pKa ₂ de HIQ para λ_{max}^{abs} = 318 nm
(F)- Gráfico para a determinação do pKa ₂ de HIQ para λ_{max}^{abs} = 330 nm278
Figura Q-15 – Representação da estrutura química da CLQ278
Figura Q-16 - Espectros de absorção na região do UV-VIS da CLQ - (I) H2O, (II)
MetOH278

Figura Q-17 – Representações gráficas para a determinação dos valores de ϵ_{max} da
CLQ - (III) CH3CN; (VI) hexano281
Figura Q-18 – (V) Espectros de absorção do CLQ em meios ácido e básico282
Figura Q-19 – Representações gráficas para a determinação dos valores de ϵ_{max} da
CLQ – (a) H2O; (b) MetOH283
Figura Q-20 – Representações gráficas para a determinação dos valores de ϵ_{max} da
CLQ - (c) CH3CN; (d) hexano284
Figura Q-21 – Representação do equilíbrio químico entre CLQ e a sua forma
protonada (CLQH ⁺)285
Figura Q-22 – (A)- Espectros de absorção na região do UV-VIS de CLQ em solução
tampão Mcllavaine com pH's de 2,2 a 6,4287
Figura Q-23 – (B)- Gráfico para a determinação do pKa de CLQ para λ_{max}^{abs} = 306 nm
(C)- Gráfico para a determinação do pKa de CLQ para λ_{max}^{abs} = 321 nm288
Figura Q-24 – Representação dos equilíbrios químicos do composto HIQ, onde (a) é a
forma não protonada, (b) forma protonada e (c) Zwitterion (cátion e ânion) que é
tautômero de HIQ289
Figura Q-25 – (A1) Espectro de emissão de fluorescência de HIQ em pH = 1,1 (solução
tampão HClO4 / H2O) (λ_{max}^{exc} = 320 nm); (A2) Espectro de excitação de HIQ em pH =
1,1 (solução tampão HClO4 / H2O) (λ _{max} ^{emis} = 380 nm)290
Figura Q-26 – (B1) Espectro de emissão de fluorescência de HIQ em pH = 7,0 (solução
tampão McIlvaine) (λ_{max}^{exc} = 320 nm); (B2) Espectro de excitação de HIQ em pH = 7,0
(solução tampão McIlvaine) (λ _{max} ^{emis} = 380 nm)291

Figura Q-27 – (C1) Espectro de emissão de fluorescência de HIQ em pH = 12,0 (solução tampão Na2HPO4 / NaOH) (λ_{max}^{exc} = 320 nm); (C2) Espectro de excitação de HIQ em pH = 12,0 (solução tampão Na2HPO4 / NaOH) (λ_{max}^{emis} = 380 nm)......291 Figura Q-28 – (A1) Espectro de emissão de fluorescência de CLQ em H2O (λ_{max}^{exc} = 320 nm); (A2) Espectro de excitação de CLQ em H2O (λ_{max}^{emis} = 400 nm)......292 Figura Q-29 – (B1) Espectro de emissão de fluorescência de CLQ em pH = 1,1 (solução tampão HClO4 / NaOH) (λ_{max}^{exc} = 320 nm); (B2) Espectro de excitação de CLQ em pH = 1,1 (solução tampão HClO4 / NaOH) (λ_{max}^{emis} = 400 nm)......293 Figura Q-30 - (C1) Espectro de emissão de fluorescência de CLQ em pH = 7,0 (solução tampão Na2HPO4 / NaH2PO4) (λ_{max}^{exc} = 320 nm); (C2) Espectro de excitação de CLQ em pH = 7,0 (solução tampão Na2HPO4 / NaH2PO4) (λ_{max}^{emis} = 400 Figura Q-31 – (D1) Espectro de emissão de fluorescência de CLQ em pH = 13,0 (solução tampão Na₂HPO₄ / NaOH) (λ_{max}^{exc} = 320 nm); (D2) Espectro de excitação de CLQ em pH = 13,0 (solução tampão Na2HPO4 / NaOH) (λ_{max}^{emis} = 400 nm)......294 Figura Q-32 – (E) Espectros de emissão de fluorescência de CLQ em vários pH 's **Figura Q-33** – (F) Gráfico de intensidade normalizada x pH para a determinação do pKa de CLQ (utilizou-se [CLQ] = 9,1E-5 mol/L e valores de pH's de 2,6 a7,0).....297

Figura Q-37 - Espectrometria de infravermelho de 3-alil-2-metilquinolin-4-ol
Figura Q-38 - Espectro de RMN ¹ H de 3-alil-4-cloro-2-metilquinolina
Figura Q-39 - Espectro de RMN ¹³ C de 3-alil-4-cloro-2-metilquinolina
Figura Q-40 - Espectro de Massa de 3-alil-4-cloro-2-metilquinolina
Figura Q-41 - Espectrometria de infravermelho de 3-alil-4-cloro-2-metilquinolina304
Figura Q-42- Espectro de RMN ¹ H de 2-acetil-pent-4-enoato de etila
Figura Q-43 - Espectro de RMN ¹³ C do 2-acetil-pent-4-enoato de etila
Figura Q-44 - Espectro de RMN ¹ H do (2Z)-2-[1-(fenilamino)etilideno]pent-4-enoato de
etila