UNIVERSIDADE DE SÃO PAULO INSTITUTO DE QUÍMICA Programa de Pós-Graduação em Química

KARINA JOSEFINA MALQUICHAGUA SALAZAR

Estudo Químico e Biossintético de Peperomias

São Paulo

Data do Depósito na SPG:01/09/2009

KARINA JOSEFINA MALQUICHAGUA SALAZAR

Estudo Químico e Biossintético de Peperomias

Tese apresentada ao Instituto de Química da Universidade de São Paulo para obtenção do Título de Doutor em Química (Química Orgânica)

Orientador: Prof. Dr. Massuo Jorge Kato

São Paulo 2009 Ficha Catalográfica Elaborada pela Divisão de Biblioteca e Documentação do Conjunto das Químicas da USP.

Malquichagua Salazar, Karina Josefina M259e Estudo químico e biossintético de *Peperomias /* Karina Josefina Malquichagua Salazar. -- São Paulo, 2009 179p.

> Tese (doutorado) – Instituto de Química da Universidade de São Paulo. Departamento de Química Fundamental. Orientador: Kato, Massuo Jorge

> 1. Produtos naturais 2. Fitoquímica : Piperaceae 3. Fenol I. T. II. Kato, Massuo Jorge, orientador.

> > 547.7 CDD

Karina Josefina Malquichagua Salazar Estudo Químico e Biossintético de *Peperomias* Tese apresentada ao Instituto de Química da Universidade de São Paulo para obtenção do Título de Doutor em Química (Química Orgânica)

Aprovado em: _____

Banca Examinadora

Prof. Dr.	
Instituição:	
Assinatura:	
Draf Dr	
Prof. Dr.	
Instituição:	
montulçao.	
Assinatura:	
Prof. Dr.	
Instituição:	
.	
Assinatura:	

Dedicatória

- À Deus pela dádiva da vida.
- À Maximina, minha mãe, pelos ensinamentos, pelo exemplo de lutar pelos nossos objetivos.
- Ao Carlos, meu esposo, pelo amor e a companhia.
- À minha querida pátria, Perú, pelas ótimas experiências de vida que vivi lá e ainda por viver, pela minha família, professores e amigos, muito obrigada!

Agradecimentos

Ao Prof. Dr. Massuo Jorge Kato, pela amizade e orientação.

- Aos colegas do Instituto de Química, especialmente dos blocos 2 e 11, pelas alegrias e amizade.
- À todos que de alguma maneira colaboraram para a realização da presente tese de doutorado.

Aos funcionários da Central Analítica pela amabilidade.

- Ao governo do Brasil pela acolhida.
- Ao CNPq pela bolsa de estudos concedida.

RESUMO

SALAZAR, M.K.J. Estudo Químico e Biossintético de *Peperomias*. 2009. 179 p. Tese de Doutorado - Programa de Pós-Graduação em Química. Instituto de Química, Universidade de São Paulo, São Paulo.

O estudo fitoquímico de Peperomia oreophila revelou a presençca de duas lignanas furofurânicas (7R, 8R, 7'R, 8'R)-3,4,5-trimetóxi-3',4'-metilenodioxi-5'-metóxi-8.8',7.0.9',7'.0.9-lignana (1), (7R, 8R, 7'R, 8'R)-3,4,5-trimetóxi-3',4',5'-trimetóxi-8.8',7.0.9',7'.0.9-lignana (2); as duas amidas (2'E)-N-isobutil-3'-(5-metóxi-7,8benzodioxol-1-il)acrilamida (3), (2'E)-N-isobutil-3'-(3,4,5-trimetóxifenil)acrilamida (4), três derivados de acido cinâmico (2E)-3'-(3,4,5-trimetóxifenil)acrilato de metila (5), (2Z)-3-(3,4,5-trimetóxifenil)acrilato de metila (6), (2'E)-3'-(5-metóxi-7,8-benzodioxol-1-il)acrilato de metila (7); os dois policetídeos fenólicos [(2'E)-3',7'-dimetilocta-2',6'-dien-1'-il]-5metil-2-(3"-metilbut-2'-en-1'-il)benzeno-1,3-diol (8) (inédita) e [(2'E)-3',7'-dimetilocta-2',6'-dien-1'-il]-2,2,7-trimetil-2H-cromen-5-ol (9); de P. arifolia: o policetídeo fenólico [(2'E)-3',7'-dimetilocta-2',6'-dien-1'-il]-5-metil-2-(3''-metilbut-2'-en-1'-il) benzeno-1,3-diol, isolada também de P. oreophila (10) (inédita); de P. urocarpa: o policetídeo fenólico 5metil-2-[(2'E,6'E)-3',7',11'-trimetildodeca-2',6',10'-trien-1-il] benzeno-1,3-diol (11) e o 2,4-dihidróxi-6-metil-3-[(2'E,6E)-3',7',11'-trimetildodeca-2',6',10'-trien-1'-il] ácido benzóico, (12); de P. nitida: o fenilpropanoide apiol (1-alil-3,6-dimetóxi-10,11benzodioxol) (13), os cromenos 7-hidróxi-2,2,5-trimetil-2H-cromeno-carboxilato de metila (14) e o 7-metóxi-2,2,5-dimetil-2H-cromeno-6-carboxilato de metila (15). O policetídeo 2-hidróxi-4,6-dimetóxiacetofenona, principal metabólito das folhas de P. glabella, teve sua biossíntese investigada utilizando-se como precursores o acetil-CoA e o malonil-CoA. Foram realizados estudos de otimização da atividade de policetídeo sintase (PKS) em função do pH, tempo de reação, temperatura e saturação de substratos, além de estudos da variação circadiana. Estudos de genes de PKS resultaram em amplificações cujo següenciamento poderá determinar a identidade dessas regiões e homologia entre as seqüências dessas Peperomias e a região KS do gene AviM de Streptomyces viridochromogenes que expressa o ácido orselínico.

Palavras-chave: Metabolismo secundário, Peperomia, policetídeos, biossíntese, PKS.

ABSTRACT

SALAZAR, M.K.J. Chemistry and Biosynthetic study of *Peperomias*. 2009. 179 p. PhD Thesis - Graduate Program in Chemistry. Instituto de Química, Universidade de São Paulo, São Paulo.

The phytochemical investigation carried out on Peperomia oreophila revealed the accumulation of two furofuran lignans (7R,8R,7'R,8'R)-3',4',5'-trimethoxy-3,4methylenedioxy-8'.8, 7'.O.9, 9'.O.7-lignan (1), (7', 8'R, 7R, 8)-3',4',5'-trimethoxy-3,4,5trimethoxy-8'.8-7'.0.9, 9'.0.7-lignan (2); two amides $(2^{2}E)$ -N-isobutyl-3'-(5-methoxy-7,8benzodioxol-1-yl) acrylamide (3), (2'E)-N-isobutyl-3'-(3,4,5-trimethoxyphenyl)acrylamide (4), three derivate cinâmic acid methyl (2'E)-3'-(3,4,5-trimethoxyphenyl)acrylate (5), methyl (2'Z)-3'-(3,4,5-trimethoxyphenyl)acrylate (6), methyl (2'E)-3'-(5-methoxy-7,8benzodioxol-1-yl)acrylate (7); two phenolic polyketides [(2'E)-3',7'-dimethylocta-2',6'dien-1'-yl]-5-methyl-2-(3"-methylbut-2'-en-1'-yl)benzene-1,3-diol (8) (novel), [(2'E)-3',7'dimethylocta-2´,6´-dien-1'-yl]-2,2,7-trimethyl-2*H*-chromen-5-ol (9); *P. arifolia*, two phenolic polyketide [(2'E)-3',7'-dimethylocta-2',6'-dien-1'-yl]-5-methyl-2-(3"-methylbut-2'en-1'-yl)benzene-1,3-diol, also isolated from P. oreophila (10) (novel); P. urocarpa, the two phenolic polyketides 5-methyl-2-[(2'E,6'E)-3',7',11'-trimethyldodeca-2',6',10'-trien-1yl]benzene-1,3-diol (11) and 2,4-dihydroxy-6-methyl-3-[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]benzoic acid (12); P. nitida, the phenylpropanoid apiole 1-allyl-3,6dimethoxy-10,11-benzodioxole (13); the chromenes methyl 7-hydroxy-2,2,5-trimethyl-2H-chromene-6-carboxylate (14) and methyl 7-methoxy-2,2,5-trimethyl-2H-chromene-6carboxylate (15). The polyketide 2-hydroxy-4,6-dimethoxyacetophenone, the major compound in P. glabella leaves, had its biosynthetic origin investigated using acetyl-CoA and malonyl-CoA as precursors. The enzymatic activity of polyketide synthase was optimized to pH, incubation time, temperatures and substrate saturation, in addition to the analysis of circadian variation activity. The amplifications of putative PKS genes was based on primers from AviM gene of Streptomyces viridochromogenes that express for orsellinic acid. The sequencing will enable the identification of such regions and also to study the homology to fungi PKS.

Keywords: Secondary metabolism, Peperomia, polyketide, biosynthesis, PKS.

LISTA DE FIGURAS

		Pag.
Figura 1.	Espécies de Peperomias	24
Figura 2.	Esquema modular do sistema enzimático de PKS I	41
Figura 3.	Sistema enzimático de PKS II	41
Figura 4.	Sistema enzimático de PKS III	41
Figura 5.	Cromatograma obtido por CLAE do extrato metanólico das folhas	
	da Peperomia oreophila e solúvel em EtOAc, obtido por CLAE.	64
Figura 6.	Cromatograma obtido por CLAE do extrato DCM:MeOH das	
	folhas e solúvel em EtOAc da Peperomia urocarpa	69
Figura 7.	Cromatograma obtido por CLAE do extrato DCM:MeOH das	
	folhas da <i>Peperomia arifolia</i>	73
Figura 8.	Cromatograma obtido por CLAE do extrato DCM:MeOH das	
	folhas da <i>Peperomia nitida</i>	76
Figura 9.	Seqüência de amino ácidos do AviM do PKS que biossintetíza	
	o ácido orselínico	82
Figura 10.	Cromatograma (CLAE) do produto de reação utilizando o extrato	
	A-SD	122
Figura 11	Espectro de massas do produto de reação (ESI-EM)	122
Figura 12	Produtos de PCR utilizando iniciadores Lc1 e LC2c, sendo	
	1= P. urocarpa, 2= P. glabella, 3= P. arifolia, 4=controle positivo,	
	5 e 6=controle negativo	129
Figura 13	Produtos do PCR a diferentes temperaturas utilizando ADN P.	
	urocarpa e os iniciadores AOR1/AOR2 (MM=marcador molecular	
	100pb)	130
Figura 14	ADNs genômicos de Peperomia urocarpa, P. glabella e P. arifolia	131
Figura 15	Amplificações utilizando como molde ADNs genômicos de	
	Peperomia urocarpa (1), Peperomia glabella (2), Peperomia	
	arifolia (3), Peperomia nítida (4), controle negativo (5).	132
Figura 16	Bandas de 550 e 750 pb purificadas	133

Figura 17	Espectro de massas de 1 por IE (70 ev)	153
Figura 18	Espectro de RMN de ¹ H da substância 1	153
Figura 19	Espectro de Massas de 2 por IE (70 ev)	154
Figura 20	Espectro de RMN de ¹ H da substância 2 (CDCI ₃ , 2000MHz)	154
Figura 21	Espectro de massas de 3 por IE (70 ev)	155
Figura 22	Espectro de RMN de ¹ H da substância 3	155
Figura 23	Espectro de RMN de ¹³ C de 3 (CDCl ₃ , 75 MHz)	156
Figura 24	Espectro de RMN de ¹³ C-Dept 135° de 3 (CDCI ₃ , 75 MHz)	156
Figura 25	Espectro de HMQC da substancia 3 (CDCI3, 300 e 75 MHz)	157
Figura 26	Espectro de HMBC de 3 (CDCl ₃ , 500 e 125 MHz)	158
Figura 27	Espectro de massas de 4 por IE (70 ev)	159
Figura 28	Espectro de RMN de ¹ H da substância 4	159
Figura 29	Espectro de massas de 13 por IE (70 ev)	160
Figura 30	Espectro de RMN de ¹ H das substâncias 13 e 14	160
Figura 31	Espectro de massas de 5 por IE (70 ev)	161
Figura 32	Espectro de massas de 6 por IE (70 ev)	161
Figura 33	Espectro de RMN de ¹ H das substâncias 5 e 6	162
Figura 34	Espectro de massas de 7 por IE (70 ev)	162
Figura 35	Espectro de RMN de ¹ H da substância 7	163
Figura 36	Espectro de massas de 11 por IE (70 ev)	163
Figura 37	Espectro de RMN de ¹ H da substância 11	164
Figura 38	Espectro de massas de 12 por IE (70 ev)	164
Figura 39	Espectro de RMN de ¹ H da substância 12	165
Figura 40	Espectro de massas de 8 por IE (70 ev)	165
Figura 41	Espectro no IV da substância 8	166
Figura 42	Espectro no UV da substância 8	166
Figura 43	Espectro de RMN de ¹ H da substância 8	167
Figura 44	Espectro de RMN de ¹³ C de 8 (CDCl ₃ , 75 MHz)	167
Figura 45	Espectro de HMQC da substancia 8 (CDCI ₃ , 300 e 75 MHz)	168
Figura 46	Espectro de HMBC de 8 (CDCl ₃ , 500 e 125 MHz)	169
Figura 47	Espectro de NOESY de 8 (CDCl ₃ , 500 e 125 MHz)	170

Figura 48	Espectro de massas de 10 por IE (70 ev)	171	
Figura 49	Espectro de RMN DE ¹ H da substância 10	171	
Figura 50	Espectro de RMN de ¹³ C de 10 (CDCl ₃ , 75 MHz)	172	
Figura 51	Espectro de massas de 14 por IE (70 ev)	172	
Figura 52	Espectro de RMN de ¹ H das substâncias 14 e 13	173	
Figura 53	Espectro de massas de 15 por IE (70 ev)	173	
Figura 54	Espectro de RMN de ¹ H da substância 15	174	
Figura 55	Espectro de massas de 9 por IE (70 ev)	174	
Figura 56	Espectro no IV da substância 9	175	
Figura 57	Espectro no IV da substância 9	175	
Figura 58	Espectro de RMN de ¹ H da substância 9	176	
Figura 59	Espectro de RMN de ¹³ C de 9 (CDCl ₃ , 75 MHz)	176	
Figura 60	Espectro de HMQC da substancia 9 (CDCI ₃ , 300 e 75 MHz)	177	
Figura 61	Espectro de HMBC de 9 (CDCl ₃ , 500 e 125 MHz)	178	
Figura 62	Espectro de NOESY de 9 (CDCl ₃ , 500 e 125 MHz)	179	

LISTA DE TABELAS

		Pag.
Tabela 1	Dados de coleta e depósito das espécies de <i>Peperomias</i> estudadas	26
Tabela 2	Metabólitos secundários isolados de espécies de Peperomia.	27
Tabela 3	Exemplos de PKS III, substratos preferidos e produtos de reação	45
Tabela 4	Exemplos de OMTs, substratos e produtos de reação	51
Tabela 5	Classificação morfológica da família Piperaceae, (Cronquist, 1981)	62
Tabela 6	Gradiente utilizada para a análise do extrato das folhas da <i>Peperomia oreophila</i> por CLAE-DAD	64
Tabela 7	Massas das frações obtidas, eluentes utilizados e frações	
	reunidas do fracionamento em coluna do extrato de folhas de	67
	P. oreophila	
Tabela 8	Massas das frações obtidas e eluentes utllizados no	71
	fracionamento em coluna do extrato de folhas de P. urocarpa	71
Tabela 9	Massas das frações obtidas e eluentes utilizados no	74
	fracionamento em coluna do extrato de <i>P. nitida</i> .	
Tabela 10	Concentrações e volumes dos reagentes utilizados nos ensaios enzimáticos	77
Tabela 11	Gradiente utilizada para a análise dos produtos da reação enzimática	80
Tabela 12	Organismos que produzem o ácido orselínico	82
Tabela 13	Seqüências de nucleotídeos dos Iniciadores utilizados	85
Tabela 14	Quantidades e Concentração dos componentes da reação de	88
	cadeia de polimerase (PCR) com os iniciadores LC1 e LC2c	
Tabela 15	Quantidades e concentração dos componentes da reação em	89
	cadeia da polimerase (PCR) com os iniciadores AOR1 e AOR2	

Tabela 16	Quantidades e concentração dos componentes da reação em	90
	cadeia da polimerase (PCR) com os iniciadores AOS1 e AOS2	
Tabela 17	Dados de RMN de ¹ H (200 e 500 MHz, $CDCI_3$, TMS) para 1 e 2	95
Tabela 18	Dados de RMN de ¹ H de 4 (200 MHz), de ¹³ C (200 e 50 MHz) e	99
	de HMBC (500 e 125 MHz, $CDCI_3$, TMS) de 3	
Tabela 19.	Dados de RMN de ¹ H (200 MHz, CDCl ₃ , TMS) de 13	100
Tabela 20.	Dados de RMN de ¹ H (200 MHz, CDCl ₃ , TMS) para 5 e 6	103
Tabela 21	Dados de RMN de ¹ H de ¹³ C (200, CDCl ₃ , TMS) de 7	104
Tabela 22.	Dados de RMN de 1 H e de 13 C (200 e 75 MHz, CDCl ₃ , TMS) de	107
	11 e 12	
Tabela 23.	Dados de RMN de ¹ H, ¹³ C, HMBC e NOESY (500 e 125 MHz,	110
	CDCl ₃ , TMS) de 8	
Tabela 24	Dados de RMN de 1 H, 13 C e HMBC (300 e 75 MHz, CDCl ₃ ,	112
	TMS) de 10	
Tabela 25	Dados de RMN de ¹ H (200 MHz, CDCl ₃ , TMS) de 14 e 15	115
Tabela 26	Dados de RMN de ¹ H, ¹³ C, HMBC,HMQC e NOESY (500 e 125	119
	MHz, CDCl ₃ , TMS) de 9	
Tabela 27	Resultados dos ensaios enzimáticos	120

LISTA DE ESQUEMAS

		Pag.
Esquema 1	Tipos de ciclizações de enzimas PKS de plantas	44
Esquema 2	Exemplos de produtos biossintetizados por PKS de plantas	47
Esquema 3	Proposta do carregamento do substrato, descarboxilação	48
	do malonil e extensão do policetídeo em chalcona sintase	
	(CHS)	
Esquema 4	Proposta biossintética do 4,6-diidróxi-2-metoxiacetofenona	53
	(3) em <i>Knipholia pumila</i> (Asphodelaceae)	
Esquema 5	Proposta biossintética do 2-hidróxi-4,6-	54
	dimetoxiacetofenona	
Esquema 6	Biossintese de ácido orselínico e floracetofenona (Dewick,	56
	1984)	
Esquema 7	Fracionamento do extrato bruto e purificação das	66
	substâncias presentes em maior quantidade presentes em	
	P. oreophila	
Esquema 8	Fracionamento do extrato bruto das substâncias presentes	
	em maior quantidade em Peperomia urocarpa	70
Esquema 9	Fracionamento do extrato bruto e purificação das	75
	substâncias presentes em maior quantidade em	
	Peperomia nitida	
Esquema 10	Obtenção de extratos enzimáticos das folhas de P.	77
	glabella	
Esquema 11	Curva analítica de determinação de ovoalbumina	79
Esquema 12	Curva analítica de determinação da acetofenona	81
Esquema 13	Metabólitos derivados de ácido orselínico produzidos por	83
	bactérias	
Esquema 14	Condições no termociclador do PCR com os iniciadores	90
	AOS1 e AOS2	
Esquema 15	Proposta de da fragmentação de 1 no espectrômetro de	93
	massas	

Esquema 16	Proposta de fragmentação de 2 no espectrômetro de massas	94
Esquema 17	Propostas de fragmentação de 3 no espectrômetro de massas	97
Esquema 18	Proposta de fragmentação de 4 no espectrômetro de massas	98
Esquema 19	Proposta de fragmentação de 13 no espectrômetro de massas	101
Esquema 20	Proposta de fragmentação dos derivados de ácido cinâmico 5 e 6 no espectrômetro de massas	102
Esquema 21	Proposta da fragmentação de 7 no espectrômetro de massas	104
Esquema 22	Proposta de fragmentação de 11 e 12 no espectrômetro de massas	106
Esquema 23	Proposta de fragmentação de 8 no espectrômetro de massas	109
Esquema 24	Proposta da fragmentação de 14 no espectrômetro de massas	114
Esquema 25	Proposta da fragmentação de 15 no espectrômetro de massas	114
Esquema 26	Proposta de fragmentação de 9 no espectrômetro de massas	118
Esquema 27	Curva analítica de 2-hidróxi,4,6-dimetoxiacetofenona	121
Esquema 28	Determinação do pH ótimo de reação enzimática	123
Esquema 29	Determinação do tempo ótimo de reação enzimática	124
Esquema 30	Determinação da temperatura ótima de reação enzimática	125
Esquema 31	Determinação da concentração da saturação dos substratos na enzima	126
Esquema 32	Determinação do horário ótimo de coleta com maior teor de 2-hidróxi-4,6-dimetóxiacetofenona em <i>P. glabella</i>	127

Esquema 33 Variação da formação de 2-hidróxi-4,6- 127 dimetóxiacetofenona entre 6:00-12:00 h em *P. glabella*

LISTA DE ABREVIATURAS E SIGLAS

Abs	absorbância
AcOEt	acetato de etila
ACP	Acyl carrier protein, proteína carregadora de acila
CPC	cromatografia planar comparativa
CPP	cromatografia planar preparativa
CC	cromatografia em coluna
CG	cromatografia gasosa
CG/EM	cromatografia gasosa acoplada à espectrometria de massas
CoA	coenzima A
¹⁴ C	carbono 14
cm ⁻¹	centímetro recíproco
δ	Deslocamento químico (ppm)
Da	Dalton
DCM	diclorometano
DEPT	Distortionless enhancement by polarization transfer
d	dubleto
dl	dubleto largo
dntp	Desoxirribonucleotídeos fosfatados
EM	Espectrometria de massas
Enz	enzima
Hex	Hexano
HSQC	heteronuclear single quantum coherence
HMBC	heteronuclear multiple bond correlations
Hz	Hertz (cps)

IE	Impacto eletrônico
IV	Infravermelho
J	Constante de acoplamento (Hz)
m	multipleto
m/z	Relação massa/carga
MHz	megaHertz
OMT	O-metiltransferase
PCR	polymerase chain reaction (reação em cadeia da polimerase)
PKS	Policetídeo sintase
PVPP	Polivinilpolipirrolidona
RMN de ¹ H	Ressonância Magnética Nuclear de hidrogênio um
RMN de ¹³ C	Ressonância Magnética Nuclear de carbono treze
Si-60	sílica gel 60
S	singleto
U	Unidade
UV	ultravioleta
v	freqüência

SUMÁRIO

RESUMO	VI
ABSTRACT	VII
ÍNDICE DE FIGURAS	VIII
ÍNDICE DE TABELAS	XI
ÍNDICE DE ESQUEMAS	XIII
SÍMBOLOS E ABREVIATURAS	XV

1. INTRODUÇÃO

1.1 Família Piperaceae	23
1.1.1. O gênero <i>Peperomia</i>	23
1.1.2. Espécies <i>Peperomia</i>	25
1.2. Metabólitos secundários de espécies de Peperomia	27
1.3. Aspectos gerais da biossíntese	37
1.4. Policetídeos	39
1.4.1. Policetídeos sintases (PKSs)	40
1.4.2. PKS III	42
1.4.3. Reações de ciclização em cadeias policetometilênicas	43
1.4.4. Mecanismos de reação com PKSs III	47
1.5. <i>O</i> -Metiltransferases (OMTs) em plantas	49
1.6. Biossíntese em Peperomia glabella	52
1.7. Estudo de cetosintases (KSs) de Peperomias que participam na bioss	íntese
do ácido orselínico	54
2. OBJETIVOS	57
3. EXPERIMENTAL	58
3.1. Equipamentos	59
3.1.1. Espectrômetros de ressonância magnética nuclear	59
3.1.2. Cromatografia gasosa – Espectrometria de massas (CG-EM)	59
3.1.3. Espectrofotômetro no Infravermelho	59
3.1.4. Espectrofotômetro no Ultravioleta	59
3.1.5. Cromatógrafo líquido de alta eficiência	59

3.1.6. Centrífuga	60
3.1.7. Termociclador	60
3.1.8. Eletroforese em gel de agarose	60
3.2. Materiais	60
3.2.1. Cromatografia em camada delgada analítica ou comparativa	60
3.2.2. Cromatografia em camada delgada preparativa	60
3.2.3. Cromatografia em coluna (CC)	61
3.2.4. Solventes para RMN	61
3.2.5. Cromatografia liquida de alta eficiência (CLAE)	61
3.2.6. Cromatografia por permeação de gel	61
3.2.7. Eletroforese em gel de agarose	61
3.2.8. Reagentes da reação em cadeia da polimerase	61
3.2.9. Kits de extração e purificação de ADN	62
3.2.10. Material Botânico	62
3.3. Metodologia	63
3.3.1. Processamento do material vegetal	63
3.3.2. Obtenção do extrato bruto, análise preliminar, fracionamento e	
purificação das substâncias presentes em maior quantidade em espécies	
de Peperomia	
3.3.2.1. Peperomia oreophyla	63
3.3.2.2. Peperomia urocarpa	68
3.3.2.3. Peperomia arifolia	72
3.3.2.4. Peperomia nitida	73
3.3.3. Avaliação da atividade da enzima policetídeo sintase (PKS) de	
folhas de <i>Peperomia glabella</i>	76
3.3.3.1. Obtenção de diversos extratos enzimáticos das folhas	76
3.3.3.2. Reação enzimática com cada um dos extratos	77
3.3.3.3. Análises dos produtos de reação através de CLAE	78
3.3.4. Otimização da reação enzimática de PKSs	78
3.3.4.1. Reação enzimática	78
3.3.4.2. Dosagem protéica dos sobrenadantes dos extratos	79
3.3.4.3. Análises dos produtos de reação através de CLAE	79
3.3.5. Estudo da variação circadiana da atividade de PKSs	80

3.3.5.1. Reação enzimática	80
3.3.5.2. Análises dos produtos de reação através de CLAE	80
3.3.5.3. Quantificação do 2-hidróxi-4,6-dimetoxiacetofenona nas fol	has de
Peperomia glabella	81
3.3.6. Estudo de genes PKSs	82
3.3.6.1. Pesquisa bibliográfica	82
3.3.6.2. Desenhos de primers degenerados	84
3.3.6.2.1. Iniciadores degenerados LC1/LC2c	84
3.3.6.2.2. Iniciadores degenerados AOR1/AOR2	84
3.3.6.2.3. Iniciadores degenerados AOS1/AOS2	85
3.3.6.3. Extração do ADN genômico de Peperomias	85
3.3.6.3.1. Quantificação do ADN por espectrofotometria	87
3.3.6.4. Amplificação de seqüências PKSs	88
3.3.6.4.1.Amplificação das regiões alvo utilizando a reação em cad	eia de
polimerase (PCR) com os iniciadores LC1 e LC2c	88
3.3.6.4.2. Amplificação das regiões alvo utilizando a PCR com os in	iciadores
AOR1 e AOR2	89
3.3.6.4.3. Amplificação das regiões alvo utilizando a reação de cade	eia de
polimerase (PCR) com os iniciadores AOS1 e AOS2	90
4. RESULTADOS E DISCUSSÃO	91
4.1. Estruturas de metabólitos secundários	92
4.1.1. Lignanas furofurânicas	92
4.1.1.1. Lignanas furofurânicas 1 e 2	92
4.1.2. Isobutilamidas aromáticas	96
4.1.2.1. Isobutilamidas 3 e 4	96
4.1.3. Fenilpropanóide 13	100
4.1.4. Derivados do ácido cinâmico	101
4.1.4.1. Derivados do ácido cinâmico 5 e 6	101
4.1.4.2. Derivado do ácido cinâmico 7	103
4.1.5. Fenóis prenilados	105
4.1.5.1. Fenóis prenilados 11 e 12	105
4.1.5.2. Fenóis prenilados 8 e 10	108
4.1.6. Cromenos	113

4.1.6.1. Cromeno 14 e 15	113
4.1.6.2. Cromeno 9	116
4.2. Biossíntese de acetofenona em folhas de P. glabella	120
4.2.1. Avaliação da atividade da enzima policetídeo sintase (PKS)	120
4.2.2. Otimização da reação enzimática de PKSs	123
4.2.3. Estudo da variação circadiana da atividade de PKSs	127
4.3. Estudo de genes PKSs	128
4.3.1. Amplificação das regiões alvo utilizando a reação em cadeia	
de polimerase (PC R) com os iniciadores LC1 e LC2c	128
4.3.2. Amplificação das regiões alvo utilizando a reação em cadeia de	
polimerase (PCR) com os iniciadores AOR1 e AOR2	129
4.3.3. Amplificação das regiões alvo utilizando a reação em cadeia de	
polimerase (PCR) com os iniciadores AOS1 e AOS2	130
5. CONCLUSÕES E PERSPECTIVAS	134
6. REFERÊNCIAS	136
7. APÊNDICE	152