UNIVERSIDADE DE SÃO PAULO INSTITUTO DE QUÍMICA Programa de Pós-Graduação em Química

MARCO AURÉLIO GUEDES

Comportamento Fotoluminescente dos Ânions Complexos *tetrakis*(β-dicetonatos) de Íons Terras Raras – Eu³⁺, Gd³⁺, Tb³⁺ e Tm³⁺

> São Paulo Data do Depósito na SPG: 10/07/2007

MARCO AURÉLIO GUEDES

Comportamento Fotoluminescente dos Ânions Complexos *tetrakis*(β-dicetonatos) de Íons Terras Raras – Eu³⁺, Gd³⁺, Tb³⁺ e Tm³⁺

Tese apresentada ao Instituto de Química da Universidade de São Paulo para obtenção do Título de Doutor em Química (Química Inorgânica)

Orientador: Prof. Dr. Hermi Felinto de Brito

São Paulo 2007

Marco Aurélio Guedes

Comportamento Fotoluminescente dos Ânions Complexos *tetrakis*(β -dicetonatos) de Íons Terras Raras – Eu³⁺, Gd³⁺, Tb³⁺ e Tm³⁺.

Tese apresentada ao Instituto de Química da Universidade de São Paulo para obtenção do Título de Doutor em Doutor em Química Inorgânica.

Aprovado em: _____

Banca	Examin	adora

Prof. Dr.	 	 	
Instituição:			
Assinatura: _	 	 	
Prof. Dr.		 	
Instituição:			
Assinatura: _	 	 	
Prof. Dr.			
Instituição:	 		
Assinatura: _			

Aos meus pais, Francisco e Vanda, que embora distantes, sempre atuam em minha vida, com grande incentivo e presença em meus pensamentos.

Para Sirlândia, por nosso amor e carinho ao longo dos anos...

Agradecimentos

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES e à Rede de Nanotecnologia Molecular e de Interfaces, RENAMI, pelo suporte financeiro.

Ao Instituto de Química pela oportunidade oferecida.

À Profa. Dra. Vera Regina Leopoldo Constantino do IQ-USP e à Dra. Duclerc Parra, do IPEN, pelas fundamentais discussões no exame de qualificação.

A todos os docentes e funcionários do Instituto de Química da USP, que tornaram possível a realização deste trabalho.

Ao Prof. Dr. Marco Cremona e ao Dr. Welber Gianini Quirino do Departamento de Física da PUC-Rio, pela amizade e colaborações realizadas.

Ao Prof. Dr. Hermi Felinto de Brito pelos raros ensinamentos, orientação, amizade e incentivo essencial para todo este trabalho.

Ao Prof. Dr. Carlos Alberto Alves de Carvalho pela amizade, incentivo e sugestões fundamentais durante a correção deste trabalho.

Aos amigos do Laboratório dos Elementos do Bloco *f*, Adriana, Alessandra, Ana, Cláudia, Ernesto, Gerson, Kai, Lucas, Rafael, Roberval e Tiago, pelas discussões produtivas, além do apoio e bons momentos de descontração ao longo destes anos.

Aos técnicos Agda e Joaquim, pela ajuda e amizade.

À Profa. Dra. Wanda de Oliveira e à Dra. Maria Cláudia Felinto, pela amizade e bom humor sempre necessário.

Aos grandes amigos do CRUSP, Carlos e Rosalina, pela paciência e apoio fundamental.

A todos aqueles familiares e amigos que de alguma forma contribuíram para a realização deste trabalho, e inevitavelmente nos esquecemos de mencionar.

RESUMO

Neste trabalho, os complexos *tetrakis*(β -dicetonato) de terras-raras, (Q)[TR(β -dicetonato)₄] {(Q = Li⁺, Na⁺, K⁺, (Et₃NH)⁺, (Morf)⁺, (TMPip)⁺ e (Diciclo)⁺); (TR³⁺ = Eu³⁺, Gd³⁺, Tb⁺ e Tm³⁺) e (β -dicetonato = acac, dbm e tta), foram sintetizados, caracterizados e suas propriedades ópticas investigadas por meio de espectroscopia luminescente. Os dados de microanálises de CHN e titulação complexométrica evidenciaram a fórmula geral (Q)[TR(β -dicetonato)₄]. Os espectros de absorção na região do infravermelho indicaram o caráter anidro da maioria dos complexos, exceto para (Li)[TR(dbm)₄].4H₂O, e que a coordenação dos β -dicetonatos aos íons TR³⁺ ocorre através dos átomos de oxigênio dos grupos carbonila. Os difratogramas de raios-X (método do pó) evidenciam que os complexos com ligante acac e cátions derivados de metais alcalinos são mais cristalinos em relação aos compostos contendo bases nitrogenadas.

O estudo fotoluminescente dos complexos (Q)[TR(β -dicetonato)₄] foi realizado a partir dos espectros de excitação e emissão registrados a 298 e 77K, e pela curva de decaimento luminescente. Os espectros de emissão dos compostos de Eu³⁺, Tb³⁺ e Tm³⁺ apresentaram bandas finas características das transições intraconfiguracionais exibindo cores de emissão vermelha oriundas do íon Eu³⁺ (${}^{5}D_{0} \rightarrow {}^{7}F_{J}$, J = 0-6), verde do íon Tb³⁺ (${}^{5}D_{4} \rightarrow {}^{7}F_{J}$, J = 6-0) e azul para do íon Tm³⁺ (${}^{1}G_{4} \rightarrow {}^{3}H_{6}$, e a ${}^{1}G_{4} \rightarrow {}^{3}F_{4}$). Os desdobramentos e a intensidade das transições ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ dos complexos de európio sugerem que este íon encontra-se em um ambiente químico D_{2d} distorcido para C_{4v} ou S₄. Com base nos dados espectrais foram determinados os parâmetros de intensidade experimentais (Ω_{2} , $\Omega_{4} \in \Omega_{6}$), os coeficientes de emissão radiativa (A_{rad}) e nãoradiativa (A_{nrad}) e a eficiência quântica de emissão experimental do nível ${}^{5}D_{0}$ do íon Eu³⁺ (η). Para os sistemas *tetrakis* contendo o ligante tta, o complexo com o contra-cátion (TMPip)⁺ apresentou o maior valor de Ω_{2} (42,1x10⁻²⁰ cm⁻¹), evidenciando um ambiente químico mais polarizável com maior caráter covalente da ligação $Eu^{3+}-(\beta$ -dicetonato). Os valores de eficiência quântica (η) do estado emissor ⁵D₀, dos complexos *tetrakis*(β -dicetonato) de Eu^{3+} , são altos quando comparados com os compostos *tris*. Os complexos (Morf)[Eu(tta)₄] e (TMPip)[Eu(tta)₄] apresentaram os maiores valores de eficiência quântica η = 88 e 92%, respectivamente. Portanto, estes complexos comportam-se como promissores dispositivos moleculares conversores de luz (DMCLs).

A atribuição dos estados **T** dos ligantes acac, dbm e tta foram feitas a partir dos espectros de emissão dos complexos de gadolínio, (Q)[Gd(β -dicetonato acac)₄], registrados no estado estacionário e resolvido no tempo, a 77K. Os espectros de emissão dos complexos *tetrakis*, (Q)[Tm(acac)₄] onde Q = Li⁺, Na⁺ e K apresentaram a transição ¹G₄ \rightarrow ³H₆ bastante intensa, indicando a alta luminescência azul.

Os espectros de emissão dos complexos *tetrakis*, (Q)[Tb(acac)₄], Q = Li⁺, Na⁺ e K⁺ mostram bandas de emissão finas características das transições ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ (J = 6-0) e não exibem as emissões originárias do ligante acac, indicando uma transferência de energia intramolecular eficiente do ligante acetilacetonato ao íon Tb³⁺.

Os dispositivos OLEDs, bicamada e tricamada, contendo os complexos *tetrakis* Li[Eu(dbm)₄] e Li[Tb(acac)₄], como camada emissora e transportadora de elétrons exibiram alta intensidade eletroluminescente vermelha e verde, oriundas das transições ${}^{5}D_{0} \rightarrow {}^{7}F_{0.4}$ e ${}^{5}D_{4} \rightarrow {}^{7}F_{6.0}$ dos íons Eu³⁺ e Tb³⁺, respectivamente.

Os espectros triboluminescentes (TL) do complexo (TMPip)[Eu(tta)₄] apresentam as transições intraconfiguracionais ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0 a 4), com a transição hipersensível ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ proeminente na região de 612 nm.

Palavras-chave: Terras-raras, β -dicetonatos, *tetrakis*, fotoluminescência, eletroluminescência, triboluminescência.

ABSTRACT

This work reports the synthesis, characterization, spectroscopic properties of *tetrakis*(β -diketonate) complexes of rare earths, (Q)[RE(β -diketonate)₄] {(Q⁺ = Li⁺, Na⁺, K⁺, (Et₃NH)⁺, (Morf)⁺, (TMPip)⁺ and (Diciclo)⁺); (RE³⁺ = Eu³⁺, Gd³⁺, Tb⁺ and Tm³⁺) and (β -diketonate = acac, dbm and tta)}. The elemental analysis of CHN and complexometric titration suggest the general formula (Q)[RE(β -diketonate)₄]. The infrared spectra indicated the anhydrous character of the complexes, except for (Li)[RE(dbm)₄]·4H₂O, and the coordination between β -diketonate ligands and RE³⁺ ions occurs through the oxygen atoms of carbonyl groups. The X-ray diffractograms (powder method) confirmed that the complexes with acac ligand and derived alkaline metals cations are more crystalline when compared with the complexes containing nitrogenated bases.

The photoluminescence study of the (Q)[RE(β -diketonate)₄] complexes was performed through the excitation and emission spectra at 298 and 77K, and luminescence decay curves. The emission spectra of the Eu³⁺, Tb³⁺ and Tm³⁺ complexes displayed characteristic narrow bands arising from intraconfigurational transitions of trivalent rare earths ions and exhibited red color emission for the Eu³⁺ ion (${}^{5}D_{0} \rightarrow {}^{7}F_{J}$, J = 0-6), green for the Tb³⁺ ion (${}^{5}D_{4} \rightarrow {}^{7}F_{J}$, J = 6-0) and blue for the Tm³⁺ ion (${}^{1}G_{4} \rightarrow {}^{3}H_{6}$, and ${}^{1}G_{4} \rightarrow {}^{3}F_{4}$). The splitting and intensity of the ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transitions of the europium complexes suggest the distortion of chemical environment around this Eu³⁺ ion from D_{2d} to C_{4v} or S₄. Based on the spectroscopy data, the experimental intensity parameters (Ω_{2} , $\Omega_{4} \in \Omega_{6}$), the coefficients of radioactive (A_{rad}) and non-radioactive (A_{nrad}) emissions and the quantum efficiency of experimental emission of the emitting ⁵D₀ level of Eu³⁺ ion (η) were determined. For *tetrakis* systems containing tta ligand, the complex with (TMPip)⁺ countercation presented the highest value of Ω_{2} (42.1x10⁻²⁰ cm⁻¹), suggesting the presence of a highly polarizable chemical environment and consequently, indicating the highest covalent character of the $Eu^{3+}-(\beta$ -diketonate) bond. The values of quantum efficiency (η) of the emitting ${}^{5}D_{0}$ state of the *tetrakis*(β -diketonate) complexes of Eu^{3+} were higher compared with those *tris*-complexes. The (Morf)[Eu(tta)₄] and (TMPip)[Eu(tta)₄] complexes presented highest values of quantum efficiency η = 88 and 92%, respectively. Therefore, these complexes can act as potential candidates for Light Conversion Molecular Devices (LCMDs).

The triplet states of the acac, dbm and tta ligands were determined from the emission spectra of gadolinium complexes, (Q)[Gd(β -dicetonato acac)₄], recorded by steady-state and time-resolved photoluminescence measurements, at 77K. The emission spectra of the *tetrakis* complexes, (Q)[Tm(acac)₄] where Q⁺ = Li⁺, Na⁺ and K⁺ presented high intensity ¹G₄ \rightarrow ³H₆ transition, showing a intense blue luminescence.

The emission spectra of *tetrakis* complexes, (Q)[Tb(acac)₄], Q⁺ = Li⁺, Na⁺ e K⁺, exhibit characteristic narrow emission bands of the ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ (J = 6-0) transitions, however, the absent of the broaden band arising from the acac ligand suggests the efficient intramolecular energy transfer from the acetylacetonate ligand to Tb³⁺ ion.

The double-layer and triple-layer OLEDs devices, containing Li[Eu(dbm)₄] and Li[Tb(acac)₄] *tetrakis* complexes as emitting layer and electron transport layer, exhibited high electroluminescent intensity with red and green emissions arising from the ${}^{5}D_{0} \rightarrow {}^{7}F_{0.4}$ and ${}^{5}D_{4} \rightarrow {}^{7}F_{6.0}$ transitions of Eu³⁺ and Tb³⁺ ions, respectively.

The spectra of triboluminescence (TL) of the (TMPip)[Eu(tta)₄] complex present intraconfigurational ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transitions (J = 0 a 4), with the hypersensitive ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition prominent in the region around 612 nm.

Keywords: Rare-earths, β -diketonates, *tetrakis*, photoluminescence, electroluminescence, triboluminescence.

SUMÁRIO

Resumo	V11
Abstract	ix
1 Introdução e Objetivos	1
1.1. Introdução	2
1.2. Objetivos	4
2 Luminescência dos Íons TR ³⁺ e de seus Compostos	5
2.1. Comportamento espectroscópico dos íons TR ³⁺	6
2.2. Luminescência	8
2.3. O efeito antena em compostos de TR ³⁺	10
2.4. Compostos de Gd^{3+} : Energia dos estados T_1	13
2.5. Fotoluminescência dos compostos de Eu ³⁺	16
2.5.1 Parâmetros de intensidade experimental para compostos de Eu ³⁺	19
2.6. Fotoluminescência em complexos de Tb ³⁺	22
2.7. Fotoluminescência em complexos de Tm ³⁺	24
2.8. Dispositivos eletroluminescentes baseados em íons Terras-Raras	25
3 Química dos Compostos com β -dicetonas	30
3.1. Química dos ligantes β -dicetonatos	31
3.2. Complexos β -dicetonatos de TR ³⁺	36
3.3. Propriedades físicas e químicas dos complexos $[TR(\beta-dicetonato)_n]$.	39
4 Procedimentos Experimentais	43
4.1. Preparação dos compostos	44
4.1.1 Sínteses dos complexos	44
4.1.1.1 Complexos <i>tris</i> (β -dicetonatos) de TR ³⁺	46
4.1.1.2 Complexos <i>tetrakis</i> (β -dicetonatos) de TR ³⁺	48

	4.2. Instrumentação	54
	4.2.1 Ensaios de titulação complexométrica	54
	4.2.2 Análise elementar de carbono, hidrogênio e nitrogênio	55
	4.2.3 Termogravimetria	55
	4.2.4 Espectroscopia de absorção no infravermelho	56
	4.2.5 Difratometria de raios-X, método do pó	56
	4.2.6 Fotoluminescência	56
	4.2.7 Eletroluminescência	57
	4.2.8 Triboluminescência	57
5	Resultados e Discussão	58
	5.1. Caracterização dos complexos	59
	5.1.1 Espectroscopia de absorção no infravermelho	63
	5.1.2 Difratometria de raios-X	72
	5.2. Fotoluminescência	75
	5.2.1 Complexos com o íon Gd ³⁺	75
	5.2.2 Complexos com o íon Eu ³⁺	
	5.2.2.1 Parâmetros de intensidade experimentais	
	5.2.3 Complexos com o íon Tb ³⁺	
	5.2.4 Complexos com o íon Tm ³⁺	111
	5.3. Eletroluminescência	115
	5.3.1 Eletroluminescência dos dispositivos com o complexo (Li)[Eu((dbm) ₄]119
	5.3.2 Eletroluminescência dos dispositivos com o complexo (Li)[Tb($[acac)_4]$ 124
	5.4. Triboluminescência dos compostos β -dicetonatos de Eu ³⁺ .	128
6	Conclusões e Perspectivas	130
7	Referências Bibliográficas	135

1 – Introdução e Objetivos

1.1. Introdução

ediante suas características únicas, os elementos terras-raras representam um objeto de estudo fascinante tanto no aspecto teórico – onde aborda desde os conceitos de estrutura atômica até os mais sofisticados tratamentos matemáticos utilizados principalmente no comportamento óptico, quanto na aplicação – em áreas do conhecimento como química, física, bioquímica, medicina, engenharia etc. Para tais aplicações, destaca-se a química de íons terras-raras trivalentes (TR³⁺), devido a sua ampla potencialidade em áreas como catálise, materiais luminescentes, análise bioquímica, diagnóstico medicinal pouco invasivo, marcadores ópticos, fabricação de dispositivos emissores de luz, fabricação de fibras ópticas etc. [Inanaga *et al.*, 2002; Sammes e Yahioglu, 1996; Faulkner and Matthews, 2003; Yam e Lo, 1999; Bünzli e Choppin, 1989; Lamture e Wensel, 1993; Parker e Williams, 1996; Lehn, 1990; Blasse e Grabmaier, 1994; Motson *et al.*, 2004].

Na investigação espectroscópica, muitos compostos contendo Eu³⁺ e Tb³⁺ recebem maior atenção em relação aos outros íons TR³⁺, devido às suas emissões intensas nas cores vermelha e verde, respectivamente. Mesmo assim, convém salientar a importância dos outros sistemas, por exemplo, os estudos de luminescência na região do infravermelho próximo dos complexos de Nd³⁺ e Yb³⁺, que embora apresentem normalmente menor magnitude possibilitam podem ter seus estados excitados populados pela transferência de energia a partir de ligantes que absorvam menor energia em comparação àqueles ligantes utilizados nos complexos com Eu³⁺ e Tb³⁺. Tal fator permite a aplicação destes complexos *in vivo*, devido à considerável transparência dos tecidos nesta região do espectro eletromagnético, embora ainda demande a utilização de equipamentos mais caros para tal detecção [Klink *et al.*, 2000; Klink *et al.*, 2001; Ward, 2007; Brito *et al.*, 2007].

Com o intuito de projetar compostos com alta intensidade luminescente, são utilizados complexos de íons TR^{3+} contendo ligantes "sensibilizadores fotoluminescentes". Além da

afinidade química com os íons TR³⁺, neste ponto, o papel fundamental dos ligantes é a transferência eficiente de energia intramolecular do estado tripleto (**T**) para o principal nível emissor do íon metálico em questão. Para tanto, os complexos β -dicetonatos de Eu³⁺ e Tb³⁺ são os mais eficientes [Sá *et al.*, 2000]. Na transferência de energia, os ligantes β -dicetonatos aqui estudados atendem a requisitos para a eficiência deste processo, como por exemplo, a alta absortividade molar na região espectral do UV para suprir a baixa intensidade das transições 4f-4f. Ademais, pode-se escolher diferentes grupos de β -dicetonatos com os seus estados excitados **T** favoráveis à transferência de energia ligante-metal e, ainda, adequá-los energeticamente a um determinado íon TR³⁺ por intermédio de modificações estruturais [Melby *et al.*, 1964; Sato e Wada, 1970; Dawson *et al.*, 1966; Sahbari e Tinti, 1983; Sahbari *et al.*, 1983; Sá *et al.*, 2000].

Nota-se na literatura um maior número de trabalhos relacionados aos dados fotoluminescentes dos complexos *tris*(β -dicetonatos) de TR³⁺, quando comparados com aqueles relatados para sistemas contendo complexos *tetrakis*(β -dicetonatos) de TR³⁺ [Binnemans, 2005; Brito *et al.*, 2007].

A respeito disto, salienta-se a dificuldade de obtenção e purificação dos complexos *tetrakis*(β -dicetonatos) de TR³⁺ provinda da instabilidade em solução. Apenas dois trabalhos descrevem suas rotas sintéticas de maneira satisfatória [Bauer *et al.*, 1964; Melby *et al.*, 1964]. As características espectroscópicas dos íons TR³⁺ e dos ligantes β -dicetonatos, bem como as estratégias sintéticas, descritas neste trabalho, para os seus complexos *tetrakis*(β -dicetonatos) possibilitam projetar novos complexos que atuem como dispositivos moleculares conversores de luz (DMCL) com alta intensidade luminescentes.

1.2. Objetivos

- Preparar complexos *tetrakis*(β-dicetonatos) de TR³⁺ (TR³⁺ = Eu³⁺, Gd³⁺, Tb³⁺ e Tm³⁺) e β-dicetonatos = acetilacetonato (acac), dibenzoilmetanato (dbm) e tenoiltrifluoroacetonato (tta); com os contra-cátions Q⁺ (Q⁺ = Li⁺, Na⁺ e K⁺ e derivados de bases nitrogenadas, trietilamônio, (Et₃NH)⁺; morfolínio, (Morfo)⁺; tetrametilpiperidínio, (TMPip)⁺ e diciclohexilamônio, (Diciclo)⁺), com o intuito de obter compostos altamente luminescentes e que se comportem como Dispositivos Moleculares Conversores de Luz (DMCLs);
- Investigar a influência espectroscópica dos contra-cátions Q⁺ na localização da energia do estado tripleto T₁ dos ligantes β-dicetonatos nos complexos de gadolínio trivalente (Q)[Gd(β-dicetonato)₄];
- 3) Estudar a influência do quarto ligante β-dicetonato nos compostos tretrakis(β-dicetonatos) de TR³⁺ comparado com aqueles compostos tris(β-dicetonatos) de TR³⁺ por intermédio dos dados espectrais de luminescência dos complexos de Eu³⁺: (excitação e emissão), eficiência quântica experimental (η), tempos de vida dos estados emissores (τ), parâmetros de intensidade experimental (Ω₂, Ω₄ e Ω₆) e coeficientes de emissão espontânea (A_{ii}) no sentido de obter informações a respeito da polarizabilidade baseada na transição hipersensível ⁵D₀→⁷F₂ e simetria dos complexos e
- Avaliar a aplicabilidade dos compostos (Q)[TR(β-dicetonato)₄] como camadas emissoras em Dispositivos Orgânicos Emissores de Luz (OLEDs).

2 – Luminescência dos Íons TR³⁺ e de seus Compostos

2.1. Comportamento espectroscópico dos íons TR³⁺

configuração eletrônica dos íons Ln^{3+} é [Xe]4f^{*n*} para *n* variando de 1 a 14 (do Ce³⁺ ao Lu³⁺), onde *n* é o número de elétrons do subnível 4f, responsáveis pelo comportamento espectroscópico. As transições eletrônicas 4f-4f são proibidas pela regra de Laporte ($\Delta t = \pm 1$), e, portanto resultam em baixos coeficientes de absortividade molar ($\cong 1$ M¹ cm⁻¹) [Bünzli e Choppin, 1989]. Adicionalmente, os íons TR³⁺ apresentam bandas finas de absorção, excitação e emissão considerando que elétrons 4fⁿ são blindados pelos orbitais preenchidos 5s²5p⁶, evidenciadas pela fraca perturbação do campo ligante. Além do mais, os desdobramentos dos níveis de energia ^{2S+1}L₁ podem fornecer informações valiosas a respeito da simetria em torno do íon metálico devido à interação com o ambiente químico [Wybourne, 1965; Bjorklund *et al.*, 1968; Kirby e Richardson, 1983; Dallara *et al.*, 1984; Buono-core *et al.*, 1990;].

Como mencionado, os íons TR³⁺ sofrem pequena influência dos efeitos do campo ligante, e possuem comportamento espectroscópico tais como: campo central (10^5 cm⁻¹) > repulsão intereletrônica (10^4 cm⁻¹) > acoplamento spin-órbita (10^3 cm⁻¹) > campo ligante (10^2 cm⁻¹). Desta forma, magnitude das interações spin-órbita nos íons é dominante em relação às interações eletrostáticas com os ligantes, contudo, o Hamiltoniano do campo ligante (H_{CI}) exerce efeito sobre os estados ${}^{2S+1}L_{J}$ dos íons TR³⁺, assim, embora o campo cristalino produza apenas um pequeno desdobramento dos seus níveis de energia, sua atuação é primordial para que estes íons atuem como sondas espectroscópicas [Jørgensen, 1955; Friedman *et al.*, 1964; Forsberg, 1973; Malta e Carlos, 2003; Brito *et al.*, 2007]. Assim, as interpretações dos espectros de absorção e emissão dos íons TR³⁺ são normalmente baseadas nos diagramas de Dieke e Carnall (Figura 2.1), obtido através de medidas sistemáticas efetuadas em uma matriz particular, haleto de lantânio, e permite visualizar a energia dos estados ${}^{2S+1}L_{J}$ [Dieke et al., 1968; Carnall *et al.*, 1988; Carnall *et al.* 1989].

Figura 2.1 – Diagrama parcial de níveis de energia ${}^{2S+1}L_J$ dos íons TR^{3+} em LaCl₃.

De acordo com a degenerescência dos níveis de energia, o desdobramento máximo de cada estado em sistema com baixa simetria é dado por [2J+1] componentes para valores de J inteiro. Por outro lado, íons terras raras contendo desdobramento de [J+(1/2)] componentes para valores de J semi-inteiro fornecem informações se o sistema é cúbico ou não-cúbicos [Nascimento, 1977].

Atualmente, uma grande parte dos estudos contendo íons TR³⁺ está concentrada na possibilidade de intensificar sua luminescência na região do visível (por exemplo, nos íons Eu³⁺, Tb³⁺ e Tm³⁺) e infravermelho próximo (por exemplo, nos íon Nd³⁺, Er³⁺ e Yb³⁺) [Sá *et al.*, 2000; Brito *et al.*, 2007]. Mesmo que muitos destes trabalhos refiram-se ao termo fluorescência ou fosforescência para descrever a emissão de energia radiativa por estes íons, a tendência atual é usar o termo luminescência para estes fenômenos.

2.2. Luminescência

Segundo a União Internacional de Química Pura e Aplicada (IUPAC), o termo luminescência define a emissão espontânea de radiação por uma espécie que se encontra em um estado eletronicamente ou vibracionalmente excitado, em desequilíbrio térmico com o seu ambiente. Dependendo do método de excitação da matéria, se utiliza uma nomenclatura diferente para o comportamento luminescente (Tabela 2.1) [Braslavsky, 2007].

O fenômeno fluorescência é definido pela perda de energia por emissão espontânea de radiação quando um luminóforo retorna de um estado excitado para outro estado (muitas vezes o estado fundamental) com mesma multiplicidade de spin ($\Delta S=0$). Por outro lado, na fosforescência subentende-se o processo citado, mas entre espécies de diferentes multiplicidades de spin ($\Delta S\neq 0$). Na prática, o processo onde a espécie emissora apresenta o estado excitado com um maior tempo de vida (τ) (tipicamente $\tau = 10^{-6}$ a 1 segundo) é denominado de fosforescência, e

aquele com tempo de vida da ordem de $\tau = 10^{-10}$ até 10^{-7} segundo é relativo ao fenômeno de fluorescência. [Verhoeven, 1996; Valeur, 2001; Braslavsky, 2007].

Fenômeno	Modo de Excitação
Fotoluminescência	Absorção de fótons
Eletroluminescência	Campo elétrico
Triboluminescência	Atrito
Quimiluminescência	Reação química
Sonoluminescência	Ultrasom

Tabela 2.1 – Alguns fenômenos luminescentes.

As terminologias fluorescência e fosforescência são comumente usadas para descrever emissões radiativas de espécies orgânicas, que tipicamente ocorrem entre estados singleto-singleto e tripleto-singleto, respectivamente (Figura 2.2).

Figura 2.2 – Fluorescência e fosforescência de um ligante orgânico.

Vale ressaltar a utilização dos íons TR^{3+} no processo persistência luminosa (*afterglon*), onde a emissão espontânea perdura por vários minutos ou até horas depois de cessada a excitação, que muitas vezes é chamado de fosforescência, mas este último termo tende a ser inutilizado para este processo porque se sabe que o mesmo permeia outros tipos de mecanismos, embora ainda não tenha sido bem esclarecido [Matsuzawa *et al.*, 1996; Aitasalo *et al.*, 2001; Dorenbos, 2005].

Para um dado ligante orgânico, a energia dos estados singleto, **S**, e tripleto, **T**, pode sofrer alterações com efeitos tais como o indutivo e mesomérico dos seus substituintes e pelo ambiente químico, resultando em bandas largas de emissão na região do visível. Por outro lado, o efeito de deslocamento das energias das emissões é pouco atuante para os íons TR³⁺, mesmo em diferentes ambientes químicos, conseqüentemente, suas transições são observadas em comprimentos de onda bem definidos, implicando em emissões monocromáticas para um determinado íon, por exemplo, Eu³⁺(vermelha), Tb³⁺ (verde) e Tm³⁺ (azul), diretamente relacionadas às energias das transições intraconfiguracionais destes íons previstas a partir dos diagramas de energia determinados por Carnall (Figura 2.1) [Carnall, 1988; Bünzli e Piguet, 2005].

2.3. O efeito antena em compostos de TR³⁺

Em virtude de suas baixas absortividades molares, a intensidade da radiação emitida pelos íons TR³⁺ na maioria dos compostos é pequena, quando excitados diretamente nos níveis 4f. Portanto, têm-se utilizado ligantes orgânicos no sentido de atuar como sensibilizadores, tornando os complexos de TR³⁺ como dispositivos moleculares conversores de luz (DMCL). Lehn (1990), utilizou o termo "efeito antena" para descrever o processo de transferência de energia intramolecular nos íons TR³⁺ [Alpha *et al.*, 1990; Sabbatini *et al.*, 1993]. Deve-se salientar que Weissman (1942), foi o primeiro a relatar o processo de transferência de energia para uma série de complexos com ligantes β -dicetonatos, e salicilatos. Nestes estudos observou que com a excitação na banda de absorção do ligante, obtinha-se uma maior intensidade luminescente vermelha para compostos contendo íons Eu³⁺, acompanhada da ausência da banda de emissão oriunda da parte orgânica, que normalmente são registradas nos espectros dos complexos com os íons La³⁺ ou Gd³⁺. Isto evidencia uma transferência de energia eficiente do ligante para o metal. O mecanismo atualmente descrito para a transferência de energia do ligante orgânico ao íon TR³⁺ está ilustrado na figura 2.3 [Crosby *et al.*, 1962; Whan e Crosby, 1962; Silva e Malta, 1997; Silva *et al.*, 2002].

Figura 2.3 – Transferência de energia intramolecular em complexos β -dicetonatos de Eu³⁺; RV=Relaxação Vibracional; CIS=Cruzamento Intersistema; TE=Transferência de Energia.

O estado $|\mathbf{S}_0\rangle$ dos ligantes absorve energia (radiação UV) e passa para o primeiro estado excitado $|\mathbf{S}_1\rangle$. Este estado excitado pode sofrer uma rápida conversão interna entre seus níveis vibracionais. A partir do estado $|\mathbf{S}_1\rangle$, três processos são favorecidos:

- i) O estado doador $|\mathbf{S}_1\rangle$ transfere energia ao mais alto estado excitado $|\mathbf{4}\rangle$ do íon TR³⁺, que então decai não-radiativamente, populando o estado emissor $|\mathbf{2}\rangle$;
- ii) O estado $|\mathbf{4}\rangle$ transfere energia de volta ao estado $|\mathbf{T}_1\rangle$ do ligante, que transfere energia aos estados $|\mathbf{3}\rangle$ e $|\mathbf{2}\rangle$ do íon TR³⁺ e

iii) O estado $|\mathbf{S}_1\rangle$ decai não-radiativamente para o estado $|\mathbf{T}_1\rangle$, que então transfere energia para os estados $|\mathbf{3}\rangle$ e $|\mathbf{2}\rangle$ do íon TR³⁺.

No caso dos íons trivalentes Eu^{3+} e Tb^{3+} , há evidências experimentais e teóricas de que o processo (iii) é dominante. Existem também evidências que em alguns casos a transferência de energia direta do processo (i) é de grande importância. Vale lembrar, que para popular um nível emissor de um determinado íon TR^{3+} , é necessário que o estado T_1 dos ligantes esteja localizado próximo, porém um pouco acima, do nível 4f. Se o estado T_1 for energeticamente muito próximo ou abaixo do estado emissor do íon TR^{3+} , a retro-transferência é favorecida, e assim podem ser observados os fenômenos de fosforescência, fluorescência atrasada (*delayed fluorescence*) ou a energia pode dissipar-se [Crosby *et al.*, 1962; Filipescu *et al.*, 1964; Sato e Wada, 1970].

Por outro lado, a supressão de luminescência em complexos de íons TR³⁺, tanto no estado sólido quanto em solução, normalmente é oriunda do acoplamento vibrônico com moléculas de água (Figura 2.4) [Faukner e Richardson, 1978; Salama e Richardson, 1980; Richardson, 1982]. Um artifício muito utilizado para evitar tal mecanismo de supressão é sintetizar compostos os quais não contenham moléculas de H₂O coordenadas ao íon TR³⁺. Neste ponto os complexos *tetrakis*(β -dicetonatos) de TR³⁺ oferecem vantagens em relação aos *tris*(β -dicetonatos) de TR³⁺, porque além de reduzir o efeito de supressão via acoplamento vibrônico, têm-se mais um ligante que atua como sensibilizador de luminescência.

Figura 2.4 – Supressão dos níveis emissores ${}^{5}D_{0}$ e ${}^{5}D_{4}$ dos íons Eu³⁺ e Tb³⁺, respectivamente, pela presença de osciladores O–H.

2.4. Compostos de Gd³⁺: Energia dos estados T₁

A posição da energia dos estados T_1 do ligante influencia diretamente na luminescência dos complexos de TR³⁺, portanto, pode-se escolher o ligante adequado para promover a transferência de energia, bem como alterar a posição do mesmo com mudanças dos grupos substituintes na parte orgânica [Weissman, 1942]. Nos sistemas com TR³⁺, uma forma de determinar os estados excitados T_1 dos ligantes é a obtenção de espectros de emissão dos mesmos quando complexados com o íon Gd³⁺, sob baixa temperatura. Este íon não possui níveis ressonantes em energia com os ligantes β dicetonatos. O primeiro estado emissor do íon Gd³⁺ encontra-se em 32.000 cm⁻¹ [Figura 2.1], enquanto que os estados excitados dos ligantes em estudo variam entre 20.000 a 26.000 cm⁻¹ [Tabela 2.2].

Além disso, o íon Gd^{3+} mimetiza as propriedades físico-químicas dos centros emissores mais estudados, Eu^{3+} e Tb^{3+} , tornando possível construir um modelo conformacional muito próximo do encontrado nos complexos em questão. Adicionalmente, o íon Gd^{3+} exerce o "*efeito paramagnético*", que resulta no acréscimo da taxa de cruzamento intersistema e num maior grau de mistura dos estados eletrônicos S_1 e T_1 do ligante, dado pelo efeito campo magnético nãohomogêneo (proporcional a Z⁴, onde Z = número atômico) exercido pelo íon paramagnético [Dreeskamp, 1975; Tobita et al., 1984 e 1985; Guldi *et al.*, 2000; Valeur, 2001].

Ligante	Abreviatura	\mathbf{T}_{1} (cm ⁻¹)
Acetilacetonato	acac	26.000
6,6,7,7,8,8,8-Heptafluoro-2,2-dimetil-	hfac	22.711
3,5-octanodionato		
Hexafluoroacetilacetonato	fod	22.000
Benzoilacetonato	bzac	21.460
Dibenzoilmetanato	dbm	20.660
Tenoiltrifluoroacetonato	tta	20.300
Naftoiltrifluoroacetonato	ntac	19.600

Tabela 2.2 – Energia dos estados \mathbf{T}_1 de certos ligantes β -dicetonatos

[Sato e Wada, 1970; Dawson et al., 1966; Tsaryuk et al., 2003]

As contribuições dos modos roto-vibracionais das moléculas a baixas temperaturas (77K) são reduzidas significativamente, incrementando a população eletrônica do estado T_1 , e as contribuições radiativas do sistema. Por outro lado, quando a transferência de energia intramolecular ligante \rightarrow metal via estado T_1 é ineficiente, geralmente observa-se bandas largas de emissão do complexo, oriundas da parte orgânica, além das bandas finas de emissões do íon TR³⁺ [Tsaryuk et al., 2003; Bhaumik e Elsayed, 1965].

Para um conjunto de complexos com um mesmo ligante β -dicetonato onde a transferência de energia ligante \rightarrow metal é eficiente, espera-se que a intensidade luminescente aumente na ordem [TR(β -dicetonato)₃] < [TR(β -dicetonato)₃(L)_n] < [Q][TR(β -dicetonato)₄], exceto quando L representa um ligante potencialmente supressor de luminescência, como H₂O [Figura 2.4] ou um grupo amina [Charles e Riedel, 1966; Matthews e Knobbe, 1993; Binnemans e Moors, 2002; Richardson, 1982].

Para melhor compreender o comportamento das intensidades de emissão das transições eletrônicas, aplicam-se as regras de seleção das transições 4f. Considerando um estado inicial descrito pela função de onda ψ_i e um estado final ψ_6 para interpretar a promoção de um elétron no sentido $\psi_i \rightarrow \psi_6$ utiliza-se um determinado operador. Como o interesse principal neste ponto são transições ópticas, a partir da interação da radiação eletromagnética com os elétrons 4f, dois operadores podem efetuar a transição: o operador de dipolo elétrico (DE) e o operador de dipolo magnético (DM). A regra de Laporte proíbe transições que resultam em redistribuição dos elétrons em um mesmo nível eletrônico. Todavia, a interação com o campo ligante ou com estados vibracionais provoca a mistura dos estados eletrônicos de paridades opostas 4fⁿ⁻¹5d nas funções de onda 4f. Adicionalmente, a interação com operadores tensoriais do campo ligante mistura os estados eletrônicos com diferentes J's, mas mesmos S e L. Este é o significado da mistura de J's, e tais misturas tornam as transições 4f-4f possíveis. As transições intraconfiguracionais 4f são proibidas por DE, mas são permitidas pelos mecanismos de

quadrupolo elétrico, vibrônico, DM e DE forçado [Peacock, 1978; Wybourne, 2004]. As transições 4f de DM permitidas pela regra de Laporte apresentam intensidades extremamente baixas. No caso do íon Eu^{3+} , a transição ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ apresenta o caráter de DM como preponderante, e por esta razão é usada com referência [Bünzli e Choppin, 1989].

2.5. Fotoluminescência dos compostos de Eu³⁺

Compostos contendo íons Eu^{3+} como centros emissores, podem exibir as seguintes transições eletrônicas a partir do estado emissor ⁵D₀ para os níveis ⁷F₁:

 ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$: é não-degenerada e ganha intensidade através da mistura de J's em complexos de simetria C_s, C_n e C_{nv};

 ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$: permitida por DM; insensível ao ambiente; forte atividade óptica;

 ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$: transição hipersensível ($\Delta J = 2$); ausente se em compostos com centro de inversão;

 ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$: transição proibida, sempre pouco intensa; caráter permitido por mistura de J's;

 ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$: sensível ao ambiente ($\Delta J = 4$);

- ${}^{5}D_{0} \rightarrow {}^{7}F_{5}$: transição proibida, raramente observada e
- ${}^{5}D_{0} \rightarrow {}^{7}F_{6}$: raramente observada.

As características das transições ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ citadas acima devem ser correlacionadas com a tabela 2.3. Por exemplo, a transição ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$, denominada hipersensível, é a de maior intensidade em sistemas não-centrossimétricos e, portanto, é responsável pela emissão de cor vermelha em todos os compostos contendo como centro emissor o íon Eu³⁺ [Sastri *et al.*, 2003; Yen *et al.*, 2006].

Transição	Dipolo ^(a)	Faixa (nm)	I ^(b)	Baricentro ^(c) (nm)
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{0}$	DE	577 a 581	pi	578
${}^{5}D_{0} \rightarrow {}^{7}F_{1}$	DM	585 a 600	i	590
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{2}$	DE	610 a 625	i⇔mi	615
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{3}$	DE	640 a 655	pi	650
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{4}$	DE	680 a 710	m	692
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{5}$	DE	740 a 770	pi	748
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{6}$	DE	810 a 840	pi	816
${}^{5}D_{1} \rightarrow {}^{7}F_{0}$	DM	524 a 528	pi	526
${}^{5}\mathrm{D}_{1} \rightarrow {}^{7}\mathrm{F}_{1}$	DE	530 a 540	pi	536
${}^{5}\mathrm{D}_{1} \rightarrow {}^{7}\mathrm{F}_{2}$	DE	550 a 565	pi	557

Tabela 2.3 – Faixas espectrais, intensidades relativas e baricentros freqüentemente observados para as transições ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ do íon Eu³⁺ [Carnall *et al.*, 1988; Bünzli e Choppin, 1989].

^(a)Caráter dipolar predominante: DE = dipolo elétrico; DM = dipolo magnético.

^(b)Intensidade relativa: pi = pouco intensa, m = média, i = intensa e mi = muito intensa.

(c)Baricentro aproximado.

Charles e Riedel (1966), estudaram as bandas de emissão dos ânions complexos tetrakis(benzoiltrifluoroacetonato) de Eu³⁺ com cátions amínicos e observaram maiores intensidades luminescentes para complexos tetrakis comparados os ao tris(benzoiltrifluoroacetonato) de európio(III) dihidratado. Além disso, nota-se a influência do contra-cátion do sistema *tetrakis*(β -dicetonato) de Eu³⁺ nos dados espectrais destes ânions complexos em solventes pouco polares. A explicação é dada pela grande quantidade de pares iônicos em solventes de baixas polaridades. Já em ambiente de alta polaridade, quando o complexo é estável, ocorre forte perturbação na primeira e segunda esfera de coordenação do íon TR³⁺, além da solvatação do contra-cátion. Assim, a distância entre os íons é insuficiente para que o contra-cátion afete o comportamento luminescente do ânion complexo [Shepherd, 1966 e 1967].

Com base nos dados espectrais de luminescência dos complexos $[Eu(bzac)_4]^{-}$, no estado sólido, com os cátions derivados de metais alcalinos Na⁺, K⁺, Rb⁺ ou Cs⁺, constatou-se que a simetria em torno do íon TR³⁺ nestes complexos é baixada com o aumento do raio iônico do contra-cátion (Tabela 2.4) [Murray *et al.*, 1989].

Tabela 2.4 – Grupo pontual dos ânions complexos $[Eu(bzac)_4]^-$, na série $(Q)[Eu(bzac)_4]$ onde $Q=Na^+$, K^+ , Rb^+ ou Cs^+ .

Complexo	Grupo pontual
(Na)[Eu(bzac) ₄]	D_4
(K)[Eu(bzac) ₄]	C_4 ou C_{4v}
(Rb)[Eu(bzac) ₄]	D_{2d}
(Cs)[Eu(bzac) ₄]	D_2

Para comparar a intensidade de luminescência de complexos de európio, um método muito utilizado é calcular a relação entre a área sob a curva de emissão da transição hipersensível ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ permitida por dipolo elétrico forçado e a transição permitida por dipolo magnético, ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$. Quanto maior o valor de $I({}^{5}D_{0} \rightarrow {}^{7}F_{2})/I({}^{5}D_{0} \rightarrow {}^{7}F_{1})$, mais intensa é a cor vermelha da emissão, e quanto menor o valor desta relação, maior o caráter centrossimétrico, indicando que o complexo de Eu³⁺ apresenta centro de inversão. Porém, deve-se salientar que a intensidade da mesma também possui relação com a polarizabilidade do ambiente químico ao redor do íon metálico [Bunzli *et al.*, 1994; Malandrino *et al.*, 2001; Brito *et al.*, 2002; Wang *et al.*, 2003]. Por outro lado, a relação de intensidades experimentais, R₀₂, obtida através da razão entre as áreas de ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ e ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ exibidas no espectro do composto com Eu³⁺, fornece informações a respeito da mistura de J's associadas aos níveis citados.

2.5.1 Parâmetros de intensidade experimental para compostos de Eu³⁺

Os parâmetros de intensidade experimental Ω_{λ} ($\lambda = 2, 4 e 6$), também chamados de parâmetros de Judd-Ofelt, são determinados por meio das intensidades das respectivas transições ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 2, 4 e 6) do íon Eu³⁺ onde os mecanismos de DE forçado e acoplamento dinâmico (AD) são considerados simultaneamente. Tais parâmetros são determinados experimentalmente, e incorporam as contribuições de DE forçado e AD. A dependência da polarizabilidade dos átomos vizinhos confere para o mecanismo de acoplamento dinâmico uma maior dependência da natureza do ambiente químico. Considera-se que nos compostos de Eu³⁺ que possuem maior grau de covalência, apresentam maiores valores de Ω_{2} sugerindo que nestes casos, há uma predominância do mecanismo de AD em relação ao DE forçado [Judd, 1962; Ofet, 1962; Peacock, 1975; Malta e Carlos, 2003].

A partir dos espectros de emissão dos complexos de Eu³⁺ obtidos são determinados os parâmetros de intensidade experimentais $\Omega_{2,4,6}$ baseados nas respectivas transições ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ do íon Eu³⁺ [Malta *et al.*, 1997]. A intensidade destas transições é expressa pela equação:

$$I_{0\to J} = \hbar \omega_{0\to J} A_{0\to J} N_0$$
 Eq. 2.1

onde $A_{0\to J}$ é o coeficiente de emissão espontânea de Einstein, N_0 é a população do nível emissor (⁵D₀ no caso do íon Eu³⁺) e ħ ω é a energia da transição. Os valores dos parâmetros $A_{0\to J}$ podem ser determinados experimentalmente a partir dos espectros de emissão tomando a transição ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ como referência. Desta forma, os valores de $A_{0\to J}$ para as transições de DE forçado, ${}^{5}D_{0} \rightarrow {}^{7}F_{2,4,6}$ são determinados de acordo com a expressão

$$A_{0 \to J(exp)} = \left(\frac{\sigma_{0 \to 1}}{S_{0 \to 1}}\right) \left(\frac{S_{0 \to J}}{\sigma_{0 \to J}}\right) A_{0 \to 1}$$
 Eq. 2.2

onde $S_{0\to J}$ é a área sob a curva relacionada à transição ${}^5D_0 \rightarrow {}^7F_J$ obtida a partir dos dados experimentais e $\sigma_{0\to J}$ é o baricentro da transição.

Considerando que para o íon Eu³⁺, a transição ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ é permitida por DM, sua taxa radiativa $A_{0\rightarrow 1}$ é praticamente independente da influência do campo cristalino, o que permite seu uso como transição de referência para as demais transições [Brito, 2000]. Assim, o coeficiente de emissão espontânea de Einstein para a transição ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ vem dado por

$$A_{0\to 1} = 0.31.10^{-11} n^3 \sigma^3$$
 Eq. 2.3

onde n é o índice de refração do meio. Considera-se que o valor do coeficiente $A_{0\rightarrow 1}$ é aproximadamente 50 s⁻¹.

Por outro lado, o coeficiente de emissão espontânea de Einstein $(A_{0\rightarrow J})$ para o nível emissor ⁵D₀ para ⁷F_J (J = 2, 4 e 6) pode ser obtido por meio da teoria padrão das intensidades [de Sa *et al.*, 2000], utilizando-se a expressão:

$$A_{0\to J} = \frac{4e^2 \varpi^3}{3\hbar c^3} \chi \frac{1}{(2J+1)} \sum_{\lambda} \Omega_{\lambda} \left\langle \alpha J \right\| U^{(\lambda)} \| \alpha' J' \right\rangle^2 \qquad \text{Eq. 2.4}$$

onde $\overline{\omega}$ é a freqüência angular da transição, e é a carga do elétron, c é a velocidade da luz, ħ é a constante de Planck e n é o índice de refração do meio, χ é o termo de correção de Lorentz para o campo local, o qual é dado por $\chi = \frac{n(n^2 + 2)^2}{9}$, Ω_{λ} ($\lambda = 2, 4$ e 6) são os parâmetros de

intensidade experimental, e os elementos de matriz reduzidos $\left< {}^{5}\mathbf{D}_{0} \left\| \mathbf{U}^{(\lambda)} \right\| {}^{7}\mathbf{F}_{2} \right>^{2} = 0,0032,$ $\left< {}^{5}\mathbf{D}_{0} \left\| \mathbf{U}^{(\lambda)} \right\| {}^{7}\mathbf{F}_{4} \right>^{2} = 0,0023 \text{ e} \left< {}^{5}\mathbf{D}_{0} \left\| \mathbf{U}^{(\lambda)} \right\| {}^{7}\mathbf{F}_{6} \right>^{2} = 0,0002 \text{ para as transições } {}^{5}\mathbf{D}_{0} \rightarrow {}^{7}\mathbf{F}_{2}; {}^{5}\mathbf{D}_{0} \rightarrow {}^{7}\mathbf{F}_{4} \text{ e}$ ${}^{5}D_{0} \rightarrow {}^{7}F_{6}$ respectivamente. A taxa total das contribuições radiativas (A_{rad}) é determinada pela somatória das contribuições $A_{0\rightarrow 1}$ de cada transição.

O tempo de vida (τ) do estado emissor ${}^{5}D_{0}$ do íon Eu³⁺ e as contribuições radiativas (A_{rad}) e não-radiativas (A_{nrad}) são relacionadas pela expressão: $A_{total} = \frac{1}{\tau} = A_{rad} + A_{nrad}$ onde τ é o tempo de vida determinado experimentalmente através da curva exponencial de decaimento luminescente do nível emissor ${}^{5}D_{0}$. Para todos os coeficientes $A_{0\rightarrow J}$, é possível calcular a emissão espontânea total para o nível emissor ${}^{5}D_{0}$ por $A_{rad} = \Sigma A_{0\rightarrow J} = A_{00} + A_{01} + A_{02} + A_{03} + A_{04} + A_{06}$.

O tempo de vida de luminescência é definido como o tempo médio no qual o sistema permanece no estado excitado. Uma expressão para o tempo de vida de luminescência pode ser obtida considerando um sistema de dois níveis. Admitindo-se que ocorre uma transição espontânea a partir do nível de energia inicial (emissor) E_i, com população N_i, para o nível E_i, a variação na população de N_i, dN_i, durante um intervalo de tempo dt é dado por

onde A_{ij} é a taxa de decaimento total que envolve as contribuições radiativas (A_{rad}) e não radiativas ($A_{rad} + A_{nrad}$) que contribuem para o processo de despopulação do estado emissor, E_i [Yardley, 1980]. Rearranjando e integrando a expressão (Eq. 5.10) para N_i variando de N_i(0) em t = 0 a N_i no tempo t, obtém-se a expressão,

$$N_i(t) = N_i(0).e^{-A_{ij}t}$$
 Eq. 2.6

Depois de um tempo $\tau_i = 1/A_{ij}$ a densidade populacional N_i diminui para 1/e do valor inicial a t = 0. Assim, o valor de t = τ_i é definido como o tempo necessário para a população do nível emissor decair a 1/e do seu valor inicial, também chamado de tempo de vida do estado emissor. Devido à proporcionalidade entre a intensidade (I_i) de emissão e a densidade populacional, N_i, pode-se obter uma expressão similar à Eq. 5.11 para os valores de intensidade de emissão [Lakowicz, 1983]:

$$I_i(t) = I_i(0).e^{-\frac{1}{\tau_i}t}$$
 Eq. 2.7

Com base nesta equação, os valores de t_i podem ser obtidos experimentalmente através de um ajuste dos dados de decaimento de luminescência experimentais a uma curva exponencial, sendo necessária para o cálculo da eficiência quântica de emissão. Assim, para o íon Eu^{3+} , a eficiência quântica de emissão (η) do estado emissor ${}^{5}D_{0}$ é dada por

$$\eta = \frac{A_{rad}}{A_{rad} + A_{nrad}}$$
 Eq. 2.8

2.6. Fotoluminescência em complexos de Tb³⁺

Os espectros luminescentes de compostos de Tb³⁺ (configuração eletrônica 4f⁶) geralmente exibem bandas originadas das transições ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ (J = 6, 5, 4, 3, 2, 1, 0), com a transição hipersensível ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ em torno de 540 nm proeminente, e conseqüentemente, estes exibem cores de emissão verde na presença de radiação UV. Seu estado fundamental é representado pelo nível ${}^{7}F_{6}$, pois possui configuração eletrônica [Xe]4f⁸ (fⁿ com n > 7; J = L +S). Ao contrário do Eu³⁺, uma análise detalhada da estrutura dos níveis de energia e da simetria em torno do íon Tb³⁺ é complicada, desde que o nível emissor ${}^{5}D_{4}$ é nona-degenerado. A diferença de energia entre o estado emissor ${}^{5}D_{4}$ e o estado ${}^{7}F_{0}$, é de aproximadamente de 15.000 cm⁻¹. Deve-se salientar que os ligantes β -dicetonatos bons sensibilizadores de emissão para o íon Eu³⁺, e que apresentam estados \mathbf{T}_1 energeticamente abaixo do nível ressonante ⁵D₄, transferem pouca ou nenhuma energia para este nível do íon Tb³⁺. Em função do baixo custo, o ligante acetilacetonato ($\mathbf{T}_1 \cong 26.000 \text{ cm}^{-1}$) é o mais utilizado como antena para o íon Tb³⁺. No caso de complexo [Tb(acac)₃(H₂O)₃], os ligantes acac não exibem bandas de emissão largas do estado \mathbf{T}_1 na faixa espectral de 370 a 550 nm, evidenciando uma eficiente transferência de energia do ligante ao nível emissor ⁵D₄ do íon Tb³⁺. Geralmente, a sensibilização luminescente em complexos de Tb³⁺ é similar àqueles complexos de Eu³⁺. Por outro lado, o estado \mathbf{T}_1 dos ligantes beta-dicetonatos tem que estar acima ou em ressonância com o nível emissor ⁴D₄ do íon Tb³⁺ ($\cong 20.400 \text{ cm}^{-1}$).

Ademais, como o íon Tb³⁺ não apresenta uma transição de referência semelhante ao Eu³⁺, assim, as investigações fotoluminescentes dos complexos de Tb³⁺, no estado sólido, são mais restritas. A respeito das transições oriundas do estado emissor ${}^{5}D_{4}$ para os níveis ${}^{7}F_{J}$, pode-se notar que (Tabela 2.4):

- ${}^{5}D_{4} \rightarrow {}^{7}F_{6}$: sensível ao ambiente químico;
- ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$: hipersensível, forte atividade óptica, mais utilizada como sonda;
- ${}^{5}D_{4} \rightarrow {}^{7}F_{4}$: sensível ao ambiente do íon Tb³⁺, atividade óptica moderada;
- ${}^{5}D_{4} \rightarrow {}^{7}F_{3}$: forte atividade óptica;
- ${}^{5}D_{4} \rightarrow {}^{7}F_{2}$: sensível ao ambiente químico;
- ${}^{5}D_{4} \rightarrow {}^{7}F_{1}$: baixa intensidade e
- ${}^{5}D_{4} \rightarrow {}^{7}F_{0}$: baixa intensidade.

Tem-se observado que os complexos hidratados contendo o íon Tb³⁺ apresentam uma menor supressão de luminescência do que os respectivos complexos de Eu³⁺, devido à maior

diferença de energia entre os estados ${}^{5}D_{4}$ e o ${}^{7}F_{0}$ do íon Tb³⁺ que acoplam com um maior número de osciladores –OH (Figura 2.4). Desta forma, embora o complexo [Tb(acac)₃(H₂O)₃] demonstre forte emissão, prevê-se uma intensificação com a substituição das moléculas de água por outros ligantes que sensibilizem as emissões do íon Tb³⁺. Neste contexto, este trabalho apresenta a síntese de três novos complexos anidros *tetrakis*(β -dicetonatos) de Tb³⁺, (Q)[Tb(acac)₄], onde Q = Li⁺, Na⁺ e K⁺.

Tabela 2.4 – Faixas espectrais, intensidades relativas e baricentros usualmente observados para as transições ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ do íon Tb³⁺ [Carnall *et al.*, 1988; Bünzli e Choppin, 1989]. Transição Faixa (nm) I Baricentro (nm)

Transição	Faixa (nm)	Ι	Baricentro (nm)
${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{6}$	480 a 505	m↔i	489
${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{5}$	535 a 555	i⇔mi	544
${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{4}$	580 a 600	m↔i	586
${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{3}$	615 a 625	m	620
${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{2}$	640 a 655	m	648
${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{1}$	660 a 670	pi	667
${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{0}$	675 a 680	pi	678

2.7. Fotoluminescência em complexos de Tm³⁺

Os complexos de Tm³⁺ usualmente apresentam apenas fraca luminescência oriunda das transições intraconfiguracionais 4f¹², como conseqüência da pequena diferença de energia entre seus níveis emissores e o estado fundamental, que aumenta a probabilidade das transições não-radiativas através do acoplamento com os modos vibracionais dos ligantes beta-dicetonatos. Assim, embora a grande maioria das pesquisas com íons TR³⁺ para a obtenção de dispositivos
moleculares conversores de luz (DMCL) sejam baseadas em projetar compostos de coordenação contendo os íons Eu^{3+} e Tb^{3+} como emissores de intensa luz vermelha e verde, respectivamente, a obtenção de complexos com o íon túlio trivalente exibindo sua emissão característica de cor azul ainda é escassa [Serra *et al.*, 1998; Hong *et al.*, 1999].

Pode-se citar o complexo de Tm^{3+} com o ligante 3-fenil-2,4-pentanodiona (ppa), $[Tm(ppa)_3(H_2O)_2]$ [Serra *et al.*, 1998]. Com excitação em 335nm, as emissões características do íon Tm^{3+} são observadas em 478 nm (${}^1G_4 \rightarrow {}^3H_6$), 650 nm (${}^1G_4 \rightarrow {}^3F_4$) e 770 nm (${}^1H_4 \rightarrow {}^3H_6$). O comportamento fotoluminescente é inesperado, pois a energia do estado tripleto do ligante foi determinada abaixo do nível ressonante do Tm^{3+} . Assumiu-se que o nível 1G_4 é populado via transferência de energia a partir de um estado de transferência de carga.

2.8. Dispositivos Eletroluminescentes baseados em Íons Terras-Raras

Eletroluminescência (EL) é a luminescência gerada em materiais sob influencia de um campo elétrico externo. A emissão da luz é causada pela recombinação dos elétrons e buracos no material. Atualmente, uma das aplicações mais difundidas desta técnica é a obtenção de materiais eletroluminescentes, aplicáveis em dispositivos emissores de luz (LED) [Braslavsky, 2007].

Os dispositivos emissores de luz surgem atualmente como prováveis substitutos das lâmpadas de descarga elétrica contendo mercúrio. Tipicamente, consistem em semicondutores inorgânicos do tipo *p* e *n*. Os elétrons e buracos são levados para a junção *p-n* pelo campo elétrico aplicado, onde os mesmos se recombinam e a energia adquirida é liberada em forma de radiação, usualmente na faixa do espectro visível. Por outro lado, nos dispositivos orgânicos emissores de luz (OLEDs), substituem-se os semicondutores inorgânicos por moléculas orgânicas. Estes são desenvolvidos principalmente para fabricação de visores. Um OLED consiste em camadas finas de compostos entre dois eletrodos. Estas camadas podem ser depositadas por várias técnicas

como deposição química de vapor, deposição química de vapor melhorado por plasma, *spin* coating etc.

Como princípio de funcionamento, os elétrons são injetados na camada emissora pelo cátodo, e os buracos são injetados pelo ânodo. O cátodo é tipicamente uma camada de um metal com uma baixa função de trabalho, como alumínio, magnésio, cálcio ou uma liga magnésio:alumínio. O ânodo é tipicamente uma camada transparente de óxido combinado de estanho-índio (ITO). A recombinação dos buracos com os elétrons injetados permite a formação de éxcitons singleto e tripleto. Por estatísticas de spin, 75% das recombinações fornecem éxcitons tripleto e 25% fornecem éxcitons singleto. Apenas os singletos podem produzir eletroluminescência. Os éxcitons tripleto decaem de forma não-radiativa, sem gerar eletroluminescência. Por esta razão, a eficiência quântica interna máxima de um OLED é limitada a 25% Baldo *et al.*, 1999]. Diferentes tipos de montagens para OLEDs são ilustrados na (Figura 2.5).

Figura 2.5 – Tipos de montagens para OLEDs. a) Camada simples; b) bi-camada; c) tri-camada, onde C=cátodo; CE=camada emissora; CTE=camada transportador de elétrons; CTB= camada transportadora de buracos; A=ânodo.

Um OLED de camada simples é produzido com apenas uma camada orgânica entre o cátodo e o ânodo. Tal camada não deve apenas possuir alta eficiência fotoluminescente, mas também atuar duplamente no transporte de elétrons e buracos. Em um dispositivo bi-camada, a camada orgânica é selecionada exclusivamente para o transporte de buracos, e a outra para o transporte de elétrons. A recombinação elétron-buraco ocorre na interface das duas camadas, onde é gerada a eletroluminescência. Nos OLEDs tri-camada, uma camada adicional é inserida entre as camadas transportadoras de elétrons e de buracos. Localmente nesta camada ocorre a recombinação dos elétrons e buracos, atuando como camada emissora. Este tipo de montagem é adequado para materiais potencialmente emissores de luz, os quais não possuem propriedades de transporte de carga suficiente para o sistema.

Em um OLED, os elétrons são transportados via orbital molecular não ocupado de menor energia (LUMO). Considera-se o LUMO análogo à banda de condução dos semicondutores. Os buracos são transportados por via dos orbitais moleculares ocupados de maior energia (HOMO). O HOMO pode ser comparado com a banda de valência de um semicondutor [Yersin, 2004].

O desempenho dos OLEDs é testado pela medida de suas características de voltagem versus intensidade luminosa. A intensidade luminosa aumenta com o aumento da voltagem aplicada, até um valor máximo. Idealizam-se dispositivos para uma menor voltagem aplicada neste máximo.

Kido e Okamoto (2002) relataram que a inserção de compostos de TR³⁺ como camada emissora dos OLEDs oferece vantagens, como incremento na saturação das cores e maior eficiência do dispositivo, em virtude dos já citados perfis de emissão estritamente monocromáticos destes íons. O resultado final é que as bandas largas (amplitude típica entre 80 e 100 nm) das camadas emissoras orgânicas fornecem misturas de cores, enquanto que as camadas emissoras com íons TR^{3+} provêem de cores muito mais puras (amplitude típica de 5 nm). Pode-se facilmente visualizar tal amplitude no diagrama de cromaticidade (Figura 2.6).

Figura 2.6 – Diagrama de cromaticidade (CIE) ilustrando as coordenadas de cores da região visível do espectro eletromagnético.

Ademais, com a utilização dos complexos de íons TR^{3+} , a limitação estatística da eficiência quântica interna devido aos spins eletrônicos no processo de recombinação elétronburaco (25%) é restringida sinergicamente com a transferência de energia para o íon metálico.

Fatores que desfavorecem o sistema OLED com camada emissora de TR^{3+} : (a) dificuldade na preparação dos filmes da camada emissora; (b) pouca eficiência no transporte de cargas elétricas e (c) baixo tempo de vida do dispositivo, devido à instabilidade dos complexos nas condições de trabalho.

A maioria dos estudos de complexos β -dicetonatos de terras-raras são aplicados em OLEDs são utilizados na forma *tris*-complexos. Pouquíssimos exemplos de OLEDs contendo complexos de TR³⁺ na forma *tetrakis* são relatados na literatura, dada a baixa estabilidade dos mesmos nas condições de temperatura requeridas. Entre eles, pode-se citar os complexos

contendo a série de cátions alcalinos, Li[Eu(tta)₄], Na[Eu(tta)₄] e K[Eu(tta)₄] [Yu *et al.*, 2000], e o mesmo ânion com o cátion piridínio, [pyH][Eu(tta)₄] [Liang *et al.*, 1997].

Estes poucos exemplos devem-se à forte tendência dos complexos $[Q][TR(\beta-dicetonato)_4]$ em volatilizar primeiramente um dos ligantes, formando o complexo neutro $[TR(\beta-dicetonato)_3]$ [Zaitseva *et al.*, 1995]. Desta maneira, quando exibida a emissão, seu principal responsável é a espécie *tris*(β -dicetonato).

A obtenção de OLEDs com camadas emissoras de cor vermelha, verde e azul, também chamados de *full-color*, resulta no controle das demais cores. Dentre os íons TR³⁺, o Eu³⁺ é o mais utilizado na fabricação de OLEDs, boa parte consistindo em complexos com os ligantes dibenzoilmetanato (dbm) e tenoiltrifluoroacetonato (tta) [Kido, 2002]. Analogamente aos estudos fotoluminescentes, provavelmente o segundo mais estudado é o Tb³⁺. Embora a eletroluminescência de *tris*-complexos de Tb³⁺ (cor verde) venha sendo bastante investigada, [Kido *et al.*, 1990; Liang *et al.*, 1997; Li *et al.*, 1997; Gao *et al.*, 1999; Wang *et al.*, 2000; Moon *et al.*, 2001; Capecchi, 2000; Christou *et al.*, 2000; Zheng *et al.*, 2002; Pyo *et al.*, 2000; Xin *et al.*, 2003; Zhao *et al.*, 2000] não existem na literatura tais complexos utilizados como camada emissora na forma *tetrakis.* No caso do íon Tm³⁺, assim como na fotoluminescência, o complexo [Tm(acac)₃(phen)] é um caso raro de OLED operativo baseado nestes íons [Hong *et al.*, 1999].

3 - Química dos Compostos $com <math>\beta$ -dicetonas

3.1. Química dos ligantes β -dicetonatos

R elaciona-se aqui alguns aspectos da química das β -dicetonas, para uma melhor compreensão das metodologias de síntese aplicadas neste trabalho.

As β -dicetonas, também denominadas como 1,3-dicetonas, se caracterizam por possuir dois grupos carbonil separados por um átomo de carbono ligado a outros dois radicais [Figura 3.1].

Figura 3.1 – Fórmula estrutural das β -dicetonas.

Existem exemplos de compostos α -substituídos, mas a maioria dos trabalhos sobre os complexos deste ligante com íons TR³⁺ está focada em moléculas onde os substituintes da posição α são átomos de hidrogênio (grupos R₃ e R₄). Para as posições R₁ e R₂ normalmente são usados grupos alquil, fluoroalquil, aromáticos e heteroaromáticos. A estrutura mais simplificada e de menor massa molecular para um exemplo de β -dicetona é a da acetilacetona (Hacac), onde R₁ e R₂ são grupos metil. Ainda que muitos trabalhos utilizem o termo "acac" para se referir à molécula de acetilacetona, a sigla adotada aqui segue a tendência ponderada de representar sua forma protonada como Hacac e acac para sua forma aniônica, que efetivamente coordena-se com os íons metálicos. Como exemplos de β -dicetonas geralmente empregadas em estudos com íons TR³⁺ pode-se citar: acetilacetona (Hacac), hexafluoroacetilacetona (Hhfac), 6,6,7,7,8,8,8-

heptafluoro-2,2-dimetil-3,5-octanodiona (Hfod), benzoilacetona (Hbzac), dibenzoilmetano (Hdbm), tenoiltrifluoroacetona (Htta), naftoiltrifluoroacetona (Hntac) e dipivaloilmetano (Hdpm) [Figura 3.2].

Figura 3.2 – Fórmulas estruturais de algumas β -dicetonas.

Vale mencionar a existência de ânions complexos estabilizados pelo cátion $H_5O_2^+$ [Figura 3.3], que não atua na primeira esfera de coordenação e forma ligações de hidrogênio com a

porção nitrogenada do ligante utilizado, acilpirazolonato, que possui semelhança estrutural com os β -dicetonatos [Pettinari *et al.*, 2006].

Figura 3.3 – Empacotamento molecular do complexo, onde $[H_5O_2][Eu(Cy)_4]$ (1) (HQCy = 1fenil-3-metil-4-ciclohexanocarbonilpirazol-5-ona) [Pettinari *et al.*, 2006].

A escolha dos substituintes nas β -dicetonas influencia diretamente nas propriedades físicas e químicas dos correspondentes complexos com íons TR³⁺, possibilitando escolher o ligante β -dicetonato conforme a aplicação desejada.

Quando as β -dicetonas têm um átomo de hidrogênio nas posições R₃ e/ou R₄, exibem tautomerismo ceto-enólico (Figura 3.4). A forma enólica co-existe tanto na forma *cis*-, quanto na forma *trans*-enólica, sendo que na forma *cis*-enólica ocorre ligação de hidrogênio intramolecular entre o átomo de hidrogênio da função enol e o oxigênio da função cetona. Em solução, a porcentagem de cada espécie é diretamente influenciada tanto pelos substituintes R_{1, 2, 3} quanto pelo solvente e temperatura do meio reacional.

Figura 3.4 – Equilíbrio ceto-enólico em β -dicetonas.

O conhecimento prévio destes estudos é de extrema importância no planejamento da preparação de complexos com β -dicetonatos, tornando a síntese energeticamente mais favorável com a pré-organização do ligante, semelhante ao efeito de molde (*template*) (Tabela 3.1) [Emsley, 1984; Koshimura *et al.*, 1973]. Para tanto, as sínteses deste estudo são projetadas a partir da maior quantidade possível da forma *cis*-enol no meio reacional.

Solvente	Tipo	% <i>cis</i> -enol
(pura)	_	80
CCl_4	neutro	95
CHCl ₃	doador fraco	87
EtOH	aceptor e doador	82
MeOH	aceptor e doador	74
H ₂ O	forte doador e aceptor	16

Tabela 3.1 - Percentual cis-enólico da acetilacetona em função do tipo de solvente

A presença de substituintes alquílicos no carbono α (R₃) beneficia a formação da espécie ceto, pois aumenta o pK_a do hidrogênio α , enquanto a presença de grupos que retiram elétrons, como o trifluorometil (–CF₃) favorece a forma enólica já que torna o hidrogênio α mais disponível no meio. Da mesma forma, grupos que exercem efeito mesomérico ou que retiram elétrons nas posições R₁ e R₂ tendem a favorecer a forma enólica. Por exemplo, para o Hdbm em CCl₄, e para o Hbzac em CDCl₃, determinou-se que aproximadamente 100% das moléculas estejam nesta forma [Burdett e Rogers, 1964].

Quanto menor a polaridade do solvente, maior é a quantidade da forma enólica em solução. Em CCl₄, 94% das moléculas de acetilacetona (Hacac) estão presentes como enol, enquanto que em acetonitrila este valor cai para 36% [Hammond *et al.*, 1959]. A quantidade da forma enólica diminui com o aumento da temperatura. Foi determinado que em temperaturas de -19, +2,5, +33,0 e +37,3 °C, o Hacac apresentou os percentuais de 89,5, 86,4, 79,0 e 78,2 % da forma enólica. Este fato é atribuído ao aumento da desordem no sistema, dificultando a estabilização da estrutura planar oriunda da forma enólica [Emsley, 1984].

Observando-se a figura 3.3, podemos notar que para β -dicetonas assimetricamente substituídas em R₁ e R₂, existirão duas formas enólicas distintas. Como exemplo da influência de R₁ e R₂, as benzoilacetonas com substituintes diferentes na posição *para* apresentam maior porcentagem de função álcool localizada mais próxima ao grupo fenil [Lowe e Ferguson, 1965].

A acidez da β -dicetona depende diretamente dos seus substituintes R_{1.3}. Quando a β dicetona é desprotonada, o próton ácido é removido do carbono α , no caso da forma ceto, ou do grupo alcoólico, no caso da forma enólica, pois este carbono está entre dois grupos carbonílicos, tornando possível a estabilização do ânion por conjugação. Neste trabalho foram utilizadas β dicetonas com pK_a \leq 9,0, o que torna possível a remoção de 1 próton ácido com bases do tipo: hidróxido de amônio, hidróxido de sódio, piperidina, piridina, etc. A utilização de bases mais fortes, como a trietilamina (Et₃N:) pode ocasionar a remoção de um segundo próton, portanto devem ser utilizadas quantitativamente em função do método sintético.

Normalmente, nos complexos com íons TR^{3+} , os íons β -dicetonatos atuam como ligante bidentado em função de sua carga deslocalizada e de aspectos entálpicos (menor energia) e entrópicos (maior organização), formando um anel de seis átomos (Figura 3.5).

Figura 3.5 – Fórmula estrutural de um complexo com o ligante β -dicetonato.

3.2. Complexos β -dicetonatos de TR³⁺

Atualmente, os complexos com íons TR^{3+} mais estudados são os complexos *tris*(β dicetonatos) de TR^{3+} . Estes se associam com um, dois ou três ligantes neutros adicionais (bases
de Lewis) além dos três β -dicetonatos, dependendo em geral de fatores estéricos em razão da
tendência do íon TR^{3+} de expandir sua esfera de coordenação, atingindo números de
coordenação típicos de sete, oito e nove. Os ligantes neutros mais utilizados são piridina (py),
bipiridina (bipy), terpiridina (terpy), fenantrolina (phen), óxido de trifenilfosfina (tppo),
dimetilsulfóxido (dmso) etc (Figura 3.6).

Embora os β -dicetonatos de TR³⁺ tenham sido primeiramente obtidos muitas décadas atrás, os primeiros procedimentos experimentais foram descritos satisfatoriamente somente em 1964 [Bauer *et al.*, 1964; Melby *et al.*, 1964]. Tem-se notado que tanto nas sínteses dos complexos *tris*(β -dicetonatos) de TR³⁺ – [TR(β -dicetonato)₃], quanto para os complexos *tetrakis*(β -dicetonatos) de TR³⁺ – [Q][TR(β -dicetonato)₄], a replicação de alguns métodos não eficientes podem gerar espécies hidroxi-*bis*(β -dicetonato) de TR³⁺, misturas de espécies *tris* e *tetrakis*, materiais poliméricos e variações no número de moléculas de água de hidratação e/ou coordenação.[Lyle e Witts, 1971; Belcher *et al.*, 1969; Ismail *et al.*, 1969]. Por outro lado, a síntese de complexo [TR(fod)₃] não necessita de um controle mais elaborado devido as características estéricas do ligante fod produzindo um composto *tris* na forma anidra, porém a obtenção do sistema *tetrakis*, [TR(fod)₄]⁻, necessita de uma rota sintética mais elaborada [Liss e Bos, 1977; Przystal *et al.*, 1971].

Figura 3.6 – Ligantes neutros comumente utilizados em complexos *tris*(β -dicetonatos) de TR³⁺.

A química dos complexos $[Q][TR(\beta-dicetonato)_4]$ iniciou, por acaso, com um procedimento muito aplicado nas sínteses dos compostos $[TR(\beta-dicetonato)_3]$, o "método da piperidina" [Crosby *et al.*, 1961; Whan e Crosby, 1962]. Este método consistiu da síntese do complexo $[TR(dbm)_3(H_2O)]$, com a adição de um excesso de 25% de Hdbm e piperidina, sendo

parte do solvente evaporada para precipitação do composto. Em seguida, foi necessário secar o produto obtido por 24 horas sob vácuo numa temperatura entre 125-150°C para remover uma quantidade de ligante "extra" do complexo, tratada como impureza. Em repetições subseqüentes percebeu-se que não era tão fácil remover o ligante "extra", e observou-se a existência do ânion $[TR(\beta\text{-dicetonato})_4]^{-}$. Atualmente, os complexos $[TR(\beta\text{-dicetonato})_3]$ são preparados pela adição quantitativa de piperidina:cloreto de TR^{3+} : β -dicetona na proporção 3:1:3, em solução aquosa e etanol (ou metanol).

Pouco tempo depois foram descritas três rotas de sínteses para obter os sistemas *tetrakis*. Primeiro, solubiliza-se o cloreto de TR^{3+} e da β -dicetona em água ou etanol na proporção 1:4 e depois [Bauer *et al.*, 1964; Melby *et al.*, 1964]:

- Adiciona-se uma base (por exemplo, piperidina) em quantidades equivalentes ao ligante β-dicetona. Neste caso, a base é suficientemente forte para desprotonar a βdicetona, formando o contra-íon desejado;
- Para ânions complexos contendo contra-cátions de amônio quaternário, como o tetrapropilamônio, emprega-se sua forma básica (hidróxido de tetrapropilamônio) para a desprotonação das β-dicetonas ou
- 3) Finalmente, na síntese dos complexos *tetrakis* contendo contra-cátions derivados de bases fracas, adiciona-se, por exemplo, cloreto de n-hexadecilpiridínio juntamente com uma solução de NaOH (2,0 mol.L⁻¹) para efetuar a remoção do próton da βdicetona.

O método de síntese de complexos $[Q][TR(\beta-dicetonato)_4]$ utilizado nesta tese é predominantemente o método (1), considerando que várias adaptações em função da β -dicetona e da base são adotadas. Todos os sais de TR³⁺ foram utilizados na forma de cloreto, pois algumas sínteses que partem do nitrato de TR³⁺ podem conduzir à formação de complexos de

composição não desejada, devido à maior afinidade dos ânions NO_3^- pelos íons TR^{3+} , em relação ao ânion Cl⁻. Por exemplo, o complexo $[Eu(tta)_3(tppo)_2]$ é obtido partindo-se de cloreto de Eu^{3+} , enquanto a síntese a partir do nitrato gera o complexo $[Eu(tta)_3(tppo)_2(NO_3)]$ [Melby *et al.*, 1964; Fu *et al.*, 2003].

Nota-se também que a proporção dos reagentes, TR^{3+} , β -dicetona e base (1:3:3 para os complexos *tris*(β -dicetonatos) de TR^{3+} e 1:4:4 para os complexos *tetrakis*(β -dicetonatos) de TR^{3}) não é o suficiente para promover a formação do composto de coordenação em quantidade majoritária, motivo pelo qual muitas vezes obtém-se produtos imprevistos [Bauer *et al.*, 1964].

Ademais, na obtenção dos complexos de TR^{3+} , a presença de água no meio sintético pode gerar compostos hidratados em diferentes proporções, além de exigir o cuidado com a temperatura para não favorecer o processo de decomposição sob aquecimento na própria solução-mãe, como no caso do complexo [TR(dbm)₃(H₂O)] em solução etanólica [Charles e Perrotto, 1964; Ismail *et al.*, 1969]:

$$[TR(dbm)_{3}(H_{2}O)]_{(sol)} \xrightarrow{\Delta} [TR(dbm)_{2}(OH)]_{(s)} + Hdbm_{(sol)} \qquad Eq. 3.1$$

3.3. Propriedades físicas e químicas dos complexos $[TR(\beta-dicetonato)_n]$

De uma forma geral, os complexos β -dicetonatos de TR³⁺ são obtidos na forma de sólidos cristalinos ou líquidos viscosos. Ainda que possam ser feitas algumas correlações entre a natureza do ligante e o produto final, fatores como: solvente, temperatura e método de síntese (os dois primeiros diretamente relacionados à taxa de evaporação da solução-mãe), também exercem grande influência nesta característica [Blanc e Ross, 1965; Kirby e Richardson, 1983].

Os complexos *tetrakis*(β -dicetonatos) de TR³⁺ termicamente demonstram tendência em se decompor primeiramente na espécie neutra *tris*(β -dicetonato) de TR³⁺ pela liberação de um dos quatro ligantes da primeira esfera de coordenação, formando um sal com o respectivo contra-íon do sistema [Zaitzeva, 1995; Shepherd, 1966; Filipescu *et al.*, 1966; Charles e Riedel, 1966; Shepherd, 1967].

No que se refere aos íons TR³⁺ aqui estudados, grande parcela dos seus complexos apresentam coloração branca, amarela ou marrom, e em quase todos os casos a cor é resultado de uma atenuação da cor original do ligante, reflexo da baixa absortividade molar do íon TR³⁺ corroborada com o pequeno caráter covalente das ligações em seus complexos. Em função desta última, o deslocamento e alteração no perfil das bandas de absorção do ligante são desprezíveis.

Em alguns complexos observa-se uma cor vermelha ou marrom avermelhada, que pode ser atribuída à emissão do próprio íon Eu³⁺, ou seja, faz parte de um processo de fotoluminescência que se inicia com a excitação pela própria luz ambiente.

Ao contrário dos compostos de fórmula $[TR(\beta-dicetonato)_3]$, que acomodam até três moléculas de água de coordenação formando complexos nona-coordenados, não são relatados complexos $[Q][TR(\beta-dicetonato)_4]$ contendo moléculas de água de coordenação, devido ao impedimento estérico efetuado pelos quatro ligantes em torno do íon TR^{3+} [Zarkin *et al.*, 1969; Kirby e Richardson, 1983; Sweeting and Rheingold, 1989; Zeng *et al.*, 2000]. Adicionalmente, quando os substituintes R_1 e R_2 são hidrofóbicos, como no dibenzoilmetanato, a aproximação das moléculas de água presentes no meio reacional ao íon TR^{3+} é previnida, quando os mesmos estão coordenados (Figura 3.7). Por outro lado, os complexos *tris* são solúveis em uma grande variedade de solventes próticos, apróticos, de polaridade variada. Por exemplo, o complexo [Yb(dpm)₃] é solúvel em metilcicloexano, benzeno, clorofórmio, metanol, acetato de etila, tetracloreto de carbono e hexano, entre outros, e insolúvel em água. Nota-se também a influência do raio iônico do íon metálico. Com o decréscimo do raio iônico, a solubilidade do complexo é favorecida em solventes pouco polares, em virtude da maior dificuldade de acesso ao íon TR^{3+}

pelas moléculas de solvente, resultando numa maior interação com os grupos hidrofóbicos [Eisentraut e Sievers, 1968].

Figura 3.7 – Exemplos de estruturas dos complexos (a) *tris* [Zalkin *et al.*, 1969] e (b) *tetrakis*, com o ligante dibenzoimetanato [Sweeting and Rheingold, 1989].

Complexos octa-coordenados $[Q][TR(\beta-dicetonato)_4]$ são estáveis no estado sólido, entretanto suas estruturas em solução sofrem maior perturbação quando comparado aos complexos $[TR(\beta-dicetonato)_3]$, variando para um mesmo composto de dodecaedro a antiprisma quadrado, assim como no estado sólido, porém detecta-se a presença de formas intermediárias dos dois poliedros, devido à labilidade dos ligantes nestes compostos [Samelson *et al.*, 1966].

Observa-se que em solventes pouco polares, os complexos $[Q][TR(\beta-dicetonato)_4$ são dissociados para a forma $[TR(\beta-dicetonato)_3]$ mais o sal $[Q](\beta-dicetonato)$, além do que a forma $[TR(\beta-dicetonato)_3]$ pode continuar a dissociar-se nas formas *bis* e *mono*(β -dicetonato), em menores proporções [Yatsimirskii e Davidenko, 1979]. Ademais, os β -dicetonatos de TR³⁺ facilmente dimerizam em solventes pouco polares. Por exemplo, a forma dimérica do complexo [Tb(acac)_3(H_2O)_3] em concentrações maiores que 0,005mol.L⁻¹ prevalece em benzeno [Ismail *et* *al.*, 1969; Bruder *et al.*, 1974; Neilson e Shepherd, 1976; Kemlo *et al.*, 1977]. Estudos realizados com os compostos $[Pr(fod)_3]$ e $[Eu(fod)_3]$ atribuem a auto-associação dos mesmos como uma tendência relativa à característica dos íons TR³⁺ em adquirir um número de coordenação elevado [Bruder *et al.*, 1974]. A formação do monômero, $[TR(fod)_3]$, número de coordenação seis, dímeros de número de coordenação sete, $[TR_2(fod)_6]$ e trímeros, $[TR_3(fod)_9]$, de número de coordenação sete, ponteadas a possibilidade da presença de espécies com número de coordenação sete, ponteadas por uma molécula de solvente coordenante, como no complexo [TR(fod)_3(H₂O)TR(fod)_3], embora já tenha sido caracterizado o complexo dimérico anidro no estado sólido a partir da síntese com o ligante 2,2,6,6-tetrametil-3,5-heptanodionato com o íon Pr³⁺ [Erasmus e Boeyens, 1969 e 1970]. A dependência da auto-associação dos complexos com o solvente segue a ordem: *n*-hexano > tetracloreto de carbono > benzeno > clorofórmio, neste último, a forma detectada é essencialmente [TR(fod)₃] [Bruder *et al.*, 1974].

O comportamento em solução descrito, dificulta a obtenção de compostos puros dos complexos *tetrakis*(β -dicetonatos) de TR³⁺, motivo pelo qual a quantidade de dados cristalográficos em relação aos complexos *tris* é reduzida. O poliedro de coordenação dos compostos octa-coordenados podem ser descritos estruturalmente como uma aproximação do dodecaedro (grupo pontual D_{2d}) ou por um anti-prisma quadrado (grupo pontual D_{4d}). Não há registros de determinações estruturais que classifiquem uma geometria regular em torno do íon TR³⁺ nos complexos *tetrakis*(β -dicetonato), mas estas aproximações são extremamente úteis na descrição do ambiente de coordenação dos mesmos. Muitas vezes o poliedro de coordenação apresenta-se tão distorcido que impossibilita decidir qual das estruturas é predominante [Burns e Danford, 1969; Chen *et al.*, 1998; Criasia e Cefola, 1975; Lalancette *et al.*, 1967; Mcphail e Tschang, 1974; Moriguchi *et al.*, 2000; Polyanskaya *et al.*, 1997; Rheingold e King, 1989; Sweeting e Rheingold, 1987; Xiong e You, 2002; Wang *et al.*, 1995; Zeng *et al.*, 2000].

4 – Procedimentos Experimentais

4.1. Preparação dos Compostos

om exceção do composto Hdbm, que foi recristalizado em etanol, as substâncias químicas foram empregadas sem purificação prévia. A lista dos reagentes e solventes utilizados neste trabalho encontra-se na tabela 4.1. Os seguintes instrumentos na obtenção dos compostos de TR³⁺: (a) micropipetas com capacidades de 200 e 1000 μL; (b) microbureta de pistão; (c) balança analítica com precisão de 0,5mg; (d) banho-maria e (e) bomba de vácuo.

4.1.1 Sínteses dos complexos

De maneira geral, na síntese dos complexos *tris*(β -dicetonatos) de TR³⁺, de fórmula geral [TR(β -dicetonatos)₃(H₂O)_x], foram usados os ligantes acac, dbm e tta e os íons Eu³⁺, Gd³⁺, Tb³⁺ e Tm³⁺, a partir de procedimentos descritos na literatura, com algumas modificações [Crosby et al., 1961; Whan e Crosby, 1962; Melby et al., 1964; Bauer et al., 1964; Binnemans et al., 2004].

A obtenção dos sais de cloreto (Eq. 4.1) consiste na digestão de uma suspensão aquosa dos respectivos óxidos de TR³⁺, TR₂O₃, por meio da adição de ácido clorídrico concentrado até que uma quantidade mínima de óxido permaneça em suspensão e o pH do meio atinja um valor aproximado entre 5,5 e 6,0. A suspensão é filtrada, sendo a solução-mãe colocada em banhomaria até sua evaporação completa, obtendo-se o precipitado final TRCl₃(H₂O)_x que é seco sob vácuo e armazenado em dessecador. Por outro lado, durante o processo de digestão, o óxido Tb₄O₇ deve ser tratado com peróxido de hidrogênio em adições simultâneas com o ácido clorídrico até o consumo das espécies Tb⁴⁺, verificada pelo desaparecimento do sólido de coloração violeta em suspensão.

$$TR_{2}O_{3(s)} + 6 HCl_{(conc.)} \xrightarrow{\Delta} 2 TRCl_{3(aq.)} + 3 H_{2}O$$
(4.1)

Composto	Fórmula Molecular	Procedência
Acetato de etila	CH ₃ CH ₂ CO ₂ CH ₂ CH ₃	Riedel-de-Häen
Acetilacetona	CH ₃ (CO)CH ₂ (CO)CH ₃	Merck
Acetonitrila	CH ₃ CN	Merck
Acetona P. A. 99,5%	$(CH_3)_2CO$	Quimex
Ácido clorídrico concentrado 37%	HCl	Merck
Álcool etílico P. A. 95%	CH ₃ CH ₂ OH	Vetec
Álcool metílico P. A. 99,9%	CH ₃ OH	Carlo Erba
Álcool isopropílico	(CH ₃) ₂ CH ₂ OH	Merck
Benzeno	C_6H_6	Merck
Ciclohexano	$C_{6}H_{12}$	Merck
Clorofórmio P. A.	CHCl ₃	Vetec
Dibenzoilmetano	C ₆ H ₅ (CO)CH ₂ (CO)C ₆ H ₅	Sigma-Aldrich
Diciclohexilamina	$(C_6H_{11})NH(C_6H_{11})$	Merck
Éter etílico P. A.	(CH ₃ CH ₂) ₂ O	Merck
Etilenodiaminotetraacético (sal	Na ₂ H ₂ EDTA	Sigma-Aldrich
dissódico) (EDTA)	$[(\mathrm{OOCCH}_2)_2\mathrm{N}(\mathrm{CH}_2)_2\mathrm{N}(\mathrm{CH}_2\mathrm{COO})_2]$	
Hidróxido de amônio 29%	NH ₄ OH	Synth
Hidróxido de lítio	LiOH.H ₂ O	Sigma-Aldrich
Hidróxido de potássio	КОН	Merck
Hidróxido de sódio	NaOH	Merck
Morfolina	C ₄ H ₈ NHO	Merck
Peróxido de hidrogênio	H_2O_2	Synth
Óxidos de terras-raras 99,99%	$Tb_4O_{7}TR_2O_3$	Sigma-Aldrich
Tenoiltrifluoroacetona	C ₄ H ₄ S(CO)CH ₂ (CO)CF ₃	Sigma-Aldrich
2, 2, 6, 6-Tetrametilpiperidina	$C_9H_{18}NH$	Sigma-Aldrich
Trietilamina	$(C_2H_5)_3N$	Merck
Tolueno	C_7H_9	Nuclear

Tabela 4.1 - Reagentes utilizados nos procedimentos experimentais

4.1.1.1 Complexos *tris*(β -dicetonatos) de TR³⁺

(*i*) Os complexos $[TR(acac)_3(H_2O)_3]$ ($TR^{3+} = Eu^{3+}$, Gd^{3+} , $Tb^{3+} e Tm^{3+}$) foram obtidos por meio da seguinte reação química (equação 4.2):

$$TRCl_{3(sol.)} + 3 \operatorname{Hacac}_{(sol.)} \xrightarrow{3 \operatorname{NH}_4 \operatorname{OH}_{(aq)}} [TR(acac)_3(\operatorname{H}_2O)_3]_{(s)} + 3 \operatorname{NH}_4Cl_{(sol.)}$$
(4.2)

Método (a) Este método consistiu na adição lenta de uma solução aquosa diluída de NH_4OH (0,1 mol.L⁻¹) em uma solução aquosa contendo o respectivo cloreto de TR^{3+} , e um grande excesso (200%) de Hacac, relativo a uma proporção 3:1 de ligante para o íon TR^{3+} . A quantidade de $NH_4OH_{(aq)}$ adicionada deve ser suficiente para garantir a desprotonação das moléculas de ligante (pH \cong 6,0). Deve-se controlar a adição da base para não exceder o pH 7,0 que conduzirá à formação da espécie $TR(OH)_3$ insolúvel, com aspecto gelatinoso. O sistema é mantido sob agitação para a precipitação do complexo [$TR(acac)_3(H_2O)_3$], que depois é filtrado e seco sob vácuo. A purificação deste produto foi efetuada por recristalização em etanol ou clorofórmio, cujo rendimento variou entre 60 e 70%.

Método (b) Adicionou-se lentamente a base trietilamina (Et₃N) em uma solução metanólica (ou etanólica) contendo o TRCl₃ e um excesso (15%) de acetilacetona, relativo a uma proporção 3:3:1 de base, ligante e TR³⁺, respectivamente. Agitou-se a solução por aproximadamente 30 minutos e duplicou-se o volume da solução pela adição de água gelada mantendo-se a agitação por mais 2h, para a precipitação do produto requerido. O complexo é filtrado e seco sob vácuo, apresentando rendimento entre 40 e 65%.

(ii) Os complexos [TR(dbm)₃(H₂O)] foram obtidos a partir de uma solução Na(dbm) que foi adicionada lentamente em uma solução contendo 2,0 mmol de TRCl₃(H₂O)₆ em metanol. Deve-se salientar que a solução de Na(dbm) foi preparada pela adição de 6,0 mL de uma solução

metanólica de NaOH 6,0 mmol.L⁻¹ em 6,0 mmol do composto Hdbm (1,34g) em 100mL de metanol. A solução resultante foi mantida sob agitação e refluxo durante aproximadamente 6 horas. Logo após, acrescentou-se 200 mL de água mantendo-se a agitação e o aquecimento durante 30 minutos. Posteriormente, a mistura foi mantida em repouso sob refrigeração em congelador por um período de 12h para precipitação do complexo, que foi filtrado, lavado com H_2O , e seco sob vácuo. Os rendimentos dos complexos de Eu³⁺ e Gd³⁺ ficaram entre 80 e 90%. A equação 4.3 mostra a reação global de obtenção dos complexos [TR(dbm)₃(H₂O)].

$$TRCl_{3(sol.)} + 3Hdbm_{(sol.)} \xrightarrow{3 \text{ NaOH}} [TR(dbm)_3(H_2O)]_{(s)} + 3 \text{ NaCl}_{(sol.)}$$
(4.3)

(iii) Os complexos $[TR(tta)_3(H_2O)_2]$ foram sintetizados a partir de uma solução de Na(tta), preparada pela adição de 6,0 mL de uma solução aquosa de NaOH (6,0 mol.L⁻¹) em uma solução de 6,0 mmol do composto Htta (1,33 g) em 30 mL de etanol, a qual foi acrescentada lentamente em uma solução aquosa contendo 2,0 mmol de $TRCl_3(H_2O)_6$, sob agitação e aquecimento em torno de 60°C. Logo após, acrescentou-se 200 mL de água destilada, mantendo-se a agitação e o aquecimento durante 30 minutos. Durante o resfriamento da solução iniciou-se o processo de precipitação do complexo desejado. A mistura foi mantida em repouso por um período de 12h e depois o complexo foi filtrado, lavado com H₂O, e seco sob vácuo, apresentando rendimentos entre 80 e 90 % para complexos de Eu³⁺ e Gd³⁺.

$$TRCl_{3(sol.)} + 3 \operatorname{Htta}_{(sol.)} \xrightarrow{3 \operatorname{NaOH}} [TR(tta)_3(H_2O)_2]_{(s)} + 3 \operatorname{NaCl}_{(sol.)}$$
(4.4)

4.1.1.2 Complexos *tetrakis*(β -dicetonatos) de TR³⁺

(*i*) Na síntese dos complexos (Q)[TR(acac)₄] que contém os metais alcalinos (Li⁺, Na⁺ e K⁺) como contra-cátion, foi utilizado cerca de 1,0 mmol de [TR(acac)₃(H₂O)₃] solubilizado em 50 mL de CHCl₃. Adicionou-se a esta solução 1,2 mmol de Hacac (0,124 mL). Uma alíquota de 10,0 mL de uma solução metanólica 0,1 mol.L⁻¹ do respectivo hidróxido de metal alcalino, foi acrescentada lentamente, com aquecimento (60 °C) e agitação por 6 horas. Logo após, manteve-se a solução sob agitação a temperatura ambiente, até o inicio da precipitação. A mistura foi mantida em repouso por 12 horas, sendo o precipitado separado por filtração, lavando-se o sólido com H₂O para remoção dos cloretos de metais alcalinos. O produto foi recristalizado em uma mistura de solvente EtOH:Bz (1:1) [Melby *et al.*, 1964]. Esta solução foi filtrada para remoção de possíveis resíduos, e mantida em repouso até a redução de 2/3 do seu volume inicial. O produto cristalino foi filtrado, lavado com H₂O e posteriormente mais 1 porção de EtOH gelado para remoção de possíveis resíduos da espécie Li(acac), seco sob vácuo.

Para a síntese do complexo (Na)[TR(acac)₄] foi usado o mesmo procedimento relatado acima. Neste caso, a mistura dos reagentes foi mantida em repouso, sob resfriamento por 12 horas para a precipitação. Quando foi filtrada, lavou-se o sólido com H₂O e em seguida com EtOH para remoção de Na(acac). Este produto foi seco e armazenado sob vácuo. Por outro lado, na obtenção do complexo (K)[TR(acac)₄], após a solubilização dos reagentes, manteve-se a solução sob agitação a temperatura ambiente até o início da precipitação (cerca de 24 horas). Em seguida, a mistura também foi mantida em repouso sob resfriamento durante 24 horas para a precipitação. Quando foi filtrada, lavou-se o sólido com H₂O para remoção de K(acac), e seguidamente com EtOH. O material foi seco e armazenado sob vácuo. Todos os complexos da série (Q)[TR(acac)₄] apresentaram rendimentos entre 40 e 60%. A figura 4.1 ilustra a rota sintética utilizada na obtenção da família de complexos $(Q)[TR(acac)_4]$, onde $Q^+ = Li^+$, Na⁺ ou K⁺, e TR = Eu³⁺, Gd³⁺, Tb³⁺ e Tm³⁺, com modificações dos métodos previamente descritos [Melby et al., 1964; Bauer et al., 1964].

Figura 4.1 – Fluxograma da síntese dos complexos (Q)[TR(acac)₄].

(ii) Na síntese do complexo de (Li)[TR(dbm)₄] (Figura 4.2) foram misturadas as soluções metanólicas de 1,0 mmol de [TRCl₃(H₂O)₆] e 4,2 mmol de Hdbm (0,942 g). A esta solução adicionou-se 4,0 mmol de LiOH.H₂O (0,168 g), produzindo-se uma suspensão que foi mantida sob refluxo por cerca de 48 horas. Filtrou-se o sólido cristalino LiCl formado na reação. A solução restante foi refrigerada em congelador durante 72 horas. O complexo (Li)[TR(dbm)₄] cristalino foi filtrado e lavado com H₂O e EtOH gelado para remoção dos possíveis resíduos de de LiCl e Li(dbm). O produto foi seco e mantido sob vácuo.

Figura 4.2 – Fluxograma da síntese dos complexos (Li)[TR(dbm)₄]

Os complexos (Q)[TR(dbm)₄] contendo contra-cátions derivados de aminas foram obtidos a partir da solubilização de 1,0 mmol de [TRCl₃(H₂O)₆] em 50 mL de EtOH, que foram adicionados lentamente a uma solução contendo 4,2 mmol de Hdbm (0,942 g) e 4,0 mmol da respectiva base em 100 mL de EtOH. A solução foi mantida sob agitação até o início da precipitação. Esta mistura foi mantida em repouso, sob refrigeração durante 48 horas. Filtrou-se, e lavou-se o sólido com H₂O a 60 °C para remoção do sal (Q)Cl. Subseqüentemente, o complexo cristalino contendo o cátion (Et₃NH)⁺ foi lavado com acetona para remoção dos possíveis resíduos de (Et₃NH)(dbm), enquanto que os sistemas com contra-cátions (Morf)⁺, ((TMPip)⁺ e (Diciclo)⁺ foram lavados também com EtOH gelado. A figura 4.3, apresenta as adaptações das rotas sintéticas utilizadas na obtenção da família de complexos (Q)[TR(dbm)₄], onde Q⁺ = (Et₃NH)⁺, (Morfo)⁺, (TMPip)⁺ e (Diciclo)⁺, e TR³⁺ = Eu³⁺ e Gd³⁺ [Melby et al., 1964; Bauer et al., 1964].

(iii) Na síntese do complexo (Q)[TR(tta)₄] uma solução de 1,0 mmol de [TRCl₃(H₂O)₆], solubilizados em EtOH, foi adicionada lentamente a uma outra solução etanólica contendo 4,2 mmol de Htta e 4,0 mmol de amina (trietilamina, morfolina, 2, 2, 6, 6-tetrametilpiperidina ou diciclohexilamina) em 50 mL de etanol. A solução foi mantida sob agitação vigorosa por 48 horas e em seguida deixada em repouso por 72 horas sob refrigeração para sua precipitação. O sólido foi separado por filtração e lavado com H₂O a 60 °C para remoção do sal (Q)Cl.

O produto com o contra-cátion $(Et_3NH)^+$ foi recristalizado em álcool isopropílico ou etanol, que após redução do volume inicial (cerca de 90 %), filtrou-se o precipitado e secando-o sob vácuo em presença de pentóxido de fósforo, por 48 horas.

Por outro lado, o complexo com (Morf)⁺ formou um produto oleoso. Esta mistura foi decantada para separação das fases, sendo o óleo solidificado a temperatura do nitrogênio líquido (77K) e triturado com um bastão de vidro para obtenção do produto na forma de pó.

Em temperatura ambiente, o complexo foi lavado com H_2O , filtrado e seco sob vácuo em presença de pentóxido de fósforo, por 48 horas.

Os complexos com (TMPip)⁺ e (Diciclo)⁺ foram secos sob vácuo em presença de pentóxido de fósforo.

Figura 4.3 – Fluxograma da síntese dos complexos (Q)[TR(dbm)₄].

A figura 4.4 apresenta as adequações das rotas sintéticas previamente descritas, para a obtenção dos complexos (Q)[TR(tta)₄], onde Q⁺ = (Et₃NH)⁺, (Morfo)⁺, (TMPip)⁺ e (Diciclo)⁺, e TR³⁺ = Eu³⁺ e Gd³⁺ [Melby et al., 1964; Bauer et al., 1964].

Figura 4.4 – Fluxograma da síntese dos complexos (Q)[TR(tta)₄].

Com o objetivo de purificar os complexos *tetrakis*(β -dicetonatos) de TR³⁺, foram efetuadas tentativas de recristalização dos respectivos compostos com os ligantes dbm e tta em álcool isopropílico, álcool isopropílico:éter (20:1), acetato de etila, acetonitrila, acetato de etila, benzeno, etanol, metanol e clorofórmio, resultando na obtenção de material viscoso contendo mistura de complexos e os sais dos ligantes devido à baixa estabilidade destes sistemas em solução, conforme mencionado no capítulo 3.

4.2. Instrumentação

4.2.1 Ensaios de titulação complexométrica

Os ensaios de titulação complexométrica foram efetuados no Laboratório dos Elementos do Bloco f, do Instituto de Química da Universidade de São Paulo. Este método consiste na titulação de uma solução contendo uma massa conhecida do complexo de TR³⁺ sintetizado com uma solução padronizada de Na₂H₂EDTA, com o objetivo de determinar o teor de íons TR³⁺ nos compostos sintetizados. O indicador empregado neste procedimento é o alaranjado de xilenol (Figura 4.5).

Figura 4.5 – a) Fórmula estrutural do Na₂H₂EDTA; b) Fórmula estrutural do alaranjado de xilenol.

O alaranjado de xilenol é utilizado como indicador metálico em soluções ácidas, motivo pelo qual o pH deve ser ajustado entre 3,0 e 5,0 com uma solução tampão, tipicamente ácido acético/acetato de sódio. Nestas soluções, apresenta coloração amarelo-alaranjado, adquirindo uma cor vermelha intensa quando complexado com os íons TR³⁺. Desta forma, o ponto de equivalência é indicado pela mudança de cor vermelha para amarela com a adição do agente complexante Na₂H₂EDTA, o qual possui uma maior constante de formação com estes íons metálicos. Adiciona-se uma gota de piridina antes da titulação para acentuar a coloração da solução [Schwarzenbach, 1957].

4.2.2 Análise elementar de carbono, hidrogênio e nitrogênio

As determinações dos percentuais de carbono, hidrogênio e nitrogênio dos complexos preparados, foram efetuadas na central analítica do Instituto de Química da Universidade de São Paulo, utilizando-se um microanalisador Perkin-Elmer CHN 2400.

4.2.3 Termogravimetria

As curvas TG foram obtidas no Laboratório de Análise Térmica Ivo Giolito, coordenado pelo Prof. Dr. Jivaldo do Rosário de Matos, em uma termobalança da marca Shimadzu modelo TGA-50, sob atmosfera dinâmica de ar (50 mL.min⁻¹), razões de aquecimento de 10 °C.min⁻¹ até 900°C, utilizando uma massa de amostra de aproximadamente 5 mg em cadinho de platina. Antes dos ensaios, fez-se uma curva em branco (ocorre um ganho de massa de aproximadamente 0,1 mg no conjunto estribo/cadinho, isoladamente, devendo ser subtraído da curva TG da amostra) e em seguida uma curva TG e DTG de uma amostra de oxalato de cálcio mono-hidratado conforme norma ASTM (E1582 – 93). O objetivo desta técnica foi determinar a temperatura *on set* (temperatura extrapolada do início da decomposição térmica da amostra) dos complexos (Li)[Tb(dbm)₄] e (Li)[Tb(acac)₄], que serve como parâmetro para a técnica de deposição aplicada.

4.2.4 Espectroscopia de absorção no infravermelho

Os espectros vibracionais dos complexos foram obtidos na central analítica do Instituto de Química da Universidade de São Paulo, utilizando-se um equipamento FTIR Bomen MB100 350-4000, com resolução de 2 cm⁻¹, em pastilhas de brometo de potássio.

4.2.5 Difratometria de raios-X, método do pó

Os difratogramas de raios-X (método do pó) dos complexos foram registrados através de um difratômetro de raios-X Rigaku Miniflex, utilizando radiação CuK α de λ =1,5425 Å e uma velocidade de varredura de 2°.min⁻¹.

4.2.6 Fotoluminescência

Os espectros de excitação e emissão dos complexos β -dicetonatos de terras-raras foram registrados em temperatura ambiente (cerca de 298K) e do nitrogênio líquido (77K), em intervalos dependentes da natureza da amostra, na faixa espectral de 240 e 850 nm. Para tal, utilizou-se um espectrofluorímetro SPEX-FLUOROLOG 2 com monocromadores duplos SPEX 1680 e uma lâmpada de Xenônio de 450 W como fonte de excitação. Todos os dados espectrais foram coletados em um ângulo de 22,5° (*front face*). Além do mais, as curvas de decaimento de luminescência foram registradas no intervalo de 0,04 até 19ms, em temperatura ambiente, utilizando um fosforímetro SPEX 1934D acoplado ao espectrofluorímetro. Todo o sistema é controlado pela interface DM3000F. Em todas as medidas, as fendas dos monocromadores excitação e emissão foram respectivamente ajustadas para 1,5/0,3 mm na leitura dos complexos de Eu³⁺ e Tb³⁺, e 3,0/0,5 mm para os complexos contendo os íons Gd³⁺ e Tm³⁺.

4.2.7 Eletroluminescência

Em colaboração com o Laboratório de Espectroscopia Óptica e Optoeletrônica Molecular, Departamento de Física da Pontifícia Universidade Católica do Rio de Janeiro, PUC/RJ, coordenado pelo Prof. Marco Cremona, foram realizados ensaios preliminares da utilização dos complexos (Li)[Eu(dbm)₄]. H₂O e (Q)[Tb(acac)₄] como camadas emissoras de luz e transportadoras de elétrons em dispositivos OLEDs. A deposição dos filmes foi realizada pela técnica de evaporação física por fase vapor (PVD), em um sistema de alto vácuo da LEYBOLD, modelo UNIVEX 300. A medição da espessura dos filmes *in situ* foi realizada através de um sensor, ligado a um monitor LEYBOLD, modelo XTC-INFICON. As medidas de eletroluminescência foram efetuadas conectando-se os OLEDs preparados a uma fonte de tensão programável da marca Keithley, modelo 2240, e acoplando-os ao sistema de detecção de um espectrofluorímetro marca Photon Technology Internation (PTT), modelo 1469.

4.2.8 Triboluminescência

O espectro de triboluminescência do complexo (TMPip) $[Eu(tta)_4]$ foi obtido a partir da quebra dos seus cristais em uma sala escura, com o auxílio de um bastão de vidro, enquanto simultaneamente registrou-se o espectro utilizando um espectrômetro de fibra óptica PC2000 – Ocean Optics, com um detector CCD *array*, modelo 2048.

5 – Resultados e Discussão

5.1. Caracterização dos complexos

S compostos *tetrakis*(β-dicetonato) de terras-raras apresentando a fórmula geral (Q)[TR(β-dicetonato)₄] {(Q = Li⁺, Na⁺, K⁺, (Et₃NH)⁺, (Morf)⁺, (TMPip)⁺ e (Diciclo)⁺); (TR³⁺ = Eu³⁺, Gd³⁺, Tb⁺ e Tm³⁺) e (β-dicetonato = acac, dbm e tta)} foram caracterizados por análise elementar, espectroscopia no infravermelho, e difratometria de raios-X pelo método do pó. Os complexos foram isolados na forma de um pó fino apresentando-se não higroscópicos e estáveis em condições ambiente. Todos os complexos deste estudo são insolúveis em água. Ademais, de maneira geral os sistemas *tetrakis* demonstraram baixa estabilidade (Figura 5.1) em solventes orgânicos, uma vez que o processo de solubilização levou à formação de uma mistura de complexos β-dicetonatos de TR³⁺ [Yatsimirskii e Davidenko, 1979].

Figura 5.1 – Degradação dos complexos (Q)[TR(β -dicetonato)₄] em solução.

Os complexos *tetrakis* sintetizados com o ligante acac são insolúveis em todos os solventes utilizados (Tabela 4.1), no entanto na presença de solventes de baixa polaridade como CHCl₃ e benzeno decompõem-se nas formas *tris* e dimérica (Figura 5.1). Já os complexos contendo os ligantes dbm e tta, apenas aqueles da série (Et₃NH)[TR(tta)₄] e (TMPip)[TR(tta)₄] (TR³⁺= Eu, Gd), em solução etanólica ou de álcool isopropílico, foram obtidos na forma *tetrakis* como sólido principal no processo de recristalização. Por outro lado, os compostos (Et₃NH)[TR(dbm)₄]; (Morf)[TR(dbm)₄], (TMPip)[TR(dbm)₄], (Diciclo)[TR(dbm)₄], (Morf)[TR(tta)₄] e (Diciclo)[TR(tta)₄], que foram lavados com água e secos sob vácuo demonstram um número variável de moléculas de água não coordenadas ao íon TR³⁺, que podem ser removidas na secagem em linha de vácuo.

Na tabela 5.1 são apresentados os dados de análise elementar (CHN) de carbono, hidrogênio e nitrogênio para os complexos *tris* e *tetrakis*(β -dicetonato) de TR³⁺ sintetizados neste trabalho. Os dados são confirmados também por meio do teor de íon TR³⁺ obtido por titulação complexométrica. As fórmulas mínimas calculadas são compatíveis com estequiometria (Q)[TR(β -dicetonato)₄], com exceção dos complexos com o ligante dbm e o cátion Li⁺, que correlacionam-se com a fórmula (Li)[TR(dbm)₄].4H₂O. Inclui-se a determinação elementar de duas amostras do complexo (Et₃NH)[Eu(tta)₄]. As amostras (1) e (2) são complexos antes e após secagem em alto vácuo, respectivamente. A boa correlação entre os percentuais experimentais e os calculados dos complexos *tetrakis* indicaram que o método de síntese depende também do processo de secagem pela remoção das moléculas de H₂O adsorvidas durante a etapa de filtração seguida da lavagem com H₂O para a remoção do sal (Et₃NH)(tta). Por exemplo, na obtenção do complexo (Et₃NH)[Eu(tta)₄], a simples secagem sob vácuo em desecador não é suficiente para obter o composto na estequiometria esperada, conduzindo a valores percentuais de carbono, hidrogênio e nitrogênio discrepantes [Tabela 5.1].
61

Complexo	Teor Elementar (%)					
	C _{Exp.}	C _{Teo.}	H _{Exp.}	H _{Teo.}	$N_{\text{Exp.}}$	$N_{\text{Teo.}}$
$[Eu(acac)_3(H_2O)_3]$	35,48	35,79	5,32	5,41	-	-
(Li)[Eu(acac) ₄]	43,06	43,26	4,96	5,08	-	-
(Na)[Eu(acac) ₄]	41,93	42,04	4,91	4,94	-	-
$(K)[Eu(acac)_4]$	40,92	40,89	4,61	4, 80	-	-
$[Gd(acac)_3(H_2O)_3]$	35,31	35,42	4,81	5,35	-	-
(Li)[Gd(acac) ₄]	42,67	42,85	4,91	5,03	-	-
(Na)[Gd(acac) ₄]	41,53	41,66	4,79	4,89	-	-
(K)[Gd(acac) ₄]	40,38	40,52	4,58	4,76	-	-
$[Tb(acac)_3(H_2O)_3]$	35,26	35,31	5,09	5,33	-	-
(Li)[Tb(acac) ₄]	42,64	42,72	4,84	5,02	-	-
(Na)[Tb(acac) ₄]	41,32	41,53	4,66	4,88	-	-
$(K)[Tb(acac)_4]$	40,24	40,41	4,52	4,75	-	-
$[Tm(acac)_3(H_2O)_3]$	34,43	34,63	4,93	5,23	-	-
(Li)[Tm(acac) ₄]	41,75	41,97	4,94	4,93	-	-
(Na)[Tm(acac) ₄]	40,67	40,83	4,52	4, 80	-	-
(K)[Tm(acac) ₄]	39,54	39,74	4,35	4,67	-	-
$[Eu(dbm)_3(H_2O)]$	64,23	64,36	4,12	4,20	-	-
$(\text{Li})[\text{Eu}(\text{dbm})_4].4\text{H}_2\text{O}$	63,72	63,61	4,63	4,72	-	-
$(Et_3NH)[Eu(dbm)_4]$	68,81	69,10	5,19	5,27	1,14	1,22
(Morf)[Eu(dbm) ₄]	67,78	67,84	4,97	4, 80	1,22	1,24
(TMPip)[Eu(dbm) ₄]	69,70	69,81	5,12	5,43	1,07	1,18

Tabela 5.1 – Análise elementar de carbono, hidrogênio e nitrogênio dos complexos $[TR(\beta - dicetonato)_3(H_2O)_n]$ e (Q) $[TR(\beta - dicetonato)_4]$.

/1 1	1 = 4		~
Labe	la 5.1	— continui	icao.

Complexo	Teor Elementar (%)					
	C _{Exp.}	C _{Teo.}	$\mathrm{H}_{\mathrm{Exp.}}$	H _{Teo.}	$N_{\text{Exp.}}$	$N_{\text{Teo.}}$
(Diciclo)[Eu(dbm) ₄]	70,17	70,46	5,36	5,58	1,15	1,14
$[Gd(dbm)_3(H_2O)]$	64,15	63,96	4,37	4,17	-	-
$(\text{Li})[\text{Gd}(\text{dbm})_4].4\text{H}_2\text{O}$	63,42	63,31	4,49	4,69	-	-
$(Et_3NH)[Gd(dbm)_4]$	68,53	68,79	4,94	5,25	1,28	1,22
$(Morf)[Gd(dbm)_4]$	67,46	67,53	4,68	4,78	0,91	1,23
(TMPip)[Gd(dbm) ₄]	69,42	69,5 0	5,21	5,41	1,13	1,17
(Diciclo)[Gd(dbm) ₄]	70,31	70,16	5,82	5,56	1,24	1,14
$[Eu(tta)_3(H_2O)_2]$	33,75	33,85	1,96	1,89	-	-
$(Et_3NH)[Eu(tta)_4]^{(1)}$	39,53	40,08	3,04	2,83	0,95	1,23
$(Et_3NH)[Eu(tta)_4]^{(2)}$	40,12	40,08	3,07	2,83	1,25	1,23
$(Morf)[Eu(tta)_4]$	38,15	38,44	2,36	2,33	0,96	1,25
(TMPip)[Eu(tta) ₄]	41,63	41,77	2,97	3,08	1,21	1,19
(Diciclo)[Eu(tta) ₄]	43,01	43,35	3,35	3,31	1,09	1,15
$[Gd(tta)_3(H_2O)_2]$	33,52	33,64	1,97	1,88	-	-
$(Et_3NH)[Gd(tta)_4]$	39,59	39,89	2,64	2,82	1,30	1,22
$(Morf)[Gd(tta)_4]$	38,24	38,26	2,19	2,32	1,10	1,24
(TMPip)[Gd(tta) ₄]	41,69	41,58	3,18	3,06	1,23	1,18
(Diciclo)[Gd(tta) ₄]	42,97	43,17	2,99	3,29	1,33	1,14

A tabela 5.2 mostra os percentuais de carbono obtidos por microanálise de alguns compostos, com os ligantes β -dicetonatos dbm e tta, formados nas recristalizações com os solventes: clorofórmio, benzeno, acetona, etanol, e isopropanol. Estes dados apresentam um baixo teor de carbono em comparação aos complexos *tetrakis*. O ensaio de titulação complexométrica apontou uma percentagem elevada de íons TR³⁺ em relação ao esperado para o material recristalizado dos complexos *tetrakis* preparados, sugerindo a formação do sistema *tris* β dicetonatos de terras-raras, reforçando a instabilidade dos complexos *tetrakis* nestes solventes.

Síntese	Teor Elementar (%)				
	Solvente	tetrakis-complexo	experimental	<i>tris</i> -complexo	
(K)[Eu(acac) ₄]	CHCl ₃	43,26	35,73	35,79	
$(K)[Eu(acac)_4]$	Bz	43,26	39,38	35,79	
$(Et_3NH)[Eu(dbm)_4]$	Me ₂ CO	69,10	63,94	64,36	
$(Et_3NH)[Eu(dbm)_4]$	EtOH	69,10	68,20	64,36	
$(Morf)[Eu(dbm)_4]$	Me ₂ CO	67,84	60,73	64,36	
$({\rm Morf})[{\rm Eu}(dbm)_4]$	EtOH	67,84	67,01	64,36	
(Diciclo)[Gd(tta) ₄]	<i>i</i> -PropOH	43,17	42,19	33,64	

Tabela 5.2 – Percentual de carbono em alguns compostos separados nas recristalizações com os solventes indicados.

5.1.1 Espectroscopia de absorção no infravermelho – IV

Em função do elevado número de átomos nos complexos obtidos, pode-se prever uma complexidade na interpretação dos seus espectros vibracionais, pois o número total de modos vibracionais para uma molécula não-linear é obtido pela relação 3N-6, onde N é o número de átomos do composto. Além disso, não é esperado que os espectros vibracionais dos complexos *tetrakis* (Q)[TR(β -dicetonato)₄] com Q⁺ sendo cátions de metais alcalinos, apresentem frenquências vibracionais dos contra-cátions nitidamente sobrepostas com aquelas do ânion complexo, oriundas dos quelatos β -dicetonatos, principalmente na faixa espectral de 1350 a 400 cm⁻¹. Tal comportamento facilita a atribuição dos seus modos vibracionais, ao contrário dos complexos com os cátions derivados de bases nitrogenadas.

O espectro de absorção na região do infravermelho do composto Hacac (Figura 5.2a), exibe uma banda intensa desdobrada, em 1709 e 1728 cm⁻¹, que é atribuída ao modo de estiramento C=O simétrico das formas *cis* e *trans* dicetona, e uma banda larga, resultante do estiramento assimétrico das ligações conjugadas C \cdots C e C \cdots O da forma enólica, em 1624 cm⁻¹, em conjunto com a deformação angular das ligações O–H na estrutura planar do enol [Gren *et* *al.*, 1967; Tayyari e Milani-nejad, 2000]. Nos complexos (Q)[TR(acac)₄], onde TR³⁺ = Eu³⁺, Gd³⁺, Tb³⁺ e Tm³⁺; Q⁺ = Li⁺, Na⁺ e K⁺, como o (Li)[Eu(acac)₄] apresentado na figura 5.2b, não é observada a banda do estiramento do grupo carbonil da dicetona, e a banda da forma enólica é desdobrada e deslocada para região de menor energia, em 1600 e 1520 cm⁻¹, indicando a formação do anel quelato. É observada também, a banda atribuída à deformação angular da ligação C–H com caráter olefínico no plano do grupo quelante em torno de 1190 cm⁻¹, que no composto Hacac está centrada em 1156 cm⁻¹.

Figura 5.2 – Espectros IV dos compostos a) Hacac e b) (Li)[Eu(acac)₄].

Embora exista divergência na atribuição das freqüências vibracionais relativas às ligações do íon metálico com o ligante dicetonato (TR–O), o maior consenso ocorre a respeito dos dois picos na região de 400 cm⁻¹ (Figura 5.3), que não são encontrados no espectro da β -dicetona (Figura 5.2a), sendo possível caracterizar o surgimento dos modos de estiramento da ligação TR–O (ν_{TR-O}) e deformação angular no plano do anel quelato (δ_{O-TR-O}) [Pinchas et al., 1967; Richardson et al., 1968; Gren et al., 1967; Misumi e Iwasaki, 1967; Liang, 1969].

Figura 5.3 – Espectros IV dos complexos [Q][TR(acac)₄]; a) $Q = Li^+$; b) $Q = Na^+$; c) $Q = K^+$.

As atribuições das principais frequências vibracionais para efeito de caracterização da interação com o ligante na forma de anel quelato nos compostos *tetrakis*(acetilacetonatos) de terras-raras, (Q)[TR(acac)₄], onde TR³⁺ = Eu³⁺, Gd³⁺, Tb³⁺ e Tm³⁺; Q = Li⁺, Na⁺ e K⁺, estão resumidas na tabela 5.3. Os modos de vibração das ligações TR–O dos complexos, deslocam-se para região de maior energia com a diminuição do raio iônico do íon TR³⁺, em virtude do

fortalecimento da ligação. Por outro lado, a presença do contra-cátion mais volumoso, K⁺, perturba a estrutura de forma a enfraquecer as ligações TR-O, deslocando-as para menor energia, fortalecendo as ligações conjugadas C^{\dots}O e C^{\dots}C do enolato [Murray *et al.*, 1989; Binnemans, 2005].

Composto		Free	qüências (cm ⁻¹)		
	ν _{(C} _{O)s}	$\nu_{(C \cdots C)a}$	$\delta_{\text{(C-H)plano}}$	$\nu_{(TR-O)}$	$\delta_{(O-TR-O)}$
Hacac	1624	1624	1156	-	-
(Li)[Eu(acac) ₄]	1594	1513	1195	426	394
(Na)[Eu(acac) ₄]	1600	1519	1191	422	393
(K)[Eu(acac) ₄]	1604	1526	1190	419	393
(Li)[Gd(acac) ₄]	1595	1518	1195	427	396
(Na)[Gd(acac) ₄]	1598	1520	1193	422	393
(K)[Gd(acac) ₄]	1605	1523	1190	417	393
(Li)[Tb(acac) ₄]	1595	1518	1195	429	399
(Na)[Tb(acac) ₄]	1600	1520	1193	424	395
(K)[Tb(acac) ₄]	1605	1525	1190	422	393
$(Li)[Tm(acac)_4]$	1598	1520	1196	434	402
(Na)[Tm(acac) ₄]	1602	1520	1191	427	397
(K)[Tm(acac) ₄]	1605	1520	1189	424	397

Tabela 5.3 – Freqüências vibracionais características dos complexos (Q)[TR(acac)₄].

Um comportamento similar é observado para os complexos com o ligante dbm [Figuras 5.4 e 5.5], onde as bandas associadas ao estiramento simétrico C:::O e ao estiramento assimétrico das ligações C:::C do enolato surgem, respectivamente, na região espectral de 1598 e 1519 cm⁻¹, enquanto que na β -dicetona no estado sólido, as mesmas são observadas em 1594 cm⁻¹ como uma banda intensa e larga, e 1537 cm⁻¹ (Figura 5.3a), respectivamente, corroborado com os estudos de Liang *et al.* (1970), que observou o deslocamento dos modos $\nu_{(C:::O)}$ e $\nu_{(C:::C)}$ enólicos em complexos *tetrakis*(β -dicetonatos) de TR³⁺ com o contra-cátion piperidínio. Observa-se

também na figura 5.4 um pico estreito em de 3620 cm⁻¹, atribuído aos estiramentos das ligações O-H das moléculas de H₂O presentes nos complexos com o cátion Li⁺.

Figura 5.4 – Espectros na região do infravermelho dos compostos: (a) Hdbm; (b) (Li)[Eu(dbm)₄] e (c) (Li)[Gd(dbm)₄].

Ademais, na molécula de Hdbm, a freqüência vibracional centrada em 1535 cm⁻¹ também apresentada como uma banda larga e intensa, é resultado da sobreposição de estiramentos simétricos e assimétricos do conjunto de ligações C....C do grupo fenil, e das ligações C....O e C....C do anel quelato [Tayyari *et al.*, 2007a]. Esta banda apresenta-se desdobrada nos espectros de absorção no infravermelho dos complexos (Q)[TR(dbm)₄] ilustradas nas figuras 5.5 e 5.5. Nota-se uma similaridade entre estes espectros relativos aos *tetrakis* complexos contendo um mesmo contra-cátion e variando o íon TR³⁺.

Figura 5.5 – Espectros IV dos complexos (Q)[Eu(dbm)₄], onde Q⁺ = a) (Et₃NH)⁺, b) (Morf)⁺, c) (TMPip)⁺ e d) (Diciclo)⁺.

Portanto, a partir dos espectros IV análogos dos complexos (Li)[TR(dbm)₄], TR³⁺ = Eu³⁺ e Gd³⁺ (Figura 5.4), assim como nos demais complexos, (Q)[TR(dbm)₄], Q⁺ = (Et₃NH)⁺, (Morf)⁺, (TMPip)⁺ e (Diciclo)⁺, respectivamente (Figura 5.5), pode-se esperar que estes conjuntos de compostos apresentem semelhanças na força das ligações e na simetria das moléculas. Os modos vibracionais atribuídos para todos os complexos com o ligante dbm (Tabela 5.4) indicam a interação ligante–íon TR³⁺.

Composito		Freqüências (cm ⁻¹)	
Composio	$\nu_{(C \underline{\cdots} O)s}$	$\nu_{(C \ \underline{\ }\ C) + [(C \ \underline{\ }\ O) + (C \ \underline{\ }\ C)]}$	$\nu_{(C \underline{\cdots} O)a}$
Hdbm	1594	1535	1467
(Li)[Eu(dbm) ₄].4H ₂ O	1596	1549 e 1520	1414
$(Et_3NH)[Eu(dbm)_4]$	1598	1554 e 1514	1418
$(Morf)[Eu(dbm)_4]$	1599	1555 e 1518	1421
$(TMPip)[Eu(dbm)_4]$	1598	1555 e 1518	1421
(Diciclo)[Eu(dbm) ₄]	1596	1552 e 1519	1421
(Li)[Gd(dbm) ₄].4H ₂ O	1596	1549 e 1520	1414
$(Et_3NH)[Gd(dbm)_4]$	1598	1556 e 1515	1420
$(Morf)[Gd(dbm)_4]$	1599	1555 e 1518	1420
(TMPip)[Gd(dbm) ₄]	1598	1553 e 1517	1423
(Diciclo)[Gd(dbm) ₄]	1598	1553 e 1517	1419

Tabela 5.4 – Freqüências vibracionais características dos complexos [Q][TR(dbm)₄].

Nos espectros vibracionais da série de complexos (Q)[TR(tta)₄] (Figura 5.6 e 5.7), é possível caracterizar a coordenação do ligante pelo desdobramento da banda larga centrada em 1600 cm⁻¹, presente no Htta (Figura 5.6a). Nota-se que o ligante apresenta uma sobreposição dos modos de estiramentos C $\stackrel{...}{\ldots}$ C do anel tenoil com aqueles relativos ao quelato, C $\stackrel{...}{\ldots}$ O e C $\stackrel{...}{\ldots}$ C, além da sobreposição relativa à pequena diferença de densidade eletrônica, e conseqüentemente da força da ligação, entre os grupos carbonil com os diferentes substituintes R₁ e R₂, similarmente aos estudos realizados para o composto Hbzac [Tayyari *et al.*, 2007b].

Os espectros IV dos complexos *tetrakis* como ligantes dbm e tta apresentam sobreposição dos modos vibracionais relativos aos grupos fenil e tenoil, respectivamente, com aqueles relativos aos das ligações TR–O na região de 350 a 600 cm⁻¹, que dificulta a atribuição de suas freqüências vibracionais.

Figura 5.6 – Espectros IV dos compostos a) Htta e b) (Et₃NH)[Eu(tta)₄].

Figura 5.7 – Espectros IV dos complexos $[Q][TR(tta)_4]$, onde Q = a) $(Et_3NH)^+$, b) $(Morfo)^+$, c) $(TMPip)^+$ e d) $(Diciclo)^+$.

Os complexos (Q)[TR(dbm)₄] e (Q)[TR(tta)₄], sendo Q⁺ é um contra-cátion derivado de base nitrogenada, (Et₃NH)⁺, (Morf)⁺, (TMPip)⁺ e (Diciclo)⁺, observa-se também os estiramentos simétricos e assimétricos das ligações C–H alifático entre 2800 e 3100 cm⁻¹, sendo que no complexo com o ligante dbm e o cátion Li⁺, é observada nesta região apenas os modos de vibração C–H do anel benzênico, em 3060 e 3030 cm⁻¹. Além do mais, o estiramento das ligações ⁺N–H são observados com baixa intensidade na região de 2600 a 2700 cm⁻¹. Em todos os espectros IV é observada uma banda larga na região de 3500 cm⁻¹ atribuída à presença de água procedente da pastilha de KBr. A tabela 5.5 apresenta algumas das freqüências vibracionais características dos complexos (Q)[TR(tta)₄], onde Q⁺ = (Et₃NH)⁺, (Morf)⁺, (TMPip)⁺ e (Diciclo)⁺.

Composto		Frequências (cr	n ⁻¹)	
Composio	$\nu_{(C {\begin{subarray}{c} \cdots \ O})s}$	$\nu_{(C \underline{\cdots} C) + [(C \underline{\cdots} O) + (C \underline{\cdots} C)]}$	$\nu_{(C \underline{\cdots} C)s}$	$\nu_{(C \underbrace{\cdots} O)a}$
Htta	1654	1588	1520	1411
$(Et_3NH)[Eu(tta)_4]$	1607	1539	1504	1413
(Morf)[Eu(tta) ₄]	1610	1538	1510	1413
(TMPip)[Eu(tta) ₄]	1604	1536	1507	1411
(Diciclo)[Eu(tta) ₄]	1610	1536	1506	1411
$(Et_3NH)[Gd(tta)_4]$	1607	1538	1504	1413
(Morf)[Gd(tta) ₄]	1605	1539	1509	1413
(TMPip)[Gd(tta) ₄]	1605	1537	1507	1411
(Diciclo)[Gd(tta) ₄]	1607	1538	1506	1411

Tabela 5.5 – Freqüências vibracionais características dos complexos [Q][TR(tta)₄].

5.1.2 Difratometria de raios-X

Considerando-se um feixe de raios-X paralelo, monocromático, incidindo num conjunto de átomos regularmente arranjados em planos paralelos de átomos num sistema cristalino. Seja d a distância entre os planos de átomos e θ o ângulo entre o plano de átomo e o raio incidente, verifica-se que os raios espalhados estão em fase e a interferência é construtiva quando a direção dos raios difratados coincidirem com o plano de átomos considerado, e quando a diferença de caminho entre as ondas refletidas por planos diferentes for igual a um número inteiro de comprimentos de onda λ , conforme a equação de Bragg, n λ = 2dsen θ . Desta forma, variando-se o feixe de raios-X no intervalo de 0 a 90° é possível encontrar todos os ângulos que satisfazem as condições de difração, assim como as distâncias interplanares. Os difratogramas são geralmente um gráfico de intensidades de raios-X versus 2 θ . Através de uma análise das distâncias e intensidades relativas das linhas de difração é possível verificar o isomorfismo nos compostos analisados, exercendo um importante papel de comparação dos compostos sintetizados.

As figuras 5.8 a 5.10 apresentam os difratogramas dos complexos (Q)[TR(β -dicetonato)₄. De acordo com os dados dos difratogramas dos complexos pode-se observar que os compostos com o ligante acac e os cátions derivados de metais alcalinos são mais cristalinos em relação aos compostos preparados com bases nitrogenadas. Existe uma série isomorfa para os complexos com um mesmo contra-cátion, variando-se o íon TR³⁺.

Figura 5.8 – Difratograma de raios-X dos complexos: a) $(\text{Li})[\text{TR}(\text{acac})_4]$, b) $(\text{Na})[\text{TR}(\text{acac})_4]$, c) $(\text{K})[\text{TR}(\text{acac})_4]$ e d) $(\text{Q})[\text{Tm}(\text{acac})_4]$, onde $(\text{Q})^+ = (\text{Li})^+$, $(\text{Na})^+$ e $(\text{K})^+$.

Figura 5.9 – Difratograma de raios-X dos complexos (Q)[Eu(dbm)₄], onde $Q^+ = a$) (Li)⁺, b) (Et₃NH)⁺, c) (Morf)⁺, d) (TMPip)⁺ e e) (Diciclo)⁺.

Figura 5.10 – Difratogramas de raios-X dos complexos $(Q)[TR(tta)_4]$; $Q^+ = (a) (Et_3NH)^+$, (b) $(Morf)^+$, (c) $(TMPip)^+$ e (d) $(Diciclo)^+$.

5.2. Fotoluminescência

5.2.1 Complexos com o íon Gd³⁺

A excitação dos ligantes β -dicetonatos na forma *cis*-enolato sob radiação na região do UV próximo, quando submetidos à baixa temperatura (77K), e com a presença de um íon paramagnético e de massa elevada, conduz a um aumento na intensidade da transição $\mathbf{T}_1 \rightarrow \mathbf{S}_0$ [Gacoin, 1972; Valeur, 2002]. Neste ponto, o comportamento fotoluminescente dos complexos β -dicetonatos de Gd³⁺ exerce um papel importante em função do efeito paramagnético e da diferença de energia entre o estado fundamental ${}^{8}S_{7/2}$ e do estado excitado ${}^{6}P_{7/2}$, além da semelhança nas propriedades químicas e nos raios iônicos dos íons Eu³⁺, Gd³⁺ e Tb³⁺. Conseqüentemente, pode-se a partir dos complexos com o íon Gd³⁺ determinar as energias dos estados \mathbf{S}_1 e \mathbf{T}_1 dos ligantes β -dicetonatos, para uma série de complexos *tetrakis* de fórmula geral (Q)[TR(β -dicetonato)₄], o que possibilita projetar complexos de TR³⁺ altamente luminescentes devido ao processo de transferência de energia ligante-metal, corroborando com o *design* de dispositivos moleculares conversores de luz (DMCLs).

Considerando que a fosforescência do ligante é completamente suprimida em temperatura ambiente, é necessário registrar os espectros dos compostos em baixa temperatura, evitando assim, que os estados **T** sejam desativados por processos não radiativos. Portanto, para determinar os estados excitados $S_1 e T_1$ dos ligantes β -dicetonatos (acac, dbm e tta), registrou-se os espectros de excitação dos respectivos complexos *tris* e *tetrakis*(β -dicetonatos) de Gd³⁺, a 77K, monitorando-se no comprimento de onda de emissão do estado excitado **T**₁ proveniente da parte orgânica. Posteriormente, nos espectros de excitação dos complexos (Q)[TR(acac)₄] (Figuras 5.11a-d) visualizou-se a banda de maior intensidade na região de 300 a 375 nm, que foi atribuída à transição $S_0 \rightarrow S_1$. [Gacoin, 1972; Gacoin e Leclercq, 1973]. Neste caso, os espectros de emissão dos complexos *tris* (Figura 5.11e) e *tetrakis*(acetilacetonato) de Gd³⁺ com os contra-cátions Li⁺, Na⁺ e K⁺ (Figura 5.11f-h) foram registrados na faixa de espectral de 350 a 700 nm, em temperatura do nitrogênio líquido, sob excitação na banda de maior energia do estado S_1 , em 330 nm para o complexos *tris*, 323 nm para os complexos *tetrakis* contendo os cátions Li⁺ e Na⁺, e 333 nm para o complexos com o cátion K⁺.

Figura 5.11 – Espectros de excitação (a, b, c, d) e emissão (e, f, g, h), dos complexos (a, e) $[Gd(acac)_3(H_2O)_3]$ ($\lambda_{em.}$ = 550 nm, $\lambda_{ex.}$ = 330); (b, f) (Li) $[Gd(acac)_4]$ ($\lambda_{em.}$ = 550 nm, $\lambda_{ex.}$ = 323); (c, g) (Na) $[Gd(acac)_4]$ ($\lambda_{em.}$ = 550 nm, $\lambda_{ex.}$ = 323); (d, h) (K) $[Gd(acac)_4]$ ($\lambda_{em.}$ = 550 nm, $\lambda_{ex.}$ = 333); T = 77K.

Nos espectros de emissão dos complexos de Gd^{3+} com o ligante acac apresentados nas figuras 5.11f-h, verificou-se uma banda de emissão de alta intensidade na região de 400 a 700 nm, atribuída a fosforescência $T_1 \rightarrow S_0$, e também o aparecimento de emissões de baixa intensidade em torno de 360 a 400 nm atribuídas à fluorescência $S_1 \rightarrow S_0$, que é mais saliente no espectro de emissão do complexo [Gd(acac)₃(H₂O)₃] (Figura 5.11e). Nota-se nos espectros dos complexos *tetrakis* (Q)[Gd(acac)₄] apresentam a região de maior energia das bandas de emissão com um decréscimo abrupto quando comparado com o *tris* complexo [Gd(acac)₃(H₂O)₃], indicando uma maior contribuição do processo radiativo $T_1 \rightarrow S_0$, com a ausência das moléculas de H₂O.

Com o intuito de determinar o estado tripleto de menor energia de forma mais precisa, foram registrados os espectros de emissão resolvida no tempo para os complexos contendo os ligantes β -dicetonatos com um retardo de 1,0 ms entre a excitação e a detecção (Figura 5.12). Estes dados apresentaram a ausência da banda oriunda da transição $S_1 \rightarrow S_0$, verificadas nos espectros emissão, quando comparados aos apresentados para os experimentos em estado estacionário, que são visualizados nas figuras 5.11e-h. Isto ocorre em função da transição fluorescente, $S_1 \rightarrow S_0$, apresentar tempos de vida muito menores, na ordem de nanosegundos. Esta técnica facilitou a atribuição da energia máxima da fosforescência do estado T_1 , em torno de 400 nm (25.000 cm⁻¹) para todos os compostos *tris e tetrakis*(β -dicetonatos) de Gd³⁺, tornando desnecessário a técnica de deconvolução das bandas de emissão destes sistemas. Deve-se salientar que estas atribuições são de grande importância na interpretação do processo de transferência de energia intramolecular do ligante β -dicetonato ao íon TR³⁺, em particular os íons emissores de luz visível em questão Eu³⁺, Tb³⁺ e Tm³⁺.

Nos estudos de transferência de energia em complexos contendo íons TR³⁺, as atribuições dos estados tripletos dos ligantes β -dicetonatos normalmente são baseadas no comprimento de onda da transição $v_{0.0}$ observadas nos espectros de emissão dos seus respectivos complexos com o íon Gd³⁺. Porém, muitos trabalhos baseiam-se no resultado de Brunen *et al.* (1965), que determinou o valor em torno de 26.000 cm⁻¹ para o ligante acac no composto

 $[Na(acac)(H_2O)_2]$. Por outro lado, Sarge *et al.* (1965) e Zheng *et al.* (2001) determinaram o valor de 25.310 cm⁻¹ atribuído ao estado T_1 do ligante acac no complexo $[Gd(acac)_3(H_2O)_3]$ em solução de CHCl₃, tomando o máximo da banda de emissão fluorescente em maior energia. A partir das informações relatadas acima, observa-se uma discrepância entre os valores do estado T_1 do ligante acac, os quais servem como base para a discussão do processo de transferência de energia para os íons TR³⁺.

O valor de energia aqui determinado, em torno de 25.000 cm⁻¹, (Tabela 5.6) atribuída à transição $T_1 \rightarrow S_0$ do ligante acac nos complexos *tetrakis* com os contra-cátions Q⁺ = Li⁺, Na⁺ e K⁺, não apresenta deslocamento batocrômico ou hipsocrômico dentro da série de complexos *tetrakis* ou em comparação ao complexo *tris*, indicando uma insensibilidade do estado excitado T_1 para este sistema contendo contra-cátions derivados de metais alcalinos com diferentes raios iônicos.

Figura 5.12 – Espectros de emissão resolvida no tempo ($\lambda_{ex.}$ = 330 nm) dos complexos (a) [Gd(acac)₃(H₂O)₃], (b) (Li)[Gd(acac)₄], (c) (Na)[Gd(acac)₄] e (d) (K)[Gd(acac)₄]; $\Delta t = 1,0$ ms entre a excitação e a detecção; T = 77K. *Figura Inserida*: Sobreposição dos espectros com a região da transição $\nu_{0.0}$ em destaque.

A tabela 5.6 apresenta os valores de energia dos estados T_1 encontrados para o ligante acac nos complexos $[Gd(acac)_3(H_2O)_3]$ e $(Q)[Gd(acac)_4]$, 25.000 cm⁻¹, demonstrando a utilidade desta técnica na atribuição dos estados T_1 sem a deconvolução de curvas do espectro de emissão no estado estacionário destes complexos.

Semelhantemente, os complexos (Q)[Gd(dbm)₄] com os contra-cátions Li⁺ e derivados de bases nitrogenadas, (Et₃NH)⁺, (Morf)⁺, (TMPip)⁺ e (Diciclo)⁺, exibem uma banda de excitação da transição $\mathbf{S}_0 \rightarrow \mathbf{S}_1$ de maior intensidade e mais alargada (300 a 420 nm) em relação àquelas apresentadas nos complexos com o ligante acac (Figuras 5.13a-e). Isto se deve à presença das ligações conjugadas dos grupos aromáticos com o enolato. Em todos os espectros de excitação, a parte proeminente da banda localiza-se na região de menor energia do estado \mathbf{S}_1 , em torno de 405 nm, e também se verifica uma banda de menor intensidade centrada em 470 nm, atribuída à transição $\mathbf{S}_0 \rightarrow \mathbf{T}_1$, devido à forte mistura dos estados eletrônicos ouriundos das transições $\pi \rightarrow \pi^*$ e $n \rightarrow \pi^*$ dos ligantes enolatos [McGlynn *et al*, 1969; Gacoin, 1972; Gacoin e Leclerg, 1973].

Os espectros de emissão dos complexos *tetrakis*(dibenzoilmetanato) de Gd³⁺ (Figuras 5.13f-j) foram registrados na faixa espectral de 350 a 700 nm, em temperatura de 77K, sob excitação na banda de maior energia do estado S_1 , em 313 nm para o complexos com o contracátion trietilamônio, e 330 nm para os demais contra-cátions Li⁺, (Morf)⁺, (TMPip)⁺ e (Diciclo)⁺. Verificou-se nos espectros de emissão (Figura 5.13f-j) uma banda de alta intensidade na região de 500 a 700 nm, referente às emissões $T_1 \rightarrow S_0$.

Os espectros de emissão dos *tris* e *tetrakis* complexos com o ligante dbm também foram registrados com retardo no tempo de 1,0 ms (Figura não apresentada), com o objetivo de determinar o estado T_1 com uma menor contribuição da transição fluorescente $S_1 \rightarrow S_0$. Os valores de energia dos estados T_1 dos complexos [Gd(dbm)₃(H₂O)] e (Q)[Gd(dbm)₄] determinados no estado estacionário apresentam-se maiores (Tabela 5.6) quando comparados com os respectivos valores determinados resolvidos no tempo.

Figura 5.13 – Espectros de excitação (250 a 450 nm; λ_{em} = 550 nm) e emissão (400 a 750 nm; λ_{ex} = 330 nm) dos complexos (a) (Li)[Gd(dbm)₄].4H₂O, (b) (Et₃NH)[Gd(dbm)₄], (c) (Morf)[Gd(dbm)₄], (d) (TMPip)[Gd(dbm)₄] e (e) (Diciclo)[Gd(dbm)₄], T = 77K.

Os dados espectrais dos complexos *tetrakis* (Q)[Gd(dbm)₄] (Tabela 5.6), demonstram diferenças significantes, evidenciando uma dependência dos valores de energia do estado T_1 quando se altera o contra-cátion Li⁺ (20.300 cm⁻¹), (Et₃NH)⁺(20.080 cm⁻¹), (Morf)⁺(20.620 cm⁻¹), (TMPip)⁺ (20.365 cm⁻¹) e (Diciclo)⁺(20.620 cm⁻¹), ao contrário da energia determinada para o sistema acac (25.000 cm⁻¹). Também é notado que o perfil espectral das bandas de emissão para os complexos de dbm apresentam uma menor contribuição da fluorescência quando comparado aos complexos *tris* e *tetrakis* acetilacetonato de Gd³⁺.

Os espectros de fotoluminescência da série de compostos (Q)[Gd(tta)₄], com os contracátions derivados de bases nitrogenadas (Et₃NH)⁺, (Morf)⁺, (TMPip)⁺ e (Diciclo)⁺, foram obtidos de maneira semelhante ao descrito para os compostos com os ligantes acac e dbm. Notase uma similaridade maior do comportamento espectroscópico do ligante tta com o ligante dbm, pela presença do grupo substituinte tenoil contendo ligações conjugadas com o enolato. Porém, a presença do grupo trifluorometil, retirador de elétrons, desloca as transições $S_0 \rightarrow S_1$ para a região de maior energia. Desta forma, os espectros de excitação destes complexos exibem a transição $S_0 \rightarrow S_1$ entre 275 e 400 nm, além da banda associadas à transição $S_0 \rightarrow T_1$, entre 430 e 500 nm (Figuras 5.14a-d).

Assim como os complexos (Q)[Gd(dbm)₄], os espectros de emissão resolvida no tempo (1,0 ms) dos complexos (Q)[Gd(tta)₄], demonstram energias do estado \mathbf{T}_1 diferentes entre si, ao contrário dos complexos com o ligante acac. Por outro lado, uma menor discrepância é notada entre os experimentos de estado estacionário *versus* resolvidos no tempo para os compostos de tta, em virtude de sua alta intensidade fosforescente $\mathbf{T}_1 \rightarrow \mathbf{S}_0$, acompanhada da baixa contribuição da banda de fluorescência $\mathbf{S}_1 \rightarrow \mathbf{S}_0$ no espectro de emissão em estado estacionário (Figura 5.14e-h). Estes fatores minimizam o erro na determinação do estado \mathbf{T}_1 por esta técnica, e demonstram uma grande eficiência no cruzamento intersistema $\mathbf{S}_1 \rightarrow \mathbf{T}_1$ para o ligante tta.

Figura 5.14 – Espectros de excitação (250 a 500 nm; λ_{em} = 550 nm) e emissão (450 a 750 nm; λ_{ex} = 330 nm) dos complexos a) (Et₃NH)[Gd(tta)₄], b) (Morf)[Gd(tta)₄], c) (TMPip)[Gd(tta)₄] e d) (Diciclo)[Gd(tta)₄], T = 77K.

A energia máxima de emissão a partir do estado T_1 dos complexos *tetrakis* com o íon Gd^{3+} (Tabela 5.6) possibilita prever, para cada ligante β -dicetonato utilizado, qual o íon TR^{3+} possui o nível aceptor mais adequado para o processo de transferência de energia ligante \rightarrow íon metálico. Em particular, concordando com os dados da literatura [Brito *et al.*, 2007], observa-se que o ligante acac é mais adequado para transferir energia ao nível aceptor ⁵D₄ do íon Tb^{3+} (20.400 cm⁻¹) e ${}^{1}G_{4}$ do íon $Tm^{3+}(21.016 \text{ cm}^{-1})$, e os ligantes dbm e tta são mais apropriados para o íon Eu³⁺ devido à energia do nível ${}^{5}D_{0}$ localizar-se em 17.293 cm⁻¹.

Tabela 5.6 – Energia máxima da emissão a partir do estado T_1 dos ligantes β -dicetonatos nos complexos (Q)[Gd(β -dicetonato)₄].

Complexo	Estado estacionário T ₁ (cm ⁻¹)	Resolvido no tempo $\mathbf{T}_1 \ (\text{cm}^{-1})$	Diferença (cm ⁻¹)
(Li)[Gd(acac) ₄]	24.390	25.000	610
(Na)[Gd(acac) ₄]	24.250	25.000	750
(K)[Gd(acac) ₄]	24.510	25.000	490
$[Gd(acac)_3(H_2O)_3]$	26.600	25.000	1.600
(Et ₃ NH)[Gd(dbm) ₄]	20.660	20.080	580
$(Morfo)[Gd(dbm)_4]$	20.920	20.620	300
(TMPip)[Gd(dbm) ₄]	20575	20.365	210
$(Diciclo)[Gd(dbm)_4]$	21190	20.620	570
$(Li)[Gd(dbm)_4].4H_2O$	20.450	20.300	150
$[Gd(dbm)_3(H_2O)]$	20.600	20.200	400
(Et ₃ NH)[Gd(tta) ₄]	20960	20.780	180
(Morfo)[Gd(tta) ₄]	21.080	21.030	50
(TMPip)[Gd(tta) ₄]	20.625	20.620	5
(Diciclo)[Gd(tta) ₄]	20.840	20.625	225
$[Gd(tta)_3(H_2O)_2]$	20.690	20.520	170

5.2.2 Complexos com o íon Eu³⁺

Dentre os complexos β -dicetonatos de TR³⁺, aqueles contendo o íon Eu³⁺ apresentam uma grande vantagem por apresentarem emissões vermelhas monocromáticas (612 nm) devido à diferença de energia entre o principal nível emissor e o estado de menor energia (\cong 12.000 cm⁻¹). Portanto os íons Eu³⁺ são usados como sondas luminescentes devido ao: a) principal nível emissor ⁵D₀ e o estado fundamental não degenerado ⁷F₀; b) tempo de decaimento luminescente longo para o nível emissor (milisegundos); c) grande deslocamento Stokes e d) a transição ⁵D₀ \rightarrow ⁷F₁ é praticamente insensível ao campo ligante. Além do mais, os seus espectros de excitação e de emissão fornecem informações sobre o desdobramento do campo ligante, processo de transferência de energia e eficiência quântica (η) do nível emissor ⁵D₀. Devido às propriedades ópticas intrínsecas das transições intraconfiguracionais 4f⁶-4f⁶ do íon Eu³⁺, é dado um maior enfoque, neste trabalho, aos compostos derivados de ligantes β -dicetonatos com o íon európio trivalente.

O estudo fotoluminescente dos complexos (Q)[Eu(β -dicetonato)₄] {(Q = Li⁺, Na⁺, K⁺, (Et₃NH)⁺, (Morf)⁺, (TMPip)⁺ e (Diciclo)⁺) e (β -dicetonato = acac, dbm e tta)} foi realizado a partir dos seus espectros de excitação e emissão, os quais foram registrados tanto em temperatura ambiente (\cong 298 K), quanto em temperatura do nitrogênio líquido (77 K).

A figura 5.16 apresenta os espectros de excitação dos complexos (Q)[Eu(acac)₄], onde Q⁺ = Li⁺, Na⁺ e K⁺, registrados no intervalo de 250 a 590 nm, com a emissão monitorada na transição hipersensível ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$, em torno de 612 nm. Os espectros de excitação destes complexos exibem perfis espectrais diferentes registrados em baixa temperatura quando comparados com aqueles obtidos em 298 K (Figuras 5.16 a 5.18). As bandas finas relativas às transições do íon Eu³⁺ obtidos em baixa temperatura apresentam picos melhor definidos referentes às transições eletrônicos ${}^{7}F_{0} \rightarrow {}^{5}L_{1}$ (J=0-6) devido à diminuição da contribuição do acoplamento vibrônico. Para o sistema registrado a temperatura ambiente observa-se também picos provenientes dos estados ${}^{7}F_{1}$ e ${}^{7}F_{2}$ que estão localizados a cerca de 360 e 1000 cm⁻¹, respectivamente, populados acima do estado fundamental ${}^{7}F_{0}$.

Por outro lado, os espectros de excitação dos complexos *tetrakis* com os ligantes acac obtidos em 77K apresentam intensificações da banda larga centrada 330 nm atribuída à absorção do ligante acac evidenciando que o abaixamento da temperatura contribui para o aumento do processo de sensibilização via transferência de energia do ligante para o íon Eu³⁺. Este fato, também, é comprovado qualitativamente quando o complexo é excitado com lâmpada UV, por exibir uma alta intensificação de sua emissão (Figura 5.15). Este fato evidencia que os dados obtidos a temperatura ambiente sugerem uma menor intensidade de emissão devido à supressão da luminescência ativada termicamente envolvendo estados de transferência de carga ligante→metal (TCLM) [Faustino *et al.*, 2006].

Os espectros de excitação dos complexos *tetrakis*(acetilacetonato) de Eu^{3+} contendo os contra-cátions derivados de metais alcalinos (Li⁺, Na⁺ e K⁺) demonstraram perfis similares (Figura 5.16), sugerindo que os contra-cátions não influenciam significativamente o ambiente ao redor do íon terra-rara. Além do mais, estes espectros quando registrados em temperatura ambiente também mostraram aspectos semelhantes entre si.

Figura 5.15 – Efeito da temperatura na intensificação visual da emissão dos complexos (1) Li[Eu(acac)₄], (2) Na[Eu(acac)₄], (3) K[Eu(acac)₄] e (4) [Eu(acac)₃(H₂O)₃], onde (a) T = 298 K e (b) T = 77K.

Figura 5.16 – Espectros de excitação dos complexos (Q)[Eu(acac)₄]; Q⁺ = Li⁺, Na⁺ e K⁺; (—)77K e (---)298K.

A figura 5.17 mostra os espectros de excitação dos complexos (Q)[Eu(dbm)₄]; Q⁺ = Li⁺, (Et₃NH)⁺, (Morf)⁺, (TMPip)⁺ e (Diciclo)⁺ registrados no intervalo de 250 a 590 nm, com emissão monitorada na transição hipersensível ${}^{5}D_{0}\rightarrow{}^{7}F_{2}$ (612 nm). Estes espectros exibem perfis espectrais diferentes, relativo às transições eletrônicos finas ${}^{7}F_{0}\rightarrow{}^{5}L_{J}$ (J=0-6) do íon európio e as bandas largas dos ligantes, quando registrados em baixa temperatura comparados com aqueles obtidos em 298 K (Figuras 5.16 a 5.18). Nota-se que os espectros de excitação dos complexos *tetrakis* com os ligantes acac e dbm obtidos em 77 K apresentam intensificações das bandas largas oriundas dos ligantes, evidenciando que a temperatura ambiente apresenta uma menor intensidade de emissão em razão da supressão da luminescência ativada termicamente.

Os espectros de excitação dos complexos *tetrakis*(dbm) de Eu³⁺ contendo os contracátions derivados do íon Li⁺ e de base nitrogenadas demonstraram perfis diferentes (Figura 5.17), sugerindo que os contra-cátions influenciam o ambiente ao redor do íon terra-rara. Estes espectros exibem, também, os picos referentes aos níveis ⁷F₁ e ⁷F₂ semelhantes aos observados para o sistema acac, das quais as absorções ⁷F₁ \rightarrow ⁵D₁ e ⁷F₂ \rightarrow ⁵D₂, quando os espectros são registrados a 298K apresentam-se mais evidentes.

É observado que os espectros de excitação dos complexos registrados em baixa temperatura (77K) apresentam bandas de maiores intensidades na região de absorção do ligante dbm, comparados com as transições ${}^{7}F_{0} \rightarrow {}^{5}D_{J}$ do íon Eu³⁺, evidenciando o grande potencial do ligante dbm de atuar como "antenas" no processo de transferência de energia Ligante-Eu³⁺.

Figura 5.17 – Espectros de excitação dos complexos (Q)[Eu(dbm)₄]; Q⁺ = (a) Li⁺, (b) (Et₃NH)⁺, (c) (Morf)⁺, (d) (TMPip)⁺ e (e) (Diciclo)⁺; (—)77K e (---)298K.

A figura 5.18 ilustra os espectros de excitação dos complexos (Q)[Eu(tta)₄]; Q⁺ = $(Et_3NH)^+$, $(Morf)^+$, $(TMPip)^+$ e (Diciclo)⁺ registrados no intervalo de 250 a 590 nm (77K), com a emissão monitorada na transição em 612 nm.

Os espectros de excitação destes complexos exibem perfis espectrais diferentes registrados em baixa temperatura quando comparados com aqueles obtidos em 298 K propriedades fotoluminescentes semelhantes aquelas observadas para os complexos tetrakis contendo os ligantes acac e dbm. A figura tta também mostra às transições ${}^{7}F_{0} \rightarrow {}^{5}L_{J}$ (J=0-6) do íon Eu³⁺ obtidos (77K) que apresentam picos finos eletrônicos devido à diminuição da contribuição do acoplamento vibrônico. Por outro lado, quando estes espectros são registrados a 298K exibem, também, os picos referente aos níveis ${}^{7}F_{1}$ e ${}^{7}F_{2}$ semelhantes aos observados para o sistema acac e dbm.

Quando se compara os espectros de excitação dos complexos *tetrakis* com os ligantes tta, acac e dbm obtidos a temperatura do nitrogênio líquido nota-se uma intensificação luminescente das bandas largas atribuídas às transições destes ligantes, demonstrando que o abaixamento da temperatura contribui para o aumento do processo de sensibilização via transferência de energia do β -dicetonato \rightarrow Eu³⁺. Fato, também, evidenciado pelos espectros obtidos a temperatura ambiente, que sugerem uma menor intensidade de emissão devido à supressão da luminescência ativada termicamente envolvendo os estados TCLM.

Os espectros de excitação dos complexos *tetrakis*(tta) de Eu³⁺ contendo os contra-cátions derivados de base nitrogenadas demonstraram perfis diferentes, sugerindo que os contra-cátions influenciam o ambiente ao redor do íon európio trivalente. Vale informar que estes espectros exibem, também, os picos referentes aos níveis 7F_1 e 7F_2 (este último não é tão evidente devido à sobreposição com as bandas do ligante), semelhantes aos observados para os sistemas acac e dbm, quando registrado a 298K indicando que isto é uma propriedade espectroscópica dos sistemas *tetrakis* considerados neste trabalho. Em temperatura do nitrogênio líquido, as bandas oriundas do ligante tta são mais intensas quando comparados com aquelas das transições

 ${}^{7}F_{0}$ → ${}^{5}D_{J}$ do íon Eu³⁺, evidenciam uma eficiente de transferência de energia ligante-Eu³⁺ (Figura 5.18).

Figura 5.18 – Espectros de excitação dos complexos (Q)[Eu(tta)₄]; Q⁺ = (a) (Et₃NH)⁺, (b) (Morf)⁺, (c) (TMPip)⁺ e (d) (Diciclo)⁺; (—)77K e (---)298K.

Os espectros de emissão dos complexos *tetrakis*(acetilacetonato) de Eu³⁺ com os contracátions Li⁺, Na⁺ e K⁺ foram obtidos com excitação na transição ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ do íon terra-rara (395 nm), e na banda de excitação $S_{0} \rightarrow S_{1}$ do ligante acac (330 nm), em baixa temperatura, com o objetivo de verificar a eficiente transferência de energia ligante \rightarrow metal. Desta forma, registrou-se estes espectros no intervalo de 420 a 850 nm, que corresponde à região das transições intraconfiguracionais ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0-6). A região espectral de 420 a 500 nm não apresentou bandas finas nem bandas largas provenientes das transições do íon Eu³⁺ e do ligante acac, respectivamente, e conseqüentemente estes dados não são ilustrados na figura 5.19 para uma melhor visualização dos espectros de emissão nas outras regiões.

A figura 5.19 mostra as bandas finas de emissão características das transições intraconfiguracionais ${}^{5}D_{0}\rightarrow{}^{7}F_{j}$, para J = 0, 1, 2, 3, 4, 5 e 6 do íon Eu³⁺. Neste sistema, é evidente a presença das transições ${}^{5}D_{0}\rightarrow{}^{7}F_{5}$ e ${}^{5}D_{0}\rightarrow{}^{7}F_{6}$, que normalmente não são observadas para os complexos de Eu³⁺ em sistemas do tipo *tris*, com ligantes do tipo cloreto, nitrato, perclorato, carboxilato, sulfonato, β -dicetonato etc. É importante lembrar que as transições ${}^{5}D_{0}\rightarrow{}^{7}F_{0,3,5}$ são proibidas, segundo a regra de seleção de dipolo elétrico, entretanto, esta regra pode ser relaxada pelo campo ligante, produzindo misturas dos J's. Por outro lado, as transições ${}^{5}D_{0}\rightarrow{}^{7}F_{2,4,6}$ são permitidas por dipolo-elétrico forçado. Portanto, em nosso trabalho, os compostos (Q)[Eu(β dicetonato)₄] apresentam a transição e ${}^{5}D_{0}\rightarrow{}^{7}F_{6}$ que raramente observadas em outros tipos complexos, indicando uma forte contribuição da mistura de J's permitirá a determinação dos parâmetros de intensidade experimental Ω_{c} .

Os espectros de emissão dos complexos (Q)[Eu(β -dicetonato)₄] exibem a transição hipersensível ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ em torno de 615 nm, como a bandas mais proeminente dentre aquelas atribuídas às transições ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0-6). Por outro lado, a presença da banda correspondente a transição ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ nos espectros de emissão destes complexos como um único pico em 578 nm, indica a existência de um único sítio de simetria em torno do íon Eu³⁺. De acordo com a regra de seleção por simetria, essa transição só é permitida quando o Eu³⁺ é classificado nos grupos pontuais C_{nv} , C_n ou C_s . Adicionalmente, pode-se observar que as bandas correspondentes à transição ${}^5D_0 \rightarrow {}^7F_2$ estão desdobradas em no mínimo 4 componentes, indicando que os possíveis grupos pontais estão limitados `aqueles de baixa simetria, C_{2v} , C_2 , C_1 ou C_s . Os valores das energias das transições ${}^5D_0 \rightarrow {}^7F_J$ obtidos a partir dos espectros de emissão dos complexos de Eu³⁺ com os ligantes acac, dbm e tta estão apresentados nas tabelas 5.7 a 5.9.

A figura 5.19 também apresenta bandas finas na região espectral de 500 a 570 nm procedentes das transições ${}^{5}D_{1}\rightarrow{}^{7}F_{0}$ (532 nm), ${}^{5}D_{1}\rightarrow{}^{7}F_{1}$ (539 nm) and ${}^{5}D_{1}\rightarrow{}^{7}F_{2}$ (558 nm), no entanto, essas bandas apresentam intensidades muito baixas, sendo somente observadas com ampliação da escala intensidade em 50 vezes. Este fato indica que a relaxação não-radiativa entre este estado e o nível emissor ${}^{5}D_{0}$ é ineficiente. Também é importante notar que os espectros de emissão dos complexos (Q)[Eu(β -dicetonato)₄] não apresentaram bandas largas oriundas da fosforescência do ligante acac no intervalo espectral de 420-550 nm. Esse resultado indica que os processos de transferência de energia do estado tripleto do ligante para os níveis excitados do európio são muito eficientes.

Figura 5.19 – Espectros de emissão dos complexos (Q)[Eu(acac)₄], onde Q = (a) Li⁺, (b) Na⁺ e (c) K⁺; 77K. A região de 500 a 570nm está ampliada (50x).

As energias relativas aos desdobramentos das transições eletrônicas 4f-4f referentes aos espectros de emissão dos complexos $[Q][Eu(acac)_4]$ registrados em baixa temperatura encontramse na tabela 5.7.

Transição	Li ⁺	Na ⁺	K^+
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{0}$	17241	17253	17244
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{1}$	16992	16938	17004
	16920	16875	16928
	16852	16838	16863
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{2}$	16361	16375	16372
	16324	16324	16273
	16260	16295	16197
	16181	16181	16175
	15975	15984	15977
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{4}$	14543	14577	14461
	14461	14467	14339
	14326	14449	14255
	14249	14339	14213
	14188	14241	14192
		14196	
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{6}$	12321	12340	12355
	12246	12258	12335
		12189	12266

Tabela 5.7 – Energias das transições ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ referentes aos espectros de emissão dos complexos $[Q][Eu(acac)_{4}]$; valores em cm⁻¹, registrados a 77K.

Os dados espectrais de emissão dos complexos (Q)[Eu(dbm)₄], onde Q = Li⁺, (Et₃NH)⁺, (Morf)⁺, (TMPip)⁺ e (Diciclo)⁺ registrados na região de 420 a 850 nm em baixa temperatura encontram-se ilustrados na figura 5.20. Estes espectros foram obtidos, também, com excitação na transição intraconfiguracional ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ do európio, e na banda de excitação $S_{0} \rightarrow S_{1}$ do ligante dbm, na região de maior energia (330 nm). Portanto, os espectros foram obtidos na faixa espectral de 420 a 850 nm, no sentido de obter informações das bandas finas conrrespondentes as transições ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0, 1, 2, 3, 4, 5 e 6) e ${}^{5}D_{1} \rightarrow {}^{7}F_{J}$ (J = 0, 1 e 2).

Para os complexos (Q)[Eu(dbm)₄] nota-se que a transição hipersensível ${}^{5}D_{0}\rightarrow {}^{7}F_{2}$ (615 nm) apresenta-se como a bandas mais intensa indicando que o sistema não apresenta comportamento centrossimétrico devido a esta transição ser estritamente proibida no caso do íon Eu³⁺ encontrar-se em um ambiente químico com centro de inversão. Conseqüentemente estes sistemas não apresentam grupo pontual D_{4h} , conforme questionado por Bauer *et al.* (1964). A partir dos desdobramentos das transições ${}^{5}D_{0}\rightarrow {}^{7}F_{1.4}$ pode-se sugerir que o sistema *tetrakis*, em questão, não apresenta um ambiente químico de baixa simetria, devido à presença de espécies duplamente degeneradas (E) para as respectivas transições.

A presença da transição ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ para estes complexos com um único pico em 578 nm (Figura 5.20), indica a existência de um único sítio de simetria em torno do íon Eu³⁺. De acordo com a regra de seleção por simetria, essa transição só é permitida quando o Eu³⁺ é classificado nos grupos pontuais C_{nv}, C_n ou C_s. É importante notar que a transição ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ tem intensidade muito baixa, sugerindo que o íon Eu³⁺ encontra-se em um ambiente distorcido para as simetrias C_{nv}.

As bandas finas registradas na região de 500 a 570 nm são atribuídas às transições ${}^{5}D_{1} \rightarrow {}^{7}F_{0}$ (532 nm), ${}^{5}D_{1} \rightarrow {}^{7}F_{1}$ (539 nm) and ${}^{5}D_{1} \rightarrow {}^{7}F_{2}$ (558 nm), no entanto, essas bandas apresentam intensidades muito baixas, sendo somente observadas com ampliação da escala

Figura 5.20 – Espectros de emissão dos complexos (Q)[Eu(dbm)₄], onde (a) Q = Li⁺, (b) (Et₃NH)⁺, (c) (Morf)⁺, (d) (TMPip)⁺ e (e) (Diciclo)⁺; 77K. A região de 500 a 570nm está ampliada (50x).
Os espectros da figura 5.20, também mostram as bandas finas de baixa intensidade provenientes da transição ${}^{5}D_{0} \rightarrow {}^{7}F_{5,6}$, indicando uma forte contribuição da mistura de J's. Ademais, os espectros de emissão dos complexos de dbm não apresentaram bandas largas oriundas da fosforescência do ligante dbm na região de 420-550 nm, indicando que os processos de transferência de energia do estado **T** do dbm para os níveis ${}^{2S+1}L_{J}$ excitados do íon Eu³⁺ são muito eficientes.

Tabela 5.8 – Energias das transições ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ referentes aos espectros de emissão dos complexos $[Q][Eu(dbm)_{4}]$; valores em cm⁻¹; T=77K.

Transição	$(Et_3NH)^+$	$(Morfo)^+$	$(TMPip)^+$	$(Diciclo)^+$	Li^+
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{0}$	17212	17182	17191	17211	17212
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{1}$	16863	16880	16883	16900	16920
	16778	16812	16835	16807	16807
	16694	16778	16750	16694	16750
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{2}$	16313	16321	16287	16326	16287
	16260	16287	16181	16213	16207
	16181	16233	16103	16160	
	16129	16181		16005	
		16103			
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{4}$	14430	14543	14535	14472	14450
	14306	14482	14434	14420	14347
	14204	14380	14403	14355	14247
	14156	14280	14306	14314	14184
		14241	14225	14192	
		14175	14176	14144	
		14100	14152		
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{6}$	12315	12367	12658	12384	12330
	12288	12293	12330	12333	12195
		12195	12262	12170	12150
			12219		
			12092		

Dentre os complexos β -dicetonatos de Eu³⁺, os mais estudados são aqueles com o ligante tta por este apresentar a posição do estado excitado T_1 em ressonância com o nível emissor 5D_0 do íon Eu³⁺, evidenciado pela eficiente transferência de energia ligante \rightarrow metal a partir de seus valores altos de rendimento quântico de emissão (Sá *et al.*, 2000). Neste trabalho, foram estudados, também, os sistemas (Q)[Eu(tta)₄], onde Q = (Et₃NH)⁺, (Morf)⁺, (TMPip)⁺ e (Diciclo)⁺ focalizando os seus dados espectrais fotoluminescentes. A figura 5.21 exibe os espectros de emissão dos complexos *tetrakis* com o ligante tta e os contra-cátions derivados de bases nitrogenadas, registrados na região de 420 a 850 nm (77 K) ,sob excitação centrada na transição do ligante em 330 nm.

Os espectros de emissão de todos os complexos *tetrakis* (Figura 5.19 a 5.21) apresentam um único pico fino e de baixa intensidade luminescente atribuído a transição ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$, em torno de 578 nm, sugerindo a existência de um único sítio de simetria para o íon Eu³⁺. De acordo com a regra de seleção por simetria, essa transição só é permitida quando o Eu³⁺ é classificado nos grupos pontuais C_{nv}, C_n, C_s ou S_n. Como a transição ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ apresenta-se com intensidade muito baixa, sugere-se que o íon Eu³⁺ encontra-se em um ambiente distorcido para as simetrias C_{nv} ou S_n.

Quando se comparam os espectros de emissão dos sistemas *tetrakis* (Q)[Eu(β dicetonatos)₄] contendo os ânions derivados de (acac, dbm e tta), ilustrados nas figuras 5.19 a 5.21, observa-se que a transição hipersensível ${}^5D_0 \rightarrow {}^7F_2$ (615 nm) exibe-se como uma banda mais intensa evidenciando que estes complexos não apresentam comportamento centrossimétrico. Portanto, estes sistemas não possuem o grupo pontual D_{4h} , conforme sugerido por Bauer (1964). Apesar desta evidência e baseando-se nos desdobramentos das transições ${}^5D_0 \rightarrow {}^7F_{1.4}$ de todos os complexos tetrakis em questão, pode-se sugerir que o íon Eu³⁺ nestes compostos não se encontra em um ambiente químico de baixa simetria, em função da presença de espécies duplamente degeneradas (E), nos seus espectros de emissão. As evidências espectroscópicas e o fato destes complexos apresentarem número de coordenação oito, pela presença de quatro β -dicetonatos bidentados (acac, dbm e tta), sugerem que nestes sistemas o íon Eu³⁺ encontra-se em um ambiente químico D_{2d} distorcido para C_{4v} ou S₄.

Como nos espectros de emissão dos sistamas acac e dbm, também foram observadas as bandas atribuídas às transições ${}^{5}D_{1}\rightarrow{}^{7}F_{0}$ (532 nm), ${}^{5}D_{1}\rightarrow{}^{7}F_{1}$ (539 nm) and ${}^{5}D_{1}\rightarrow{}^{7}F_{2}$ (558 nm). Estas bandas apresentam intensidades muito indicando que a relaxação não-radiativa é ineficiente entre os níveis emissores ${}^{5}D_{1}$ e ${}^{5}D_{0}$ do íon Eu³⁺. Todos os complexos tetrakis mostram picos atribuídos as transições ${}^{5}D_{0}\rightarrow{}^{7}F_{5,6}$, indicando uma forte contribuição da mistura de J's. Além do mais, os espectros de emissão (77K) dos complexos não apresentaram bandas largas oriundas da fosforescência dos ligantes acac, dbm e tta na região de 420-550 nm, indicando que os processos de transferência de energia do estado **T** dos ligantes β -dicetonatos para os níveis ${}^{28+1}L_{J}$ excitados do íon Eu³⁺ são muito eficientes.

Todos os compostos *tetrakis* de európio com acac, dbm e tta, estudados neste trabalho, apresentam uma intensificação da luminescência quando registrados em temperatura do nitrogênio líquido, porém a intensificação visual é mais evidente nos complexos com o ligante acetilacetonato. Este comportamento foi recentemente estudado e sugere teoricamente que os dados de emissão obtidos a temperatura ambiente apresentam menor contribuição luminescente devido à supressão luminescente ativada termicamente através dos estados de transferência de carga em complexos de terras raras (Faustino *et al.*, 2006).

Figura 5.21 – Espectros de emissão dos complexos (Q)[Eu(tta)₄], onde (a) (Et₃NH)⁺, (b) (Morf)⁺, (c) (TMPip)⁺ e (d) (Diciclo)⁺; 77K. A região de 500 a 570nm está ampliada (50x).

Tabela 5.9 – Energias das transições ${}^{5}D_{0} \rightarrow$	⁷ F _J referentes	aos espectros	de emissão o	los complexos
$[Q][Eu(tta)_4]$; valores em cm ⁻¹ ; 77K.				

Transição	$[Et_3NH]^+$	$[MorfoNH]^+$	[TMPipNH] ⁺	[DicicloNH] ⁺
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{0}$	17229	17200	17201	17194
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{1}$	16978	16913	16916	16895
	16837	16835	16846	16836
	16786	16759	16745	16750
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{2}$	16313	16298	16321	16295
	16262	16251	16265	16275
	16150	16116	16222	16172
		15990	16147	15956
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{4}$	14452	14445	14422	14515
	14259	14409	14360	14436
	14229	14302	14317	14316
	14154	14254	14252	14247
		14188	14172	14222
		14144		14186
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{6}$	12445	12382	12372	12340
	12291	12299	12282	12296
		12206	12066	12219
		12115	12008	12144
				12102

5.2.2.1 Parâmetros de intensidade experimentais

Revisando o capítulo 2, seção 2.4.1, verifica-se que a intensidade de luminescência (I) das transições provenientes do nível emissor ${}^{5}D_{0}$ para os níveis ${}^{7}F_{j}$, (J= 0, 1, 2, 3 e 4) do íon Eu³⁺ pode determinado usando a equação 2.1. O valor de $A_{0\rightarrow j}$ é determinado experimentalmente a partir dos espectros de emissão tomando a transição ${}^{5}D_{0}\rightarrow{}^{7}F_{1}$ como referência. Desta forma, os valores de $A_{0\rightarrow j}$ para as transições de dipolo-elétrico forçado ${}^{5}D_{0}\rightarrow{}^{7}F_{2,4,6}$ são determinados de acordo com a equação 2.2 onde σ e S são respectivamente os baricentros em energia (em cm⁻¹) e as áreas sob as curvas de emissão correspondentes às transições ${}^{5}D_{0}\rightarrow{}^{7}F_{1}$ é praticamente constante, o coeficiente de Einstein $A_{0\rightarrow 1}$ pode ser calculado exatamente e é dado pela relação $A_{0\rightarrow 1} = 0,31 \cdot 10^{-11} n^{3} (\sigma_{0\rightarrow 1})^{3}$, onde n é o índice de refração do meio.

Com base nas equações 2.2 e 2.4 e nos espectros de emissão dos complexos *tetrakis* de európio com os ligantes acac, dbm e tta foram determinados os valores dos parâmetros de intensidade experimentais Ω_2 , Ω_4 , Ω_6 , Λ_{rad} e Λ_{nrad} (Tabela 5.10). Considerando os complexos (Q)[Eu(acac)₄], onde Q = Li⁺, Na⁺ e K⁺ observa-se um aumento gradual do parâmetro de intensidade Ω_2 (em 10⁻²⁰ cm²) em função do aumento raio iônico do íon metal alcalino: Li⁺ (23,7), Na⁺ (24,9) e K⁺ (25,5) indicando que o íon Eu³⁺ no sistema acac com íon K⁺ encontra-se em um ambiente químico mais polarizável do que nos sistemas contendo os íons Li⁺ ou Na⁺. Por outro lado, quando se compara os sistemas *tris* e *tetrakis* com o ligante acac nota-se que o complexos [Eu(acac)₃(H₂O)₃] apresenta o valor de Ω_2 (29,0) maior do que aqueles para os complexos *tetrakis*(acetilacetonato) de Eu³⁺ com os contra-cátions derivados de metais alcalinos, evidenciando uma maior covalência para o complexo hitratado.

Para o sistema *tetrakis* contendo o ligante dbm com os contra-cátions derivados de bases nitrogenadas (TMPip)⁺ e (Diciclo)⁺, apresenta o valor de Ω_2 em torno de 31,0 (Tabela 5.10) e com os contra-cátions (Morf)⁺ e (Et₃NH)⁺, $\Omega_2 = 34,0$ e 26,4, respectivamente, sendo maiores do que os valores determinados para o complexo contendo o cátion Li⁺, sugerindo que neste sistema estudado as bases nitrogenadas conferem uma maior caráter covalente a estes ânions complexos. Neste caso, também o complexo *tris* [Eu(dbm)₃(H₂O)] apresentou maior polarizabilidade do que os *tetrakis* (Q)[Eu(dbm)₄], por apresentar um maior valor de Ω_2 (37,0).

No caso dos sistemas *tetrakis* com o ligante tta, o complexo com o contra-cátion $(\text{TMPip})^+$ apresentou o maior valor de Ω_2 (42,1), evidenciando um alto comportamento hipersensível da transição ${}^5\text{D}_0 \rightarrow {}^7\text{F}_2$ evidenciando um maior caráter covalente das ligações $\text{Eu}^{3+}-(\beta\text{-dicetonato}).$

Para os sistemas *tetrakis*, os valores dos parâmetros Ω_4 pouco variam, estando na faixa de 6,0 a 9,0 x 10⁻²⁰ cm² (Tabela 5.10), sugerindo uma insensibilidade intrínseca do sistema em relação às componentes de alto posto. O parâmetro Ω_4 é menor do que o Ω_2 , indicando o caráter hipersensível da transição ${}^5D_0 \rightarrow {}^7F_2$. Vale ressaltar que neste trabalho os complexos *tetrakis*(β dicetonato) de Eu³⁺ apresentaram as transições ${}^5D_0 \rightarrow {}^7F_6$, que normalmente não são observadas em complexos *tris*. Com base nos valores de Ω_6 apresentados na tabela 5.10, observa-se comportamentos semelhantes ao Ω_4 , evidenciando uma menor sensibilidade destes parâmetros em relação ao Ω_2 .

As curvas de decaimento de luminescência para os estados emissores ${}^{5}D_{0}$ do íon Eu³⁺, foram obtidas em temperatura ambiente (\cong 298 K), monitorando suas transições de maior intensidade em 395 e 612 nm para excitação e emissão, respectivamente. Os valores de τ dos estados emissores (Tabela 5.10) foram determinados considerando um sistema de dois níveis, uma vez que os dados experimentais das curvas de decaimento de luminescência mostraram bons ajustes às curvas mono-exponenciais I(t) = I(0)^{(-t/\tau)}. Os resultados para os íons Eu³⁺ estão concordantes com a presença de um único sítio para os complexos (Q)[TR(β -dicetonato)₄].

Complexos	Ω_2 (10 ⁻²⁰ cm ²)	Ω_4 (10 ⁻²⁰ cm ²)	Ω_6 (10 ⁻²⁰ cm ²)	A _{rad} (s ⁻¹)	A _{nrad} (s ⁻¹)	$\begin{array}{c} \mathbf{A}_{\mathrm{tot}} \\ (\mathbf{s}^{-1}) \end{array}$	R_{02}	τ (ms)	η (%)
(Li)[Eu(acac)4]	23,7	7,9	11,0	908	297	1205	0,0009	0,830	75
(Na)[Eu(acac) ₄]	24,9	6,8	6,9	920	346	1266	0,0013	0,790	73
(K)[Eu(acac)4]	25,5	6,6	4,6	929	415	1344	0,0023	0,744	69
$[Eu(acac)_3(H_2O)_3]$	29,0	13,1	-	1127	2523	3650	0,0170	0,274	31
(Et ₃ NH)[Eu(dbm) ₄]	26,4	6,8	6,5	952	703	1655	0,0019	0,604	58
(Morf)[Eu(dbm)4]	34,0	7,6	3,2	1193	775	1968	0,0039	0,508	61
(TMPip)[Eu(dbm)4]	31,2	8,2	7,8	1127	1047	2174	0,0006	0,460	52
(Diciclo)[Eu(dbm) ₄]	31,0	5,4	6,0	1074	868	1942	0,0005	0,515	55
(Li)[Eu(dbm) ₄]	22,8	9,1	7,2	885	754	1639	0,0019	0,610	54
$[Eu(dbm)_3(H_2O)]$	37,0	1,6	-	1200	3093	4293	0,0180	0,233	37
(Et ₃ NH)[Eu(tta) ₄]	32,7	5,6	2,5	1114	714	1828	0,0022	0,547	61
(Morf)[Eu(tta) ₄]	35,7	8,6	3,6	1250	168	1418	0,0024	0,705	88
(TMPip)[Eu(tta)4]	42,1	12,1	6,2	1499	124	1623	0,0016	0,616	92
(Diciclo)[Eu(tta) ₄]	37,7	8,6	5,1	1318	313	1631	0,0037	0,613	81
$[Eu(tta)_3(H_2O)_2]$	33,0	4,6	-	1110	2730	3846	0,0130	0,260	29

Tabela 5.10 – Parâmetros de intensidades experimentais (Ω_{λ}) Tempo de vida do estado emissor ${}^{5}D_{0}$ (τ) e eficiência quântica (η) dos complexos $Q[Eu(\beta-dicetonato)_{4}]$ e relação entre as intensidades ${}^{5}D_{0} \rightarrow {}^{7}F_{0}/{}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (R_{02}).

De um modo geral, os valores de eficiência quântica (η) do estado emissor ${}^{5}D_{0}$, dos complexos *tetrakis*(β -dicetonato) de Eu³⁺, determinada pela equação 2.8, são altos quando comparados com os compostos *tris*. Este resultado reflete uma diminuição significativa dos valores das contribuições não-radiativas (A_{nrad}) com a substituição das moléculas de água por mais um ligante β -dicetonato. Os complexos hidratados apresentam altos valores da taxa não-radiativa A_{nrad} devidos principalmente, aos acoplamentos vibrônicos entre o nível emissor ${}^{5}D_{0}$ e os osciladores O-H das moléculas de água coordenada ao íon metálico, causando uma depopulação deste nível e, conseqüentemente, suprimindo eficientemente a luminescência do íon Eu³⁺ (Tabela 5.10).

Os complexos (Morf)[Eu(tta)₄] e (TMPip)[Eu(tta)₄] apresentam os maiores valores de eficiência quântica $\eta = 88$ e 92%, respectivamente, entre os sistemas *tetrakis* estudados neste trabalho, podendo indicar um eficiente processo de transferência de energia devido aos maiores valores das taxas radiativas (A_{rad} = 1499 s⁻¹) e aos menores valores das taxas não-radiativas (A_{nrad} = 124 s⁻¹). Portanto, estes complexos comportam-se como promissores dispositivos moleculares conversores de luz (DMCLs) para aplicação na área de marcadores luminescentes.

A tabela 5.10 apresenta também os valores do parâmetro R_{02} para os complexos de Eu³⁺, o qual é definido como a razão entre a intensidade da transição ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ pela intensidade da transição hipersensível ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$. Esse parâmetro é uma medida da mistura de estados de acoplamento intermediário ${}^{7}F_{0}$ componentes do estado ${}^{7}F_{2}$. Como pode ser observado, os maiores valores de R_{02} foram obtidos para os complexos hidratados comparados com os sistemas tetrakis, evidenciando a menor intensidade da transição ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ resultante da menor mistura dos J's nos complexos (Q)[Eu(β -dicetonato)₄].

5.2.3 Complexos com o íon Tb³⁺

De maneira geral, observa-se que para uma transferência de energia intramolecular ao íon Tb^{3+} mais efetiva, a energia do estado T_1 dos ligantes deve localizar-se em torno de 1.900 cm⁻¹ acima do nível emissor ${}^{5}D_{4}$ (20.400 cm⁻¹) do íon metálico, para evitar o mecanismo de retro-transferência [Steemers, 1995; Latva, 1997].

A Figura 5.22 mostra os espectros de excitação dos complexos [Tb(acac)₃(H₂O)₃] (Figura 5.22a)e (Q)[Tb(acac)₄] (Figura 5.22b-d), onde o contra-cátion $Q = Li^+$, Na⁺ e K⁺, registrada em temperatura de 77K, na faixa espectral de 250 a 590 nm com emissão monitorada na transição hipersensível ${}^{5}D_{4}\rightarrow{}^{7}F_{5}$ em 545 nm. Como nos dados espectrais apresentados para os complexos de Eu³⁺, os espectros de excitação dos complexos de Tb³⁺ exibem também bandas largas na faixa espectral de 250 a 420 nm atribuídas à transição $S_{0}\rightarrow S_{1}$ do ligante β -dicetonato. Adicionalmente, é também observado bandas finas provenientes das transições 4f-4f do nível fundamental ${}^{7}F_{6}$ aos estados excitados ${}^{5}G_{6}$ e ${}^{5}D_{4}$ do íon Tb³⁺. A presença da banda larga com maior intensidade do que aquela centrada no íon Tb³⁺ sugere que o processo de excitação indireta do íon metálico via grupo cromóforo dos ligantes são mais operativas. Os espectros de todos os compostos *tetrakis* (Figura 5.22b-d) apresenta-se muito maior do que no complexo [Tb(acac)₃(H₂O)₃], quando comparada com a banda larga do ligante (Figura 5.22a). Além do mais, é notado que no sistema *tetrakis*, esta transição desdobra-se em um dubleto, enquanto que no sistema *tris* apresenta um único pico devido à influência do sistema *tetrakis*.

Figura 5.22 – Espectros de excitação dos complexos (a) [Tb(acac)₃(H₂O)₃] e (Q)[Tb(acac)₄], onde $Q = (b) (Li)^+$, (c) (Na)⁺ e (c) (K)⁺; 77 K.

Os espectros de emissão dos complexos *tris*, $[Tb(acac)_3(H_2O)_3]$ e *tetrakis*, $(Q)[Tb(acac)_4]$, $Q = Li^+$, Na⁺ e K⁺, no estado sólido, registrados na faixa espectral de 450 a 700 nm, e com excitação monitorada na banda de maior energia relativa às transições $S_0 \rightarrow S_1$ do ligante acac, em temperatura do nitrogênio líquido, estão apresentados na figura 5.23. Estes espectros mostram bandas de emissão finas características das transições ${}^5D_4 \rightarrow {}^7F_J$ (J = 6, 5, 4, 3, 2, 1 e 0) e não exibem as emissões originárias dos ligantes, indicando a transferência de energia intramolecular eficiente do ligante acetilacetonato ao íon Tb³⁺. As transições intraconfiguracionais 4f-4f demonstradas nos espectros dos complexos *tetrakis* mostram-se semelhantes para a série de contra-cátions Li⁺, Na⁺ e K⁺ e com um maior número de linhas estreitas relativas as transições ${}^5D_4 \rightarrow {}^7F_{6-0}$, quando comparadas com aquelas observadas no espectro de emissão do complexo *tris*.

Os dados fotoluminescentes do sistema *tetrakis* com o íon Tb³⁺ sugerem que a adição de mais um ligante acetilacetonato potencializa o "efeito-antena", sensibilizando também a luminescência do íon térbio, como verificado para o íon Eu³⁺. Todos os compostos *tetrakis* de Tb³⁺ com acac exibem uma intensificação da luminescência quando registrados em baixa temperatura, sendo que em temperatura ambiente apresentam menor contribuição luminescente devido à supressão luminescente ativada termicamente.

Sob inspeção visual, após excitação com lâmpada UV, os complexos de Tb³⁺ mostram-se mais luminescentes do que aqueles de Eu³⁺, dentro da série (Q)[TR(acac)₄], com TR = Eu³⁺ ou Tb³⁺, e Q = Li⁺, Na⁺ ou K⁺. Este comportamento óptico era esperado devido à posição do estado **T**₁ do ligante acac (25.000 cm⁻¹) estar em ressonância com o estado emissor ⁵D₄ do íon Tb³⁺. Performance similar foi observada para os complexos *tris* [TR(acac)₃(H₂O)₃], com TR = Eu³⁺ ou Tb³⁺, porém, com menor eficiência luminescência em relação ao *tetrakis*, devido ao acoplamento vibrônico com os osciladores –OH das moléculas de H₂O.

Comprimento de onda (nm)

Figura 5.23 – Espectros de emissão dos complexos (a) $[Tb(acac)_3(H_2O)_3]$ e $(Q)[Tb(acac)_4]$, Q = (b) $(Li)^+$, (c) $(Na)^+$ e (d) $(K)^+$; T=77K.

Transição	Li+	Na ⁺	K+
${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{6}$	20506	20517	20539
	20296	20329	20488
	20169	20270	20339
		20226	20165
		20161	
${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{5}$	18518	18496	18494
	18443	18433	18433
	18413	18376	18408
	18320	18330	18328
	18238	18250	18262
	18165	18148	18119
	18113	18085	
${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{4}$	17189	17182	17238
	17153	17112	17182
	17107	17036	17112
	17048	16978	17052
	16968	16902	16969
	16896	16886	16908
	16793	16796	16827
$^{5}D_{4} \rightarrow F_{3}$	15949	161/8	16192
	16013	16116	16129
	16069	16055	16083
	16116	16025	16062
	16181	15985	16016
		15954	
${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{2}$	15657	15660	15610
	15581	15643	15552
	15345	15584	15351
	15256	15348	15292
	15225	15290	15258
		15226	
	15105	151.10	
$^{5}D_{4} \rightarrow F_{1}$	15137	15142	15155
	14894	14908	14904
	14829	14881	14857
		14821	
${}^{5}D_{4} \rightarrow {}^{7}F_{0}$	14727	14635	14650
	14634		

Tabela 5.11 – Energias das transições ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ referentes aos espectros de emissão dos complexos [Q][Tb(acac)_4]; valores em cm⁻¹; 77K.

5.2.4 Complexos com o íon Tm³⁺

As propriedades espectroscópicas do íon Tm³⁺ em compostos sólidos são estudadas principalmente em vidros e cristais, onde sua luminescência azul demonstra a aplicabilidade destes materiais como lasers no estado sólido e dispositivos óptico-eletrônicos [Sharma *et al.*, 1994; O'Connor *et al.*, 1995; Tanabe *et al.*, 1995; Riedener *et al.*, 1995].

Na preparação de dispositivos moleculares conversores de luz (DMCLs) para aplicação como marcadores ópticos com emissão azul, normalmente utiliza-se polímeros orgânicos. Para tal finalidade, um sistema muito mais distinto poderia ser constituído de íons Tm^{3+} , em virtude de suas bandas emissões bastante finas oriundas de suas transições 4f-4f que são blindadas do ambiente químico pela subcamada 5s5p. Porém, a dificuldade de observar sua emissão azul, dada pela transição hipersensível ${}^{1}G_{4}\rightarrow{}^{3}H_{6}$ em torno de 480 nm, é notada em compostos de coordenação, e normalmente apresenta baixa intensidade luminescente do próprio íon Tm^{3+} devido a estrutura dos seus níveis de energia apresentarem pequeno intervalo de energia entre o estado excitado emissor e o estado fundamental que aumentam a probabilidade de transições não-radiativas através do acoplamento com os modos vibracionais dos ligantes. Adicionalmente, pode ocorrer um mecanismo de auto-supressão provocado pela presença de três níveis emissores, ${}^{3}F_{2}$, ${}^{3}F_{3}$ e ${}^{3}H_{4}$ energeticamente abaixo do nível ${}^{1}G_{4}$ [Serra, 1998; Hong, 1999].

A figura 5.24 mostra os espectros de excitação dos *tris* complexos $[Tm(acac)_3(H_2O)_3]$ e tetrakis (Q)[Tm(acac)_4], onde Q = (Li)⁺, (Na)⁺ e (K)⁺ registrados na faixa de 250 a 450 nm monitorada na emissão em 484 nm, a temperatura ambiente (298K). A banda larga de maior intensidade em torno de 333 nm é atribuída à absorção S₀ \rightarrow S₁ do ligante acetilacetonato. È observado que os espectros de excitação do sistema *tetrakis* apresentam grande similaridade no perfil espectral entre si. Por outro lado, estes espectros são diferentes daquele obtido para o complexo de Tm³⁺ hidratado.

Figura 5.24 – Espectros de excitação dos complexos (a) $[Tm(acac)_3(H_2O)_3]$ e (Q) $[Tm(acac)_4]$, Q = (b) (Li)⁺, (c) (Na)⁺ e (d) (K)⁺; T=298K.

A figura 5.25 exibe o espectro de emissão do complexo $[Tm(acac)_3(H_2O)_3]$, sob excitação centrada na banda do ligante (333 nm), registrado em temperatura ambiente. A banda larga no intervalo de 380 a 500 nm é atribuída aos estados **T** do ligante acetilacetonato, com a evidente ausência da banda fina característica da transição intraconfiguracional ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ do íon Tm³⁺.

Os espectros de emissão dos complexos *tetrakis*, (Q)[Tm(acac)₄] com os contra-cátions derivados de metais alcalinos, Li⁺, Na⁺ e K⁺, foram registrados em temperatura ambiente no intervalo de 400 a 700 nm (Figura 5.26). Estes espectros apresentam bandas de emissão finas em torno de 484 e 650 nm atribuídas às transições, hipersensível ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$, e a ${}^{1}G_{4} \rightarrow {}^{3}F_{4}$ do íon Tm³⁺, respectivamente. Nota-se que a transição ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ é bastante intensa, indicando a alta

luminescência azul procedente do sistema *tetrakis* em questão. Quando se comparam as bandas referentes à transição hipersensível dos complexos *tetrakis*, observa-se que aquele contendo o contra-cátion K⁺ exibe maior intensidade luminescente, embora apresentem perfis espectrais semelhantes. Também é importante notar que os espectros de emissão (Figura 5.26) dos complexos (Q)[Tm(acac)₄] não apresentaram a banda larga oriunda da fosforescência do ligante acac no intervalo espectral de 380 a 500 nm observada no espectro de emissão do complexo [Tm(acac)₃(H₂O)₃] (Figura 5.25). Esse resultado indica que os processos de transferência de energia do estado tripleto do ligante para os níveis excitados do túlio trivalente são muito eficientes.

Figura 5.25 – Espectros de emissão do complexo [Tm(acac)₃(H₂O)₃], T=298K.

Figura 5.26 – Espectros de emissão dos complexos (Q)[Tm(acac)₄], onde (a) Q=Li⁺, (b) Q=Na⁺ e (c) Q=K⁺; T=298k.

As energias relativas aos desdobramentos das transições eletrônicas ${}^{1}G_{4} \rightarrow {}^{3}L_{J} e {}^{3}H_{4} \rightarrow {}^{3}H_{6}$ referentes aos espectros de emissão dos complexos [Q][Tm(acac)₄] registrados em baixa temperatura encontram-se na tabela 5.12.

Transição	Li^+	Na ⁺	K^{+}
${}^{1}G_{4} \rightarrow {}^{3}H_{6}$	20993	21004	20813
	20791	20824	20500
	20621	20617	
	20434		
${}^{1}G_{4} \rightarrow {}^{3}F_{4}$	15384	15500	15384
	15244	15402	15286
	15149	15288	
	14952		

Tabela 5.12 – Energias das transições ${}^{1}G_{4} \rightarrow {}^{3}L_{J}$ e ${}^{3}H_{4} \rightarrow {}^{3}H_{6}$ referentes aos espectros de emissão dos complexos [Q][Tm(acac)_{4}]; valores em cm⁻¹; T=77K.

5.3. Eletroluminescência

Em colaboração com o Laboratório de Espectroscopia Óptica e Optoeletrônica Molecular, Departamento de Física da Pontifícia Universidade Católica do Rio de Janeiro, PUC/RJ, coordenado pelo Prof. Marco Cremona, particularmente através do Dr. Welber Gianini Quirino, foram realizados ensaios preliminares da utilização dos complexos (Li)[Eu(dbm)₄] e (Li)[Tb(acac)₄] como camadas emissoras de luz e transportadoras de elétrons em dispositivos OLEDs. A deposição dos filmes foi realizada pela técnica de evaporação física por fase vapor (PVD), que consiste basicamente em quatro etapas (i) emissão de partículas por uma fonte (aquecimento do material a ser depositado e transformação do mesmo do estado sólido para o estado gasoso); (ii) transporte destas partículas até o substrato; (iii) condensação no substrato e (iv) processos de superfície ativados termicamente. Ao aquecer o material para deposição a uma temperatura na qual a sua pressão de vapor seja alta, as partículas difundem-se da fonte (normalmente um cadinho metálico) para a câmara de deposição. A temperatura de evaporação é bastante reduzida pelo fato do sistema estar a baixíssimas pressões, muito menor do que a pressão atmosférica. Isso acontece porque a pressão de vapor do material diminui com a diminuição da pressão ambiente. Existe, assim, um fluxo de material da fonte em direção aos substratos.

Para que a deposição seja eficiente, é importante que a concentração do gás residual no interior da câmara de deposição seja suficientemente baixa de modo que o caminho livre médio das partículas na pressão do sistema seja muito maior que a distância fonte-substrato. Para uma molécula deixar a superfície do material, é necessário que a energia cinética correspondente ao componente perpendicular à superfície, seja maior que a necessária para manter as forças intermoleculares. A energia cinética aumenta com a temperatura e desta forma a evaporação ocorre com a perda de energia interna do material, sendo suprida continuadamente pelo sistema de deposição. Ao encontrar a superfície do substrato que se encontra a uma temperatura menor, as partículas, desde que exista um coeficiente de adesão não nulo, condensarão e formarão o filme. Em todos os casos é necessário um bom sistema de vácuo que garanta a pureza do material depositado.

A deposição dos filmes finos foi realizada em um sistema de alto vácuo da LEYBOLD, modelo UNIVEX 300. O sistema consiste em uma câmara de alto vácuo, um sistema de bombeio (mecânico + turbo molecular), um sistema de aquecimento resistivo e um medidor de espessura *insitu*, que serve também para avaliar continuamente o processo de deposição. No equipamento de deposição, o sistema de bombeamento para vácuo, conta com dois tipos de bombas. A primeira, mecânica (rotativa com palheta) permite a realização de um pré-vácuo da ordem de 10 a 3 mbar na câmara de deposição. A segunda, que entra em funcionamento somente depois do prévácuo, é do tipo turbo molecular e chega a um vácuo final de 10 a 6 mbar [Chambers et al., 1991; Manual XTC-INFICON, 1990]. Montados na câmara existem dois sensores de vácuo, um do tipo Pirani (vácuo até 10 a 3 mbar) e outro do tipo Penning (alto vácuo), que permitem o controle das condições de vácuo. A medição da espessura in situ foi realizada através de um sensor, ligado a um monitor LEYBOLD, modelo XTC-INFICON. O método de medição baseia-se na variação da freqüência de oscilação de um cristal de quartzo, que é inversamente proporcional à massa depositada sobre o cristal. Este sensor permite também fazer a leitura da taxa de deposição (em Å.s⁻¹) do material que está sendo depositado. Para isso, é necessário no início do processo de deposição inserir alguns parâmetros físicos do material a ser depositado, como por exemplo, a densidade do material. A distância entre a fonte (o cadinho com o material) e o substrato foi mantida constante em 27 \pm 0,5 cm. Esta altura foi escolhida para obter uma distribuição homogênea tanto na parte central como nos extremos do portasubstratos, no intuito de obter filmes mais uniformes no que se refere a sua espessura. Os substratos foram mantidos sempre a temperatura ambiente. Como os cadinhos utilizados para evaporar os materiais orgânicos devem ter reatividade nula ou mínima com os compostos orgânicos durante a evaporação, foram utilizados cadinhos de tungstênio [Quirino, 2007].

Para os complexos deste estudo, todas as camadas foram seqüencialmente depositadas em ambiente de alto vácuo por deposição térmica sobre substratos de ITO. As camadas orgânicas e os complexos foram depositados termicamente em cadinhos de tungstênio, a partir de uma pressão inicial de 1x10⁻⁶ Torr. Durante a evaporação a pressão ficou entre 3x10⁻⁶ e 6x10⁻⁶ Torr, com taxas de deposição entre 0,1 e 0,3 nm.s⁻¹. Finalmente, foi evaporado o alumínio utilizando um filamento de tungstênio a uma taxa de 0,6 nm.s⁻¹ na mesma câmara de vácuo. Foram construídos vários dispositivos, conforme listado na página 118.

Em relação aos complexos utilizados como camadas emissoras, por tratar-se de um estudo preliminar para aplicação eletroluminescente, para este trabalho, foi obtida através da técnica de termogravimetria, a temperatura *on set* dos complexos (Li)[Tb(acac)₄], em 275 °C e

(Li)[Eu(dbm)₄], em 320 °C que serviu como um bom parâmetro para a utilização destes complexos através da técnica de deposição aplicada na montagem dos dispositivos eletroluminescentes. Os compostos contendo cátions derivados de bases nitrogenadas não foram avaliados, por apresentarem histórico de decomposição na montagem dos dispositivos eletroluminescentes.

Os dispositivos OLEDs foram construídos usando-se uma heterojunção com: a) camada transportadora de buracos – N, N-bis(1-naftil)-N, N-difenil-1,1'-difenil-4,4'-diamina (NPB) ou 1-(3-metilfenil)-1, 2, 3, 4-tetrahidroquinolina-6-carboxaldeído-1,1'-difenilhidrazona (MTCD); b) camada emissora – compostos *tetrakis*(β -dicetonatos) de Eu³⁺ e Tb³⁺, (Li)[Tb(acac)₄], e (Li)[Eu(dbm)₄] e c) camada transportadora de elétrons – complexo *tris*(hidroxiquinolinato) de alumínio (Alq₃) (Figura 5.27). Em apenas um dispositivo foi utilizado uma fina camada de LiF para melhorar a injeção dos elétrons.

Figura 5.27 – Fórmulas estruturais dos compostos utilizados como camadas transportadoras de elétrons e buracos nos dispositivos preparados.

Os dispositivos foram fabricados na ordem em que estão descritos abaixo e entre parênteses estão indicadas as espessuras, em nanômetros, de cada camada. A área ativa de cada dispositivo foi de aproximadamente 5 mm². Os dispositivos eletroluminescentes construídos operaram de forma direta, ou seja, o ITO como eletrodo positivo e o Al como eletrodo negativo.

Dispositivos com Eu^{3+} :

Dispositivo **1** - Bicamada: ITO/NPB(40)/Li[Eu(dbm)₄](50)/Al(160) Dispositivo **2** - Tricamada: ITO/NPB(40)/Li[Eu(dbm)₄](50)/Alq₃(25)/Al(130) Dispositivo **3** - Tricamada: ITO/NPB(40)/Li[Eu(dbm)₄](70)/LiF(0,5)/Al(150)

Dispositivos com Tb^{3+} :

Dispositivo **4** - Bicamada: ITO/NPB(40)/Li[Tb(acac)₄](50)/Al(160) Dispositivo **5** - Bicamada: ITO/MTCD(40)/Li[Tb(acac)₄](50)/Al(160)

5.3.1 Eletroluminescência dos dispositivos com o complexo (Li)[Eu(dbm)₄].4H₂O

O espectro eletroluminescente (EL) do dispositivo **1** apresenta as bandas de emissão atribuídas as transições intraconfiguracionais do íon Eu³⁺, ${}^{5}D_{1}\rightarrow{}^{7}F_{1}$ e as transições ${}^{5}D_{0}\rightarrow{}^{7}F_{0.4}$, e assim como nos espectros de fotoluminescência, a transição hipersensível ${}^{5}D_{0}\rightarrow{}^{7}F_{2}$ em 612 nm é proeminente (Figura 5.28). Analogamente ao comportamento fotoluminescente, a transferência de energia do ligante para o íon TR³⁺ no sistema *tetrakis* é eficiente, evidenciado pela ausência da banda larga do ligante dbm na região de 500 a 700 nm e a intensificação das transições 4f-4f do íon Eu³⁺ nos espectros eletroluminescentes. Além do mais, os espectros EL apresentam uma banda de baixa intensidade centrada em 435 nm identificada como proveniente da eletroemissão do NPB [Gao *et al.*, 2000; Zhang *et al.*, 2000; Pyo *et al.*, 2000]. Esta emissão é suficientemente intensa para prejudicar a pureza da cor emitida pelo dispositivo **1** EL. Isso pode ser comprovado

120

pelo diagrama de cromaticidade CIE (Commission Internationale de l'Eclairage), onde obtivemos as coordenadas x = 0,54 e y = 0,35, representado pelo ponto número 1 indicado na (Figura 5.32). O gráfico inserido na figura 5.28 é uma medida da curva de corrente *vs* tensão aplicada (IxV) do dispositivo **1**, mostrando um comportamento típico de diodo. O dispositivo operou a partir de uma tensão de aproximadamente 10 volts com o máximo de tensão de trabalho em torno de 34 volts. Este dispositivo funcionou com correntes extremamente baixas, na faixa de μ A, ao custo de tensões bastante altas para este tipo de dispositivo. Vale notar que pelo menos dois fatores podem ser citados para explicar o surgimento da eletroluminescência do NPB: o transporte desigual de portadores positivos e negativos por um problema de injeção e transporte de cargas, ou simplesmente pelo fato de que as espessuras dos complexos usados para fabricar esse dispositivo não tenham sido otimizadas.

Figura 5.28 – Espectros de eletroluminescência do dispositivo 1: $ITO/NPB(40)/Li[Eu(BDM)_4](50)/Al(160)$, registrado a temperatura ambiente em diferentes valores de voltagem. O gráfico inserido mostra que o dispositivo funciona como um diodo típico.

Dessa forma, com o intuito de obter um dispositivo com uma melhor relação I vs V, com maior intensidade de emissão do íon Eu³⁺ e principalmente sem a banda de emissão do NPB, foi construído o dispositivo **2**, tricamada: ITO/NPB(40)/Li[Eu(dbm)₄](50)/Alq₃(25)/Al(130), onde foi incluído a camada contendo o complexo Alq₃, devido à sua eficiência no transporte de elétrons.

A figura 5.29 mostra o espectro EL do dispositivo **2**, que ao contrário do esperado, não demonstrou melhoria no balanço de cargas. Nota-se que a inclusão do complexo Alq₃ não resultou em um dispositivo com emissões mais intensas provenientes do íon Eu³⁺, nem tampouco houve a diminuição da banda de emissão oriunda do NPB. O gráfico inserido na figura 5.29 mostra que o comportamento eletroluminescente I *vs* V para o dispositivo **2**, é melhor que o dispositivo **1**, por não apresentar as oscilações de intensidade ao longo da curva, apesar das altas tensões. Como resultado final, obteve-se um dispositivo com maior mistura de cores, conforme está ilustrado, na figura 5.32, pelo ponto número **2** no diagrama de cromaticidade (CIE) com x = 0,40 e y = 0,33.

Figura 5.29 – Espectros de electroluminescência do dispositivo **2**: ITO/NPB(40)/Li[Eu(BDM)₄](50)/Alq3(25)/Al(130), em temperatura ambiente, para diferentes valores de voltagem. O gráfico inserido mostra que o dispositivo funciona como um diodo típico.

No caso da construção do dispositivo **3**, tricamada: ITO/NPB(40)/Li[Eu(dbm)₄](70)/LiF(0,5)/Al(150), ilustrado na Figura 5.30 foi depositada a camada emissora contendo o complexo Li[Eu(dbm)]₄, utilizado também como camada transpotadora de elétrons e a inclusão de uma fina camada de LiF, que normalmente tem o papel de abaixar a tensão de trabalho [Quirino, 2007]. Vale salientar que o complexo Alq₃ não foi aplicado neste dispositivo.

Figura 5.30 – Dispositivo **3** em funcionamento com emissão EL predominantemente vermelha oriunda da transição hipersensível ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ íon Eu³⁺, na região de 612 nm.

A figura 5.31 mostra o espectro EL do dispositivo **3**, que apresentou maior intensidade quando comparado com os dispositivos **1** e **2**, a alta intensidade de emissão vermelha do dispositivo **3** possibilitou sua percepção a olho nu (Figura 5.30). Além desta vantagem, o dispositivo **3** apresentou uma diminuição da intensidade da banda de NPB em relação às bandas de emissão finas do íon Eu³⁺. Conseqüentemente, foi possível fabricar um dispositivo com maior pureza de cor na região espectral do vermelho, uma vez que a contribuição da intensidade da banda do NPB é praticamente desprezível. Observam-se nos espectros eletroluminescentes que as bandas de emissão finas do íon Eu³⁺ são preponderantes, conforme corroborado pelas coordenadas no diagrama de cromaticidade CIE, figura 5.31, onde x = 0,56 e y = 0,36, ilustrado

pelo ponto número 3 localizado na região de maior pureza de cor vermelha em relação aos dispositivos 1 e 2.

Figura 5.31 - Espectros de eletroluminescência em temperatura ambiente do dispositivo **3**: ITO/NPB(40)/Li[Eu(BDM)4](70)/LiF(0,5)/Al(150) para diferentes valores de voltagem.

Figura 5.32 - Diagrama de Cromaticidade (X,Y) CIE para o dispositivo 1, X = 0,54, Y = 0,35, dispositivo 2, X=0,40 ; Y=0,33 e dispositivo 3, X=0,56 ; Y=0,36.

Na fabricação dos dispositivos contendo o complexo *tetrakis*, (Li)[Tb(acac)₄] como camada emissora no dispositivo **4** ITO/NPB(40)/Li[Tb(acac)₄](50)/Al(160), optou-se por uma configuração bicamada com 40 nm de NPB e 50 nm para o complexo *tetrakis*, igual a configuração usada para o dispositivo **1**, com a camada emissora contendo o complexo de európio. A figura 5.33 exibe os espectros eletroluminescentes para o dispositivo **4** registrados em diferentes valores de voltagem aplicada. Estes espectros mostram uma banda larga, centrada em 435 nm que foi identificada também como sendo a eletroluminescência proveniente do NPB. Porém, apesar da presença dessa banda, o resultado demonstra uma eletroluminescência com a cor de emissão verde intensa oriunda da maior contribuição da transição hipersensível ${}^5D_4 \rightarrow {}^7F_5$ (\cong 545 nm) do íon Tb³⁺ neste sistema *tetrakis*, salientando que este complexo atua como uma camada emissora eficiente em OLEDs.

Figura 5.33 - Espectros de eletroluminescência em temperatura ambiente do dispositivo 4: ITO/NPB(40)/Li[Tb(acac)₄](50)/Al(160) para diferentes valores de voltagem.

O dispositivo 4 apresenta mistura de cores de emissão devido à presença da banda de emissão do NPB, conforme apresentado no diagrama de cromaticidade, (Figura 5.36), com x = 0,22 e y = 0,43, ponto número 4.

Neste caso, fica evidente a contribuição devido à presença de mais um ligante β dicetonato no complexo *tetrakis*, visto que nenhum dos compostos *tris*(β -dicetonatos) de Tb³⁺ estudados anteriormente pelo nosso grupo, havia apresentado eletroluminescência com essa qualidade. O dispositivo operou com uma tensão alta, 18 V e funcionou em um curto intervalo de tensão (18 a 22 V), indicando um possível problema no transporte de cargas ou na arquitetura do dispositivo fabricado.

Para o dispositivo 5, ITO/MTCD(40)/Li[Tb(acac)₄](50)/Al(160), foi substituído o transportador de buracos NPB pelo MTCD, considerando que o MTCD não apresenta bandas de emissão EL na região espectral do visível (Figura 5.34).

Figura 5.34 – Dispositivo 5 em funcionamento exibindo a emissão predominantemente verde do íon Tb^{3+} .

Os espectros de eletroluminescência do dispositivo **5** apresentam as bandas finas de emissão, provenientes das transições intraconfiguracionais f-f do íon Tb^{3+} , ${}^5D_4 \rightarrow {}^7F_J$ (J = 3, 4, 5, 6), com destaque para a transição hipersensível ${}^5D_4 \rightarrow {}^7F_5$ (\cong 550 nm) que mostra uma alta intensidade relativa (Figura 5.35). Não é observada a banda de emissão EL proveniente do MTCD, como esperado. Conseqüentemente, o dispositivo 5 apresenta alta pureza de cor, uma vez que não existem outras transições, que não sejam as bandas de emissão do íon Tb^{3+} , conforme ilustrado pelo ponto 5 no diagrama CIE, (Figura 5.36), onde x = 0,24; x = 0,50.

Figura 5.35 - Espectros de eletroluminescência em temperatura ambiente do dispositivo 5: ITO/MTCD(40)/Li[Tb(acac)₄](50)/Al(160) para diferentes valores de voltagem.

O gráfico da figura 5.37 apresenta a curva I *vs* V deste dispositivo, que mostra um comportamento típico de diodo. O dispositivo liga com uma tensão bem mais baixa que o anterior, aproximadamente 12 volts e atinge o máximo de tensão de trabalho em torno de 24 V, refletindo claramente que a substituição do NPB pelo MTCD resultou numa melhora substancial no balanço de cargas do dispositivo.

Figura 5.36 - Diagrama de Cromaticidade (X,Y) CIE para o dispositivo 4, X = 0,22, Y = 0,43 e para o dispositivo 5, X=0,24 ; Y=0,50.

Figura 5.37 – Comportamento I vs V para o dispositivo 5 (bicamada), contendo o complexo (Li)[Tb(acac)₄].

5.4. Triboluminescência dos compostos β -dicetonatos de Eu³⁺

Triboluminescência (TL) é a luminescência resultante quando uma força de atrito é aplicada através da superfície de determinados sólidos, e pode ser produzida, por exemplo, quando um sólido é triturado [Braslavsky, 2007]. Os materiais que apresentam este tipo de fenômeno são promissores na aplicação como sensores de danos em superfícies [Sage *et al.*, 1999; Sage e Bourhill, 2001; Chakravarty e Phillipson, 2004].

Até o momento, não existe uma proposta de mecanismo satisfatório para a TL. Alguns trabalhos sugerem que a TL é conseqüência da recombinação das cargas separadas durante a fratura de uma amostra cristalina onde o composto representa um grupo espacial não centrossimétrico [Hocking *et al.*, 1992]. Por outro lado, outros estudos verificaram que compostos centrossimétricos podem exibir TL [Cotton *et al.*, 2001; Cotton e Huang, 2003]. Todavia, a TL em compostos centrossimétricos é geralmente atribuída a impurezas ou desordem estrutural provocada por alguns átomos [Sweeting, 1987; Sweeting, 2001; Binnemans, 2005; Brito, *et al.*, 2007].

Muitos estudos de TL estão focados em compostos com ligantes β -dicetonatos de TR³⁺. Embora as medidas de intensidade sejam relativas, acredita-se que os complexos *tetrakis* β dicetonatos de Eu³⁺ sejam os compostos conhecidos que apresentam a maior intensidade triboluminescente, por exemplo, os complexos (Morf)[Eu(dbm)₄] e (Et₃NH)[Eu(dbm)₄] [Zeng *et al.*, 2000; Cotton *et al.*, 2001]. Possivelmente, fatores combinados de desordem estrutural e estruturas cristalinas não centrossimétricas contribuem para a alta intensidade triboluminescente.

Dentre os compostos preparados neste estudo, observou-se o fenômeno de TL nos complexos (Q)[Eu(dbm)₄], onde Q⁺ = (Et₃NH)⁺, (Morf)⁺, (TMPip)⁺ e (Diciclo)⁺, e nos complexos (Q)[Eu(tta)₄], onde Q⁺ = (TMPip)⁺ e (Diciclo)⁺ quando triturados exibem emissões vermelhas oriundas das transições ${}^{5}D_{0} \rightarrow {}^{7}F_{0-4}$. Em geral, o fenômeno de fotoluminescência é mais

forte do que a triboluminescência, portanto somente as transições mais intensas são observadas no espectro de TL.

Geralmente, o espectro TL dos complexos β -dicetonatos TR³⁺ exibem as transições do íon metálico, com energias similares àquelas observadas nos espectros de fotoluminescência [Duignan *et al.*, 2002]. Desta forma, os complexos triboluminescentes β -dicetonatos de Eu³⁺, apresentam as transições intraconfiguracionais ⁵D₀ \rightarrow ⁷F_J (J = 0 a 4), com a transição hipersensível ⁵D₀ \rightarrow ⁷F₂ proeminente na região de 612 nm. A figura 5.38 exibe a comparação entre os espectro de triboluminescência e fotoluminescência do complexo (TMPip)[Eu(tta)₄] obtido em temperatura ambiente.

Figura 5.38 – Espectros de (a) triboluminescência e (b) fotoluminescência do complexo (TMPip)[Eu(tta)₄], 298K.

6 – Conclusões e Perspectivas

Neste trabalho, os complexos *tetrakis*(β -dicetonato) de terras-raras, (Q)[TR(β -dicetonato)₄] {(Q = Li⁺, Na⁺, K⁺, (Et₃NH)⁺, (Morf)⁺, (TMPip)⁺ e (Diciclo)⁺); (TR³⁺ = Eu³⁺, Gd³⁺, Tb⁺ e Tm³⁺) e (β -dicetonato = acac, dbm e tta), foram sintetizados e caracterizados por análise elementar, espectroscopia no infravermelho, difratometria de raios-X pelo método do pó e termogravimetria. Os complexos foram isolados na forma de um pó fino apresentando-se não higroscópicos e estáveis em condições ambiente. Todos os complexos deste estudo são insolúveis em água. Ademais, os sistemas *tetrakis* demonstraram baixa estabilidade em solventes orgânicos.

Os dados de microanálises de CHN e titulação complexométrica foram concordantes com a fórmula geral (Q)[TR(β -dicetonato)₄]. Os espectros de absorção na região do infravermelho evidenciaram o caráter anidro da maioria dos complexos, exceto para (Li)[TR(dbm)₄].4,5H₂O, e que a coordenação dos β -dicetonatos aos íons terras-raras ocorre através dos átomos de oxigênio dos grupos carbonila.

Os difratogramas de raios-X (método do pó) evidenciam que os complexos com o ligante acac e os cátions derivados de metais alcalinos são mais cristalinos em relação aos compostos preparados com bases nitrogenadas. Existe uma série isomorfa para os complexos *tetrakis* com um mesmo contra-cátion, variando-se o íon TR³⁺.

O estudo fotoluminescente dos complexos (Q)[TR(β -dicetonato)₄] foi realizado a partir e de seus espectros de excitação e emissão registrados tanto em temperatura ambiente quanto em temperatura do nitrogênio líquido, e da curva de decaimento luminescente. Os espectros de emissão dos complexos de Eu³⁺, Tb³⁺ e Tm³⁺ apresentaram bandas finas características das transições intraconfiguracionais exibindo cores emissões vermelha oriundas do íon Eu³⁺ (⁵D₀ \rightarrow ⁷F_J, J = 0-6), verde do íon Tb³⁺ (⁵D₄ \rightarrow ⁷F_J, J = 6-0) e azul para do íon Tm³⁺ (¹G₄ \rightarrow ³H₆, e ¹G₄ \rightarrow ³F₄). Os desdobramentos e a intensidade das transições ⁵D₀ \rightarrow ⁷F_J dos complexos de európio sugerem que este íon encontra-se em um ambiente químico D_{2d} distorcido para C_{4v} ou S₄. Com base nos dados espectrais foram determinados os parâmetros de intensidade experimentais (Ω_2 , Ω_4 e Ω_6), os coeficientes de emissão radiativa (A_{rad}) e não-radiativa (A_{nrad}) e a eficiência quântica de emissão experimental do nível 5D_0 do íon Eu³⁺ (η). Para os sistemas *tetrakis* contendo o ligante tta, o complexo com o contra-cátion (TMPip)⁺ apresentou o maior valor de Ω_2 (42,1x10⁻²⁰ cm⁻¹), evidenciando um alto comportamento hipersensível da transição ${}^5D_0 \rightarrow {}^7F_2$, indicando um ambiente químico mais polarizável com maior caráter covalente da ligação Eu³⁺-(β -dicetonato).

De modo geral, os valores de eficiência quântica (η) do estado emissor ${}^{5}D_{0}$, dos complexos *tetrakis*(β -dicetonato) de Eu³⁺ são altos, quando comparados com os compostos *tris*. Os complexos (Morf)[Eu(tta)₄] e (TMPip)[Eu(tta)₄] apresentaram os maiores valores de eficiência quântica η = 88 e 92%, respectivamente. Portanto, estes complexos comportam-se como potenciais dispositivos moleculares conversores de luz (DMCLs).

Assim como os complexos (Q)[Gd(dbm)₄], os espectros de emissão resolvida no tempo (1,0 ms) dos complexos (Q)[Gd(tta)₄], demonstram energias do estado \mathbf{T}_1 diferentes entre si, ao contrário dos complexos com o ligante acac. Por outro lado, observa-se uma menor discrepância entre os valores de energia do estado T obtidos pelos experimentos de estado estacionário e resolvidos no tempo, em virtude da alta intensidade fosforescente $\mathbf{T}_1 \rightarrow \mathbf{S}_0$, para os compostos de tta, acompanhada da transição $\mathbf{S}_1 \rightarrow \mathbf{S}_0$ de baixa intensidade no espectro de emissão em estado estacionário. As atribuições dos estados T do acac, dbm e tta do sistema (Q)[TR(β -dicetonato)₄] mostraram-se ressonantes com os níveis excitados dos Eu³⁺, Tb³⁺ e Tm³⁺ possibilitando o processo de transferência de energia Ligante-TR³⁺ eficiente.

Os espectros de emissão dos complexos *tetrakis*, (Q)[Tm(acac)₄] onde Q = Li⁺, Na⁺ e K apresentaram a transição ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ bastante intensa, indicando a alta luminescência azul. Estes espectros não apresentaram a banda larga oriunda da fosforescência do ligante acac, indicando
que os processos de transferência de energia do estado tripleto do ligante para os níveis excitados do Tm³⁺ são muito eficientes.

Os espectros de emissão dos complexos *tetrakis*, (Q)[Tb(acac)₄], Q = Li⁺, Na⁺ e K⁺ mostram bandas de emissão finas características das transições ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ (J = 6, 5, 4, 3, 2, 1 e 0) e não exibiram as emissões originárias do ligante acac, indicando uma transferência de energia intramolecular eficiente do ligante acetilacetonato ao íon Tb³⁺. As transições intraconfiguracionais 4f-4f demonstradas nos espectros dos complexos *tetrakis* mostram-se semelhantes para a série de contra-cátions Li⁺, Na⁺ e K⁺ e com um maior número de linhas estreitas relativas às transições ${}^{5}D_{4} \rightarrow {}^{7}F_{6-0}$, quando comparadas com aquelas observadas no espectro de emissão do complexo *tris*.

Os dispositivos OLEDs, bicamada e tricamada, contendo o complexo *tetrakis* Li[Eu(dbm)₄], como camada emissora e transportadora de elétrons exibiram alta intensidade eletroluminescente (vermelha) oriundas das transições ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0 a 4), com a transição hipersensível ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ proeminente na região de 612 nm. Enquanto que os dispositivos EL bicamadas preparados com o complexo Li[Tb(acac)₄] apresentaram cores de emissão verde intensa originadas das transições ${}^{5}D_{4} \rightarrow {}^{7}F_{6:0}$ do íon Tb³⁺.

O espectro de triboluminescência do complexo (TMPip)[Eu(tta)₄] apresentou as transições intraconfiguracionais ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0 a 4), com a transição hipersensível ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ proeminente na região de 612 nm, semelhante ao espectro obtidos por meio da técnica de fotoluminescência, em temperatura ambiente.

Considerando que as propriedades fotoluminescentes dos complexos *tetrakis* β dicetonatos de terras raras são interessantes do ponto vista da alta intensidade luminescente apresentada por estes sistemas para o desenvolvimento de materiais luminescentes azul, verde e vermelha, pode-se sugerir as seguintes etapas como propostas de trabalhos futuros:

1) Preparar novos complexos luminescentes variando o ligante β-dicetonato, bem como os outros contra-cátions, visando obter compostos com alta intensidade luminescente e com maior estabilidade em solução;

2) Fabricar dispositivos eletroluminescentes contendo novos os β -dicetonatos de TR³⁺ com ligantes amidas como camadas emissores. Além disso, pretende-se fazer um estudo comparativo entre as propriedades foto e eletroluminescentes, visando melhorar a performance desses materiais para que possam ser usados como dispositivos emissores para a fabricação de mostradores de telas planas;

3) Incrementar os estudos de complexos *tetrakis* de TR^{3+} através da utilização de outros β dicetonatos cíclicos, tais como, Espera-se com isto obter dados que forneçam mais informações sobre a influência dos contra-cátions Q⁺ nas propriedades luminescentes dos complexos de TR^{3+} .

7 — Referências Bibliográficas Abrão A.; "Química e Tecnologia das Terras-raras". CETEM/CNPq. 1994.

- Alpha B., Ballardini R., Balzani V., Lehn J. M., Perathoner S., Sabbatini N.; "Antenna Effect in Luminescent Lanthanide Cryptates - A Photophysical Study". Photochemistry and Photobiology. 1990; 52(2), p. 299-306.
- Baldo M. A., Thompson M. E., Forrest S. R.; "Phosphorescent Materials for Application to Organic Light Emitting Devices". Pure and Applied Chemistry. 1999; 71(11), p. 2095-2106.
- Bauer H., Blanc J., Ross D. L.; "Octacoordinate Chelates of Lanthanides. 2 Series of Compounds". Journal of the American Chemical Society. 1964; 86(23), p. 5125-5131.
- Belcher R., Majer J., Perry R., Stephen W. I.; "Volatile Complex Chelates of Rare Earth and Alkali Metals". Journal of Inorganic & Nuclear Chemistry. 1969; 31(2), p. 471-478.
- Bhaumik M. L., Elsayed M. A.; "Studies on Triplet-Triplet Energy Transfer to Rare Earth Chelates". Journal of Physical Chemistry. 1965; 69(1), p. 275-280.
- Binnemans K., Lenaerts P., Driesen K., Gorller-Walrand C.; "A Luminescent tris(2thenoyltrifluoroacetonato) europium(III) Complex Covalently Linked to a 1,10phenanthroline-Functionalised Sol-Gel Glass". Journal of Materials Chemistry. 2004; 14(2), p. 191-195.
- Binnemans K., Moors D.; "Narrow band photoluminescence of europium-doped liquid crystals". Journal of Materials Chemistry. 2002; 12(12), p. 3374-3376.
- Binnemans K.; "Rare-Earth β -Diketonates". Handbook on the Physics and Chemistry of Rare Earths. Elsevier, 2005; 35(225), p. 107-272.
- Bjorklun S., Filipesc N., McAvoy N., Degnan J.; "Correlation of Molecular Structure with Fluorescence Spectra in Rare Earth Chelates . I. Internal Splitting in Tetraethylammonium Tetrakis(dibenzoylmethido)europate(3)". Journal of Physical Chemistry. 1968; 72(3) p. 970-978
- Blasse G., Grabmaier B. C.; "Luminescent Materials". Springer-Verlag, Berlin. 1994.
- Braslavsky S. E.; "Glossary of terms used in Photochemistry 3(rd) Edition (IUPAC Recommendations 2006)". Pure and Applied Chemistry. 2007; 79(3) p. 293-465.
- Brinen J. S., Halverso F., Leto J. R.; "Photoluminescence of Lanthanide Complexes . 4. Phosphorescence of Lanthanum Compounds". Journal Of Chemical Physics. 1965; 42(12) p 4213-4219.
- Brito H. F.; "Propriedades Luminescentes dos Elementos do Bloco-f". Tese de Livre Docência. IQ-USP, São Paulo. 2000.

- Brito H. F., Malta O. L., Felinto M., Teotonio E. E. S., Menezes J. F. S., Silva C. F. B., et al.; "Luminescence Investigation of the Sm(III)-beta-diketonates with Sulfoxides, Phosphine Oxides and Amides Ligands". Journal of Alloys and Compounds. 2002; 344(1-2) p. 293-197.
- Brito H. F., Malta O. L., Felinto M. C. F. C., Teotonio E. E. S.; "Luminescence phenomena involving metal enolates" in The Chemistry of Metal Enolates, John Willey & Sons Ltd. 2007. Em fase de correção.
- Bruder A. H., Tanny S. R., Rockefeller H. A., Springer C. S.; "Complexes of Nucleophiles with Rare-Earth Chelates. 2. Self-Association and Adduct Formation of Lanthanide tris(1,1,1,2,2,3,3-Heptafluoro-7,7-Dimethyl-4,6-Octanedionate) Chelates Pr(Fod)₃ and Eu(Fod)3". Inorganic Chemistry. 1974; 13(4), p. 880-885.
- Bünzli J. C., Choppin G. R.; "Lanthanide Probes in life, Chemical and Earth Sciences Theory and Practice". Elsevier, Amsterdam. 1989.
- Bünzli J. C. G., Moret E., Foiret V., Schenk K. J., Wang M. Z., Jin L. P.; "Structural and Photophysical Properties of Europium(Iii) Mixed Complexes with Beta-Diketonates and O-Phenanthroline". Journal of Alloys and Compounds. 1994; 207, p. 107-111.
- Bünzli J. C. G., Piguet C.; "Taking Advantage of Luminescent Lanthanide Ions". Chemical Society Reviews. 2005; 34(12), p. 1048-1077.
- Buonocore G. E., Li H., Marciniak B.; "Quenching of Excited-States by Lanthanide Ions and Chelates in Solution". Coordination Chemistry Reviews. 1990; 99, p. 55-87.
- Burdett J. L., Rogers M. T.; "Keto-Enol Tautomerism in Beta Dicarbonyls Studied by Nuclear Magnetic Resonance Spectroscopy. 1. Proton Chemical Shifts + Equilibrium Constants of Pure Compounds". Journal of the American Chemical Society. 1964; 86(11), p. 2105-2109.
- Burns J. H., Danford M. D.; "Crystal Structure of Cesium tetrakis(hexafluoroacetylacetonato)europate and -Americate . Isomorphism with Yttrate". Inorganic Chemistry. 1969; 8(8), p. 1780-1784.
- Capecchi S., Renault O., Moon D. G., Halim M., Etchells M., Dobson P. J., et al.; "High-Efficiency Organic Electroluminescent Devices Using an Organoterbium Emitter". Advanced Materials. 2000; 12(21), p. 1591-1594.
- Carnall W. T., Goodman G. L., Rajnak K., Rana R. S.; "A Systematic Analysis of the Spectra of the Lanthanides Doped into Single Crystal LaF₃". Argonne National Laboratory, Argonne, Illinois USA. 1988.

- Carnall W. T., Goodman G. L., Rajnak K., Rana R. S.; "A Systematic Analysis of the Spectra of the Lanthanides Doped into Single-Crystal LaF3". Journal of Chemical Physics. 1989; 90(7), p. 3443-3457.
- Chakravarty A., Phillipson T. E.; "Triboluminescence and the Potential of Fracture Surfaces". Journal of Physics D-Applied Physics. 2004; 37(15), p. 2175-2180.
- Chambers A., Fitch R. K., Halliday B.S., "Basic Vacuum Techonology". Adam Hilger, Bristol. 1991.
- Charles R. G., Perrotto A.; "Rare Earth Dibenzoylmethides Preparation, Dehydration and Thermal Stability". Journal of Inorganic & Nuclear Chemistry. 1964; 26(2), p. 373-376.
- Charles R. G., Riedel E. P.; "Properties of Some Europium Laser Chelates Derved from Benzoyltrifluoroacetone". Journal of Inorganic & Nuclear Chemistry. 1966; 28(12), p. 3005-3018.
- Christou V., Salata O. V., Ly T. Q., Capecchi S., Bailey N. J., Cowley A., et al.; "New Molecular Lanthanide Materials for Organic Electroluminescent Devices". Synthetic Metals. 2000; 111, p. 7-10.
- Cotton F. A., Daniels L. M., Huang P. L.; "Refutation of an Alleged Example of a Disordered but Centrosymmetric Triboluminescent Crystal". Inorganic Chemistry Communications. 2001; 4(6), p. 319-321.
- Cotton F. A., Huang P. L.; "Further Observations on the Non-Rigorous Relationship Between Triboluminescence and Crystal Centricity". Inorganica Chimica Acta. 2003; 346, p. 223-226.
- Criasia R. T., Cefola M.; "Dimorphism and Isomorphism of Tetra-Normal-Butyl Ammonium-Salts of tetrakis (4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione) lanthanide(III), (C4H9)4N Ln(III) (C8H4F3O2S)4". Journal of Inorganic & Nuclear Chemistry. 1975; 37(7-8), p. 1814-1815.
- Crosby G. A., Alire R. M., Whan R. E.; "Intramolecular Energy Transfer in Rare Earth Chelates -Role of Triplet State". Journal of Chemical Physics. 1961; 34(3), p. 743-748.
- Crosby G. A., Whan R. E.; "Selective Excitation of Trivalent Thulium Via Intramolecular Energy Transfer". Journal of Chemical Physics. 1962; 36(4), p. 863-865.
- Crosby G. A., Whan R. E., Freeman J. J.; "Spectroscopic Studies of Rare Earth Chelates". Journal of Physical Chemistry. 1962; 66(12), p. 2493-2499.

- Dallara J. J., Reid M. F., Richardson F. S.; "Anisotropic Ligand Polarizability Contributions to Intensity Parameters for the Trigonal Eu(Oda)33- and Eu(DBM)3H2O Systems". Journal of Physical Chemistry. 1984; 88(16), p. 3587-3594.
- Dawson W. R., Kropp J. L., Windsor M. W.; "Internal-Energy-Transfer Efficiencies in Eu3+ and Tb3+ Chelates Using Excitation to Selected Ion Levels". Journal of Chemical Physics. 1966; 45(7), 2410-2418.
- de Sa G. F., Malta O. L., Donega C. D., Simas A. M., Longo R. L., Santa-Cruz P. A., et al.; "Spectroscopic Properties and Design of Highly Luminescent Lanthanide Coordination Complexes". Coordination Chemistry Reviews. 2000; 196, p. 165-195.
- Dieke G. H.; "Spectra and Energy Levels of Rare Earth Ions in Crystals". Interscience Publishers, New York. 1968.
- Dorenbos P.; "Mechanism of Persistent Luminescence in Eu2+ and Dy3+ Codoped Aluminate and Silicate Compounds". Journal of the Electrochemical Society. 2005; 152(7), p. H107-H110.
- Dreeskamp H., Koch E., Zander M.; "Fluorescence of Bromoperylenes and Requirements of Heavy-Atom Quenching". Chemical Physics Letters. 1975; 31(2), p. 251-253.
- Duignan J. P., Oswald I. D. H., Sage I. C., Sweeting L. M., Tanaka K., Ishihara T., et al.; Do Triboluminescence Spectra Really Show a Spectral Shift Relative to Photoluminescence Spectra? Journal of Luminescence. 2002; 97(2), p. 115-126.
- Eisentraut K. J., Sievers R. E.; Inorganic Synthesis. 1968; 11, p. 94.
- Emsley J.; "The Composition, Structure and Hydrogen-Bonding of the Beta-Diketones". Structure and Bonding. 1984; 57, p. 147-199.
- Erasmus C. S., Boeyens J. C. A.; "Crystal Structure of Praseodymium Chelate Complex of 2,2,6,6-Tetramethyl-3,5-Heptanedione". Acta Crystallographica Section a-Crystal Physics Diffraction Theoretical and General Crystallography. 1969; A25, p. S162.
- Erasmus C. S., Boeyens J. C. A.; "Crystal Structure of Praseodymium Beta-Diketonate of 2,2,6,6-Tetramethyl-3,5-Heptanedione, Pr2(thd)6". Acta Crystallographica Section B-Structural Crystallography and Crystal Chemistry. 1970; B 26, p. 1843-1854.
- Faulkner T. R., Richardson F. S.; "Vibronic Coupling Model for Intensities of f-f Transitions in Octahedral Lanthanide (III) Complexes". Molecular Physics. 1978; 35(4), p. 1141-1161.
- Faulkner S., Matthews J. L.; "Fluorescent Complexes for Biomedical Applications". Comprehensive Coordination Chemistry II. 2004; 9, p. 913-944.

- Filipesc N., Hurt C. R., McAvoy N.; "Molecular Weight Determinations of Europium Tris and Tetrakis Beta-Ketoenolates in Organic Solvents". Journal of Inorganic & Nuclear Chemistry. 1966; 28(8), p. 1753-1756.
- Filipescu N., Sager W. F., Serafin F. A.; "Substituent Effects on Intramolecular Energy Transfer.
 2. Fluorescence Spectra of Europium + Terbium Beta-Diketone Chelates". Journal of Physical Chemistry. 1964; 68(11), p. 3324-3346.
- Forsberg J. H.; "Complexes of Lanthanide (III) Ions with Nitrogen Donor Ligands". Coordination Chemistry Reviews. 1973; 10(1-2), p. 195-226.
- Friedman H. G., Choppin, G. R., Feuerbacher D. G.; "The shapes of the f orbitals". Journal of Chemical Education. 1964; 41, p. 354-358.
- Fu Y. J., Wong T. K. S., Yan Y. K., Hu X.; "Syntheses, Structures and Luminescent Properties of Sm (III) and Eu (III) Chelates for Organic Electroluminescent Device Applications". Journal of Alloys and Compounds. 2003; 358(1-2), p. 235-244.
- Gacoin P.; "Studies of Triplet-State of Carbonyl-Compounds. 1. Phosphorescence of Beta-Diketones". Journal of Chemical Physics. 1972; 57(4), p. 1418-1425.
- Gacoin P., Leclerq J. M.; "Studies on Lowest Triplet-State of Monocarbonyl-Compounds and Dicarbonyl-Compounds. II". Journal of Chemical Physics. 1973; 59(8), p. 4351-4356.
- Gao X. C., Cao H., Huang C. H., Umitani S., Chen G. Q., Jiang P.; "Photoluminescence and Electroluminescence of a Series of Terbium Ccomplexes". Synthetic Metals. 1999; 99(2), p. 127-132.
- Gao Z. Q., Lee C. S., Bello I., Lee S.T.; "White light electroluminescence from a holetransporting layer of mixed organic materials". Synthetic Metals. 2000; 111, p. 39-42.
- Guldi D. M., Mody T. D., Gerasimchuk N. N., Magda D., Sessler J. L.; "Influence of Large Metal Cations on the Photophysical Properties of Texaphyrin, a Rigid Aromatic Chromophore". Journal of the American Chemical Society. 2000; 122(34), p. 8289-8298.
- Hammond G. S., Borduin W. G., Guter G. A.; "Chelates of Beta-Diketones. 2. Enolization, Ionization and Spectra". Journal of the American Chemical Society. 1959; 81(17), p. 4682-4686.
- Hocking M. B., Vandervoortmaarschalk F. W., McKiernan J., Zink J. I.; "Acetone-Induced Triboluminescence of Triphenylphosphine". Journal of Luminescence. 1992; 51(6), p. 323-334.

- Hong Z. R., Li W. L., Zhao D. X., Liang C. J., Liu X. Y., Peng J. B., et al.; "Spectrally-Narrow Blue Light-Emitting Organic Electroluminescent Devices Utilizing Thulium Complexes". Synthetic Metals. 1999; 104(3), p. 165-168.
- Inanaga J., Furuno H., Hayano T.; "Asymmetric Catalysis and Amplification with Chiral Lanthanide Complexes". Chemical Reviews. 2002; 102(6), p. 2211-2225.
- Ismail M., Lyle S. J., Newbery J. E.; "Preparation and Properties of Lanthanide Complexes of Some Beta-Diketones". Journal of Inorganic & Nuclear Chemistry. 1969; 31(6), p. 1715-1724.
- Judd B. R.; "Optical Absorption Intensities of Rare-Earth Ions". Physical Review. 1962; 127(3), p. 750-761.
- Kemlo J. A., Neilson J. D., Shepherd T. M.; "Proton Magnetic-Resonance Spectra of Lu(Acac)3.2H2O in Solution". Inorganic Chemistry. 1977; 16(5), p. 1111-1114.
- Kido J., Nagai K., Ohashi Y.; "Electroluminescence in a Terbium Complex". Chemistry Letters. 1990; 19(4), p. 657-660.
- Kido J., Okamoto Y.; "Organo Lanthanide Metal Complexes for Electroluminescent Materials". Chemical Reviews. 2002; 102(6), p. 2357-2368.
- Kim Y. K., Pyo S. W., Choi D. S., Hue H. S., Lee S. H., Ha Y. K., et al.; "Chlorine Effect on Electroluminescence of Tb Complexes". Synthetic Metals. 2000; 111, p. 113-117.
- Kirby A. F., Richardson F. S.; "Detailed Analysis of the Optical-Absorption and Emission-Spectra of Eu-3+ in the Trigonal (C-3) Eu(DBM)3.H2O System". Journal of Physical Chemistry. 1983; 87(14), p. 2544-2556.
- Klink S. I., Alink P. O., Grave L., Peters F. G. A., Hofstraat J. W., Geurts F., et al.; "Fluorescent Dyes as Efficient Photosensitizers for Near-Infrared Nd3+ Emission". Journal of the Chemical Society-Perkin Transactions 2. 2001; (3), p. 363-372.
- Klink S. I., Hebbink G. A., Grave L., Peters F. G. A., Van Veggel F., Reinhoudt D. N., et al.; "Near-Infrared and Visible Luminescence from Terphenyl-Based Lanthanide(III) Complexes Bearing Amido and Sulfonamido Pendant Arms". European Journal of Organic Chemistry. 2000; (10), p. 1923-1931.
- Koshimur H., Okubo T., Saito J.; "Effect of Substituents on Keto-Enol Equilibrium of Alkyl-Substituted Beta-Diketones". Bulletin of the Chemical Society of Japan. 1973; 46(2), p. 632-634.
- Lakowicz J. R.; "Principles of Fluorescence Spectroscopy". Plenum Press, New York. 1983.

- Lalancette R. A., Cefola M., Hamilton W. C., La Placa S. J.; "Unusual Dodecahedral Coordination in Structure of Ammonium Tetrakis[4,4,4-Trifluoro-1-(2-Thienyl)-1,3-Butanedione]Praseodymate(3) Monohydrate NH4Pr(C8H4F3O2S)4.H2O. Inorganic Chemistry. 1967; 6(12), p. 2127-2134.
- Lamture J. B., Wensel T. G.; "A Novel Reagent for Labeling Macromolecules with Intensely Luminescent Lanthanide Complexes". Tetrahedron Letters. 1993; 34(26), p. 4141-4144.
- Latva M., Takalo H., Mukkala V. M., Matachescu C., Rodriguez-Ubis J. C., Kankare J.; "Correlation Between the Lowest Triplet State Energy Level of the Ligand and Lanthanide(III) Luminescence Quantum Yield". Journal of Luminescence. 1997; 75(2), p. 149-169.
- Lehn J. M.; "Perspectives in Supramolecular Chemistry from Molecular Recognition Towards Molecular Information-Processing and Self-Organization". Angewandte Chemie-International Edition in English. 1990; 29(11), p. 1304-1319.
- Li W. L., Yu J. Q., Sun G., Hong Z. R., Yu Y., Zhao Y., et al.; "Organic Electroluminescent Devices Using Terbium Chelates as the Emitting Layers". Synthetic Metals. 1997; 91(1-3), p. 263-265.
- Liang C. J., Li W. L., Hong Z. R., Liu X. Y., Peng J. B., Liu L., et al.; "Energy Transfer-Process from Polymer to Rare Earth Complexes". Synthetic Metals. 1997; 91(1-3), p. 151-154.
- Liss I. B., Bos W. G.; "Rare-Earth Acetylacetonates New Preparative Methods and New Complexes". Journal of Inorganic & Nuclear Chemistry. 1977; 39(3), 443-447.
- Lloyd D. R.; "On the Lanthanide and Scandinide Contractions". Journal of Chemical Education. 1986; 63(6), p. 502-503.
- Lowe J. U., Ferguson L. N.; "Direction of Enolization of Benzoylacetones". Journal of Organic Chemistry. 1965; 30(9), p. 3000-3003.
- Lyle S. J., Witts A. D.; "A critical examination of some methods for the preparation of *tris* and *tetrakis* diketonates of europium(III)". Inorganica Chimica Acta. 1971; 5,p. 481-484.
- Malandrino G., Bettinelli M., Speghini A., Fragala I.; "Europium "Second Generation" Precursors for Metal-Organic Chemical Vapor Deposition: Characterization and Optical Spectroscopy". European Journal of Inorganic Chemistry. 2001; (4), p. 1039-1044.
- Malta O. L., Brito H. F., Menezes J. F. S., Silva F., Alves S., Farias F. S., et al.; "Spectroscopic Properties of a new Light-Converting Device Eu(Thenoyltrifluoroacetonate)(3) 2(Dibenzyl Sulfoxide). A Theoretical Analysis Based on Structural Data Obtained from a Sparkle Model". Journal of Luminescence. 1997; 75(3), p. 255-268.

- Malta O. L., Carlos L. D.; "Intensities of 4f-4f Transitions in Glass Materials". Quimica Nova. 2003; 26(6), p. 889-895.
- Manual XTC-INFICON, Leybold, 1990.
- Matsuzawa T., Aoki Y., Takeuchi N., Murayama Y.; "New Long Phosphorescent Phosphor with High Brightness, SrAl2O4:Eu2+,Dy3+". Journal of the Electrochemical Society. 1996; 143(8), p. 2670-2673.
- Matthews L. R., Knobbe E. T.; "Luminescence Behavior of Europium Complexes in Sol-Gel Derived Host Materials". Chemistry of Materials. 1993; 5(12), p. 1697-1700.
- McGlynn, S. P., Azumi, T., Kinoshita, M.; "Molecular Spectroscopy of the Triplet State". Prentice Hall. 1969.
- McPhail A. T., Wong Tschang P. S.; "Distorted Dodecahedral Coordination in Crystal-Structure of Isoquinolinium Tetrakis[4,4,4-Trifluoro-1-(2-Thienyl)Butane-1,3-Dionato]-Cerium(III)". Journal of the Chemical Society - Dalton Transactions. 1974; (11): p. 1165-1171.
- Melby L. R., Abramson E., Caris J. C., Rose N. J.; "Synthesis + Fluorescence of Some Trivalent Lanthanide Complexes". Journal of the American Chemical Society. 1964; 86(23), p. 5117-5125.
- Moon D. G., Salata O. V., Etchells M., Dobson P. J., Christou V.; "Efficient Single Layer Organic Light Emitting Diodes Based on a Terbium Pyrazolone Complex". Synthetic Metals. 2001;123(2), p. 355-357.
- Moriguchi T., Uchiyama K., Yasutake M., Shinmyozu T., Sakata K., Tsuge A.; "Syntheses, Spectroscopic Properties and X-Ray Crystal Structures of Tris(tfacacmetacyclophane)(bpy)Europium(III) and Piperidinium Tetrakis(ptolutfacac)Europate(III) Complexes". Polyhedron. 2000; 19(7), p. 785-790.
- Moser D. F., Thompson L. C., Young V. G.; "Structures of the 1,10-Phenanthroline and 2,2 '-Dipyridyl Adducts of Tris (2,6-Dimethylheptane-3,5-Dionato)Europium(III)". Journal of Alloys and Compounds. 2000; 303, p. 121-124.
- Motson G. R., Fleming J. S., Brooker S.; "Potential Applications for the Use of Lanthanide Complexes as Luminescent Biolabels". Advances in Inorganic Chemistry: Including Bioinorganic Studies. 2004; 55, p. 361-432.
- Murray G. M., Pesterfield L. L., Stump N. A., Schweitzer G. K.; "Effects of Inorganic Countercations on the Fluorescence-Spectra of the Tetrakis(1-Phenyl-1,3-Butanedionato)Europium(III) Anion". Inorganic Chemistry. 1989; 28(10), p. 1994-1998.

- Nascimento A. B.; "Compostos de Adição entre Percloratos dos Lantanídeos e Isoniazida (INH)". Tese de Doutoramento. IQ/USP, São Paulo. 1977.
- Neilson J. D., Shepherd T. M.; "Mechanism of Intermolecular Energy-Transfer Between Tris(Acetylacetonato)Lanthanoid Complexes in Solution". Journal of the Chemical Society-Faraday Transactions Ii. 1976; 72, p. 557-564.
- Oconnor R., Mahiou R., Martinant D., Fournier M. T.; "Luminescence and Dynamics in Tm³⁺NaYF₄. Journal of Alloys and Compounds. 1995; 225(1-2), p. 107-110.
- Ofelt G. S.; "Intensities of Crystal Spectra of Rare-Earth Ions". Journal of Chemical Physics.1962;37(3):511-520.
- Parker D., Williams J. A.; "Getting Excited About Lanthanide Complexation Chemistry". Journal of the Chemical Society-Dalton Transactions. 1996; (18), 3613-3628.
- Peacock, R. D.; "The Intensities of Lanthanide f↔f Transitions". Structure and Bonding. 1975; 22, p. 83.
- Peacock R. D.; "Intensities of Laporte Forbidden Transitions of d-Block And f-Block Transition-Metal Ions". Journal of Molecular Structure. 1978; 46, p. 203-227.
- Pettinari C., Archetti F., Pettinari R., Drozdov A., Semenov S., Troyanov S. I., et al.; "A New Rare-Earth Metal Acylpyrazolonate Containing the Zundel Ion H5O2+ Stabilized by Strong Hydrogen Bonding". Inorganic Chemistry Communications. 2006; 9(6), p. 634-637.
- Polyanskaya T. M., Romanenko G. V., Podberezskaya N. V.; "Structure of Tetrakis-Pivaloyltrifluoroacetonates of Heavy Rare Earth Elements and Sodium. Crystal Structure of NaEr(C₈H₁₀O₂F₃)₄. Journal of Structural Chemistry. 1997; 38(4), p. 637-647.
- Przystal J. K., Bos W. G., Liss I. B.; "Preparation and Characterization of Some Anhydrous Rare Earth Trisacetylacetonates". Journal of Inorganic & Nuclear Chemistry. 1971; 33(3), p. 679-689.
- Pyo S. W., Lee S. P., Lee H. S., Kwon O. K., Hoe H. S., Lee S. H.; "White-light-emitting organic electroluminescent devices using new chelate metal complexes". Thin Solid Films. 2000; 363(1-2), p. 232-235.
- Quirino W. G.; "Produção e Caracterização de Dispositivos Orgânicos Eletroluminescentes (OLEDs) Baseados em Complexos β-dicetonatos de Terras-Raras". Tese de Doutorado. Departamento de Física, CTC, PUC-Rio, RJ. 2007.
- Rheingold A. L., King W.; "Crystal-Structures of 3 Brilliantly Triboluminescent Centrosymmetric Lanthanide Complexes - Piperidinium Tetrakis(Benzoylacetonato)Europate,

Hexakis(Antipyrine)Terbium Triiodide, and Hexaaquadichloroterbium Chloride". Inorganic Chemistry. 1989; 28(9), p. 1715-1719.

- Richardson F. S.; "Terbium(III) And Europium(III) Ions as Luminescent Probes and Stains for Biomolecular Systems". Chemical Reviews. 1982; 82(5), p. 541-552.
- Riedener T., Gudel H. U., Valley G. C., McFarlane R. A.; "Infrared to Visible Up-Conversion in Cs₃Yb₂Cl₉-Tm³⁺". Journal of Luminescence. 1995; 63(5-6), p. 327-337.
- Sabbatini N., Guardigli M., Lehn J. M.; "Luminescent Lanthanide Complexes as Photochemical Supramolecular Devices". Coordination Chemistry Reviews. 1993; 123(1-2), p. 201-228.
- Sage I., Badcock R., Humberstone L., Geddes N., Kemp M., Bourhill G.; "Triboluminescent Damage Sensors". Smart Materials & Structures. 1999; 8(4), p. 504-510.
- Sage I., Bourhill G.; "Triboluminescent Materials for Structural Damage Monitoring". Journal of Materials Chemistry. 2001; 11(2), p. 231-245.
- Sager W. F., Filipescu N., Serafin F. A.; "Substituent Effects on Intramolecular Energy Transfer. I. Absorption and Phosphorescence Spectra of Rare Earth Beta-Diketone Chelates". Journal of Physical Chemistry. 1965; 69(4), p. 1092-1100.
- Sahbari J. J., Bomben K. D., Tinti D. S.; "Phosphorescence and Triplet-State Optically Detected Magnetic-Resonance Studies of Acetylacetonates of the Ammonium and Some Group-2 Metal-Ions". Journal of the American Chemical Society. 1983; 105(17), p. 5577-5583.
- Sahbari J. J., Tinti D. S.; "Perturbation of the Triplet-State of the Acetylacetonate Anion by Alkali-Metal Cations". Molecular Physics. 1983; 48(2), p. 419-433.
- Salama S., Richardson F. S.; "Influence of Ligand N-H Oscillators vs Water O-H Oscillators on the Luminescence Decay Constants of Terbium(III) Complexes in Aqueous-Solution". Journal of Physical Chemistry. 1980; 84(5), p. 512-517.
- Samelson H., Brecher C., Lempicki A.; "Spectroscopy and Coordination Chemistry of Europium Chelate Solutions - Concentration and Solvent Effects". Journal of Molecular Spectroscopy. 1966; 19(4), 349-371.
- Sammes P. G., Yahioglu G.; "Modern Bioassays Using Metal Chelates as Luminescent Probes". Natural Product Reports. 1996; 13(1), p. 1-28.
- Sastri V. S., Bünzli J. C., Rao V. R., Rayudu G. V. S., Perumareddi J. R.; "Modern Aspects of Rare Earths and Their Complexes". Elsevier. 2003.
- Sato S., Wada M.; "Relations Between Intramolecular Energy Transfer Efficiencies and Trplet State Energies in Rare Earth Beta-Diketone Chelates". Bulletin of the Chemical Society of Japan. [Article]. 1970;43(7):1955-1962.

Schwarzenbach G.; "Complexometric Titrations". Interscience Publishers, New York. 1957.

- Serra O. A., Nassar E. J., Calefi P. S., Rosa I. L. V.; "Luminescence of a New Tm3+ Beta-Diketonate Compound". Journal of Alloys and Compounds. 1998; 277, p. 838-840.
- Sharma P. K., Vandoorn A. R., Staring A. G. J.; "Luminescence of Tm(III) Ions in Aqueous-Solution and Organic Matrices". Journal of Luminescence. 1994; 62(5), p. 219-225.
- Shepherd T. M.; "Cation Effects on Flourescent Solution Spectra of Europium Tetrakis Benzoyltrifluoro-Acetonate Salts". Nature. 1966; 212(5063), p. 745.
- Shepherd T. M.; "Ligand Field Symmetries of Some Salts of Europium Tetrakisbenzoyltrifluoroacetonate". Journal of Inorganic & Nuclear Chemistry. 1967; 29(10), p. 2551-2559.
- Silva F., Malta O. L.; "Calculation of the Ligand-Lanthanide Ion Energy Transfer Rate in Coordination Compounds: Contributions of Exchange Interactions". Journal of Alloys and Compounds. 1997; 250(1-2), p. 427-430.
- Silva F., Malta O. L., Reinhard C., Gudel H. U., Piguet C., Moser J. E., et al.; "Visible and Near-Infrared Luminescence of Lanthanide-Containing Dimetallic Triple-Stranded Helicates: Energy Transfer Mechanisms in the Sm-III and Yb-III Molecular Edifices". Journal of Physical Chemistry A. 2002; 106(9), p. 1670-1677.
- Steemers F. J., Verboom W., Reinhoudt D. N., Vandertol E. B., Verhoeven J. W.; "New Sensitizer-Modified Calix[4]Arenes Enabling Near-UV Excitation of Complexed Luminescent Lanthanide Ions". Journal of the American Chemical Society. 1995; 117(37), p. 9408-9414.
- Tanabe S., Suzuki K., Soga N., Hanada T.; "Mechanisms and concentration dependence of Tm³⁺ blue and Er³⁺ green up-conversion in codoped glasses by red-laser pumping". Journal of Luminescence. 1995; 65(5), p. 247-55.
- Tayyari S. F., Milani-nejad F.; "Vibrational Assignment of Acetylacetone". Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy. 2000; 56(14), p. 2679-2691.
- Thompson L. C., Berry S.; "Structure and Emission Spectrum of the o-phenanthroline Adduct of Tris(6-methyl-2,4-heptanedionato)Europium(III)". Journal of Alloys and Compounds. 2001; 323, p. 177-180.
- Tobita S., Arakawa M., Tanaka I.; "Electronic Relaxation Processes of Rare-Earth Chelates of Benzoyltrifluoroacetone". Journal of Physical Chemistry. 1984; 88(13), p. 2697-2702.

- Tobita S., Arakawa M., Tanaka I.; "The Paramagnetic Metal Effect on the Ligand Localized S1 -] T1 Intersystem Crossing in the Rare-Earth-Metal Complexes with Methyl Salicylate". Journal of Physical Chemistry. 1985; 89(26), p. 5649-5654.
- Tsaryuk V., Zolin V., Legendziewicz J.; "The Structure of Ligands and Effects of the Europium Luminescence Excitation". Journal of Luminescence. 2003; 102, p. 744-750.

Valeur B.; "Molecular Fluorescence". Wiley-VCH Verlag. 2001.

- Wang K. Z., Gao L. H., Huang C. H.; "Optical Properties of the Highly Ordered Langmuir-Blodgett Film of a Strongly Luminescent Eu(III) Complex". Journal of Photochemistry and Photobiology a-Chemistry. 2003; 156(1-3), p. 39-43.
- Wang K. Z., Huang C. H., Xu G. X., Wang R. J.; Synthesis, Characterization and Crystal Structure of Me2NC6Ch---CHC5H4N(C2H5)+[La(ITA)4]-(ITA = αthenoyltrifluoroacetonato). Polyhedron. 1995; 14(23-24), p. 3669-3673.
- Ward M. D., "Transition-metal sensitised near-infrared luminescence from lanthanides in d-f heteronuclear arrays". Coordination Chemistry Reviews (37th International Conference on Coordination Chemistry, Cape Town, South Africa). 2007; 251(13-14), p. 1663-1677.
- Weissman S. I.; "Intramolecular Energy Transfer The Fluorescence of Complexes of Europium". Journal of Chemical Physics. 1942; 10(4), p. 214-217.
- Whan R. E., Crosby G. A.; "Luminescence Studies of Rare Earth Complexes Benzoylacetonate and Dibenzoylmethide Chelates". Journal of Molecular Spectroscopy. 1962; 8(4), p. 315-327.
- Wybourne B.; "Spectroscopic Properties of Rare Earths" Interscience Publishers. 1965.
- Wybourne B. G.; "The Fascination of the Rare Earths Then, Now and in the Future". Journal of Alloys and Compounds. 2004; 380(1-2), p. 96-100.
- Xin H., Li F. Y., Shi M., Bian Z. Q. A., Huang C. H.; "Efficient Electroluminescence from a New Terbium Complex". Journal of the American Chemical Society. 2003; 125(24), p. 7166-7167.
- Xiong R. G., You X. Z.; "Synthesis and Characterization of the Firstly Observed Two Brilliantly Triboluminescent Lanthanide Complexes: 2-Hydroxyethylammonium and Pyrrolidinium Tetrakis(Dibenzoylmethide) Europate(III). Crystal Structure of One Brilliantly Triboluminescent Acentric Complex: Dimethylbenzylammonium Tetrakis(Dibenzoylmethide)Europate". Inorganic Chemistry Communications. 2002; 5(9), p. 677-681.

- Yam V. W. W., Lo K. K. W.; "Recent Advances in Utilization of Transition Metal Complexes and Lanthanides as Diagnostic Tools". Coordination Chemistry Reviews. 1999; 184, p. 157-240.
- Yardley J. T.; "Introduction to molecular energy transfer". Academic Press, New York. 1980.
- Yatsimirskii K. B., Davidenko N. K.; "Absorption-Spectra and Structure of Lanthanide Coordination-Compounds in Solution". Coordination Chemistry Reviews. 1979; 27(3), p. 223-273.
- Yersin H.; "Triplet Emitters for OLED Applications. Mechanisms of Exciton Trapping and Control of Emission Properties". Transition Metal and Rare Earth Compounds Iii. Berlin: Springer-Verlag Berlin. 2004; p. 1-26.
- Yu G., Liu Y. Q., Wu X., Zhu D. B., Li H. Y., Jin L. P., et al.; "Soluble Europium Complexes for Light-Emitting Diodes". Chemistry of Materials. 2000; 12(9), 2537-2541.
- Zaitzeva I. G., Kuzmina N. P., Martynenko L. I.; "The Volatile Rare-Earth Element Tetrakis-Acetylacetonates". Journal of Alloys and Compounds. 1995; 225(1-2), p. 393-395.
- Zalkin A., Templeton D. H., Karraker D. G.; "Crystal And Molecular Structure Of Heptacoordinate Complex Tris(Diphenylpropanedionato)Aquoholmium, Ho(C6H5COCHCOC6H5)3.H2O. Inorganic Chemistry. 1969; 8(12), p. 2680-2684.
- Zeng X. R., Xiong R. G., You X. Z., Cheung K. K.; "Triboluminescent Spectrum and Crystal Structure of a Europate Complex with the Most Intensely Triboluminescent Emission at Ambient Temperature". Inorganic Chemistry Communications. 2000; 3(7), p. 341-344.
- Zhang Z. L., Jiang X. Y., Xu S. H.; "Energy transfer and white emitting organic thin film electroluminescence". Thin Solid Films. 2000; 363(1-2), p. 61-63.
- Zhao D. X., Hong Z. R., Liang C. J., Zhao D., Liu X. Y., Li W. L., et al.; "Enhanced Electroluminescence of Europium(III) Complex by Terbium(III) Substitution in Organic Light Emitting Diodes". Thin Solid Films. 2000; 363(1-2), p. 208-210.
- Zheng Y. X., Lin J., Liang Y. J., Lin Q., Yu Y. N., Meng Q. G., et al.; "A Comparative Study on the Electroluminescence Properties of Some Terbium Beta-Diketonate Complexes". Journal of Materials Chemistry. 2001; 11(10), p. 2615-2619.
- Zheng Y. X., Lin J., Liang Y. J., Lin Q., Yu Y. N., Wang S. B., et al.; Green Electroluminescent Device With a Terbium Beta-Diketonate Complex as Emissive Center". Optical Materials. 2002; 20(4), p. 273-278.

Complexos	Ω_2 (10 ⁻²⁰ cm ²)	Ω_4 (10 ⁻²⁰ cm ²)	Ω_6 (10 ⁻²⁰ cm ²)	A _{rad} (s ⁻¹)	A _{nrad} (s ⁻¹)	A _{tot} (s ⁻¹)	R ₀₂	τ (ms)	η (%)
(Li)[Eu(acac)4]	23,7	7,9	11,0	908	297	1205	0,0009	0,830	75
(Na)[Eu(acac) ₄]	24,9	6,8	6,9	920	346	1266	0,0013	0,790	73
(K)[Eu(acac) ₄]	25,5	6,6	4,6	929	415	1344	0,0023	0,744	69
$[Eu(acac)_3(H_2O)_3]$	29,0	13,1	-	1127	2523	3650	0,0170	0,274	31
(Et ₃ NH)[Eu(dbm) ₄]	26,4	6,8	6,5	952	703	1655	0,0019	0,604	58
(Morf)[Eu(dbm) ₄]	34,0	7,6	3,2	1193	775	1968	0,0039	0,508	61
(TMPip)[Eu(dbm)4]	31,2	8,2	7,8	1127	1047	2174	0,0006	0,460	52
(Diciclo)[Eu(dbm) ₄]	31,0	5,4	6,0	1074	868	1942	0,0005	0,515	55
(Li)[Eu(dbm) ₄]	22,8	9,1	7,2	885	754	1639	0,0019	0,610	54
$[Eu(dbm)_3(H_2O)]$	37,0	1,6	-	1200	3093	4293	0,0180	0,233	37
(Et ₃ NH)[Eu(tta) ₄]	32,7	5,6	2,5	1114	714	1828	0,0022	0,547	61
(Morf)[Eu(tta)4]	35,7	8,6	3,6	1250	168	1418	0,0024	0,705	88
(TMPip)[Eu(tta)4]	42,1	12,1	6,2	1499	124	1623	0,0016	0,616	92
(Diciclo)[Eu(tta) ₄]	37,7	8,6	5,1	1318	313	1631	0,0037	0,613	81
$[Eu(tta)_3(H_2O)_2]$	33,0	4,6	-	1110	2730	3846	0,0130	0,260	29

Tabela 5.10 – Parâmetros de intensidades experimentais (Ω_{λ}) Tempo de vida do estado emissor ${}^{5}D_{0}$ (τ) e eficiência quântica (η) dos complexos $Q[Eu(\beta-dicetonato)_{4}]$ e relação entre as intensidades ${}^{5}D_{0} \rightarrow {}^{7}F_{0}/{}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (R_{02}).