• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.46.2015.tde-23092015-142853
Documento
Autor
Nome completo
Valquiria Tiago dos Santos
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2015
Orientador
Banca examinadora
Pinto, Nadja Cristhina de Souza (Presidente)
Hojo, Elza Tiemi Sakamoto
Meotti, Flavia Carla
Silva, Aline Maria da
Tengan, Celia Harumi
Título em português
Estudo dos mecanismos moleculares do reparo de quebra de duplas fitas no DNA mitocondrial
Palavras-chave em português
Células de mamífero
DNA mitocondrial
HR
Mitocôndria
NHEJ
Reparo
Resumo em português
O DNA está constantemente exposto a danos causados tanto por agentes endógenos quanto exógenos. Estes podem causar diferentes tipos de lesões incluindo modificações de bases e do açúcar, além de quebras de fitas simples ou duplas. As quebras de duplas fitas, quando comparadas às demais, constituem as mais citotóxicas e podem resultar em deleções no DNA e instabilidade genética. Deleções no DNA mitocondrial (mtDNA) causam diversas doenças e estão envolvidas no processo de envelhecimento. No núcleo, as quebras de duplas fitas no DNA podem ser reparadas por recombinação homóloga (HR), ligação de pontas não homólogas (NHEJ) e anelamento de fita simples (SSA). No entanto, em mitocôndrias de células de mamíferos, o reparo de quebras de duplas fitas ainda não foi completamente caracterizado. Experimentos in vitro usando extratos mitocondriais de células de roedores mostraram que estes são capazes de reparar essas quebras, no entanto pouco é sabido sobre quais proteínas são responsáveis por cada etapa de reparo, bem como sua implicação na manutenção da integridade do genoma mitocondrial. Sendo assim, nesse trabalho investigamos a localização e função mitocondrial das proteínas ATM, Rad51, Rad52, Ku70/86 e DNA-PKCs, que são sabidamente envolvidas em reparo de quebras de duplas fitas no núcleo. Para identificar essas proteínas em mitocôndrias de células de mamíferos, mitocôndrias foram isoladas a partir de células da linhagem HEK293T, usando centrifugação diferencial seguida por gradiente de Percoll. Para as proteínas de recombinação homóloga, ATM e Rad51, imunodetectamos isoformas semelhantes em todos os compartimentos celulares. Já para a proteína Rad52 o mesmo anticorpo imunodetectou duas bandas distintas na mitocôndria ao passo que no núcleo foram quatro. Além disso, verificamos que baixos níveis de proteína Rad52, induzidos pela expressão de shRNA (short hairping RNA) específico, resultam em diminuição do número de cópias de mtDNA bem como acúmulo de deleções no genoma mitocondrial. Para as proteínas de NHEJ, DNA-PKCs e a subunidade Ku70, identificamos isoformas semelhantes em todos os compartimentos celulares. Já para a subunidade 86 do heterodímero Ku70/86 o anticorpo detectou, somente em mitocôndrias, uma banda menor de 50 kDa, a qual difere na região N-terminal da subunidade detectada no núcleo (86 KDa). Experimentos de co-imunprecitação de proteínas mostraram que essa isoforma menor compõe o heterodímero mitocondrial juntamente com a subunidade 70 (mtKu70/50) e que esse interage com DNA ligase III mitocondrial. Nossos resultados também mostraram que a estabilidade proteica de mtKu70/50 é regulada por ATM. Tratamento das células com peróxido de hidrogênio, que induz quebras de duplas fitas, aumentou a associação do heterodímero mtKu70/50 com o mtDNA, de forma independente de aumento da concentração proteica intra-mitocondrial. Já a diminuição dos níveis proteicos de Ku, induzida através de shRNA, resultou em diminuição do número de cópias de mtDNA e acumulo de danos nesse genoma. Extratos mitocondriais de células knockdown para Ku apresentaram menor atividade de reparo NHEJ em um ensaio in vitro, sugerindo que o acúmulo de danos nestas células é provavelmente devido a deficiências na via de NHEJ. Em conjunto, nossos dados sugerem que tanto HR quanto NHEJ operam em mitocôndrias. Além disso, a via de NHEJ mitocondrial utiliza o heterodímero mitocondrial Ku70/50 o qual está envolvido na manutenção do mtDNA. Ademais, nossos resultados mostram uma grande conservação molecular e funcional entre as vias de reparo de NHEJ e HR no núcleo e na mitocôndria, o que reforça sua importância para a manutenção da estabilidade genômica mitocondrial e, provavelmente a função mitocondrial.
Título em inglês
Study of the molecular mechanisms of double-strand break repair in mitochondrial DNA
Palavras-chave em inglês
HR
Mammalian cells
Mitochondria
Mitochondrial DNA
NHEJ
Repair
Resumo em inglês
DNA is constantly exposed to damaging agents from both endogenous and exogenous sources. These can cause different types of DNA lesions that include base and sugar modifications and single and double strand breaks. DNA doublestrand breaks (DSBs) are among the most cytotoxic DNA lesions, which can result in deletions and genetic instability. Deletions in the mitochondrial DNA (mtDNA) cause numerous human diseases and drive normal aging. DSBs in the nuclear DNA are repaired by non-homologous DNA end joining (NHEJ), homologous recombination (HR) or Single Strand Annealing (SSA). Yet, repair of DSBs in mammalian mitochondria has not been fully characterized. Mitochondrial extracts from rodent cells are proficient in ligating DNA ends in vitro, but little is known about which proteins are responsible for each enzymatic step and its implication in mitochondrial genome maintenance. Thus, we investigated mitochondrial localization and function of DSBR (double strand break repair) proteins ATM, Rad51, Rad52, the Ku70/86 heterodimer and DNA-PKCs.To identify DSBR proteins in mammalian mitochondria, highly purified mitochondria from HEK293T cells were isolated using differential centrifugation followed by Percoll gradient. For HR proteins, we detected similar isoforms for ATM and Rad51 proteins in all cellular compartments. Two mitochondriaspecific isoforms of Rad52 were detected, while the same antibody detected four isoforms in the nucleus. In addition, lower Rad52 protein levels, induced by specific shRNA expression, result in decreased mtDNA copy number and accumulation of deleted mitochondrial genomes. For NHEJ proteins, similar isoforms of DNA-PKcs and the Ku70 subunit were detected in all cellular compartments. On the other hand, antibodies against the Ku86 subunit detected a smaller band in mitochondrial extracts (50 KDa), lacking the N-terminal region of the canonical isoform detected in the nucleus (86 KDa). The mitochondrial Ku70/50 heterodimer interacts with mitochondrial DNA ligase III, suggesting a role in DSBR. Moreover, stability of the mtKu heterodimer is regulated by ATM. Hydrogen peroxide treatment, which induces DSBs, increases mtKu70/50 association with the mtDNA and cells with reduced Ku levels, also induced by shRNA transfection, have lower mtDNA copy number and accumulate mtDNA damage. Moreover, mitochondrial extracts from Ku knockdown cells show lower NHEJ repair activity in an in vitro assay, suggesting that damage accumulation in these cells is likely due to deficiencies in NHEJ. Together, our data suggest that both HR and NHEJ operate in mitochondria. Also, mtNHEJ requires the Ku heterodimer and is involved in mtDNA maintenance. Moreover, our results indicate that there is a significant molecular and functional conservation between NHEJ and HR repair pathways in the nucleus and in mitochondria, which reinforces their importance for maintenance of mitochondrial genomic stability and, likely mitochondrial function.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2015-11-06
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.