UNIVERSIDADE DE SÃO PAULO INSTITUTO DE QUÍMICA

Programa de Pós-Graduação em Ciências Biológicas (Bioquímica)

LARISSA DE OLIVEIRA MAGALHÃES

Caracterização de fatores sigma ECF de *Pseudomonas aeruginosa* PA14

Versão corrigida da tese conforme resolução CoPGr5890 A original encontra-se disponível na Secretaria de Pós-Graduação do IQ-USP

São Paulo

Data do Depósito na SPG: 30/06/2016

LARISSA DE OLIVEIRA MAGALHÃES

Caracterização de fatores sigma ECF de *Pseudomonas aeruginosa* PA14

Dissertação apresentada ao Instituto de Química da Universidade de São Paulo para obtenção do Título de Mestre em Ciências (Bioquímica)

Orientadora: Prof^a Dr^a Regina Lúcia Baldini

Ficha Catalográfica

Elaborada pela Divisão de Biblioteca e Documentação do Conjunto das Químicas da USP.

Magalhães, Larissa de Oliveira

M188c Caracterização de fatores sigma ECF de *Pseudomonas aeruginosa*PA14 / Larissa de Oliveira Magalhães. -- São Paulo, 2016.
76p.

Dissertação (mestrado) - Instituto de Química da Universidade São Paulo. Departamento de Bioquímica.

Orientador : Baldini, Regina Lúcia

Expressão gênica 2. Regulação gênica 3. Microbiologia
 T. II. Baldini, Regina Lúcia, orientador.

574.88 CDD

Larissa de Oliveira Magalhães

Caracterização de fatores sigma ECF de *Pseudomonas aeruginosa* PA14

	Dissertação apresentada ao Instituto de
	Química da Universidade de São Paulo para
	obtenção do Título de Mestre em Ciências
	(Bioquímica)
Aprovado em:	
Banca Examinadora	
Prof. Dr	
Instituição:	
Assinatura:	
Prof. Dr.	
Instituição:	
Assinatura:	
Prof. Dr	
Instituição:	
•	

À minha mãe, Lázara, pelo apoio e amor em todos os momentos da minha vida

AGRADECIMENTOS

À CAPES pelo apoio financeiro.

À Prof^a. Dr^a. Regina Baldini, pela orientação, paciência e pela oportunidade de trabalhar em seu laboratório.

À Dr^a. Suely Lopes Gomes pelo apoio e disponibilidade do espaço físico e de materiais necessários para este trabalho.

Aos docentes que participaram da minha banca de qualificação, Dr^a. Nadja Cristhina de Souza Pinto, Dr^a. Clélia Ferreira e Dr. Carlos Hotta, pelas sugestões.

A todos os professores que com aulas e discussões informais contribuíram para a minha formação acadêmica, em especial, aos professores que dei monitoria Dr^a. Suely Lopes Gomes e Dr. Walter Terra.

Aos colegas do laboratório de Regulação da Expressão Gênica em Microrganismos, principalmente ao Gianlucca por me ensinar as técnicas básicas e me animar nos momentos difíceis e Ana Laura pelo auxílio nos experimentos e por sua companhia. Também agradeço aos queridos Nathália, Duilio, Thays, Caio, Rinaldo e Rafael pelo companheirismo e bons momentos.

Ao Gilberto Kaihami pela análise dos dados de RNA-seq.

À Sandra Mara pelo trabalho de base e amizade e Luci Deise Navarro pelo sequenciamento de amostras e pela ajuda em vários momentos.

À Doris pelo trabalho de base e valiosa amizade.

Aos funcionários da secretaria de pós-graduação pela prontidão em ajudar, principalmente ao Marcelo e Emiliano.

Às amigas do departamento de Bioquímica, pela ajuda com sugestões e protocolos e pela companhia: Ana Maria, Paola, Adriana, Amanda, Dani e Glaucia. Também agradeço à Isaura, pelas sugestões e conversas.

À Naiara Torres por sua amizade e por ter ensinado muito sobre o trabalho em laboratório.

Agradeço àqueles que me incetivaram a correr atrás dos meus sonhos Wilma Nubiato, prof Dr. Ricardo Menegatti, Karlla Macedo e Renata Bueno.

À minha querida mãe, Lázara, por me apoiar e estar sempre ao meu lado. Aos meus irmãos Alisson e Aline por acreditarem em mim.

Por fim, a Deus, que está sempre comigo.

RESUMO

Magalhães, L.O. Caracterização de fatores sigma ECF de *Pseudomonas aeruginosa* PA14.

76p. Dissertação (Mestrado) — Programa de Pós-Graduação em Bioquímica. Instituto de Química, Universidade de São Paulo, São Paulo

A proteobactéria Pseudomonas aeruginosa é um patógeno oportunista em humanos, sendo associado a queimaduras e infecções pulmonares crônicas em pacientes com fibrose cística. Essas infecções são difíceis de erradicar devido à resistência intrínseca de P. aeruginosa a antibióticos e à formação de biofilmes. Essa bactéria é altamente capaz de adaptar ao ambiente, tem um metabolismo versátil e pode direcionar a expressão de genes por vários fatores sigma alternativos. Estes são subunidades para transcrição de conjuntos específicos de genes em bactérias e interagem com o cerne da RNA polimerase, levando ao reconhecimento do promotor e início da transcrição. Os fatores sigma alternativos permitem que bactérias redirecionem a sua expressão genética. Um grupo de fatores sigma alternativos é o grupo dos fatores sigma de função extracitoplasmática (ECF) que são envolvidos principalmente em funções do envelope celular. Esse trabalho teve como objetivo caracterizar dois fatores sigma ECF de função desconhecida, PA14_21550 e PA14_46810. A linhagem mutante $\Delta 21550$ foi analisada quanto a sua sobrevivência a diferentes estresses, observando-se que é mais resistente ao choque de 45°C que a linhagem selvagem. Esse fator sigma não é essencial para crescimento da bactéria em meio LB e meio mínimo M63 acrescido de glicose ou succinato. Além disso, observou-se que a superexpressão desse fator sigma aumenta a expressão da proteína hipotética PA14_30100, usando-se uma abordagem proteômica. O mutante de transposon para o fator sigma PA14_46810 apresenta melhor crescimento que a bactéria selvagem em meio M63 acrescido de glicose. Essa linhagem mostrou mesmo fenótipo para biofilme e formação de exopolissacarídeo que a bactéria selvagem. Ademais, foi realizada análise de transcritoma por RNA-Seq com a superexpressão do fator sigma PA14_46810 na

linhagem selvagem. Na linhagem de superexpressão Observou-se que ocorre indução de

genes envolvidos com a desnitrificação, transporte de moléculas e metabolismo de uma

maneira geral, em relação à linhagem controle. Por outro lado, o excesso de PA14_46810

reprime principalmente genes envolvidos com a tradução de proteínas e síntese de

espermidina. Este trabalho, portanto, trouxe novas informações sobre as funções de diferentes

fatores sigma ECF de P. aeruginosa, contribuindo assim para um maior entendimento da

fisiologia desta bactéria e sua adaptação a diferentes condições.

Palavras-chave: Pseudomonas aeruginosa, fatores sigma ECF, RNA-seq

ABSTRACT

Magalhães, L.O. Characterization of ECF sigma factors in *Pseudomonas aeruginosa* PA14. 76p. Masters Thesis - Graduate Program in Biochemistry. Instituto de Química, Universidade de São Paulo. São Paulo.

The proteobacterium *Pseudomonas aeruginosa* is an opportunistic pathogen in humans, and it is associated to chronic pulmonary infections in patients with cystic fibrosis and burn wounds. These infections are difficult to eradicate due to P. aeruginosa intrinsic resistance to antibiotics and formation of biofilms, which allow the bacteria to adhere to biotic and abiotic surfaces. This bacterium is highly adaptaptable to the environment has a versatile metabolism and can direct the expression of genes by several alternative sigma factors. The sigma factors bind to the RNA polymerase core, providing recognition to promoter and transcription initiation. Therefore, the alternative sigma factors can redirect bacterial genetic expression by recognizing specific promoters. One subfamily of alternative sigma factors is the extracytoplasmic function (ECF) sigma factors, involved mostly in cell envelope functions. The aim of this work was characterize two ECF sigma factors with unknown function in P. aeruginosa, PA14 21550 and PA14 46810. The strain $\Delta 21550$ was analyzed for its survival in different stress conditions and it is more resistant in heat shock conditions at 45°C than the wild type strain. It was also observed that PA14_21550 sigma factor is not essential for bacterial growth in LB and M63 minimal medium added with glucose or succinate as the carbon source. Furthermore, overexpression of this sigma factor increases the expression of hypothetical protein PA14_30100, as verified by a proteomic approach. A strain insertionally inactivated in the PA14_46810 gene has better growth than the wild type strain in M63 added with glucose and the same phenotype regarding to biofilm formation and exopolysaccharide

production as the wild type strain. Moreover, transcriptome analysis was carried out by RNA-

Seq with overexpression of the PA14_46810 sigma factor in the wild type strain. Induction of

genes involved in denitrification, transport of molecules and energetic metabolism in relation

to the control strain was observed. On the other hand, excess of PA14_46810 represses genes

involved in protein translation and spermidine synthesis. This work, therefore, brought new

information about the functions of two ECF sigma of P. aeruginosa, thus contributing to a

greater understanding of the physiology of this bacterium and its adaptation to different

conditions.

Keywords: Pseudomonas aeruginosa, ECF sigma factors, RNA-seq

LISTA DE FIGURAS E TABELAS

Figura 1. Contexto genômico do fator sigma PA14_2155021
Figura 2. Contexto genômico do fator sigma PA14_46810
Figura 3. A linhagem mutante $\Delta 21550$ não apresenta deficiência no crescimento34
Figura 4. A linhagem $\Delta 21550$ é mais resistente ao choque térmico a 45°C em fase
exponencial de crescimento
Figura 5. A linhagem $\Delta 21550$ se comporta como a linhagem PA14 no choque frio
de 4°C
Figura 6. O fator sigma PA14_21550 não é importante para a resistência ao estresse
oxidativo
Figura 7. Análise proteômica de PA14/pJN105_21550
Figura 8. Validação do ensaio de proteômica por qRT-PCR para superexpressão de
PA14_2155039
Figura 9. A linhagem mutante <i>46810</i> ::mar7 não apresenta deficiência no crescimento em LB
e meio mínimo acrescido de succinato, porém apresenta crescimento melhor que linhagem
selvagem em meio mínimo acrescido de glicose
Figura 10. O fator sigma PA14_46810 não é relevante para a formação de biofilme e
produção de exopolissacarídeos
Figura 11. Análise proteômica de PA14/pJN105_4681043
Figura 12. qRT-PCR de genes cujos produtos estavam diferencialmente expressos na análise
proteômca da superexpressão de PA14_46810
Figura 13. Correlação de Pearson entre as amostras PA14/pJN105
e PA14/pJN105_4681044

Figura 14. Categorização dos genes que foram regulados de forma positiva e negativa no
transcritoma da superexpressão de PA14_46810
Figura 15. Regulação da desnitrificação em <i>P. aeruginosa</i>
Figura 16. Fermentação da arginina e regulação do operon <i>arc</i>
Figura 17. Weblogo do consenso encontrado nas regiões a montante de unidades transcricionais que foram induzidas mais que três vezes na superexpressão do fator sigma PA14_46810
Figura 18. O fator sigma PA14_46810 não é essencial para o crescimento em hipóxia57
Tabela 1. Genes coficando fatores sigma ECF em <i>P. aeruginosa</i> PAO1 e PA1420
Tabela 2. Linhagens utilizadas nesse trabalho
Tabela 3. Oligonucleotídeos utilizados para validação do proteômica da linhagem
PA14/pJN105_21550 e PA14/pJN105_46810 neste trabalho
Tabela 4. Proteínas de P. aeruginosa PA14 diferencialmente expressar em células
superexpressando o fator sigma PA14_21550
Tabela 5. Proteínas de P. aeruginosa PA14 diferencialmente expressar em células
superexpressando o fator sigma PA14_46810
Tabela 6 . Operons que foram regulados de forma positiva no transcritoma da superexpressão
de PA14_4681046
Tabela 7. Operons que foram regulados de forma negativa no transcritoma da superexpressão
de PA14_4681053

LISTA DE ABREVIATURAS E SIGLAS

SUMÁRIO

1.	Introdução	15
	1.1. Pseudomonas aeruginosa	15
	1.1.1. A linhagem UCBPP-PA14	16
	1.2. Fatores sigma	16
	1.2.1. Fatores sigma ECF	18
	1.2.2. Fatores sigma de <i>P. aeruginosa</i>	19
	1.2.3. Fatores sigma de função desconhecida PA14_21550 e PA14_46810	20
2.	Objetivos	23
3.	Material e métodos	24
	3.1 Linhagens, plasmídeos, oligonucleotídeos e condições de cultura	24
	3.2. Curvas de crescimento e ensaios de viabilidade	25
	3.2.1. Estresse térmico.	26
	3.3 Produção de exopolissacarídeo	26
	3.4. Ensaio de iniciação de biofilme	26
	3.5. Crescimento em hipóxia	27
	3.6. Estresse oxidativo.	27
	3.7. Análise da expressão global através de eletroforese em géis bidimensionais (2D)	27
	3.7.1. Extração de proteínas	28
	3.7.2. Focalização isoelétrica (1º dimensão) e SDS-PAGE (2º dimensão)	28
	3.7.3. Análise de imagem e identificação dos spots	29
	3.8. Análise da expressão gênica	30
	3.8.1 Extração de RNA	30
	3.8.2 RT-PCR quantitativo	30

3.8.3 RNA-Seq	30
3.8.4 Análise RNA-Seq	31
3.8.5 Identificação de possível motivo consenso para promotor do sigma ECF	
PA14_46810	33
4. Resultados e discussão.	34
4.1 Caracterização do fator sigma PA14_21550	34
4.1.1. Caracterização fenotípica do mutante $\Delta 21550$	34
4.1.2 Análise proteômica da superexpressão do fator sigma PA14_21550	37
4.1.3. Validação proteômica com RT-PCR quantitativo	39
4.2 Caracterização do fator sigma PA14_46810	40
4.2.1 Caracterização fenotípica das linhagens com mutação e superexpressão do)
fator sigma PA14_46810	40
4.2.2. Análise proteômica superexpressão de PA14_46810	42
4.2.3. Análise transcriptômica – superexpressão do fator sigma PA14_46810	44
4.2.4. Possível consenso para o fator sigma PA14_46810	56
4.2.5 Crescimento de 46810::mar7 em hipóxia	.56
5. Conclusões	58
6. Referências	60
ANEXOS	65

1. Introdução

1.1. Pseudomonas aeruginosa

Pseudomonas aeruginosa é uma gamaproteobactéria de ocorrência ubíqua, que pode habitar solo e água e também se associar de forma oportunista a tecidos de animais e plantas (STOVER et al., 2000). Essa bactéria possui genoma bastante amplo e mostra notável capacidade de adaptação que reflete sua diversidade metabólica e genoma complexo. Em humanos, a P. aeruginosa é associada principalmente a bacteremia em vítimas de queimadura severa, infecção pulmonar em pacientes com fibrose cística e ceratite ulcerativa aguda em usuários de lentes de contato. Adicionalmente a infecções agudas, essa bactéria causa infecções crônicas em pacientes imunocomprometidos, pacientes de fibrose cística e indivíduos recebendo quimioterapia. Em pacientes com fibrose cística, ocorre colonização pulmonar e infecções recorrentes por P. aeruginosa, que são associadas à alta morbidade e mortalidade (Lyczak et al., 2000).

Além disso, *P. aeruginosa* também é conhecida pela alta resistência à maioria das classes de antibióticos, causando infecções difíceis de serem tratadas. Essa bactéria possui alta capacidade de adquirir resistência, efetuando os mecanismos gerais de desenvolvimento de resistência bacteriana que incluem o bloqueio da entrada de antibióticos, efluxo ativo da célula, degradação enzimática, alteração da estrutura alvo e formação de biofilmes (Driscoll *et al.*, 2007).

A terapia atual é baseada em fármacos bactericidas e bacteriostáticos que promovem o surgimento de resistência e possuem efetividade limitada. O desenvolvimento de fármacos anti-infectivos que possam interromper vias que medeiam a virulência dos patógenos é considerado uma alternativa para fármacos convencionais, tornando interessante o estudo de fatores de virulência dessa bactéria (Lesic *et al.*, 2007).

1.1.1. A linhagem UCBPP-PA14

A linhagem UCBPP-PA14 (Rahme *et al.*, 1995), que será utilizada nesse trabalho, é um isolado de queimadura altamente virulento em diversos modelos de hospedeiro distintos, representando o grupo clonal com maior difusão no mundo (Wiehlmann *et al.*, 2007). Seu genoma apresenta alto grau de conservação em comparação com o da linhagem moderadamente virulenta PAO1, que foi o primeiro sequenciado (Stover *et al.*, 2000). O genoma de PA14 revelou pelo menos duas ilhas de patogenicidade que são ausentes em PAO1, sendo que estas carregam vários genes relacionados à virulência. No entanto, estudos de isolados de *P. aeruginosa* não identificaram correlação entre genes PA14 específicos e nível de virulência (Lee *et al.*, 2006).

1.2. Fatores sigma

Em bactérias, o início da transcrição do DNA para RNA é realizado pela holoenzima RNA polimerase, que possui uma estrutura de múltiplas subunidades que compõe o núcleo catalítico ($\alpha_2\beta\beta'\omega$) e uma subunidade adicional e essencial, a subunidade sigma (σ). O núcleo catalítico possui função de elongação e terminação da transcrição, enquanto que a subunidade σ promove o reconhecimento das regiões -10 e -35 do promotor quando ligada à holoenzima e participa da abertura de fitas do DNA (Lonetto *et al.*, 1992; Staroń *et al.*, 2009). O fator sigma principal é responsável pela transcrição de genes envolvidos em funções que são essenciais para bactérias como geração de energia e manutenção do material genético. A RNA polimerase pode ser redirecionada por fatores sigma alternativos, que são ativados apenas sob estímulos adequados ou condições de estresse específicas (Gruber e Gross, 2003; Staroń *et al.*, 2009; Österberg *et al.*, 2011).

Os fatores sigma bacterianos pertencem a duas grandes famílias de proteínas estruturalmente não relacionadas, as famílias σ^{70} e σ^{54} . A maior parte dos fatores sigma

identificados pertencem à família σ^{70} e estes foram divididos em subgrupos com base em sua similaridade de sequência e arquitetura dos domínios da proteína, características que frequentemente se correlacionam com suas diferentes funções (Helmann e Chamberlin, 1988; Lonetto *et al.*, 1992).

Para classificação dos fatores sigma foi distinguido o grupo 1, também denominado de fatores sigma primários, que incluem proteínas essenciais que são responsáveis por grande parte da transcrição em bactérias em crescimento exponencial e possuem as regiões 1 a 4 altamente conservadas. No grupo 2 foram classificadas proteínas que possuem alta similaridade com as do grupo 1, mas que são dispensáveis para o crescimento exponencial, como o σ^S de E. coli. As proteínas do grupo 3 possuem sequência divergente em relação à subfamília 1, porém são classificadas como fatores sigma em função da presença de sequências de aminoácidos conservadas nas regiões 2 e 4. O aumento da quantidade de proteínas desse grupo é notado em condições de estresse e durante o processo de desenvolvimento. Ademais, esses fatores podem ser organizados em grupos com funções similares, tais como choque térmico, biossíntese flagelar e esporulação. Os fatores sigma do grupo 4, denominados família de função extracitoplasmática (ECF), são descritos adiante (Helmann e Chamberlin, 1988; Lonetto et al., 1992). Os fatores sigma do grupo 5 são considerados um grupo emergente do qual fazem parte os fatores relacionados a TcdR, que controla a expressão do gene da toxina A e toxina B de Clostridium difficile. Os membros desse grupo possuem diferenças em estrutura e função em relação aos demais fatores sigma 70, mas como substituem um ao outro in vivo e in vitro possuem certo grau de conservação funcional que permitem que sejam incluídos na família sigma 70 (Mani e Dupuy, 2001; Dupuy *et al.*, 2006).

1.2.1. Fatores sigma ECF

Os fatores sigma ECF (de <u>extracytoplasmic function</u>) compreendem o grupo mais amplo entre as subfamílias de fatores sigma. Essa designação foi proposta devido aos membros desse grupo encontrarem-se envolvidos em funções do envelope celular (transporte, secreção e estresse extracitoplasmático), resposta ao calor, estresse osmótico e oxidativo, virulência, motilidade, transporte de íons metálicos e síntese de alginato e carotenóides (Missiakas e Raina, 1998; Helmann, 2002; Visca *et al.*, 2002).

Existem várias características comuns aos fatores sigma ECF. Entre elas, funções relacionadas à superfície celular, possibilidade de auto-regulação e transporte e co-transcrição com o fator anti-sigma, o seu regulador cognato, que geralmente localiza-se na membrana citoplasmática, mas também pode ser encontrado de forma solúvel no citoplasma. Os fatores anti-sigma inativam o fator sigma prevenindo sua ligação com o núcleo enzimático da RNA polimerase, por meio de modificação enzimática ou transporte para fora da célula, inibindo a transcrição de certos promotores (Mathee *et al.*, 1997; Hughes e Mathee, 1998; Helmann, 2002; Potvin *et al.*, 2008).

Em relação à estrutura proteica os fatores sigma ECF são caracterizados por possuírem dois domínios, σ_2 e σ_4 , que são necessários para interação com a RNA polimerase e reconhecimento dos elementos promotores em -10 e -35. Os fatores sigma da família σ^{70} possuem o consenso TTGACA em -35 e TATAAT em -10 (Helmann e Chamberlin, 1988; Österberg *et al.*, 2011). Na família ECF os motivos dos promotores caracterizam-se por ter o motivo AAC altamente conservado em -35 e o motivo CGT na região -10 (Helmann, 2002; Lane e Darst, 2006).

A classificação sistemática de fatores sigma revelou novos mecanismos de sinalização de fatores sigma ECF. Dessa forma, a ativação do fator sigma pode ocorrer por diversos

mecanismos, entre eles o mais estudado é o da proteólise de um fator anti-sigma transmembrana, do qual faz parte o σ^E de *E. coli*. No entanto, pode ocorrer ativação do fator sigma por mudança conformacional de fatores anti-sigma solúveis, cascata de interação proteína-proteína, mecanismo de "troca de parceiros" no qual as interações proteína-proteína são controlados por mecanismos de fosforilação e desfosforilação do substrato, ativação da transcrição de fatores sigma, entre outros mecanismos (Staroń, Mascher, 2013).

O paradigma de fator sigma ECF é o σ^E de *E. coli*. Sua atividade é controlada pela ligação ao seu fator anti-sigma cognato, RseA, que o torna inativo. Nesse modelo, a desnaturação de proteínas da membrana externa são os sinais de indução extracitoplasmática que desencadeiam uma cascata proteolítica no periplasma, na membrana e no citoplasma e que levam à degradação do fator anti-sigma RseA, liberando o σ^E . Dessa forma, o σ^E pode se ligar ao núcleo enzimático da RNA polimerase, redirecionando-a a promotores dependentes de σ^E (Alba e Gross, 2004; Rowley *et al.*, 2006).

1.2.2. Fatores sigma de P. aeruginosa

Em *P. aeruginosa*, estão presentes os seguintes fatores sigma: principal, que regula a transcrição de genes para funções essenciais do organismo (RpoD / σ^{70}), de choque térmico (RpoH / σ^{32}), de biossíntese de flagelo (RpoF / FliA / σ^{28}), de fase estacionária (RpoS / σ^{8} / σ^{38}), e o relacionado à assimilação de nitrogênio, entre outras funções, (RpoN / NtrA / σ^{54} / σ^{8}) (Potvin *et al.*, 2008; Llamas *et al.*, 2009).

P.~aeruginosa possui ainda cerca de 20 fatores sigma ECF, dependendo da linhagem (Tabela 1). Entre os mais estudados estão, AlgU (RpoE / σ^{22}) que está relacionado à biossíntese de alginato (Mathee et~al., 1997). VreI, que está envolvido com a virulência da bactéria num modelo de zebrafish (Llamas et al., 2009) e PvdS, que participa da regulação de captação de ferro e biossíntese de pioverdina (Lamont et~al., 2002). Além de PvdS e FecI, outros onze parecem estar também envolvidos com captação de ferro (Llamas et~al., 2008).

Um fator ECF considerado órfão, sem um anti-sigma predito é SigX, que aparentemente regula a expressão da proteína de membrana externa OprF em PAO1 (Potvin *et al.*, 2008) embora nosso grupo não tenha confirmado esse papel em PA14, onde ele está envolvido com a biossíntese de ácidos graxos (Boechat *et al.*, 2013).

Tabela 1. Genes coficando fatores sigma ECF em *P. aeruginosa* PAO1 e PA14.

Anotação em	Anotação em PA14	Função	Referência
PAO1	,	,	
PA3285	PA14_21550	Desconhecida	-
PA2896	PA14_26600	Desconhecida	-
S/ ortólogo en	n PA14_28970	Desconhecida	-
PAO1			
PA1351	PA14_46810	Desconhecida	-
PA1776	PA14_41575 (sigX)	Síntese ácidos graxos	(Boechat et al., 2013)
PA0149	PA14_01840	Absorção de ferro	(Llamas et al., 2008)
PA0472	PA14_06180	Absorção de ferricromo	(Llamas et al., 2006)
PA0675 (vreI)	PA14_55550	Envolvido em virulência	(Llamas et al., 2009)
PA0762	PA14_54430 (algU)	Produção de alginato	(Mathee et al., 1997)
PA1300	PA14_47400	Absorção de heme	(Llamas et al., 2008)
PA1363	PA14_46660	Absorção de alcaligina	(Llamas et al., 2008)
PA1912	PA14_39800	Absorção de	(Llamas et al., 2008)
		micobactina/	
		carboximicobactina	
PA2050	PA14_37990	Absorção de metal	(Llamas et al., 2008)
PA2093	PA14_37430	Absorção de sideróforo	(Llamas et al., 2008)
PA2387	PA14_33800	Absorção de pioverdina	(Beare et al., 2003)
PA2426	PA14_33260 (pvdS)	Produção de pioverdina,	(Lamont et al., 2002)
		exotoxina A e	
		endoprotease PrpL	
PA2468	PA14_32710 (foxI da	Absorção de	(Llamas et al., 2006)
	linhagem Les)	ferrioxamina	
PA3410	PA14_19990	Absorção de heme	(Ochsner et al., 2000)
PA3899	PA14_13460	Absorção de citrato de	(Banin et al., 2005)
		ferro	
PA4896	PA14_64700	Absorção de sideróforos	(Llamas et al., 2008)

1.2.3 Fatores sigma de função desconhecida PA14_21550 e PA14_46810

O fator sigma PA14_21550 possui peso molecular deduzido de 22,8 kDa. Seu antisigma predito é o PA14_21560, que apresenta peso molecular de 9,1 kDa e possui localização desconhecida. Analisando-se o contexto genômico com as ferramentas STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) (Franceschini *et al.*, 2013), CDD (Conserved

Domains Database) (Marchler-Bauer *et al.*, 2013) e a base de dados SMART (Simple Modular Architecture Research Tool) (Letunic *et al.*, 2009) é observado que seu respectivo gene apresenta vizinhança com o gene que codifica a proteína 3-oxoacil–(ACP) sintase III (FabH3), PA14_21540 (figura 1). Estudos do nosso laboratório demonstraram que, em superexpressão de σ^X , ocorre indução da expressão dos genes para a enzima FabH3, do fator sigma PA14_21550 e seu anti-sigma PA14_21560. No entanto, PA14_21550 não induz genes de biossíntese de ácido graxos que são induzidos por σ^X e sua superexpressão não provoca alterações no crescimento ou morfologia celular de PA14 como σ^X (Boechat *et al.*, 2013).

Figura 1. Contexto genômico do fator sigma PA14_21550. Operon do fator sigma PA14_21550, o gene PA14_2*1540* codifica FabH3 e PA14_2*1560* codifica um anti-sigma putativo. Em vermelho: localização citoplasmática, em cinza: localização desconhecida.

Além dessas informações, o trabalho desenvolvido por Staroń, que classifica os fatores sigma em diversos grupos com base em similaridade de sequência, arquitetura de domínio do anti-sigma, conservação do contexto genômico e motivos alvo de promotores coloca o fator sigma PA14_21550 no grupo 01, que são fatores sigma considerados "RpoE like". Nesse grupo, estão fatores sigma envolvidos em diversas respostas a estresse. O anti-sigma geralmente possui localização transmembrana e a ativação do sigma ocorre por proteólise (Staroń *et al.*, 2009).

O fator sigma PA14_46810 possui peso molecular de 45,6 kDa, aproximadamente o dobro do tamanho molecular que os demais sigmas ECF. Ele está em operon com o gene PA14_46820 que codifica uma possível tioredoxina, que possui peso molecular de 28,6 kDa. Esse fator sigma apresenta co-ocorrência, vizinhança e alta conservação com *P. aeruginosa* PAO1 em relação aos genes de PA1349 e PA1354 (PA14_46830 e PA14_46770, respectivamente) (figura 2), que não foram caracterizados, mas possuem domínios conservados que os remetem à família YciI. A maioria das proteínas dessa família apresenta

um domínio com uma histidina altamente conservada e um aspartato, que sugere uma função enzimática. Além disso, esse domínio é encontrado em fusão com um domínio da família dos fatores sigma 70 em CC_1329 de *Caulobacter crescentus*, o que sugere que este domínio pode desempenhar alguma função no início da transcrição (Yeats *et al.*, 2003).

Figura 2. Contexto genômico do fator sigma PA14_46810. O gene do fator sigma PA14_46810 está em operon com PA14_46820, que possui domínio de tioredoxina. Os demais genes possuem relação de co-ocorrência e vizinhança com PA14_46810. Em vermelho: localização citoplasmática, em laranja: localização na membrana citoplasmática, em cinza: localização desconhecida.

A classificação proposta por Staroń insere o fator sigma PA14_46810 no grupo ECF 42. Os fatores sigma desse grupo caracterizam-se por serem incomuns, ou seja, possuem tamanho significativamente maior que os fatores sigma já estudados e possuem um domínio tetratricopeptídeo, que é importante para interações proteína-proteína (Staroń *et al.*, 2009).

Há poucos dados na literatura acerca dos fatores sigma desse grupo. Um deles mostra que a deleção do fator sigma ECF-10 em *Pseudomonas putida* KT2440, ortólogo ao fator sigma PA14_46810, aumentou a formação do biofilme. Ademais, dados de análise transcriptômica da linhagem de deleção, mostram aumento de expressão de genes que codificam a para bomba de efluxo TtgABC e, portanto, a ausência de ECF-10 tornou a linhagem mais resistente a antibióticos (Tettmann *et al.*, 2014).

2. Objetivo

Caracterizar a função de fatores sigma ECF de Pseudomonas aeruginosa.

Objetivos específicos

- Estudar a função dos fatores sigma ECF PA14_21550 e PA14_46810 por meio da caracterização fenotípica de mutantes.
- Identificar o regulon do fator sigma ECF PA14_46810

3. Material e métodos

3.1 Linhagens, plasmídeos, oligonucleotídeos e condições de cultura

Linhagens de *P. aeruginosa* foram cultivadas rotineiramente em meio Luria-Bertani (LB), com acréscimento de 50 μg/mL de gentamicina quando necessário. Ademais, foi utilizado meio M63 composto por (NH₄)₂SO₄ 2 g/L, KH₂PO₄ 13,6 g/L, FeSO₄ . 7H₂O 0,54 mg/L, MgSO₄ 1mM e fonte de carbono (succinato ou glicose) 20 g/L (Pardee *et al.*, 1959). Para a confecção de placas de vermelho do Congo foram usados 10 g/L triptona, 40 μg/mL vermelho do Congo, e 20 μg/mL azul brilhante Coomassie (Römling *et al.*, 1998).

Para a superexpressão dos fatores sigma ECF, 0,2% de arabinose foi adicionado ao meio com gentamicina desde o início do crescimento cultura. O crescimento se deu a 37°C e 200 rpm, salvo quando explicitado no texto.

Tabela 2. Linhagens utilizadas nesse trabalho

Linhagem	Descrição	Referência
P. aeruginosa PA14 ALB01	Isolado clínico UCBPP-PA14 PA14/pJN105	(Rahme <i>et al.</i> , 1995) (Boechat <i>et al.</i> , 2013)
ALB02	PA14/pALB02	(Boechat et al., 2013)
ALB06	PA14/pALB06	(Boechat, 2013)
46810::mar7	PA14 com gene PA14_46810 interrompido pelo transposon mar7	(Liberati <i>et al.</i> , 2006)
64050::mar7	PA14 com gene PA14_64050 interrompido pelo transposon mar7	(Liberati <i>et al.</i> , 2006)
pelA:: mar7	PA14 com gene <i>pelA</i> interrompido pelo transposon mar7	(Liberati <i>et al.</i> , 2006)
Δ21550	PA14 com deleção do gene PA14_21550	
Plasmídeos		
pJN105	Vetor de expressão contendo o promotor <i>araBAD</i> induzível por arabinose e o regulador <i>araC</i> , Gm ^R	(Newman e Fuqua, 1999)
pALB02	Região codificadora de PA14_21550 no pJN105; Gm ^R	(Boechat et al, 2013)
pALB06	Região codificadora de PA14_46810 no pJN105; Gm ^R	Boechat et al, 2013

Tabela 3. Oligonucleotídeos utilizados para validação dos ensaios de proteômica por qRT-PCR da linhagem PA14/pJN105_21550 e PA14/pJN105_46810.

Nome	Sequência ^a	Utilização	Hibridização
OP 1 //1 DT	DOD 1 DA14/ DV105 01550		
	T-PCR de PA14/pJN105_21550	DE DOD 1 1 I	600G
gabT_qrt_L	TGGCCTACGAACCCTACATC	qRT-PCR de gabT	60°C
gabT_qrt_R	TGACCAGCAGGGTCTTCTTC		
PA14_30100_qrt_L	CTGGAGGAATCGGTGGAAT	qRT-PCR de	60°C
PA14_30100_qrt_R	TGGTAGTCCTCCTCCTGGAA	PA14_30100	
pilM_qrt_L	GCGAAAACCAACCTGAAGTC	qRT-PCR de <i>pilM</i>	60°C
pilM_qrt_R	TCCAGTTCATCCTCGGAAAG		
PA14_ <i>18690</i> _qrt_L	TCTATCCGCTGGACTTCACC	qRT-PCR de	60°C
PA14_18690_qrt_R	GAAGTGGGAGTCGATGGAAA	PA14_18690	
Oligonucleotídeos qRT	Y-PCR de PA14/pJN105_46810		
tgt_qrt_L	ATGGCTTGCAGGAGATCG	qRT-PCR de accD	60°C
tgt_qrt_R	ACGCGGATCATCTCTTCCTT		
PA14_ <i>11340</i> _qrt_L	GAAGACCCGCTGGAAGTG	qRT-PCR de	60°C
PA14_11340_qrt_R	GGGGTTGTCGTTGTTCTCC	PA14_11340	
PA14_21820_qrt_L	GCCGGCAAGAAGTTCCTC	qRT-PCR de	60°C
PA14_21820_qrt_R	GCCTTCTTCACGATTTCGTACT	PA14_21820	
hepA_qrt_L	AGTGGCTGAAGGAAGACGAA	qRT-PCR de <i>hepA</i>	60°C
hepA_qrt_R	GTATTCGGCGCTGACCTG	1	
nadB_qrt_L	CTACCTGGACATCAGCCACA	Normalizador no	60°C
nadB _qrt_R	GGTAATGTCGATGCCGAAGT	qRTPCR	

3.2 Curvas de crescimento e ensaios de viabilidade

As curvas de crescimento e sobrevivência foram construídas a partir de culturas de fase exponencial de cepas de *P. aeruginosa* diluídas a uma densidade óptica de 600nm (DO₆₀₀) de 0,1. As medidas de DO₆₀₀ foram feitas utilizando-se o espectrofotômetro NanoDrop 2000c (Thermo Scientific). Além disso, foram também realizadas curvas de crescimento no Spectramax Paradigm, utilizando placas de 48 poços, a 37°C com agitação a 240 rpm e leitura a cada 15 minutos.

3.2.1 Estresse térmico

Para o ensaio de choque frio, as culturas de fase estacionária foram diluídas a uma DO_{600} =0,1 em meio LB, e o crescimento das células foi mantido até a fase exponencial ($DO_{600} \sim 0.8$) a 37°C. Em seguida, foi feita transferência das culturas para um shaker a 5°C e incubação com agitação de 200 rpm, coletando-se amostras para medida de DO_{600} ou para medidas de viabilidade em intervalos regulares. Para medida de viabilidade, as alíquotas da amostra foram diluídas e plaqueadas e após a incubação das placas a 37°C foi realizada a contagem.

Para o estresse de temperatura por calor, foram realizados os mesmos procedimentos descritos anteriormente, modificando-se apenas a temperatura de incubação até a fase exponencial, que foi de 30°C. A temperatura de estresse também foi modificada para 45 °C, visando um intervalo de temperatura maior.

3.3. Produção de exopolissacarídeo

Para realizar esse ensaio, as culturas em fase estacionária foram diluídas a uma $DO_{600nm} = 0,005$ em meio LB e inoculadas em placas com o meio vermelho do Congo. As placas foram incubadas à 30° C por 4 dias.

3.4. Ensaio de iniciação de biofilme

Esse ensaio foi realizado com as células na fase estacionária. Assim, dilui-se as células em meio LB para obtenção de DO_{600nm} de 0,1 e incubou-se uma placa de 96 poços com 100μL de volume total por poço, sendo 5μL dessa cultura e 95μL de meio LB, a 30°C, sem agitação. Após 16 horas, descartou-se o meio e lavou-se a placa com água para remover as células não aderidas e corou-se o biofilme com solução de cristal violeta 1% por 5 minutos à

temperatura ambiente. Descartou-se o corante e lavou-se a placa com água e em seguida solubilizou-se o corante em dimetilsulfóxido (DMSO). Coletou-se a solução e mediu-se a absorbância a 595nm, sendo esta medida proporcional ao número de células aderidas.

3.5. Crescimento em hipóxia

Para o crescimento das linhagens PA14 e 46810:: mar7 em hipóxia, as culturas de fase estacionária foram diluídas a uma DO $_{600}$ = 0,1 em LB acrescido de 0,5mM de KNO $_3$. As culturas foram colocadas em eppendorf de 1,5 mL e transferidas para jarra de anaerobiose onde foram incubadas a 37°C por 24 horas. Após esse tempo, foi medida a DO $_{600}$ das culturas.

3.6 Estresse oxidativo

As linhagens PA14 e $\Delta 21550$ foram cultivadas a 37 °C 200 rpm até a DO₆₀₀= 1, após a obtenção das culturas em DO exponencial, misturou-se 200 μ L de cultura com 5mL de LB 0,7% aquecido, 3mL dessa suspensão foi espalhada nas placas com LB 1,5% ágar, preparadas anteriormente.

Foram feitos discos com papel de filtro de 6mm de diâmetro que foram permeados com 10µL de 2,5% de peróxido de hidrogênio. Os discos foram colocados sobre as placas, que foram incubadas a 37°C por 16 horas. Após esse período foi realizada medida dos halos de inibição. Para esse experimento foram utilizados três discos por placa e três placas para cada amostra.

3.7 Análise da expressão global através de eletroforese em géis bidimensionais(2D)

Para comparação entre os perfis de expressão de proteínas, foram utilizadas linhagens de superexpressão para os fatores sigma PA14_21550 e PA14_46810, construídas

previamente pela Dra. Ana Laura Boechat, em sua tese de doutorado (Boechat, 2013). A análise proteômica constituiu das seguintes etapas: extração de proteínas, seguida de focalização isoelétrica (1º dimensão), SDS-PAGE (2º dimensão) e análise de imagem e identificação dos spots.

3.7.1. Extração de proteínas

As linhagens selecionadas foram cultivadas em meio líquido para obtenção dos extratos protéicos totais. Como não havia diferença de crescimento em comparação com a linhagem selvagem, optou-se por extrair as proteínas de células em fase exponencial. Assim, após cultivo das células a 37 °C a 240 rpm, coletou-se as células por centrifugação a 7000 g por 10 minutos a 4 °C e lavou-se duas vezes com Tris-HCl pH 8 (primeiramente 100mM e posteriormente 10mM), em seguida foi feita ressuspensão em um tampão de lise (8M ureia, 2M tioureia, 2% CHAPS[3-[(3- colamidopropil)-dimetilamonio]-1-propano sulfonato], 40mM DTT [Ditiotreitol] e 2% pharmalyte 3-10). Então, as células foram lisadas utilizando o método de sonicação em banho de gelo e o lisado foi centrifugado, para separar a fração solúvel dos restos celulares. A quantificação de proteínas medida de concentração proteica foi realizada através do reagente de Bradford (Sigma) (Bradford, 1976), utilizando o protocolo do fabricante e uma curva-padrão construída com soluções de albumina.

3.7.2 Focalização isoelétrica (1º dimensão) e SDS-PAGE (2º dimensão)

A etapa de focalização isoelétrica é necessária para separação das proteínas da amostra de acordo com o seu ponto isoelétrico (pI). As amostras foram inicialmente solubilizadas em tampão constituído por 8M ureia, 2M tioureia, 2% CHAPS, 40mM DTT, 2% pharmalyte 3-10 e 10% e glicerol, centrifugadas a 1200 giros por 10 minutos e aplicadas sobre tiras de gel (Immobiline dry strips GE Healthcare) com gradiente de pH imobilizado não linear, variando de 4 a 10, e incubadas por 16 horas. A focalização isoelétrica foi realizada no IPGphor III

com o seguinte gradiente de voltagem: aumento linear de 0 para 500 V por 500V/h, seguido de um aumento para 1000 V por 1000 V/h, e uma fase final de 8000 V por 32000 V/h. Após a focalização, as fitas foram equilibradas por 15 minutos em solução de equilíbrio A (6 M ureia, 29,3% glicerol, 2% SDS, 65mM DTT) e mais 15 minutos em solução de equilíbrio B (6 M ureia, 29,3% glicerol, 2% SDS, 135mM iodoacetamida). A próxima etapa consistiu da separação das proteínas de acordo com o peso molecular relativo em gel de policrilamida contendo dodecil sulfato de sódio (SDS). A etapa de segunda dimensão foi realizada em géis de poliacrilamida 12,5% com corrente de aproximadamente 2 W por gel, por 16 horas. Os géis foram fixados por uma hora (40% etanol 10% acido acético), corados por 16 horas com azul de Coomassie coloidal e descorados por 16 horas em água e em seguida foi feita a visualização dos géis e digitalização da imagem no ImageScanner III (GE Healthcare).

3.7.3. Análise de imagem e identificação dos spots

Os géis foram analisados, visando encontrar proteínas diferencialmente expressas. As comparações foram sempre feitas em triplicatas biológicas, comparando as linhagens de superexpressão com a linhagem selvagem.

A análise das imagens dos géis foi realizada com o programa Delta 2D 4.2 (Decodon). A comparação entre géis foi feita a partir de abordagem estatística usando o teste t (p<0,1). Para a identificação das proteínas, foi realizada a extração dos spots e digestão das proteínas com tripsina, que foram caracterizadas por HPLC-MS/MS no Institut Armand-Frappier, Laval, Canadá. Após a obtenção das sequências de peptídeos, estas foram alinhadas contra o genoma de P. aeruginosa PA14 com a ferramenta BLAST do site a0 site a1, 2011).

3.8 Análise da expressão gênica

3.8.1 Extração de RNA

O RNA total foi extraído com o reagente Trizol (Invitrogen) seguindo as instruções do fabricante, apenas acrescentando um passo de incubação a 65°C por 10 minutos após a adição do reagente, em seguida foi tratado com a enzima DNase I (Invitrogen). A ausência de DNA como contaminante foi determinada por PCR e a integridade do RNA total foi analisado por eletroforese em gel de agarose (1,5%) com formaldeído, para ser utilizado nos experimentos de RT-PCR quantitativo.

3.8.2 RT-PCR quantitativo

O RNA total das linhagens em estudo foi extraído com o reagente Trizol e tratado com enzima DNase I (Thermo Scientific) e utilizado como molde para síntese de cDNA com transcriptase reversa Superscript III (Invitrogen) e oligonucleotídeos aleatórios de 9 bases. Foi também realizada a amplificação de cDNA com oligonucleotídeos específicos indicados na tabela 3 em triplicatas biológicas com o Maxima SYBR Green/ROX qPCR Master Mix (Thermo Scientific) em triplicatas técnicas no 7300 Real Time PCR System (Applied Biosystems), utilizando o seguinte programa: 60°C por 2 minutos; 95°C por 10 minutos; 40 ciclos de 95°C por 15 segundos; 60 °C 1 minuto. A expressão relativa foi calculada de acordo com o método de -2^{ΔΔCt} (Livak e Schmittgen, 2001). O gene *nadB* foi utilizado como normalizador.

3.8.3 RNA-Seq

Para a análise transcriptômica utilizou-se RNA total das linhagens ALB06 PA14/pJN105, em triplicatas biológicas. O RNA total foi extraído de culturas em DO = 1,0 cultivadas sob aeração a 37°C e 200 rpm. Coletou-se 200μL dessa cultura e tratou-se com

RNAprotect bacteria reagent (Quiagen), seguindo as instruções dada pelo fabricante para uso do kit RNeasy Bacteria Mini Kit (Quiagen).

Em seguida aos procedimentos de extração do RNA total, o mesmo foi dosado com o Ribogreen, utilizando-se o chip RNA 6000 Pico. A integridade total do RNA (RIN) usada foi maior ou igual a 8. Em seguida, utilizou-se o kit Ribo-Zero RNA Removal para a depleção do RNA ribossomal, certificando-se de houve remoção total do mesmo, com o uso do chip RNA 6000 Pico.

A etapa seguinte compreende fragmentação, conversão de cDNA e ligação a adaptadores nos dois extremos seguida por amplificação dos fragmentos e sequenciamento para obtenção de reads dos dois extremos do fragmento. As bibliotecas foram sintetizadas usando-se o kit TruSeq RNA Sample Prep (Illumina) com os procedimentos sugeridos pelo fabricante. Utilizando-se esse kit, realizou-se na biblioteca de cDNA procedimentos de endrepair, adenilação da extremidade 3 'e ligação de adaptadores nas duas extremidades após a conversão de mRNA para cDNA. E, por último, o cDNA foi quantificado utilizando-se o KAPA (KAPA Biosystems, Foster City, CA, USA)

O sequenciamento das bibliotecas envolve o agrupamento das mesmas em células de fluxo, de modo que se possa gerar por síntese milhões de sequências por amostras e dar resultados em arquivos que possam ser mapeados no genoma. O número de reads mapeados em uma região do genoma é índice do valor de expressão do gene. Para a corrida das amostras, realizada no aparelho MiSeq, foram injetados 8-10 pM de cada amostra, sendo um total de 6 amostras (3 réplicas de ALB06 e 3 réplicas de ALB01) que foram marcadas com índices diferentes.

3.8.4 Análise RNA-Seq

A análise das sequências obtidas foi realizada pelo doutorando Gilberto H. Kaihami, orientado pela Professora Regina Baldini.

Após o sequenciamento, os reads para cada amostra são dados em arquivos fastq. O primeiro procedimento foi a determinação da qualidade dos reads, que foi realizado com o programa FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc/). Em seguida, foi realizada a remoção de bases de baixa qualidade, procedimento denominado "trimming", realizado pelo programa FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Dessa forma, ocorre retirada de bases flanqueadoras de baixa qualidade, mantendo bases internas de alta qualidade, esse procedimento aumenta a porcentagem de reads pareados corretamente no genoma (Del Fabbro et al., 2013).

Posteriormente à construção da biblioteca, são encontrados reads com tamanho de fragmentos variáveis. Isso gera insertos de tamanhos de diferentes, sendo necessário calcular o tamanho médio dos insertos para evitar alinhamentos incorretos. Então, foi usado o programa bowtie2 (Langmead *et al.*, 2009), para gerar um index para *P. aeruginosa* PA14 e alinhar os arquivos fastq gerados. Depois desse procedimento foi usado o Picard Tools (http://picard.sourceforge.net.) para calcular o tamanho médio dos insertos.

A próxima etapa compreende o alinhamento dos reads contra o genoma de *P.aeruginosa* PA14, para isso foi usado o programa EDGE-PRO (Magoc *et al.*, 2013). Esse programa é específico para procariotos, uma vez que seu algoritmo leva em conta a sobreposição de genes no genoma procariótico e não detecta padrões específicos de splicing.

Assim, os reads já processados em arquivos de fastq foram utilizados como entrada no programa EDGE-PRO, e como saída foram obtidos os dados brutos de cada gene em RPKM, reads por kilobase de transcrito, que é uma forma de normalização entre o tamanho do gene e tamanho dos reads pareados.

A última etapa é a análise de expressão diferencial. Para isso foram usados os programas DeSeq2 (Love *et al.*, 2014) e Edge-R (Robinson *et al.*, 2010), que utilizam a distribuição negativa binomial para análise de expressão diferencial e o procedimento de

Benjamini–Hochberg para controle de FDR (False Discovery Rate). Foi usada uma combinação entre esses dois programas com o objetivo de se obter um balanço entre genes diferencialmente expressos ao longo da faixa dinâmica de dados. Assim, foi gerada uma lista de genes diferencialmente expressos.

Após a obtenção da lista de genes diferencialmente expressos, foi calculada a razão de expressão entre ALB06 e ALB01. Em seguida foi realizada uma classificação funcional desses genes utilizando-se a ferramenta PseudoCAP (http://pseudomonas.com/).

3.8.5 Identificação de possível motivo consenso para promotor do sigma ECF PA14_46810

Foi realizada uma análise para obtenção de um possível motivo consenso para a ligação de PA14_46810 nas regiões promotoras dos genes induzidos. Foi utilizada a ferramenta dyad—analysis, disponível em http://embnet.ccg.unam.mx/rsa-tools/ (Van Helden et al., 2000). A análise foi realizada com sequências 350 pb a montante dos genes que foram induzidos mais que três vezes e que se localizam como primeiro gene do operon (último subitem da tabela 6- Genes altamente induzidos)

4. Resultados e discussão

4.1 Caracterização do fator sigma PA14_21550

4.1.1. Caracterização fenotípica do mutante $\Delta 21550$

Foram realizadas curvas de crescimento em meio LB, em meio M63 acrescido de succinato ou glicose para investigar se em alguma dessas condições a linhagem mutante $\Delta 21550$ apresentava-se diferente da linhagem selvagem. A linhagem mutante não apresentou diferença de crescimento com a linhagem selvagem em nenhuma das condições (figura 3).

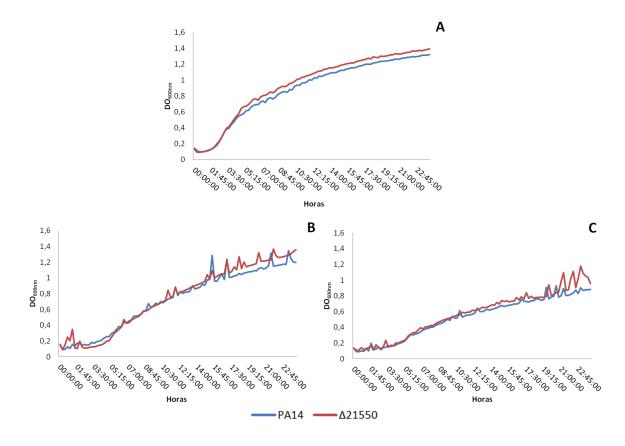


Figura 3. A linhagem mutante $\Delta 21550$ não apresenta deficiência no crescimento. Curvas de crescimento (DO₆₀₀ x tempo em horas) das linhagens mutante $\Delta 21550$ e selvagem em meio LB (A), M63 acrescido de succinato (B) e M63 acrescido de glicose (C). As culturas foram incubadas a 37°C em placas de 48 poços no Spectramax Paradigm, com agitação e leitura a cada 15 minutos, em triplicatas.

A transcrição do gene do fator sigma PA14_21550 é regulado de forma positiva pelo fator sigma SigX. Este possui papel na alteração da fluidez de membrana pela ativação de

genes relacionados à síntese de ácidos graxos e a linhagem ALB04 (superexpressão de SigX), possui membrana mais fluida que linhagem controle. Ademais, ALB04 é mais resistente ao choque frio e mais sensível ao choque por calor. Todos esses dados corroboram a participação desse sigma na organização da membrana celular (Boechat, A. L. *et al.*, 2013). Dessa forma, os ensaios para caracterização de PA14_21550 foram direcionados para o seu possível papel na organização da membrana celular.

Foram realizados ensaios de viabilidade após o choque térmico a 45°C durante a fase exponencial de crescimento. Nesse experimento, as linhagens PA14 e Δ21550 a DO_{600nm}=0,1 foram cultivadas a uma temperatura de 30°C e agitação de 200 rpm, em seguida as culturas foram transferidas a uma temperatura de 45 °C, sob a mesma agitação, em triplicatas. Após 15 minutos, foram retiradas alíquotas das duas linhagens. As alíquotas foram diluídas e plaqueadas. A análise de viabilidade foi realizada comparando-se a quantidade de CFU antes e depois do choque térmico (figura 4).

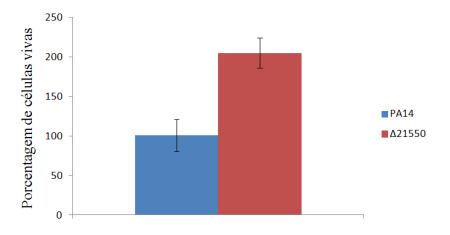


Figura 4. A linhagem Δ21550 é mais resistente ao choque térmico a 45°C em fase exponencial de crescimento. Foi realizado o crescimento das linhagens PA14 eΔ21550 até uma DO_{600nm}=1. Alíquotas das culturas foram retiradas antes e após 15 minutos de choque térmico a 45°C. As alíquotas foram diluídas e plaqueadas. Gráfico representando ensaio de viabilidade a choque térmico. Os resultados representam média de três experimentos independentes. As barras verticais representam o desvio padrão.

Os resultados indicaram que a linhagem $\Delta 21550$ é mais resistente ao choque térmico a 45°C (figura 4). Esse resultado está de acordo com os dados obtidos pelo nosso grupo, uma

vez que a linhagem de superexpressão de SigX é mais sensível ao choque térmico a 45°C, ou seja, quando ocorre aumento do fator sigma PA14_21550 na célula, esta se torna mais sensível ao choque por calor.

De maneira similar, foi realizado o ensaio de viabilidade em choque frio, no qual se transferiu as culturas de bactéria de 37°C para 4°C e após 15 minutos foram retiradas alíquotas para plaqueamento e posterior contagem de células. No entanto, nessa condição a linhagem mutante comportou-se como a linhagem selvagem (figura 5). Isso pode ser explicado pelo fato de PA14 não necessitar de PA14_21550 e seu regulon para garantir a sobrevivência da célula em choque frio.

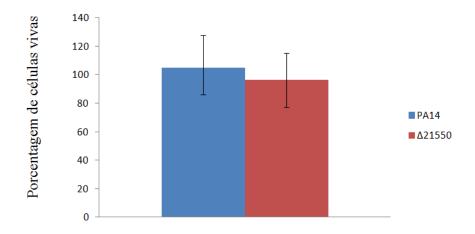


Figura 5. A linhagem $\Delta 21550$ se comporta como a linhagem PA14 no choque frio de 4°C. Foi realizado o crescimento das linhagens PA14 e $\Delta 21550$ até uma DO_{600nm}=1. Alíquotas das culturas foram retiradas antes e após 15 minutos de choque frio a 4°C. As alíquotas foram diluídas e plaqueadas. Gráfico representando ensaio de viabilidade a choque frio. Os resultados representam média de três experimentos independentes. As barras verticais representam o desvio padrão.

Como os fatores sigma ECF podem estar envolvidos com a resposta ao estresse oxidativo, foi realizado também um ensaio de inibição de crescimento com a linhagem $\Delta 21550$ (figura 6). O tamanho do halo formado pelas das duas linhagens, controle e mutante, foi similar, o que sugere que esse fator sigma não é importante para resistência de P. aeruginosa ao estresse oxidativo por H_2O_2 nas condições testadas.

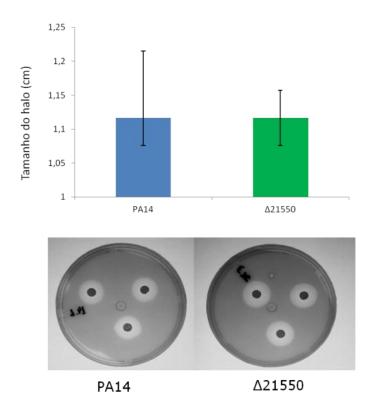
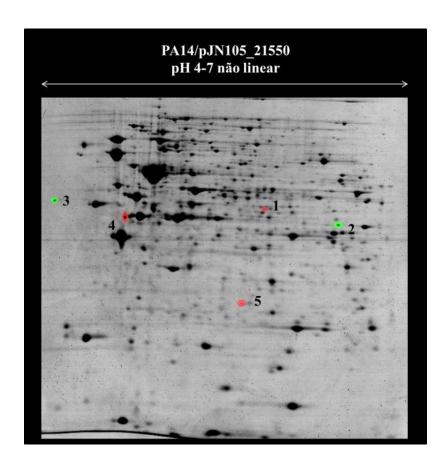



Figura 6. O fator sigma PA14_21550 não é importante para a resistência ao estresse oxidativo. As linhagens PA14 e $\Delta 21550$ foram cultivadas a 37°C e 240 rpm até a $DO_{600}=1$. Foi realizada uma mistura dessas linhagens com 5mL de ágar 0,7% e 3mL foram colocados sobre placas com LB 1,5% ágar. Os discos foram preparados com papel filtro de 6 mm de diâmetro e permeados em solução com $10\mu L$ de H_2O_2 2,5%. Foram utilizados 3 discos por placa e 3 placas para cada amostra.

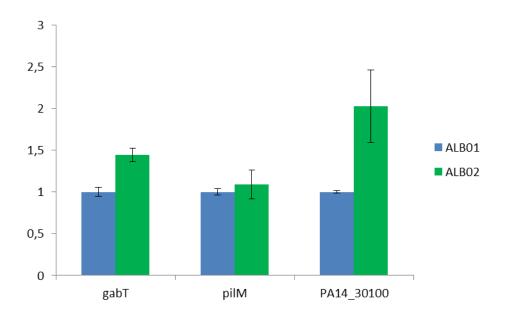
4.1.2 Análise proteômica da superexpressão do fator sigma PA14_21550

Numa tentativa inicial de encontrar o regulon para os fatores sigma de função desconhecida foi realizada a análise proteômica, cuja metodologia já se encontrava bem estabelecida em nosso laboratório. Foi realizada a análise proteômica para a linhagem de superexpressão para o fator sigma PA14_21550, ALB02, em comparação com a linhagem PA14 contendo apenas o vetor pJN105, ALB01. Dessa forma, foram obtidos géis bidimensionais de 18 cm realizados em fitas de pH 4-7 não linear. A análise do gel bidimensional das linhagens de superexpressão de PA14_21550 e da linhagem controle (figura 7) mostrou que foram expressas diferencialmente cinco proteínas, entre elas três proteínas reguladas negativamente e duas reguladas positivamente. Entretanto, o esperado seria encontrar várias proteínas induzidas na superexpressão do sigma, já que este é um

regulador positivo de transcrição. As duas proteínas encontradas induzidas foram PA14_30100 e GabT. Já as proteínas com menor abundância na superexpressão do sigma devem ser efeito indireto desta, seja em resposta à presença de um regulador em altas concentrações que pode significar um estresse para as células, seja pela indução de um provável repressor.

Figura 7. Análise proteômica de PA14/pJN105_21550. As proteínas foram extraídas das linhagens PA14/pJN105_21550 e PA14/pJN105 em triplicatas biológicas, cultivadas em LB até DO600nm = 1. A focalização isoelétrica foi realizada em variação de pH 4-7 não linear na primeira dimensão e acrilamida 12,5% na segunda. Em vermelho, há três spots que foram regulados negativamente, e em verde dois spots que foram regulados positivamente.

Tabela 4. Proteínas de *P. aeruginosa* PA14 diferencialmente expressar em células superexpressando o fator sigma PA14_21550


Legenda	Locus ^a	Nome do gene	Função ou classe ^b	Razão
				ALB02/ALB01
1	PA14_53220	fumC2	fumarate hydratase class II 1	0,61
2	PA14_03450	gabT	4-aminobutyrate aminotransferase	1,37
3	PA14_30100		hypothetical protein	1,96
4	PA14_66660	pilM	type 4 fimbrial biogenesis protein	0,74
5	PA14_54290	pdxJ	pyridoxine 5'-phosphate	0,74

^a Número atribuído no projeto de anotação do genoma de *P. aeruginosa* PA14 (LEE et al., 2006)

^b Funções das proteínas codificadas por essas ORFs são indicadas segundo anotação do genoma de PA14 (WINSOR et al., 2011)

4.1.3. Validação proteômica com RT-PCR quantitativo

Com a finalidade de validar os dados obtidos na análise proteômica, ou seja, determinar se a diferença de expressão de uma proteína corresponde a uma diferença de expressão de mRNA, visto que o efeito esperado de um fator sigma seria na transcrição, foi realizado o ensaio de RT-PCR quantitativo para as linhagens de superexpressão de PA14_21550 e controle, utilizando como genes alvo os genes que codificam proteínas que tiveram sua expressão aumentada no ensaio de proteômica (figura 8). A proteína PA14_30100 possui função hipotética. Essa proteína possui o domínio JmjC que é parte da superfamília de metaloenzimas cupin. Portanto, como a proteína PA14_30100 possui esse domínio, pode ser uma enzima provável que regula o processo de reorganização de cromatina (Takeuchi *et al.*, 2006). A proteína GabT é uma aminotransferase, sendo assim envolvida no metabolismo de aminoácidos.

Figura 8.Validação do ensaio de proteômica por qRT-PCR para superexpressão de PA14_21550. Resultado do qRT-PCR com cDNA sintetizado a partir de RNA extraído das mesmas culturas utilizadas no ensaio de proteômica. Os valores mostrados no gráfico são médias de triplicatas técnicas e as barras de erro representam o desvio padrão.

Dessa forma, confirmou-se que a expressão das proteínas PA14_30100 e GabT são maiores na superexpressão do fator sigma PA14_21550 (Figura 8) e que a indução se dá em nível de transcrição.

4.2 Caracterização do fator sigma PA14 46810

4.2.1 Caracterização fenotípica das linhagens com mutação e superexpressão do fator sigma PA14_46810

Com a finalidade de observar se o mutante de transposon de PA14_46810 apresentava diferença de crescimento em relação à linhagem selvagem, as duas linhagens foram inoculadas em meio LB e meio M63 acrescido de glicose ou succinato. Não houve diferença notável de crescimento entre as linhagens no crescimento em LB e M63 acrescido de succinato. No entanto, a linhagem mutante de transposon do fator sigma PA14_46810 apresentou crescimento ligeiramente melhor que a bactéria selvagem na presença de meio M63 acrescido de glicose (figura 9). Uma hipótese para essa observação é de que o fator sigma PA14_46810 ative genes que interfiram no metabolismo da glicose. Como será verficado na análise transcriptômica, PA14_46810 ativa genes envolvidos no processo de desnitrificação e foi demonstrado que essas condições previnem a oxidação da glicose a gluconato em *P. aeruginosa*, porque a atividade da glicose desidrogenase, que participa da glicólise pela via de Entner-Doudoroff utilizada por *Pseudomonas*, está inibida (Hunt e Phibbs, 1981). Como a oxidação do succinato se dá por sua entrada diretamente no ciclo de Krebs, não há diferença no crescimento quando este substrato é utilizado.

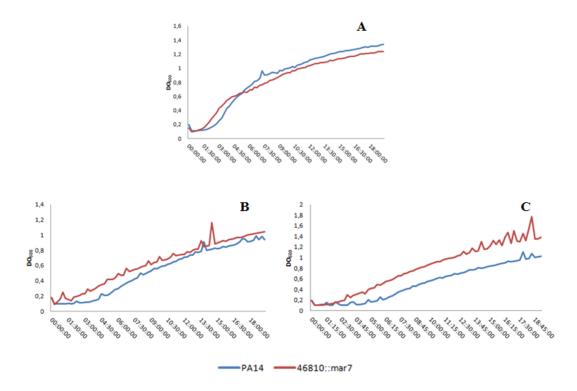


Figura 9. A linhagem mutante 46810::mar7 não apresenta deficiência no crescimento em LB e meio mínimo acrescido de succinato, porém apresenta crescimento melhor que linhagem selvagem em meio mínimo acrescido de glicose. Curvas de crescimento (DO₆₀₀ x tempo em horas) das linhagens mutante 46810::mar7 (vermelho) e selvagem (azul) em meio LB (A), M63 acrescido de succinato (B) e M63 acrescido de glicose (C). As culturas foram incubadas a 37°C em placas de 48 poços no Spectramax Paradigm, com agitação e leitura a cada 15 minutos, em triplicatas

Foi observado que a superexpressão do fator sigma PA14_46810 levou a um discreto aumento na iniciação do biofilme. Assim, foram realizados ensaios de iniciação de biofilme e vermelho do Congo que é usado para observar a produção de exopolissacarídeos e a morfologia da colônia, que influenciam a formação de biofilme (Friedman e Kolter, 2004). No entanto, a linhagem mutante de PA14_46810 comportou-se como a linhagem selvagem (figura 10).

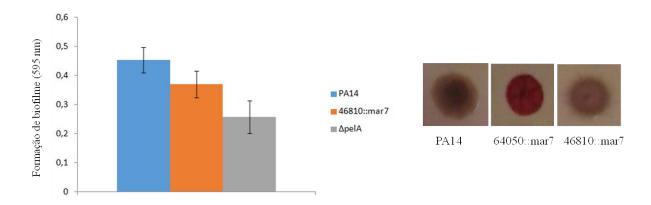
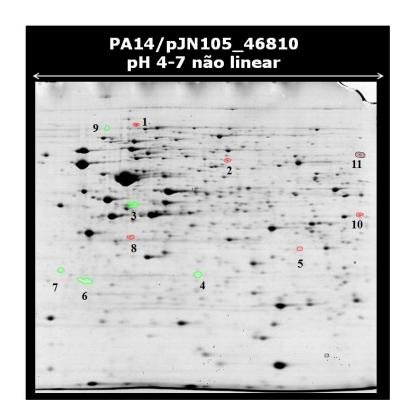



Figura 10. O fator sigma PA14_46810 não é relevante para a formação de biofilme e produção de exopolissacarídeos. À esquerda: Gráfico representativo de três ensaios independentes em que culturas em fase estacionária foram diluídas uma DO_{600nm} de 0,01. Após 16 horas de incubação a 30°C, sem agitação, o meio foi descartado e a placa foi lavada para remoção de células não aderidas. O biofilme foi corado com solução de cristal violeta 1% por 5 minutos e após o descarte da solução, o corante foi solubilizado com DMSO. A absorbância dessa solução foi medida a 595 nm. À direita: linhagens em fase estacionária foram diluídas a DO_{600nm}= 0,005 e inoculou-se 1,5μL na placa de vermelho do congo. As placas foram incubadas à 30°C por 4 dias. Linhagens: mutantes de transposon PA14_46810 e PA14_64050 (controle positivo para produção de exopolissacarídeos), PA14 e ΔpelA, mutante deficiente em formação de biofilme.

4.2.2 Análise proteômica superexpressão de PA14_46810

Foi realizada análise proteômica para a linhagem de superexpressão do fator sigma PA14_46810, ALB06, sob as mesmas condições que a análise proteômica de PA14/pJN105_21550 (figura 11). Assim, foram obtidas 11 proteínas diferencialmente expressas, das quais cinco delas reguladas positivamente e seis reguladas negativamente (tabela 5). Não foi possível fazer identificação de duas dessas proteínas devido sua pouca quantidade. Entre as proteínas diferencialmente expressas, alguns de seus genes codificadores foram escolhidas para validação por qRT-PCR. No entanto, não foram observadas diferenças de nível de expressão em nível de mRNA para essas proteínas (figura 12). Isso pode ter acontecido porque não houve realmente expressão diferencial para essas proteínas, tendo ocorrido por uma limitação da técnica ou porque as diferenças no nível de expressão podem ter acontecido em nível pós transcricional, o que indicaria apenas um efeito indireto do fator sigma.

Figura 11. Análise proteômica de PA14/pJN105_46810. As proteínas foram extraídas das linhagens PA14/pJN105_46810 e PA14/pJN105_46810 em triplicatas biológicas, cultivadas em LB até DO_{600nm} = 1. A focalização isoelétrica foi realizada em variação de pH 4-7 não linear na primeira dimensão e acrilamida 12,5% na segunda. Em vermelho, há seis spots que foram regulados negativamente, e em verde cinco spots que foram regulados positivamente.

Tabela 5. Proteínas de *P. aeruginosa* PA14 diferencialmente expressar em células superexpressando o fator sigma PA14_46810

Legenda	Locus ^a	Nome do gene	Função ou classe ^b	Razão ALB06/ALB01
1	PA14_21230	hepA	ATP-dependent helicase HepA	0,7
2	PA14_07680		hypothetical protein	0,73
3	PA14_25900		Trans-2enoyl-CoA redutase	1,75
4	PA14_19110	rhlB	Rhamnosyltransferase chain B	1,32
5	PA14_61770	prs	Ribose-phosphate pyrophosphokinase	0,76
6	PA14_21820		peptidyl-prolyl cis-trans isomerase, FkbP-type	0,54
7	PA14_11340		Thioredoxin	1,32
8	PA14_71440	lta	low specificity 1-threonine aldolase	0,54
10	PA14_14600	tgt	Queuine tRNA- ribobyltransferase	0,8

^a Número atribuído no projeto de anotação do genoma de *P. aeruginosa* PA14 (Lee *et al.*, 2006)

^b Funções das proteínas codificadas por essas ORFs são indicadas segundo anotação do genoma de PA14(Winsor *et al.*, 2011)

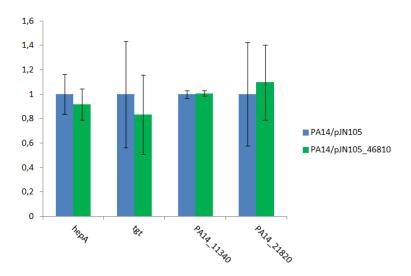
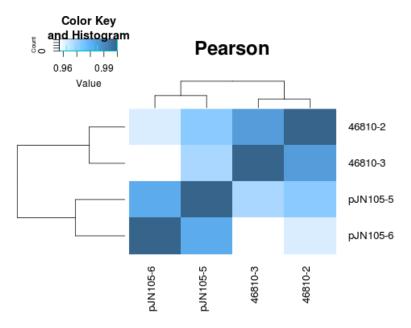



Figura 12. qRT-PCR de genes cujos produtos estavam diferencialmente expressos na análise proteômica da superexpressão de PA14_46810 . Resultado do qRT-PCR com cDNA sintetizado a partir de RNA extraído das mesmas culturas utilizadas no ensaio de proteômica. Os valores mostrados no gráfico são médias de triplicatas técnicas e as barras de erro representam o desvio padrão.

4.2.3. Análise transcriptômica – superexpressão do fator sigma PA14_46810

Após a análise de genes diferencialmente expressos, na qual foi utilizado os pacotes Edge-R e DEseq2, foi observada uma boa correlação de Pearson entre as amostras de superexpressão e controle (figura 13).

Figura 13. Correlação de Pearson entre as amostras PA14/pJN105 e PA14/pJN105_46810. Após a normalização dos dados obtidos (raw count normalization), foi feita uma correlação de Pearson, em que é possível observar uma grande correlação entre as **réplicas biológicas**, e um distanciamento maior entre as amostras PA14/pJN105 e PA14/pJN105_46810.

Uma boa correlação é dada pela maior semelhança entre amostras diferentes da mesma linhagem. As réplicas biológicas de PA14/pJN105 formam um cluster diferente de PA14/pJN105_46810 e que, no entanto, o valor é semelhante para cada cluster.

Inicialmente foi realizada uma classificação utilizando o PseudoCAP com os genes regulados de forma positiva e negativa por PA14_46810 (figura 14).

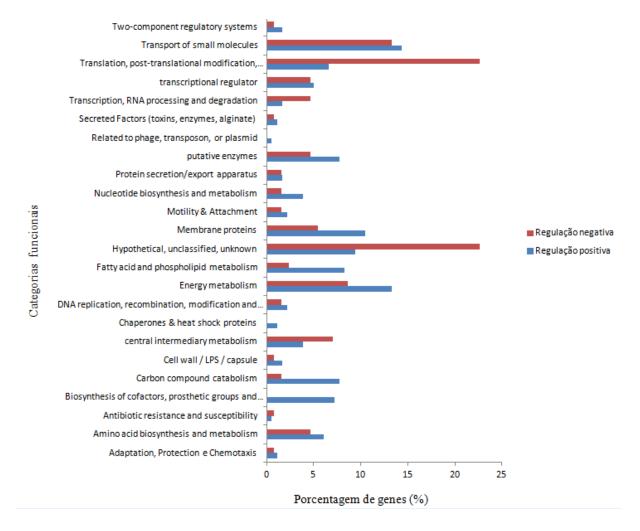


Figura 14. Categorização dos genes que foram regulados de forma positiva e negativa no transcritoma da superexpressão de PA14_46810. A anotação PseudoCAP (Winsor *et al.*, 2005) foi usada para categorizar os membros do regulon de PA14_46810, sendo mostrado o enriquecimento de classes específicas.

Entre 309 genes diferencialmente expressos, constatou-se que 181 sofrem regulação positiva e 128 sofrem regulação negativa. Os genes que sofrem regulação positiva foram agrupados em 26 diferentes categorias, sendo a mais representativa a de metabolismo energético, o que ocorreu principalmente pelos genes envolvidos no processo de

desnitrificação, e a categoria de transporte de pequenas moléculas, que compreende genes envolvidos no processo de desnitrificação e transportadores do tipo ABC. A categoria de genes hipotéticos também está representada por aproximadamente 10% dos genes totais.

A mesma categorização foi empregada para os genes que foram regulados negativamente. Esses genes foram distribuídos em 23 categorias diferentes. As categorias de maior representatividade foram as de genes que codificam proteínas hipotéticas e proteínas ribossomais, envolvidas no processo de tradução. A figura 14 compara a porcentagem de genes obtida em cada categoria.

Após obtenção da lista de genes diferencialmente expressos, foi feita uma organização para observar o regulon que o fator sigma PA14_46810 pode ativar (Tabela 6 e 7).

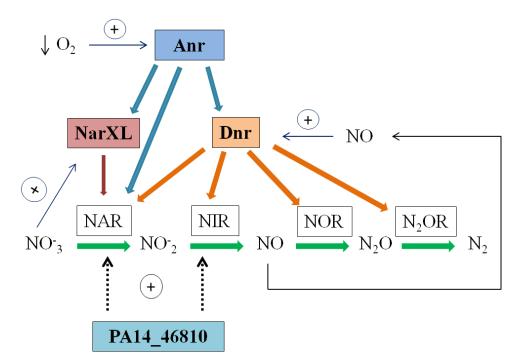
Tabela 6. Operons que foram regulados de forma positiva no transcritoma da superexpressão de PA14_46810.

Locus ^a	Nome	razão	Função ou classe ^b				
		ALB06/ALB01					
Genes envolvidos no processo de desnitrificação							
Operon nar							
PA14_13750	narK1	7,63	nitrite extrusion protein 1				
PA14_13770	narK2	17,04	nitrite extrusion protein 2				
PA14_13780	narG	12,89	respiratory nitrate reductase				
PA14_13800	narH	5,98	respiratory nitrate reductase				
PA14_13810	narJ	4,48	respiratory nitrate reductase				
PA14_13830	narI	5,72	respiratory nitrate reductase				
Operon moaB1- m	10eA1						
PA14_13260	moaB1	16,68	molybdopterin biosynthesis				
PA14_13280	moeA1	18,18	molybdenum cofactor biosynthetic protein A1				
Operon nir							
PA14_06650	nirN	2,98	c-type cytochrome				
PA14_06660	nirE	4,07	uroporphyrin-III c-methyltransferase				
PA14_06670	nirJ	2,95	heme d1 biosynthesis protein NirJ				
PA14_06680	nirH	3,60	Hypothetical				
PA14_06690	nirG	2,70	transcriptional regulator				
PA14_06700	nirL	3,33	heme d1 biosynthesis protein				
PA14_06710		3,05	transcriptional regulator				
PA14_06720	nirF	2,73	heme d1 biosynthesis protein NirF				
PA14_06730	nirC	3,79	c-type cytochrome				
PA14_06740	nirM	2,78	cytochrome c-551				

Tabela 6 (Continuação). Operons que foram regulados de forma positiva no transcritoma da superexpressão de PA14_46810.

Locus	Nome	razão	Função ou classe ^b
Locus	TOME	ALB06/ALB01	i unção ou classe
Genes envolvidos	no metabolisn		ão de arginina
Operon arc		<u> </u>	
PA14_68330	arcA	4,56	arginine deiminase
PA14_68340	arcB	5,74	ornithine carbamoyltransferase
PA14_68350	arcC	5,73	carbamate kinase
Genes envolvidos	do metabolisn	no de valina, leud	cina e isoleucina
Operon mmsA-mn	ısB		
PA14_18120	mmsA	2,2	methylmalonate-semialdehyde dehydrogenase
PA14_18140	mmsB	3,06	3-hydroxyisobutyrate dehydrogenase
Operon bkdA1-bk	dA2-bkdB-lpdV	7	
PA14_35490	lpdV	1,93	dihydrolipoamide dehydrogenase
PA14_35500	bkd B	2,06	branched-chain alpha-keto acid dehydrogenase subunit E2
PA14_35520	bkdA2	2,02	2-oxoisovalerate dehydrogenase subunit beta
Genes envolvidos	no metabolism	o e biossíntese d	e nucleotídeos
PA14_39690		2,07	anaerobic ribonucleoside triphosphate reductase
PA14_39700		2,31	Hypothetical
PA14_39710		2,83	radical SAM protein
Genes envolvidos	no metabolism	o e biossíntese d	e lipídios
PA14_31500		2,51	AMP-binding protein
PA14_31510		3,94	short-chain dehydrogenase
PA14_31530		4,07	acyl-CoA thiolase
PA14_31540		2,65	acyl-CoA dehydrogenase
PA14_38610		3,03	Hipotética
PA14_38630	atoB	2,74	acetyl-CoA acetyltransferase
PA14_38640		2,58	CoA transferase subunit B
PA14_38660		2,68	CoA transferase, subunit A
Genes envolvidos	no metabolism	10	_
PA14_38460	gnyB	2,43	acyl-CoA carboxyltransferase subunit beta
PA14_38480	gnyA	2,11	alpha subunit of geranoyl-CoA carboxylase, GnyA
PA14_38490	gnyL	1,78	hydroxymethylglutaryl-CoA lyase
Genes envolvidos	no transporte	de moléculas	
Operon RBS			
PA14_39280	rbsK	2,20	ribokinase
PA14_39300	rbsR	1,78	ribose operon repressor RbsR
PA14_39320	rbsC	2,09	membrane protein component of ABC ribose transporter
PA14_39330	rbsA	2,29	ribose transporter

Tabela 6(Continuação). Operons que foram regulados de forma positiva no transcritoma da superexpressão de PA14_46810.


Locus ^a	Nome	razão ALB06/ALB01	Função ou classe ^b
Genes envolvidos	no transporte d		
PA14_13590		2,38	ABC transporter permease
PA14_13600		2,35	ABC transporter substrate-binding protein
PA14_13610		2,02	ABC transporter permeasse
PA14_06920		2,92	class III pyridoxal phosphate-dependent
_		7-	aminotransferase
PA14_06930		3,03	glutamine amidotransferase
Genes envolvidos	na biossíntese d	le cofatores	
PA14_13680		2,06	short chain dehydrogenase
PA14_13690		1,87	Methyltransferase
PA14_13850	moaA	2,46	molybdenum cofactor biosynthesis protein
Genes altamente i	nduzidos		
Genes que codifica	am proteínas hi	potéticas	
PA14_46800		118,36	hypothetical protein
PA14_59850		4,26	hypothetical protein
PA14_37080		3,81	hypothetical protein
PA14_20250		3,26	hypothetical protein
PA14_05820		3,13	hypothetical protein
PA14_38610		3,03	hypothetical protein
PA14_46820		7,73	hypothetical protein
PA14_56560		3,47	hypothetical protein
PA14_56550		3,08	hypothetical protein
Genes envolvidos	no metabolismo		
PA14_54670		4,08	3-hydroxyisobutyrate dehydrogenase
PA14_05840		3,86	glutaryl-CoA dehydrogenase
PA14_38590	bdhA	3,40	3-hydroxybutyrate dehydrogenase
PA14_60700	ccpR	3,18	cytochrome c551 peroxidase
PA14_70690	glcD	2,94	glycolate oxidase subunit GlcD
Genes envolvidos n	o transporte de	pequenas moléculas	
PA14_49130	dctA	3,63	C4-dicarboxylate transporter DctA
Genes envolvidos n	na tradução		
PA14_06000		3,56	ClpA/B protease ATP binding subunit
Regulador transcri	icional		
PA14_39980	qscR	3,33	transcriptional regulator
Enzima putativa			
PA14_54640		3,12	enoyl-CoA hydratase

^a Número atribuído no projeto de anotação do genoma de *P.aeruginosa* PA14 ((LEE et al., 2006)

^b Funções das proteínas codificadas por essas ORFs são indicadas segundo anotação do genoma de PA14 (WINSOR et al., 2011)

O grupo que mais chamou a atenção foi o que engloba genes envolvidos na desnitrificação. Na ausência de oxigênio e na presença de um aceptor final de elétrons inorgânico, como o nitrato (NO₃⁻), a desnitrificação é a forma mais eficiente de geração de energia e *Pseudomonas*. Nesse processo, ocorre substituição de oxigênio molecular por nitrato como aceptor final de elétrons. Este é reduzido em quatro etapas consecutivas para nitrito (NO₂⁻), óxido nitríco (NO) e óxido nitroso (N₂O) para nitrogênio molecular (N₂)(figura 15) (Williams *et al.*, 1978).

As enzimas necessárias para o processo de desnitrificação são induzidas em condições de baixo oxigênio ou anaerobiose e também na presença de nitrato e nitrito. Para expressão de todos os genes é necessária a participação de dois reguladores transcricionais, Anr e Dnr (figura 15) (Arai *et al.*, 1997; Arai, 2011).

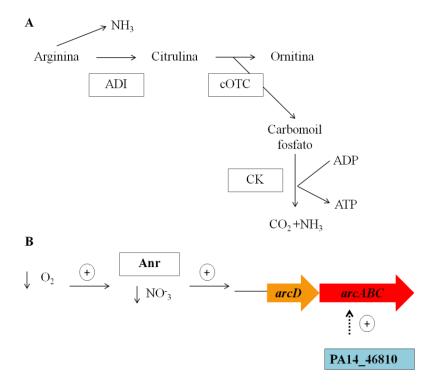
Figura 15. Regulação da desnitrificação em *P. aeruginosa.* Em baixas concentrações de oxigênio, o regulador Anr ativa a expressão do regulador Dnr. Este ativa a expressão de todos os genes de desnitrificação em resposta a óxido nitríco. O regulador de dois componentes NarXL, que é um sensor de nitrato, ativa a expressão do operon *nar* que codifica a nitrato redutase. O operon *nar* também é ativado por Anr e Dnr. NAR: nitrato redutase, NIR: nitrito redutase, NOR: óxido nitríco redutase, N₂OR óxido nitroso redutase (ARAI, 2011). As setas pontilhadas de PA14_46810 indicam que ainda não há confirmação de um efeito direto do sigma ECF nesses sistemas.

Entre os genes diferencialmente expressos na superexpressão do fator sigma PA14_46810, foi encontrado o operon *nar*, que no processo de desnitrificação participa da redução de nitrato a nitrito por meio da catálise da enzima nitrato redutase, codificada pelos genes *narGHI*, do operon *narK*₁*K*₂*GHIJ*. Essa enzima é constituída por três subunidades. A subunidade NarI é um citocromo b ligado à membrana e transfere elétrons para a subunidade citoplasmática NarH, que por sua vez transporta elétrons para a subunidade NarG, que possui um cofator molibdênio, formado pela molibdopterina, e então ocorre a redução de nitrato para nitrito (Schreiber *et al.*, 2007).

NarK1K2 são proteínas transmembrana, sendo NarK2 essencial para o transporte de nitrato ou nitrito. A proteína NarJ tem função de chaperona, uma vez que está envolvida na montagem da nitrato redutase. Esse operon é regulado por Anr, Dnr e pelo sistema de dois componentes NarX-NarL (Schreiber *et al.*, 2007).

O operon *nir*, foi expresso mais que duas vezes na superexpressão de PA14_46810. Esse operon codifica os genes estruturais da nitrito redutase e citocromo c-551. A nitrito redutase, codificada por *nirS*, catalisa a redução de nitrito para óxido nítrico. Essa enzima é um homodímero de localização periplasmática e possui grupos prostéticos heme em cada subunidade. O citocromo c-551 atua como o doador de elétron fisiológico da enzima NirS (Arai *et al.*, 1997; Kawasaki *et al.*, 1997).

Nesse operon o gene *nirS* codifica a nitrito redutase, sendo seguido por *nirM* que codifica o citocromo c, que é o doador de elétrons fisiológico para NirS. Há também os genes *nirC* e *nirF*, que são necessários para síntese do grupo heme presente em NirS . Os genes *nirS* e *nirM* são co-transcritos a partir de um promotor regulado por Anr (Arai *et al.*, 1997; Kawasaki *et al.*, 1997).


O operon de *moeA1-moaB1* foi muito expresso na superexpressão de PA14_46810 (expressão 16-18 vezes maior que no controle). Esse operon consiste de dois genes

envolvidos na biossíntese de cofatores. O gene *moaB1* codifica uma proteína responsável pela síntese de molibdopterina. O molibdônio presente nas enzimas necessita de um grupo prostético denominado cofator molibdônio, este por sua vez é formado por uma molécula de molibdônio ligada a uma molibdopterina. O gene *moeA1* codifica uma proteína que sintetiza um cofator que, na forma ativada, pode regular o operon *nar*, responsável pela síntese da nitrato redutase, sendo passível de regulação em vários níveis (Hasona *et al.*, 1998).

Entretanto, a via completa de desnitrificação inclui ainda os sistemas de redutases de óxido nítrico (NOR) e de óxido nitroso (N₂OR) (figura 15), cujos genes não foram induzidos pela superexpressão de PA14_46810. Estes resultados sugerem que os genes da via de desnitrificação têm diferentes reguladores. O fator sigma PA14_46810 pode estar ativo em determinada condição e sua regulação seria situada no mesmo nível de NarXL, uma vez que ele pode regular os níveis de *nar* e *nir* (figura 15).

P. aeruginosa, em condições de ausência de oxigênio e nitrato para atuarem como aceptores finais da cadeia de transporte de elétrons, é capaz usar arginina como fonte de energia se esta estiver presente no meio. Nessa condição, ocorre manutenção da viabilidade e motilidade e crescimento da bactéria em meio rico (Gamper et al., 1992; Verhoogt et al., 1992). O operon arc expressa proteínas necessárias para essa condição e também foi encontrado no transcritoma da superexpressão de PA14_46810.

A arginina é metabolizada pela via denominada arginina deiminase, que inclui as seguintes enzimas citoplasmáticas: arginina deiminase, ornitina carbamoil transferase e carbamato quinase. Essas três enzimas são codificadas pelos genes *arcA*, *arcB* e *arcC*, respectivamente. Esse operon é controlado de forma positiva pela proteína regulatória Anr, que em condições de limitação de oxigênio e nitrato ativa os genes do operon *arc* (figura 16) (Gamper *et al.*, 1992; Verhoogt *et al.*, 1992).

Figura 16. Fermentação da arginina e regulação do operon *arc.* **A:** Fermentação da arginina: a arginina deiminase (ADI) catalisa a conversão da arginina a citrulina e amônia, em seguida ornitina carbamoil transferase catabólica (cOTC) realiza a reação entre citrulina e Pi, tendo como produtos ornitina e carbamoil fosfato. Por último a carbamato quinase (CK) converte carbamoil fosfato e ADP a ATP, CO₂ e amônia.**B:** A regulação do operon *arc* é realizada por Anr, que é ativado em baixas concentrações de oxigênio. Assim, o Anr e a baixa concentração de nitrato, ativam o operon *arc*. A seta pontilhada de PA14_46810 indica que ainda não há confirmação de um efeito direto do sigma ECF nesses sistemas.

No transcritoma da superexpressão de PA14_46810 também foi identificado um operon de transportadores do tipo ABC – ATP Binding Cassete. Eles são proteínas integrais de membrana capazes de captar nutrientes e transportar uma variedade de solutos através da membrana celular. Ademais, também foram bastante expressos genes envolvidos no metabolismo geral da célula.

Entre os genes diferencialmente expressos, 128 deles sofrem regulação negativa, sendo apresentados na tabela os principais genes que o excesso do fator sigma PA14_46810 está reprimindo, provavelmente por um efeito indireto.

Tabela 7. Operons que foram regulados de forma negativa no transcritoma da superexpressão de PA14_46810.

Locus ^a	Nome	Razão ALB06/ALB01	Função ou classe ^b
Locus		ALDOGALDOI	
PA14_07090	metK	0,33	S-adenosylmethionine synthetase
PA14_07110		0,33	ArsR family transcriptional regulator
Operons que codif	icam proteínas	s ribossomais	
PA14_08850	rplC	0,51	50S ribosomal protein L3
PA14_08860	rplD	0,50	50S ribosomal protein L4
PA14_08870	rplW	0,48	50S ribosomal protein L23
PA14_08880	rplB	0,52	50S ribosomal protein L2
PA14_08890	rpsS	0,48	30S ribosomal protein S19
PA14_08900	rplV	0,51	50S ribosomal protein L22
PA14_08910	rpsC	0,57	30S ribosomal protein S3
PA14_08920	rplP	0,57	50S ribosomal protein L16
PA14_09010	rplR	0,50	50S ribosomal protein L18
PA14_09020	rpsE	0,51	30S ribosomal protein S5
PA14_09030	rpmD	0,48	50S ribosomal protein L30
PA14_09040	rplO	0,52	50S ribosomal protein L15
PA14_09100	rpsD	0,50	30S ribosomal protein S4
PA14_09115	rpoA	0,56	DNA-directed RNA polymerase subunit alpha
Operon potABCD			
PA14_17610	potD	0,42	polyamine ABC transporter
PA14_17620	potC	0,26	polyamine transport protein PotC
PA14_17630	potB	0,26	polyamine transport protein PotB
PA14_17640	potA	0,36	polyamine transport protein PotA
Operon cysI-PA14	4_40780		
PA14_40770	cysI	0,36	sulfite reductase
PA14_40780		0,30	hypothetical protein
Operon cbb3-type	cytochrome c	oxidase: PA14_44370	-PA14_44380-PA14_44390-PA14_44400
PA14_44370		0,34	cbb3-type cytochrome c oxidase subunit I
PA14_44380		0,33	cbb3-type cytochrome c oxidase subunit II
PA14_44390		0,35	cytochrome c oxidase subunit
PA14_44400		0,40	cytochrome c oxidase, cbb3-type subunit III
Operon PA14_56	840-PA14_568	50-PA14_56870	
PA14_56840		0,34	hypothetical protein
PA14_56850		0,41	Lipoprotein
PA14_56870		0,38	hypothetical protein

^a Número atribuído no projeto de anotação do genoma de *P. aeruginosa* PA14 ((LEE et al., 2006)

Entre os operons que foram regulados de forma negativa pelo fator sigma PA14_46810, está o operon dos genes PA14_07110 e metK. PA14_07110 é um regulador do

^b Funções das proteínas codificadas por essas ORFs são indicadas segundo anotação do genoma de PA14(WINSOR et al., 2011).

tipo ArsR e *metK* codifica uma S-adenosilmetionina sintetase, que está envolvida no metabolismo de aminoácidos, particularmente cisteína e metionina.

O fator sigma PA14_46810 também parece alterar a síntese de espermidina uma vez que a sua superexpressão reprime o gene *metK* que codifica uma proteína que participa da primeira etapa da síntese de espermidina em *E. coli* (Maas, 1972; Tabor e Tabor, 1985) e o gene que codifica a espermidina sintase PA14_42690 (*speE*) também está reprimido pela superexpressão de PA14_46810.

Além disso, foi encontrado que o excesso de PA14_46810 reprime um operon de transportador de poliaminas do tipo ABC. Nesse operon, estão os genes *potABCD*, envolvidos no transporte de espermidina. Esse operon compreende uma proteína de ligação de substrato de localização periplasmática PotD, que realiza a captação de poliaminas extracelulares, duas proteínas transmembrana para formação do canal PotBC e uma ATPase associada a membrana PotA que está relacionada com a captação de poliamina acoplada ao consumo de energia (Shah e Swiatlo, 2008).

No geral, as poliaminas conferem às bactérias resistência a antibióticos. Elas são derivadas da descarboxilação da arginina, ornitina e lisina, sendo compostos policatiônicos encontrados em todos os organismos. Também são conhecidas como moduladores da expressão gênica, em processos como replicação de DNA, transcrição, tradução e atividade de proteínas. Elas atuam nesses processos para viabilizar um ótimo crescimento celular e também agem como mecanismos de defesa contra condições ambientais tóxicas. A espermidina em particular é capaz de diminuir a permeabilidade da membrana por causa da sua ligação a porinas e também protege a célula de estresse oxidativo, atuando como um "capturador" de radicais livres (Shah e Swiatlo, 2008; Johnson *et al.*, 2012).

Entre os tipos de operons que foram reprimidos estão operons que codificam proteínas ribossomais, que auxiliam na montagem do ribossomo, sem necessitar de ATP para essa ação

(Semrad *et al.*, 2004). Essas proteínas participam do processo de tradução. Quatro operons foram reprimidos, embora essa repressão não englobe todos os genes dos operons. A inibição do processo de tradução está relacionada a condições em que ocorre limitação do crescimento da bactéria e pode ser uma resposta a perturbações celulares, servindo como mecanismo de adaptação em curto prazo e podendo ser um artefato da superexpressão de uma proteína regulatória como PA14_46810, que pode alterar o metabolismo da célula. Entretanto, apesar dessa diminuição, não há defeito de crescimento da linhagem superexpressando PA14_46810 em meio LB, nas condições usadas no ensaio de RNA-seq.

O operon que codifica a citocromo oxidase do tipo cbb3 também foi reprimido por PA14_46810. As enzimas citocromo c oxidases são importantes na transdução de energia celular e contribuem para a formação do gradiente eletroquímico que será usado para produção de ATP por ATP sintases (Pitcher e Watmough, 2004). Esse operon possui ortólogo em PAO1, PA1554-PA1552, que já foi bastante estudado e verificou-se que esse operon não possui diferenças de expressão em diferentes concentrações de oxigênio, porém nas condições de desnitrificação apresenta-se 4,2 vezes reprimido (Alvarez-Ortega e Harwood, 2007), o que está de acordo com o aumento de expressão dos genes de desnitrificação na superexpressão de PA14_46810.

Além disso, o operon dessa citocromo oxidase está regulado de forma positiva em células de PA14 retiradas de ponta das colônias de swarming (tendril tip cells) (Tremblay e Déziel, 2010), o que sugere que elas estão mais expressas em maior disponibilidade de oxigênio. Ademais, há dados de que a expressão desse operon é dependente da fase de crescimento, tendo maior nível de expressão na fase exponencial em comparação com a fase estacionária (Kawakami *et al.*, 2010).

4.2.4. Possível consenso para o fator sigma PA14_46810

A análise utilizando a ferramenta "dyad-analysis" gerou o possível consenso separado por um espaçamento de 18 pb. Esse consenso não é semelhante a outros consensos para fatores sigma ECF descritos na literatura e dados experimentais serão necessários para se confirmar sua função.

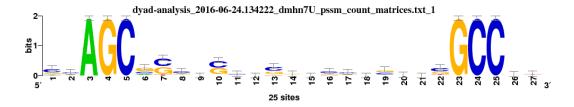
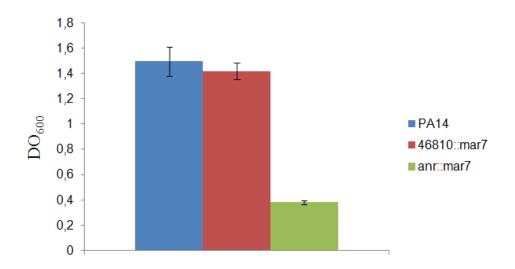



Figura 17. Weblogo do consenso encontrado nas regiões a montante de unidades transcricionais que foram induzidas mais que três vezes na superexpressão do fator sigma PA14_46810. A weblogo ilustra o grau de conservação de sequência do possível promotor para o fator sigma PA14_46810 pela representação gráfica o tamanho das letras coressponde a frequência em que os pares de bases aparecem nas posições consideradas. Essa análise foi feita com a ferramenta Dyad-Analyses (Van Helden *et al.*, 2000).

4.2.5 Crescimento de 46810::mar7 em hipóxia

Uma vez que o fator sigma PA14_46810 ativa muitos genes envolvidos com a anaerobiose, a linhagem mutante por transposon nesse gene foi caracterizada em condições de hipóxia. Os resultados (figura 18) mostraram que o fator sigma PA14_46810 não é essencial para o crescimento da bactéria em hipóxia, uma vez que a linhagem mutante se comporta de maneira semelhante à linhagem selvagem. A linhagem *anr*::mar7 é um mutante interrompido no gene do regulador transcricional Anr, que ativa a expressão da via de desnitrificação. Dessa forma, pode-se concluir que genes envolvidos na desnitrificação são regulados por diferentes ativadores, com sobreposição entre eles e PA14_46810 seria importante numa condição ainda não definida. Nas condições do ensaio, a presença de Anr, NarXL e Dnr são suficientes para garantir o crescimento em hipóxia e a falta de PA14_46810 não é sentida pelas células.

A superexpressão do fator sigma PA14_46810 levou à ativação apenas do início da via de desnitrificação pela nitrato e nitrito redutases, além de vias de degradação de alguns aminoácidos e genes de vias de degradação de lipídeos. Uma hipótese é que o excesso de PA14_46810 ative genes ligados ao metabolismo e que a célula precise de vias alternativas para o uso desses substratos, aumentando a obtenção de ATP.

Figura 18. O fator sigma PA14_46810 não é essencial para o crescimento em hipóxia. Foi realizado o crescimento das culturas até a fase estacionária, que foram então diluídas até a DO_{600} =1 e incubadas em uma jarra de anaerobiose a 37°C por 24 horas. Após esse tempo a DO_{600} foi medida. Os resultados representam média de três experimentos independentes. As barras verticais representam o desvio padrão. O mutante em *anr* foi usado como controle.

5. Conclusões

- O fator sigma PA14_21550 não é necessário para crescimento da bactéria em meio LB
 e M63 acrescido de succinato ou glicose.
- A superexpressão do fator sigma PA14_21550 aumenta a expressão da proteína hipotética PA14_30100 em nível de transcrição.
- Além disso, o fator sigma PA14_21550 está envolvido com a resistência da bactéria em choque térmico a 45°C, no entanto não é essencial para bactéria na exposição ao choque frio a 5°C.
- A linhagem 46810::mar7 apresenta melhor crescimento que a bactéria selvagem PA14
 em meio M63 acrescido de glicose, no entanto em LB e M63 acrescido de succinato
 não é notada nenhuma diferença.
- A linhagem como o gene PA14_46810 interrompido por transposon não apresenta diferença com a bactéria selvagem em formação de biofilme e produção de exopolissacarídeos
- A análise de RNA-seq de bactérias superexpressando o fator sigma PA14_46810 mostrou que 309 genes foram diferencialmente expressos em relação à bactéria selvagem. Entre esses, 181 são de regulação positiva e 128 de regulação negativa.

• Entre os genes regulados positivamente muitos fazem parte do operon *nir* e *nar*, sendo envolvidos no processo de desnitrificação. Por outro lado, entre os genes de regulação negativa predominância de genes envolvidos no processo de tradução.

6. Referências

- ALBA, B. M.; GROSS, C. A. Regulation of the *Escherichia coli* sigma-dependent envelope stress response. **Molecular microbiology**, v. 52, n. 3, p. 613-9, May 2004.
- ALVAREZ-ORTEGA, C.; HARWOOD, C. S. Responses of *Pseudomonas aeruginosa* to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. **Mol Microbiol**, v. 65, n. 1, p. 153-65, Jul 2007.
- ARAI, H. Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in *Pseudomonas aeruginosa*. **Front Microbiol**, v. 2, p. 103, 2011.
- ARAI, H.; KODAMA, T.; IGARASHI, Y. Cascade regulation of the two CRP/FNR-related transcriptional regulators (ANR and DNR) and the denitrification enzymes in *Pseudomonas aeruginosa*. **Mol Microbiol**, v. 25, n. 6, p. 1141-8, Sep 1997.
- BANIN, E.; VASIL, M. L.; GREENBERG, E. P. Iron and *Pseudomonas aeruginosa* biofilm formation. **Proc Natl Acad Sci U S A,** v. 102, n. 31, p. 11076-11081, Aug 2 2005.
- BEARE, P. A. et al. Siderophore-mediated cell signalling in *Pseudomonas aeruginosa*: divergent pathways regulate virulence factor production and siderophore receptor synthesis. **Mol Microbiol,** v. 47, n. 1, p. 195-207, Jan 2003.
- BOECHAT, A. L. et al. A Novel Role for an ECF Sigma Factor in Fatty Acid Biosynthesis and Membrane Fluidity in *Pseudomonas aeruginosa*. **Plos One,** v. 8, n. 12, 2013.
- BOECHAT, A.L. Caracterização da superexpressão do fato sigma ECF SigX em *Pseudomonas aeruginosa* PA14. 2013.100p.Tese (Doutorado). Intituto de Química, Universidade de São Paulo, São Paulo, 2013.
- BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. **Analytical biochemistry**, v. 72, p. 248-254, May 7 1976.
- DEL FABBRO, C. et al. An extensive evaluation of read trimming effects on Illumina NGS data analysis. **PLoS One**, v. 8, n. 12, p. e85024, 2013.
- DRISCOLL, J. A.; BRODY, S. L.; KOLLEF, M. H. The epidemiology, pathogenesis and treatment of *Pseudomonas aeruginosa* infections. **Drugs,** v. 67, n. 3, p. 351-368, 2007.
- DUPUY, B. et al. Regulation of toxin and bacteriocin gene expression in *Clostridium* by interchangeable RNA polymerase sigma factors. **Molecular microbiology**, v. 60, n. 4, p. 1044-57, May 2006.
- FRANCESCHINI, A. et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. **Nucleic acids research,** v. 41, n. Database issue, p. D808-15, Jan 2013.
- FRIEDMAN, L.; KOLTER, R. Genes involved in matrix formation in *Pseudomonas aeruginosa* PA14 biofilms. **Mol Microbiol,** v. 51, n. 3, p. 675-690, Feb 2004.

- GAMPER, M. et al. RNA processing modulates the expression of the arcDABC operon in *Pseudomonas aeruginosa*. **J Mol Biol**, v. 226, n. 4, p. 943-57, Aug 1992.
- GRUBER, T. M.; GROSS, C. A. Multiple sigma subunits and the partitioning of bacterial transcription space. **Annu Rev Microbiol**, v. 57, p. 441-466, 2003.
- HASONA, A. et al. Molybdate-dependent transcription of *hyc* and *nar* operons of *Escherichia coli* requires MoeA protein and ModE-molybdate. **FEMS Microbiol Lett,** v. 169, n. 1, p. 111-6, Dec 1998.
- HELMANN, J. D. The extracytoplasmic function (ECF) sigma factors. In: (Ed.). **Advances in Microbial Physiology**: Academic Press, v.Volume 46, 2002. p.47-110.
- HELMANN, J. D.; CHAMBERLIN, M. J. Structure and function of bacterial sigma factors. **Annual review of biochemistry,** v. 57, p. 839-72, 1988.
- HUGHES, K. T.; MATHEE, K. The anti-sigma factors. **Annual review of microbiology,** v. 52, p. 231-86, 1998.
- HUNT, J. C.; PHIBBS, P. V. Failure of *Pseudomonas aeruginosa* to form membrane-associated glucose dehydrogenase activity during anaerobic growth with nitrate. **Biochem Biophys Res Commun**, v. 102, n. 4, p. 1393-9, Oct 1981.
- JOHNSON, L. et al. Surface-localized spermidine protects the *Pseudomonas aeruginosa* outer membrane from antibiotic treatment and oxidative stress. **J Bacteriol,** v. 194, n. 4, p. 813-26, Feb 2012.
- KAWAKAMI, T. et al. Differential expression of multiple terminal oxidases for aerobic respiration in *Pseudomonas aeruginosa*. **Environ Microbiol,** v. 12, n. 6, p. 1399-412, Jun 2010.
- KAWASAKI, S. et al. Gene cluster for dissimilatory nitrite reductase (nir) from *Pseudomonas aeruginosa*: sequencing and identification of a locus for heme d1 biosynthesis. **J Bacteriol**, v. 179, n. 1, p. 235-42, Jan 1997.
- LAMONT, I. L. et al. Siderophore-mediated signaling regulates virulence factor production in *Pseudomonas aeruginosa*. **Proc Natl Acad Sci U S A,** v. 99, n. 10, p. 7072-7077, May 14 2002.
- LANE, W. J.; DARST, S. A. The structural basis for promoter -35 element recognition by the group IV sigma factors. **PLoS Biol,** v. 4, n. 9, p. e269, Sep 2006.
- LANGMEAD, B. et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. **Genome Biol,** v. 10, n. 3, p. R25, 2009.
- LEE, D. G. et al. Genomic analysis reveals that *Pseudomonas aeruginosa* virulence is combinatorial. **Genome Biol,** v. 7, n. 10, p. R90, 2006.
- LESIC, B. et al. Inhibitors of pathogen intercellular signals as selective anti-infective compounds. **PLoS Pathog**, v. 3, n. 9, p. 1229-1239, Sep 14 2007.

- LETUNIC, I.; DOERKS, T.; BORK, P. SMART 6: recent updates and new developments. **Nucleic acids research**, v. 37, n. Database issue, p. D229-32, Jan 2009.
- LIBERATI, N. T. et al. An ordered, nonredundant library of *Pseudomonas aeruginosa* strain PA14 transposon insertion mutants. **Proc. Natl. Acad. Sci. U.S.A**, Feb 13 2006.
- LIVAK, K. J.; SCHMITTGEN, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the -2DDCt Method. **Methods**, v. 25, n. 4, p. 402-408, Dec 2001.
- LLAMAS, M. A. et al. Characterization of five novel *Pseudomonas aeruginosa* cell-surface signalling systems. **Mol Microbiol,** v. 67, n. 2, p. 458-472, Jan 2008.
- LLAMAS, M. A. et al.. The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in *Pseudomonas aeruginosa*. **J Bacteriol,** v. 188, n. 5, p. 1882-1891, Mar 2006.
- LLAMAS, M. A. et al.. A Novel extracytoplasmic function (ECF) sigma factor regulates virulence in *Pseudomonas aeruginosa*. **PLoS Pathog**, v. 5, n. 9, p. e1000572, Sep 2009.
- LONETTO, M.; GRIBSKOV, M.; GROSS, C. A. The sigma 70 family: sequence conservation and evolutionary relationships. **Journal of bacteriology**, v. 174, n. 12, p. 3843-9, Jun 1992.
- LOVE, M. I.; HUBER, W.; ANDERS, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. **Genome Biol,** v. 15, n. 12, p. 550, 2014.
- LYCZAK, J. B.; CANNON, C. L.; PIER, G. B. Establishment of *Pseudomonas aeruginosa* infection: lessons from a versatile opportunist. **Microbes Infect**, v. 2, n. 9, p. 1051-1060, Jul 2000.
- MAAS, W. K. Mapping of genes involved in the synthesis of spermidine in *Escherichia coli*. **Mol Gen Genet**, v. 119, n. 1, p. 1-9, 1972.
- MAGOC, T.; WOOD, D.; SALZBERG, S. L. EDGE-pro: Estimated Degree of Gene Expression in Prokaryotic Genomes. **Evol Bioinform Online**, v. 9, p. 127-136, 2013.
- MANI, N.; DUPUY, B. Regulation of toxin synthesis in *Clostridium difficile* by an alternative RNA polymerase sigma factor. **Proceedings of the National Academy of Sciences of the United States of America,** v. 98, n. 10, p. 5844-9, May 8 2001.
- MARCHLER-BAUER, A. et al. CDD: conserved domains and protein three-dimensional structure. **Nucleic acids research**, v. 41, n. Database issue, p. D348-52, Jan 2013.
- MASCHER, T. Signaling diversity and evolution of extracytoplasmic function (ECF) σ factors. **Curr Opin Microbiol**, v. 16, n. 2, p. 148-55, Apr 2013.
- MATHEE, K.; MCPHERSON, C. J.; OHMAN, D. E. Posttranslational control of the algT (algU)-encoded sigma 22 for expression of the alginate regulon in *Pseudomonas aeruginosa*

and localization of its antagonist proteins MucA and MucB (AlgN). **J Bacteriol,** v. 179, n. 11, p. 3711-3720, Jun 1997.

MISSIAKAS, D.; RAINA, S. The extracytoplasmic function sigma factors: role and regulation. **Molecular microbiology**, v. 28, n. 6, p. 1059-66, Jun 1998.

NEWMAN, J. R.; FUQUA, C. Broad-host-range expression vectors that carry the L-arabinose-inducible *Escherichia coli* araBAD promoter and the araC regulator. **Gene,** v. 227, n. 2, p. 197-203, Feb 18 1999.

OCHSNER, U. A.; JOHNSON, Z.; VASIL, M. L. Genetics and regulation of two distinct haem-uptake systems, phu and has, in *Pseudomonas aeruginosa*. **Microbiology**, v. 146 (Pt 1), p. 185-198, Jan 2000.

ÖSTERBERG, S.; DEL PESO-SANTOS, T.; SHINGLER, V. Regulation of alternative sigma factor use. **Annu Rev Microbiol,** v. 65, p. 37-55, 2011.

PARDEE, A. B.; JACOB, F.; MONOD, J. The genetic control and cytoplasmic expression of "inducibility" in the synthesis of b-galactosidase in E. coli. **J Mol Biol,** v. 1, p. 165-178, 1959.

PITCHER, R. S.; WATMOUGH, N. J. The bacterial cytochrome cbb3 oxidases. **Biochim Biophys Acta**, v. 1655, n. 1-3, p. 388-99, Apr 2004.

POTVIN, E.; SANSCHAGRIN, F.; LEVESQUE, R. C. Sigma factors in *Pseudomonas aeruginosa*. **FEMS Microbiol Rev,** v. 32, n. 1, p. 38-55, Jan 2008.

RAHME, L. G. et al. Common virulence factors for bacterial pathogenicity in plants and animals. **Science**, v. 268, n. 5219, p. 1899-1902, Jun 30 1995.

ROBINSON, M. D.; MCCARTHY, D. J.; SMYTH, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. **Bioinformatics**, v. 26, n. 1, p. 139-40, Jan 2010.

ROWLEY, G. et al. Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. **Nature reviews. Microbiology,** v. 4, n. 5, p. 383-94, May 2006.

RÖMLING, U. et al. Multicellular and aggregative behaviour of *Salmonella typhimurium* strains is controlled by mutations in the agfD promoter. **Mol Microbiol,** v. 28, n. 2, p. 249-64, Apr 1998. I

SCHREIBER, K. et al. The anaerobic regulatory network required for *Pseudomonas aeruginosa* nitrate respiration. **J Bacteriol**, v. 189, n. 11, p. 4310-4314, Jun 2007.

SEMRAD, K.; GREEN, R.; SCHROEDER, R. RNA chaperone activity of large ribosomal subunit proteins from Escherichia coli. **RNA**, v. 10, n. 12, p. 1855-60, Dec 2004.

SHAH, P.; SWIATLO, E. A multifaceted role for polyamines in bacterial pathogens. **Mol Microbiol,** v. 68, n. 1, p. 4-16, Apr 2008.

STAROŃ, A. et al. The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family. **Mol Microbiol**, v. 74, n. 3, p. 557-581, Nov 2009.

STOVER, C. K. et al. Complete genome sequence of *Pseudomonas aeruginosa* PA01, an opportunistic pathogen. **Nature**, v. 406, n. 6799, p. 959-964, Aug 31 2000.

TABOR, C. W.; TABOR, H. Polyamines in microorganisms. **Microbiol Rev**, v. 49, n. 1, p. 81-99, Mar 1985.

TAKEUCHI, T. et al. Roles of jumonji and jumonji family genes in chromatin regulation and development. **Dev Dyn,** v. 235, n. 9, p. 2449-59, Sep 2006. I

TETTMANN, B. et al. Knockout of extracytoplasmic function sigma factor ECF-10 affects stress resistance and biofilm formation in *Pseudomonas putida* KT2440. **Appl Environ Microbiol,** v. 80, n. 16, p. 4911-9, Aug 2014.

TREMBLAY, J.; DÉZIEL, E. Gene expression in *Pseudomonas aeruginosa* swarming motility. **BMC Genomics**, v. 11, p. 587, 2010.

VAN HELDEN, J.; RIOS, A. F.; COLLADO-VIDES, J. Discovering regulatory elements in non-coding sequences by analysis of spaced dyads. **Nucleic Acids Res,** v. 28, n. 8, p. 1808-18, Apr 2000.

VERHOOGT, H. J. et al. arcD, the first gene of the arc operon for anaerobic arginine catabolism in *Pseudomonas aeruginosa*, encodes an arginine-ornithine exchanger. **J Bacteriol**, v. 174, n. 5, p. 1568-73, Mar 1992.

VISCA, P. et al. Iron transport and regulation, cell signalling and genomics: lessons from *Escherichia coli* and *Pseudomonas*. **Mol Microbiol**, v. 45, n. 5, p. 1177-1190, Sep 2002.

WIEHLMANN, L. et al. Population structure of *Pseudomonas aeruginosa*. **Proc Natl Acad Sci U S A,** v. 104, n. 19, p. 8101-8106, May 8 2007.

WILLIAMS, D. R. et al. Denitrifying *Pseudomonas aeruginosa:* some parameters of growth and active transport. **Appl Environ Microbiol,** v. 36, n. 2, p. 257-63, Aug 1978.

WINSOR, G. L. et al. Pseudomonas Genome Database: improved comparative analysis and population genomics capability for *Pseudomonas genomes*. **Nucleic Acids Res**, v. 39, n. Database issue, p. D596-600, Jan 2011.

WINSOR, G. L. et al.. *Pseudomonas aeruginosa* Genome Database and PseudoCAP: facilitating community-based, continually updated, genome annotation. **Nucleic Acids Res,** v. 33, n. Database issue, p. 338-343, Jan 1 2005.

YEATS, C.; BENTLEY, S.; BATEMAN, A. New knowledge from old: in silico discovery of novel protein domains in *Streptomyces coelicolor*. **BMC microbiology**, v. 3, p. 3, Feb 6 2003.

ANEXOS

Tabela S1. Genes induzidos na superexpressão de PA14_46810, segundo análise de RNAseq, organizada de acordo com a função dos produtos gênicos induzidos na superexpressão do fator sigma PA14_46810

PA14_46810	Razão	Nome do	
Locus ^a	ALB06/ALB01	gene	Função ^b
PA14_46810	2272,65		3
PA14_46800	118,26		hypothetical protein
PA14_13280	18,18	moeA1	molybdenum cofactor biosynthetic protein A1
PA14_13770	17,04	narK2	nitrite extrusion protein 2
PA14_13260	16,68	moaB1	molybdopterin biosynthesis
PA14_13780	12,89	narG	respiratory nitrate reductase
PA14_46820	7,73		hypothetical protein
PA14_13750	7,63	narK1	nitrite extrusion protein 1
PA14_70680	6,89	glcE	glycolate oxidase FAD binding subunit
PA14_13800	5,98	narH	respiratory nitrate reductase
PA14_68340	5,74	arcB	ornithine carbamoyltransferase
PA14_68350	5,73	arcC	carbamate kinase
PA14_13830	5,72	narI	respiratory nitrate reductase
PA14_37090	5,34		aldehyde dehydrogenase
PA14_68330	4,56	arcA	arginine deiminase
PA14_13810	4,48	narJ	respiratory nitrate reductase
PA14_70670	4,46	glcF	glycolate oxidase iron-sulfur
PA14_59850	4,26		hypothetical protein
PA14_54670	4,09		3-hydroxyisobutyrate dehydrogenase
PA14_06660	4,07	nirE	uroporphyrin-III c-methyltransferase
PA14_31530	4,07		acyl-CoA thiolase
PA14_31510	3,94		short-chain dehydrogenase
PA14_05840	3,86	gcdH	glutaryl-CoA dehydrogenase
PA14_37080	3,81		hypothetical protein
PA14_06730	3,79	nirC	c-type cytochrome
PA14_54660	3,67		enoyl-CoA hydratase/isomerase
PA14_49130	3,63	dctA	C4-dicarboxylate transporter DctA
PA14_06680	3,60	nirH	hypothetical protein
PA14_06000	3,56		ClpA/B protease ATP binding subunit
PA14_56560	3,47		hypothetical protein
PA14_54630	3,45		acyl-CoA dehydrogenase
PA14_38590	3,40	bdhA	3-hydroxybutyrate dehydrogenase
PA14_72520	3,35		hypothetical protein
PA14_39980	3,33	qscR	transcriptional regulator
PA14_06700	3,33	nirL	heme d1 biosynthesis protein
PA14_59770	3,30	rcsB	two component response regulator

Tabela S1 (**Continuação**). Genes induzidos na superexpressão de PA14_46810, segundo análise de RNAseq, organizada de acordo com a função dos produtos gênicos induzidos na superexpressão do fator sigma PA14_46810

rator signa i ri	Razão	Nome do	
Locus ^a	ALB06/ALB01	gene	Função ^b
PA14_20250	3,27		hypothetical protein
PA14_60700	3,18	ccpR	cytochrome c551 peroxidase
PA14_05820	3,13		hypothetical protein
PA14_54640	3,12		enoyl-CoA hydratase
PA14_56550	3,08		hypothetical protein
PA14_18140	3,06	mmsB	3-hydroxyisobutyrate dehydrogenase
PA14_06710	3,05		transcriptional regulator
PA14_06930	3,03		glutamine amidotransferase
PA14_38610	3,03		hypothetical protein
PA14_06650	2,98	nirN	c-type cytochrome
PA14_53480	2,97	pta	phosphate acetyltransferase
PA14_06670	2,95	nirJ	heme d1 biosynthesis protein NirJ
PA14_70690	2,94	glcD	glycolate oxidase subunit GlcD
			class III pyridoxal phosphate-dependent
PA14_06920	2,92		aminotransferase
PA14_14340	2,92		SAM-dependent methyltransferase
PA14_56570	2,87		Acyltransferase
PA14_66450	2,84		hypothetical protein
PA14_39710	2,83		radical SAM protein
PA14_47850	2,83		hypothetical protein
PA14_34580	2,83		hypothetical protein
PA14_64980	2,78	nadE	NAD synthetase
PA14_06740	2,78	nirM	cytochrome c-551
PA14_30850	2,75		TrbI-like protein
PA14_55110	2,75		hypothetical protein
PA14_44360	2,75		cytochrome c oxidase, cbb3-type subunit III
PA14_39720	2,75		amino acid oxidase
PA14_38630	2,74	atoB	acetyl-CoA acetyltransferase
PA14_41950	2,74		enoyl-CoA hydratase
PA14_06720	2,73	nirF	heme d1 biosynthesis protein NirF
PA14_20900	2,72		MFS transporter
PA14_41960	2,71		hypothetical protein
PA14_06690	2,70	nirG	transcriptional regulator
PA14_53090	2,69		transcriptional regulator
PA14_38660	2,68		CoA transferase, subunit A
PA14_19390	2,67		hypothetical protein
PA14_55100	2,66		hypothetical protein
PA14_43790	2,66		aldehyde dehydrogenase
PA14_31540	2,65		acyl-CoA dehydrogenase
PA14_43570	2,60		hypothetical protein

Tabela S1 (**Continuação**). Genes induzidos na superexpressão de PA14_46810, segundo análise de RNAseq, organizada de acordo com a função dos produtos gênicos induzidos na superexpressão do

fator sigma PA14_46810

Tator sigma PA	Razão	Nome do	
Locus ^a	ALB06/ALB01	gene	Função ^b
PA14_38640	2,58		CoA transferase subunit B
PA14_11790	2,58		amino acid transporter
PA14_43810	2,57		cytochrome c
PA14_69060	2,56		ABC transporter permeasse
PA14_00230	2,52		Rossmann fold nucleotide-binding protein
PA14_13320	2,52		hypothetical protein
PA14_29570	2,52		hypothetical protein
PA14_31500	2,51		AMP-binding protein
PA14_50020	2,51		hypothetical protein
PA14_12470	2,50		hypothetical protein
PA14_28050	2,50		chemotaxis transducer
PA14_71640	2,48		LysR family transcriptional regulator
PA14_39270	2,47		hypothetical protein
PA14_06360	2,47		phosphoribosyl transferase
PA14_13850	2,46	moaA	molybdenum cofactor biosynthesis protein A
PA14_38460	2,43	gnyB	acyl-CoA carboxyltransferase subunit beta
PA14_01720	2,42	ahpF	alkyl hydroperoxide reductase
PA14_33320	2,41		hypothetical protein
PA14_13590	2,38		ABC transporter permeasse
PA14_37070	2,38		hypothetical protein
PA14_13840	2,37		peptidyl-prolyl cis-trans isomerase, PpiC-type
PA14_36910	2,36	ligD	ATP-dependent DNA ligase
PA14_21640	2,36		short chain dehydrogenase
PA14_68280	2,36		dicarboxylate transporter
PA14_69070	2,36		ABC transporter ATP-binding protein/permease
PA14_13600	2,35		ABC transporter substrate-binding protein
PA14_28060	2,35	cpg2	glutamate carboxypeptidase
PA14_68780	2,35		phosphate transporter
PA14_13300	2,33		hypothetical protein
PA14_59760	2,33	cupD5	pili assembly chaperone
PA14_39700	2,31		hypothetical protein
PA14_43040	2,31	hsiB2	HsiB2
PA14_39330	2,29	rbsA	ribose transporter
PA14_61940	2,29		hypothetical protein
PA14_44350	2,28		cbb3-type cytochrome c oxidase subunit II
PA14_01730	2,26		hypothetical protein
PA14_00860	2,26		ABC transporter ATP-binding protein
PA14_13200	2,25		hypothetical protein
PA14_28520	2,25		hypothetical protein

Tabela S1 (**Continuação**). Genes induzidos na superexpressão de PA14_46810, segundo análise de RNAseq, organizada de acordo com a função dos produtos gênicos induzidos na superexpressão do fator sigma PA14_46810

Tator sigma PA	Razão	Nome do	
Locus a	ALB06/ALB01	gene	Função ^b
PA14_17550	2,22		hypothetical protein
PA14_39280	2,20	rbsK	Ribokinase
PA14_18120	2,20	mmsA	methylmalonate-semialdehyde dehydrogenase
PA14_13330	2,17		hypothetical protein
PA14_24740	2,16		hypothetical protein
PA14_45970	2,14		cation-transporting P-type ATPase
PA14_02250	2,14	cheA	two-component sensor
PA14_44740	2,13	xdhB	xanthine dehydrogenase
PA14_27620	2,13		tRNA-Gly
PA14_06880	2,11		LysR family transcriptional regulator
PA14_38480	2,11	gnyA	alpha subunit of geranoyl-CoA carboxylase, GnyA
PA14_18660	2,10		hypothetical protein
PA14_50440	2,09	flgF	flagellar basal body rod protein FlgF
PA14_64990	2,09		hypothetical protein
			membrane protein component of ABC ribose
PA14_39320	2,09	rbsC	transporter
PA14_39690	2,07		anaerobic ribonucleoside triphosphate reductase
PA14_35500	2,06	bkdB	branched-chain alpha-keto acid dehydrogenase
PA14_21210	2,06		hypothetical protein
PA14_33310	2,06		hypothetical protein
PA14_64930	2,06		hypothetical protein
PA14_13680	2,06		short chain dehydrogenase
PA14_05880	2,06		membrane-bound protease
PA14_28750	2,04		hypothetical protein
PA14_08570	2,04		16S ribosomal RNA
PA14_68290	2,04		C4-dicarboxylate transporter
PA14_55637	2,03		16S ribosomal RNA
PA14_70910	2,03		16S ribosomal RNA
PA14_59845	2,03		hypothetical protein
PA14_31470	2,03		AMP-binding protein
PA14_35520	2,02	bkdA2	2-oxoisovalerate dehydrogenase subunit beta
PA14_44440	2,02		cation-transporting P-type ATPase
PA14_62090	2,02		16S ribosomal RNA
PA14_13610	2,02		ABC transporter permeasse
PA14_44290	2,01	acnA	aconitate hydratase
PA14_20570	2,00		Chaperone
PA14_68260	2,00		c4-dicarboxylate-binding protein
PA14_60490	2,00		cytochrome c
PA14_13580	1,99		ABC transporter ATP-binding protein

Tabela S1 (**Continuação**). Genes induzidos na superexpressão de PA14_46810, segundo análise de RNAseq, organizada de acordo com a função dos produtos gênicos induzidos na superexpressão do fator sigma PA14_46810.

	Razão	Nome do	
Locus a	ALB06/ALB01	gene	Função ^b
PA14_27990	1,99		Sialidase
PA14_61950	1,99		hypothetical protein
PA14_26610	1,98		hypothetical protein
PA14_41320	1,98		tRNA-Leu
PA14_20580	1,97	amiC	aliphatic amidase expression-regulating protein
PA14_33300	1,95		hypothetical protein
PA14_16640	1,94		Lipoprotein
PA14_41800	1,94		transcriptional regulator
PA14_35490	1,93	lpdV	dihydrolipoamide dehydrogenase
PA14_46140	1,93		hypothetical protein
PA14_57990	1,92		hypothetical protein
PA14_70950	1,92	betB	betaine aldehyde dehydrogenase
PA14_50790	1,89		hypothetical protein
PA14_24760	1,87		hypothetical protein
PA14_13690	1,87		Methyltransferase
PA14_50480	1,86		flagellar basal body rod protein FlgB Add
PA14_14060	1,86		AMP-binding protein
PA14_43160	1,85		Transporter
PA14_51950	1,85		hypothetical protein
PA14_07660	1,84		hypothetical protein
PA14_16630	1,83		outer membrane protein, OmpA
PA14_38160	1,83		hypothetical protein
PA14_47120	1,81		hypothetical protein
PA14_38490	1,78	gnyL	hydroxymethylglutaryl-CoA lyase
PA14_39300	1,78	rbsR	ribose operon repressor RbsRAdd
PA14_50770	1,78		Transporter
PA14_03880	1,77	spuB	glutamine synthetase
PA14_50470	1,76	flgC	flagellar basal body rod protein FlgC
PA14_58300	1,74		two-component response regulator

^a Número atribuído no projeto de anotação do genoma de *P. aeruginosa* PA14 ((LEE et al., 2006)

^b Funções das proteínas codificadas por essas ORFs são indicadas segundo anotação do genoma de PA14(WINSOR et al., 2011).

Tabela S2. Genes reprimidos na superexpressão de PA14_46810, segundo análise de RNAseq, organizada de acordo com a função dos produtos gênicos. induzidos na superexpressão do fator sigma PA14_46810

PA14_46810	Razão		
Locus	ALB06/ALB01	Nome do gene	Função
PA14_08720	0,59	rplK	50S ribosomal protein L11
PA14_43940	0,58	sucD	succinyl-CoA synthetase subunit alpha
PA14_08820	0,58	fusA1	elongation factor G
PA14_08790	0,58	rpsL	30S ribosomal protein S12
PA14_28670	0,58	rpsL rpmI	50S ribosomal protein L35
PA14_08910	0,57	rpsC	30S ribosomal protein S3
PA14_73300	0,57	atpE	F0F1 ATP synthase subunit C
PA14_08920	0,57	rplP	50S ribosomal protein L16
PA14_09100	0,56	rpsD	30S ribosomal protein S4
PA14_73280	0,56	atpH	F0F1 ATP synthase subunit delta
PA14_30620	0,56	cup 11	AraC family transcriptional regulator
PA14_25650	0,56	fabD	malonyl-CoA-ACP transacylase
PA14_08840	0,56	rpsJ	30S ribosomal protein S10
PA14_25250	0,56	. p . 0	glyceraldehyde-3-phosphate dehydrogenase
	-,		DNA-directed RNA polymerase subunit
PA14_09115	0,56	rpoA	alpha
		•	•
PA14_25110	0,55	topa	DNA topoisomerase I
PA14_61980	0,55		hypothetical protein
PA14_14650	0,55	secF	preprotein translocase subunit SecF
			glucosaminefructose-6-phosphate
PA14_73170	0,55	glmS	aminotransferase
PA14_21175	0,55		hypothetical protein
PA14_17070	0,55	Tsf	elongation factor Ts
PA14_67040	0,55		ABC transporter permease
PA14_17060	0,55	rpsB	30S ribosomal protein S2
PA14_56300	0,54		Fumarase
PA14_32310	0,54		hypothetical protein
PA14_65160	0,54		hypothetical protein
PA14_61780	0,54		50S ribosomal protein L25
PA14_16530	0,54	lysS	lysyl-tRNA synthetase
DA 14 (1930	0.54		GTP-dependent nucleic acid-binding protein
PA14_61820	0,54		EngD cell division topological specificity factor
PA14_22010	0,53	minE	MinE
PA14_62720	0,53	rpsO	30S ribosomal protein S15
PA14_65080	0,53	-	hypothetical protein
PA14_09040	0,52	rplO	50S ribosomal protein L15
PA14_62000	0,52	hitA	ferric iron-binding periplasmic protein HitA

Tabela S2 (**Continuação**). Genes reprimidos na superexpressão de PA14_46810, segundo análise de RNAseq, organizada de acordo com a função dos produtos gênicos induzidos na superexpressão do fator sigma PA14_46810.

	Razão	Nome do	
Locus ^a	ALB06/ALB01	gene	Função ^b
PA14_65150	0,52	rplI	50S ribosomal protein L9
PA14_68720	0,52		hypothetical protein
PA14_08880	0,52	rplB	50S ribosomal protein L2
PA14_08900	0,51	rplV	50S ribosomal protein L22
			bifunctional
			phosphoribosylaminoimidazolecarboxamide
PA14_64200	0,51	purH	formyltransferase/IMP cyclohydrolase
PA14_52430	0,51		hypothetical protein
PA14_10360	0,51		hypothetical protein
PA14_09020	0,51	rpsE	30S ribosomal protein S5
PA14_63130	0,51		hypothetical protein
PA14_08850	0,51	rplC	50S ribosomal protein L3
PA14_08750	0,51	rplL	50S ribosomal protein L7/L12
PA14_67100	0,51		D-tyrosyl-tRNA(Tyr) deacylase
PA14_61990	0,51		hypothetical protein
PA14_61790	0,50	Pth	peptidyl-tRNA hydrolase
PA14_08860	0,50	rplD	50S ribosomal protein L4
PA14_09010	0,50	rplR	50S ribosomal protein L18
PA14_04690	0,50		hypothetical protein
PA14_02910	0,49		IclR family transcriptional regulator
PA14_16360	0,49		hypothetical protein
PA14_65170	0,49	rpsR	30S ribosomal protein S18
PA14_08870	0,48	rplW	50S ribosomal protein L23
PA14_08890	0,48	rpsS	30S ribosomal protein S19
PA14_18360	0,48		glycosyl transferase family protein
PA14_01930	0,48	pcaR	transcriptional regulator PcaR
PA14_65180	0,48	rpsF	30S ribosomal protein S6
PA14_19470	0,48	mqoA	malate:quinone oxidoreductase
PA14_09030	0,48	rpmD	50S ribosomal protein L30
PA14_42670	0,47		hypothetical protein
PA14_27780	0,47		ABC transporter permease
PA14_41200	0,47		tRNA-Asp
PA14_42690	0,47	speE	spermidine synthase
PA14_04710	0,46		hypothetical protein
PA14_62450	0,46	trmA	tRNA (uracil-5-)-methyltransferase
			iron ABC transporter substrate-binding
PA14_68900	0,45		protein

Tabela S2 (**Continuação**). Genes reprimidos na superexpressão de PA14_46810, segundo análise de RNAseq, organizada de acordo com a função dos produtos gênicos induzidos na superexpressão do fator sigma PA14_46810.

fator sigma PA	Razão	Nome do	
Locus ^a	ALB06/ALB01	gene	Função ^b
PA14_61850	0,45		TonB-dependent receptor
PA14_25900	0,44		trans-2-enoyl-CoA reductase
PA14_23330	0,44	rpsA	30S ribosomal protein S1
PA14_58570	0,44		outer membrane ferric siderophore receptor
PA14_02130	0,44		hypothetical protein
PA14_71890	0,43		coenzyme A transferase
PA14_02520	0,43		hypothetical protein
PA14_52420	0,43	rimO	ribosomal protein S12 methylthiotransferase
PA14_63120	0,43		hypothetical protein
PA14_09660	0,43		Amino acid biosynthesis and metabolism
PA14_17610	0,42	potD	polyamine ABC transporter
PA14_63460	0,42		tRNA-Sec
PA14_56850	0,41		Lipoprotein
PA14_44400	0,40		cytochrome c oxidase, cbb3-type subunit III
PA14_63990	0,40	speA	arginine decarboxylase
PA14_52250	0,40		two-component response regulator
PA14_64190	0,39	Fis	DNA-binding protein Fis
PA14_56870	0,38		hypothetical protein
PA14_05070	0,38		methionine biosynthesis protein
PA14_56830	0,37	icmP	metalloproteinase outer membrane
PA14_36200	0,37		ABC transporter substrate-binding protein
PA14_63110	0,37		S-adenosylmethionine decarboxylase
PA14_02140	0,37		hypothetical protein
PA14_69770	0,37	sutA	SutA
			hypoxanthine-guanine
PA14_61460	0,36		phosphoribosyltransferase
PA14_17640	0,36	potA	polyamine transport protein PotA
PA14_40770	0,36	cysI	sulfite reductase
PA14_44390	0,35		cytochrome c oxidase subunit
PA14_44370	0,34		cbb3-type cytochrome c oxidase subunit I
PA14_56840	0,34		hypothetical protein
PA14_35440	0,34	ansa	L-asparaginase I
PA14_07090	0,33	metK	S-adenosylmethionine synthetase
PA14_09240	0,33	pchD	pyochelin biosynthesis protein PchD
PA14_44380	0,33		cbb3-type cytochrome c oxidase subunit II
PA14_07110	0,33		ArsR family transcriptional regulator
PA14_61450	0,33		hypothetical protein
PA14_48400	0,32		hypothetical protein

Tabela S2 (**Continuação**). Genes reprimidos na superexpressão de PA14_46810, segundo análise de RNAseq, organizada de acordo com a função dos produtos gênicos induzidos na superexpressão do fator sigma PA14_46810

	Razão	Nome do	
Locus ^a	ALB06/ALB01	gene	Função ^b
PA14_08390	0,32	speD	S-adenosylmethionine decarboxylase
PA14_40780	0,30		hypothetical protein
PA14_63080	0,27	lldP	L-lactate permease
PA14_17630	0,27	potB	polyamine transport protein PotB
PA14_17620	0,26	potC	polyamine transport protein PotC
PA14_63090	0,22	lldD	L-lactate dehydrogenase
PA14_33680	0,21	fpvA	ferripyoverdine receptor
PA14_63100	0,18		Ferredoxin
PA14_31160	0,15		hypothetical protein
PA14_50750	0,14		hypothetical protein
PA14_35460	0,14		AGCS sodium/alanine/glycine symporter
PA14_31170	0,14		hypothetical protein

^a Número atribuído no projeto de anotação do genoma de *P. aeruginosa* PA14 ((LEE et al., 2006)

^b Funções das proteínas codificadas por essas ORFs são indicadas segundo anotação do genoma de PA14(WINSOR et al., 2011).

SÚMULA CURRICULAR

1. DADOS PESSOAIS

Nome: Larissa de Oliveira Magalhães

Local e data de nascimento: Goiânia - Goiás, 28 de março de 1988

2. FORMAÇÃO ACADÊMICA

2.1. Graduação

Universidade Federal de Goiás (UFG), Goiânia – GO, 2013. Graduação em Farmácia (Bacharelado)

2.1.1. Estágios de iniciação científica

Pesquisa e desenvolvimento de novos medicamentos com enfoque no perfil farmacológico e bioatividade do 4-nerolidilcatecol: da planta (extração e isolamento) ao medicamento (síntese e farmacotécnica de última geração). Realizado no Laboratório de Química Farmacêutica e Medicinal, Faculdade de Farmácia, UFG, Goiânia – GO. Orientador: Prof. Dr. Ricardo Menegatti. Agosto de 2009 a Dezembro de 2010.

Estudos de QSAR de inibidores triazolopirimidínicos da enzima diidroorotato desidrogenase de *Plasmodium falciparum* como novos candidatos a agentes antimaláricos. Realizado no Laboratório de Modelagem Molecular, Faculdade de Farmácia, UFG, Goiânia – GO. Orientadora: Prof. Dr. Carolina Horta Andrade. Janeiro de 2011 a dezembro de 2012. Trabalho de conclusão de curso.

2.2. Pós-graduação

2.2.1. Monitoria

Programa de Aperfeiçoamento de Ensino (PAE), Departamento de Bioquímica, USP, de Janeiro a Julho de 2014, Disciplina Biologia Molecular sob a supervisão da Prof. Dra. Suely Lopes Gomes e Prof. Dr. Sergio Verjovski-Almeida

Programa de Aperfeiçoamento de Ensino (PAE), Departamento de Bioquímica, USP, de Julho a Dezembro de 2014, Disciplina Bioquímica: Estrutura de Biomoléculas e Metabolismo, sob a supervisão da Prof. Dra. Flávia Carla Meotti e Prof. Dra. Regina Baldini

Programa de Aperfeiçoamento de Ensino (PAE), Departamento de Bioquímica, USP, de Julho a Dezembro de 2015, Disciplina Bioquímica: Estrutura de Biomoléculas e Metabolismo, sob a supervisão do Prof. Dr. Walter Terra e Prof. Dr. Maurício da Silva Baptista

3. OCUPAÇÃO

Bolsista de mestrado CAPES, de agosto de 2013 a julho de 2015

4. PUBLICAÇÕES

4.1 Artigos completos em periódicos

COSTA, E.A.; LINO, R.C.; GOMES, M.N; NASCIMENTO, M.V.M.; FLORENTINO, I.F; GALDINO,P.M.; ANDRADE,C.H.; REZENDE,K.R.; **MAGALHÃES,L.O.**; MENEGATT I, R. . Anti-inflammatory and antinociceptive activities of LQFM002 A 4-nerolidylcatechol derivative. Life Sciences (1973), v. 92, p. 237-244, 2013.

4.2 Resumos em congressos

MAGALHÃES, L. O.; BOECHAT, A.L.; BALDINI, R. Proteome analysis of an ECF sigma factor mutant in *Pseudomonas aeruginosa* PA14. In: 60° CONGRESSO BRASILEIRO DE GENÉTICA, 2014, Guarujá, SP.

MAGALHÃES, L. O.; ANDRADE, C. H. . Estudos de QSAR de inibidores da enzima diidrooroato desidrogenase de *Plasmodium falciparum* como novos candidatos a agentes antimaláricos. In: IX CONGRESSO DE PESQUISA, ENSINO E EXTENSÃO DA UFG (Conpeex), 2012, Goiânia, GO. Anais Eletrônicos do XX Seminário de Iniciação Científica da UFG, 2012.

MAGALHÃES, L. O.; BRAGA, R. C.; ANDRADE, C. H. Investigação da Atividade Antioxidante de Derivados do Ácido Cinâmico através de Métodos Computacionais. In: XVII Semana Científica Farmacêutica., 2011, Goiânia, GO. Livro de Resumos da XVII SCF., 2011.

MAGALHÃES, L. O.; GONCALVES, E. K.; NEVES, B. J.; ANDRADE, C. H. . Fragment-based QSAR Approach on a Series of Inhibitors of Dihydroorotate dehydrogenase: Insights for Design of new Antimalarial Agents. In: 6th Brazilian Symposium on Medicinal Chemistry (BrazMedChem 2012), 2012, Canela, RS. Abstract Book, 2012, 2012. p. SDD-41-SDD-41.

NEVES, B. J.; SOUSA, M. C.; **MAGALHÃES, L. O.**; ANDRADE, C. H. . CoMFA studies of a series of rhodanines inhibitors *of Plasmodium falciparum* enoyl-acp reductase. In: II Symposium on Drug Design and Development for Neglected Diseases., 2011, São Paulo. Abstracts Book, 2011. p. p.8-8.