• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.45.2018.tde-08042018-120458
Document
Auteur
Nom complet
Ronaldo Bezerra Nobre
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2017
Directeur
Jury
Druck, Iole de Freitas (Président)
Cerri, Cristina
Santos, Vinicio de Macedo
Titre en portugais
Sobre possibilidades de ensino e aprendizagem dos números irracionais no 8º ano do Ensino Fundamental
Mots-clés en portugais
Investigações matemáticas
Números irracionais no Ensino Fundamental II
Protagonismo dos estudantes
Resumé en portugais
Esta dissertação apresenta um trabalho didático desenvolvido com turmas de 8º ano do Ensino Fundamental visando uma introdução significativa aos números irracionais, tanto quanto ao enfrentamento de dificuldades conceituais inerentes ao tema, como quanto ao envolvimento ativo dos estudantes no seu próprio aprendizado. Para elaborar, aplicar e analisar as atividades didáticas foram utilizados como embasamentos teóricos principais: a tese de doutorado de Olga Corbo (CORBO, O., 2012) sobre os conhecimentos necessários para a exploração de noções relativas aos números irracionais na Educação Básica e textos sobre investigações matemáticas de pesquisadores portugueses, sob a coordenação de João Pedro da Ponte (PONTE, J. P., et al., 1998 e ABRANTES, P. et al., 1999). As atividades foram planejadas visando abordagens dos conteúdos ricas em significados e acessíveis à faixa etária alvo. Estudantes de 8º ano realizaram pesquisas e apresentações em grupos sobre o número de ouro e atividades investigativas para explorar propriedades características dos números racionais e irracionais: representação decimal, associação à medida de segmentos de reta, localização na reta numerada, infinidade e densidade nesta reta. Em 2017, novas turmas desenvolveram atividades investigativas ampliando os objetivos para incluir a noção de comensurabilidade de segmentos de forma a viabilizar um debate participativo sobre a demonstração da incomensurabilidade entre o lado e a diagonal de um quadrado elaborada na Grécia antiga. Tudo isso contribuiu para que os estudantes concebessem, de maneira significativa para eles, a necessidade de uma infinidade de novos números para além dos racionais.
Titre en anglais
Learning and teaching possibilities towards irrational numbers in the 8th grade of Elementary School
Mots-clés en anglais
Irrational numbers in Elementary Education II
Mathematical investigations
Student protagonism
Resumé en anglais
This dissertation presents a didactical work developed with 8th grade classes of Elementary School aiming a significant introduction to the irrational numbers in the sense that it confronts the conceptual difficulties related to the theme, as well the observation of the stimulating involvement of students in their learning process. In order to elaborate, apply and analyze the didactical activities, we considered as the main theoretical basis the doctoral thesis of Olga Corbo (CORBO,O., 2012) about the fundamental knowledge necessary for the exploration of irrational numbers in Basic Education and texts on mathematical investigations written by portuguese researchers and coordinated by João Pedro da Ponte (PONTE, JP, et al., 1998 and ABRANTES, P. et al., 1999). The activities were planned aiming to make the content approaches meaningful and accessible to the target age group. Eighth-grade students conducted researches and group presentations on the golden number and investigative activities to assess specific characteristics of rational and irrational numbers as: decimal representation, association to the measurement of straight segments, location in the numbered line, infinity, and density in this line. In 2017, new groups developed researches broadening the objectives to include the notion of commensurability of segments, in order to enable a debate in classroom about the demonstration of the incommensurability between the side and the diagonal of a square elaborated in ancient Greece. All of these steps contributed to the students understanding of the need for a multitude of new numbers besides rational ones.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2018-04-16
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2018. Tous droits réservés.