
Energy savings and performance
improvements with SSDs in the
Hadoop Distributed File System

Ivanilton Polato

Text Submitted

to the

Institute of Mathematics and Statistics

of the

University of São Paulo

for the

Doctoral Degree in Science

Program: Computer Science
Advisor: Professor Fabio Kon

This research was supported by
Fundação Araucária (Projeto DINTER UTFPR/IME–USP),

CAPES, and CNPq

São Paulo, October, 2016

Energy savings and performance
improvements with SSDs in the
Hadoop Distributed File System

This version of the thesis contains the changes suggested by the
Committee Members during the public defense of the original version of this work,
which occurred in Aug 29th, 2016. A copy of the original version is available at the

Institute of Mathematics and Statistics (IME) of the University of São Paulo (USP).

Committee Members:

• Prof. Dr. Fabio Kon (Advisor) – IME-USP

• Prof. Dr. Daniel Batista – IME-USP

• Prof. Dr. Denilson Barbosa – University of Alberta, Canada

• Prof. Dr. Fabio Costa – UFG

• Prof. Dr. Raphael Yokoingawa de Camargo – UFABC

Acknowledgements

First, I would like to thank my advisor Fabio Kon for his guidance and support to my research;
when I needed advice, Fabio kept my focus on the objectives. Fabio, I know we can collaborate for
a long time in future research.

I would like to thank Denilson Barbosa, which I consider my co-advisor, who welcomed me at
University of Alberta. I had such a good time in Edmonton, and could learn from his research and
suggestions. Denilson’s support to provide the infrastructure to the development of this work was
an enormous gesture of confidence. I also would like to thank Abram Hindle, who joined us and
introduced me to the energy-aware computation world. Abram’s analysis and insights were really
helpful.

Thank you to all my colleagues during this journey, from our IME research groups, our friends
from the Butantã’s apartment (folks from the last subway train of the night), my work colleagues
at UTFPR who always stood up for our CS department – DACOM.

This research received financial support from different foundations. I am thankful to Fun-
dação Araucária (DINTER UTFPR/IME-USP), to the Emerging Leaders in the Americas Program
(ELAP) from the Canadian Government, which granted me with a Sandwich scholarship, CAPES,
and CNPq.

Finally, I really would like to thank my family. You are the main reason I am here today. Love
you all! My wife and my kids, which understood the lonely road that I had to go and provided all
the support I needed, always with a smile: thank you so much! Mom, Dad, and my sisters: love you!

i

Abstract

Energy issues gathered strong attention over the past decade, reaching IT data processing infras-
tructures. Now, they need to cope with such responsibility, adjusting existing platforms to reach
acceptable performance while promoting energy consumption reduction. As the de facto platform for
Big Data, Apache Hadoop has evolved significantly over the last years, with more than 60 releases
bringing new features. By implementing the MapReduce programming paradigm and leveraging
HDFS, its distributed file system, Hadoop has become a reliable and fault tolerant middleware for
parallel and distributed computing over large datasets. Nevertheless, Hadoop may struggle under
certain workloads, resulting in poor performance and high energy consumption. Users increasingly
demand that high performance computing solutions address sustainability and limit energy con-
sumption. In this thesis, we introduce HDFSH , a hybrid storage mechanism for HDFS, which uses a
combination of Hard Disks and Solid-State Disks to achieve higher performance while saving power
in Hadoop computations. HDFSH brings, to the middleware, the best from HDs (affordable cost
per GB and high storage capacity) and SSDs (high throughput and low energy consumption) in a
configurable fashion, using dedicated storage zones for each storage device type. We implemented
our mechanism as a block placement policy for HDFS, and assessed it over six recent releases of
Hadoop with different architectural properties. Results indicate that our approach increases overall
job performance while decreasing the energy consumption under most hybrid configurations evalu-
ated. Our results also showed that, in many cases, storing only part of the data in SSDs results in
significant energy savings and execution speedups.

Keywords: Hadoop, HDFS, Hybrid Storage, Energy Efficiency, Solid-State Disk, SSDs, Distributed
File Systems, Parallel File Systems, Green Computing

ii

Resumo

POLATO, I.. Economia de energia e aumento de desempenho usando SSDs no Hadoop
Distributed File System. 2016. 87 f. Thesis (Doutorado) - Instituto de Matemática e Estatística,
Universidade de São Paulo, São Paulo, 2016.

Ao longo da última década, questões energéticas atraíram forte atenção da sociedade, chegando
às infraestruturas de TI para processamento de dados. Agora, essas infraestruturas devem se ajus-
tar a essa responsabilidade, adequando plataformas existentes para alcançar desempenho aceitável
enquanto promovem a redução no consumo de energia. Considerado um padrão para o processa-
mento de Big Data, o Apache Hadoop tem evoluído significativamente ao longo dos últimos anos,
com mais de 60 versões lançadas. Implementando o paradigma de programação MapReduce jun-
tamente com o HDFS, seu sistema de arquivos distribuídos, o Hadoop tornou-se um middleware
tolerante a falhas e confiável para a computação paralela e distribuída para grandes conjuntos de
dados. No entanto, o Hadoop pode perder desempenho com determinadas cargas de trabalho, re-
sultando em elevado consumo de energia. Cada vez mais, usuários exigem que a sustentabilidade e
o consumo de energia controlado sejam parte intrínseca de soluções de computação de alto desem-
penho. Nesta tese, apresentamos o HDFSH , um sistema de armazenamento híbrido para o HDFS,
que usa uma combinação de discos rígidos e discos de estado sólido para alcançar maior desempenho,
promovendo economia de energia em aplicações usando Hadoop. O HDFSH traz ao middleware o
melhor dos HDs (custo acessível por GB e grande capacidade de armazenamento) e SSDs (alto
desempenho e baixo consumo de energia) de forma configurável, usando zonas de armazenamento
dedicadas para cada dispositivo de armazenamento. Implementamos nosso mecanismo como uma
política de alocação de blocos para o HDFS e o avaliamos em seis versões recentes do Hadoop com
diferentes arquiteturas de software. Os resultados indicam que nossa abordagem aumenta o desem-
penho geral das aplicações, enquanto diminui o consumo de energia na maioria das configurações
híbridas avaliadas. Os resultados também mostram que, em muitos casos, armazenar apenas uma
parte dos dados em SSDs resulta em economia significativa de energia e aumento na velocidade de
execução.

Keywords: Hadoop, HDFS, Armazenamento Híbrido, Eficiência Energética, Discos de Estado
Sólido, SSDs, Sistema de Arquivos Distribuído, Sistemas de Arquivos Paralelo, Computação Verde

iii

Contents

Abbreviations vi

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Objectives . 3
1.2 Original Contributions . 3
1.3 Funding . 4
1.4 Publications . 4

2 Background 6
2.1 The Apache Hadoop Framework . 6
2.2 MapReduce . 8
2.3 HDFS . 9
2.4 YARN . 10
2.5 Storage Devices . 10
2.6 Green Computing . 13

3 Related Work 14
3.1 Hadoop Research . 14
3.2 Solid-State Drives on HDFS . 18
3.3 Energy and Green Computing Research . 19

4 Motivating and Grounding Experiments 21
4.1 Versions and Releases . 21
4.2 Benchmarks and Datasets Used . 23
4.3 Cluster Infrastructure . 24
4.4 Experiment Design and Methodology . 24
4.5 Results and Analysis . 26

4.5.1 Job Makespan . 26
4.5.2 Evidence of Changes in Hadoop’s Performance 29
4.5.3 Energy Performance . 30
4.5.4 Hadoop Source Code Analysis . 32

4.6 Final Considerations . 37

iv

CONTENTS v

5 HDFSH : a Hybrid File System 39
5.1 HDFSH Storage Model . 39

5.1.1 Block Placement Policy . 41
5.1.2 Storage Cost Model . 42

5.2 Experimental Methodology and Datasets . 43
5.3 Energy Consumption and Performance Analysis . 44

5.3.1 I/O-Bound Benchmark Results . 45
5.3.2 Results for the CPU-Bound Benchmarks . 48
5.3.3 Using SSDs as Temporary Storage Space . 49
5.3.4 Performance and Speedup . 50
5.3.5 Cost Model Analysis . 52

5.4 Final Considerations . 55

6 Discussion 57
6.1 Findings . 57
6.2 Threats to Validity . 60

7 Conclusions 62
7.1 Original contributions . 62
7.2 Future Work . 64

Bibliography 67

Acronyms

AFR Annualized Failure Rate.
BSP Bulk Synchronous Parallel.
FOB Fresh Out of Box.
HDDs Hard Disk Drives.
HDs Hard Drives.
IOPS Input/Output Operations Per Second.
MPI Message Passing Interface.
MTBF Mean Time Between Failures.
SNIA Storage Networking Industry Association.
SSDs Solid-State Drives.
TCO Total Cost of Ownership.
YARN Yet Another Resource Negotiator.

vi

List of Figures

2.1 Hadoop Releases History . 7
2.2 Hadoop Architectural Modifications . 8
2.3 Distributed MapReduce Paradigm (DG08) . 9
2.4 Hadoop Daemons . 10
2.5 Storage Devices Performance Studies (Kim13) . 12
2.6 Storage Devices Performance Studies (Kim15) . 12

3.1 Taxonomy Hierarchical Organization. 15

4.1 Hadoop Versions Genealogy Tree . 22
4.2 Cluster Infrastructure . 24
4.3 Hadoop Sort 10GB Job Makespan . 26
4.4 Hadoop Sort 48GB Job Makespan . 27
4.5 Hadoop Sort 256GB Job Makespan . 28
4.6 Hadoop WordCount Experiments Job Makespan . 28
4.7 Timeseries of Hadoop Mentions on StackOverflow . 29
4.8 Hadoop Sort Experiments Energy Consumption . 30
4.9 Hadoop Sort 256GB Energy Consumption . 31
4.10 Hadoop WordCount Experiments Energy Consumption 31
4.11 Sort Benchmark Energy and Job Makespan Split by Phase 35
4.12 WordCount Benchmark Energy and Job Makespan Split by Phase 35

5.1 HDFSH 10GB Hadoop Sort Results . 45
5.2 HDFSH 48GB Hadoop Sort Results . 46
5.3 HDFSH 256GB Hadoop Sort Results . 46
5.4 HDFSH Normalized Comparison of Sort Benchmarks 47
5.5 Energy Influence on Triple Block Replica (HD Configuration) 48
5.6 Energy Consumption on Join Benchmark . 48
5.7 Energy Consumption on K-Means Benchmark . 49
5.8 Energy Consumption Rates Using SSDzone as Temporary Space 50
5.9 Hadoop Performance: Multiple Releases over Configurations 51
5.10 Hadoop Performance: Multiple Releases over Configurations 51
5.11 HDFSH Cost Model Analysis: 256GB Sort Across 5 Configurations 53
5.12 HDFSH Cost Model Analysis: 256GB Sort over Time 53
5.13 HDFSH Cost Model Analysis: 48GB Sort over Time 54

vii

viii LIST OF FIGURES

5.14 HDFSH Cost Model Analysis of tmpSSD: 256GB Sort 54

6.1 Hadoop Sort 256GB Job Makespan . 57
6.2 Energy Consumption Results: Sort 48GB and 256GB 59

7.1 Energy Prediction Results on Multiple HDFSH Configurations 65

List of Tables

4.1 Hadoop releases used on the performance and energy consumption studies 23
4.2 Benchmarks and Dataset Sizes . 23
4.3 Default Values for Configuration Files . 25
4.4 Average Job Makespan Speedup Comparison (Times in s) 27
4.5 Average Energy Comparison (Energy values in kJ) 32
4.6 Pearson Correlation: Hadoop Size with Sort benchmarks 33
4.7 Correlation Summary: Size, Time, and Versions versus Energy 33
4.8 Number of Map and Reduce Tasks per Benchmark 34
4.9 Metrics in the top 60 models . 36
4.10 CKJM-extended raw values . 37

5.1 Definitions Used on the HDFS Hybrid Storage Model 40
5.2 Releases Used in the Experiments . 43
5.3 Benchmarks and Dataset Sizes Used in the Experiments 43
5.4 Configurations Used in the Experiments . 44
5.5 Sort Benchmarks: Average Energy Consumed (kJ) 47
5.6 Average Energy Consumed for the tmpSSD Configuration (kJ) 50
5.7 Sort Benchmarks: Average Job Makespan (s) . 52
5.8 Average Energy Reduction Percentage . 55

7.1 Key Findings . 62
7.2 Definitions Used on the Prediction Model . 64

ix

Chapter 1

Introduction

Two perspectives are relevant for big data analysis at the present: first, the 3 “Vs”, Volume,
Variety, and Velocity (Lan01; ZE11); second, hardware and software infrastructures capable of
storing and processing all the collected data. Over the last years, the volume and speed of data
creation consistently increased, consolidating “Big Data” (Whi12) as the reference to huge collections
of datasets that can not be processed using traditional tools and individual computers. A recent
study estimates that 90% of all data in the world was generated over the last two years (Bra13).
The International Data Corporation (IDC) predicted that from 2005 to 2020, the digital universe
will grow by a factor of 300, from 130 exabytes to 40,000 exabytes (VNOS12). The same study also
predicted that the digital universe will roughly double every two years and the storage market will
grow 55%. As a consequence, they expect that the discovery and analytics software market will
grow 33% in the next years, which represents an 8 billion-dollar business.

Yet concerning the “Vs”, data is being collected faster than ever. Take for instance the largest
social network today, Facebook: in the first quarter of 2016, almost 1.1 billion users were online
everyday, mostly on mobile platforms, with a growth of about 17% if compared to the last year
(Fac16); Twitter has today more than 300 million active users every month (Twi16). Daily, Facebook
handles more than 600TB of data while Twitter gathers around 12TB of data. At these rates,
including the whole internet, users spontaneously generate petabytes of data daily.

As data generation continues to grow in a fast scale, the solution to store such volume was to
increase the number of storage server facilities. This approach took advantage of hardware cost
reduction, especially the reduction in the manufacturing cost of magnetic disks, also know as Hard
Drives (HDs), a short form of Hard Disk Drives (HDDs). Companies are capable of storing data at
a relatively low-cost/GB by creating new data centers. Roughly speaking, today the cost per GB
of HDs is less than $0.05 (Smi12; Kom10), and this cost may be even lower when bundled with
services from specialized providers. Alongside the price reduction, the number of data centers has
grown consistently, increasing the availability of storage space. According to a recent report (Sta13),
“...70% of data center operators built a new site (data center) or renovated (expanded) a site in the
past five years.”.

While it is easy and relatively cheap to store data, the bottleneck for IT companies is the
information extraction process. The speed of data processing is currently much slower than the
actual data collecting process. Thus, one of the largest technological challenges in software systems
research is to provide mechanisms for manipulation and processing of large amounts of data in
acceptable time. Web services and social media can produce together an impressive amount of
data nowadays. These datasets may contain valuable information, and sometimes are not properly
explored by existing systems, since they are stored in a non-structured manner, using different
languages and formats, which, in many cases, are incompatible (Bak12; SAD+10). Yet, besides
the proper exploration of datasets, the speed within which companies can obtain information is
essential. IDC also states that, today, 23% of the digital universe is considered useful if tagged and
analyzed, and from this total, only 1% has already been analyzed.

To reduce the gap between data collection and analysis, research in the last decade set the

1

2 INTRODUCTION 1.0

focus on the data processing and information extraction side. Concerning the hardware, the use of
clusters and grids was already a common solution to achieve higher computing power. In addition,
clusters and grids have greatly benefitted from the price reduction and popularization of the x86
platform. As a consequence, x86 is the prevalent architecture on commercialized servers and personal
computers, and the use of commodity hardware became a relatively low-cost way to obtain an
infrastructure capable of performing large tasks that cannot be carried out by individual machines.
On the software side, the main concepts of parallel and distributed computing, such as concurrency,
synchronization, and fault tolerance, along with complexity abstraction, were properly implemented
in several paradigms, frameworks and platforms, popularizing the use of clusters in such computing
tasks by end users over the last years.

Nevertheless, data dependency and integrity, cluster load balancing, and task scheduling are
still considered major concerns of parallel and distributed approaches. Adding the possibility of
an almost certain machine failure, the use of these concepts becomes non-trivial to inexperienced
programmers. Several frameworks were released to abstract these characteristics and provide high
level solutions to end users (DPR+08; BEH+10; MAB+10; IBY+07). Some of them were built
over well-known programming models, such as Message Passing Interface (MPI), Bulk Synchronous
Parallel (BSP) and MapReduce. The latter is popular by its open source implementation Apache
Hadoop, now considered the “De Facto” platform for parallel and distributed big data processing,
used by major IT companies such as Amazon, Cloudera, Ebay, EMC2, Facebook, Twitter, Yahoo!,
and several others1.

In this context of big data analysis supported by the expansion in the data center market, data
storage and processing infrastructures encountered new challenges: energy consumption, power us-
age, and environmental impact. Focused on the information value, companies are concerned with
the extraction process costs. It is necessary to increase the cost/benefit ratio: enhance the perfor-
mance of the existing processes and infrastructures, reduce the carbon footprint of data centers by
reducing the energy consumption rates, and design energy profiles that comply with governmen-
tal regulations. Our main motivation relies on an inevitable side-effect of the data analysis field
expansion: the data centers increase in energy consumption. The number of data centers has con-
sistently grown, increasing the availability of computing nodes and storage space, and demanding
more power. Data centers maintenance costs and environmental impacts have consistently increased
with the demand for more energy to power and cool them. In fact, energy accounts for 30% of the
Total Cost of Ownership (TCO), a major and continuous cost for data centers (Ham10).

Recently, Green Computing (Mur08) and research on energy performance have focused on these
issues, developing new technologies and solutions. On top of hardware approaches, Solid-State
Drives (SSDs) are an interesting solution: they are fast with high performance rates and use far
less power than HDs. SSDs are already present in storage service offers, even though not common
yet. But there is a trend for the large-scale adoption of SSDs, supported by the constant price
reduction per GB seen in the last five years. The cost per GB, which used to be around 20 times
that of HDs, decreased, as for 2016, to around 5 times (Mea15; Mea16; All16). Merging these 3
factors – performance increase, energy consumption reduction and the recent cost drop – SSDs can
provide unique enhancements to data analysis platforms. However, these characteristics must be
properly incorporated into the existing software solutions, since most of the existing frameworks do
not sufficiently support the coexistence of HDs and SSDs in the same environment, and therefore
are not tailored to benefit from this possibility.

We propose in this thesis a hybrid storage approach for the Hadoop Distributed File System
(HDFS), called HDFSH , which seamlessly integrates both storage technologies – HDs and SSDs – to
create a highly-efficient hybrid storage system. HDFSH addresses the coexistence of HDs and SSDs
on the same storage space with the possibility of users setting the proportion of HD or SSD space
needed considering performance, cost and energy consumption. Our hybrid storage model splits the
file system into storage zones, wherein a block placement strategy directs file blocks to zones ac-
cording to these predefined configurations. This enables the use of different storage configurations

1http://wiki.apache.org/hadoop/PoweredBy (Visited on 15/10/2016)

http://wiki.apache.org/hadoop/PoweredBy

1.2 OBJECTIVES 3

for different workloads, thereby achieving the desired tradeoff between performance and energy
consumption. Our goal is to allow the user to determine the best configuration for the available
infrastructure, by setting how much of each storage device should be used during MapReduce com-
putations. Hadoop is one of the biggest projects from the Apache Foundation and rapidly evolved
since the first releases with more than 50 releases over the last 5 years. The project evolution led to
three development branches: Hadoop 1.x, which retained the original MapReduce characteristics:
resource management and data processing in the same layer; Hadoop 0.23.x and 2.x, which intro-
duced the Yet Another Resource Negotiator (YARN) resource manager, a new architectural layer,
separating the MapReduce programming paradigm from the resource management.

1.1 Objectives

The main goal of this research is to develop a hybrid storage model for HDFS that can properly
perceive the existing differences from storage devices – HDs and SSDs – on a Hadoop cluster,
reducing the energy consumption while increasing the performance on MapReduce workloads. This
objective is guided by the proposed research questions addressed by this thesis:

RQ1 : Are there benefits in adopting a hybrid storage approach using HDs and SSDs
for Hadoop?

RQ2 : Are there performance and energy consumption differences among the 3 Hadoop
development branches?

To answer these questions, we pursued the following objectives during our research:

• Study and understand the history of Apache Hadoop through its record of ver-
sions and releases: Hadoop is a large Apache project, which released more than 60 releases
over the last decade. It is necessary to understand the evolution and the architectural and
design choices made during the framework evolution to evaluate the impact on performance
and energy consumption;

• Study the performance of different versions and releases from different develop-
ment branches: the large number of releases on multiple branches justifies an investigation
to discover potential performance differences between releases and specially for a comparison
among different development branches;

• Analyze the effects of hybrid storage on energy consumption: the effect of SSDs on
energy consumption reduction on Hadoop workloads is yet unknown although the use of such
devices is already taking place on Hadoop clusters;

• Analyze the framework performance under different storage configurations and
workloads, mixing HDs and SSDs on a hybrid environment: our approach must be
properly assessed over different hybrid storage configurations to elucidate the differences in
the use of HDs and SSDs on the platform;

1.2 Original Contributions

The key original contributions we achieved in our research are the following.

1. A novel hybrid storage model for HDFS that takes into account the performance
profiles of HDs and SSDs. We developed, implemented, and tested a hybrid storage ap-
proach that seamlessly integrates HDs and SSDs into HDFS, creating separate storage zones
for each type of device. HDFSH allows the setting of the amount of each storage zone used
during MapReduce computations on Hadoop.

4 INTRODUCTION 1.4

2. An energy consumption profile for Hadoop under different workloads. We assessed
our approach over multiple Hadoop releases and discovered the energy consumption rates
under I/O- and CPU-bound workloads for different datasets. Additionally, we detailed the
energy consumption rates on the HDFSH when using different HD and SSD storage proportion
in the tested workloads.

3. A in-depth analysis of the Apache Hadoop framework. We discovered that the three
Hadoop branches and its versions perform differently under the same configurations and work-
loads. Some of the releases experienced performance problems, causing significant energy
consumption increases during the experiments. We tracked these differences, classifying the
releases according to their energetic performance.

4. Time, cost, and energetic models for our approach. We developed a cost model, al-
lowing users to calculate the storage space cost. These models will allow users to have a total
cost estimation of their computations on Hadoop clusters.

1.3 Funding

Our project was selected as one of the award recipients of the Emerging Leaders in the Americas
Program (ELAP) 2013-2014 Award, granted by the Canadian Bureau for International Education
(CBIE) on behalf of the Department of Foreign Affairs Trade and Development, Canada (DFATD),
in the form of a scholarship for graduate students. This research received a valuable support from
Professor Denilson Barbosa from the Computer Science Department at the University of Alberta,
Canada. Professor Denilson co-supervised this research during five months at the University of Al-
berta (November/2013 — March/2014) providing the infrastructure for the experiments performed
in this thesis. The infrastructure was used until the conclusion of our experiments, in the beginning
of 2016, and the collaboration with the University of Alberta still continues.

1.4 Publications

This research produced relevant scientific publications on the topics investigated and the results
achieved:

Paper 1: POLATO, I.; RÉ, R.; GOLDMAN, A.; KON, F. . “A comprehensive view of Hadoop
research – A systematic literature review ”. Journal of Network and Computer Applications,
v. 46, pp. 1-25, 2014.

We conducted a systematic literature review, following a previously designed protocol, to analyze
Hadoop research within a timeframe. Starting with more than 1,500 papers including journals and
conferences, we ended up deeply analyzing more than 100 papers in the final selection, developing a
taxonomy of the Hadoop research from 2008 until 2013. This paper was used as an initial guideline to
possible research topics regarding Hadoop, which later was directed to the hybrid storage approach.

Paper 2: GOLDMAN, A. ; KON, F. ; PEREIRA JUNIOR, F. ; POLATO, I. ; PEREIRA, R. F. .
“Capítulo 3: Apache Hadoop: Conceitos teóricos e práticos, evolução e novas possibilidades.”
In: SOUZA, A. F.; CESAR JUNIOR, R. M.; GALANTE, R;. (Org.). XXXI Jornadas de
atualizações em informática. 1ed.Porto Alegre: SBC, 2012, pp. 88-136.

This book chapter was written as a basic tutorial for students starting in the Hadoop framework.
It describes the Hadoop history presenting its main components with educational examples, from
the installation and deployment modes to the development of a simple MapReduce application
using Hadoop.

1.4 PUBLICATIONS 5

Paper 3: POLATO, I.; BARBOSA, D.; HINDLE, A.; KON, F. . “Hadoop branching: Architectural
impacts on energy and performance.” In: 2015 Sixth International Green and Sustainable Com-
puting Conference (IGSC), 2015, Las Vegas. 2015 Sixth International Green and Sustainable
Computing Conference (IGSC). p. 1-4.

This short paper presents a summarized version of the grounding experiments performed on 12
initially selected Hadoop releases. We also presented a source code analysis conducted to explain the
changes in the power consumption in different Hadoop releases due to architectural modifications
with the insertion of the YARN resource manager.

Paper 4: POLATO, I.; BARBOSA, D.; HINDLE, A.; KON, F. . “Hadoop energy consumption
reduction with hybrid HDFS.” In: the 31st Annual ACM Symposium, 2016, Pisa. Proceedings
of the 31st Annual ACM Symposium on Applied Computing - SAC ’16. New York: ACM
Press, 2016. p. 406-411.

This is the paper that presents the main results achieved during our research. It illustrates the
HDFSH research and the results achieved when using the hybrid storage space. We analyzed the
changes in power consumption and performance increase concerning the approach over 6 Hadoop
releases from the 3 development branches.

The remainder of this text is organized as follows. Chapter 2 presents the background concepts;
Chapter 3 discusses related work; Chapter 4 introduces the grounding experiments which guided
the modeling of HDFSH ; Chapter 5 presents the HDFSH hybrid storage model, development, eval-
uation, and results; Chapter 6 discusses our results, pointing out the key findings and threats to
the validity of our approach; finally, Chapter 7 delineates our conclusions and future works that
can spawn from this thesis.

Chapter 2

Background

Apache Hadoop is best known for being the most famous and open-source implementation of
Google’s MapReduce computing model and caught the attention of both the academic and industrial
communities. The major reasons for its wide adoption are related to its scalability, fault tolerance,
and the ability to perform parallel and distributed computations on commodity computing clusters.
In this chapter, we present an overview of the background concepts that guided our studies on the
Apache Hadoop and its subsystems MapReduce and HDFS.

2.1 The Apache Hadoop Framework

Parallel and distributed computing currently have a fundamental role in data processing and
information extraction on large datasets. Over the last years, commodity hardware became part
of clusters, as the x86 platform copes with the need for having a good cost/performance ratio,
while decreasing maintenance costs. Alongside, several programming models and frameworks were
developed to promote the use of grids and clusters to perform computations in a distributed and
parallel way. We decided to investigate the Apache Hadoop framework, motivated by its wide
adoption by the communities of developers, users, and researchers.

The MapReduce paradigm (GGL03; DG04), through its open source middleware implemen-
tation, Apache Hadoop, comprises a popular approach to processing large datasets. Hadoop is a
relatively low-cost way to obtain an infrastructure capable of carrying out massive computations
with a high level of parallelism due to its ability to achieve high computing power by allowing the
use of commodity hardware – although not mandatory – in large-scale clusters. At the beginning
it was exclusively based on the MapReduce paradigm, it uses a map function that generally filters
and sorts the input data, and a reduce function, responsible for summarizing the results.

The Hadoop middleware framework has four major components: the Hadoop Common is the
core system that provides support for the other three modules with common utilities; the Hadoop
Distributed File System (HDFS), a block file storage, designed to reliably hold very large datasets
using data replication (SKRC10); MapReduce, a system for parallel processing of large data sets
using the homonymous programming paradigm; finally, the more recent component, the YARN
resource manager and scheduler, which is included in Hadoop 0.23.x and 2.x releases.

Hadoop is now one of the largest projects from the Apache Foundation and rapidly evolved
since the first releases: it had more than 70 releases since it was made a top-level Apache project,
in January 2008. Figure 2.1 presents the Hadoop versions and its release history. In December
2011, Hadoop reached an important milestone: version 1.0.0 was released, bringing stability and
popularity to the framework. At the same time, a new component named MapReduce 2 was be-
ing developed, which was later included in two of the three development branches. The “evolved”
MapReduce paradigm was in fact part of an important component in the Hadoop project: the YARN
resource manager. To accommodate such component, the Hadoop project went through an archi-
tectural modification, creating along the process, three development branches. The first branch –
1.x – contains the original Hadoop project, focused exclusively on the MapReduce paradigm. From

6

2.2 THE APACHE HADOOP FRAMEWORK 7

Figure 2.1: Hadoop Releases History

late 2011 on, the YARN component was shipped on the Hadoop 0.23.x releases. A few months
later, branch 2.x was created. These two branches derived from branch 1.x, but suffered several
architectural changes to receive the newly developed Yet Another Resource Negotiator (YARN),
the result of a separation between the MapReduce processing engine and the resource management,
previously implemented together. The major claimed innovation was the multi-tenancy concept,
allowing several users to perform jobs on the same MapReduce cluster. Additionally, YARN was
not tied only to MapReduce applications, allowing other processing models, such as message passing
and interactive applications. Figure 2.2 shows the new layer introduced by the YARN development
and the separation of the resource management and data processing modules.

8 BACKGROUND 2.2

Figure 2.2: Hadoop Architectural Modifications

2.2 MapReduce

The MapReduce programming paradigm, now highly used in the context of Big Data, is not
new. One of the first uses of this paradigm was on the LISP programming language. It relies ba-
sically on two functions, Map and Reduce. The first generates maps based on a given user-defined
function, and the second groups Map outputs together to compute an answer. The paradigm is very
useful when dealing with batch programs where data is manipulated in a sequential way. Recently
the MapReduce paradigm attracted attention because of its applicability to parallel computing.
Google’s MapReduce composed initially of the GFS distributed filesystem (GGL03) and their im-
plementation of MapReduce (DG04), brought to the fore the use of the simple and consolidated
functions Map and Reduce in parallel and distributed computing using Java and C++ libraries.
Additionally, the paradigm feeds the Reduce function with the Map function results. This enables
parallelism since partitioned portions of data may be fed into different instances of Map tasks
throughout the cluster. The results are gathered, used as inputs to the Reduce instances, and the
computation is accomplished. The great novelty here is that the approach hides from users a lot
of the complexity of parallelization and distribution. Users can focus on the functionality of their
programs and the framework abstracts the complexity and controls the infrastructure.

Based on this novel approach, Doug Cutting, an employee of Yahoo! at the time, and Mike Ca-
farella, a professor at University of Michigan, developed Hadoop, later called the Apache Hadoop
framework. It is an open source implementation of Google’s MapReduce approach. It uses the same
idea from Google: hiding complexity from users, allowing them to focus on programming the so-
lution. Mostly known by its MapReduce implementation, Apache Hadoop also has an ecosystem
composed of several applications, ranging from data warehousing to a data flow oriented program-
ming language. The Apache Hadoop framework provides solutions to store, manipulate and extract
information from Big Data in several ways. The framework has evolved over the last few years and
promotes data integrity, replication, scalability, and failure recovery in a transparent and easy-to-use
way. All these factors have made Apache Hadoop very popular both in academia and in industry.

The data processing strategy employed by Hadoop MapReduce relies on the same two primitive
functions: Map and Reduce. Behind this simple abstraction is a single fixed data flow. A MapReduce
job is divided into Map and Reduce tasks, and assigned to idle slots of workers according to these
two stages. Thus, there are two types of workers, Mappers and Reducers. Each input data block
will be processed by a Mapper, resulting in intermediate output, which is locally sorted, optionally
combined from key-value pairs sharing the same key, and stored in local disks of the Mappers. The
Reduce phase starts as soon as there are enough Map outputs to start a Reduce task. By default,
when 5% of the Map tasks are complete, the scheduler assigns Reduce tasks to workers. The data
transfer is performed by each Reducer that pulls and shuffles intermediate results using a one-to-one
shuffling strategy. Reducers are responsible for reading intermediate results and merging them to
group all values with the same keys. Subsequently, each Reducer applies Reduce to the intermediate
values considering these keys to produce the final output that is stored in HDFS. Figure 2.3 presents

2.3 HDFS 9

Figure 2.3: Distributed MapReduce Paradigm (DG08)

the original distributed MapReduce as conceived by its authors, later implemented on Hadoop.
Both job and task control are in charge of the Hadoop daemons. Two daemons are responsible

for the MapReduce job workflow in Hadoop. The master or head node of the cluster runs a dae-
mon called JobTracker (JT), which is responsible for controlling the job metadata, status and job
scheduling. Each slave node in the Hadoop cluster runs a TaskTracker (TT) daemon, which is re-
sponsible for executing the assigned job tasks (Maps or Reduces), reading from and writing data to
the HDFS. Jobs are submitted to the JobTracker instance, which designates the TaskTracker work-
ers and controls job scheduling and progress. The MapReduce data processing engine runs on top
of the HDFS, generally reading file blocks on Map tasks and writing file blocks with the Reducers’
results. These daemons are associated with other HDFS control daemons explained ahead.

2.3 HDFS

The Hadoop Distributed File System is the block storage layer that Hadoop uses to keep its
files. Every other layer on Hadoop runs on top of it. HDFS was designed to hold very large datasets
reliably using data replication (SKRC10). This allows HDFS to stream large amounts of data to user
applications in a reasonable time. Its architecture is composed of two main entities: NameNode and
DataNodes, which work in a master-slave fashion. NameNode is responsible for keeping metadata
about what and where the files are stored in the file system. DataNodes are responsible for storing
the data itself. HDFS works as a single-writer, multiple-reader file system. When a client opens a
file for writing, it is granted a lease for the file and no other client can write to the file until the
operation is completed. Additionally, after the file is closed, the bytes written cannot be altered
or removed except that new data can be added to the file by reopening the file for append. This
process works well on the Hadoop distributed multitask approach. Hadoop reads input blocks from
HDFS for each job Map task, which are processed and stored locally on disks from the DataNodes.
The intermediate results are pulled and distributed to the Reduce tasks. When the processing is
complete the results are written back in the HDFS.

This file system works on top of the operating system’s file system. Using configuration files and
block placement policies, HDFS can place the blocks on the specific physical disks and directories,
controlling where each block is stored and its copies replicated. HDFS also works with daemons on
the head node and its workers. The NameNode (NN) daemon runs on the master node, managing
the file system namespace, mapping the file blocks placement, and their replication, according to a
property set on the configuration files. The default replication factor is 3, meaning that the original

10 BACKGROUND 2.5

block will have two more copies located on different machines of the cluster. Each worker node
runs a DataNode (DN) daemon, which controls the locally stored blocks, providing the metadata
about them. These daemons control the storage layer of Hadoop, providing services to the upper
levels, such as the MapReduce engine. Figure 2.4a presents the logical organization of the Hadoop
daemons. The head node runs both the NameNode and JobTracker daemons, while the workers run
the DataNodes and the TaskTrackers daemons on releases 1.x. Notice the difference introduced by
YARN, explained next.

(a) Hadoop 1.x releases (b) Hadoop 0.23.x and 2.x releases

Figure 2.4: Hadoop Daemons

2.4 YARN

With the introduction of YARN in Hadoop, two development branches were created. Hadoop
2.x releases were derived from the 0.23.2 release. The major difference is that some components
were re-written to enable support for features such as HDFS Federation, which allows multiple,
redundant NameNodes acting together. This is a solution to the single instance of NameNode, a
well-known single point of failure on Hadoop, since with a NameNode failure, the whole file system
becomes unavailable until its recovery. Releases 0.23.x does not include such feature.

The YARN resource manager was introduced by creating a new layer between the file system
and the distributed data processing layer. On Hadoop 1.x releases, the MapReduce engine was
responsible for job execution as well as resource allocation. From releases 0.23.x and 2.x on, YARN
became responsible for resource management and controlling the applications submitted to Hadoop
clusters. YARN brought the multi-tenancy possibility to the framework, a feature where multiple
user accounts can submit jobs at the same time to a Hadoop cluster. Consequently, the MapReduce
daemons JobTracker and TaskTracker were modified to accommodate such changes. On the head
node, they are called Resource Manager (RM) and Application Master (AM). The Resource Man-
ager component is responsible for controlling resource allocation for the cluster, since there is the
possibility of parallel job submission from different users. The Application Master is responsible for
the control of each application submitted to the cluster. For each MapReduce job submitted to a
YARN Hadoop cluster, a new instance of the Application Master daemon is created. The worker
nodes daemon were also modified accordingly and named Node Manager, which is the equivalent
to the TaskTracker on releases 1.x. Figure 2.4b presents the daemons on YARN releases.

2.5 Storage Devices

Nowadays, a major part of the production clusters in data centers use regular magnetic HDs
as their main storage devices. The main reason for this large-scale use is mainly the low price of
these devices. Over the years, the cost/GB decreased constantly. Today, it is possible to buy a 4TB
hard drive for less than two hundred dollars, which gives us the cost of less than $0.05/GB for the
final consumer. If we add the cost of storage services, the price will not increase beyond $0.10/GB
(Goo14).

2.5 STORAGE DEVICES 11

Even though magnetic disks are inexpensive, this does not imply poor manufacturing quality.
Actually, hard drive manufacturers have rigid quality control and assurance. Several studies con-
cerning the durability and the analysis of failure metrics on hard drives were conducted over the
last years. Most of these studies show that the Mean Time Between Failures (MTBF) and the
Annualized Failure Rate (AFR) are three to four times lower than that specified by the manufac-
turers (SG07). Another study by (PWB07) pointed that the AFR for individual drives in a large
population ranges from 1.7% for devices in the first year to 8.6% for three-year old devices. This
means that hard drives will fail, and although this is unpredictable, the failure probability is low,
less than 10% for a three-year old HD. The major problem occurs when we put together a very large
number of drives into a storage server, and several servers into a data center. Hardware vendors can
put more than 2,000 drives into one single storage server. With this in mind, failure is not a rare
possibility. Hard drives will fail every day in a large data center, independently of their reliability.

As an alternative to the HDs, SSDs are becoming more popular every day. Despite the fact
that SSDs are not new (Ren14), over the last five years, it was noticeable the increase on the
use of SSDs. The first developments towards the modern SSDs date from the early research about
storage systems in the 1950s. Late in the 1970s, IBM developed the first SSDs using semiconductors,
but due prohibitive manufacturing cost, the idea was put aside. It was recently, in the late 1990s
and beginning of the 2000s that these devices started to be developed and manufactured at scale,
using flash-based memories. Recent developments in the last five years produced a wide variety of
such devices using several communication interfaces such as Serial ATA (SATA) and PCI Express.
Although the price of solid-state drives has decreased significantly over the last three years, the
price is still high when compared to HDs. In 2014, the cost/GB of the SSDs sitted between $1.00
and $1.50, and there was expectations that it would decrease to less than $1.00/GB by the end of
the year (Hac14). This would represent around 20x the cost/GB for the HDs. From this perspective,
the cost on SSDs could still be considered prohibitive for general purpose use. But, only two years
later, this scenario changed, where the SSD costs dropped substantially, and sit around 4 to 5 times
the cost/GB of HDs (Mea15; All16), being expected to reach 3x the price of HDs cost/GB in 2017.
This presents a new scenario, where the use of SSDs is quickly becoming common.

Although SSDs use modern technologies, completely different from HDs, they are still susceptible
to failures. Few studies have been developed regarding SSDs failure rates, and the manufacturers
do not clearly publish this information. Intel Corporation presented a study showing that SSDs
have failure rates lower than 1% for first year devices (Int11). An ongoing research presents a major
concern related to SSD failures due to power outages (Lei13). Most of the devices studied so far are
not capable of surviving tests with multiple power outages, leading to a complete loss of the stored
data. Finally, a study from 2011 points that with newer technologies, SSDs have a higher reliability
than HDs, and recommends the use of hybrid environments, mixing HDs and SSDs (Tom11).

While there are still significant differences in the price of these devices, the performance differ-
ences of SSDs and HDs shows an even wider gap, but on the opposite side. While most of the SSDs
available today are capable of reading random blocks at throughput rates between 250MB/s and
400MB/s, the fastest HDs have a read throughput of less than 170MB/s (Tom13). If we consider
the read access times from HDs, including the rotational latency, HDs spinning at 7200RPM have
response times in the 11ms range on average. Compared to the SSDs, which have response times
around 0.5ms, there is a significant difference.

Another recent study developed by the Storage Networking Industry Association (SNIA) (Kim13),
shows the comparison between HDs, SSHDs, and SSDs. The SSHDs are a class of devices that in-
clude a small NAND flash memory integrated (generally between 4 and 32GB) in the regular HD.
These devices are also known as Hybrid HDs. Figure 2.5 reproduces one of the main tables of the
document. The table presents three classes of devices – regular HDs and SSHDs, client SSDs, and
enterprise SSDs – and their benchmarks in terms of Input/Output Operations Per Second (IOPS),
throughput and response time. The author also separated the IOPS results into two sets: devices
that receive a complete purge and have no write history, classified as Fresh Out of Box (FOB),
and the devices that were not purged at all. The tests perform reading and writing operations, in

12 BACKGROUND 2.5

Figure 2.5: Storage Devices Performance Studies (Kim13)

random and sequential modes. From Figure 2.5, take for instance the client SSDs. These devices are
developed for end-users, who do not have special high-performance requirements. For comparison
purposes, we choose two devices that use regular SATA3 interfaces, which are common in commod-
ity hardware nowadays. Comparing the 7200RPM HD on the table with the SATA3 SSD listed, we
see that the SSD can make 20 times more writing IOPS than the HD, and more than 220 times
more reading IOPS than the HD. In the mean case, using 65% random reads and 35% random write
operations the SSD can perform up to 25x more IOPS than the HD. Concerning throughput rates,
in the same case the SSD is more than 2x faster than the HD on writing operations, and around
4x faster on reading operations. Even if we compare the 15K RPM SAS HD, the performance
differences are still significant.

Figure 2.6: Storage Devices Performance Studies (Kim15)

The same study was updated two years later, in 2015 (Figure 2.6). It shows the surprising
evolution in the SSD industry. For some devices, the number of IOPS and the bandwidth increased
greatly – specially in the client SSDs – accentuating the large performance differences between HDs
and SSDs. We must point out that such performance gap between HDs and SSDs is a result of
their conception and architecture: one is composed of magnetic disks with mechanical parts such as
a motor and reading heads, while the other is a NAND flash-based system. For our research, this
difference is important, but even more important is the systems adaptation to accommodate these

2.6 GREEN COMPUTING 13

devices properly. Incorporating such different technologies, in a suitable way, achieving better use
of each device is our challenge. The SSHDs devices, which combines in the same device both SSD
and HD technologies were not tested with our approach, although they can improve performance
by storing the most frequently accessed data in their NAND flash memory.

Besides the performance and cost/GB discussions, we also have to consider the power consump-
tion of HDs and SSDs, and their impact on several aspects. First, the energy costs of powering and
cooling data centers represent one of the major costs annually, reaching approximately 25 to 30%
of the Total Cost of Ownership (TCO) of a data center (Ham10). While SSDs are still somewhat
expensive in the cost/GB and have a limited storage space, they demand less power and have better
performance than HDs. On average, an SSD needs about 10x less power than an HD on idle mode,
and up to 3x times less power than HDs at maximum write throughput (Tom13). From this point
of view, the use of SSDs can be more cost effective in terms of power in the long run. Yet, besides
the lower power requirements, SSDs generate less heat than HDs, which are constantly spinning,
even in idle mode. Thus, in addition, SSDs also help saving energy used by cooling systems, such
as air conditioning.

Although solid-state drives are not the default storage devices yet, there is an increasing demand
for the use of SSDs, balancing the overall costs, including initial cost/GB, performance, durability
and energy consumed. There are several tools that can calculate the TCO for data centers under
different scenarios using HDs and SSDs, but this is out of our scope. Our research intends to
develop an appropriate environment to achieve the best performance when using SSDs on hybrid
environments along with HDs, taking into account makespan performance and energy needs. To
achieve our objective, we propose a set of modifications to the Hadoop Distributed File system
to properly accommodate such different devices transparently to the end-user after the proper
configurations.

2.6 Green Computing

Although not new, the term Green Computing became increasingly important over the last
decade. Energy consumption is a timely and important topic: more than ever, data is easily gathered,
stored, and processed. With the constant reduction on hardware cost, the number of data centers
increased substantially in the recent past. Consequently, the energy consumption attributed to
computing processes climbed rapidly. At the same time, energy costs have also increased due to
its tightly coupled production using natural resources. All this context brought to light the Green
Computing research in Computer Science. There is an actual need for efficient energy use for
computing since its impact on TCO is the larger portion of the cost matrix of a data center today.

Murugesan (Mur08) defines Green Computing as “the study and practice of designing, manufac-
turing, using, and disposing of computers, servers, and associated subsystems – such as monitors,
printers, storage devices, and networking and communications systems – efficiently and effectively
with minimal or no impact on the environment.” This definition is important because it sheds light
on several research topics from software engineering to big data processing explored in the search
for energetic efficiency. In the Green Computing research area, energy profiling represents an im-
portant topic: it investigates the behavior of software execution under different environments and
workloads to generate an energy consumption profile of a given platform, software or infrastructure.
Our work is heavily based on the energy profiling approach for the Hadoop platform, in search for
increasing energy consumption efficiency in a hybrid storage environment while processing data
using the MapReduce paradigm.

Chapter 3

Related Work

The Apache Hadoop framework became the most popular platform to process big data using the
MapReduce paradigm. Supported by large companies such as Yahoo!, Facebook, Amazon, Cloud-
era, among others, Hadoop research was motivated by the need for new features and improvements
of existing components. Our main research topic connects two Hadoop subjects: (1) Storage and
Replication and (2) Energy Management. We developed practices involving different types of de-
vices, changing the storage management layer in HDFS. Such modifications are mainly concerned
with the energy consumption decrease as a consequence of SSD performance. We noticed that most
of the research related to our work are isolated into these two subjects. On the one hand, Hadoop
performance research increases performance through several means: component improvement, new
features design, changing computation scalability; nevertheless, the results achieved are not con-
cerned with the energetic impact on the platform. On the other hand, most of the energy-aware
research on Hadoop is related to the holistic view of the infrastructure, concerned with data center
zoning techniques, reducing energy consumption by shutting down racks or nodes, or even moving
data into hot and cold storage zones. In the following sections, we analyze the Hadoop project in
these related areas.

3.1 Hadoop Research

Hadoop had a fast evolution with significant changes over the last years. Such a rapidly growing
project received attention from the research community. The result is the large corpus of Hadoop
research produced since 2008. To investigate this scenario and have a comprehensive view of the
project and its components, we conducted a systematic literature review focused on the main re-
search on Apache Hadoop and the contributions developed by these works (PRGK14). One of the
objectives of such literature review was the proposition of a taxonomy and classification of the re-
lated research literature into categories. Our taxonomy was based on the project structure proposed
by the Apache Hadoop developers. As a result, the taxonomy grouped the analyzed studies into
four major categories related to the framework’s architecture: MapReduce, Storage, Ecosystem,
Miscellaneous. The first category, MapReduce, includes studies that develop some solution involv-
ing the paradigm and its associated concepts, like scheduling, data flow, and resource allocation.
The Data Storage & Manipulation category includes studies comprising HDFS, gathering studies
involving storage, replication, indexing, random access, queries, research involving DBMS infras-
tructure, Cloud Computing, and Cloud Storage. The third category includes studies containing new
approaches to the Hadoop Ecosystem, including papers related to both existing and new compo-
nents created to cope with specific classes of problems. Finally, the last category received studies
that did not fit well in the other three categories, including research involving GPGPU, cluster
energy management, data security, and cryptography. Figure 3.1 shows the final organization of our
classification effort. We were able to fit the selected papers into one or more correlated categories,
which promoted a general view of the areas in the framework that received more contributions
from 2008 to 2014. We investigated each selected paper in detail, and summarized the results into

14

3.1 HADOOP RESEARCH 15

Figure 3.1: Taxonomy Hierarchical Organization.

sections of our systematic review. This was our initial effort to have an overview of the Hadoop
research, which directed us into the storage and energy management Hadoop areas.

MapReduce: Scheduling, Data Locality and Resource Allocation

Hadoop performance (makespan reduction) is a well explored area, with most of the research
concentrated on this topic. Scheduling is considered crucial to Hadoop performance. In this sense,
the selected papers that were allocated in the scheduling, data flow, and resource allocation cate-
gories are mainly concerned with this issue. Some works propose multi-queue schedulers to im-
prove performance (ZWM+12; TZHZ09; KKVR12). Other authors use different approaches to
achieve it, such as the data locality aware schedulers (ZBSS+10; HLS11; ZFF+11; HS11; ZWYD12;
HRS12; IJL+12; ZZF+11; YYH11; TZSC11), which are concerned with the correct allocation and
placement of Map and Reduce tasks. Performance problems may also be tackled using histor-
ical data from cluster nodes, which allows, e.g., the speculative execution of MapReduce tasks
(ZKJ+08; LWH11; RD11; CZG+10). Scheduling in heterogeneous clusters is also an important
topic addressed by some studies (TZHZ09; ACRV12; KKVR12). Ultimately, some approaches de-
velop mechanisms of reuse of intermediate data among MapReduce jobs using common datasets
(KKVR12; NPM+10; SLT11).

Data locality as a performance issue has also been studied in Hadoop: He et al. (HLS11) propose
a new scheduler with the premise that local Map tasks are always preferred over non-local Map tasks,
no matter which job a task belongs to. Thus, it improves performance by avoiding data transfer
in Map tasks, which may degrade job execution performance. Zhang et al. (ZZF+11) propose a
scheduling method called next-k-node scheduling (NKS) that improves the data locality of Map
tasks. The scheduler calculates a probability for each Map task in a job, generating low probabilities
for tasks that do not have their input data not stored locally. In this way, it reserves tasks with
lower probabilities to the nodes holding their input data, improving data locality. Partitioning
skew – the case where the computational load is unbalanced among Map and/or Reduce tasks,
generally causing performance degradation – is a problem that is present in some MapReduce
applications. Hammoud et al. (HS11) present another approach discussing the data locality problem
that deals specifically with Reduce tasks. The Reduce phase scheduling is modified to become aware
of partitions, locations, and size, to decrease network traffic, increasing overall job performance; the
work of Zhang et al. (ZWYD12) also deals with the Reduce tasks data locality by proposing a two-
phase execution engine of Reduce tasks to cope with remote data access delays that may degrade
system performance.

16 RELATED WORK 3.1

Regarding the Hadoop MapReduce data flow, several works improve performance (WQY+11;
VBBE12; HWL11; IJL+10; KBHR12; VCC11; VCKC12; ZC11; LMA+10) or augment features to
meet specific requirements (EER11; LAY11; BHBE12; ELcF10; GC12; LZZ12; BWR+11; ZGGW11).
Hadoop data flow has already been changed in several ways: Wang et al. (WQY+11) propose an ac-
celeration framework that overlaps the Shuffle, Merge, and Reduce phases, increasing the throughput
of Hadoop and reducing CPU utilization; on the other hand, the proposal of Vernica et al. (VBBE12)
focuses on the interaction of Mappers, introducing an asynchronous communication channel between
Mappers, using a transactional distributed meta-data store (DMDS). In this way, Mappers can post
metadata about their state and check the state of all other Mappers, allowing global optimizations
during the execution; ultimately, Ho et al. (HWL11) and Ibrahim et al. (IJL+10) concentrate their
efforts on improving performance by changing the data flow in the transition between Mappers and
Reducers. Originally, Hadoop employs an all-to-all communication model between Mappers and
Reducers. This strategy may result in saturation of network bandwidth during the shuffle phase.
This problem is known as the Reducers Placement Problem (RPP).

These aspects are the main ones explored in the paradigm to improve performance in Hadoop
jobs via MapReduce. We noticed that these solutions could improve significantly the performance of
Hadoop, but only for applications that target specific research problems. Nevertheless, none of these
solutions are concerned with the energy consumption performance of the framework. Therefore, our
research set focus on the energy-aware performance of Hadoop, from the perspective of using hybrid
storage devices within the HDFS. Furthermore we did not commit any changes in the MapReduce
workflow.

HDFS: Data Storage and Manipulation

HDFS is the block storage layer that Hadoop uses to keep its files, designed to hold very large
datasets reliably using data replication (SKRC10). This allows HDFS to stream large amounts
of data to user applications in a reasonable time. HDFS has received several contributions that
implement enhancements so that it can be used in different types of approaches in MapReduce
computations.

We observed in our literature research that HDFS was modified to increase performance in
several ways: tuning the I/O mode (JOSW10; ZYLL11; SRC10), solving data placement problems
(XYR+10), or adapting it to deal with small files (JOSW10; DQZ+10) since HDFS was not originally
designed to store such files. Some works replace the original HDFS with a more suitable solution for
specific compatibility problems (MOT11; KVV11) or to support areas such as Cloud Computing
(KVV11; GhJnBwY11). Differently from these solutions, our research is dedicated to promote
performance increases by designing a mixed storage environment using SSDs and HDs.

A particular study that contributes in different ways to the framework was developed specifically
to improve Hadoop’s performance. The work of Jiang et al. (JOSW10) presents a MapReduce
performance study, focusing on Hadoop’s performance bottlenecks. Jiang et al. propose known
alternative methods as solutions to tune MapReduce performance. They enhanced the way a reader
retrieves data from the file system, the I/O mode, with a direct I/O support, which outperforms
streaming I/O by 10%. The authors also proposed an optimization to HDFS to deal with small files;
HDFS may have loss of performance when dealing with a large group of small files due to its strategy
of keeping all metadata in the master node memory. This approach allows DataNodes to save some
metadata of small files in their memory. Thus, the number of read and write requests received by
the NameNode is reduced, improving performance when dealing with small files. Similarly, Shafer et
al. (SRC10) analyze the HDFS performance bottlenecks under concurrent workloads. The authors
claim that HDFS performance can be improved using application-level I/O scheduling while still
preserve portability. Authors also explore solutions like pre-allocating file space on disk, adding
pipelining and prefetching to both task scheduling and HDFS clients, and modifying or eliminating
the local file system as a way to improve HDFS performance. But, since portability is a project
premise in Hadoop, some of these changes may not be fully convenient, because of the portability
reduction they may cause.

3.2 HADOOP RESEARCH 17

Because HDFS is designed to store and keep large files/datasets, Dong et al. (DQZ+10) propose
a novel approach to improve the efficiency of storing and accessing small files on HDFS. In this
approach, characteristics of file correlations and access locality of small files are considered for
storing and accessing them. First, all correlated small files are merged into a larger file to reduce
the metadata on NameNode. Second, a two-level prefetching mechanism is introduced to improve
access efficiency. The approach is addressed to solve the small file problems of a specific resource
sharing system, to store and share courseware mainly in the form of presentation files and video
clips. The efficiency problem of storing and accessing small files on HDFS is caused mainly by high
memory usage in the NameNode, which keeps all metadata in memory. Therefore, the greater the
number of files, the larger the memory used. Performance is also affected by file correlations for
data placement, and without a prefetching mechanism for reads, a considerable overhead may be
generated.

Focusing on the same problem of correlated data placement, Eltabakh et al. (ETO+11) propose
CoHadoop, a lightweight extension of Hadoop that allows applications to control where data are
stored. CoHadoop addresses Hadoop’s lack of ability to collocate related data on the same set of
nodes, which can be used to improve the efficiency of many operations, including indexing, grouping,
aggregation, columnar storage, and joins. The proposal extends HDFS to enable storage of related
files at the file system level. The extension requires minimal changes to HDFS to be used, such as a
new file property to identify related data files and to modify the data placement policy of HDFS to
collocate all copies of those related files. Exploiting data placement on HDFS, Xie et al. (XYR+10)
propose a new strategy to HDFS running on a heterogeneous cluster. The approach focuses on
distributing a large dataset to the nodes according to the computing capacity of each one. Two
algorithms were implemented and incorporated into HDFS. The first one initially distributes the
file blocks from a dataset to the cluster nodes. The second data placement algorithm is used to
solve data skew problems, reorganizing the file blocks distribution along the cluster. This algorithm
is used in two specific situations. The first is when new nodes are added to the cluster. The second
is when new data is appended to existing input files. In both cases, the file blocks are redistributed,
since the initial data placement can be distorted.

Hadoop may work using a replacement file system, when changes in HDFS are not possible or
easy to be made. Mikami et al. (MOT11) proposes the use of a new file system named GFarm.
It is POSIX compliant and uses data locality, which makes it suitable to be used on Hadoop.
GFarm can also be used to run MPI applications. Thus, the same data used on MapReduce
applications can be used on different applications such as POSIX compliant and MPI applica-
tions. This would not be possible when using HDFS without generating extra copies of these
data. To integrate GFarm into Hadoop, a plugin named Hadoop-GFarm was designed, imple-
mented, and tested with MapReduce applications. Several other file systems also received attention
from the community as an effort to promote alternatives to replace HDFS. Apache Cassandra
(http://cassandra.apache.org/), Ceph ((MEMRB10)), GPFS from IBM (O’M11), Lustre
(Rut11) and MapR (http://www.mapr.com/) have all been successfully deployed as HDFS re-
placements. Although this is a possibility, we decided to further investigate HDFS and modify it to
accommodate our proposal.

Most of the analyzed works changed HDFS to increase performance by modifying the file system
to cope with specific needs. Generally, the solutions emphasize restricted applications on specific
classes of problems. Additionally, most of the approaches require a certain degree of modification
on Hadoop source code. Few solutions (ETO+11; XYR+10) also propose block placement policies,
besides the modifications, to achieve the results. On the extreme modification, HDFS was replaced
to cope with performance issues on some applications. Yet, these approaches only targeted HDFS
performance without considering energy consumption or using a combination of different storage
devices, which are the main goals of our research.

18 RELATED WORK 3.3

3.2 Solid-State Drives on HDFS

The use of SSDs as a storage solution on clusters is such a recent trend in the industry that the
first proposals for MapReduce clusters only recently appeared. Most of the research up to date tends
to analyze whether MapReduce can benefit, in terms of performance, when deploying HDFS using
SSDs. The work of Jeon et al. (JEMK13) analyzes the Flash Translation Layer (FTL) – the core
engine for the SSDs – to understand the endurance implications of such technologies on Hadoop
MapReduce workloads. As a result, the research presents the behavior of SSD for Hadoop-based
workloads including wear-leveling details, garbage collection, translation and block/page mappings.
The research of Kang et al. (KsKMP13) explores the benefits and limitations of in-storage processing
on SSDs (the execution of applications on processors in the storage controller). This approach bene-
fits from characteristics such as high performance on concurrent random writes, powerful processors,
memory, and multiple I/O channels to flash memory provided by the SSDs, enabling in-storage pro-
cessing with small hardware changes. The authors implemented a model (Smart SSD model) that
uses an object-based protocol for low-level communication with the host, extending the Hadoop
MapReduce framework to support a Smart SSD. Experiments show benefits such as increase of
performance and reduction of total energy consumption.

Other researchers focus on incorporating SSDs into HDFS using caching mechanisms to achieve
better performance. Zhao et al. proposed HyCache, an additional middleware layer between the
distributed file system and the underlying local file systems, using SSDs to provide a file system
with high throughput and low latency. MpCache (WJY14) is a SSD based hybrid storage system
that caches both the input and localized data, dynamically tuning the cache space allocation be-
tween them. VENU (KIB14) is a dynamic data management tool for Hadoop that uses SSDs as
a cache only for the workloads that can benefit from the use of SSD. From the same authors,
HatS (KAB14) is a redesign of HDFS into a multi-tiered storage system, integrating heterogeneous
storage technologies into Hadoop. An et al. (AKJ15) developed a mechanism that, given a block
scheduled to be processed, loads the block into the SSD before a MapReduce I/O request for that
block take place, therefore processing all blocks from SSD. Although all works presented perfor-
mance improvements on Hadoop, they are focused on transparent data caching, differently from
our hybrid design, which is also intended to increase performance, but considers SSDs as part of
the resource allocation mechanism while targeting energy issues in the framework.

A few works also discuss SSDs’ impact on Hadoop (MLK14; KC14; SK14), sometimes focusing
on using SSDs as the sole storage device under HDFS, sometimes developing a single comparison
between the use of SSDs and HDs. A hybrid approach using HDs and SSDs was investigated by
Wu et al. (WLX+13). Differently from our approach, they developed a network bandwidth guide
related to the HDFS replication factor and proposed a temporary data storage using both DRAM
and SSDs. Another hybrid approach (TFL14) tested the use of SSDs and HDs under MapReduce,
Hive and HBase workloads, but without the possibility of storage space customization, using all
available space from HDs and SSDs in the hybrid configuration. Our approach tends to be more
affordable, since we developed a hybrid file system that seamlessly couples the best from HDs
(affordable cost per GB, high storage capacity, and, to some extent, endurance) and SSDs (high
performance and low energy consumption rates) in a configurable fashion.

Recently, the Hadoop team of developers implemented an approach to incorporate hybrid storage
into the HDFS. On the latest releases – 2.7.0 and 2.7.1 – the project made available the implemen-
tation of new storage policies. Two of the new policies make use of SSDs, but contrary to our
approach, they only allow the use of all data on SSDs (All_SSD); or the use of one block replica
stored in the SSDs, keeping the other replicas in the HDs (One_SSD). To the present moment,
these newly implemented policies do not allow the controlled hybrid storage of blocks guaranteeing
the uniform distribution of blocks over HDs and SSDs as we do in our approach. Also, there are no
mentions of performance increase or energy consumption testing of such policies, which is the focus
of our work.

3.3 ENERGY AND GREEN COMPUTING RESEARCH 19

3.3 Energy and Green Computing Research

Energy consumption has become a vital issue regarding computation costs. Over the past
few years, Hadoop energetic research surfaced, presenting several works on the green computing
area. Several papers discuss the cluster energy management problem generically. Regarding Apache
Hadoop clusters, Li et al. (LAY11) propose an algorithm for maximizing the throughput of a rack of
machines running a MapReduce workload, subject to a total power budget. The main idea is to op-
timize the trade-off between job completion time and power consumed. The novelty in the approach
relies on the accounting for thermally-induced variations in machine power consumption. The algo-
rithm minimizes job completion time (or equivalently, maximizes the computational capacity of a
cluster) for any given power budget.

Lang et al. (LP10) investigated the processes of powering down MapReduce clusters during
periods of low utilization. The authors examined a preexisting technique called “Covering Set” that
keeps a fraction of the cluster nodes powered up during these low utilizations intervals. The research
also proposed a new technique called the “All-In Strategy”, which uses all the nodes in the cluster to
accomplish the computations, and then power down all the nodes during low utilization phases. The
same technique was used on the work of Yazd et al. (YVM12), which proposed a block placement
policy for replicas in the HDFS. Although only tested on simulations, the authors claim that keeping
only a subset of servers constantly on can boost the energy efficiency of Hadoop data centers.

Phan et al. (PIAB15) analyzed the impact of speculative execution on the performance and
energy consumption of Hadoop clusters. The authors also found a strong correlation between time
and energy consumption: straggling detection in Hadoop is not accurate and may lead to excessive
unnecessary speculative execution, increasing the energy consumption of Hadoop clusters.

The work of Cheng et al. (CLJZ15) focuses on Hadoop task assignment on heterogeneous en-
vironments. The key finding is that not all job makespan reduction promotes energy consumption
reduction. The authors proposed a heterogeneity-aware and adaptive task assignment approach that
promotes energy efficiency of a Hadoop cluster without knowledge of the workload properties.

GreenHadoop (GLN+12) is an Apache Hadoop variant for data centers powered by photo-
voltaic solar (green energy) arrays and electrical grid (brown energy) as a backup. The objective
is to investigate how to manage the computational workload to match the green energy supply in
small/medium data centers running data-processing frameworks. However, scheduling the energy
consumption of MapReduce jobs is challenging because they do not specify the number of servers to
use, their run times, or their energy needs. Moreover, power-managing servers should guarantee that
the data to be accessed by the jobs remain available. GreenHadoop seeks to maximize the green
energy consumption of the MapReduce workload, or equivalently to minimize its brown energy
consumption. GreenHadoop predicts the amount of solar energy that is likely to be available in the
future, using historical data and weather forecasts. It also estimates the approximate energy needs
for jobs using historical data. By using these predictions, GreenHadoop may then decide to delay
some (low-priority) jobs to wait for available green energy, but always within their time bounds. If
brown energy must be used to avoid bound violations, it schedules the jobs at times when brown
energy is cheaper, while also managing the cost of peak brown power consumption. GreenHadoop
controls energy usage by using its predictions and knowledge of the data required by the scheduled
jobs. With this information, it defines how many and which servers to use and transitions other
servers to low-power states to the extent possible.

Another approach to energy management in clusters is the GreenHDFS (KB10; KAEN11).
Instead of dealing with the MapReduce component of Apache Hadoop, it deals with the HDFS.
GreenHDFS partitions cluster servers into hot zones, used for frequently accessed files, and cold
zones, for rarely used files. This approach enables energy saving by putting cold zone servers to
sleep. To do so, a migration policy moves files between zones accordingly. Initially, this policy
was reactive and used historical data to move files between zones. This approach was improved
creating a predictive file zone placement, which defines the initial placement of a file, and then uses
a predictive file migration policy. This approach uses supervised machine learning to train its file
attribute component and to manage changes between zones.

20 RELATED WORK 3.3

GreenPipe (MWZL12), provides a specific solution for bioinformatics, but its main objective
is related to energy consumption problems. GreenPipe is a MapReduce-enabled high-throughput
workflow system for bioinformatics applications, which defines a XML based workflow and executes
it on Hadoop. Workflow execution is divided in two modes. In the first one, called physical mode,
the XML workflow is translated into MapReduce jobs and launched on a physical Hadoop cluster.
The second mode, called virtual mode, works with virtualization, obtaining virtual machines from
IaaS (Infrastructure as a Service) platforms and running Hadoop jobs in the VM cluster. Authors
also address the optimizations of the planning and job priority, and energy efficiency by introducing
a power-aware scheduling algorithm in the workflow engine. The scheduler tries to allocate VM
resources based on the power consumed by the applications. It also tries to group VMs with similar
energy traces in a physical machine, reducing the energy consumption without sacrificing application
performance.

Still dealing with virtual environments, Feller et al. (FRM13) developed a Hadoop performance
comparison between traditional and virtual clusters, analyzing the energetic impact of separating
data from services. The results showed that Hadoop performance on physical clusters is significantly
better than on virtual clusters, and that data separation is feasible, but greatly affects performance,
and consequently energy consumption.

Green Computing is a strong motivation to achieve results that can reduce environmental issues,
such as high energy consumption. But, instead of focusing on the whole infrastructure, we focused
on the software responsible for controlling the storage space. Differently from other approaches
that focus on Hadoop, we developed a hybrid environment that can increase performance while
decreasing energy consumption on cluster nodes and data centers by using SSDs.

Software Energy Consumption

Our energetic Hadoop research was motivated by the green mining methodology (HWR+14;
Hin12), the study of energy consumption over multiple versions of a software system, in the area of
energy-aware mining of Mining Software Repositories research (Has08). Additionally, multi-version
energy consumption analysis has been applied by Hindle et al. (HWR+14). The impact of software
metrics, such as CKJM metrics (Spi05) and software churn (NB05) on software energy consumption
was presented by Hindle (Hin13)

Chapter 4

Motivating and Grounding Experiments

In this chapter, we present concepts, research methodologies, and the results obtained in the
Hadoop performance and energy consumption analysis. Over time, a large number of Hadoop fea-
tures have been introduced and deprecated, resulting in three current development branches with
several releases. We studied the impact of such feature evolution with regard to resource usage and
adoption by practitioners. More precisely, we deployed several representative and judiciously chosen
versions of Hadoop on the same cluster, ran a representative workload, and measured performance
(job makespan – the time difference between the finish and start of Hadoop jobs) and resource
usage (power). Our results help clarify the cost-benefit trade-offs of the various Hadoop versions.

More specifically, we are concerned with Hadoop performance and its impact on energy con-
sumption, focusing on the changes between different releases and versions. Therefore, we mined the
StackOverflow question/answer website to gather which versions of Hadoop are most frequently
discussed. Using this measure as a proxy for feature adoption, and contrasting that with the corre-
sponding cost-benefit trade-off, we arrived at some surprising findings. Most notably, our resource
usage data shows that the YARN resource manager leads to higher energy consumption and worse
performance, while our feature adoption data indicate that users rarely mention or discuss this.

YARN (Yet Another Resource Negotiator) (MVE+14) allows multiple data processing models
besides MapReduce to co-exist in a single Hadoop cluster. It is touted as the “Data Operating
System” and allows the deployment of sophisticated data analytics solutions that mix multiple data
storage solutions. Nevertheless, from a computational point of view, previous versions of Hadoop
that use a much simpler resource manager, are equally capable. However, as YARN is part of the
latest branch (2.x), and there is a tendency for users to keep up with the latest version, our analysis
indicates an unfortunate reality in which a completely unnecessary yet large waste of resources
takes place.

To the best of our knowledge, up to this day, no studies targeting the framework’s performance
over multiple Hadoop releases were carried out. Hadoop performance results from several aspects.
Some of them are related to the infrastructure, e.g., hardware, network, operating system; others,
are related to Hadoop configurations and job characteristics. A poor performance will have direct
impact on resource usage and, consequently, on job makespan. As a result, if more resources are
allocated when running jobs, more energy is consumed. Thus, we searched for performance issues
in different Hadoop versions through the analysis of the changes across releases. We related the
impact of these changes on the cluster energy consumption. The results show that, having the same
testbed (hardware, network and operating system), different versions and releases behave differently
in terms of performance and energy consumed by Hadoop jobs.

4.1 Versions and Releases

To trace Hadoop history, we analyzed each one of the release logs from the project webpage,
searching for the history of previous releases to build a genealogy tree. Figure 4.1 shows the Hadoop
project genealogy tree that we built, from version 0.20.0 up to the latest releases, including the

21

22 MOTIVATING AND GROUNDING EXPERIMENTS 4.2

release dates. We built the complete genealogy tree from scratch, starting from the first release
available on the project page, 0.14.1, from September 4, 2007. Before version 0.20.0, all releases
were made sequentially. Consequently, we decided to keep Figure 4.1 showing releases from version
0.20.x onwards. Although all releases are still listed on the page, the documentation for several
releases is no longer available. To find the missing documentation, we used the Internet Archive1,
which crawls and save snapshots from Internet websites. Using this tool, we were able to find the
missing documentation and fill in the gaps to build the complete tree.

Figure 4.1: Hadoop Versions Genealogy Tree

According to our systematic review (PRGK14), most of the Hadoop research was carried out
using old Hadoop versions ranging from 0.19.x to 0.22.x. In our conclusions, we noticed that the
number of studies contributing to the project increased from 2010 to 2012, but decreased from
2013 on. This means that few studies contributed to the new releases of Hadoop, since they were
launched in late 2011 (version 0.23.0 on November 01, 2011; version 1.0.0 on December 27, 2011)
and in the second quarter of 2012 (version 2.0.0 on May 23, 2012). Additionally, versions 0.23.x and
2.x adopted a new architecture, introducing the YARN resource manager. Thus, we concluded that
the instability of the new releases in the YARN branches and the inertia of adopting brand new
Hadoop versions contributed to the low number of works using more recent versions at that time.

In these studies, we selected 12 Hadoop releases to compose our working set, since this research
was intended to cover a certain range of releases from the Hadoop project. Our selection included
releases from the 3 development branches. From the available releases, we selected the latest one of
each branch at the time of experimentation (1.2.1, 0.23.10, and 2.4.0). To distinguish modifications
inside the branches, we selected one intermediary version from each branch (1.1.1, 0.23.8, and 2.3.0).
Furthermore, in the particular case of the performance studies presented in this chapter, we added
two older releases from each branch to complete the set: 1.0.0, 1.0.3, 0.23.3, 0.23.6, 2.1.0, and
2.2.0. We can see the release distribution over time in Figure 4.1 where the selected releases are
highlighted. Table 4.1 shows the set of selected versions and releases, with their respective release
dates, and previous version.

1Internet Archive: http://archive.org/ (Visited on 15/10/2016)

http://archive.org/

4.2 BENCHMARKS AND DATASETS USED 23

Table 4.1: Hadoop releases used on the performance and energy consumption studies

Hadoop version Release date

1.0.0 December 15, 2011
1.0.3 May 7, 2012
1.1.1 November 18, 2012
1.2.1 July 15, 2013

0.23.3 September 17, 2012
0.23.6 February 6, 2013
0.23.8 June 5, 2013
0.23.10 December 9, 2013

2.1.0 August 22, 2013
2.2.0 October 13, 2013
2.3.0 February 20, 2014
2.4.0 April 7, 2014

4.2 Benchmarks and Datasets Used

After the selection of releases, we chose the appropriate benchmarks for the performance evalu-
ation. Hadoop comes with a large set of examples and tools that allow the benchmarking of clusters
in several ways. Some of them are tools to benchmark the file system, such as DFSIO, a distributed
I/O benchmarking tool. Others use MapReduce applications, such as WordCount, Sort, Terasort,
and Join. These examples can be classified into I/O-bound or CPU-bound jobs. Since we are dealing
with Hadoop performance and our main goals are directed to HDFS performance enhancements
with the use of SSDs for storage, we focused our selection on I/O-bound benchmarks. From the
default examples available, those dealing with sorting were suitable, including Sort and Terasort,
since they are considered I/O-bound MapReduce applications. We also selected the WordCount
benchmark to distinguish the behavior of our approach in one CPU-bound benchmark. To run the
experiments, each benchmark uses a different dataset. We generated each of the datasets, storing
them for later use and replication of the experiments. By doing this, we assure that every set of
experiments uses the same input data, avoiding a possible bias in the results due to differences in
the datasets.

Table 4.2: Benchmarks and Dataset Sizes

Benchmark Dataset Size Type

10GB
Sort 48GB I/O-bound

256GB

10GB
WordCount 20GB CPU-bound

48GB

For the Sort experiments, the datasets were generated using the RandomWriter job, which gen-
erates a predefined amount of randomized bytes. As a result of this job, we have a set of files with
random keys that are used as input for the Sort jobs. The WordCount benchmark had its datasets
created using generic text from web tools – also known as Lorem Ipsum generators. The text was
continuously generated until the dataset files reached the desired sizes. Our final selection of bench-
marks used in the experiments was composed of Sort and WordCount. The Terasort benchmark was
discarded due to storage space limitation of our infrastructure. Table 4.2 presents our set of bench-

24 MOTIVATING AND GROUNDING EXPERIMENTS 4.4

marks and their corresponding datasets size used for the experiments for the Hadoop performance
investigation presented in this chapter.

4.3 Cluster Infrastructure

To perform the experiments, we assembled a commodity 9-node cluster. Each node had a quad-
core processor (AMD A8-5600K; 3600 MHz), 8GB of RAM, a 1TB hard drive (Western Digital
WD Black WD1002FAEX; 7200RPM; 64MB Cache; SATA 6.0Gb/s), and a 120GB solid-state drive
(Intel SSDSC2BW120A4; SATA 6Gb/s; 20nm MLC). The network infrastructure used a gigabit
switch. One of the nodes is designated to run exclusively the NameNode and JobTracker daemons,
which also kept the history log from jobs. All the other eight nodes run exclusively DataNodes and
TaskTracker daemons. Due to this configuration, our total storage space was approximately 9TB,
including HDs and SSDs.

Figure 4.2: Cluster Infrastructure

To have appropriate energy consumption measurements, we instrumented the cluster with Watts
Up? Pro2, a hardware device that measures wall socket power use. It reports power measures per
second containing watts, kWh, voltage, amps, power-factor, and other information. For our cluster,
we have acquired four measurement devices, and connected the DataNodes in pairs on each one
of the power devices. Watts Up? Pro reports its readings through a USB port. The USB ports of
the four meters were connected to the master node of the cluster. Since our studies are directed to
energy consumption on DataNodes, we decided not to perform measurements on the master node,
which runs exclusively the NameNode and JobTracker daemons. This configuration is presented
in Figure 4.2. Following the Hadoop premise to move computation to data, we focused on the
energy consumption on the Hadoop DataNodes. Therefore, our experimentation was carried out on
a cluster with energy measurement instrumentation exclusively on the DataNodes/TaskTrackers.

4.4 Experiment Design and Methodology

Our experiment methodology includes the test of several Hadoop releases using different work-
loads in the same testbed. For each experiment set, a Hadoop release was deployed individually
in the cluster and the appropriate dataset for the experiment was sent to HDFS. Then, a set of

2Watts Up Meters: http://www.wattsupmeters.com/secure/products.php?pn=0 (Visited on 15/10/2016)

http://www.wattsupmeters.com/secure/products.php?pn=0

4.4 EXPERIMENT DESIGN AND METHODOLOGY 25

jobs was performed for the selected benchmark. If any of the jobs in a set of experiments did not
record accordingly the power measurement reads, it was discarded. For each set of experiments, a
minimum of 5 completed jobs (with complete power readings) had their data recorded. If necessary,
additional jobs were deployed to complete the minimum required for our analysis. Thus, we guar-
antee that each pair release/benchmark had a minimum amount of data to assure equality during
the analysis phase.

A set of calibration jobs was executed prior to the experiments. In this preparation phase, each
of the selected Hadoop releases shown in Table 4.1 was pre-configured with default parameters,
deployed, and tested individually in our cluster. These tests included a set of small jobs to verify any
issues with the software and hardware infrastructure. We used 5GB-10GB datasets, performing Sort
jobs with every tested release. Each Hadoop release was deployed using our default configuration
– a set of configuration files to assure equality between releases during experimentation. Table 4.3
presents the main properties and the default values of the configuration files.

Table 4.3: Default Values for Configuration Files

Configuration File Property Name Value

hdfs-site.xml dfs.replication 3
hdfs-site.xml dfs.block.size 67108864
hdfs-site.xml io.sort.mb 128
hdfs-site.xml io.sort.factor 100
mapred-site.xml mapred.child.java.opts -Xmx768m
mapred-site.xml mapred.job.reuse.jvm.num.tasks -1

During a set of experiments, only the current benchmark dataset was stored in the HDFS. When
changing between releases to run new experiments, there is incompatibility between different HDFS
versions, which means that for every new set of experiments, a selected Hadoop release was deployed
and the HDFS reformatted. Then, the dataset was sent to the file system and the experiment
batch started. In this phase, experiments were designed to discover the existing differences among
the tested releases. Therefore, we measured the performance and energy consumption on different
storage devices using two different HDFS configuration scenarios: first, HDFS used only the HD
space available in the DataNodes; second, the benchmarks ran using only the SSD space in the
DataNodes.

To record the power meter readings in the master node, we adapted a python program based on
the power meter manufacturer’s software. Differently from the original manufacturer’s C program,
the Python approach demonstrated to be more efficient handling the USB/serial OS libraries, losing
less readings from the meters. The Python version used to record the data can be downloaded
from the BitBucket repository at http://bitbucket.org/ipolato/wattsup. The program polls the
chosen meter through the USB port and receives the raw readings. The reading rate was set to
once per second, and each meter logs the readings into separate files. During a job execution, we
launched individual instances of the reading program for each power meter and kept them running
in background until the end of the job. The power logging program was launched 5 seconds before
the job started and was terminated 10 seconds after the job finished. This additional time at the
end of the readings was intended to capture the final behavior of Hadoop during replication of the
results in HDFS. Between each pair of successive jobs in a set of experiments, there was a wait
interval of at least 90 seconds. This interval is used to bring the system and drives to their idle
state and normalize the power consumption rate. Using this process, we can assure that the power
readings at the beginning of each job are at the same levels. It is important to notice that, although
these experiments are directed to performance studies, the energy measurements were also recorded,
since the data was used during energy profiling – the process of extracting an energy consumption
profile from the framework based on the experiment results. Additionally, we confirmed that the
power meter and the measurement daemons do not affect cluster performance by running two sets

http://bitbucket.org/ipolato/wattsup

26 MOTIVATING AND GROUNDING EXPERIMENTS 4.5

of experiments: one with the daemons running and another without. The job makespan results were
the same during both sets of experiments.

4.5 Results and Analysis

Our experiments show large differences in performance and energy consumption among the
multiple tested Hadoop releases. With the evolution in Hadoop branches, releases that included the
YARN resource manager performed worst and consumed more energy when compared to the 1.x
releases. In the following, we detail our results. At the top of each bar on the plots, we included a
boxplot to show the distribution of the results on each experiment batch. It is clear that the results
from the SSD configuration, in most cases, were more concise due to the hardware construction
– SSDs use NAND flash memories. On the contrary, HDs are mechanical spinning disks, and we
consider that their mechanical operation, which includes moving and rotating parts, causes more
inconsistent times during I/O operations, which reflects on the data dispersion presented on most
HD boxplots.

4.5.1 Job Makespan

Seeking for a hybrid approach, it was important to discover which differences are achieved in
performance when using different storage devices (HDs vs SSDs) on Hadoop. SSDs are faster than
HDs, which means that more read and write operations can be made per second. As an expected
behavior, Hadoop jobs can improve performance by reducing the job makespan using SSDs. In this
case, SSD use benefits more the I/O-intensive Hadoop jobs. CPU-intensive Hadoop jobs do not
receive significant benefits since CPU-time dominates over I/O operations in the job makespan.

Sort Experiments 10GB Dataset

0

50

100

150

200

250

300

350

T
im

e
(s

)

1.
0.

0

1.
0.

3

1.
1.

1

1.
2.

1

0.
23

.3

0.
23

.6

0.
23

.8

0.
23

.1
0

2.
1.

0

2.
2.

0

2.
3.

0

2.
4.

0
100% HD
100% SSD

Figure 4.3: Hadoop Sort 10GB Job Makespan

Analyzing the results from the Sort benchmarks, we can observe the performance increases
achieved when replacing HDs with SSDs in HDFS. Figure 4.3 shows the results of the 10GB Sort
experiment on 12 tested Hadoop releases. We can observe that the SSD job makespan is lower than
the HD job makespan for every release, as predicted. We also notice that the differences in releases
1.0.0 and 1.0.3 are smaller than for the other releases. From Figure 4.1 and Table 4.1, we can see that
the latest releases from each branch tend to be the fastest ones (on average) within its branches. This
means that they have more consolidated source code, receiving bug fixes and code improvement
from previous releases. We also notice the small difference among the branches/releases, which
is explained due to the relatively small size of the benchmark. This benchmark was particularly
important for showing the performance differences between SSDs and HDs: while releases 1.0.0 and
1.0.3 reduced only 6% the job makespan using SSDs, all other tested releases reduced on average

4.5 RESULTS AND ANALYSIS 27
Sort Experiments 48GB Dataset

0

500

1000

1500

2000

2500

T
im

e
(s

)

1.
0.

0

1.
0.

3

1.
1.

1

1.
2.

1

0.
23

.3

0.
23

.6

0.
23

.8

0.
23

.1
0

2.
1.

0

2.
2.

0

2.
3.

0

2.
4.

0

100% HD
100% SSD

Figure 4.4: Hadoop Sort 48GB Job Makespan

25% the job makespan in the 10GB Sort, with release 0.23.6 achieving the biggest speedup with
30% of job makespan reduction.

Figure 4.4 presents the 48GB Sort results. This benchmark shows an increase in the differences
between the HD and SSD use in Hadoop. The SSD use promoted significant performance increases
in every branch and release tested. On average, SSDs proved to be 29% faster than HDs during the
experiments. These results show that, as we increase the dataset size, performance enhancements
rates also increase on average a little bit. We credit this to the fact that the 10GB Sort is a
extremely short Hadoop job, and the instantiation times (job preparation, task resource allocation,
and job cleaning) have a large weight on the job makespan. With the 48GB Sort this overhead time
represents a smaller part in the job makespan. This explains the reason most releases had improved
speedup rates when comparing the HD and SSD used. While a 10GB sort takes 4-5 minutes to
complete, a 48GB Sort takes 29-30 minutes to run, and the 256GB (Figure 4.5) can take almost
two hours to finish. Based on our data, we can also assume that the time component in a Hadoop
job grows linearly following the increase in dataset size. Table 4.4 presents the job makespan results
and the average speedups percentages.

Table 4.4: Average Job Makespan Speedup Comparison (Times in s)

Releases 10GB Sort 48GB Sort 256GB Sort

HD SSD Speedup HD SSD Speedup HD SSD Speedup

1.0.0 256 241 6% 1711 1159 32% 3937 3423 13%
1.0.3 256 239 7% 1779 1150 35% 4621 3488 25%
1.1.1 212 162 24% 1644 1184 28% 4761 3641 24%
1.2.1 216 163 24% 1763 1138 35% 4524 3517 22%

Branch Averages 14% 33% 21%

0.23.3 271 201 26% 1713 1184 31% 7044 5969 15%
0.23.6 284 200 30% 1642 1353 18% 6229 5340 14%
0.23.8 264 200 24% 1767 1167 34% 6369 5284 17%
0.23.10 278 200 28% 1726 1175 32% 5994 5097 15%

Branch Averages 27% 29% 15%

2.1.0 317 228 28% 1841 1406 24% 6184 5115 17%
2.2.0 292 232 21% 1840 1473 20% 6566 5852 11%
2.3.0 291 220 25% 1983 1589 20% 6695 5229 22%
2.4.0 296 227 23% 1849 1267 31% 6138 5541 10%

Branch Averages 24% 24% 15%

Overall Averages 22% 29% 17%

Analyzing the 256GB Sort experiments, we noticed a significant difference in the job makespan
between releases from different branches. Although the overall speedup reduced if compared to the

28 MOTIVATING AND GROUNDING EXPERIMENTS 4.5
Sort Experiments 256GB Dataset

0

1500

3000

4500

6000

7500

9000

T
im

e
(s

)

1.
0.

0

1.
0.

3

1.
1.

1

1.
2.

1

0.
23

.3

0.
23

.6

0.
23

.8

0.
23

.1
0

2.
1.

0

2.
2.

0

2.
3.

0

2.
4.

0

100% HD
100% SSD

Figure 4.5: Hadoop Sort 256GB Job Makespan

48GB Sort, releases 1.x performed faster when running experiments from SSDs than releases 0.23.x
and 2.x, especially the most recent releases 1.1.1 and 1.2.1. But the most surprising result was that
releases 1.x had better performances than 0.23.x and 2.x releases even when running experiments
from HDs.

Finding 1: On average, 1.x releases were 30% faster than the other tested releases when running
jobs with data on HDs, and 35% faster when running experiments using SSDs. This
difference has a direct impact and it will be analyzed in the following sections.

Regarding the WordCount experiments, they show that CPU-bound Hadoop jobs do not receive
benefits from the SSD use, as mentioned before. However, these experiments corroborate the previ-
ous Sort results exposing the performance differences between the Hadoop development branches.

WordCount Experiments 10GB Dataset

0

150

300

450

600

750

900

T
im

e
(s

)

1.
0.

0

1.
0.

3

1.
1.

1

1.
2.

1

0.
23

.3

0.
23

.6

0.
23

.8

0.
23

.1
0

2.
1.

0

2.
2.

0

2.
3.

0

2.
4.

0

100% HD
100% SSD

(a) WordCount 10GB

WordCount Experiments 20GB Dataset

0

150

300

450

600

750

900

T
im

e
(s

)

1.
0.

0

1.
0.

3

1.
1.

1

1.
2.

1

0.
23

.3

0.
23

.6

0.
23

.8

0.
23

.1
0

2.
1.

0

2.
2.

0

2.
3.

0

2.
4.

0

100% HD
100% SSD

(b) WordCount 20GBWordCount Experiments 48GB Dataset

0

250

500

750

1000

1250

1500

1750

2000

T
im

e
(s

)

1.
0.

0

1.
0.

3

1.
1.

1

1.
2.

1

0.
23

.3

0.
23

.6

0.
23

.8

0.
23

.1
0

2.
1.

0

2.
2.

0

2.
3.

0

2.
4.

0

100% HD
100% SSD

(c) WordCount 48GB

Figure 4.6: Hadoop WordCount Experiments Job Makespan

4.5 RESULTS AND ANALYSIS 29

Figure 4.6 presents the achieved results. We can notice the evolution of releases, where the newest
ones perform better than the older ones. The exception here is the 0.23.x branch which presented a
constant behavior of its releases, with a slightly decrease in performance in the latest releases. The
worst performance from Hadoop 2.1.0 can be explained since it is a beta release from the 2.x branch.
Overall, in the three WordCount experiment sets, releases from branches 1.x and 2.x performed on
average 10% faster than 0.23.x releases.

4.5.2 Evidence of Changes in Hadoop’s Performance

Having demonstrated significant differences in Hadoop performance, we conducted an investi-
gation to find out whether these issues were perceived or not by the community. It is a fact that
Hadoop evolved rapidly between 2011 and 2012: architectural changes were introduced, bringing
new components and consolidating flexibility into the framework. Behind the novelty of the 0.23.x
and 2.x branch releases, there is a hidden controversial issue of software engineering: the perfor-
mance versus flexibility dilemma. Is the loss in Hadoop’s performance related to the architectural
change necessary to implement YARN? Is it clear that the YARN resource manager has a direct
negative impact on Hadoop’s performance?

2010 2012 2014 2016

0
10

20
30

40

Date

P
os

t c
ou

nt
 p

er
 m

on
th

2010 2012 2014 2016

0
10

20
30

40

Date

P
os

t c
ou

nt
 p

er
 m

on
th

2010 2012 2014 2016

0
10

20
30

40

Date

P
os

t c
ou

nt
 p

er
 m

on
th

2010 2012 2014 2016

0
10

20
30

40

Date

P
os

t c
ou

nt
 p

er
 m

on
th

Hadoop
Yarn in Subject
Yarn in Body
MapReduce

Timeseries of Stackoverflow mentions

Figure 4.7: Timeseries of Hadoop Mentions on StackOverflow

Even though this issue can be confirmed by deploying releases from different branches, these
questions remain virtually unanswered since the Hadoop community may have overlooked the im-
pact of these modifications. The number of downloads and contributions to each branch release
is evidence that there is no emphasis or concern regarding this degradation in performance. At
present, browsing the source control history, it is evident that branch 2.x receives the majority of
source code commits, with frequent release of new versions. The other two branches receive much
less attention from Hadoop developers.

To determine if the community noticed this change in performance, we mined StackOverflow
questions that asked about it. StackOverflow is a question and answers website that programmers
use for general support. Sometimes, project-specific questions appear on the stackoverflow site.
From StackOverflow, we retrieved the database dump3 and parsed through all of the available
questions tagged with hadoop, yarn and mapreduce. The mined dataset and scripts used during
this analysis can be downloaded from our HDFSH GitHub repository4.

Hadoop performance is a common topic on StackOverflow made by users when deploying a par-
ticular release. Most research regarding Hadoop performance promotes fine-tuning of configuration
files, using the infrastructure characteristics to achieve the proposed objectives. Hardware, Operat-

3We used the “stackoverflow.com-Posts.7z” file downloaded from https://archive.org/details/stackexchange (Vis-
ited on 15/10/2016)

4Folder “StackingOverflow Mining” at http://github.com/ipolato/Hybrid_HDFS

https://archive.org/details/stackexchange
http://github.com/ipolato/Hybrid_HDFS

30 MOTIVATING AND GROUNDING EXPERIMENTS 4.5

ing System, and Java characteristics are commonly addresses as the source of Hadoop performance
problems, overlooking the internal behavior of framework components.

As we can observe in Figure 4.7, YARN is not an uncommon topic, especially on the subject
of messages. Although the YARN performance was hinted, it was not specifically addressed by
users. Questions regarding general Hadoop performance are more common, and in general, do not
associate YARN performance issues with Hadoop performance. Therefore, we can conclude that
most users are directed to download the most recent releases, unaware of the performance issues
existing among the development branches. Furthermore, even though the 1.x branch is stable, it
does not receive any more updates and source code commits, which force users to download newest
versions, especially for security reasons.

Finding 2: Hadoop performance issues were identified by users, but for external reasons – Hard-
ware, Operating Systems, Java – and not for changes in the Hadoop architecture during
the evolution from 1.x to 0.23.x, and to 2.x releases. Additionally, releases 0.23.x and
2.x, which contain YARN, cannot run without such resource manager. Therefore, an
unnecessary waste of resources occurs when using YARN releases to perform MapRe-
duce jobs.

4.5.3 Energy Performance

After analyzing the Hadoop job makespan, we conducted an energy analysis of such results,
seeking for the effects of the performance on the energy consumption. Starting with the 10GB
Sort benchmark, Figure 4.8a shows the differences on energy consumption between each release
using data stored in HDs and SSDs. As expected, the use of SSDs on Hadoop reduces the energy
demand and decreases the overall job makespan. The differences among the three branches are
easily identified. Releases 0.23.x.and 2.x consumed 30% more energy on average if compared to 1.x
releases.

Sort Experiments 10GB Dataset

0

25

50

75

100

125

150

E
ne

rg
y

(k
J)

1.
0.

0

1.
0.

3

1.
1.

1

1.
2.

1

0.
23

.3

0.
23

.6

0.
23

.8

0.
23

.1
0

2.
1.

0

2.
2.

0

2.
3.

0

2.
4.

0

100% HD
100% SSD

(a) Sort 10GB

Sort Experiments 48GB Dataset

0

100

200

300

400

500

600

700

800

E
ne

rg
y

(k
J)

1.
0.

0

1.
0.

3

1.
1.

1

1.
2.

1

0.
23

.3

0.
23

.6

0.
23

.8

0.
23

.1
0

2.
1.

0

2.
2.

0

2.
3.

0

2.
4.

0

100% HD
100% SSD

(b) Sort 48GB

Figure 4.8: Hadoop Sort Experiments Energy Consumption

Experiments with larger datasets also corroborate the results, as presented in Figures 4.8b and
4.9. The 48GB Sort showed that the energy consumption on 0.23.x and 2.x releases is still higher
than releases 1.x, although proportionally lower when compared to the 10GB Sort.

The 256GB Sort results show the same pattern again (Figure 4.9), with releases 1.x saving
considerably more when compared to the other branches. Table 4.5 presents the Sort results and
comparison between individual releases and branches.

Finding 3: Overall, during the Sort experiments, we can observe that the use of 1.x releases
promotes an energy consumption reduction ranging from 20% to 30% on average when
comparing with the YARN releases.

The WordCount experiments showed a different view. Due to its CPU-bound nature, these ex-
periments do not show any differences on energy consumption between the use of HDs and SSDs.

4.5 RESULTS AND ANALYSIS 31
Sort Experiments 256GB Dataset

0

500

1000

1500

2000

2500

3000

3500

4000

E
ne

rg
y

(k
J)

1.
0.

0

1.
0.

3

1.
1.

1

1.
2.

1

0.
23

.3

0.
23

.6

0.
23

.8

0.
23

.1
0

2.
1.

0

2.
2.

0

2.
3.

0

2.
4.

0

100% HD
100% SSD

Figure 4.9: Hadoop Sort 256GB Energy Consumption

Figure 4.10 presents the WordCount results. The WordCount experiments with smaller datasets
(10 and 20GB) present insignificant energy consumption differences among releases within the same
branch. The 256GB WordCount experiments present the release evolution in the Hadoop project,
where newer releases demand less power than older ones. We can clearly notice the reduction of
energy consumption in every tested branch. The two initial releases from each branch performed
poorly if compared to the latter releases, representing major energy consumptions during job exe-
cution. Comparing the latter releases of each branch, we can perceive a certain stability, showing
no significant differences in energy consumption.

Back to the inter-branch comparison, the results show that the 1.x releases consume less energy
than 0.23.x and 2.x releases, even on CPU-bound experiments. Releases 0.23.x used on average 30%
more energy than 1.x releases, while 2.x releases used 21% more energy during experiments. These
results follow the same pattern observed in the I/O-bound experiments with the Sort benchmark.
Comparing the latest tested release from each branch, release 1.2.1 consumed on average 26% less
energy than release 0.23.10 and consumed 18% less energy than Hadoop 2.4.0 on every WordCount
experiment.

WordCount Experiments 10GB Dataset

0

50

100

150

200

250

300

E
ne

rg
y

(k
J)

1.
0.

0

1.
0.

3

1.
1.

1

1.
2.

1

0.
23

.3

0.
23

.6

0.
23

.8

0.
23

.1
0

2.
1.

0

2.
2.

0

2.
3.

0

2.
4.

0

100% HD
100% SSD

(a) WordCount 10GB

WordCount Experiments 20GB Dataset

0

50

100

150

200

250

300

E
ne

rg
y

(k
J)

1.
0.

0

1.
0.

3

1.
1.

1

1.
2.

1

0.
23

.3

0.
23

.6

0.
23

.8

0.
23

.1
0

2.
1.

0

2.
2.

0

2.
3.

0

2.
4.

0

100% HD
100% SSD

(b) WordCount 20GBWordCount Experiments 48GB Dataset

0

200

400

600

800

1000

1200

E
ne

rg
y

(k
J)

1.
0.

0

1.
0.

3

1.
1.

1

1.
2.

1

0.
23

.3

0.
23

.6

0.
23

.8

0.
23

.1
0

2.
1.

0

2.
2.

0

2.
3.

0

2.
4.

0

100% HD
100% SSD

(c) WordCount 48GB

Figure 4.10: Hadoop WordCount Experiments Energy Consumption

32 MOTIVATING AND GROUNDING EXPERIMENTS 4.5

Table 4.5: Average Energy Comparison (Energy values in kJ)

Releases 10GB Sort 48GB Sort 256GB Sort

HD SSD Reduction HD SSD Reduction HD SSD Reduction

1.0.0 83 83 0% 459 363 21% 2294 2030 12%
1.0.3 83 82 1% 479 372 22% 2577 2064 20%
1.1.1 65 58 10% 378 304 20% 1990 1626 18%
1.2.1 66 59 10% 398 298 25% 1914 1588 17%

Branch Averages 5% 22% 17%

0.23.3 102 94 8% 477 398 17% 3294 3032 8%
0.23.6 107 97 10% 478 437 9% 3058 2807 8%
0.23.8 104 97 7% 588 456 22% 3101 2790 10%
0.23.10 106 97 9% 593 464 22% 2803 2736 2%

Branch Averages 9% 17% 7%

2.1.0 124 112 10% 550 485 12% 3257 2944 10%
2.2.0 119 113 5% 547 495 10% 3376 3182 6%
2.3.0 116 107 7% 696 564 19% 3322 2885 13%
2.4.0 120 112 7% 682 521 24% 3231 3077 5%

Branch Averages 7% 16% 8%

4.5.4 Hadoop Source Code Analysis

Following the energy consumption analysis, we conducted an investigation of the Hadoop source
code, searching for correlation of several factors with the energy consumption. We performed three
separate analyses during this process. First, an analysis of the software size versus job makespan
and energy performance was made, since the software architecture has direct influence on perfor-
mance, and consequently on power demands. Second, we analyzed the relation of the map and
reduce tasks with power to explain the sources of energy consumption in a Hadoop job. Finally,
we carried out an analysis of object-oriented metrics obtained using the CKJM-extended5 tool to
understand the framework evolution, correlating the results with software size, job makespan and
energy consumption.

It is important to note that the investigation of the source of energy consumption in data centers
is viable and needed, given that energy is one of their major costs and have significant environmental
impact. In parallel and distributed computing, resource usage is the key to achieve a well-balanced
trade-off between performance increase and energy savings. Furthermore, resource usage can be
closely related to the software architecture, since the latter determines how computations will be
accomplished. Therefore, changes in the software architecture during development — adding or
removing features and components, modifications in classes, methods and attributes — directly
affect energy consumption.

Hadoop fits exactly in this context. Over the last decade, Hadoop had more than 60 releases.
From version 0.20.3, and over the course of two years, project decisions generated the three current
development branches: 1.x, which is stable for now; 0.23.x and 2.x that maintains active develop-
ment. Hadoop 1.x releases remained strictly correlated to MapReduce use, while 0.23.x and 2.x
branches introduced critical architectural modifications, adding new components and changing the
project architecture. These Hadoop releases became more flexible, allowing the use of different
program paradigms, multitenancy and parallel instances of the framework running on the same
infrastructure. Even though Hadoop is tightly linked to MapReduce and such architectural modifi-
cations not only caused losses in performance, but also increased greatly the energy consumption,
Hadoop’s energy consumption was never fully analyzed by the research community.

Size, Time, and Versions versus Energy

One confusing factor to any analysis of software and metrics is the size of the software – lines
of source code – versus metrics and performance. Lines of Code (LOC) will correlate linearly with

5Extended CKJM Metrics: http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/ (Visited on 15/10/2016)

http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/

4.5 RESULTS AND ANALYSIS 33

many features of the source code. For instance, if an “if” statement occurs with probability of 0.1
per line then roughly anything that correlates with LOC will correlate with “if” statements.

Looking for correlations between the source code and the energy consumption results, we sub-
divided RQ2 into four questions :

RQ2.1 Does Hadoop size correlate with energy?

RQ2.2 Does energy correlate with Hadoop execution time?

RQ2.3 Does Hadoop size correlate with execution time?

RQ2.4 If we order the Hadoop releases by release date, does the rank of the release (first,
second, third, etc.) correlate with energy?

To answer RQ2.1, we defined size as the number of Java lines of code counted by David
Wheeler’s SLOCCount6 program for that version of Hadoop. We also defined a sort configuration
as a Sort benchmark running on a specific storage, such as, Sort 10GB HD, Sort 10GB SSD, and
so on. For all tests of all Sort benchmarks — 10, 48, 256GB, for both SSD and HD — for all
tested Hadoop versions the Pearson correlation is 0.1496, a very weak to negligible correlation. The
problem is that this measurement mixes benchmarks of different sizes. By isolating datasets and
storage configurations, the values presented in Table 4.6 show a high Pearson correlation. Therefore,
we argue that size does indeed correlate with energy, but if we control for other factors, such as
version, we might find out that it is not as important.

Table 4.6: Pearson Correlation: Hadoop Size with Sort benchmarks

Storage Sort 10GB Sort 48GB Sort 256GB

HD 0.9445 0.9656 0.9121

SSD 0.9502 0.9528 0.9146

On a single computer typically time and energy are related as energy is defined as the integration
of power over time (e = p · t). But we must consider that Hadoop tasks run on multiple computers.
Thus, we analyzed a possible relation between job makespan and energy consumption in RQ2.2.
Regardless of the sort task size or configuration, over all tests, a Pearson correlation of 0.9880 was
achieved, indicating high linear correlation between time and energy, as expected. Thus, time acts
as a high accuracy proxy for energy. As a result, we concluded that there is a relationship between
energy and time and a strong relationship between size and energy.

As a third analysis, in RQ2.3 we considered the Hadoop code size and the job makespan.
Regardless of the sort configuration, a medium to high Pearson correlation of 0.7576 between Java
LOC and execution time was achieved, indicating that code size and execution time are also related.
Thus code size had a medium to high strength relationship depending on the sort configuration,
with the lowest correlations belonging to the Sort 48GB experiments.

Table 4.7: Correlation Summary: Size, Time, and Versions versus Energy

Research Question Correlations Results Correlation Value

RQ2.1 Hadoop Size (Java LOC) and Energy High > 0.91

RQ2.2 Energy and Job Makespan High ≈ 0.98

RQ2.3 Hadoop Size (Java LOC) and Job Makespan Medium to High ≈ 0.70

RQ2.4 Hadoop Version and Energy Medium to High ≈ 0.65

If code size mattered, and indeed the code size increased over time, perhaps the release order,
the version number, also matters, as pointed out in RQ2.4. Regardless of the sort configuration,

6David Wheeler’s SLOCCount: http://www.dwheeler.com/sloccount/ (Visited on 15/10/2016)

http://www.dwheeler.com/sloccount/

34 MOTIVATING AND GROUNDING EXPERIMENTS 4.5

a low Pearson correlation was measured. But if ordered according to the development branches —
1.0.0, 1.0.3, 1.1.1, 1.2.1, 0.23.3, 0.23.6, 0.23.8, 0.23.10, 2.1.0, 2.2.0, 2.3.0, 2.4.0 — we find a weak
general correlation and a medium per sort correlation. Using this ordering, the Pearson correlation
between version and size is 0.6675 in general. Thus we find that Hadoop versions can correlate
heavily with energy consumption, but it depends on how the versions are ranked. Furthermore,
the date of the Hadoop release is not correlated with energy consumption. This indicates that the
branch of the code matters quite a bit, as we hinted from the experiments results. Table 4.7 presents
the summary of our findings.

We found out that time and energy have a high correlation, while Hadoop version number, not
release date, had a medium correlation with energy consumption. We also found that while size was
strongly correlated with energy consumption, the version was much an equally strong predictor of
energy consumption, as both are correlated with each other.

Finding 4: We argue that while LOC has a high correlation, it is the version and revisions to the
code which truly matter, as shown by the results pointed out previously.

Maps & Reduces versus Power

Another important analysis is how the job tasks (maps & reduces) influence energy consumption.
Although the number of map and reduce tasks can be explicitly set through configuration properties,
this is not the regular behavior. The number of blocks used by the dataset in HDFS controls the
number of map tasks in a Hadoop job. Since HDFS splits every file in a number of blocks, there is a
direct relation between the dataset size and the number of map tasks to compute it. The block size,
pre-configured in Hadoop, can also change this number: a small block size increases the number of
map tasks; a large block size will generate a smaller number of map tasks. Both conditions may be
undesired. With a small block size, the time to instantiate a map task will overcome the processing
time, generating excessive I/O in the intermediate phases and severe performance loss. The second
condition can also bring issues: a larger block will result in longer map tasks, that if unbalanced
during execution, will slow the entire job down – long-tail jobs. In the same way, the number of
reduce tasks also affects Hadoop: a high number of reduce tasks will decrease performance, since
there will be data redistribution to accommodate the number of reduce tasks. The opposite is also
true, a low number of reduce tasks will cause unnecessary data transfers between nodes finishing
map tasks to gather the results to be computed. Although there is no ideal value for the number
of reduce tasks, the block size and the number of files created in the output are considered. In our
experiments, the number of map tasks was set by the dataset size divided by the default HDFS block
size (64MB), and the number of reduce tasks was not set, being determined by the configuration
files of the benchmark. The numbers are presented in Table 4.8.

Table 4.8: Number of Map and Reduce Tasks per Benchmark

Tasks Datasets

Sort WordCount

Maps 160 768 4128 160 320 768
Reduces 48 48 48 1 1 1

Reduce tasks have a direct interaction with I/O operations because they are responsible for
writing the results of computation to HDFS. Although Map tasks always read their splits from
storage, read operations are not as costly as write operations. Both benchmarks have different
interactions with the Reduce phase. The Sort benchmark uses the reduce phase to spill the ordered
records to the file system. While map tasks are responsible for reading from disk and directly writing
the data for the intermediate phase, reduce tasks will perform the sorting itself, pulling the records
from the intermediate phase and writing the results to the HDFS. Therefore, reduce tasks in Sort
jobs demand more energy than map tasks. Since this benchmark is purely I/O-bound, the energy

4.5 RESULTS AND ANALYSIS 35Sort: Average Job Phases

●●

●●

●
●

●●

●●

●
●

●●

●●

●●
●

●●

●
●

●●

●●

●

●

● Map
Reduce
Extra

0% 20% 40% 60% 80% 100%

0%

20%

40%

60%

80%

100%

E
ne

rg
y

Job Makespan

Figure 4.11: Sort Benchmark Energy and Job Makespan Split by Phase

consumption changes from release to release, especially among the tested branches, as presented in
Figure 4.11.

Figure 4.11 depicts three job task types in terms of energy and makespan. Besides the Map and
Reduce phases, the extra energy is the complementary energy spent by the framework before the
beginning of the first map task (job preparation) and after the last reduce task (heavily associated
with HDFS block replication). From our data, we concluded that 1.x releases use less than 20%
of the total job energy for the Map phase, and less than 3% as complimentary energy; the 85%
remaining is used during the Reduce phase. This changes considerably when compared with 0.23.x
and 2.x releases, which uses on average 30% of the energy during the Map phase, 7% as extra
energy, and approximately 62% of the energy for the Reduce phase.WordCount: Average Job Phases

●●●●
●● ●●●●●● ●

●●●
●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

● Map
Reduce
Extra

0% 20% 40% 60% 80% 100%

0%

20%

40%

60%

80%

100%

E
ne

rg
y

Job Makespan

Figure 4.12: WordCount Benchmark Energy and Job Makespan Split by Phase

The results from the WordCount benchmark presented the large difference between CPU- and
I/O-bound jobs in Hadoop. In this benchmark, the Map phase is the major responsible for the
energy consumption, as a result of the word-by-word analysis from each input split and low weight
of the I/O operations in the power demands of this particular benchmark. As a consequence, Figure
4.12 presents the results grouped more tightly. Even though releases use different amounts of energy
during computation as previously presented, the energy consumption split among the phases is very
close in every release/benchmark tested, as shown in Figure 4.12.

Hadoop CKJM-extended Metrics Analysis

As a final step in the Hadoop source code analysis we performed an analysis using the CKJM-
extended suite (JS10), which measures a variety of object-oriented metrics for Java. This is a

36 MOTIVATING AND GROUNDING EXPERIMENTS 4.5

worthwhile analysis since most of Hadoop is written in Java. These metrics were first proposed by
Chidamber and Kemerer (CK94), and many of the CKJM metrics we investigate are the averages
of the metrics over all classes.

These are some of the metrics measured as described by Jureczko and Spinellis (JS10):

• Data access metric (DAM) – a ratio of private and protected attributes to total attributes
per class;

• Afferent couplings (Ca) – how many other classes use a specific class;

• Number of children (NOC) – the number of direct children of a class;

• Weighted methods per class (WMC) – the number of methods per class;

• Number of public methods (NPM);

• Coupling between object classes (CBO) – the number of classes coupled to a given class;

• Lack of cohesion of methods (LCOM and LCOM3) – counts methods that don’t share at-
tributes or fields;

• Cohesion among methods of class (CAM) – measures whether or not methods of a class share
the same types of parameters or not; and finally;

• Lines of Code (Java LOC) – Lines of Code, previously calculated by SLOCCount.

For each Hadoop version, we ran the CKJM extended suite on its java jar files. The bytecode of
each class was analyzed and metrics were calculated. Then, we averaged the metrics over the entire
product. Once this was done, we could compare the benchmarked energy and time measurements
against the extracted CKJM metrics. Each version of Hadoop had its own set of averaged CKJM
metrics.

To investigate whether CKJM metrics were related to Hadoop performance, we produced thou-
sands of linear models using data gathered with R scripts, which can be downloaded from our
HDFSH GitHub repository at http://github.com/ipolato/Hybrid_HDFS. We evaluated these mod-
els, keeping only 506 of those that met a stringent criteria. This kind of multiple regression analysis
is similar to ANOVA. The averaged CKJM metrics were then put into linear models of 2 to 4 inde-
pendent variables (CKJM metrics) to model a dependent variable (energy use). Due to high linear
correlation between many variables, models with 5 or more independent variables were not used.
These models were produced per job (we consider here a job as the execution of an experiment
on a dataset, e.g, Sort 10GB), as there is no hint in the source code as to the size of the job. All
combinations of CKJM metrics, java LOC, and version (ranked from 1.x to 0.23.x to 2.x) were
iterated over, but if they were not linearly independent (correlation of 0.75 or less) the model was
not run. If a model was produced and all independent variables were not significant (α <= 0.05)
then the model was not kept.

The linear models per sort configuration were successful as the R2 range was between 0.9035 and
0.9998 for the top 10 performing models of each configuration where all variables were significant.
Table 4.9 shows the metrics present in at least 10 of the 60 top models, regardless of the configuration
or dataset size. LOC, Ca, and WMC were the top 3 metrics. We expected the LOC metric to show
up, as presented in subsection Size, Time, and Versions versus Energy. This demonstrates
once more the power of size and version awareness. Other metrics such as WMN and Ca appeared
in at least 50% of the models and have a considerable weight in our analysis.

Table 4.9: Metrics in the top 60 models

Metric NPM RFC NOC CBO WMC Ca Java LOC

Count 10 11 11 13 16 30 47

http://github.com/ipolato/Hybrid_HDFS

4.6 FINAL CONSIDERATIONS 37

Analyzing the metrics that were used to generate the models, we can observe a few behaviors
that support the architectural changes’ influences on the performance and energy consumption.
Since we are correlating different versions of the same project, it is fair to make such comparisons
as a means to explain the impact of source code changes in the energy consumption rates, which is
directly related with Hadoop performance. Table 4.10 presents the raw CKJM-extended values of
the main metrics that have a significant influence on the Hadoop behavior in this analysis.

Table 4.10: CKJM-extended raw values

Release WMC CBO Ca NPM NOC DAM LCOM LCOM3 Java LOC

1.0.0 6.883 11.610 5.699 4.278 0.276 0.367 48.579 1.016 343379
1.0.3 6.881 11.646 5.716 4.313 0.286 0.373 47.472 1.017 335042
1.1.1 6.914 11.805 5.830 4.257 0.292 0.379 51.777 1.013 351207
1.2.1 6.897 11.723 5.775 4.210 0.291 0.387 51.349 1.017 373825

0.23.3 10.045 13.798 6.485 7.195 0.306 0.363 234.458 1.074 532677
0.23.6 10.256 13.641 6.375 7.410 0.308 0.363 241.951 1.085 570643
0.23.8 10.244 13.629 6.370 7.397 0.308 0.364 240.399 1.082 514615
0.23.10 10.232 13.628 6.370 7.386 0.307 0.364 240.030 1.082 528641

2.1.0 11.927 14.520 6.321 8.720 0.259 0.367 260.697 1.119 668331
2.2.0 11.881 14.437 6.289 8.701 0.261 0.371 257.108 1.115 678536
2.3.0 11.981 14.491 6.290 8.752 0.257 0.371 258.995 1.108 738869
2.4.0 12.439 14.720 6.307 9.112 0.247 0.372 266.970 1.113 788555

Our data shows the direct influence of the WMC, CBO, LCOM, LCOM3, and Java LOC on
the models. WMC increased greatly from 1.x releases to 2.x and 0.23.x releases. This is a direct
consequence of the Java LOC metric, which nearly doubled if comparing YARN with 1.x releases.
Additionally, the increase in source code size brought up another consequence presented by the
LCOM and LCOM3 metrics, meaning that more classes have isolated methods that do not share
common spaces, representing more instances running in parallel. This has also an influence on the
CBO (Coupling between object classes) metric, present in almost 25% of the models. This indicates
that there is a relationship between the general structure of the code and its final performance in
terms of energy, with an influence of the version.

Finding 5: Version awareness plays a key factor in the Hadoop project, as a consequence of the
architectural modifications designed to accommodate the YARN resource manager.

4.6 Final Considerations

In this Chapter, we presented our investigation of the Apache Hadoop project, its branches and
releases, regarding energy consumption and performance under two storage scenarios. Hadoop is a
powerful tool to process large datasets using mainly the MapReduce programming paradigm. The
framework evolved through more than 60 releases and several development branches. We analyzed
4 releases of each of the 3 current branches: 1.x, 0.23.x, and 2.x. We successfully demonstrated
throughout the experimentation that there is a significant difference in energy consumption between
the framework development branches, mostly related to the modifications introduced during the
architectural changes in the framework development.

The 1.x releases had better performance and better energy consumption than all the other
tested releases. Releases 1.1.1 and 1.2.1, which did not incorporate the new resource manager of the
framework, YARN, demonstrated to be the most energy efficient in the experiments. We acknowl-
edge that the evolution of the framework brought desirable characteristics to the platform, such as
the use of other programming paradigms and multitenancy. But we argue that the same evolution,
through the development of the YARN resource manager, included in 0.23.x and 2.x releases, caused
significant loss in performance, and consequently, increases in job energy consumption, as shown in
Section 4.5.4.

In the experiments and analysis conducted, we established a strong correlation between version
and release with energy consumption in Hadoop. Regarding storage devices, we tested the use of

38 MOTIVATING AND GROUNDING EXPERIMENTS 4.6

HDs and SSDs on HDFS. As expected, the performance of jobs using SSDs overcame the HDs
performance on I/O-bound jobs. On CPU-bound jobs there was no significant difference between
experiments. While SSDs have an overall better performance and are more energy efficient, their
use on HDFS can be prohibitive due to its cost. SSDs cost around $1.00 per GB (Hac14), while
HDs’ cost between $0.03 and $0.05 per GB (Mac14). At this cost per GB, SSDs price represent
around 20 times or more the cost per GB of HDs. From this perspective, their use should match the
expected performance increases and energy savings, and certainly used in a hybrid environment,
mixed with HDs.

Chapter 5

HDFSH : a Hybrid File System

In this chapter, we present our hybrid storage model for the Hadoop Distributed File System
(HDFS), called HDFSH , which seamlessly integrates both storage technologies – HDs and SSDs –
to create a highly-efficient hybrid storage system. Our results indicate that, in most configurations,
this approach promotes overall job performance increases, while decreasing energy consumption.
Additionally, our hybrid storage model splits the file system into storage zones, wherein a block
placement strategy directs file blocks to zones according to predefined rules. This enables the use
of different storage configurations for different workloads, thereby achieving the desired tradeoff
between performance and energy consumption. Our goal is to allow the user to determine the best
configuration for the available infrastructure, by setting how much of each type of storage device
should be used during MapReduce computations. The observations made during the experiments
may also be used as a guide for users seeking to modify existing Hadoop clusters, or even put
together a new cluster.

We consider that there is an increasing movement for the use of SSDs as a replacement for HDs.
However, this is not likely to happen in the near future, since the capacities are still small when
compared to HDs – the majority of SSDs are still around 400GB, while HDs are in the 2 to 4TB
range. Additionally, cost must also be considered, although it has decreased greatly in the past
few years. We expect to see a transition period in which both technologies will coexist. The more
natural movement is the slow replacement of HDs and the addition of new SSDs to the existing
storage servers, creating a hybrid storage environment. This is already a reality, since today it is
possible to find storage providers offering categorized storage services at different price rates for HD
and SSD storage space.

5.1 HDFSH Storage Model

To implement our model, we developed a hybrid storage approach for HDFS that leverages the
different characteristics of HDs and SSDs connected to a Hadoop cluster. The key feature is the
controlled use of SSDs to increase performance and reduce energy consumption. Yet, although these
two characteristics of SSDs are outstanding, we must also consider their cost. In this context, our
goal is to allow the user to determine the best configuration according to the available infrastructure,
by setting how much of each storage device should be used during MapReduce computations. To
describe our hybrid storage approach, the total HDFS space available must be expressed as the
sum of available space in each device of the cluster DataNodes. We defined a formal model that
guided the development of our approach. Most of the generic functions defined in this section are
existing functions from HDFS. We formally defined them to promote a better visualization of our
approach. In this model, we limited the storage devices in the cluster nodes to HDs and SSDs. Table
5.1 contains a glossary of symbols and functions used in our storage model.

First, we define the HDFS storage space as the sum of the available space on all DataNodes in
the cluster. We wrote a generic function SpaceAvailableInNode(), which returns the free space that
can be used by HDFS on a DataNode. Thus, the HDFS storage space is defined as:

39

40 HDFSH : A HYBRID FILE SYSTEM 5.1

Table 5.1: Definitions Used on the HDFS Hybrid Storage Model

Symbol Definition

HD Hard Drive
SSD Solid-State Drive
DN DataNode
d Number of DataNodes in the cluster
DS Dataset composed of multiple files
blockSize HDFS default block size configured in

dfs.block.size

HDFS =

d∑
i=1

SpaceAvailableInNode(DNi) (5.1)

Since we are modeling a hybrid environment, each DataNode may have different devices connected
to it (HDs or SSDs), each with different amounts of available space. Thus, we define two storage
space zones: HDzone is the sum of all HD space available for HDFS on DataNodes; and SSDzone is
the counterpart for SSDs. From each DataNode, we can obtain the available space for each device
category using the following equations.

HDspace(DN) =
z∑

i=1

SpaceAvailableInDevice(HDi) (5.2)

SSDspace(DN) =

w∑
i=1

SpaceAvailableInDevice(SSDi) (5.3)

where z and w are, respectively, the number of configured HDs and SSDs on DataNode DN . The
total HD space will compose the HDzone, and similarly, the SSDzone will be composed of the sum
of the SSD space available on each DataNode. We define them as:

HDzone =
d∑

i=1

HDspace(DNi) (5.4)

SSDzone =

d∑
i=1

SSDspace(DNi) (5.5)

where d is the number of DataNodes running in the cluster. Finally, we define the hybrid HDFS
storage space for our model as the following:

HDFSH = HDzone + SSDzone (5.6)

This model captures the existing nuances between the different storage devices in the same file
system. The NameNode middleware must be aware of the storage zones and the difference between
the devices on each DataNode. Originally, the dfs.data.dir Hadoop configuration variable con-
tains a comma separated list of the directories that HDFS can use. We extended this property to
hold two lists, one for the SSD directories and the other for the HD directories. By using both lists
to create HDFS storage space, the NameNode maintains a general view of the HDFS storage; it
can also separately access the devices defined by the block placement policies.

5.1 HDFSH STORAGE MODEL 41

5.1.1 Block Placement Policy

Following our HDFS hybrid storage model, we developed a block placement policy for HDFSH .
From version 1.x on, HDFS allows users to create their own pluggable block placement policies. For
our purposes, a Block Placement Policy is an algorithm that specifies where a file’s blocks will be
stored on HDFS. These policies are controlled by the NameNode daemon, which manages the table
of files, blocks, and locations.

The default HDFS block placement policy considers two main aspects: the rack map and avail-
able DataNodes. In the default scenario (3 replicas per file block), the default strategy is to randomly
pick an available node and send the first copy of the block. This replica is then copied to a second
randomly picked node. If possible, it will be placed on a different rack from the one that holds the
first node. Finally, the third replica is copied from the second one and placed in the same rack,
but on a different node. This HDFS block replication is explained by the developers as the Hadoop
fault tolerance mechanism, which may avoid missing blocks of a file in case of shutdown of a node
or an entire rack. Although this policy performs reasonably well, it does not consider, at any time,
the existing differences between devices used to compose the available storage space on HDFS. If
we connect an HD and an SSD into a DataNode of a Hadoop cluster and configure them in the
hdfs-site.xml file, they will receive blocks to store independently of their characteristics. The config-
uration file hdfs-site.xml keeps configuration properties used by the NameNode to manage the file
system, including the devices used. The dfs.data.dir property keeps a comma separated list of
data directories used as storage locations. This configuration is made on each node of the cluster,
and as a result, different DataNodes may use different devices and directories, and have different
available space for the file system. The NameNode calculates the total available space as the sum
of the free space on each DataNode, following the configurations for the devices/directories in the
hdfs-site.xml.

The development of such a hybrid storage environment for Hadoop added more flexibility to
HDFS. Since SSDs are faster and consume less power than HDs, given their installation on storage
servers, we expect resulting performance gains and a decrease in energy consumption. In fact, this
was presented in Chapter 4, where we presented the isolated benefits of the SSD use on Hadoop
clusters. We seek now to present the benefits of a hybrid approach, mixing HDs and SSDs in HDFS.
Our block placement policy sends a pre-configured percentage of the blocks to one of the designed
storage zones, and the remainder of the blocks to the other. Let DS be a dataset that will be stored
in HDFSH . To know the number of blocks of DS , we must know the number of blocks of each file
in DS . Modeling a generic function called blocks that returns the number of blocks used by a file
according to the default pre-configured HDFS block size, we have:

blocks(file) = dsize(file)/blockSizee (5.7)

where the generic function size returns a given file’s number of bytes. To obtain the total number
of blocks needed to store DS into HDFSH , we sum the individual number of blocks occupied by
each file in DS :

blocksDS =

k∑
f=1

blocks(filef) (5.8)

where k is the number of files in DS .
Since we know in advance how many blocks DS will require in the file system and our policy

controls the percentage of blocks sent to each storage zone, we express the input of DS into HDFSH

as:

42 HDFSH : A HYBRID FILE SYSTEM 5.2

HDFSH ← DS

SSDzone ← dρ.blocksDSe

HDzone ← b(1− ρ).blocksDSc
(5.9)

where ρ is the coefficient (0 <= ρ <= 1) that determines how many blocks will be sent to the
SSDzone. The complement of ρ determines the amount of blocks sent to the HDzone.

Our algorithm works by first knowing the number of blocks of a given dataset or file, which is
calculated by HDFS. To store the blocks in one of the storage zones, we use one of the configured
storage proportions. Consider for instance, that a user wants to store 25% of the blocks in the
SSDzone and the 75% remaining blocks in the HDzone. The user configures this proportion in
the HDFS configuration file and directs the blocks to the storage zones. This is accomplished in a
round robin fashion, meaning that in this case, the first block will be stored in the SSDzone, and the
following 3 blocks will be stored in the HDzone. When a block is stored in a specific zone, Hadoop
is responsible for choosing the node in the cluster that receives the block and its replicas. Hadoop
is in charge of this mainly because of the load balancing algorithms, which spreads the file blocks
evenly across the whole cluster. Users are free to configure the storage proportion according to their
needs. If for any reason, one of the storage zones is out of space, the blocks will be directed to the
available space of the other zone. Therefore, to receive the benefits presented in our studies, users
must consider the available space in each storage zone and configure Hadoop accordingly. All the
source code and the releases tested using HDFSH can be downloaded from our repository at GitHub
(http://github.com/ipolato/Hybrid_HDFS) under the folder “HDFS_H Hadoop Releases”.

5.1.2 Storage Cost Model

Our storage model captures the essence of the proposed hybrid environment, mixing HDs and
SSDs and thus supporting two important nuances on data processing: performance and energy
consumption. A third concern nowadays is the cost of storage space. We now present our cost
model, which allows the calculation of the storage costs based on the price/GB of each storage
device using a given storage proportion. Our storage model splits the dataset blocks in HDFS into
different storage zones using HD and SSD devices. Given that all files in HDFSH are stored either
in the HDzone or in the SSDzone, the block proportion for each zone is complementary. Thus,
considering a Hadoop job we have:

SSDprop + HDprop = 1 (5.10)

where SSDprop and HDprop are the storage proportions defined for each zone by HDFSH policy.
Therefore, let DS be a dataset in HDFSH . We can model the storage cost for a job as:

HDFSH StorageCost = size(DS)× (CostSSD + CostHD) (5.11)

where:

CostSSD = SSDprop × SSDcost/GB

CostHD = HDprop ×HDcost/GB

(5.12)

using Equation 5.10 we have:

CostHD = (1− SSDprop)×HDcost/GB (5.13)

Thus, we can estimate the storage cost for a Hadoop job using HDFSH by setting the SSD
proportion, and the SSD and HD cost per GB. This model is useful when calculating the storage
cost over time versus the energy cost and is applied and discussed during our analysis.

http://github.com/ipolato/Hybrid_HDFS

5.2 EXPERIMENTAL METHODOLOGY AND DATASETS 43

5.2 Experimental Methodology and Datasets

The studies from the previous chapter presented the differences in performance and energy
consumption when using HDs and SSDs on Hadoop. We also presented the performance differ-
ences among the 3 Hadoop development branches. We now focus on the energy consumption and
performance of the Hadoop releases using our hybrid approach. From the previous release set, we
narrowed the studies to include two of the latest releases from each branch, since they performed
better, as previously stated. We tested our hybrid approach on the Hadoop releases presented in
Table 5.2. With this set we still can overview almost two years of the project’s releases, including
different versions and branches, representing different Hadoop middleware designs. Since Hadoop is
constantly evolving and releasing new versions, we established a timeframe for this research, which
was limited by the latest releases of April 2014.

Table 5.2: Releases Used in the Experiments

Hadoop Release Date

1.1.1 2012-11-18
1.2.1 2013-07-15

0.23.8 2013-06-05
0.23.10 2013-12-09

2.3.0 2014-02-20
2.4.0 2014-04-07

With HDFSH and the block placement rules properly designed and the releases selected, we
defined the set of benchmarks to test our approach. We used the same Sort I/O-bound benchmark,
and included two extra benchmarks: Join and Mahout K-Means, provided in the HiBench (HHD+10)
set, which is publicly available on GitHub. HiBench is a set of Hadoop tools and benchmarks,
including machine learning and data analytics applications. We used an implementation of the K-
Means clustering algorithm using the Mahout Library (Apa14) from HiBench in our experiments.
To analyze our hybrid storage performance in different situations, our final selection of benchmarks
is listed in Table 5.3, including the corresponding dataset size used in each experiment set.

Table 5.3: Benchmarks and Dataset Sizes Used in the Experiments

Benchmark Dataset Type

10GB
Sort 48GB I/O-bound

256GB

Join 20GB CPU-bound

K-Means Clustering 3× 107 samples CPU + I/O

Regarding the datasets, the Sort experiments used the previously generated datasets for the
HD and SSD experiments. They were created using the RandomWriter job, which generates a
predefined amount of random bytes. As a result of this job, a set of files with random keys serve as
input for the Sort jobs. The Join benchmark performs a join between two datasets, in a database
fashion. These experiments used datasets generated with DBGEN from the TPC-H benchmark
(Cou02), which is widely used by the database community. Finally, we used an implementation
of the K-Means clustering algorithm using the Mahout Library (Apa14) from HiBench in our
experiments. K-means considers an euclidean space and attempts to group the existing elements
into a predefined number of clusters. This benchmark is CPU-bound during the iteration phase and
I/O-bound during the clustering phase. We chose our experimentation benchmarks based not only

44 HDFSH : A HYBRID FILE SYSTEM 5.3

on their I/O or CPU characteristics, but also on prior research analysis (HHD+10; PYXH14). Note
that experiments using the HiBench benchmark set, have their datasets generated automatically.
From the first run of these benchmarks, we cloned the dataset, saving it for reproducibility purposes.
The other benchmarks had their datasets previously generated using external tools/jobs and saved
accordingly.

To conduct these experiments we used the same methodology presented in Section 4.4: for each
experiment set, a Hadoop release was deployed individually in the cluster and the appropriate
dataset for the experiment was sent to HDFS. Then, a set of jobs was performed for the selected
benchmark. If any of the jobs in a set of experiments did not record accordingly the power mea-
surement reads, it was discarded. For each set of experiments, a minimum of 5 complete jobs (with
complete power readings) had its data recorded. If necessary, additional jobs were deployed to com-
plete the minimum required for our analysis. The infrastructure used in this experiment was the
same one presented in Section 4.3.

Since our hybrid approach is quite flexible, we predefined a set of storage proportions to perform
the experiments. Experiments using solely HDs and SSDs were performed once again with all the
datasets, even though we already had the results from previous experiments. First, we kept all the
data in the HDzone; next all the data was put in the SSDzone. We performed these experiments
again to check whether our block placement policy could cause any effects on performance and/or
energy consumption. The results showed that there is no difference between using the hybrid policy
or configuring Hadoop manually to use only one storage type (HDs or SSDs). Concerning the
hybrid part, our block placement policy was tested against three configurations, mixing HD and
SSD storage space: one using 50% of HD and 50% of SSD space; another one using 80% of HD and
20% of SSD; the last one using 80% of the data on SSDs and the remaining 20% on HDs. Table 5.4
presents the storage proportions tested during the experiments.

Table 5.4: Configurations Used in the Experiments

Data Percentage Configurations

Configuration Short Name HDzone SSDzone

HD 100% -
80/20 80% 20%
50/50 50% 50%
20/80 20% 80%
SSD - 100%

5.3 Energy Consumption and Performance Analysis

The focus of HDFSH is to both increase performance and decrease energy consumption when
using the hybrid environment. Regarding performance, we discovered a large difference among the
several Hadoop releases. The performance issues were not related to the storage approach, but
to architectural modifications introduced during the framework branching and evolution. Due to
architectural changes in the middleware, Hadoop releases that included the YARN resource manager
performed worst and consumed more energy when compared with the 1.x releases. Additionally,
we proved that I/O-bound jobs benefit from the use of SSDs by producing lower results in job
makespan for all the releases tested in the experiments. Consequently, we also demonstrated that
energy consumption rates have decreased, firstly because SSDs are faster than HDs, and in this
case, less energy is demanded; and secondly because SSDs demand less energy to work due to its
conception. We now detail the results of our experiments using the hybrid approach.

5.3 ENERGY CONSUMPTION AND PERFORMANCE ANALYSIS 45

5.3.1 I/O-Bound Benchmark Results

Starting with the 10GB Sort, the results are consistent with the previously observed behavior
using only HDs and SSDs. Again, we can easily observe the differences among the three branches.
Figure 5.1a shows the energy consumption results from all five storage configurations tested in the
following order: HD, 80/20, 50/50, 20/80, and SSD. Whereas releases 0.23.x consumed on average
65% more power than releases 1.x, releases 2.x consumed on average 85% more power than the 1.x
releases. The increase is partially explained by the performance loss: jobs running on 0.23.x releases
were 27% slower than on 1.x releases. The same is observed in the 2.x branch, which was around 35%
slower than 1.x releases, as Figure 5.1b illustrates. The significant difference in energy consumption
can also be explained by the incremental addition of new features in recent Hadoop branches, as
discussed previously. The YARN component brought flexibility to the framework, allowing other
types of jobs to be executed in Hadoop, in addition to the original MapReduce. YARN also enabled
the instantiation of multiple JobTrackers and NameNodes. Our experiments demonstrated that
all this flexibility came at a price: loss in performance and, consequently, an increase in energy
consumption when executing MapReduce jobs. From Figure 5.1, we can also observe that there are
small differences between releases from the same branch, with small energy consumption variations.

Sort 10GB Dataset

0

25

50

75

100

125

150

E
ne

rg
y

(k
J)

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

HD
80/20
50/50
20/80
SSD

(a) Energy Consumption

Sort 10GB Dataset

0

50

100

150

200

250

300

350

T
im

e
(s

)

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

HD
80/20
50/50
20/80
SSD

(b) Job Makespan

Figure 5.1: HDFSH 10GB Hadoop Sort Results

Further considering the 10GB Sort experiments, we can also observe the expected tendency in
energy savings when moving data to the configurations that favor SSD use. We can also notice
the non-linear response in both energy consumption and job makespan when inserting more SSDs
storage space in the computation.

Finding 6: The middle 50/50 and 20/80 configurations tend to achieve results that are closer to
the SSD configuration. This means that with half storage space coming from SSDs,
we can achieve energy consumption rates closer to the use of an SSD-only HDFS.

Besides the decrease on energy consumption, this generates an inevitable and positive effect on the
total storage space cost with the reduction of the average price/GB. In such case, an SSD-only
HDFS would perform nearly the same as these two configurations, but would cost almost twice.

Next, we moved on to the experiments with larger datasets. Figure 5.2a shows the results for
the 48GB Sort experiments. The results support the tendency toward energy savings when using
SSDs. Analyzing these two initial experiments, we noticed that increasing the dataset size shifts
the tendency of power saving toward the middle configurations: 50/50 and 20/80. This indicates
that, by storing only a fraction of the data on SSDs with these specific hybrid configurations, we
achieve a significant increase in performance and, consequently, a reduction in energy consumption.
Our results indicates that, if all data is processed from the SSDzone, there is an average reduction
of 20% in energy consumption. A similar reduction can also be observed in the 50/50 and 20/80
configurations in Figures 5.1 and 5.2, thus reinforcing the above finding.

The results from the Sort benchmark using the 256GB dataset also corroborate the previous
statements. With the increase in the dataset size, the energy consumption rates decrease in the

46 HDFSH : A HYBRID FILE SYSTEM 5.3

Sort 48GB Dataset

0

100

200

300

400

500

600

700

800

E
ne

rg
y

(k
J)

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

HD
80/20
50/50
20/80
SSD

(a) Energy Consumption

Sort 48GB Dataset

0

500

1000

1500

2000

2500

T
im

e
(s

)

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

HD
80/20
50/50
20/80
SSD

(b) Job Makespan

Figure 5.2: HDFSH 48GB Hadoop Sort Results

middle configurations, favoring the use of less SSD storage to achieve similar results to the SSD
configuration. Figure 5.3 presents both the energy consumption and job makespan results from the
experiments. The larger dataset experiment surfaced a new observation: most of the experiments
using the 20/80 configurations performed worst or close to the HD configuration. This behavior
was observed on YARN releases 0.23.8, 0.23.10, and 2.3.0 and is not present in releases 1.x. and in
Hadoop 2.4.0. Even so, all tested releases had the same behavior on the 50/50 configuration.

Sort 256GB Dataset

0

500

1000

1500

2000

2500

3000

3500

4000

E
ne

rg
y

(k
J)

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

HD
80/20
50/50
20/80
SSD

(a) Energy Consumption

Sort 256GB Dataset

0

1500

3000

4500

6000

7500

9000

T
im

e
(s

)

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

HD
80/20
50/50
20/80
SSD

(b) Job Makespan

Figure 5.3: HDFSH 256GB Hadoop Sort Results

This condition is attributed to the total SSD storage space. Due to this size limitation, the 20/80
Sort jobs move intermediary blocks to the HD portion of the configuration, degrading its perfor-
mance. Analyzing the source code commits, we observed a few sets of commits regarding HDFS
performance during the transition from Hadoop 2.3.0 to Hadoop 2.4.0. This is clearly observed in
the results, analyzing the YARN branches.

Additionally, during the 256GB Sort experiments, we observed an issue regarding the SSDzone
total space. Our DataNode infrastructure has eight 120GB SSDs, totaling 960GB of usable storage
space. Using a replication factor of 3, a dataset triples its size in HDFS. Thus, in this setting the
256GB dataset uses 768GB, leaving less than 200GB of free space in the SSDzone. This does not
allow the Sort Job execution, since it requires the equivalent of three times the dataset size of free
space (at least 768GB) during its execution.

Therefore, the results presented in Figure 5.3 regarding the SSD configuration were achieved
with the replication factor set to 1 on the HDFS configurations. These results are marked in Ta-
ble 5.5, which presents all the energy consumption results from the Sort benchmarks and the energy
consumption reduction promoted by each configuration when compared to the HD results. The im-
pact of the replication factor was analyzed in further experiments presented at the end of this
section.

To promote another comparison between different Sort benchmarks, we normalized the energy
results using the averaged values of the observations for each tested configuration. For each pair

5.3 ENERGY CONSUMPTION AND PERFORMANCE ANALYSIS 47

Table 5.5: Sort Benchmarks: Average Energy Consumed (kJ)

Dataset size Release HD 80/20 Reduction 50/50 Reduction 20/80 Reduction SSD Reduction

10GB

1.1.1 65 62 5% 60 8% 59 9% 58 11%
1.2.1 66 62 6% 61 8% 60 9% 59 11%
0.23.8 108 105 3% 99 8% 98 9% 97 10%
0.23.10 106 105 1% 99 7% 98 8% 97 8%
2.3.0 116 112 3% 109 6% 108 7% 107 8%
2.4.0 120 119 1% 114 5% 113 6% 112 7%

48GB

1.1.1 378 348 8% 303 20% 299 21% 304 20%
1.2.1 398 352 12% 306 23% 311 22% 298 25%
0.23.8 588 566 4% 463 21% 454 23% 456 22%
0.23.10 593 596 -1% 510 14% 449 24% 464 22%
2.3.0 696 630 9% 579 17% 529 24% 564 19%
2.4.0 682 631 7% 563 17% 540 21% 521 24%

256GB

1.1.1 2005 1967 2% 1795 10% 1750 13% 1626* 19%
1.2.1 1972 1934 2% 1796 9% 1795 9% 1588* 19%
0.23.8 3339 3469 -4% 3001 10% 3157 5% 2790* 16%
0.23.10 3168 2971 6% 3000 5% 3320 -5% 2736* 14%
2.3.0 3461 3587 -4% 3248 6% 3345 3% 2885* 17%
2.4.0 3530 3650 -3% 3212 9% 3301 6% 3077* 13%

All reductions calculated based on the HD values. Negative values represent loss in performance.
* HDFS Replication Factor = 1

release–dataset, we divided each value by the maximum value of the group. In general, this value is
associated with the HD configuration, as it demands more energy when running the experiments.
This allowed the side-by-side comparison of the results from different experiments, since the results
are in different scales. Figure 5.4 shows this panorama. We put together the experiments from
the three Sort benchmarks (10GB, 48GB, and 256GB) in both versions from each release. This
side-by-side comparison allows a better understanding of the HDFSH configurations benefits across
datasets/releases. The 48GB Sort had the largest energy consumption reduction rates during the
experiments. Overall, the 50/50, 20/80, and SSD configurations had similar results and strongly
support our approach. Although the other two benchmarks also promote reductions on energy
consumption, smaller rates were observed. In general, the 50/50 configuration had the closest results

Hadoop 1.x: Normalized Energy Consumption

0

20

40

60

80

100

0

20

40

60

80

100

Hadoop 1.1.1 Hadoop 1.2.1

10GB 48GB 256GBHD 80/20 50/50 20/80 SSD

Hadoop 0.23.x: Normalized Energy Consumption

0

20

40

60

80

100

0

20

40

60

80

100

Hadoop 0.23.8 Hadoop 0.23.10

10GB 48GB 256GBHD 80/20 50/50 20/80 SSD

Hadoop 2.x: Normalized Energy Consumption

0

20

40

60

80

100

0

20

40

60

80

100

Hadoop 2.3.0 Hadoop 2.4.0

10GB 48GB 256GBHD 80/20 50/50 20/80 SSD

Figure 5.4: HDFSH Normalized Comparison of Sort Benchmarks

48 HDFSH : A HYBRID FILE SYSTEM 5.3

Sort 256GB: Block Replica Analysis

0

500

1000

1500

2000

2500

3000

3500

4000

E
ne

rg
y

(k
J)

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

Replication factor: 3
Replication factor: 1

Figure 5.5: Energy Influence on Triple Block Replica (HD Configuration)

to the SSD energy performance, including all releases and Sort benchmarks.
Then, we investigated the issue raised by the SSD space limitation on our infrastructure to

discover the effects of block replication on energy consumption. This set of experiments used the
256GB Sort dataset and ran using the HD configuration. The energy results are presented in
Figure 5.5. Analyzing the results we can conclude that the triple block replication demands on
average 1.5% more energy in 1.x releases, 9.5% in 0.23.x releases, and 6.2% in 2.x releases. Based
on previous observations, in the configurations favoring the use of SSDs, this percentage is reduced,
since SSDs demand far less energy than HDs.

5.3.2 Results for the CPU-Bound Benchmarks

HDFSH is directed to I/O-bound Hadoop jobs. We have confirmed that the use of isolated HDs
or SSDs does not bring any benefit in the case of CPU-bound jobs. Even so, there was the need to
investigate whether our hybrid approach could bring different results in terms of energy consumption
to Hadoop. Therefore, we performed two sets of experiments using CPU-bound jobs. The differences
between the hybrid HD and SSD configurations were insignificant. Figure 5.6 presents the results for
the Join benchmark. Note that the differences are irrelevant between the configurations, as observed
in the previous CPU-bound experiments using the WordCount application.

Join 20GB Dataset

0

20

40

60

80

100

120

140

160

E
ne

rg
y

(k
J)

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

HD
80/20
50/50
20/80
SSD

Figure 5.6: Energy Consumption on Join Benchmark

Mahout K-Means is a hybrid benchmark: it is CPU-bound in the iterations and I/O-bound
during clustering. With our setup (3 iterations), 3/4 of the execution in this benchmark is CPU-
bound, while the remaining 1/4 is I/O-bound. The CPU part of the execution dominated the

5.3 ENERGY CONSUMPTION AND PERFORMANCE ANALYSIS 49

I/O-part as Figure 5.7 shows. There is no significant difference across the configurations, except
for the differences among branches. We simplified the figure, presenting only the results for the two
extreme configurations (HD and SSD).

Finding 7: Except for the inter-branch differences, there are no significant performance gains and
energy consumption reductions when running CPU-bound jobs with our approach.

K−Means Experiments

0

100

200

300

400

500

600

700

E
ne

rg
y

(k
J)

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

HD
SSD

Figure 5.7: Energy Consumption on K-Means Benchmark

5.3.3 Using SSDs as Temporary Storage Space

From the beginning, all experiments used HDs as temporary space available during benchmarks,
since this is the default Hadoop behavior unless manually specified. Following other approaches
discussed in Chapter 3, which somehow incorporate SSD into Hadoop — most of them using SSDs
as a cache-tier — we decided to experiment with the use of SSDs as temporary storage space. We
performed a set of experiments using the SSDzone to store the temporary files generated during
Hadoop jobs. We named this configuration tmpSSD . It stores the dataset file blocks in the HDzone,
and all the temporary files generated during job execution in the SSDzone.

The results were promising, as presented in Figure 5.8, including the 48GB and 256GB Sort
energy consumption rates. The smallest dataset (10GB) did present the same behavior, except for
releases 1.x, which did not achieve major benefits, performing similarly to the SSD configuration.
This is due to the dataset size, where the instantiation time dominates the execution time, and the
data movement between storage zones degrades the overall job makespan and, consequently, the
energy performance.

We observed a different behavior with the 0.23.x and 2.x releases, although they have the same
software architecture. Releases from the 0.23.x branch did not achieve any energy benefits by using
the tmpSSD . The opposite happened with the 2.x releases, which achieved better performance and
consequently reduced their energy demands. The same pattern developed for the larger datasets in
the 0.23.x and 2.x releases. The novelty was the 1.x branch results, which performed better with
larger datasets. These results not only did performance improve, but there were significant energy
savings when using the SSDzone as temporary space.

Finding 8: Releases 1.x and 2.x were significantly improved when using the SSDzone to store
temporary files during the execution of Hadoop jobs. Such improvements were so sig-
nificant that in most cases performance was even better than storing the dataset files
in the SSDzone.

In contrast, releases from the 0.23.x branch did not perform well, and in some cases the results
suggest that the use of this strategy may be prohibitive, especially with small datasets. Therefore,

50 HDFSH : A HYBRID FILE SYSTEM 5.3

Sort 10GB: Temporary Files on SSD

0

25

50

75

100

125

150

E
ne

rg
y

(k
J)

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

HD
SSD
tmpSSD

Sort 48GB: Temporary Files on SSD

0

100

200

300

400

500

600

700

800

E
ne

rg
y

(k
J)

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

HD
SSD
tmpSSD

Sort 256GB: Temporary Files on SSD

0

500

1000

1500

2000

2500

3000

3500

4000

E
ne

rg
y

(k
J)

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

HD
SSD
tmpSSD

Figure 5.8: Energy Consumption Rates Using SSDzone as Temporary Space

using SSDs as part of a hybrid storage system offers two kinds of benefits for Hadoop computations:
(I) primary storage in HDFS; and, (II) temporary storage space. In the latter case, changes in the
behavior of temporary files allowed several releases to achieve better performance using the tmpSSD
configuration. Table 5.6 presents the energy consumption rates achieved and the comparison with
the HD and SSD configurations.

Table 5.6: Average Energy Consumed for the tmpSSD Configuration (kJ)

Dataset size Release HD SSD Reduction tmpSSD Reduction Reduction from SSD to tmpSSD

10GB

1.1.1 65 58 11% 58 11% 0%
1.2.1 66 59 11% 59 11% 0%
0.23.8 104 97 7% 129 -24% -33%
0.23.10 106 97 8% 127 -20% -31%
2.3.0 116 107 8% 87 25% 19%
2.4.0 120 112 7% 91 24% 19%

48GB

1.1.1 378 304 20% 252 33% 17%
1.2.1 398 298 25% 242 39% 19%
0.23.8 588 456 22% 466 21% -2%
0.23.10 593 464 22% 497 16% -7%
2.3.0 696 564 19% 391 44% 31%
2.4.0 682 521 24% 418 39% 20%

256GB

1.1.1 2005 1626* 19% 1314 34% 19%
1.2.1 1972 1588* 19% 1322 33% 17%
0.23.8 3339 2790* 16% 3007 10% -8%
0.23.10 3168 2736* 14% 2938 7% -7%
2.3.0 3461 2885* 17% 2262 35% 22%
2.4.0 3530 3077* 13% 2369 33% 23%

All reductions calculated based on the HD values. Negative values represent increase in energy consumption.
* HDFS Replication Factor = 1

5.3.4 Performance and Speedup

Regarding job makespan performance, we observed that storing more data in the SSDs enabled
jobs to run faster, which was expected, since SSDs provide higher throughput. With the 10GB

5.3 ENERGY CONSUMPTION AND PERFORMANCE ANALYSIS 51

dataset (Figure 5.9), the 80/20 configuration was on average 6% faster than the HD configuration,
with only 20% of the data processed from the SSD; in the 50/50 configuration, jobs were on average
16% faster than the HD configuration; and, in the 20/80 configuration, 21% faster; finally, jobs
running with the SSD-only configurations were on average 25% faster than purely running on HDs.

Sort Experiments 10GB Dataset

0
50

100
150
200
250
300
350
400
450
500
550

T
im

e
(s

)

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

HD
80/20
50/50
20/80
SSD
tmpSSD

Figure 5.9: Hadoop Performance: Multiple Releases over Configurations

In the 48GB Sort, the observed speedups compared with the HD configuration were: 80/20, 8%
faster; 50/50, 27% faster; 20/80, 32% faster; and SSD, 30% faster. In this particular case, we notice
one hybrid configuration 20/80 achieving better results than the SSD. The average makespan for
the Sort benchmarks can be seen in Figure 5.10. The 256GB Sort experiments presented almost
the same panorama. In general, the 50/50, 20/80, and SSD were faster than the HD and 80/20
configurations. In this case, the SSD was the fastest configuration (19% faster), followed by the
50/50 (13%), putting the 20/80 in third with 9% of average speedup.

Sort Experiments 48GB & 256GB Dataset

0

1000

2000

3000

4000

5000

6000

7000

8000

T
im

e
(s

)

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

48GB 256GBHD
80/20
50/50
20/80
SSD
tmpSSD

Figure 5.10: Hadoop Performance: Multiple Releases over Configurations

With the tmpSSD configuration, we achieved more promising results than in some SSD ex-
periments. All experiments using the hybrid policy ran using HDs as temporary space. The SSD
configuration stores the entire dataset on SSDs, and uses HDs as temporary space. The tmpSSD
configuration does exactly the opposite, storing the dataset in the HDzone, and the temporary files

52 HDFSH : A HYBRID FILE SYSTEM 5.3

in the SSDzone. Thus, it is fair to compare these two experiment sets. Although the HD experi-
ments tend to be much slower than the SSD ones, in this case the tmpSSD outperforms in most
cases the SSD experiments.

We notice that except for 0.23.x releases, the tmpSSD configuration achieved major performance
increases, especially on the larger datasets. Compared to the HD configuration, the tmpSSD con-
figuration performed on average 27% faster on the 10GB Sort, 53% faster on the 48GB Sort, and
54% faster on the 256GB Sort. Compared with the SSD results, tmpSSD performed the same on
the 10GB Sort, 34% faster on the 48GB Sort, and 44% faster on the 256GB Sort. Results from
the 48GB and 256GB Sort experiments in 1.x and 2.x releases point to a speedup factor of more
than twice when comparing the HD and tmpSSD configurations, and on average more than 1.5
times when comparing the SSD and tmpSSD configurations. It is worth to remind that, since not
all energy consumed is derived from the job makespan, the same reduction rates observed in the
job makespan cannot be applied to the energy consumption, as presented in the previous section.
Table 5.7 presents all the performance data and the comparisons that were carried out.

Table 5.7: Sort Benchmarks: Average Job Makespan (s)

Dataset size Release HD 80/20 % 50/50 % 20/80 % SSD % tmpSSD %

10GB

1.1.1 212 190 10% 180 15% 171 19% 162 24% 160 25%
1.2.1 216 191 12% 183 15% 172 20% 163 25% 161 25%
0.23.8 264 270 -2% 225 15% 214 19% 200 24% 512 -94%
0.23.10 278 266 4% 225 19% 214 23% 200 28% 502 -81%
2.3.0 291 267 8% 242 17% 223 23% 220 24% 200 31%
2.4.0 296 280 5% 245 17% 239 19% 227 23% 212 28%

48GB

1.1.1 1644 1454 12% 1191 28% 1155 30% 1184 28% 788 52%
1.2.1 1763 1474 16% 1200 32% 1228 30% 1138 35% 693 61%
0.23.8 1767 1670 5% 1227 31% 1172 34% 1167 34% 1566 11%
0.23.10 1726 1795 -4% 1376 20% 1110 36% 1175 32% 1766 -2%
2.3.0 1983 1727 13% 1465 26% 1325 33% 1589 20% 914 54%
2.4.0 1849 1749 5% 1415 23% 1354 27% 1267 31% 979 47%

256GB

1.1.1 4428 4300 3% 3806 14% 3667 17% 3641 18% 2122 52%
1.2.1 4318 4156 4% 3779 12% 3768 13% 3517 19% 2111 51%
0.23.8 6726 7085 -5% 5606 17% 6023 10% 5284 21% 5545 18%
0.23.10 6177 5530 10% 5597 9% 6543 -6% 5097 17% 5331 14%
2.3.0 6696 6852 -2% 5974 11% 6264 6% 5229 22% 2810 58%
2.4.0 6663 6998 -5% 5599 16% 5869 12% 5541 17% 2882 57%

The % columns refer to the speedup percentage calculated based on the HD values.
Negative values represent loss in performance.
* HDFS Replication Factor = 1

5.3.5 Cost Model Analysis

Besides energy and performance, our research is also concerned with storage cost, as this plays a
strong role for corporations. For this first analysis, we assume that the HDcost/GB = $0.05 and the
SSDcost/GB = $1.00 (20 times the HDcost/GB). Such prices were practiced on average during 2014,
when our first experiments were deployed. Figure 5.11 presents the results. We plotted the ratio
between job makespan and job storage cost for the Sort jobs, using the tested releases from each
branch. Note that the behavior of each individual release over the multiple configurations presents
a pareto optimal configuration. The pareto optimal configurations1 rely on resource tradeoffs. This
concept was created and used by the Italian engineer and economist Vilfredo Pareto, which applied
it in his studies of economy efficiency and income distribution. In our context, this means that
we have to choose between the storage cost and the desired performance. This tradeoff is clear in
Figure 5.11: the more SSDs are is used, the more expensive the storage becomes, but with less hours
spent to perform the jobs, meaning that less energy is used. On the other hand, by using more HD
space in the configurations, jobs take more hours to finish, demanding more energy, although the
cost greatly decreases. This example can be used to identify which proportions are the best in the

1http://en.wikipedia.org/wiki/Pareto_efficiency (Visited on 15/10/2016)

http://en.wikipedia.org/wiki/Pareto_efficiency

5.3 ENERGY CONSUMPTION AND PERFORMANCE ANALYSIS 53

tradeoff between cost and performance. On the bottom of the figure are the results from the HD
configuration, while on the top are the SSD results. We can also notice the performance differences
between releases, where the YARN releases performed worse with respect to job makespans than
the 1.x releases.

0.0 0.5 1.0 1.5 2.0

0
50

10
0

15
0

20
0

25
0

Storage Cost vs. Performance

Job Makespan (hours)

C
os

t (
$)

 (
H

D
: $

0.
05

/G
B

; S
S

D
: $

1.
00

/G
B

)

●

●

●

●

●

●

●

●

●

●

●

●

1.1.1
1.2.1
0.23.8
0.23.10
2.3.0
2.4.0

HD
80/20
50/50
20/80
SSD

Figure 5.11: HDFSH Cost Model Analysis: 256GB Sort Across 5 Configurations

Most of the energy consumed by Hadoop comes from the job makespan. Therefore, it makes
sense to lower the job makespan to reduce energy consumption. Additionally, the choice of storage
device has also great impact on energy. While the cost affects this choice, the reduction in the
cost/GB of SSDs raises a new trend. Analysts predict that the price of SSDs will equal that of
HDs in a couple years (Mea15; All16). With our first studies dating from 2013/2014 and following
the price reduction trend, we updated our cost analysis by decreasing the SSD cost/GB, using as
a parameter the average prices on 2014 ($1.00/GB), 2015 ($0.50/GB), and the 2016($0.25/GB).

0.0 0.5 1.0 1.5 2.0

0
50

10
0

15
0

20
0

25
0

C
os

t (
$)

 (
H

D
: $

0.
05

/G
B

; S
S

D
: $

1.
00

/G
B

)

●

●

●

●

●
2014

0.0 0.5 1.0 1.5 2.0

0
50

10
0

15
0

20
0

25
0

Storage Cost vs. Performance

Job Makespan (hours)

C
os

t (
$)

 (
H

D
: $

0.
04

/G
B

; S
S

D
: $

0.
50

/G
B

)

●

●

●

●

●

● 1.2.1
0.23.10
2.4.0

2015

0.0 0.5 1.0 1.5 2.0

0
50

10
0

15
0

20
0

25
0

C
os

t (
$)

 (
H

D
: $

0.
04

/G
B

; S
S

D
: $

0.
25

/G
B

)

●

●

●

●

●

HD
80/20
50/50
20/80
SSD

2016

Figure 5.12: HDFSH Cost Model Analysis: 256GB Sort over Time

54 HDFSH : A HYBRID FILE SYSTEM 5.3

0.0 0.2 0.4 0.6

0
10

20
30

40
50

C
os

t (
$)

 (
H

D
: $

0.
05

/G
B

; S
S

D
: $

1.
00

/G
B

)

●

●

●

●

●
2014

0.0 0.2 0.4 0.6

0
10

20
30

40
50

Storage Cost vs. Performance

Job Makespan (hours)

C
os

t (
$)

 (
H

D
: $

0.
04

/G
B

; S
S

D
: $

0.
50

/G
B

)

●

●

●

●

●

● 1.2.1
0.23.10
2.4.0

2015

0.0 0.2 0.4 0.6

0
10

20
30

40
50

C
os

t (
$)

 (
H

D
: $

0.
04

/G
B

; S
S

D
: $

0.
25

/G
B

)

●

●

●

●

●

HD
80/20
50/50
20/80
SSD

2016

Figure 5.13: HDFSH Cost Model Analysis: 48GB Sort over Time

Figure 5.12 presents the results. The cost of HDs was also updated to $0.04/GB. Since the behavior
of the intra-branch releases is the same, we kept only the most recent studied release from each
branch (1.2.1, 0.23.10, and 2.4.0).

The SSD price reduction brought an interesting fact: with about the same price from 2014 we
are able in 2016 to introduce 100% of SSD storage space. This represented only 20% of the SSD
storage in 2014. The same behavior and evolution can be observed in every release on the 48GB
datasets tested in the sort experiments (Figure 5.13). In addition, we observe that, although there
is a general behavior within the tested releases, each one has its particularities, which means that
the optimal point varies from one release to another, specially amongst different branches.

We also applied our cost model to the tmpSSD configuration. The cost was calculated by
adding up the cost/GB from HDs and SSDs, since the benchmark runs from the HDs and use the

0.0 0.5 1.0 1.5 2.0

0
50

10
0

15
0

20
0

25
0

C
os

t (
$)

 (
H

D
: $

0.
05

/G
B

; S
S

D
: $

1.
00

/G
B

)

●

●

●

●

●

●2014

0.0 0.5 1.0 1.5 2.0

0
50

10
0

15
0

20
0

25
0

Storage Cost vs. Performance

Job Makespan (hours)

C
os

t (
$)

 (
H

D
: $

0.
04

/G
B

; S
S

D
: $

0.
50

/G
B

)

●

●

●

●

●

●

● 1.2.1
0.23.10
2.4.0

2015

0.0 0.5 1.0 1.5 2.0

0
50

10
0

15
0

20
0

25
0

C
os

t (
$)

 (
H

D
: $

0.
04

/G
B

; S
S

D
: $

0.
25

/G
B

)

●

●

●

●

●

●

HD
80/20
50/50
20/80
SSD
tmpSSD

2016

Figure 5.14: HDFSH Cost Model Analysis of tmpSSD: 256GB Sort

5.4 FINAL CONSIDERATIONS 55

SSDs as temporary storage. Figure 5.14 shows the cost/performance ratio of the three latest tested
releases from each branch over the hybrid configurations plus the tmpSSD results. The novelty
presented is that, as for 2014, the cost of this approach was prohibitive for a couple reasons: first,
because of the cost, which was more than processing data directly from SSDs; and second, because
of the limitations at the time, e.g., SSD limit of write operations. But, as the technology evolved
and the cost was reduced by approximately 75%, this seems to be a viable and feasible option for
the near future. The results achieved were promising in terms of performance, and now they are
also prominent in terms of cost/benefit. Additionally, as performance increased, less energy was
consumed. Add to the mixture the future SSD technologies and this is a sustainable solution to
introduce hybrid approaches on clusters.

5.4 Final Considerations

In this chapter, we presented our approach to transparently integrate HD and SSD technologies
into HDFSH . We designed a block placement policy that directs the file blocks to specific storage
zones using storage proportions. The new policy is flexible enough to allow the configuration of
the amount of data stored in each zone. We assessed our approach over multiple configurations,
including three hybrid storage configurations: HD, 80/20, 50/50, 20/80, SSD, and tmpSSD. The
main goals of our research were to promote energy consumption reduction and performance increase
by using hybrid storage policies on Hadoop. Both objectives were achieved.

Regarding performance improvements, the use of SSDs was, by concept, a simple strategy to
increase storage performance. However, the cost/GB had to be considered, as few years ago it was
prohibitive for large storage systems. Other issues with solid-state drives were reliability (high fail
rates) and durability, especially concerning the maximum number of writing operations a device can
perform. In a short period of time, SSDs benefited from recent technological advances, promoting
the overall cost reduction while increasing the average drive capacity, besides the reduction on fail
rates. Yet to come in a short time, new technologies, such as 3D NAND Flash Memories (Int15),
will enlighten even more this subject.

By incorporating SSDs into storage zones in a hybrid fashion, we promoted an overall perfor-
mance increase as observed in the experiments. With only 20% of SSD storage space, there was an
average increase of 5% in speed, regardless of the Hadoop version or dataset size. The results point
to a speedup of 19% regardless of version or dataset when using 50% of the storage space from SSDs,
while using only SSDs the speedup is around 25%. As demonstrated on Hadoop jobs, the larger
the dataset, the more benefits we can achieve. Due to its architecture and the used programming
languages, the instantiation times of JVM, memory and resource allocation become more evident if
the jobs are shorter. Consequently, we achieved better results when running the 48GB and 256GB
Sort experiments, if compared to the 10GB Sort. From the 48GB to the 256GB Sort there were no
significant improvements, showing that the speedup rates tend to remain stable on larger datasets.

Concerning energy consumption, our block placement policy shows a reduction even when only
a fraction of the data is stored in the modified HDFS. We showed that, with larger datasets,
the reduction in energy demand can be significant, achieving up to a 20% savings under certain
hybrid configurations. The 50/50 and 20/80 configurations proved to promote energy consumption
reductions close to the SSD configuration in the I/O-bound experiments, as presented in Table 5.8.

Table 5.8: Average Energy Reduction Percentage

Sort Experiment HD 80/20 50/50 20/80 SSD

10GB * 3% 7% 8% 9%

48GB * 7% 19% 22% 22%

256GB * 0% 8% 5% 16%

*HD values were used as base for comparison

56 HDFSH : A HYBRID FILE SYSTEM 5.4

The general use of HDFSH affords immediate benefits since it increases MapReduce jobs’ per-
formance and reduces energy consumption. In addition, we noticed that the energy reduction rates
are smaller than the job makespan ones. The main reason is that there is not an exact correlation
between job makespan and energy consumption, as most of the energy spent is determined by the
performance and type of storage used. Yet, the branch/release and dataset size pair play a funda-
mental role in this case. We noticed that the YARN development brought an increase in energy
consumption that is not directly correlated to job makespan. We observed experiments where the
job makespan from YARN releases were close to 1.x releases, but the energy consumed was much
higher. This has a direct relation with the architectural changes, especially the insertion of an extra
layer – which Hadoop 0.23.x and 2.x cannot run without – controlling the resource usage. We ac-
knowledge that YARN brought flexibility to the framework, but generated a significant performance
loss. Since most of the energy consumed by Hadoop is associated with job makespan, branches 0.23.x
and 2.x releases almost double the energy consumed to run the same jobs compared to 1.x releases.
Users must focus on the real needs associated with Hadoop: flexibility or performance.

A remarkable result was the use of the tmpSSD configuration. This particular configuration
brought major performance increases in the experiments: on average it was 50% faster than the
HD configuration and almost 40% faster than the SSD configuration. The SSD cost/GB might
have been prohibitive a few years ago, and its use was destined to "special" and/or "hot" data. The
cost reduction presented in the cost model analysis can be a game changer. The novelty of the cost
of SSDs costs getting closer to that of HDs can bring new hybrid storage possibilities, such as the
use of SSDs as temporary space (tmpSSD configuration).

Chapter 6

Discussion

We implemented and tested a hybrid storage approach on 6 Hadoop releases from three different
branches. In this chapter, we further discuss the key findings based on the observations we made. Our
results indicate that, in most evaluated configurations, HDFSH promotes overall job performance
increases while decreasing energy consumption.

6.1 Findings

One of the most important findings during the grounding experiments was the discovery of
different behaviors of the Hadoop releases. The intra branch results are consistent with the general
code evolution; newer releases generally receive bug fixes and code optimization. Thus, performance
results are better, resulting in lower job makespan and, consequently, promoting energy consumption
reduction in most cases. But when we consider the inter-branch comparison, the results presented a
different scenario, with the newest releases that included YARN achieving worst performance results.
Even more concerning, the energy consumption rates increased disproportionally to the performance
increases, which means that severe overhead was introduced when changing the software architecture
of such releases.

Chapter 4 presented such results and proposed answers to research question RQ2. Although our
hybrid approach had not been tested yet at the time, we could notice the differences between the use
of HDs and SSDs on Hadoop. As expected, I/O-bound jobs were the ones that benefited the most
from the use of SSDs – they are capable of performing more IOPS than HDs, resulting in higher
throughput; therefore they improve the general performance of a system. Hadoop inherited these

Sort Experiments 256GB Dataset

0

1500

3000

4500

6000

7500

9000

T
im

e
(s

)

1.
0.

0

1.
0.

3

1.
1.

1

1.
2.

1

0.
23

.3

0.
23

.6

0.
23

.8

0.
23

.1
0

2.
1.

0

2.
2.

0

2.
3.

0

2.
4.

0

100% HD
100% SSD

Figure 6.1: Hadoop Sort 256GB Job Makespan

57

58 DISCUSSION 6.1

benefits as well. Jobs running on Hadoop 1.x releases, specially 1.1.1 and 1.2.1, were 25% faster when
using SSDs, regardless of dataset size. This speedup rate represented more than 16% of reduction
on average energy consumption. Although releases 0.23.x and 2.x have performed on average the
same as 1.x in terms of job makespan, the speedup on these releases represented only 12% of energy
consumption reduction under the same circumstances. We also notice that releases 1.x improved
performance on the 48GB and 256GB datasets, while the 0.23.x and 2.x releases performed better in
the 48GB dataset, losing significant performance on the 256GB dataset. This had a direct effect on
the power consumption of these releases on such experiments. This observation was the key finding
of these experiments. There is a significant difference in energy consumption between branch 1.x
and branches 0.23.x. and 2.x. The 256GB Sort experiment illustrated this difference on HDs and
SSDs, as seen in Figure 6.1, presented in Chapter 4 and reproduced here again.

Another finding from these experiments is the variation on the results. We observed that results
from 1.x releases were close together, regardless of HD or SSD use. Results from the other two
branches were more scattered, with a larger variation. This can be observed in the boxplots of almost
every figure depicting the performance or energy consumption results. We agree that this behavior
would be more likely to happen in the experiments using HDs, which have multiple tracks and
sectors, and some can have multiple disk plates. Also, the read and write operations are subjected
to variating seek times and non-contiguous block storage which can particularly affect Hadoop
experiments, since HDFS runs on top of the regular operating system. But we observed that this
effect was much more evident on YARN releases.

If YARN severely affects the performance, we would expect the user community to perceive
this issue. Even further, if the issue had been reported by users, there should be an effort by the
developers to promote fixes and the framework optimization targeting performance improvements.
But, a few problems contribute in this matter. First, there are no energy studies concerning Hadoop
up to this date, at least, those connecting performance with energy consumption. Second, there is
no track of the Hadoop performance by users: if a job doubles the makespan, users are not aware
of the causes, since Hadoop deals with huge datasets, and this is not a top priority.

We confirmed this issue when mining StackOverflow in search of Hadoop performance questions.
Seeking for a relation between YARN and performance issues, we notice that this is not perceived
by users. Most of the questions regarding Hadoop’s performance are related to the Hadoop configu-
ration, showing that users do not know this issue. Additionally, Apache recommends the download
of the newest releases – as for today, 2.7.2 is most recent stable release – directing users to releases
that can produce poor performance results if compared to previous releases from other branches.
Another problem here is that branch 1.x was discontinued, and the last release (1.2.1) did not
receive any bug fixes and improvements in three years. Therefore, those seeking for an exclusive
MapReduce platform are directed to YARN releases. In fact, this should not be an issue for casual
users, but for large clusters constantly mining Big Data using MapReduce this could represent a
significant waste of resources.

Searching for answers regarding performance issues present in the YARN releases, we conducted
an analysis of the source code with CKJM-extended. After analyzing the source code of 12 Hadoop
releases, the metrics pointed to an expected pattern of the modifications: as code grew, the architec-
tural modifications introduced by YARN caused loss in performance, and greatly increased energy
consumption. The new architectural layer and the obligation of running Hadoop using it were the
apparent cause of this issue, since there is more communication overhead between the Hadoop lay-
ers. We were able to strengthen the answers for our second research question, RQ2, relating the
loss in performance with the modifications on the Hadoop source code and architecture.

With such different behavior from Hadoop releases in the grounding experiments, we needed
to discover what benefits the hybrid approach could bring to the framework. Our first research
question, RQ1, is directly related to this topic. Yet, Hadoop’s response to the mixed environment
was uncertain. We implemented the hybrid policy in 6 Hadoop releases and performed the tests
using 3 hybrid configurations: one favoring HDs (80/20), another using equal amounts of each
(50/50), and the last using more SSDs (20/80). The findings from Chapter 5 showed the importance

6.1 FINDINGS 59

of the mixed environment. Results of the hybrid experiments demonstrated that the proportions
behavior is not linear. This key finding is the most important one in this thesis: in certain cases,
with only 50% of the storage space using SSDs, we achieved results that are close to the use of
100% SSDs in HDFS. Again, as observed in Chapter 4, releases 1.x performed better and kept
the previously discovered behavior, with releases 1.x producing better results than releases 2.x and
0.23.x. Figure 6.2 summarizes the results and shows the benefits of our approach in terms of energy
consumption reduction.

0

1000

2000

3000

4000

E
ne

rg
y

(k
J)

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

1.
1.

1

1.
2.

1

0.
23

.8

0.
23

.1
0

2.
3.

0

2.
4.

0

48GB 256GBHD
80/20
50/50
20/80
SSD
tmpSSD

Figure 6.2: Energy Consumption Results: Sort 48GB and 256GB

We can notice another key finding of the thesis: the results achieved when using SSD devices as
temporary storage space while using HDs as regular HDFS, particularly, an unexpected and original
result, since it was not the initial focus of our investigation. The results were promising, especially
because they improved performance beyond the speedups achieved with the use of SSDs only.
These results show the substantial influence of temporary space on Hadoop computations. Hadoop
writes all the intermediary results on disks, which is then sorted and shuffled among all nodes
performing Reduce tasks. SSDs have a huge capacity of performing read and writing operations
with high throughput, and therefore, improved the overall Hadoop performance, since only the
final results of the computations were written in the HDs. The results were remarkable in releases
2.x, which presented poor energetic performances in the experiments. This configuration brought
these releases closer to the 1.x releases, and presented a scenario of what could possibly be the real
expected behavior of Hadoop 2.x releases after the architectural changes and implementation of
new features.

Although Hadoop 0.23.x releases are close to the 2.x branch releases, they behaved differently.
We can observe that branch 0.23 did not benefit at all from the tmpSSD experiments. In fact,
performance was at the same level of the hybrid configurations. These releases have almost the
same components, except for Hadoop High Availability. Nevertheless, we noticed that source code
commit activity on Hadoop 2.x is much higher. Additionally, the number of releases from each
branch is another clue on the Hadoop development focus: while branch 0.23 had only 1 release after
0.23.10, Hadoop 2.x had at least 12 releases in the same period. We can credit such performance
differences to the lack of patches and fixes in the branch. However, our code analysis did not present
substantial differences that could justify these effects and an in-depth analysis should be conducted
targeting all the 0.23.x releases to a better understanding of the causes.

Using SSD as temporary storage space would be considered prohibitive a few years ago. At
that time, SSDs had two major limitations: cost and maximum number of writing operations. Due
to the cost per GB, which could reach 20 to 30 times the cost per GB of HDs, SSDs were not
even considered a choice for temporary storage space. As cost reduced to the 2016 levels of 4 to 5
times the cost per unit of HDs, this approach should be considered. There is an expectation that

60 DISCUSSION 6.2

within 2 years the cost per GB of HDs and SSDs should be nearly the same. From this point of
view, significant improvements could be achieved if, instead of replacing HDs, temporary space was
introduced in Hadoop clusters using SSDs. This finding could bring energy consumption reductions
allied with performance improvements.

The use of SSDs in Hadoop on both of the aforementioned situations – either using the Hybrid
approach or the temporary space configuration – generates savings in the long term. But there are
other factors that should be considered. First, the cost is, in our opinion, one of the most important
factor. What would be the financial savings of adopting our hybrid approach? We conducted a
study regarding our cost model and, as show in Section 5.3.5, SSDs have strongly benefited from
the price reduction over the last 2 years. Additionally, energy consumption can be reduced with
the introduction of SSDs in clusters, as we already demonstrated. On the HDFSH side, we can
achieve approximately 15% of energy consumption reduction (averaging the 50/50, 20/80, and
SSD configuration results) if comparing with HD-only storage for the 256GB experiments. This
represents a reduction of 0.12kWh on energy consumption for our small 9-node infrastructure. This
represents more than US$70 dollars/year of energy savings, considering an average cluster usage
of 75% of the available time (running Hadoop jobs 18h/day, 270 days/year) and today’s average
energy price in the U.S. ($0.12/kWh)1. When we scale-up the results, the savings would became
really prominent. Data centers run 24/7, and at a large Hadoop cluster, say 4,500 nodes on 40,000+
machines at Yahoo! (Asa14) or other companies such as Facebook, these savings completely justify
the cost of introducing SSD space into clusters, which is already happening.

Even more surprising is the analysis of the tmpSSD results. Regarding 1.x and 2.x releases,
some of the experiments using this configuration achieved more than 30% of energy consumption
reduction if compared to the HD results. If we consider today’s average energy price on the U.S.
($0.12/kWh), the benefits of using our approach could save something close to 0.33kWh to run a
256GB Sort experiment, which takes approximately 1 hour to run. If we consider the same average
cluster use of 75% of the time, this should be almost 200 dollars per year. With the price/GB around
$0.35, the savings are enough to buy more than 500GB of SSD space. Given the SSD reduction
price predictions for the next 2 years, users could buy even more storage space with the energy
savings achieved, besides the benefits received from the performance increases.

Besides the financial benefits, we must consider the environmental benefits associated with the
use of SSDs. First, they demand much less energy than HDs to work. But, a few other characteristics
favors the reduction of environmental issues. Solid-state drives are smaller than HDs, and conse-
quently, we can fit more SSDs in the same space used by HDs. SSDs also generate less heat in data
centers. As a result, less energy is used to cool the whole infrastructure. Thus, we can have smaller
data centers, with higher storage capacity, and demanding less energy for powering and cooling. At
the same time, data centers can experience performance increases and overall cost reduction.

6.2 Threats to Validity

This thesis focuses on the effects of a hybrid storage approach applied to Hadoop. In our studies,
external validity is threatened by the focus on the Hadoop project. What happens to Hadoop might
not happen to other projects, thus we cannot safely generalize the findings beyond the Hadoop
project. Although we decided to analyze the Hadoop framework, there are several other MapReduce
frameworks available such as: Dryad (IBY+07), which is not a purely MapReduce framework, but
uses the major concepts of MapReduce; DISCO (MTF11), another open source implementation of
MapReduce in Erlang and Python; MARS (HFL+08), which runs on GPUs, implemented in C++;
and SkyNet2, an open source implementation of MapReduce in Ruby. We did not compare the
Hadoop results with these, which may present different behaviors in other platforms. Additionally,
we selected 12 Hadoop releases during our research, and only 6 of them were tested using our

1http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a (Visited on 15/10/2016)
2http://skynet.rubyforge.org/ (Visited on 15/10/2016)

http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://skynet.rubyforge.org/

6.2 THREATS TO VALIDITY 61

approach. Since new releases were launched after our selection, such releases may present different
behaviour.

Furthermore, our workload range may represent a threat, since not all MapReduce jobs work in
the same way during Map and Reduce phases. This threat is tempered by the focus on I/O- and
CPU-bound workloads. Even though our experiments were limited to the Sort application in the
I/O-bound benchmark class, we successfully established a relation between energy consumption and
cost of I/O operations in Hadoop. The CPU-bound benchmarks (K-Means, Join, and WordCount)
results showed that there is no significant benefit of using the approach, since CPU time dominates
over I/O operations.

Finally, we tested our approach on a dedicated cluster, which may not reflect the behavior
of Hadoop running on the Cloud, specially on virtual machines. In addition, external validity is
threatened by our testing infrastructure, which had a limited HD and SSD storage space. While
HDzone had 8 × 1TB of available space, the SSDzone had 8 × 120GB, totaling less than 1TB of
SSD space. Therefore, we did not test our approach on large-scale datasets. Although there is an
effort to predict the Hadoop behavior on larger datasets, only real experiments can confirm the
benefits of the hybrid approach in such scales.

Internal validity is also threatened by the narrow benchmark selection. Although most MapRe-
duce jobs are either CPU-bound or I/O-bound, heterogeneous workloads and iterative MapReduce
jobs can produce unexplored results, since our research was tested on single MapReduce jobs. This
threat is reduced by the K-Means benchmark used to evaluate HDFSH , which is an iterative hybrid
benchmark (3/4 CPU-bound and 1/4 I/O-bound).

Chapter 7

Conclusions

Hadoop became a synonymous of Big Data processing using MapReduce over the last ten years.
Yet, in these processing infrastructures, energy consumption poses a significant challenge for compa-
nies today. In this thesis, we presented HDFSH , a hybrid storage system that seamlessly mixes SSDs
and HDs into HDFS, promoting energy consumption reduction with performance improvements.

Our approach demonstrated to be a viable opportunity to enhance the performance of Hadoop
clusters while decreasing their energy consumption. We introduced two mechanisms using SSDs:
first, using a mixed environment and, second, using SSDs as temporary storage space. In both
approaches, there are significant advantages, promoting, in some cases, a reduction of more than
20% on energy consumption. We summarize the key findings of this thesis in the Table 7.1.

Table 7.1: Key Findings

Finding 1: On average, Hadoop 1.x releases were 30% faster than the other tested releases when running jobs with data
on HDs, and 35% faster when running experiments using SSDs.

Finding 2: Hadoop performance issues were already identified by users, but for external reasons – Hardware, Operating
Systems, Java – and not for changes in the Hadoop architecture during the evolution from 1.x to 0.23.x,
and to 2.x releases. Additionally, releases 0.23.x and 2.x, which contain YARN, cannot run without such
resource manager. Therefore, an unnecessary waste of resources occurs when using these releases to perform
MapReduce jobs.

Finding 3: The I/O experiments showed that the use of 1.x releases promotes an energy consumption reduction ranging
from 20% to 30% on average when comparing with the YARN releases.

Finding 4: In our source code analysis, we discovered that LOC has a strong influence on Hadoop performance, but it
is version number and revisions to the code that truly matter.

Finding 5: Version awareness plays a key factor in the Hadoop project performance, as a consequence of the architectural
modifications designed to accommodate the YARN resource manager.

Finding 6: While using the HDFSH , the middle 50/50 and 20/80 configurations tend to achieve results that are closer
to the SSD configuration. This means that with half storage space coming from SSDs, we can achieve energy
consumption rates closer to the use of an SSD-only HDFS.

Finding 7: Except for the inter-branch differences, there are no significant performance gains and energy consumption
reductions when running CPU-bound jobs with our approach.

Finding 8: The performance and energy consumption of releases 1.x and 2.x were significantly improved when using the
SSDzone to store temporary files during the execution of Hadoop jobs. Such improvements were so significant
that in most cases performance was better than storing the entire dataset files in the SSDzone.

7.1 Original contributions

During the research, we achieved all the proposed objectives and found answers to our research
questions. The original contributions of this thesis are the following.

Energy consumption reduction on most Hadoop releases. The hybrid use of HDs and SSDs
reduced the energetic demands of Hadoop when running I/O-bound benchmarks. Energy con-
sumption reduction was achieved under two scenarios:

62

7.1 ORIGINAL CONTRIBUTIONS 63

I. When mixing the storage type, we achieve similar energetic rates for the 50/50, 20/80,
and SSD configurations. The originality relies on the fact that the 50/50 experiments
showed that it is possible to achieve performance improvements and energy saving pat-
terns close to the SSD configuration. With a fraction of the SSD storage cost, similar
results were achieved. We tested our approach on 6 Hadoop releases and every one pro-
moted such reduction, some at lower rates, but most of them ranging from 10% to 20%
of energy consumption reduction.

II. An alternative way of promoting performance increase was the SSD storage use as tem-
porary HDFS space. This brought significant performance increases and presented even
better energetic results compared to the hybrid approach. Furthermore, SSD price per
GB is still considered high for end users and, although some studies point to a new
direction, there is still the problem of SSD lifetime. Domestic users might not find this
issue, but for data centers the life cycle of SSDs can still pose a problem depending on
the usage rate.

This demonstrated that with our proposed approach, energy costs can be reduced, and as the
price of SSDs is constantly decreasing, this option should be considered as a viable opportunity
for the reduction of the TCO and of the environmental impact of data centers.

Performance increase achieved using HDFSH . The origin of the energy consumption reduc-
tion is rooted on the performance increase brought by the use of SSDs in HDFS. The best
benefits are achieved using only SSDs. But, as we seek for an alternative that can also be
economically viable to the end user, the hybrid approach showed valuable results. Besides
de major benefits of performance increases of 20% to 30%, the total storage cost was also
considered, with the option of partial introduction of SSD space into HDFS. Additionally, as
a bold alternative, the use of SSDs as temporary space brought performance increases of more
than 50% under some experiments, which represents major enhancements for a Java-driven
platform.

Development of energy profiles for Hadoop. Another original key contribution was the es-
tablishment of an energy profile for the conducted experiments. With future opportunities
in mind, the energetic profiles will serve as a basis for comparison between different plat-
forms, datasets, and even on energy predictions for experiments running on a Hadoop release.
We also demonstrated that our results can serve as a basis for future developments in the
Hadoop project, optimizing components to improve overall performance and reduce energy
consumption, since this issue is almost unnoticed by users and developers.

With the results achieved, we also elucidated the proposed research questions. The solely use of
SSDs in Hadoop would bring performance increases due to several factors, including their design
using NAND flash memories and high throughput capacity, as already discussed. Therefore, RQ1
was answered at two moments: first, showing that the hybrid approach is advantageous to Hadoop by
increasing its overall performance while reducing the energy consumption on all the tested releases.
Second, with the temporary SSD space which also brings significant improvements.

Regarding Hadoop performance, RQ2 receives attention from all the experiments, since we no-
ticed several differences among the 12 tested releases, both inside each branch and when comparing
the branches themselves. Inside each branch, we noticed the effects that the evolution on source
code can bring to a software. Most releases improved over time, making use of patches and fixes.
But, some releases did not behave as expected during experiments under specific configurations,
such as Hadoop 0.23.x releases.

The YARN resource manager was also tackled during our investigations, as it can be related
– although not perceived by users and developers – to the performance decrease observed from
releases 1.x on. It is interesting to note that the majority of Hadoop users are there for the MapRe-
duce paradigm. YARN brought new features and desired flexibility for a few, but for the unaware
MapReduce users, performance losses are a price unconsciously paid, especially because Hadoop

64 CONCLUSIONS 7.2

0.23.x and 2.x cannot run without YARN. With the results of this research, we expect to raise
awareness regarding these issues with the Hadoop platform. A key point would be raise the aware-
ness for the continued development of branch 1.x, with security patches and fixes, allowing a pure
MapReduce platform to coexist with Hadoop YARN releases, leaving the final release selection to
users.

7.2 Future Work

The results of this thesis present several future research opportunities. Energy prediction is an
open research opportunity. We developed an initial energy model that, based on job makespan,
dataset size, and a given HDFSH configuration, generates the energy predictions.

Table 7.2: Definitions Used on the Prediction Model

Symbol Definition

Ê Predicted Energy
T̂ Predicted Job Makespan

DS Dataset Size
CFG Storage Configuration on the HDFSH

Considering Table 7.2, we designed a simple model using R to generate these predictions. First,
we calculated the estimated job makespan (T̂) using the dataset size (DS) and the chosen HDFSH

configuration (CFG):

T̂ = c0 + c1 ·DS + c2 · CFG (7.1)

With the predicted job time, we can calculate the energy prediction for the dataset:

Ê = c3 · T̂ (7.2)

where c0 is the intercept and c1, c2, and c3 are the coefficients of the variables generated during
the predictions.

The idea is to use our results as training datasets and calculate the predictions for larger datasets.
As an example, we created a dataset with all the experiments results, intentionally removing the
256GB Sort results. Then, we generated energy predictions for a 256 Sort job for the HD, 50/50,
and SSD hybrid configurations. The results are shown in Figure 7.1. The predicted values show
also a standard deviation interval, which was calculated based on the original values, according to
the dispersion of our data. As we can see in Figure 7.1, with the simple model we used, most of the
predictions were very accurate.

A refinement of this model and its prediction is the subject of ongoing research, which will
include graduate students in the near future. Additionally, the model is based upon the results
achieved in this thesis, and limited to the tested datasets as training sets. Additional experiments
on larger datasets using HDFSH could improve the training sets, allowing more precise predictions.

Another research opportunity resulting from our findings is the further application of the pro-
posed models. Additionally, as the Hadoop platform evolves, such models must be updated to reflect
the evolution of the framework. This research should be linked with an update of the results achieved
in this thesis, including the testing of new Hadoop releases, specially from branch 2.x, which had
more than 12 releases after our experiments were finished. Further testing of these releases could
improve our datasets, and influence the prediction model presented above.

An interesting investigation area for Hadoop is the energy profiling of Hadoop on virtual ma-
chines. Our research did not focus on virtualization for a few reasons. If we ran the experiments
on a Cloud provider, e.g., Amazon Elastic Compute Cloud, we would not have complete access to
energy consumption rates since VMs can run on different nodes or racks, most of them without the

7.2 FUTURE WORK 65

1.1.1 1.2.1 0.23.8 0.23.10 2.3.0 2.4.0

Sort 256 GB − HD configuration

E
ne

rg
y

(k
J)

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Observed
Predicted

1.1.1 1.2.1 0.23.8 0.23.10 2.3.0 2.4.0

Sort 256 GB − 50/50 configuration

E
ne

rg
y

(k
J)

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Observed
Predicted

1.1.1 1.2.1 0.23.8 0.23.10 2.3.0 2.4.0

Sort 256 GB − SSD configuration

E
ne

rg
y

(k
J)

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Observed
Predicted

Figure 7.1: Energy Prediction Results on Multiple HDFSH Configurations

proper monitoring devices. Using our own infrastructure, we were able to physically monitor energy
consumption on each node of the cluster. Moreover, if we focused in virtualization on our cluster,
we would have had to change the energy monitoring equipment, since WattsUp? Pro is not capable
of monitoring individual VMs. This would have generated restrictive costs for the benefits achieved.
Therefore, the investigation of the Hadoop energy consumption on virtualization and simulators is
an open research topic.

Finally, as cloud computing is well consolidated today, we need to start thinking of concepts
such as “energy-aware services”, which should be present at the top of Green Computing research
themes. Virtualization and big data mining have been working together for a few years now, and
new insights and research should certainly consider these topics with a focus on energy.

For the next decades, we expect to see data generation to increase exponentially. More important
than gathering data will be the information extraction process. With plenty of data to analyze, it
will be more important to select what data to keep and for how long it should be kept. With this
velocity in generation, data already comes with an expiration date. Platforms will have to evolve
to come up with solutions to such problems. Furthermore, energy consumption will be subject of

66 CONCLUSIONS 7.2

investigation and submitted to governmental regulations, since there is a general concern with the
carbon footprint of the IT industry today.

During this 4-year research we saw hot computer science topics and technologies achieve ma-
turity, such as cloud computing and solid-state drives. New topics are arising, using consolidated
science and the lessons learned. At the top of the research agenda, the Internet of Things is one
of the most interesting topics nowadays. It strongly relies on storage and processing facilities, cor-
roborating even more the idea that Big Data is a reality and is here to stay. On top of it all, we
consider the importance of green computing energetic research, destined to promote the energetic
efficiency of the computing infrastructure.

Hopefully, in a world concerned with environmental issues, Big Data found an important allied
on Green Computing, making use of its concepts to promote knowledge discovery for all mankind.

Bibliography

[ACRV12] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan e T. N. Vijaykumar.
Tarazu: optimizing MapReduce on heterogeneous clusters. SIGARCH Computer
Architecture News, 40(1):61–74, 2012. Cited on pp. 15

[AKJ15] Jae Hoon An, Younghwan Kim e Kiman Jeon. Design and Implement of Pre-loading
SSD Cache Data Using Split File on Hadoop MapReduce. In Proceedings of the 2015
Conference on Research in Adaptive and Convergent Systems, RACS, pages 457–460,
New York, NY, USA, 2015. ACM. Cited on pp. 18

[All16] Darren Allan. The gap between SSD and hard disk prices is shrinking rapidly, 2016.
Available at http://www.techradar.com/news/computing-components/storage/the-
gap-between-ssd-and-hard-disk-prices-is-shrinking-rapidly-1316257 (Visited on
15/10/2016). Cited on pp. 2, 11, 53

[Apa14] Apache Mahout. Apache mahout, 2014. http://mahout.apache.org (Visited on
15/10/2016). Cited on pp. 43

[Asa14] Matt Asay. Why the world’s largest hadoop installation may soon become the norm,
2014. Available at http://www.techrepublic.com/article/why-the-worlds-largest-
hadoop-installation-may-soon-become-the-norm/ (Visited on 15/10/2016). Cited on

pp. 60

[Bak12] K. Bakshi. Considerations for big data: Architecture and approach. In Aerospace
Conference, pages 1–7. IEEE, march 2012. Cited on pp. 1

[BEH+10] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl e Daniel
Warneke. Nephele/PACTs: a programming model and execution framework for web-
scale analytical processing. In Proceedings of the 1st Symposium on Cloud Comput-
ing, pages 119–130, New York, NY, USA, 2010. ACM. Cited on pp. 2

[BHBE12] Yingyi Bu, Bill Howe, Magdalena Balazinska e Michael D. Ernst. The HaLoop
approach to large-scale iterative data analysis. The VLDB Journal, 21(2):169–190,
Abril 2012. Cited on pp. 16

[Bra13] Petter Bae Brandtzæg. Big data - for better or worse, May 2013. Available
at http://www.sintef.no/en/latest-news/big-data--for-better-or-worse/ (Visited on
15/10/2016). Cited on pp. 1

[BWR+11] Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar e Rafael
Pasquin. Incoop: MapReduce for incremental computations. In Proceedings of the
2nd Symposium on Cloud Computing, volume 7, pages 1–14, New York, NY, USA,
2011. ACM. Cited on pp. 16

[CK94] Shyam R Chidamber e Chris F Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, 1994. Cited on pp. 36

67

http://www.techradar.com/news/computing-components/storage/the-gap-between-ssd-and-hard-disk-prices-is-shrinking-rapidly-1316257
http://www.techradar.com/news/computing-components/storage/the-gap-between-ssd-and-hard-disk-prices-is-shrinking-rapidly-1316257
http://mahout.apache.org
http://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/
http://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/
http://www.sintef.no/en/latest-news/big-data--for-better-or-worse/

68 BIBLIOGRAPHY

[CLJZ15] D. Cheng, P. Lama, C. Jiang e X. Zhou. Towards energy efficiency in heterogeneous
hadoop clusters by adaptive task assignment. In IEEE 35th International Conference
on Distributed Computing Systems (ICDCS), pages 359–368, June 2015. Cited on pp.

19

[Cou02] T. P. P. Council. TPC Benchmark H (Decision Support) Standard Specification,
Jun 2002. http://www.tpc.org/tpch (Visited on 15/10/2016). Cited on pp. 43

[CZG+10] Quan Chen, Daqiang Zhang, Minyi Guo, Qianni Deng e Song Guo. SAMR: A self-
adaptive MapReduce scheduling algorithm in heterogeneous environment. In 10th
International Conference on Computer and Information Technology, pages 2736–
2743. IEEE, 29 2010-july 1 2010. Cited on pp. 15

[DG04] Jeffrey Dean e Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. In Proceedings of the 6th Conference on Operating Systems Design and
Implementation, volume 6, pages 10–10, Berkeley, CA, USA, 2004. USENIX Asso-
ciation. Cited on pp. 6, 8

[DG08] Jeffrey Dean e Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, Janeiro 2008. Cited on pp. vii,
9

[DPR+08] David J. DeWitt, Erik Paulson, Eric Robinson, Jeffrey Naughton, Joshua Royalty,
Srinath Shankar e Andrew Krioukov. Clustera: an integrated computation and data
management system. Proceedings of the VLDB Endowment, 1(1):28–41, Agosto
2008. Cited on pp. 2

[DQZ+10] Bo Dong, Jie Qiu, Qinghua Zheng, Xiao Zhong, Jingwei Li e Ying Li. A novel
approach to improving the efficiency of storing and accessing small files on Hadoop:
A case study by PowerPoint files. In SCC’10, pages 65–72. IEEE, july 2010. Cited on

pp. 16, 17

[EER11] E. Elnikety, T. Elsayed e H.E. Ramadan. iHadoop: Asynchronous iterations for
MapReduce. In Third International Conference on Cloud Computing Technology
and Science, pages 81–90. IEEE, 29 2011-dec. 1 2011. Cited on pp. 16

[ELcF10] M. Elteir, Heshan Lin e Wu chun Feng. Enhancing MapReduce via asynchronous
data processing. In 16th International Conference on Parallel and Distributed Sys-
tems, pages 397–405. IEEE, dec. 2010. Cited on pp. 16

[ETO+11] Mohamed Y. Eltabakh, Yuanyuan Tian, Fatma Özcan, Rainer Gemulla, Aljoscha
Krettek e John McPherson. CoHadoop: flexible data placement and its exploitation
in Hadoop. Proceedings of the VLDB Endowment, 4(9):575–585, Junho 2011. Cited

on pp. 17

[Fac16] Facebook. Facebook reports first quarter 2016 results, 2016. Available at http:
//investor.fb.com/investor-news/2016/default.aspx (Visited on 15/10/2016). Cited on

pp. 1

[FRM13] E. Feller, L. Ramakrishnan e C. Morin. On the performance and energy efficiency of
hadoop deployment models. In IEEE International Conference on Big Data, pages
131–136, Oct 2013. Cited on pp. 20

[GC12] R. Grover e M.J. Carey. Extending Map-Reduce for efficient predicate-based sam-
pling. In 28th International Conference on Data Engineering, pages 486–497. IEEE,
april 2012. Cited on pp. 16

http://www.tpc.org/tpch
http://investor.fb.com/investor-news/2016/default.aspx
http://investor.fb.com/investor-news/2016/default.aspx

BIBLIOGRAPHY 69

[GGL03] Sanjay Ghemawat, Howard Gobioff e Shun-Tak Leung. The Google File System.
ACM SIGOPS Operating Systems Review, 37(5):29–43, 2003. Cited on pp. 6, 8

[GhJnBwY11] Song Guang-hua, Chuai Jun-na, Yang Bo-wei e Zheng Yao. QDFS: A quality-aware
distributed file storage service based on HDFS. In International Conference on
Computer Science and Automation Engineering, volume 2, pages 203–207. IEEE,
june 2011. Cited on pp. 16

[GLN+12] Íñigo Goiri, Kien Le, Thu D. Nguyen, Jordi Guitart, Jordi Torres e Ricardo Bian-
chini. Greenhadoop: Leveraging green energy in data-processing frameworks. In
Proceedings of the 7th ACM European Conference on Computer Systems, EuroSys
’12, pages 57–70, New York, NY, USA, 2012. ACM. Cited on pp. 19

[Goo14] Google Inc. Google cloud storage pricing, 2014. Available at http://cloud.google.
com/pricing/ (Visited on 15/10/2016). Cited on pp. 10

[Hac14] Mark Hachman. SSD prices face uncertain future in 2014, 2014. Avail-
able at http://www.pcworld.com/article/2087480/ssd-prices-face-uncertain-future-
in-2014.html (Visited on 15/10/2016). Cited on pp. 11, 38

[Ham10] James Hamilton. Overall data center costs, September 2010. Available at
http://perspectives.mvdirona.com/2010/09/18/OverallDataCenterCosts.aspx (Vis-
ited on 15/10/2016). Cited on pp. 2, 13

[Has08] Ahmed E. Hassan. The Road Ahead for Mining Software Repositories. In Proceed-
ings of the Future of Software Maintenance (FoSM) at the 24th IEEE International
Conference on Software Maintenance, 2008. Cited on pp. 20

[HFL+08] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju e Tuyong Wang.
Mars: A mapreduce framework on graphics processors. In Proceedings of the 17th In-
ternational Conference on Parallel Architectures and Compilation Techniques, PACT
’08, pages 260–269, New York, NY, USA, 2008. ACM. Cited on pp. 60

[HHD+10] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie e Bo Huang. The HiBench
benchmark suite: Characterization of the MapReduce-based data analysis. In IEEE
26th International Conference on Data Engineering Workshops (ICDEW), pages
41–51, March 2010. Cited on pp. 43, 44

[Hin12] Abram Hindle. Green Mining: A Methodology of Relating Software Change to Power
Consumption. In The 9th Working Conference on Mining Software Repositories
(MSR), pages 78–87, 2012. Cited on pp. 20

[Hin13] Abram Hindle. Green mining: a methodology of relating software change and config-
uration to power consumption. Empirical Software Engineering, pages 1–36, 2013.
Cited on pp. 20

[HLS11] Chen He, Ying Lu e D. Swanson. Matchmaking: A new MapReduce scheduling
technique. In Third International Conference on Cloud Computing Technology and
Science, pages 40–47. IEEE, 29 2011-dec. 1 2011. Cited on pp. 15

[HRS12] M. Hammoud, M.S. Rehman e M.F. Sakr. Center-of-Gravity reduce task scheduling
to lower MapReduce network traffic. In International Conference on Cloud Com-
puting, pages 49–58. IEEE, june 2012. Cited on pp. 15

[HS11] M. Hammoud e M.F. Sakr. Locality-aware reduce task scheduling for MapReduce. In
Third International Conference on Cloud Computing Technology and Science, pages
570–576. IEEE, 29 2011-dec. 1 2011. Cited on pp. 15

http://cloud.google.com/pricing/
http://cloud.google.com/pricing/
http://www.pcworld.com/article/2087480/ssd-prices-face-uncertain-future-in-2014.html
http://www.pcworld.com/article/2087480/ssd-prices-face-uncertain-future-in-2014.html
http://perspectives.mvdirona.com/2010/09/18/OverallDataCenterCosts.aspx

70 BIBLIOGRAPHY

[HWL11] Li-Yung Ho, Jan-Jan Wu e Pangfeng Liu. Optimal algorithms for cross-rack com-
munication optimization in MapReduce framework. In International Conference on
Cloud Computing, pages 420–427. IEEE, july 2011. Cited on pp. 16

[HWR+14] Abram Hindle, Alex Wilson, Kent Rasmussen, Jed Barlow, Joshua Campbell e
Stephen Romansky. GreenMiner: A Hardware Based Mining Software Reposito-
ries Software Energy Consumption Framework. In The 11th Working Conference on
Mining Software Repositories (MSR). ACM, 2014. Cited on pp. 20

[IBY+07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell e Dennis Fetterly. Dryad:
distributed data-parallel programs from sequential building blocks. ACM SIGOPS
Operating Systems Review, 41(3):59–72, Março 2007. Cited on pp. 2, 60

[IJL+10] S. Ibrahim, Hai Jin, Lu Lu, Song Wu, Bingsheng He e Li Qi. LEEN:
Locality/fairness-aware key partitioning for MapReduce in the cloud. In Second
International Conference on Cloud Computing Technology and Science, pages 17–
24, 30 2010-dec. 3 2010. Cited on pp. 16

[IJL+12] S. Ibrahim, Hai Jin, Lu Lu, Bingsheng He, G. Antoniu e Song Wu. Maestro: Replica-
aware map scheduling for MapReduce. In 12th International Symposium on Cluster,
Cloud and Grid Computing, pages 435–442. IEEE/ACM, may 2012. Cited on pp. 15

[Int11] Intel IT. Solid-state drives and employee productivity, Jul 2011. Available
at http://www.intel.com/content/dam/doc/technology-brief/intel-it-validating-
reliability-of-intel-solid-state-drives-brief.pdf (Visited on 15/10/2016). Cited on pp.

11

[Int15] Intel Corporation. Micron and intel unveil new 3d nand flash memory, 2015. Avail-
able at https://newsroom.intel.com/news-releases/micron-and-intel-unveil-new-3d-
nand-flash-memory/ (Visited on 15/10/2016). Cited on pp. 55

[JEMK13] Hyeran Jeon, Kaoutar El Maghraoui e Gokul B. Kandiraju. Investigating hybrid
ssd ftl schemes for hadoop workloads. In Proceedings of the ACM International
Conference on Computing Frontiers, CF ’13, pages 20:1–20:10, New York, NY, USA,
2013. ACM. Cited on pp. 18

[JOSW10] Dawei Jiang, Beng Chin Ooi, Lei Shi e Sai Wu. The performance of MapReduce:
an in-depth study. Proceedings of the VLDB Endowment, 3(1-2):472–483, Setembro
2010. Cited on pp. 16

[JS10] Marian Jureczko e Diomidis Spinellis. Using Object-Oriented Design Metrics to Pre-
dict Software Defects, volume Models and Methodology of System Dependability of
Monographs of System Dependability, pages 69–81. Oficyna Wydawnicza Politechniki
Wroclawskiej, Wroclaw, Poland, 2010. Cited on pp. 35, 36

[KAB14] K. R. Krish, A. Anwar e A. R. Butt. hats: A heterogeneity-aware tiered storage for
hadoop. In Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM
International Symposium on, pages 502–511, May 2014. Cited on pp. 18

[KAEN11] Rini T. Kaushik, Tarek Abdelzaher, Ryota Egashira e Klara Nahrstedt. Predictive
data and energy management in greenhdfs. In Proceedings of the 2011 International
Green Computing Conference and Workshops, IGCC ’11, pages 1–9, Washington,
DC, USA, 2011. IEEE Computer Society. Cited on pp. 19

[KB10] Rini T. Kaushik e Milind Bhandarkar. Greenhdfs: Towards an energy-conserving,
storage-efficient, hybrid hadoop compute cluster. In Proceedings of the 2010 Inter-
national Conference on Power Aware Computing and Systems, HotPower’10, pages
1–9, Berkeley, CA, USA, 2010. USENIX Association. Cited on pp. 19

http://www.intel.com/content/dam/doc/technology-brief/intel-it-validating-reliability-of-intel-solid-state-drives-brief.pdf
http://www.intel.com/content/dam/doc/technology-brief/intel-it-validating-reliability-of-intel-solid-state-drives-brief.pdf
https://newsroom.intel.com/news-releases/micron-and-intel-unveil-new-3d-nand-flash-memory/
https://newsroom.intel.com/news-releases/micron-and-intel-unveil-new-3d-nand-flash-memory/

BIBLIOGRAPHY 71

[KBHR12] YongChul Kwon, Magdalena Balazinska, Bill Howe e Jerome Rolia. SkewTune: mit-
igating skew in mapreduce applications. In Proceedings of the International Confer-
ence on Management of Data, pages 25–36, New York, NY, USA, 2012. ACM. Cited
on pp. 16

[KC14] Karthik Kambatla e Yanpei Chen. The truth about mapreduce performance on
ssds. In 28th Large Installation System Administration Conference (LISA14), pages
118–126, Seattle, WA, Novembro 2014. USENIX Association. Cited on pp. 18

[KIB14] K.R. Krish, M.S. Iqbal e A.R. Butt. VENU: Orchestrating SSDs in hadoop storage.
In IEEE International Conference on Big Data (Big Data), pages 207–212, Oct 2014.
Cited on pp. 18

[Kim13] Eden Kim. SSD Performance - A Primer. An Introduction to Solid State Drive
Performance, Evaluation and Test. Relatório técnico, Storage Networking Indus-
try Association, August 2013. Available at http://www.snia.org/sites/default/files/
SNIASSSI.SSDPerformance-APrimer2013.pdf (Visited on 15/10/2016). Cited on pp.

vii, 11, 12

[Kim15] Eden Kim. Understanding SSD performance project. Relatório técnico, Storage
Networking Industry Association, August 2015. Available at http://www.snia.org/
forums/sssi/pts (Visited on 15/10/2016). Cited on pp. vii, 12

[KKVR12] K. Arun Kumar, Vamshi Krishna Konishetty, Kaladhar Voruganti e G. V. Prab-
hakara Rao. CASH: Context Aware Scheduler for Hadoop. In Proceedings of the
International Conference on Advances in Computing, Communications and Infor-
matics, pages 52–61, New York, NY, USA, 2012. ACM. Cited on pp. 15

[Kom10] Matthew Komorowski. A history of storage cost, 2010. Available at http://www.
mkomo.com/cost-per-gigabyte (Visited on 15/10/2016). Cited on pp. 1

[KsKMP13] Yangwook Kang, Yang suk Kee, E.L. Miller e Chanik Park. Enabling cost-effective
data processing with smart ssd. In Mass Storage Systems and Technologies (MSST),
2013 IEEE 29th Symposium on, pages 1–12, 2013. Cited on pp. 18

[KVV11] G. Kousiouris, G. Vafiadis e T. Varvarigou. A front-end, Hadoop-based data man-
agement service for efficient federated clouds. In Third International Conference
on Cloud Computing Technology and Science, pages 511–516. IEEE, 29 2011-dec. 1
2011. Cited on pp. 16

[Lan01] Douglas Laney. 3D data management: Controlling data volume, velocity,
and variety. Relatório técnico, META Group, February 2001. Available at
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-
Controlling-Data-Volume-Velocity-and-Variety.pdf (Visited on 15/10/2016). Cited

on pp. 1

[LAY11] Shen Li, T. Abdelzaher e Mindi Yuan. TAPA: Temperature aware power allocation
in data center with Map-Reduce. In International Green Computing Conference and
Workshops, pages 1–8, july 2011. Cited on pp. 16, 19

[Lei13] Luke Kenneth Casson Leighton. Analysis of ssd reliability during power-outages,
December 2013. Available at http://lkcl.net/reports/ssd_analysis.html (Visited on
15/10/2016). Cited on pp. 11

[LMA+10] Heshan Lin, Xiaosong Ma, Jeremy Archuleta, Wu-chun Feng, Mark Gardner e Zhe
Zhang. MOON: MapReduce On Opportunistic eNvironments. In Proceedings of the
19th International Symposium on High Performance Distributed Computing, pages
95–106, New York, NY, USA, 2010. ACM. Cited on pp. 16

http://www.snia.org/sites/default/files/SNIASSSI.SSDPerformance-APrimer2013.pdf
http://www.snia.org/sites/default/files/SNIASSSI.SSDPerformance-APrimer2013.pdf
http://www.snia.org/forums/sssi/pts
http://www.snia.org/forums/sssi/pts
http://www.mkomo.com/cost-per-gigabyte
http://www.mkomo.com/cost-per-gigabyte
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://lkcl.net/reports/ssd_analysis.html

72 BIBLIOGRAPHY

[LP10] Willis Lang e Jignesh M. Patel. Energy management for MapReduce clusters. Pro-
ceedings of the VLDB Endowment, 3(1-2):129–139, 2010. Cited on pp. 19

[LWH11] Lei Lei, Tianyu Wo e Chunming Hu. CREST: Towards fast speculation of straggler
tasks in MapReduce. In 8th International Conference on e-Business Engineering,
pages 311–316. IEEE, oct. 2011. Cited on pp. 15

[LZZ12] Nikolay Laptev, Kai Zeng e Carlo Zaniolo. Early accurate results for advanced
analytics on MapReduce. Proceedings of the VLDB Endowment, 5(10):1028–1039,
Junho 2012. Cited on pp. 16

[MAB+10] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser e Grzegorz Czajkowski. Pregel: a system for large-scale graph
processing. In Proceedings of the International Conference on Management of Data,
pages 135–146, New York, NY, USA, 2010. ACM. Cited on pp. 2

[Mac14] John C. MacCallum. Disk drive prices, 2014. Available at http://www.jcmit.com/
diskprice.htm (Visited on 15/10/2016). Cited on pp. 38

[Mea15] Lucas Mearian. SSDs will be in more than 25% of new laptops this year, more than
40% by 2017, 2015. Available at http://www.computerworld.com/article/3010395/
solid-state-drives/consumer-ssds-and-hard-drive-prices-are-nearing-parity.html
(Visited on 15/10/2016). Cited on pp. 2, 11, 53

[Mea16] Lucas Mearian. SSD prices plummet again, close in on HDDs, 2016. Avail-
able at http://www.computerworld.com/article/3040694/data-storage/ssd-prices-
plummet-again-close-in-on-hdds.html (Visited on 15/10/2016). Cited on pp. 2

[MEMRB10] Esteban Molina-Estolano, Carlos Maltzahn, Ben Reed e Scott A. Brandt. Haceph:
Scalable metadata management for hadoop using ceph, 2010. Cited on pp. 17

[MLK14] Sangwhan Moon, Jaehwan Lee e Yang Suk Kee. Introducing SSDs to the hadoop
mapreduce framework. In Cloud Computing (CLOUD), 2014 IEEE 7th International
Conference on, pages 272–279, June 2014. Cited on pp. 18

[MOT11] Shunsuke Mikami, Kazuki Ohta e Osamu Tatebe. Using the Gfarm File System
as a POSIX compatible storage platform for Hadoop MapReduce applications. In
Proceedings of the 12th International Conference on Grid Computing, pages 181–189,
Washington, DC, USA, 2011. IEEE/ACM. Cited on pp. 16, 17

[MTF11] Prashanth Mundkur, Ville Tuulos e Jared Flatow. Disco: A computing platform for
large-scale data analytics. In Proceedings of the 10th ACM SIGPLAN Workshop on
Erlang, Erlang ’11, pages 84–89, New York, NY, USA, 2011. ACM. Cited on pp. 60

[Mur08] S. Murugesan. Harnessing green it: Principles and practices. IT Professional,
10(1):24–33, Jan 2008. Cited on pp. 2, 13

[MVE+14] Arun C. Murthy, Vinod Kumar Vavilapalli, Doug Eadline, Joseph Niemiec e Jeff
Markham. Apache Hadoop YARN: Moving beyond MapReduce and Batch Processing
with Apache Hadoop 2. Addison-Wesley Professional, 2014. Cited on pp. 21

[MWZL12] Yaokuan Mao, Wenjun Wu, Hui Zhang e Liang Luo. GreenPipe: A Hadoop based
workflow system on energy-efficient clouds. In 26th International Parallel and Dis-
tributed Processing Symposium Workshops PhD Forum, pages 2211–2219. IEEE, may
2012. IEEE. Cited on pp. 20

http://www.jcmit.com/diskprice.htm
http://www.jcmit.com/diskprice.htm
http://www.computerworld.com/article/3010395/solid-state-drives/consumer-ssds-and-hard-drive-prices-are-nearing-parity.html
http://www.computerworld.com/article/3010395/solid-state-drives/consumer-ssds-and-hard-drive-prices-are-nearing-parity.html
http://www.computerworld.com/article/3040694/data-storage/ssd-prices-plummet-again-close-in-on-hdds.html
http://www.computerworld.com/article/3040694/data-storage/ssd-prices-plummet-again-close-in-on-hdds.html

BIBLIOGRAPHY 73

[NB05] Nachiappan Nagappan e Thomas Ball. Use of relative code churn measures to predict
system defect density. In Software Engineering, 2005. ICSE 2005. Proceedings. 27th
International Conference on. IEEE, 2005. Cited on pp. 20

[NPM+10] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios e Nick Koudas.
MRShare: sharing across multiple queries in MapReduce. Proceedings of the VLDB
Endowment, 3(1-2):494–505, Setembro 2010. Cited on pp. 15

[O’M11] Conor O’Mahony. Comparing hdfs and gpfs for hadoop, Nov 2011. Avail-
able at http://blog.intelligencecomputing.io/twitter/7653/repost-comparing-hdfs-
and-gpfs-for-hadoop (Visited on 15/10/2016). Cited on pp. 17

[PIAB15] T. D. Phan, S. Ibrahim, G. Antoniu e L. Bougé. On understanding the energy
impact of speculative execution in hadoop. In 2015 IEEE International Conference
on Data Science and Data Intensive Systems, pages 396–403, Dec 2015. Cited on pp.

19

[PRGK14] Ivanilton Polato, Reginaldo Ré, Alfredo Goldman e Fabio Kon. A comprehensive
view of Hadoop research - A systematic literature review. Journal of Network and
Computer Applications, 46:1 – 25, 2014. Cited on pp. 14, 22

[PWB07] Eduardo Pinheiro, Wolf-Dietrich Weber e Luiz André Barroso. Failure trends in a
large disk drive population. In Proceedings of the 5th USENIX Conference on File
and Storage Technologies, FAST ’07, Berkeley, CA, USA, 2007. USENIX Association.
Cited on pp. 11

[PYXH14] Fengfeng Pan, Yinliang Yue, Jin Xiong e Daxiang Hao. I/O characterization of big
data workloads in data centers. In Jianfeng Zhan, Rui Han e Chuliang Weng, editors,
Big Data Benchmarks, Performance Optimization, and Emerging Hardware, volume
8807 of Lecture Notes in Computer Science, pages 85–97. Springer International
Publishing, 2014. Cited on pp. 44

[RD11] Aysan Rasooli e Douglas G. Down. An adaptive scheduling algorithm for dynamic
heterogeneous Hadoop systems. In Proceedings of the Conference of the Center for
Advanced Studies on Collaborative Research, pages 30–44, Riverton, NJ, USA, 2011.
IBM Corp. Cited on pp. 15

[Ren14] Thomas M. Rent. Origin of solid state drives, 2014. Available at http://www.
storagereview.com/origin_solid_state_drives (Visited on 15/10/2016). Cited on pp.

11

[Rut11] Nathan Rutman. Map/reduce on lustre, February 2011. Available at http://www.
xyratex.com/sites/default/files/Xyratex_white_paper_MapReduce_1-4.pdf (Vis-
ited on 15/10/2016). Cited on pp. 17

[SAD+10] Michael Stonebraker, Daniel Abadi, David J. DeWitt, Sam Madden, Erik Paulson,
Andrew Pavlo e Alexander Rasin. MapReduce and parallel DBMSs: friends or foes?
Communications of the ACM, 53(1):64–71, Janeiro 2010. Cited on pp. 1

[SG07] Bianca Schroeder e Garth A. Gibson. Disk failures in the real world: What does an
mttf of 1,000,000 hours mean to you? In Proceedings of the 5th USENIX Conference
on File and Storage Technologies, FAST ’07, Berkeley, CA, USA, 2007. USENIX
Association. Cited on pp. 11

[SK14] P. Saxena e P. Kumar. Performance evaluation of hdd and ssd on 10gige, ipoib
amp; rdma-ib with hadoop cluster performance benchmarking system. In Conflu-
ence The Next Generation Information Technology Summit (Confluence), 2014 5th
International Conference -, pages 30–35, Sept 2014. Cited on pp. 18

http://blog.intelligencecomputing.io/twitter/7653/repost-comparing-hdfs-and-gpfs-for-hadoop
http://blog.intelligencecomputing.io/twitter/7653/repost-comparing-hdfs-and-gpfs-for-hadoop
http://www.storagereview.com/origin_solid_state_drives
http://www.storagereview.com/origin_solid_state_drives
http://www.xyratex.com/sites/default/files/Xyratex_white_paper_MapReduce_1-4.pdf
http://www.xyratex.com/sites/default/files/Xyratex_white_paper_MapReduce_1-4.pdf

74 BIBLIOGRAPHY

[SKRC10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia e Robert Chansler. The Hadoop
Distributed File System. In Proceedings of the 26th Symposium on Mass Storage
Systems and Technologies, pages 1–10, Washington, DC, USA, 2010. IEEE. Cited on

pp. 6, 9, 16

[SLT11] Lei Shi, Xiaohui Li e Kian-Lee Tan. S3: An efficient Shared Scan Scheduler on
MapReduce framework. In International Conference on Parallel Processing, pages
325–334, sept. 2011. Cited on pp. 15

[Smi12] Ivan Smith. Cost of hard drive storage space, 2012. Available at http://ns1758.ca/
winch/winchest.html (Visited on 15/10/2016). Cited on pp. 1

[Spi05] Diomidis Spinellis. Tool writing: A forgotten art? IEEE Software, 22(4):9–11, Ju-
ly/August 2005. Cited on pp. 20

[SRC10] J. Shafer, S. Rixner e A.L. Cox. The Hadoop Distributed Filesystem: Balancing
portability and performance. In International Symposium on Performance Analysis
of Systems Software, pages 122–133. IEEE, march 2010. IEEE. Cited on pp. 16

[Sta13] Matt Stansberry. Data Center Industry Survey 2013. Relatório técnico, Uptime
Institute, 2013. Cited on pp. 1

[TFL14] W. Tan, L. Fong e Y. Liu. Effectiveness assessment of solid-state drive used in big
data services. In Web Services (ICWS), 2014 IEEE International Conference on,
pages 393–400, June 2014. Cited on pp. 18

[Tom11] Tom’s Hardware. Investigation: Is your ssd more reliable than a hard drive?,
2011. Available at http://www.tomshardware.com/reviews/ssd-reliability-failure-
rate,2923.html (Visited on 15/10/2016). Cited on pp. 11

[Tom13] Tom’s Hardware. Performance charts hard drives and ssds, 2013. Available
at http://www.tomshardware.com/charts/hard-drives-and-ssds,3.html (Visited on
15/10/2016). Cited on pp. 11, 13

[Twi16] Twitter Inc. Investor relations: Quarter results, 2016. Available at https://investor.
twitterinc.com/results.cfm (Visited on 15/10/2016). Cited on pp. 1

[TZHZ09] Chao Tian, Haojie Zhou, Yongqiang He e Li Zha. A dynamic MapReduce scheduler
for heterogeneous workloads. In 8th International Conference on Grid and Cooper-
ative Computing, pages 218–224, aug. 2009. Cited on pp. 15

[TZSC11] Yongcai Tao, Qing Zhang, Lei Shi e Pinhua Chen. Job scheduling optimization
for multi-user MapReduce clusters. In 4th International Symposium on Parallel
Architectures, Algorithms and Programming, pages 213–217, dec. 2011. IEEE. Cited

on pp. 15

[VBBE12] Rares Vernica, Andrey Balmin, Kevin S. Beyer e Vuk Ercegovac. Adaptive MapRe-
duce using situation-aware mappers. In Proceedings of the 15th International Con-
ference on Extending Database Technology, pages 420–431, New York, NY, USA,
2012. ACM. Cited on pp. 16

[VCC11] Abhishek Verma, Ludmila Cherkasova e Roy H. Campbell. ARIA: automatic re-
source inference and allocation for mapreduce environments. In Proceedings of the
8th International Conference on Autonomic Computing, pages 235–244, New York,
NY, USA, 2011. ACM. Cited on pp. 16

http://ns1758.ca/winch/winchest.html
http://ns1758.ca/winch/winchest.html
http://www.tomshardware.com/reviews/ssd-reliability-failure-rate,2923.html
http://www.tomshardware.com/reviews/ssd-reliability-failure-rate,2923.html
http://www.tomshardware.com/charts/hard-drives-and-ssds,3.html
https://investor.twitterinc.com/results.cfm
https://investor.twitterinc.com/results.cfm

BIBLIOGRAPHY 75

[VCKC12] A. Verma, L. Cherkasova, V.S. Kumar e R.H. Campbell. Deadline-based workload
management for MapReduce environments: Pieces of the performance puzzle. In
Network Operations and Management Symposium, pages 900–905. IEEE, 2012. Cited
on pp. 16

[VNOS12] Dan Vesset, Ashish Nadkarni, Carl W. Olofson e David Schubmehl. Worldwide big
data technology and services 2012-2016 forecast. Relatório técnico, IDC Corporate
USA, 2012. Cited on pp. 1

[Whi12] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 3rd edição, 2012.
Cited on pp. 1

[WJY14] Bo Wang, Jinlei Jiang e Guangwen Yang. mpCache: Accelerating mapreduce with
hybrid storage system on many-core clusters. In Ching-Hsien Hsu, Xuanhua Shi
e Valentina Salapura, editors, Network and Parallel Computing, volume 8707 of
Lecture Notes in Computer Science, pages 220–233. Springer Berlin Heidelberg, 2014.
Cited on pp. 18

[WLX+13] D. Wu, W. Luo, W. Xie, X. Ji, J. He e D. Wu. Understanding the impacts of solid-
state storage on the hadoop performance. In Advanced Cloud and Big Data (CBD),
2013 International Conference on, pages 125–130, Dec 2013. Cited on pp. 18

[WQY+11] Yandong Wang, Xinyu Que, Weikuan Yu, Dror Goldenberg e Dhiraj Sehgal. Hadoop
acceleration through network levitated merge. In Proceedings of International Con-
ference for High Performance Computing, Networking, Storage and Analysis, vol-
ume 57, pages 1–10, New York, NY, USA, 2011. ACM. Cited on pp. 16

[XYR+10] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun Tian, J. Majors, A. Man-
zanares e Xiao Qin. Improving MapReduce performance through data placement in
heterogeneous Hadoop clusters. In International Symposium on Parallel Distributed
Processing, Workshops and Phd Forum, pages 1–9. IEEE, april 2010. IEEE. Cited on

pp. 16, 17

[YVM12] S. A. Yazd, S. Venkatesan e N. Mittal. Energy efficient hadoop using mirrored data
block replication policy. In Reliable Distributed Systems (SRDS), 2012 IEEE 31st
Symposium on, pages 457–462, Oct 2012. Cited on pp. 19

[YYH11] Hsin-Han You, Chun-Chung Yang e Jiun-Long Huang. A load-aware scheduler for
MapReduce framework in heterogeneous cloud environments. In Proceedings of the
Symposium on Applied Computing, pages 127–132, New York, NY, USA, 2011. ACM.
ACM. Cited on pp. 15

[ZBSS+10] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker e Ion Stoica. Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling. In Proceedings of the 5th European Conference on
Computer Systems, pages 265–278, New York, NY, USA, 2010. ACM. Cited on pp. 15

[ZC11] Hao Zhu e Haopeng Chen. Adaptive failure detection via heartbeat under Hadoop.
In Asia-Pacific Services Computing Conference, pages 231–238. IEEE, dec. 2011.
Cited on pp. 16

[ZE11] P. Zikopoulos e C. Eaton. Understanding Big Data: Analytics for Enterprise Class
Hadoop and Streaming Data. Mcgraw-hill, 2011. Cited on pp. 1

[ZFF+11] Xiaohong Zhang, Yuhong Feng, Shengzhong Feng, Jianping Fan e Zhong Ming.
An effective data locality aware task scheduling method for MapReduce framework
in heterogeneous environments. In Proceedings of the International Conference on

76 BIBLIOGRAPHY

Cloud and Service Computing, pages 235–242, Washington, DC, USA, 2011. IEEE.
Cited on pp. 15

[ZGGW11] Yanfeng Zhang, Qinxin Gao, Lixin Gao e Cuirong Wang. iMapReduce: A distributed
computing framework for iterative computation. In International Symposium on
Parallel and Distributed Processing Workshops and Phd Forum, pages 1112–1121.
IEEE, may 2011. IEEE. Cited on pp. 16

[ZKJ+08] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz e Ion Stoica.
Improving MapReduce performance in heterogeneous environments. In Proceedings
of the 8th Conference on Operating Systems Design and Implementation, volume 8,
pages 29–42, Berkeley, CA, USA, 2008. USENIX Association. Cited on pp. 15

[ZWM+12] Yanrong Zhao, Weiping Wang, Dan Meng, YongChun Lv, Shubin Zhang e Jun Li.
TDWS: A job scheduling algorithm based on MapReduce. In 7th International
Conference on Networking, Architecture and Storage, pages 313–319. IEEE, june
2012. Cited on pp. 15

[ZWYD12] Xiaohong Zhang, Guowei Wang, Zijing Yang e Yang Ding. A two-phase execu-
tion engine of reduce tasks in Hadoop MapReduce. In International Conference on
Systems and Informatics, pages 858–864, may 2012. Cited on pp. 15

[ZYLL11] Jiaran Zhang, Xiaohui Yu, You Li e Liwei Lin. HadoopRsync. In International
Conference on Cloud and Service Computing, pages 166–173, dec. 2011. Cited on pp.

16

[ZZF+11] Xiaohong Zhang, Zhiyong Zhong, Shengzhong Feng, B. Tu e Jianping Fan. Improv-
ing data locality of MapReduce by scheduling in homogeneous computing environ-
ments. In 9th International Symposium on Parallel and Distributed Processing with
Applications, pages 120–126. IEEE, may 2011. IEEE. Cited on pp. 15

	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Objectives
	Original Contributions
	Funding
	Publications

	Background
	The Apache Hadoop Framework
	MapReduce
	HDFS
	YARN
	Storage Devices
	Green Computing

	Related Work
	Hadoop Research
	Solid-State Drives on HDFS
	Energy and Green Computing Research

	Motivating and Grounding Experiments
	Versions and Releases
	Benchmarks and Datasets Used
	Cluster Infrastructure
	Experiment Design and Methodology
	Results and Analysis
	Job Makespan
	Evidence of Changes in Hadoop's Performance
	Energy Performance
	Hadoop Source Code Analysis

	Final Considerations

	HDFSH: a Hybrid File System
	HDFSH Storage Model
	Block Placement Policy
	Storage Cost Model

	Experimental Methodology and Datasets
	Energy Consumption and Performance Analysis
	I/O-Bound Benchmark Results
	Results for the CPU-Bound Benchmarks
	Using SSDs as Temporary Storage Space
	Performance and Speedup
	Cost Model Analysis

	Final Considerations

	Discussion
	Findings
	Threats to Validity

	Conclusions
	Original contributions
	Future Work

	Bibliography

