
Model-Based Policy Gradients

An empirical study on linear
quadratic environments

Ângelo Gregório Lovatto

Thesis presented to the
Institute of Mathematics and Statistics

of the University of São Paulo
in partial fulfillment
of the requirements
for the degree of
Master of Science

Program: Ciência da Computação

Advisor: Profª. Drª. Leliane Nunes de Barros

Durante o desenvolvimento deste trabalho o autor recebeu auxílio �nanceiro da CAPES

São Paulo

February 28, 2022

Model-Based Policy Gradients

An empirical study on linear
quadratic environments

Ângelo Gregório Lovatto

This is the original version of the

thesis prepared by candidate Ângelo

Gregório Lovatto, as submitted

to the Examining Committee.

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por

qualquer meio convencional ou eletrônico, para �ns de estudo e pesquisa,

desde que citada a fonte.

Resumo

Ângelo Gregório Lovatto. Gradientes de Política Baseados em Modelo: Um estudo
empírico em ambientes lineares quadráticos. Dissertação (Mestrado). Instituto de

Matemática e Estatística, Universidade de São Paulo, São Paulo, 2022.

Métodos de Gradiente de Valor Estocástico (GVE) estão por trás de muitos avanços recentes de agentes

de Aprendizado por Reforço (AR) baseado em modelo em espaços de estado-ação contínuos. Tais métodos

usam dados coletados por exploração no ambiente para produzir um modelo de sua dinâmica, que é então

usado para aproximar o gradiente, com relação aos parâmetros do agente, da função objetivo. Apesar da

signi�cância prática desses métodos, muitas escolhas de design algorítmico ainda carecem de rigorosas

justi�cativas teóricas ou empíricas. Em vez disso, muitos trabalhos colocam muito peso em métodos de

avaliação em ambientes-referência, o que mistura as contribuições de vários componentes do design de

um agente de AR para o desempenho �nal. Este trabalho propõe uma análise re�nada de componentes

algorítmicos centrais a métodos de GVE, incluindo: a fórmula de estimação do gradiente, aprendizado do

modelo e aproximação de função-valor. É implementado um ambiente-referência con�gurável baseado no

regulador Linear Quadrático Gaussiano (LQG), permitindo computar o verdadeiro GVE e compará-lo com

abordagens via aprendizado. Análises são conduzidas em uma variedade de ambientes LQG, avaliando o

impacto de cada componente algorítmico em tarefas de predição e controle. Os resultados mostram que

um estimador de gradiente amplamente usado induz um balanço de viés e variância favorável, usando uma

esperança enviesada que produz estimativas de gradiente melhores com poucas amostras em comparação à

fórmula não-enviesada do gradiente. Quanto ao aprendizado do modelo, demonstra-se que o modelo pode

sobreajustar-se à dados on-policy, levando à predições acuradas de estados mas inacuradas de gradientes,

salientando a importância da exploração até em ambientes estocásticos. É também mostrado que aproxi-

mação de função-valor pode ser mais instável que aprendizado de modelo, mesmo em simples ambientes

lineares. Finalmente, avalia-se o desempenho ao usar o modelo para estimar o gradiente diretamente vs.

para aproximar a função-valor, concluindo que a primeira abordagem é mais efetiva tanto para predição

quanto para controle.

Palavras-chave: Aprendizado por Reforço. Baseado em Modelo. Métodos de Gradiente. Aprendizado de

Máquina.

Abstract

Ângelo Gregório Lovatto. Model-Based Policy Gradients: An empirical study on
linear quadratic environments. Thesis (Master’s). Institute of Mathematics and Statis-

tics, University of São Paulo, São Paulo, 2022.

Stochastic Value Gradient (SVG) methods underlie many recent achievements of model-based Rein-

forcement Learning (RL) agents in continuous state-action spaces. Such methods use data collected by ex-

ploration in the environment to produce a model of its dynamics, which is then used to approximate the

gradient of the objective function w.r.t. the agent’s parameters. Despite the practical signi�cance of these

methods, many algorithm design choices still lack rigorous theoretical or empirical justi�cation. Instead,

most works rely heavily on benchmark-centric evaluation methods, which confound the contributions of

several components of an RL agent’s design to the �nal performance. In this work, we propose a �ne-

grained analysis of core algorithmic components of SVGs, including: the gradient estimator formula, model

learning and value function approximation. We implement a con�gurable benchmark environment based

on the Linear Quadratic Gaussian (LQG) regulator, allowing us to compute the ground-truth SVG and com-

pare it with learning approaches. We conduct our analysis on a range of LQG environments, evaluating

the impact of each algorithmic component in prediction and control tasks. Our results show that a widely

used gradient estimator induces a favorable bias-variance trade-o�, using a biased expectation that yields

better gradient estimates in smaller sample regimes than the unbiased expression for the gradient. On model

learning, we show that over�tting to on-policy data may occur, leading to accurate state predictions but

inaccurate gradients, highlighting the importance of exploration even in stochastic environments. We also

show that value function approximation can be more unstable than model learning, even in simple linear

environments. Finally, we evaluate performance when using the model for direct gradient estimation vs.

for value function approximation, concluding that the former is more e�ective for both prediction and

control.

Keywords: Reinforcement Learning. Model-Based. Gradient Methods. Machine Learning.

v

Acronyms

RL Reinforcement Learning vii, 1, 2, 3, 4, 5, 6, 9, 10, 11, 15, 16, 17, 21, 22, 24, 25, 26, 27, 28,

29, 47, 49, 50, 56, 61, 62

MBRL Model-Based Reinforcement Learning 2, 3, 4, 16, 47, 52

SVG Stochastic Value Gradient 2, 3, 4, 5, 6, 7, 9, 15, 16, 17, 18, 19, 21, 25, 26, 27, 29, 30, 31,

32, 33, 34, 36, 37, 39, 40, 41, 43, 44, 47, 48, 49, 50, 51, 52, 54, 55, 56, 58, 61, 63, 68

MAAC Model-Augmented Actor-Critic 3, 33, 34, 36, 37, 38, 39, 43, 44, 45, 46, 48, 54, 55, 56,

57, 58, 59, 62, 63, 69

LQG Linear Quadratic Gaussian 4, 5, 6, 9, 11, 12, 13, 14, 15, 19, 21, 24, 25, 26, 27, 28, 29, 30,

36, 37, 38, 39, 40, 41, 44, 45, 48, 56, 61, 62

DPG Deterministic Policy Gradient 6, 33, 34, 36, 37, 38, 39, 43, 45, 47, 50, 51, 52, 54, 55, 63

LQR Linear Quadratic Regulator 6

MDP Markov Decision Process 9, 10, 11, 27, 35

SGD Stochastic Gradient Descent 15, 37, 38, 41, 50, 54, 56, 57

MLE Maximum Likelihood Estimation 16, 44

KL Kullback Leibler 17, 44, 45, 46, 56, 57, 67

SCG Stochastic Computation Graph 17, 18, 26, 27, 32, 34

MSE Mean Squared Error 49, 50, 54

TD Temporal Di�erence 50, 51, 52, 53, 54, 55, 56, 63

MAGE Model-based Action-Gradient-Estimator 52, 53, 54, 55, 56, 57, 58, 59, 62, 63

DDPG Deep Deterministic Policy Gradients 56

vi

Symbols

 Markov Decision Process 9, 10, 13, 14, 15, 21

 set of possible states 9, 10, 11, 13, 16, 21, 24, 30, 37, 44, 46, 55, 56, 67

 set of applicable actions 9, 10, 11, 13, 16, 21, 24, 30, 37, 44, 46, 55, 56, 67

H time horizon 9, 10, 11, 12, 14, 15, 21, 26, 31, 32, 38, 44, 46, 50, 56, 67

n state space dimension 9, 11, 12, 21, 22, 23, 24, 25, 44

d action space dimension 9, 12, 21, 25, 44

 Mapping from set to the set of all probability distributions over it 9, 10, 16

 set of decision timesteps 9, 10, 13, 14

F transition dynamics kernel 11, 12, 13, 14, 15, 21, 65

f transition dynamics bias 11, 12, 13, 14, 15, 21, 65

� covariance matrix for transition dynamics noise 11, 12, 13, 14, 15, 21, 65

K dynamic gain 13, 14, 15, 25, 26, 66

k static gain 13, 14, 15, 26, 66

m size of model parameter vector 16

Fs passive transition dynamics kernel 21

Fa active transition dynamics kernel 21

w transition dynamics noise random variable 65

vii

List of Figures

1.1 The agent-environment interaction loop in Reinforcement Learning (RL) 1

1.2 RL algorithms landscape . 2

1.3 SVG method with deep learning models 3

1.4 Double Integrator environment . 5

2.1 Model learning via Maximum Likelihood 16

2.2 SCG of 1-step state-value expansion . 18

2.3 SCG of reparameterized 1-step state-value expansion 18

3.1 Eigenvalues of stable dynamics . 22

3.2 True value Stochastic Computation Graph 26

3.3 Distribution of optimal costs . 28

3.4 Optimal costs with �xed dynamics/cost function 28

3.5 Random policy value . 29

3.6 Random policy SVG norm . 29

3.7 Suboptimality vs. Parameter Distance . 30

4.1 Stochastic computation graph for SVG(∞) 32

4.2 Illustration of model-based rollouts . 32

4.3 Stochastic computation graphs for value gradients 34

4.4 Gradient accuracy near convergence . 35

4.5 Gradient accuracy vs. minibatch size . 36

4.6 Gradient precision vs. minibatch size . 37

4.7 Gradient norm vs. minibatch size . 38

4.8 Policy optimization with unnormalized gradients 40

4.9 Policy optimization with normalized gradients 41

5.1 On-policy model learning summary . 45

5.2 On-policy model-free vs. model-based gradients 45

5.3 On-policy estimated gradient optimization surface 47

viii

5.4 O�-policy model learning summary . 48

5.5 O�-policy model-free vs. model-based gradients 48

5.6 Reward gradient accuracy during reward model learning 49

5.7 Value-based value errors . 50

5.8 Fitted Q-learning value errors . 51

5.9 Fitted Q-learning action-gradient accuracy 51

5.10 MAGE value errors . 53

5.11 MAGE action-gradient accuracy . 53

5.12 TD vs. MAGE gradient accuracy . 54

5.13 Model-based prediction roundup . 55

5.14 Control - empirical KL divergence . 57

5.15 Control - suboptimality gap . 57

5.16 Control - gradient accuracy . 58

5.17 Control - Q-value statistics . 58

B.5 Control with perfect models . 69

List of Tables

4.1 Suboptimality gap vs. problem dimension 38

List of Algorithms

1 LQG control . 14

2 LQG Prediction . 15

3 Policy optimization via Stochastic Value Gradients 15

ix

Contents

1 Introduction 1

1.1 Model-based Reinforcement Learning . 1

1.2 Stochastic Value Gradient methods . 2

1.3 When theory doesn’t meet practice . 4

1.4 Linear Quadratic Gaussian environments 5

1.5 Contributions of this thesis . 6

2 Background 9

2.1 Reinforcement Learning . 9

2.2 Linear Quadratic Gaussian regulator . 11

2.2.1 Problem statement . 11

2.2.2 Solutions by dynamic programming 13

2.3 Stochastic Value Gradient methods . 15

2.3.1 Model learning . 16

2.3.2 Value gradient estimation . 17

3 The LQG Benchmark 21

3.1 Randomized LQG instances . 21

3.1.1 Transition dynamics . 21

3.1.2 Cost function . 24

3.1.3 Initial state distribution . 25

3.2 Randomized linear policies . 25

3.3 Analytical solutions . 26

3.4 Visualizations . 27

3.4.1 Environment diversity . 27

3.4.2 Policy diversity . 28

3.5 Discussion . 30

4 Value Gradient Estimation 31

x

4.1 Gradient estimation in SVG methods . 31

4.1.1 The MAAC estimator . 32

4.1.2 The DPG estimator . 33

4.2 Proposed analysis . 34

4.3 Empirical results . 35

4.3.1 Gradient estimation for �xed policies 35

4.3.2 Impact of gradient quality on policy optimization 37

4.4 Discussion . 39

5 Model Learning 43

5.1 Model-based prediction . 43

5.1.1 Model learning in isolation . 43

5.1.2 Model-based vs. value-based prediction 50

5.1.3 Improving value-based prediction using MAGE 52

5.1.4 Model-based prediction roundup 54

5.2 Model-based control . 56

6 Conclusions & Frontiers 61

Appendices

A LQG derivations 65

B Extra model-based control results 67

B.1 More state and action variables . 67

B.2 Model-based control with perfect models 68

References 71

1

Chapter 1

Introduction

1.1 Model-based Reinforcement Learning

Agent

Environment

Action
at

State
st+1

Reward
rt+1

Figure 1.1: The agent-environment interaction loop in RL

RL is a framework for developing intelligent systems for sequential decision-making
from limited data (Sutton and Barto, 2018; Szepesvári, 2010). It considers the setting
in which an agent interacts with an environment in a series of discrete timesteps. Only
three types of signals are exchanged between the agent and the environment: actions (sent
by the agent to the environment), states and rewards (sent by the environment to the
agent), as illustrated in �g. 1.1. States and rewards are random functions of the previous
state and the agent’s action at a given timestep. The agent’s objective is to choose actions
that maximize the expected sum of rewards (the return). More speci�cally, the solution
to an RL problem is given in the form of a function mapping states to actions (a policy)
to be executed at each timestep. The state comprises all of the necessary information for
the agent to choose the best actions at any given timestep, i.e., the environment has the
Markov property (François-Lavet et al., 2018). This setting is general enough to model
many sequential decision-making problems of interest.

What separates RL from other sequential decision-making frameworks is that the agent
must not have access to the rules governing how new states (and sometimes rewards) are
produced in the environment in response to the current state and action. Thus, RL can
be used in many situations in which the environment is unknown (e.g., self-driving cars

2

1 | INTRODUCTION

and �nance) or di�cult to model (e.g., robotics and industrial control applications). On the
other hand, this means that a learning algorithm has to �nd a policy by trial-and-error,
a process that can be costly (e.g., in robotics) and very sample-ine�cient. This issue is
specially apparent in model-free methods, which try to �nd a policy without any model of
the environment’s dynamics.

Figure 1.2: General schema of the di�erent methods for RL and the interaction between components

in an RL agent (extracted from François-Lavet et al., 2018).

Model-Based Reinforcement Learning (MBRL) (Polydoros and Nalpantidis, 2017;
Moerland et al., 2020) is a promising sub-�eld of RL for improving upon model-free
methods. Unlike the latter, MBRL agents learn a predictive model of the environment to
assist in �nding a good policy. This predictive model is usually obtained via a supervised
learning procedure, i.e., by �tting a function (from state and action to next state) to collected
experiences (samples of state transitions). The agent can use the model to predict action
outcomes, saving costly trial-and-error experimentation in the real world, or to estimate
quantities useful for improving its policy. Figure 1.2 gives a high-level overview of the
relationship between collected data (experiences), the model and the policy in a MBRL
algorithm. In the next section we discuss a speci�c class of model-based methods which
will be focus of this thesis.

1.2 Stochastic Value Gradient methods

Stochastic Value Gradient (SVG) methods try to �nd a good policy de�ned by a set of
parameters, i.e., a function mapping the current state and a set of parameters to the action
for execution. We call this a parameterized (or parametric) policy. We then reframe the RL
problem as searching for the parameters that maximize the expected return of the induced
policy. SVG methods use the model to estimate the value gradient: the gradient of the
expected return w.r.t. the policy’s parameters. With a gradient estimate in hand, we can
leverage stochastic optimization methods to update our policy’s parameters iteratively.
We call this general process policy optimization, analogous to how generic parametric
functions are updated with gradient-based methods.

Model-free methods can also estimate the value gradient through sampling by making
use of a statistical tool called the score-function estimator. SVG methods, on the other hand,
can leverage the model to produce gradients via the pathwise derivative estimator, usually
found to be more stable in practice (Schulman, Heess, et al., 2015a). One way to achieve
this is to simulate future experiences using the model as proxy for the environment, as

1.2 | STOCHASTIC VALUE GRADIENT METHODS

3

Figure 1.3: Dreamer (Hafner et al., 2020) as an instance of an SVG method. The model is �rst used

to condense the state representation (in this case, an image of the spider-like robot being controlled),

denoted as the blue part mapping the observation to the latent state in green. Then, the model simulates

experiences with the current policy (denoted by the joystick), yielding future states, rewards (stars) and

values (trophies; more on values in chapter 2). The reward gradients are propagated through the model

to the policy parameters.

illustrated by �g. 1.3, then computing the gradient of future rewards w.r.t. policy parameters.
One drawback, however, is that the pathwise derivative estimator limits SVG methods to
problems where actions are continuous, as one can’t de�ne a di�erentiable policy with
discrete outputs. These are called continous control problems. Moreover, this estimator
requires not only the outputs (next states) predicted by our model, but also the gradients
w.r.t. the inputs (states and actions). As we’ll see in chapter 5, gradients can be harder to
learn from data.

A variety of recent MBRL algorithms for continuous control have used the SVG ap-
proach. Deisenroth and Rasmussen (2011) introduce the PILCO algorithm, one of the
�rst to leverage a learned model’s derivatives to compute the value gradient with few
samples, but its use of Gaussian processes hinders scalability to larger problems. The
original SVG paper by Heess et al. (2015) introduced gradient estimation with stochas-
tic neural network models using the reparameterization trick, an approach scalable to
higher-dimensional problems. Dreamer and Imagined Value Gradients explore SVGs with
latent-space models (Hafner et al., 2020; Byravan et al., 2019). Model-Augmented Actor-
Critic (MAAC) and SAC-SVG extend the SVG framework to that of maximum-entropy RL
to incentivize exploration and stabilize optimization (Clavera et al., 2020; Amos, Stanton,
et al., 2020).

Recently proposed RL agents using the SVG approach have demonstrated its e�ec-
tiveness in learning robotic locomotion from data with unprecedented sample-e�ciency
(Amos, Stanton, et al., 2020; Clavera et al., 2020; Hafner et al., 2020). Thus, the SVG
class of algorithms is a promising candidate for addressing one of the main issues in RL.
This potential comes with it owns costs, however, as we’ll discuss in the next section,
which motivates the investigations done in our work.

4

1 | INTRODUCTION

1.3 When theory doesn’t meet practice

Reliability and reproducibility concerns regarding modern RL methods have been
raised by several works (Chan et al., 2020; Henderson et al., 2018; Islam et al., 2017).
Unfortunately, we don’t fully understand why these algorithms fail. Recent work has shed
light on the inner workings of several model-free algorithms, revealing that code-level
optimizations are often the deciding factor in an algorithm’s performance (Engstrom
et al., 2020; Liu et al., 2021). In contrast, papers proposing new algorithms usually base
their contributions, e.g., which objective function to di�erentiate, on best-case scenarios
free from sampling and estimation errors. Performance, however, is usually determined by
other factors. For instance, Ilyas et al. (2020) showed that Policy Gradient algorithms fail
to produce good estimates of the policy gradient, a core tenet of policy gradient theory,
even in situations which the algorithm does �nd a good policy. In this work, we aim to
extend this type of analysis to model-based algorithms, speci�cally SVG methods.

Model-based algorithms present even more challenges to rigorous analysis due to
their higher number of moving parts. For instance, model-free algorithms may have two
interdependent learning components, the policy and value function (see section 2.1). On
the other hand, model-based algorithms may introduce two more, the state dynamics and
reward models, each with their own learning subroutines, that can be used in optimizing
the policy and value function. This complexity makes it di�cult to design new model-based
algorithms, as there are several points of failure. As such, theoretically promising MBRL
algorithms may fail (Ângelo G. Lovatto et al., 2020) without leaving a clue as to what
caused the negative result. Moreover, negative results are not often publicized, and positive
ones usually only focus on the overall performance of the learned policy, not showing
how each component has contributed to such result.

Our work aims to inspect the inner workings of SVG algorithms and o�er clues about
the most important components in the learning process. To the best of our knowledge, the
work by Ilyas et al. (2020) is the closest to ours, since it also proposes a �ne-grained analysis
of RL algorithms that try to estimate the value gradient. The key di�erences between
our work and theirs are as follows: (a) we consider model-based, instead of model-free,
methods for policy optimization and (b) we take a step back from complex, sophisticated
simulators and instead use the simpler but general Linear Quadratic Gaussian (LQG) as
our RL environment. Point (b) is crucial, as it allows us to evaluate our algorithms against
their real ultimate objective. E.g., LQG allows us to compute the exact value gradient and
compare it to the estimated gradient using learned models. In contrast, Ilyas et al. (2020)
rely on sample-based approximations of the true gradient, due to their choice of complex,
non-linear environments. However, sample-based estimates may not converge to the true
gradient depending on the choice of estimator function, as we show on chapter 4. Thus, our
approach provides a more reliable setting to do a �ne-grained analysis of gradient-based
algorithms. In the next section, we describe the LQG in more detail and its usefulness as a
test bed for RL methods in general.

1.4 | LINEAR QUADRATIC GAUSSIAN ENVIRONMENTS

5

Figure 1.4: Double Integrator environment by Santamaría et al. (1997). The agent must learn to

maneuver the car to the target position as quick as possible while expending the least energy.

1.4 Linear Quadratic Gaussian environments

The LQG framework is extensively studied in the Optimal Control literature (Richard B
Vinter and R. Vinter, 2010; Emanuel Todorov, 2006). It considers a special class of
continuous control problems that may be treated as RL environments. LQG is simple
because: (a) its dynamics is a Gaussian distribution, with a linear function of states and
actions as its average, and (b) its reward is a quadratic convex function of states and actions.
Figure 1.4 illustrates a simple example of such a system: the double integrator. The state is
a vector consisting of the current position and velocity of the car. The action is a single
scalar representing the acceleration applied to it. By �xing a certain time interval between
interactions, the dynamics are represented as a linear function of states and actions. The
reward function penalizes both the distance to the target position and large control inputs,
i.e., strong accelerations. Thus, the agent must learn to maneuver the car to the target
position as quickly as possible while expending the least energy. See example 2.2.1 for
mathematical details.

LQGs are often used as a discretization of continous-time dynamics described as linear
di�erential equations, such as those of physical systems. Furthermore, solving LQGs is a
necessary part of many optimal control methods for non-linear environments, such as the
iLQG algorithm by Todorov and Weiwei Li (2005). We discuss why LQG environments
are interesting for this work in what follows.

For our purposes, the main advantage of LQGs against other types of environments is
that we’re able to compute the ground-truth performance of a given policy. This is thanks
to the constraints on the form of dynamics and reward functions and years of research by
the Optimal Control community in developing analytical solutions for this problem class.
As we show in chapter 3, this also gives us access to the ground-truth value gradient by
combining these solutions with backpropagation algorithms perfected by Deep Learning
(I. Goodfellow et al., 2016) frameworks. Other more complicated, nonlinear benchmarks
for continuous control don’t give us this ability (Emanuel Todorov et al., 2012). Thus,
in LQGs, researchers can assess if SVG algorithms are estimating both the value and its
gradient correctly, allowing for a better understanding of which algorithmic components
are failing.

Moreover, di�erent LQGs can be cheaply generated to simulate di�erent scenarios, as
we show in chapter 3. In contrast, a lot of RL research builds upon the same benchmarks,
which can lead to algorithmic biases that causes methods to fail when applied to new

6

1 | INTRODUCTION

environments (Hessel et al., 2019). We develop an open-source library in Python for
randomly generating LQG environments and make it available to researchers.

Furthermore, LQG environments are non-trivial. Recall that RL methods, unlike in
Optimal Control, don’t have access to the dynamics and reward function, having instead
to �nd a policy by trial-and-error. Recht (2019) proposed LQGs as a simple, yet nontrivial,
class of environments to help evaluate RL methods after showing that it can present a
challenge to model-free policy gradient methods. 1 Tsiamis and Pappas (2021) showed
that it can be very challenging (i.e., requiring a large amount of data) to learn a dynamics
model from limited interactions with an LQG environment. Thus, we believe LQG to be
the ideal framework for both comparing di�erent SVG methods and providing a better
look into their inner workings.

1.5 Contributions of this thesis

This thesis develops methods for better understanding the core tenets behind SVG
methods and o�ers explanations, via empirical experiments, for commonly-found patterns
in the SVG literature.

We develop a benchmark for evaluation of gradient quality metrics and policy opti-
mization performance based on the LQG framework. Chapter 3 describes the key features
of our benchmark, namely: (a) random generation of LQG environments; (b) derivation
of optimal policies for LQG environments; (c) ground-truth value for a given policy and
environment; and (d) ground-truth value gradient for a given policy and environment.
While we use these tools to inspect SVG algorithms, they are general enough to be useful
to researchers evaluating other RL approaches. Thus, we make the code for this benchmark
open-source and available online. 2

We use our benchmark to analyze important algorithmic components of SVG methods.
Chapter 4 analyzes the gradient estimator formula, disregarding model approximation
error. We consider di�erent estimators’ e�ectiveness in approximating the true value
gradient for �xed policies, as well as their impact on overall policy optimization. The
experimental results indicate that a bias-variance trade-o� occurs between estimators,
favoring algorithms that use a slightly biased one that produces better gradients with
fewer samples. Moreover, the choice of estimator has a signi�cant impact on the gradient
magnitude and thus the learning rate in policy optimization. This work was previously
published by Ângelo Gregório Lovatto et al. (2021).

Chapter 5 analyzes the model learning subroutine of SVG methods. We consider how
e�ective model-learning is in �nding models that induce a good estimate of the value gra-
dient for �xed policies. We compare it with the main model-free alternative for estimating
the value gradient: Q-learning combined with the Deterministic Policy Gradient (DPG)
estimator (Silver et al., 2014). Our experiments show that the data-collection procedure
has a signi�cant impact on the quality of the estimated gradient in model-based estimation.

1 To be precise, the environment used there was an Linear Quadratic Regulator (LQR), an instance of LQG
with deterministic dynamics.

2 https://github.com/angelolovatto/LQSVG.

https://github.com/angelolovatto/LQSVG

1.5 | CONTRIBUTIONS OF THIS THESIS

7

On the other hand, model-free estimation is more consistent, but shows poorer results.
We corroborate the results by D’Oro and Jaskowski (2020) and show that di�erentiable
models can be used for improving Q-learning in the gradient space, addressing some of its
shortcomings. We then contrast these �ndings to the statements of Amos, Stanton, et al.

(2020) and show how the model may be used both for policy improvement and critic updates
without a higher risk of failure. The chapter �nishes with experiments comparing di�erent
model-based strategies for SVG methods in the overall policy optimization procedure.
These experiments show that model-learning performance is mostly independent from
the approach used for Q-function learning or policy improvement. On the other hand,
Q-function approximation is dependent on the policy improvement step. Overall, the
results suggest that the environment model is better used in the policy improvement step
(value gradient estimation) and can be used to enhance Q-function learning using the
approach by D’Oro and Jaskowski (2020). However, using the model exclusively for the
latter while relying on a model-free gradient estimator leads to poor results, with the
target policy diverging from the optimal one.

9

Chapter 2

Background

This chapter outlines a succinct theoretical foundation necessary for understanding
the contributions of this thesis. The following sections start from the general down to
the more speci�c. Section 2.1 gives a general background of Reinforcement Learning in
continuous control with limited horizons. Section 2.2 introduces a subclass of continuous
RL environments, the Linear Quadratic Gaussian, and its analytical solutions. Finally
section 2.3 dives into the realm of Stochastic Value Gradient methods, a subset of RL
algorithms for continuous control, and outlines their special components.

2.1 Reinforcement Learning

We consider the agent-environment interaction modeled as a continuous Markov
Decision Process (MDP), de�ned as follows.

De�nition 2.1.1: Continuous MDP

A continous MDP is de�ned by the tuple  = ( ,, H , R, p∗, �), where:

1.  ⊆ ℝn
is the space of possible states;

2.  ⊆ ℝd
is the space of applicable actions;

3. H ∈ ℕ is the time horizon

4. R ∶  × ×  ↦ ℝ is the reward function;

5. p∗ ∶  × ↦ () is the transition probability kernel; and

6. � ∈ () is the probability distribution of the initial state.

Here, () denotes the set of all probability distributions de�ned over  (A.-m. Farah-

mand, 2018) .

De�nition 2.1.1 di�ers from usual de�nitions of MDPs (Szepesvári, 2010) in that it
considers continuous state-action spaces and a limited time horizon for interaction with
the environment. That is, interaction occurs in episodes with �nite discrete timesteps
t ∈  = {0, … , H − 1}. The initial state is sampled from the initial state distribution,
s0 ∼ �. At every timestep t , the agent observes the current state st ∈  from the set of
possible states of the environment. It must then select an action at ∈  from the set of
possible actions to execute. The environment then transitions to the next state by sampling

10

2 | BACKGROUND

from the transition probability kernel, st+1 ∼ p∗(st , at), and emits a reward signal using its
reward function, rt+1 = R(st , at , st+1). We overload notation to let p∗(st+1 | st , at) denote the
probability density of st+1 conditioned on st and at .

De�nition 2.1.2: Policies

Given  ,, and H from an MDP, a deterministic policy is a function � ∶  × ↦ ,

while a stochastic policy is a function � ∶  ×  ↦ ()

Since we’re considering time-limited episodes, de�nition 2.1.2 includes a timestep
argument for policies (Pardo et al., 2018). From this point onward, we shall use policy

to refer to the deterministic type in de�nition 2.1.2, unless explicitly stated otherwise.
A policy de�nes how the agent selects actions at each timestep, i.e., at = �(st , t). It also
implicitly de�nes the on-policy dynamics p� ∶  ×  ↦ (), de�ned

p�(s, t) ≐ p∗(s, �(s, t)) . (2.1)

We de�ne a policy’s performance or value as its expected cumulative reward, or return,
from the initial state:

J (�) = E�[∑
H−1

t=0
R(st , at , st+1)] , (2.2)

where the expectation is implicitly w.r.t. the initial state distribution (s0 ∼ �) and the
sequential application of st+1 ∼ p�(st , t). We can break down the value of a policy in
di�erent states by using its value-functions.

De�nition 2.1.3: Value functions

Given an MDP  and a policy �, let  + =  ∪ {H}. The on-policy value functions

are V � ∶  ×  + ↦ ℝ (state-value),

V �(s, t) ≐ E�[∑
H−1

k=t
R(sk , ak , sk+1)

||| st = s] (2.3)

and Q� ∶  × ×  ↦ ℝ (action-value),

Q�(s, a, t) ≐ Es′∼p∗(s,a)[R(s, a, s′) + V �(s′, t + 1)] . (2.4)

The optimal value functions V ⋆ ∶  ×  + ↦ ℝ and Q⋆ ∶  × ×  ↦ ℝ capture

the maximum expected return attained by any policy:

V ⋆(s, t) ≐ max
�

V �(s, t) , (2.5)

Q⋆(s, a, t) ≐ Es′∼p∗(s,a)[R(s, a, s′) + V ⋆(s′, t + 1)] . (2.6)

De�nition 2.1.3 di�ers slightly from usual de�nitions in RL in that it de�nes time-
dependent functions, a consequence of the �nite horizon. Value functions obey special

2.2 | LINEAR QUADRATIC GAUSSIAN REGULATOR

11

recurrence relations known as the Bellman equations:

V �(s) = Es′∼p∗(s,�(s))[R(s, �(s), s′) + V �(s′)], (2.7)

Q�(s, a) = Es′∼p∗(s,a)[R(s, a, s′) + Q�(s′, �(s′))]. (2.8)

Value functions are useful for comparing policies in di�erent situations and, as we’ll
see later, play an essential role in many RL algorithms. Solving for the on-policy value
functions is known as the prediction problem in RL.

The RL objective is to �nd a policy with the highest value. We can de�ne it as searching
for the policy that maximizes the expected value of the initial state:

maximize�J (�) ≡ maximize� Es∼�[V �(s, 0)] . (2.9)

Solving for the optimal policy w.r.t. the objective above is known as the control problem in
RL. The key di�erence between Optimal Control and RL, both frameworks for optimal
sequential decision making, is that in the former the agent has access to the full MDP,
while in the latter the agent only knows  ,, and H and has to learn its policy by trial-
and-error in the environment. As a consequence, stochastic policies are useful for exploring

the environment to �nd actions yielding a high return. Nevertheless, in an MDP, it is
guaranteed to exist a deterministic policy that achieves the optimal return (Szepesvári,
2010).

2.2 Linear Quadratic Gaussian regulator

In this section we describe the main theoretical foundations necessary for working
with LQGs. We show how to interpret the LQG as an MDP and how the control and
prediction problems can be solved in closed form.

2.2.1 Problem statement

The LQG is a special class of continuous MDP in which the transition kernel is linear
Gaussian and the reward function is quadratic concave (Emanuel Todorov, 2006).

De�nition 2.2.1: LQG MDP

An LQG is a continuous MDP ( ,, H , R, p∗, �) with the following components. The

initial state distribution is Gaussian,

� = (�� , ��) , (2.10)

with �� ∈ ℝn×n
and �� ∈ ℝn×n

symmetric positive de�nite. The transition probability

kernel is linear Gaussian,

p∗(s, a, t) =(Ft [
s
a] + f t , �t) , (2.11)

12

2 | BACKGROUND

with Ft ∈ ℝn×(n+d), f t ∈ ℝn
, and �t ∈ ℝn×n

symmetric positive de�nite. The reward

function is quadratic concave,

R(s, a, s′, t) = −
(

1
2 [
s
a]

ᵀ

Ct [
s
a] + c

ᵀ
t [
s
a] + 1{H}(t)Rf (s

′)
)
, (2.12)

where Rf de�nes the reward at the �nal state,

Rf (s) = −(12s
′ᵀCf s′ + c

ᵀ
f s
′) , (2.13)

with Ct ∈ ℝ(n+d)×(n+d)
and Cf ∈ ℝn×n

symmetric positive semi-de�nite, ct ∈ ℝn+d
, and

cf ∈ ℝn
. We assume Caat , the block of Ct multiplying the left and right action vectors

in eq. (2.12), is positive de�nite.

Note that de�nition 2.2.1 uses a time-dependent transition kernel and reward function,
in contrast with the stationary ones in de�nition 2.1.1. This means that the next-state
distribution and reward function may change depending on the current timestep of the
episode. We chose to list the timestep as an additional argument to each function for clarity.
Alternatively, we could have absorved the timestep variable into the state representation
(the approach we use in the implementation). The indicator function 1{H}(t) is 1 if t ∈ {H}
and 0 otherwise.

Also note that the rewards in de�nition 2.2.1 have a negative sign. This is inherited
from the original de�nition of LQGs in Optimal Control, which considers the problem of
minimizing cumulative costs instead of maximizing return. Furthermore, there is always a
cost associated with a non-zero action, since Caa is positive de�nite.

Example 2.2.1: Double integrator

The double integrator illustrated by �g. 1.4 can be modeled as an LQG as follows. The

state is a 2-dimensional vector containing the current position, p, and velocity, v, of

the car, or s = [p v]ᵀ in vectorial representation. The action is a scalar representing the

acceleration, a, applied to the car, or a = [a] in vectorial notation. The time horizon

may be arbitrarily set by the task designer, e.g., H = 100. Without loss of generality,

the target position is the origin: sg = [0 0]ᵀ. The reward function penalizes the distance

to the target position and the magnitude of the acceleration. This can be represented

by a quadratic function of state and action as

R(s, a, s′, t) = − 12 [
s
a]

ᵀ ⎡
⎢
⎢
⎣

1 0 0
0 0 0
0 0 1

⎤
⎥
⎥
⎦
[
s
a] − 1{H}(t)

1
2s
′ᵀ

[
1 0
0 0] s

′ .

The next state given the current state and action is computed as

s′ = [
1 1 0
1 0 1] [

s
a] Δt ,

2.2 | LINEAR QUADRATIC GAUSSIAN REGULATOR

13

where Δt is a prede�ned interval between timesteps, e.g., Δt = 0.05. The deterministic

dynamics above can be framed as a degenerate linear Gaussian transition probability

kernel with �t = 0. The covariance matrix may be nonzero if the task designer wishes

to model exogenous random in�uences in the car’s movement, e.g., wind.

2.2.2 Solutions by dynamic programming

In this section we show how to solve the prediction and control problem analytically
in the LQG. We assume, without loss of generality, time-invariant (stationary) dynamics,
i.e., Ft = F, f t = f, �t = � for t ∈  , and time-invariant rewards, i.e., Ct = C, ct = c for
t ∈  . Note that all the following results apply to time-dependent dynamics and rewards
by substituting Ft , f t , �t , Ct , ct for F, f, �, C, c respectively at the appropriate steps.

Recall that the control problem involves searching for a policy of maximum value. In
LQGs, we consider a special class of policies, namely time-varying linear policies.

De�nition 2.2.2: Time-varying linear policy

A time-varying linear policy is a function �� ∶  ×  ↦  such that

�� (s, t) ≐ Kts + kt (2.14)

where Kt ∈ ℝd×n
, kt ∈ ℝd

and � = {Kt , kt}t∈ .

From de�nition 2.2.2, we can fully de�ne a policy �� by its collection of dynamic gains

Kt and static gains kt . Thus, we frame the control problem as searching for the parameters
� that induce the policy with the highest value. The following lemma states that the
optimal policy for an LQG is time-varying linear.

Lemma 2.2.1: Optimal LQG policy

The optimal policy in an LQG  is time-varying linear with dynamic and static gains

{(Kt , kt)}t∈ , where

Kt = −Qaa−1t Qast , kt = −Qaa−1t qat , t ∈  . (2.15)

The policy gains are derived from the optimal value functions, with quadratic forms:

Q⋆(s, a, t) = − 12 [
s
a]

ᵀ

Qt [
s
a] + q

ᵀ
t [
s
a] + qt , t ∈  , (2.16)

where

Qt = C + F
ᵀVt+1F, (2.16a)

qt = F
ᵀVt+1f + F

ᵀvt+1 + c, (2.16b)
qt = 1

2 Tr(�Vt+1) +
1
2f

ᵀVt+1f + v
ᵀ
t+1f + vt+1 . (2.16c)

14

2 | BACKGROUND

and

V ⋆(s, t) = − 12s
ᵀVts + v

ᵀ
t s + vt , t ∈  + , (2.17)

where

Vt = Qsst + QsatKt + K
ᵀ
tQaatKt , (2.17a)

vt = Qsatkt + K
ᵀ
tQaatkt + qst + K

ᵀ
t qat , (2.17b)

vt = 1
2k

ᵀ
tQaatkt + qa

ᵀ
t kt + qt , (2.17c)

and VN = Cf , vN = cf , vN = 0 . (2.17d)

A proof of lemma 2.2.1 is in appendix A. The lemma naturally leads to an iterative, dy-

namic programming procedure for computing the optimal policy, described in algorithm 1.
The algorithm computes the value function at termination trivially from the reward
of terminal states given by de�nition 2.2.1. It then uses the recurrence relations from
lemma 2.2.1 to compute the value functions and policy for each timestep, going backwards
in time from the �nal decision timestep. Algorithm 1 solves the control problem.

We can adapt algorithm 1 to compute the value functions of an arbitrary policy,
resulting in algorithm 2. Note that the only changes are: 1) the algorithm receives both an
LQG and a policy as input; and 2) lines 6 and 7 of algorithm 1 are discarded. It is important
to note that the value function coe�cients may not be optimal now, since we’re given an
arbitrary policy (notice the updated comments in the pseudocode). Algorithm 2 solves the
prediction problem.

Algorithm 1: LQG control
Input: LQG 
Output: Optimal policy and value functions for 

1 VH , vH , vH ← Cf , cf , 0
2 for t = H − 1,… , 0 do

// Compute Q⋆(s, a, t) = Es′[R(s, a, s′) + V ⋆(s′, t + 1)]
3 Qt ← Ct + Fᵀt Vt+1Ft
4 qt ← ct + Fᵀt Vt+1f t + F

ᵀ
t vt+1

5 qt ← 1
2 Tr(�tVt+1) +

1
2f

ᵀ
t Vt+1f t + v

ᵀ
t+1f t + vt+1

// Solve �⋆� (st) = argmaxa Q⋆(st , a)
6 Kt ← −Qaa−1t Qast
7 kt ← −Qaa−1t qat

// Compute V ⋆(s, t) = Q⋆(s, �⋆� (s, t), t)
8 Vt ←Qsst + QsatKt + Kᵀ

tQaatKt
9 vt ←Qsatkt + K

ᵀ
tQaatkt + qst + K

ᵀ
t qat

10 vt ← 1
2k

ᵀ
tQaatkt + qa

ᵀ
t kt + qt

11 return �⋆� , V ⋆, Q⋆

2.3 | STOCHASTIC VALUE GRADIENT METHODS

15

Algorithm 2: LQG Prediction
Input: LQG , time-varying linear policy ��
Output: The value functions for ��

1 VH , vH , vH ← Cf , cf , 0
2 for t = H − 1,… , 0 do

// Compute Q�� (s, a, t) = Es′[R(s, a, s′) + V �� (s′, t + 1)]
3 Qt ← Ct + Fᵀt Vt+1Ft
4 qt ← ct + Fᵀt Vt+1f t + F

ᵀ
t vt+1

5 qt ← 1
2 Tr(�tVt+1) +

1
2f

ᵀ
t Vt+1f t + v

ᵀ
t+1f t + vt+1

// Compute V �� (s, t) = Q�� (s, �� (s, t), t)
6 Vt ←Qsst + QsatKt + Kᵀ

tQaatKt
7 vt ←Qsatkt + K

ᵀ
tQaatkt + qst + K

ᵀ
t qat

8 vt ← 1
2k

ᵀ
tQaatkt + qa

ᵀ
t kt + qt

9 return V �� , Q��

Algorithm 3: Policy optimization via Stochastic Value Gradients
Input: Environment  (black-box)
Output: Sub-optimal policy ��

1 Initialize �
2  ← ∅
3 for k = 0, … , P do

4 Collect k = {si , ai , ri , s′i}Ni=1 by interacting with 
5  ←  ∪k
6 p ← model_learning()
7 ∇̃J (�) ← estimator(,)
8 � ← optimizer(� , ∇̃J (�))
9 return ��

2.3 Stochastic Value Gradient methods

In the broader RL context, methods that learn parameterized policies, often called policy

optimization methods, have gained traction in the recent decade. As function approxima-
tion research, specially on deep learning, has advanced, parameterized policies were able to
unify perception (processing sensor readings from the environment) and decision-making
(choosing actions to maximize return) tasks (Mnih et al., 2015). To improve such parame-
terized approximators from data, the workhorse behind many policy optimization methods
is Stochastic Gradient Descent (SGD) (Ruder, 2016). I.e., policies are iteratively updated
by navigating the expected return (value) surface, using a �rst-order approximation of
eq. (2.2), towards a local (and possibly global) optimum. Thus, it is imperative to estimate
the gradient of a policy’s value w.r.t. its parameters, a.k.a. the value gradient, from data
(states, actions and rewards) collected via interaction with the environment. SVG methods
take a model-based approach to estimating the value gradient.

Algorithm 3 outlines a generic SVG algorithm. We describe an iteration (lines 4-8) in

16

2 | BACKGROUND

what follows. As usual in policy optimization, each major iteration starts with collecting
data (experiences) in the environment (line 4). This may be done by following the current
policy being optimized, a.k.a. the target policy, or an exploratory policy for discovering pre-
viously untested states and actions, a.k.a. a behavior policy. The algorithm then combines
this data with previously observed data in a replay bu�er, i.e., a big dataset of transitions
(line 5). The speci�cs of how this replay bu�er is maintained vary between algorithms and
are beyond the scope of this work. We detail our approach in the experiments where we
make use of replay bu�ers.

The algorithm then proceeds to �t its environment model to the replay bu�er data (line
6). Next, a gradient estimation procedure is used to derive an approximate value gradient
using the current model and replay bu�er data (line 7). Finally, the policy parameters
are updated using a stochastic optimization algorithm, e.g., Adam or RMSprop (Ruder,
2016), that handles how to apply the approximate gradient to the policy parameters (line
8). What makes model-based algorithms special is the model learning step combined with
how the model is used to improve the policy. In the case of SVG algorithms, the gradient
estimation procedure is of particular importance. We focus on model learning and gradient
estimation in the following subsections.

2.3.1 Model learning

A model of the dynamics is a function approximator p ∶  ×  ↦ (), where
 ∈ ℝm is a parameter vector. Here we consider settings where the model is learned in
tandem with the policy as implied by algorithm 3. No pre-training of the model is done
with data gathered previously by another agent, as is common with batch RL methods (Le
et al., 2019; Chen and Jiang, 2019).

Learning Policy improvement

data

MLE ��
p

Figure 2.1: Model learning via Maximum Likelihood Estimation: the agents trains a parametric

model p by maximizing p (s
′ | s, a) on data gathered in the environment. It then uses its model for

policy improvement.

The vast majority of MBRL algorithms learn their models in a supervised manner by
optimizing the model w.r.t. some type of probabilistic loss (Heess et al., 2015; Levine and
Abbeel, 2014; Chua et al., 2018; Janner et al., 2019a). The diagram in �g. 2.1 illustrates the
general �ow of information in these approaches. Model learning is mostly orthogonal to
how its used for policy improvement, with only some dependency between the processes
because the data used to update the model usually comes, at least in part, by following the
current policy.

MBRL algorithms usually optimize the model to maximize the likelihood of observed
transitions in the environment. Intuitively, the model should assign higher probability
to transitions similar to those previously observed from exploration in the environment,
generalizing predictions across the state and action spaces. This gives rise to the Maximum

2.3 | STOCHASTIC VALUE GRADIENT METHODS

17

Likelihood Estimation (MLE) model (Myung, 2003), which is obtained by minimizing the
loss 1 :

mle(p) = Es,a,s′∼[− log p (s
′ || s, a)], (2.18)

where  is a dataset of observed transitions from the environment as in algorithm 3.
Minimizing equation eq. (2.18) is equivalent to minimizing the expected Kullback Leibler
(KL) divergence (Gibbs and Su, 2002) between p∗ and p for each s, a ∈ ,

KL(p∗(s, a)‖p (s, a)) = Es′∼p∗(s,a)[log p∗(s′ || s, a) − log p (s
′ || s, a)], (2.19)

which is a common way of measuring divergence between distributions, that is, how
dissimilar two distributions are. The KL divergence between distributions is nonnegative;
and it is zero only if both are equivalent 2 .

The approach outlined above has the advantage of being general enough to be a "plug
and play" solution to model learning, regardless of how the model will be used afterwards.
Furthermore, many generative model architectures are specially designed to have tractable
likelihood computation (or a suitable approximation), which makes it easy to swap between
di�erent models to see which provides better performance. Plus, once a model has achieved
su�cient accuracy, it can be used for di�erent tasks in the same environment (i.e., by
changing the reward function).

There are alternative model learning methods tailored to the speci�c model-based
policy improvement step (A. M. Farahmand et al., 2017; A.-m. Farahmand, 2018; Asadi
et al., 2018; D’Oro, Metelli, et al., 2019; Donti et al., 2017; Amos, Rodriguez, et al., 2018).
However, these are still niche methods and not thoroughly tested in RL benchmarks; thus,
we leave an analysis of their role in SVG algorithms to future work.

2.3.2 Value gradient estimation

While value gradient estimation is not unique to SVG methods, the way in which
they compute the gradient is what sets them apart from other RL algorithms. We deviate
slightly from the de�nition by Amos, Stanton, et al. (2020) 3 and consider SVG methods
any RL algorithm that: (a) uses a model-based K -step expansion of a value function and
(b) computes the gradient of this expansion using the derivatives of the dynamics model.
For instance, consider the following 1-step expansion of the state-value function:

V �(s) = Es′∼p (s,�(s))[R(s, �(s), s
′) + V �(s′)] . (2.20)

Note that the above di�ers from eq. (2.7) by using the dynamics model to sample the next
state. We illustrate how to compute eq. (2.20) by adopting the formalism of Stochastic
Computation Graphs (SCGs).

1 The log is for computational convenience since it allows us to turn the product of densities into a sum in
the Monte-Carlo estimate of the loss.

2 We don’t use the term metric here since the KL is not symmetric.
3 The work referenced originally considered simply “methods that update the policy with an H -step value

expansion”.

18

2 | BACKGROUND

De�nition 2.3.1: Stochastic Computation Graph (Schulman, Heess, et al.,
2015b)

A directed, acyclic graph, with three types of nodes:

1. Input nodes, which are set externally, including the parameters we di�erentiate

with respect to.

2. Deterministic nodes, which are functions of their parents.

3. Stochastic nodes, which are distributed conditionally on their parents.

Each parent v of a non-input node w is connected to it by a directed edge (v, w).

s

a�

s′

 V �

R

Figure 2.2: SCG of 1-step state-value expansion using a dynamics model. Notice how the the next-

state is a stochastic “function” of the previous state, action and model parameters.

Figure 2.2 shows the SCG for eq. (2.20). We adopt the graphical notation from Schul-
man, Heess, et al. (2015b): squares denote deterministic nodes, circles, stochastic nodes, and
borderless nodes with no parents, inputs nodes. The challenge is to compute the gradient
of the reward and state value when they depend on a stochastic variable (s′) which in turn
depends on the model parameters. SVG algorithms compute the gradient of this equation
by �rst using the reparameterization trick (Schulman, Heess, et al., 2015b):

V �(s) = E�[R(s, �(s), f (s, �(s), �)) + V �(f (s, �(s), �))] . (2.21)

I.e., by transforming the model from a probability measure to a deterministic function
of states, actions and an external noise variable. For instance, sampling from a normal
distribution, y ∼ (x, �), is equivalent to computing y = x + �� , where � ∼ (0, 1). The
advantage of this trick is that computing the gradient of this expectation is straightforward
since � is independent of model parameters, while s′ is not.

s

a�

s′

� V �

R

Figure 2.3: SCG of 1-step state-value expansion using a reparameterized dynamics model. Notice

how the the next-state is a deteriministic function of the previous state, action, model parameters and

an exogenous noise variable.

Figure 2.3 shows the SCG of the reparemeterized model-based 1-step expansion of the

2.3 | STOCHASTIC VALUE GRADIENT METHODS

19

state-value function. The gradient of this expression becomes

∇V �(s) = E�[∇sR(s, �(s), f (s, �(s), �)) + ∇sV �(f (s, �(s), �))] ,

where we have not applied the chain rule of derivatives for clarity. Note that we are able
to push the gradient inside the expectation, making it easy to estimate the gradient via
Monte Carlo methods. This approach is also known as the pathwise derivative estimator

(Schulman, Heess, et al., 2015b). However, it is limited to environments with continuous
states and actions, of which LQG is a subset of.

As we’ll see in chapter 4, there is more than one way to combine the gradient of value
functions into the full value gradient. Nevertheless, as long as an algorithm uses some
form of the above to compute the value gradient, we consider it an SVG method. This
allows us to include approaches that use model derivatives to learn a parametric value
function (Fairbank and Alonso, 2012; D’Oro and Jaskowski, 2020) before estimating the
full value gradient. As we’ll see in chapter 5, using the model to directly estimate the value
gradient or to learn a parametric value function can be complementary approaches.

21

Chapter 3

The LQG Benchmark

In this chapter, we describe our test environment and explain the design decisions
behind its implementation. We begin by explaining how we generate random LQGs as RL
environments in section 3.1. Then, in section 3.2, we describe how to randomly generate
initial policies for given LQGs that are viable to deploy for data collection and gradient
estimation. Section 3.3 shows how we can exploit the knowledge of the environment’s
dynamics and reward functions to compute a policy’s value (expected return from the
initial state) and its gradient. Finally, section 3.4 shows visualizations of the environment
and policy variety induced by our generating process, corroborating its usefulness in stress
testing RL, and specially SVG, methods.

3.1 Randomized LQG instances

To perform our investigations across a wide variety of scenarios, we de�ne how
to sample LQG instances,  = ( ,, R, p∗, �), to run our experiments on. The main
hyperparameters are: state dimension (n), action dimension (d) and time horizon (H).
From these parameters we de�ne the state space  = ℝn, action space  = ℝd and
timesteps t ∈  = {0, … , H −1}. In what follows, we de�ne the random generation process
for the transition dynamics, cost function, and initial state distribution

3.1.1 Transition dynamics

Firstly, we de�ne how to sample the linear stochastic dynamics’ parameters,
{Ft , f t , �t}t∈ . Our defaults correspond to a simple setting: stationary LQG dynamics with
no transition bias and standard Gaussian transition noise:

p∗(⋅ | s, a) = (⋅ | Fss + Faa, �) = (⋅ | Fss + Faa, I) . (3.1)

To simplify the notation, let Fs = A and Fa = B (following the usual notation from the
Control literature). Thus, the average of the next state distribution, p∗(⋅ | s, a), is given by
As + Ba. We’ll call A the passive dynamics (since it doesn’t depend on the action) and B
the active dynamics (since it multiplies the action inputs).

22

3 | THE LQG BENCHMARK

We would like a random generating process for A and B to satisfy a few properties.
Firstly, the set of possible transition dynamics should be diverse enough so that we have
a better chance of capturing failure modes of policy and model learning methods, thus
having a better estimate of their robustness to environment variations. Secondly, we should
be able to perform rollouts with random policies, since data collection is a crucial step in
the RL process. This second point elevates the importance of treating stable and unstable

dynamics.

De�nition 3.1.1: Linear dynamics stability

Let A ∈ ℝn
and st+1 = Ast be the update rule in a discrete-time dynamical system.

Then the system is stable if and only if |�i | < 1, i = 1, … , n, where �i ∈ ℂ are the

eigenvalues of A.

Figure 3.1: An LQG has stable dynamics if and only if the eigenvalues of the passive dynamics lie

within the unit circle in the complex plane (�gure by Brunton and Kutz (2019)).

In the usual Control setting, a system is stable if and only if the eigenvalues of A lie
within the unit circle in the complex plane, as per de�nition 3.1.1 (Brunton and Kutz,
2019). The state st in an unactuated (that is, when the control inputs at are all zero) stable
system will tend to zero over time, regardless of starting state s0. On the other hand, some
state variables in an unstable system (i.e., when at least one eigenvalue of A has magnitude
1 or greater) will tend to either plus or minus in�nity. In colloquial terms, we say the state
tends to blow up. This is undesirable for several reasons, two of them being numerical
simulation errors and exploding costs.

Example 3.1.1: Unstable laplacian dynamics (Recht, 2019)

Consider an idealized instance of data center cooling, a popular application of RL.

De�ne the model to have three heat sources coupled to their own cooling devices. Each

component of the state s ∈ ℝ3
is the internal temperature of one heat source, and the

sources heat up under a constant load. They also shed heat to their neighbors. This

can be approximately modeled by a linear dynamical system with state-transition

matrices

A =
⎡
⎢
⎢
⎣

1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

⎤
⎥
⎥
⎦
, B = I .

Note that the open loop system here is unstable: with any nonzero initial condition,

the state vector will blow up because the limit of Ak
is in�nite. Moreover, if a method

3.1 | RANDOMIZED LQG INSTANCES

23

estimates one of the diagonal entries of A to be less than 1, we might guess that this

mode is actually stable and put less e�ort into cooling that source. So it is imperative to

obtain a high-quality estimate of the system’s true behavior for near-optimal control.

Or, rather, we must be able to ascertain whether our current policy is safe, or the

consequences can be disastrous.

However, working exclusively with stable dynamics is limiting and not representative
of some relevant real problems that may be interpreted as LQGs. Example 3.1.1 illustrates
how unstable systems may arise in practice, the consequences of not stabilizing them, and
how important it is that we learn accurate dynamics models when instability is at play.
Given the relevance of unstable systems, we set out to �nd ways to incorporate them in
our experiments.

Generating unstable dynamics

We took the following steps to create diverse passive dynamics A to run our experi-
ments on.

1. Sample eigenvalues {�i}ni=1 such that |�i | ∼  (a, b). By setting b ≥ 1 we have a
nonzero probability of sampling an unstable system.

2. Sample column eigenvectors as an orthogonal matrix W using the scipy package 1

3. Compute the passive dynamics as A = Wdiag(�1, … , �n)W−1 = Wdiag(�1, … , �n)Wᵀ

For step 1 above, we implement the following: (a) we ensure that each eigenvalue
has an algebraic multiplicity of 1, i.e., there are no repeated eigenvalues; (b) we sample
eigenvalue magnitudes uniformly from a discretized interval between a and b using
np.linspace(a, b, 1000) to ensure values are su�ciently di�erent; and (c) we ensure
none of the eigenvalues are 0 to prevent the resulting matrix from being rank-de�cient.
These substeps ensure we can make the resulting system controllable, as we explain in the
following subsection.

Generating controllable dynamics

We must ensure that collecting data in our generated systems is practical, even if the
passive dynamics are unstable. Thus, the active dynamics B must allow some behavior
policies to stabilize the system, so that state variables don’t blow up during exploration.
Such systems are said to be controllable in the control literature.

De�nition 3.1.2: Linear dynamics controllability

The Hautus lemma for controllability (Dayawansa, 2001; Zabczyk, 1992), a.k.a. the

PBH test, says that given passive and active dynamicsA and B the following are equiv-

alent:

1. The pair (A, B) is controllable

1 We used the Haar distribution: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ortho_
group.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ortho_group.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ortho_group.html

24

3 | THE LQG BENCHMARK

2. For all � ∈ ℂ it holds that rank[�I − A, B] = n
3. For all � ∈ ℂ that are eigenvalues of A it holds that rank[�I − A, B] = n

Intuitively, controllability assures us that it is possible to “steer" the state variables
towards arbitrary values using the appropriate action inputs. Thus, there is a policy
� ∶  ↦  that can interact with the system safely even if the dynamics are unstable.
This property is crucial for RL, which depends on repeated data collection by interaction
with the environment.

We explore the third equivalence in de�nition 3.1.2 to generate B given A so that the
pair (A, B) is controllable. The process is as follows.

1. We sample each entry in B independently from  (0, 1)

2. We normalize each column Bi by its norm: Bi ← Bi/‖Bi‖

3. If any entry in B is zero (or close to it), we reject this sample and go back to step 1

4. Finally, we set B ←WB, ensuring the resulting active dynamics have a component
in each eigenvector direction

Step 2 ensures each control direction has unit magnitude. Furthermore, Bi is uniformly
distributed in the unit sphere, 2 ensuring a diversity of directions

Since we ensured that A is full rank, �I − A will be rank-de�cient precisely when �
is an eigenvalue of A and its null space will be the eigenvector direction corresponding
to that eigenvalue (which is unique since each eigenvalue has an algebraic and thus
geometric multiplicity of 1). Our generating process for the active dynamics thus ensures
that rank[�I − A, B] = n always since each column of B has a non-zero component
in each eigenvector direction. Thus, by condition 3 of de�nition 3.1.2, the system is
controllable.

With a controllable system, we can be assured that there’s a policy that stabilizes it, thus,
enabling safe and numerically stable exploration of the environment. What “stabilizes”
means and how we may derive such a policy is explained in section 3.2.

3.1.2 Cost function

For each LQG instance, we generate a random, stationary quadratic cost with no
state-action cross terms (Csa = 0 and Cas = 0) and no linear term (c = 0):

c(s, a) = 1
2 [
s
a]

ᵀ

C[
s
a] + c

ᵀ

[
s
a] =

1
2(s

ᵀCsss + a
ᵀCaaa) , (3.2)

R(s, a, s′) = −c(s, a) . (3.3)

We use the sklearn library to generate Css and Caa randomly while ensuring they are
symmetric positive de�nite matrices, as de�nition 2.2.1 requires. 3 Furthermore, to simplify

2 http://corysimon.github.io/articles/uniformdistn-on-sphere/
3 We use scikit learn’s make_spd_matrix function.

http://corysimon.github.io/articles/uniformdistn-on-sphere/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_spd_matrix.html

3.2 | RANDOMIZED LINEAR POLICIES

25

matters, we set Rf (s) = 0 always.

3.1.3 Initial state distribution

We set the initial state distribution to a standard multivariate diagonal Gaussian of
appropriate dimensionality: �(s) = (s | �� , ��) = (s | 0, I).

3.2 Randomized linear policies

In this work we consider the problem of learning SVGs for linear policies in LQGs.
While exclusively studying linear policies may seem limiting, it allows us to compute
optimal solutions to the control and prediction problems in LQGs via algorithms 1 and 2
respectively. These solutions then serve as references for comparison against learned
solutions. Furthermore, linear policies are useful even outside the realm of LQGs, as
research has found that they provide reasonable performance even in nonlinear systems,
while being easier to interpret and optimize (Rajeswaran et al., 2017).

With a controllable pair (A, B), we can derive a dynamic gain K ∈ ℝd×n such that the
eigenvalues of A − BK are any of our choosing. Thus, the system s′ = (A − BK)s can be
manipulated via our choice of K to be stable. We say that K places the eigenvalues of the
resulting system. Furthermore, the dynamic gain de�nes a policy, �� (s) = −Ka. If K places
the eigenvalues of the system in a stable range (i.e., with magnitudes less than one), we
say that the policy stabilizes the system.

Although the theoretical framework discussed here is more often used for stationary
systems with in�nite horizon, it is equally useful when the horizon is limited. That is
because state variables in an unstable system will blow up in a relatively small amount of
timesteps (enough to incur numerical simulation errors).

The details of how to compute K are beyond the scope of this work. Fortunately,
given that we’re able to generate controllable (A, B) pairs, there are a variety of existing
algorithms to compute a dynamic gain that places the eigenvalues of the system in a
desired combination (Kautsky et al., 1985; Tits and Yang, 1996). The procedure we use
to generate a random stabilizing policy is as follows:

1. Sample target eigenvalues Λ = {�̂i | |�̂i | ∼  (0, 1)}ni=1
2. Use scipy.signal.place_poles to compute K such that the eigenvalues ofA−BK

are Λ. 4

3. Set �� (s) = −Ks + 0

The procedure above ensures that the resulting policy can be safely (in terms of
numerical stability or costs, as in example 3.1.1) deployed to collect data in the LQG
environment. This policy can be used as a starting point for optimization via RL or a �xed
target for the environment model to learn its expected return and SVG. Finally, our policy
generating procedure serves to mimic practical situations were engineers have devised a

4 https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.place_poles.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.place_poles.html

26

3 | THE LQG BENCHMARK

policy which can keep a system stable, but is not able to optimize running costs, which is
where RL can serve to �ne-tune it.

3.3 Analytical solutions

In this section, we describe how we may exploit the knowledge of the LQG underlying
the environment to compute a given linear policy’s value and SVG analytically. The true
value and SVG of a policy are the targets for SVG algorithms, which aim to approximate
these quantities using models, samples and optimization. The ability to compute these
targets e�ciently is one of the main advantages of working with LQGs. With these in
hand, we’re able to quantify errors in our models with a degree of precision not available
in other benchmarks, such as the MuJoCo physics simulator (Emanuel Todorov et al.,
2012).

VH

vH

vH

KH−1 kH−1

VH−1

vH−1

vH−1

…

…

…

V1

v1

v1

K0 k0

V0

v0

v0

Algorithm 2

�� ��

J

Figure 3.2: Stochastic Computation Graph of the analytical formula for a policy’s value.

We illustrate how to use algorithm 2 to compute a policy’s true value, and its gradient,
using the formalism of SCGs (refer back to section 2.3.2). Figure 3.2 shows the SCG
for the policy value, J . The steps computed during algorithm 2 are grouped inside the
“Algorithm 2” box. For brevity, we omit intermediary steps between the calculations of
the state-value function coe�cients (such as the computation of the action-value function
coe�cients). Furthermore, we assume the environment is �xed and omit the input nodes for
the transition and cost function coe�cients (in practice, the algorithm takes arbitrary LQG
parameters as inputs, as in algorithm 2). These simpli�cations are meant to highlight the
paths between the policy parameters (dynamic and static gains) and the policy value.

Note that the parents of J are the state-value function coe�cients (V0, v0, v0), the mean
(��), and covariance matrix (��) for the initial state. This is because the policy value is
computed analytically from these parameters as follows.

J (�) = Es∼�[V �� (s, 0)]
= Tr(V0��) + ��

ᵀV0�� + v
ᵀ�� + v0 ,

(3.4)

where Tr denotes the trace operator.

We have therefore a fully deterministic formula for the value of a linear policy in an

3.4 | VISUALIZATIONS

27

LQG. 5 This allows us to automatically compute the gradient of the value w.r.t. the policy’s
parameters by implementing the SCG of �g. 3.2 using an automatic di�erentiation library.
We use PyTorch (Paszke et al., 2019) as our framework of choice to compute the gradients
w.r.t. to input nodes via reverse-mode automatic di�erentiation. We use this procedure in
section 3.4 to plot histograms of the policy values and their gradient norms.

3.4 Visualizations

In this section we show visualizations of the environment and policy variety induced by
our generating process, corroborating its usefulness in stress testing RL, and specially SVG,
methods. These visualizations also ensure that we run our experiments on numerically
stable environments in subsequent chapters. Since rewards are all negative in LQGs, we use
costs in the plots below (negative rewards), allowing us visualize results in log scale.

3.4.1 Environment diversity

We use variation in the optimal cost for each environment as a measure of problem
variety. Figures 3.3 and 3.4 show the distribution of optimal policy costs for randomly
generated LQGs with di�erent state and action space dimensionalities. In �g. 3.3 we use
the full LQG generating procedure described in section 3.1. We set the limits (a, b) for
the magnitude of the passive dynamics’s eigenvalues to 0.5 and 1.5 respectively, allowing
the occasional generation of unstable, controllable systems. In �g. 3.4 (left) we generate a
single transition dynamics for each choice of state and action space dimension and sample
several cost functions. This allows us to isolate the contribution of the cost function to the
overall variability of the optimal policy cost. Analogously, in �g. 3.4 (right), we sample the
transition dynamics multiple times while �xing a cost function. Overall, we see that both
components can induce very di�erent optimal costs for the environment depending on
their initialization, with the cost function accounting for a slightly greater variability.

Overall, we see that the optimal cost for di�erent environments varies by orders of
magnitude. We see this as a good sign of problem variety, which should help us to identify
if an RL method is sensitive to environment variation (i.e., if it fails to learn depending on
the environment). This is an important characteristic for an RL benchmark, since many
learning methods assume an arbitrary MDP in theory, but often require very speci�c (i.e.,
favorable) environmental conditions in practice. We also see that both transition dynamics
and cost function contribute to this variety.

The graphs also show that we’re able to generate and solve LQGs with very high
dimensionality. Such instances provide a way to test if our RL methods scale with problem
dimensionality. Moreover, larger instances usually require more samples for policy and
model learning, providing us with a way to increase the di�culty for RL agents.

5 We didn’t need to use the formalism of SCGs in this case, however, it highlights that fact that, even though
the policy value is an expectation, it has a deterministic, practical formula.

28

3 | THE LQG BENCHMARK

101 102 103

Optimal policy cost

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

Dim
2

4

8

16

32

Figure 3.3: Distributions of optimal policy costs for randomly generated LQGs following the proce-

dures described in section 3.1. Each histogram corresponds to di�erent dimensionalities of state and

action spaces.

101 102 103

Optimal policy cost

0

1

2

D
en

si
ty

Fixed dynamics

Dim
2

4

8

16

32

101 102 103

Optimal policy cost

Fixed cost

Figure 3.4: Distributions of optimal policy costs for randomly generated LQGs with �xed dynamics

(left) and cost function (right).

3.4.2 Policy diversity

We’re also interested in generating sub-optimal behavior policies for data collection
and as starting points for RL algorithms to optimize. We use the procedure described in
section 3.2 to generate several stabilizing policies.

Figure 3.5 shows the distribution of the suboptimality gap of randomly generated
policies for three LQGs, each with di�erent state and action space dimensions. The subop-
timality gap of a policy with total cost C depends on the optimal cost for the respective
environment, C⋆, and is computed as

||||
1 −

C
C⋆

||||
. (3.5)

Thus, we have a sense for the di�erence between the randomly generated policies and
the optimal one measured by the relative di�erence between their total costs (for each
environment). We can see that the cost for a policy generated by our procedure is, in
general, orders of magnitude larger than the cost for the optimal one in that environment,
specially with larger state and action dimensions. Thus, our implementation successfully
produces initial policies for numerically stable interaction with the environment while

3.4 | VISUALIZATIONS

29

0.0

0.2
D

en
si

ty

dim(A) = 2 dim(A) = 4 d
im

(S
)

=
2

dim(A) = 8

0.0

0.2

D
en

si
ty

d
im

(S
)

=
4

101 104

Suboptimality gap

0.0

0.2

D
en

si
ty

101 104

Suboptimality gap

101 104

Suboptimality gap

d
im

(S
)

=
8

Figure 3.5: Distributions of total costs of random stabilizing policies for �xed LQGs with di�ering

dimensionalities.

being sub-optimal and thus suitable for optimization via RL.

0.0

0.1

D
en

si
ty

dim(A) = 2 dim(A) = 4 d
im

(S
)

=
2

dim(A) = 8

0.0

0.1

D
en

si
ty

d
im

(S
)

=
4

104 109

SVG norm

0.0

0.1

D
en

si
ty

104 109

SVG norm

104 109

SVG norm

d
im

(S
)

=
8

Figure 3.6: Distribution of value gradient norms of random stabilizing policies for �xed LQGs with

di�ering dimensionalities.

Figure 3.6 shows, for the same environments and policies as in �g. 3.5, the histograms for
the true SVG norm of the generated policies. We use the procedure described in section 3.3
to compute the SVG for random policies analytically. We can see that the average gradient
norm for random policies tends to increase with problem dimensionality. One should
also keep in mind that the norms are quite higher than that of approximate gradients in
RL algorithms, which usually don’t surpass the thousands. This further motivates our
adoption of special gradient quality metrics from prior works (Ilyas et al., 2020), such as
the cosine similarity, that are less dependent on the magnitude of the gradient and instead
focus on its direction.

30

3 | THE LQG BENCHMARK

10−1 100 101

5

10

P
ar

am
et

er
d

is
ta

n
ce dim(S) = 2

101 102

50

100

dim(S) = 4

103

Suboptimality gap

125

150

P
ar

am
et

er
d

is
ta

n
ce dim(S) = 8

101 2× 1013× 1014× 1016× 101

Suboptimality gap

70

80

90

dim(S) = 16

Figure 3.7: Distribution of the norm of the di�erence between random and optimal policies vs. the

suboptimality gap (in log scale). Generated by �xing an LQG and sampling 1000 random policies.

Lastly, �g. 3.7 shows histograms of suboptimality gap vs. distance to optimal parameters
of random policies for di�erent environment sizes. In this plot, we make dim() = dim(),
so only the state dimensionality is indicated for each subplot. Darker colors indicate that
more datapoints were observed in the respective region. Distance to optimal parameters is
measured as the L2-norm of the di�erence between the random policy’s parameters, � ,
and the optimal parameters, �⋆: ‖� − �⋆‖2. Notice how the suboptimality gap (in log space)
correlates almost linearly with the distance to optimal parameters. Thus, the distance to
optimal parameters could be a good measure of policy suboptimality. However, we prefer to
keep the suboptimality gap as our measure going forward as it is more interpretable.

3.5 Discussion

Overall, the experiments in this section indicate that we have a robust and �exible
benchmark for evaluation of SVG algorithms. We demonstrated that we can reliably
generate both stable and unstable environments as well as policies that stabilize either
type. These policies also di�er between each other and have tractable ground-truth value
gradients. Finally, there’s a lot of room for SVG methods to optimize these random policies
toward the optimal ones. Our next chapter will leverage this benchmark to investigate the
impact of one design choice in SVG algorithms: the gradient estimator formula.

31

Chapter 4

Value Gradient Estimation

In this chapter we explore our �rst research questions, regarding the di�erent gradi-
ent estimators (Schulman, Heess, et al., 2015a; Mohamed et al., 2020) used in the SVG
literature. Our focus here is to study, empirically, the properties of these estimators alone,
without mixing in the problem of learning the environment model. Therefore, we leave
the study of model learning techniques and their impact for the subsequent chapter. Our
experiments aim to highlight the di�erences between these estimators and why one may
be preferred over the other in practice. In doing so, we also aim to �ll the gap between the
theory and implementations of existing SVG algorithms by providing explicit measures of
the advantages of certain design choices.

4.1 Gradient estimation in SVG methods

As indicated in algorithm 3 (line 7), one of the main steps in an SVG method is
leveraging a di�erentiable model of the environment’s dynamics to produce an estimate
of the value gradient. For the purposes of this chapter, we’ll consider the model to be a
non-parametric probability density s′ ∼ p̂(s, a), reparameterizable as s′ = f̂ (s, a, �), where
� is an independent random variable (refer back to section 2.3.2). Also, we’ll consider
that the reward function is known and only dependent on the current state and action:
R(s, a).

We �rst address the obvious way to use the model to estimate the value gradient:
simulate episodes with the current policy and compute the gradient of the average return.
The formula for this estimator would be

∇� Es0∼�[

H−1

∑
t=0

R(st , �� (st))]
, (4.1)

where st+1 ∼ p̂(st , �� (st)). Heess et al. (2015) name this the SVG(∞) estimator, since its
generalization to in�nite-horizon environments would require in�nite applications of
the dynamics model. We can approximate this by Monte Carlo: sampling the initial state
uniformly at random from a dataset of previously observed initial states, simulating

32

4 | VALUE GRADIENT ESTIMATION

s0 s1 s2 s3 s4

at a1 a2 a3

�

rt+1 rt+2 rt+3 rt+4

Figure 4.1: Stochastic computation graph of SVG(∞) for an environment with horizon H = 4.

trajectories with the policy and model and then computing the gradient of the average
returns. Figure 4.1 shows the SCG for SVG(∞) in a limited-horizon environment. Although
eq. (4.1) di�erentiates an almost exact replica of the policy’s value, it is not practical as a
value gradient estimator for two reasons: (1) state predictions chained together for several
timesteps tend to compound model errors (Janner et al., 2019b) and (2) backpropagating
the reward gradients for long prediction horizons tends to incur vanishing or exploding
gradients (Hochreiter, 1998).

Instead, we consider formulas that rely less on recursive model prediction. Often, these
produce a value di�erent from the policy’s value, even with a perfect model. However,
these formulas yield an estimate of the value gradient when di�erentiated. We introduce
two such value gradient estimation formulas in the following subsections. Here we contrast
their theoretical underpinnings, while in later sections we propose an empirical analysis
of their estimation quality and impact in a generic SVG algorithm.

4.1.1 The MAAC estimator

Figure 4.2: Illustration of model-based rollouts used to estimate the SVG. Solid black lines indicate

the trajectories generated by the (behavior) policy while exploring the environment. Circles indicate

states randomly sampled from the replay bu�er and arrows the model-based rollouts using the target

policy to choose actions.

A common approach to leveraging a di�erentiable model p̂ (either learned or given
through prior knowledge) is as follows. First, the agent collects B states via interaction

4.1 | GRADIENT ESTIMATION IN SVG METHODS

33

with the environment, potentially with an exploratory policy � . The distribution of states
induced by following this policy in the environment is called the stationary distribution of � .
E.g., when we collect several trajectories with � and then sample one of the observed states
uniformly at random, we’re implicitly sampling from this distribution. The probability
measure associated with it is called the occupancy measure of � and we denote it as d� ,
where d�(s) is the probability density of state s.

After collecting states, the agent generates short model-based trajectories with the
current target policy �� , branching o� the states previous collected. Figure 4.2 illustrates
these model-based trajectories branching o� real states previously observed and stored in
the replay bu�er. Finally, it averages the model-based returns and computes its gradient
using backpropagation (I. J. Goodfellow et al., 2016) to form an estimate of the value
gradient:

∇J (�) ≈ ∇� Est∼d�[

K−1

∑
l=0

R(st+l , �� (st+l)) + Q̂�� (st+K , �� (st+K))]
, (4.2)

where st′ ∼ p̂(st′−1, at′−1), reparameterized to leverage the pathwise derivative estimator.
Here, Q̂�� is an approximation (e.g., a learned neural network) of the policy’s action-value
function (recall de�nition 2.1.3).

Notice how eq. (4.2) is implicitly computing a K -step expansion of the state-value
function from each state sampled from the stationary distribution. Moreover, computing
its derivatives requires both ∇sf̂ and ∇af̂ . Thus, an algorithm using this estimator �ts
our de�nition of an SVG method in section 2.3.2. We refer to eq. (4.2) as the MAAC(K)
estimator, as it uses K steps of simulated interaction and was featured prominently in
the Model-Augmented Actor-Critic algorithm by Clavera et al. (2020). 1 It is implicitly
used by other prominent SVG algorithms (Hafner et al., 2020; Amos, Stanton, et al.,
2020). Thus, MAAC(K) is a representation of a general approach to estimating the value
gradient.

4.1.2 The DPG estimator

We question, however, if eq. (4.2) actually provides good empirical estimates of the
true value gradient. To elucidate this matter, we compare MAAC(K) to the value gradient
estimator provided by the Deterministic Policy Gradient (DPG) theorem (Silver et al.,
2014):

∇J (�) = E
st∼d��

[∇��� (st)∇a Q�� (st , a)|a=�� (st)] . (4.3)

Besides the fact that eq. (4.3) requires us to use the on-policy distribution of states d�� , more
subtle di�erences with eq. (4.2) can be seen by expanding the de�nition of the action-value
function to form a K -step version of eq. (4.3):

∇J (�) = E
st∼d��[

∇��� (st)∇at (∑
t+K−1

l=t
R(sl , al) + Q�� (st+K , at+K))

||||at=�� (st)]
, (4.4)

1 Our formula di�ers slightly from the original in that it considers a deterministic policy instead of a stochas-
tic one.

34

4 | VALUE GRADIENT ESTIMATION

where sl+1 = f̂ (sl , al , �) and actions are taken with the target policy. We call eq. (4.4) the
DPG(K) estimator. Figure 4.3 shows the SCGs of the MAAC(K) and DPG(K) estimators.
Because of the ∇at (…) term in eq. (4.4), we’re not allowed to compute the gradients of
future actions w.r.t. policy parameters in DPG(K), hence why only the �rst action has a
link with � . On the other hand, MAAC(K) backpropagates the gradients of the rewards
and value-function through all intermediate actions.

st st+1 st+2 st+3

at at+1 at+2 at+3

�

rt+1 rt+2 rt+3 Q̂��

Figure 4.3: Stochastic computation graphs for value gradients. The dashed edges represent the K -step

deterministic dependencies of the policy parameters in MAAC(K) for K = 3; DPG(K) ignores these

dependencies when backpropagating the action gradients.

This addition of action-gradient terms from MAAC(K) in relation to DPG(K) suggests
that the former is a biased estimator, meaning its expected value is di�erent from the actual
SVG it is intended to estimate. This di�erence is orthogonal to the stationary distribution
used to sample the initial states for virtual rollouts (we can easily eliminate that di�erence
by using, for both estimators, the target policy to explore the environment and generate
the real trajectories in �g. 4.2).

However, to best our knowledge, some of the best-performing SVG methods use
MAAC(K) (Clavera et al., 2020; Amos, Stanton, et al., 2020; Hafner et al., 2020), while
few use DPG(0) (Fairbank and Alonso, 2012; D’Oro and Jaskowski, 2020) and none
use its model-based generalization, DPG(K) with K > 0. Our subsequent analysis aims
to identify the practical implications of these di�erences and perhaps help explain why
MAAC(K) has been used in SVG methods and not DPG(K).

4.2 Proposed analysis

In this chapter, we propose a �ne-grained analysis of the properties of DPG(K) and
MAAC(K) in practice. We simplify our evaluation by using on-policy versions of the
gradient estimators, i.e., by sampling the starting state for model-based rollouts from the
stationary distribution of the target policy, d�� , in eqs. (4.2) and (4.3). We also opted for
using perfect models of the environment dynamics and rewards, instead of learning them
from data, to focus on the di�erences between gradient estimators. Thus, we approximate
the expectations in eqs. (4.2) and (4.3) via Monte Carlo sampling, using the actual transition
kernel p∗ and reward function R , to generate (virtual) transitions and compute the K -step
returns. One can view this setting as the best possible case in an SVG algorithm: when the

4.3 | EMPIRICAL RESULTS

35

model-learning subroutine has perfectly approximated the true MDP, allowing us to focus
on the gradient estimation analysis.

We also compute the true action-value function, required for the K -step returns in
eqs. (4.2) and (4.3), recursively using algorithm 2. Computing the ground-truth action-value
function allows us to further isolate any observed di�erences between the estimators as a
consequence of their properties alone.

4.3 Empirical results

We analyze the behavior of each estimator on two main settings: (I) gradient estimation
for �xed policies and (II) impact of gradient quality on policy optimization.

4.3.1 Gradient estimation for �xed policies

1 3 5 7 9 11 13 15 17 19

K

0.88

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

u
ra

cy

dpg

maac

Figure 4.4: Gradient accuracy for each estimator near convergence for di�erent virtual rollout lengths

(K). We used 50000 states sampled from the policy to approximate the expected value.

Following previous work on model-free policy gradients by Ilyas et al. (2020), we
evaluate the quality of the gradient estimates, for a given policy, using two metrics: (i) the
average cosine similarity with the true policy gradient and (ii) the average pairwise cosine
similarity.

Average cosine similarity with the true policy gradient is a measure of gradient
accuracy and we denote it as such in the following plots. For a given minibatch size B and
step size K , we compute 10 estimates of the gradient, each using B initial states sampled
on-policy (st ∼ d��) and K -step model-based rollouts from each state. Then, we compute
the accuracy as the average cosine similarity of each of the 10 estimates with the true
policy gradient (see section 3.3).

Average pairwise cosine similarity is a measure of gradient precision and we denote
it as such in the following plots. Again, we compute 10 estimates of the gradient in the

36

4 | VALUE GRADIENT ESTIMATION

0.00

0.25

0.50

0.75

1.00
A

cc
u

ra
cy

K = 0

Estimator
dpg

maac

K = 2

0 200 400 600 800 1000

#Samples

0.00

0.25

0.50

0.75

1.00

A
cc

u
ra

cy

K = 4

0 200 400 600 800 1000

#Samples

K = 8

Figure 4.5: Gradient accuracy for each estimator for di�erent minibatch sizes (B = #Samples) and

virtual rollout lengths (K).

same manner used in computing the accuracy. Then, we compute the precision as the
average pairwise cosine similarity of the 10 estimates (the higher this quantity, the lower
the variance).

We �rst analyze the accuracy of each estimator when given enough states from the
policy’s distribution d�� to approximate their true expected values. Figure 4.4 shows the
accuracy obtained by DPG and MAAC for di�erent values of K using 50000 states from
the policy’s distribution. The LQGs considered have state and action spaces of dimension 2
and horizon of length 20. For each value of K , we initialize 10 di�erent environment-policy
pairs and compute the accuracy for each, denoted as di�erent markers in each vertical
line. 2 Note how all but one of the instances using DPG(K) converged to the true value
gradient, indicating that it is indeed an unbiased estimator. On the other hand, MAAC(K)
incurs a larger bias with increasing values of K , indicating that the added action-gradient
terms (see �g. 4.3) in�uence the �nal gradient direction.

Although the results above indicate that MAAC(K) is biased at convergence, most
SVG algorithms operate on a much smaller sample regime. Figure 4.5 shows the accuracy
across 10 di�erent environment-policy pairs; this time, however, using smaller sample
sizes from the stationary state distribution. Lines denote the average results and shaded
areas, the 95% con�dence interval. 3 For K = 0, the estimators are equivalent, which is
veri�ed in practice. In this more practical sample regime, we see that MAAC(K) produces
more accurate results, specially for larger values of K .

2 We use the same 10 random seeds for experiments across values of K .
3 We use seaborn.lineplot to produce the aggregated curves.

4.3 | EMPIRICAL RESULTS

37

0.00

0.25

0.50

0.75

1.00

P
re

ci
si

on

K = 0

Estimator
dpg

maac

K = 2

0 200 400 600 800 1000

#Samples

0.00

0.25

0.50

0.75

1.00

P
re

ci
si

on

K = 4

0 200 400 600 800 1000

#Samples

K = 8

Figure 4.6: Gradient precision for each estimator for di�erent minibatch sizes (B = #Samples) and

virtual rollout lengths (K).

Similar to �g. 4.5, �g. 4.6 shows the gradient precision in the same setting. We see that
the variance of MAAC(K) is lower than that of DPG(K) across all tested values of K > 0.
Overall, �gs. 4.4 to 4.6 illustrate a classic instance of the bias-variance trade-o� in machine
learning: MAAC(K) introduces bias, although a small one, in return for a much more stable
(less variable) estimate of the gradient, whereas the unbiased DPG(K) demands much more
samples to justify its use.

Note that the accuracy and precision metrics only account for di�erences in gradient
direction and orientation. The magnitude may also be important, as it in�uences the
learning rate when used to update policy parameters. Figure 4.7 shows that MAAC(K)
produces gradients with higher norms compared to DPG(K). One should keep this in mind
when choosing the learning rate for SGD, as the following experiments show that the
gradient norm has a signi�cant impact on policy optimization.

4.3.2 Impact of gradient quality on policy optimization

Ilyas et al. (2020) have shown that model-free policy optimization algorithms can
improve a policy despite using poor gradient estimation. Thus, we cannot ascertain that
better value gradient estimation translates to more stability or faster convergence in SVG
algorithms. We therefore conduct our next experiments comparing the MAAC(K) and
DPG(K) estimators by iteratively updating the policy with the gradients produced by
each.

Figures 4.8 and 4.9 show learning curves as total cost (negative return) against the
number of SGD iterations across several instances of LQGs (dim() = dim() = 2 and

38

4 | VALUE GRADIENT ESTIMATION

20

40

60
G

ra
d

ie
n
t

n
or

m

K = 0

Estimator
dpg

maac

50

100

150

K = 2

0 200 400 600 800 1000

#Samples

100

200

G
ra

d
ie

n
t

n
or

m

K = 4

0 200 400 600 800 1000

#Samples

100

200

300

400

K = 8

Figure 4.7: Gradient norm for each estimator for di�erent minibatch sizes (B = #Samples) and virtual

rollout lengths (K).

H = 20). We use the same hyperparameters for both estimators. 4 The results in �g. 4.8
suggest that the better quality metrics observed for MAAC(K) in �gs. 4.5 and 4.6 do
translate to faster and more stable policy optimization. However, if we normalize the
gradient estimates before passing them to SGD, as in �g. 4.9, we see that both estimators
are evenly matched. These results suggest that the main advantage of MAAC(K) over
DPG(K) is in its stronger gradient norm (see �g. 4.7), which has been alluded to by Clavera
et al. (2020) as a “strong learning signal”, inducing a faster learning rate.

Estimator
Time
(min)

LQG dimension
2 3 4 5 6 7 8 9 10

DPG
1 29.10 218.75 242.94 1730.07 1567.81 4129.88 1100.74 6111.44 7290.04
3 6.32 53.21 138.89 439.54 465.29 3468.03 552.87 277.38 6445.64
5 2.66 27.63 91.20 400.31 241.32 2877.18 263.54 2297.37 4830.16

MAAC
1 2.33 20.31 45.05 302.72 255.53 2065.97 340.63 3477.36 5008.28
3 0.55 3.57 11.28 80.26 38.87 317.76 45.87 1468.44 3568.37
5 0.38 1.92 6.34 40.13 21.23 290.91 23.23 330.21 2004.51

Table 4.1: Median suboptimality gap, the percentage di�erence in expected return against the optimal

policy, across 10 seeds. LQG dimension refers to the dimension of state and action spaces. We use K = 8
and B = 20 for both estimators.

We also evaluate if our previous �ndings generalize to higher state-action space di-
mensions, where sample-based estimation gets progressively harder. Our performance
metric is the suboptimality gap, i.e., the percentage di�erence in expected return between

4 Learning rate of 10−2, B = 200, and K = 8.

4.4 | DISCUSSION

39

the current policy and the optimal one: 100 × (J (�⋆�) − J (��))/J (�⋆�). 5 Table 4.1 summarizes
our results with policy optimization with varying LQG sizes and time budgets. 6 We don’t
normalize gradients in this case, as that is not a common practice in SVG algorithms. 7

Our �ndings show that the performance gap between DPG(K) and MAAC(K) tends to
widen with higher dimensionalities, with policies trained via the latter outperforming
those using the former. These results further emphasize the practicality of MAAC(K) over
DPG(K), justifying the former’s use in recent SVG methods (Amos, Stanton, et al., 2020;
Clavera et al., 2020; Hafner et al., 2020).

4.4 Discussion

In this chapter, we take an important step towards a better understanding of current
SVG methods. Using the LQG framework, we show that the gradient estimation used by
MAAC and similar methods induces a slight bias compared to the true value gradient.
On the other hand, using a corresponding unbiased estimator such as the K -step DPG
increases sample-complexity due to high variance. Moreover, the MAAC gradient estimates
have higher magnitudes, which could help explain the fast learning performance of current
methods. Indeed, we found that policies trained with MAAC converge faster to the optimal
policies than those using the K -step DPG across several LQG instances.

These results do not take into account the interplay between model learning and
gradient estimation, lines 6 and 7 of algorithm 3. In the next chapter, we explore this
interplay in more detail.

5 Recall from chapter 3 that LQG allows us to compute the optimal policy analytically.
6 We found that the computation times for both estimators were equivalent.
7 We only clip the gradient norm at a maximum of 100 to avoid numerical errors.

40

4 | VALUE GRADIENT ESTIMATION

70

80

90

100

110

120

C
os

t

estimator
dpg

maac

60

80

100

120

140

160

50

60

70

80

C
os

t

50

100

150

60

80

100

120

140

C
os

t

0

500

1000

1500

0 200 400 600 800 1000

Iteration

100

200

300

C
os

t

0 200 400 600 800 1000

Iteration

60

80

100

120

Figure 4.8: Policy optimization with unnormalized SVG estimation. Each panel corresponds to a

di�erent LQG instance (generated via di�erent random seeds). Lines denote the average results and

shaded regions, one standard deviation, across 10 runs of the algorithm, each with a di�erent random

initial policy. Results obtained with the 8-step versions of each estimator.

4.4 | DISCUSSION

41

100

150

200

C
os

t

estimator
dpg

maac

100

150

200

250

60

80

100

120

C
os

t

100

200

300

400

100

200

300

C
os

t

0

2000

4000

6000

8000

0 200 400 600 800 1000

Iteration

200

400

600

C
os

t

0 200 400 600 800 1000

Iteration

50

100

150

200

Figure 4.9: Policy optimization with normalized SVG estimation. Each panel corresponds to a di�er-

ent LQG instance (generated via di�erent random seeds). Lines denote the average results and shaded

regions, one standard deviation, across 10 runs of the algorithm, each with a di�erent random initial

policy. Results obtained with the 8-step versions of each estimator. Gradients were normalized before

being passed to SGD.

43

Chapter 5

Model Learning

In this chapter, we analyze how model learning factors in the performance of SVG
methods. Again, we use the gradient quality metrics of chapter 4 to inspect if learned
models are successful in predicting value gradients. We consider the interplay between
the performance in the sub-task of learning a model and the task of predicting accurate
gradients, lines 6 and 7 of algorithm 3 respectively. Ultimately, the algorithm’s objective
is to improve the policy’s performance in the environment, so we also consider it in our
experiments.

Additionally, we compare the model-based MAAC(K) estimator with the model-free
DPG estimator, all with learned models and value-functions. With these experiments, we
aim to understand if model-based approaches are more e�ective than model-free ones that
rely on learning a value-function instead of a transition model. Overall, our objectives are:
(a) to identify the conditions under which model learning fails; (b) to evaluate di�erent
ways of using the model for gradient estimation; and (c) compare the model-based and
value-based approaches to estimating value gradients.

5.1 Model-based prediction

In this section, we investigate the following questions:

1. Is log-likelihood loss a good predictor of gradient accuracy?

2. Is value prediction accuracy correlated with gradient prediction accuracy?

3. Does gradient accuracy deteriorate when the model is �tted to o�-policy data instead
of on-policy data?

4. Is model-based prediction superior to value-based prediction in gradient space?

5.1.1 Model learning in isolation

In this section, we tackle questions 1-3 above. Our environment model parameterizes
the mean and (diagonal) covariance of a multivariate Gaussian distribution as linear

44

5 | MODEL LEARNING

functions of the state and action:

p (s, a) ≐  (� (s, a), diag(� (s, a))) , (5.1)

� (s, a) = W� [
s
a] + b� , (5.1a)

� (s, a) = softplus(b�) . (5.1b)

Where W� ∈ ℝn×(n+d) and b� , b� ∈ ℝn are the model parameters (denoted by) and
softplus(x) = log(1 + exp(x)) is an element-wise function ensuring the output is posi-
tive.

Fitting the model above to environment data is very close to system identi�cation
in Optimal Control, which also uses linear models. However, a key di�erence between
eq. (5.1) and models in system identi�cation is that the latter deterministically map a
state-action pair to a next state using a linear function, i.e., f (s, a) = � (s, a). Linear Least
Squares methods are then used to �t these deterministic models to the observed data.
We chose eq. (5.1) to match other model parameterizations in SVG algorithms, which are
stochastic. Besides, MLE with Gaussian models can be seen as a generalization of Least
Squares optimization (Charnes et al., 1976).

Exploration is crucial for model-based prediction

Our �rst experimental observation is that, surprisingly, learning models exclusively
from on-policy data can be detrimental for gradient estimation. Recall from chapter 4 that,
ideally, we want to sample starting states for model-based rollouts from the on-policy state
distribution. Naturally, then, an approach would be to build a replay bu�er of trajectories
on-policy and use the same data for both model learning and value gradient estimation
for maximum sample-e�ciency. This is what we investigate next.

The experimental setup consists of 20 randomly-generated LQGs (following section 3.1
with dim() = dim() = 2 and H = 50). To isolate the model’s in�uence in the results,
we perform our experiment with full access to the ground-truth reward function and
the ground-truth value function for bootstrapping. For each environment, we perform
a model-based prediction run as follows. We collect 2000 trajectories with a randomly
generated, stabilizing policy (refer back to section 3.2). Trajectories are split into a training
(90%) and a validation (10%) dataset. The training dataset is shu�ed before each iteration of
model learning (an epoch). Model learning �ts a dynamics model via MLE: maximizing the
likelihood of trajectory segments of length 4 in mini-batches of size 128. After every epoch
(implying every datapoint in the training set has been used), we compute the model’s
performance on the validation set, including: (1) the average negative likelihood of all
trajectory segments, or loss; (2) the empirical KL divergence between the model and the
environment dynamics; (3) the absolute relative error between the real state-value function
and its 4-step expansion with the model (from random states in the dataset); and (4) the
gradient accuracy of MAAC(4).

Figure 5.1 shows the model’s performance metrics during training against the number
of epochs. Each line represents one independent run, each on one of the 20 sampled
environments. Notice how every single run is successful at improving the model’s loss,

5.1 | MODEL-BASED PREDICTION

45

3

4

5

6
L

os
s

0

5

10

15

E
m

p
ir

ic
al

K
L

0 10 20 30 40

epoch

0.0

2.5

5.0

7.5

10.0

4-
st

ep
va

lu
e

er
ro

r

0 10 20 30 40

epoch

0.4

0.6

0.8

4-
st

ep
gr

ad
ac

c

Figure 5.1: Loss, empirical KL, value error, and gradient accuracy during model learning with on-

policy data

0 10 20 30 40

epoch

0.5

0.6

0.7

0.8

0.9

C
os

in
e

si
m

il
ar

it
y

Model-free

0 10 20 30 40

epoch

Model-based

Figure 5.2: Comparison of gradient accuracy between DPG(0) (model-free) and MAAC(K) with a

model �tted to on-policy data.

empirical KL and 4-step value error, indicating that the model is predicting states correctly
and helping induce a good estimate of the value function. However, the gradient accuracy
of the MAAC(4) estimates do not always improve with model learning, with some ending
up worse than with the initial, randomly initialized model. We also compare the average
gradient accuracy of a model-free estimator, MAAC(0) using the ground-truth action-value
function, with the model-based MAAC(4) in �g. 5.2. The �gure highlights that, on average,
the estimators have the same accuracy, but the learned model introduces a lot of variance,
which is not desirable. To see why this may be happening, we inspect a single instance of
model learning in greater detail in what follows.

Consider the following, simple LQG (randomly generated by the procedure described

46

5 | MODEL LEARNING

in section 3.1):

p∗(s, a) =([
1.0689 0.0089 0.9776 0.9827
0.0089 1.0637 0.2107 −0.1850] [

s
a] , I) , (5.2)

R(s, a, s′) = 1
2s

ᵀ

[
0.4530 −0.2178
−0.2178 3.5398] s +

1
2a

ᵀ

[
1.3662 −0.0420
−0.0420 0.7659] a , (5.3)

�(s) = (0, I) , (5.4)

where dim() = dim() = 2 with a horizon of H = 50. Policy generation, data collection
and model learning are all done as in the experiments of �g. 5.1. We stop �tting the model
once its loss on the validation set stops improving for 3 consecutive epochs, a technique
known as early stopping to avoid over�tting the model to training data. Our model learning
run found the following parameters:

W� = [
−0.1072 −0.0347 −0.0238 0.0202
0.0403 0.3481 −0.2826 0.3444] ,

b� = [0.0042, −0.0055]
ᵀ ,

� = [0.9984, 1.0047]
ᵀ .

We can see that the �nal model correctly predicts the diagonal of the dynamics covariance
matrix and its transition bias is close to real one, zero. On the other hand, the transition
kernel W� is much di�erent than the dynamics’ kernel. Despite this, the learned model
achieves an empirical KL divergence of 0.0004 (on the validation set) with the environment
dynamics, implying that its state predictions are very accurate. Indeed, the relative error
between the 4-step state-value expansion using this model and the real state-value function
is, on average, 0.01. However, the accuracy of the MAAC(4) estimates is, on average over
the validation set, approximately -0.806, meaning that the estimated gradients point in
almost the opposite direction of the real value gradient.

Figure 5.3 con�rms this observation with a visualization of the optimization surface
around the policy parameters. The vertical axis corresponds to the policy’s value (computed
analytically as in �g. 3.2). Each point (x, y) in the horizontal axes correspond to a policy
parameter update of � ← � + xu + yg, where u is a random direction in the parameter
space (sampled uniformly at random from the unit sphere) and g is the normalized gradient
estimated with the model. We can see that updating the policy in the direction of the
estimated gradient leads to decreasing total value, further con�rming that the model,
despite accurate in some metrics, is inadequate for improving the policy.

To explain these observations, we take a closer look at the model’s Jacobians. Speci�-
cally, we compare the reparameterized model and environment dynamics when both are
combined the target policy:

f �∗ (s, �) = f∗(s, �� (s), �) , (5.5)
f � (s, �) = f (s, �� (s), �) . (5.6)

The noise variable does not a�ect the Jacobian of these functions, for a given state, since
its e�ect is additive. We sample a random noise variable from a standard Gaussian and a

5.1 | MODEL-BASED PREDICTION

47

random
direction

0.0
0.5

1.0
1.5

2.0
2.5

3.0

gradient direction
0.0

0.5
1.0

1.5
2.0

2.5
3.0

p
ol

ic
y

va
lu

e

−500

−450

−400

−350

Figure 5.3: Optimization surface induced by the SVG estimated with a model �tted to on-policy data.

state from the replay bu�er and compute the Jacobians w.r.t. to the state inputs (leveraging
the automatic di�erentiation of PyTorch), arriving at:

∇sf �∗ (s, �) = [
−0.1049 ≈ 0
≈ 0 0.7852]

and

∇sf
�
 (s, �) = [

−0.1057 −0.0037
−0.0069 0.7887] .

We also verify that ‖∇sf �∗ (s, �) − ∇sf
�
 (s, �)‖ = 0.0086. Thus, we see that the model obtained

mimics the on-policy dynamics (see eq. (2.1)) in �rst-order. Indeed, since we collected
data exclusively with the target policy, the model was fed a variety of states, but not a
variety of actions for each state (only the action that the policy would take). Therefore,
model learning is not able to correctly estimate the dynamics around a particular state
and over�ts to the on-policy distribution.

We then consider collecting data o�-policy, using a stochastic behavior policy, for
model learning. Ideally, we would also have access to on-policy data for value gradient
estimation, however, that would increase the data requirements of an RL agent, which
is precisely the opposite of what MBRL proposes to do. Therefore, there needs to be a
consideration of how much “o�-policy” our data collection is, so as to not hurt either the
model learning or SVG estimation subroutines. Since our target policy is deterministic,
we borrow from DPG-style algorithms (Silver et al., 2014; Fujimoto et al., 2018; D’Oro
and Jaskowski, 2020) and use a behavior one that adds white noise to the target policy’s
actions: �� (s) + � , � ∼  (0, 0.3I). The rest of the experimental setup is kept the same as
used for �g. 5.2.

48

5 | MODEL LEARNING

3

4

5

6

L
os

s

0

5

10

15

E
m

p
ir

ic
al

K
L

0 10 20 30 40

epoch

0.0

2.5

5.0

7.5

10.0

4-
st

ep
va

lu
e

er
ro

r

0 10 20 30 40

epoch

0.6

0.8

4-
st

ep
gr

ad
ac

c

Figure 5.4: Loss, empirical KL, value error, and gradient accuracy during model learning with o�-

policy data

0 10 20 30 40

epoch

0.7

0.8

0.9

C
os

in
e

si
m

il
ar

it
y

Model-free

0 10 20 30 40

epoch

Model-based

Figure 5.5: Estimated SVG accuracy resulting from models �tted from on-policy (left) and o�-policy

(right) data.

Figure 5.4 shows the performance metrics for the model against the number of training
epochs in the o�-policy training dataset. Note that now MAAC(4) gradient accuracy also
improves with model learning, with the exception of one outlier. We aggregate the value
gradient accuracy results in �g. 5.5, contrasting the model-free MAAC(0) with the model-
based MAAC(4). With a model trained on o�-policy data, one can see a bene�t of using a
model-based estimator over a model-free one, unlike in �g. 5.2.

Overall, these experiments on the LQG framework help us identify with precision the
important issue of data collection for model learning and its impact on the learned model.
They also serve as a reminder that the log-likelihood loss is not always a good signal of
model adequacy for value gradient estimation, even though it is often the only monitored

5.1 | MODEL-BASED PREDICTION

49

metric in model-based RL. Even the idealized value prediction accuracy (since it requires
the true value function to be computed) is not a good metric for the model in an SVG
algorithm. The challenge for future work is to devise metrics that don’t require knowledge
of the environment’s dynamics and are more predictive of a model’s adequacy for value
gradient estimation.

Learning reward functions

We also investigate the interplay between exploration and learning the reward function.
Our reward model mimics the true one of the environment, ignoring the next state and
with no �nal-state reward:

R (s, a, s
′) = 1

2 [
s
a]

ᵀ

WR [
s
a] + w

ᵀ
R [
s
a] . (5.7)

The parameters = {WR , wR} are randomly initialized. We use a similar experimental
setup as in the previous subsection. Here, however, we optimize the reward model to
minimize the Mean Squared Error (MSE) with the observed environment rewards:

Es,a,r∼train[(R (s, a) − r)
2
] . (5.8)

On the validation set, we monitor two metrics every half an epoch: the cosine similarity
between ∇sR (s, a) and ∇sR(s, a), and the same between ∇aR (s, a) and ∇aR (s, a).

0 10 20 30 40

epoch

0.2

0.4

0.6

0.8

1.0

C
os

in
e

si
m

il
ar

it
y

State grad acc

0 10 20 30 40

epoch

Action grad acc

exploration
gaussian

None

Figure 5.6: Reward gradient accuracy during reward model learning. Left: accuracy of reward gra-

dient w.r.t. the state input. Right: accuracy of reward gradient w.r.t. the action input.

Figure 5.6 shows the validation metrics during reward model learning against the
number of epochs. We compare learning on on-policy data (exploration = “None”) and
o�-policy data (exploration = “gaussian”). The latter uses a behavior policy like the one
used in the experiment for �gs. 5.4 and 5.5. We can see that, in general, the learned model
predicts the state and action gradients pretty well. Nevertheless, using o�-policy data
provides a boost to the accuracy of state-gradients and specially to action-gradients, almost
matching the real ones.

50

5 | MODEL LEARNING

5.1.2 Model-based vs. value-based prediction

Next, we focus on question 4 of section 5.1: “Is model-based prediction superior to
value-based prediction?”. This is pertinent to SVG algorithms because learning a value
function is a necessary part in an RL setting, where we don’t know the true value function
for bootstrapping the gradient estimator. Why not, then, simply use the learned value
function in the model-free DPG estimator and not have to worry about also �tting dynamics
and reward models to the data? To identify the potential shortcomings of this approach,
we empirically analyze �tted Q-learning and its e�ectiveness in �nding and accurate
action-value model in gradient space.

We choose a quadratic action-value model, similar in form to the true action-value
function, de�ned

Q�(s, a, t) = 1
2 [
s
a]

ᵀ

WQt [
s
a] + w

ᵀ
Qt [

s
a] + wQt . (5.9)

Note that we have separate parameters per timestep and the parameter set � =
{WQt , wQt , wQt}Ht=0. Thus, there is no approximation error, i.e., the true action-value function
lies within the set of functions representable by this parametric model. We may only su�er
from estimation error, in�uenced by sampling and the choice of learning algorithm.

Sampling is done as in the previous prediction experiments: either with the target
policy (on-policy) or, a behavior policy that adds white noise to the target policy’s ac-
tions. The learning algorithm is Fitted Q-Learning (Antos et al., 2008; Lillicrap et al.,
2016). Speci�cally, given a training dataset train of observed environment transitions,
we minimize the MSE between the action-value model and the Temporal Di�erence (TD)
target,

Es,a,r ,s′,t∼train[(Q�(s, a, t) − (r + Q�(s′, �� (s′), t + 1)))
2
] , (5.10)

w.r.t. the parameters �. We optimize eq. (5.10) with minibatch SGD on train and reserve a
validation set val to evaluate performance metrics and generalization. The actual learning
algorithm incorporates many tricks by Fujimoto et al. (2018) (target value functions,
Clipped Double Q-learning, target policy smoothing) which deviates from the strict de�ni-
tion of eq. (5.10), but have been shown to stabilize Q-learning.

0 10 20 30 40

epoch

5

10

15

20

25

R
el

at
iv

e
er

ro
r

True value

0 10 20 30 40

epoch

0

5

10

15

Bootstrapped value

exploration
None

gaussian

Figure 5.7: Errors of the approximate action-value function, during training, against the true value

function (left) and the bootstrapped TD target (right).

5.1 | MODEL-BASED PREDICTION

51

Figure 5.7 shows the relative error of the learned value function against the true
action-value (left) and its 1-step bootstrapped approximation (right), i.e., the TD target.
These metrics are computed on the validation set, which consists of 10% of the total 2000
trajectories collected in the environment. We execute 10 independent runs of �tted Q-
learning, each on a di�erent environment with a random target policy, for each exploration
setting (on-policy of o�-policy). Epochs here are the same as in the dynamics model
experiments, meaning a full pass through the shu�ed training data. We can see that
learning improves the action-value predictions over time, slowing down as the value
model gets closer to the target.

0 10 20 30 40

epoch

−0.5

0.0

0.5

1.0

C
os

in
e

si
m

il
ar

it
y

True action-gradient

0 10 20 30 40

epoch

Bootstrapped action-gradient

exploration
None

gaussian

Figure 5.8: Action-gradient accuracy of the approximate action-value function, during training,

against the true action-gradient (left) and the bootstrapped TD target’s action-gradient (right).

0 10 20 30 40

epoch

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

C
os

in
e

si
m

il
ar

it
y

True SVG

exploration
None

gaussian

Figure 5.9: Accuracy of the SVG estimated via DPG(0) using the learned action-value function during

training.

On the other hand, �g. 5.8 (left) shows no obvious improvement in the cosine similarity
between ∇aQ�(s, a) and ∇aQ�(s, a) during training. We only end up with and accurate
action-gradient if we were lucky to sample good parameters for Q� before training. This
behavior is also una�ected by the data collection being either on-policy or o�-policy,
unlike the dynamics and reward model approach which at least fare well with o�-policy
data. If we can’t rely on Q-learning to improve action-gradients, then even if we sample a

52

5 | MODEL LEARNING

good initial Q� , it will become inaccurate as the policy is updated over time. We also plot
the cosine similarity between ∇aQ�(s, a) and ∇a(r +Q�(s′, �� (s′))) in �g. 5.8 (right). It shows
that the estimated action-gradient does not improve in accuracy even against the gradient
of the TD target used for training. The impact all this on the accuracy of the estimated
SVG is shown in �g. 5.9, in which we observe that accuracy does not consistently improve
with training.

Overall, these results show that learning an accurate action-value function, specially in
gradient space, can be harder that dynamics and reward model learning. Dong et al. (2020)
made a similar observation about this di�culty, speci�cally when using neural networks
to approximate the Q-function or the dynamics. This may be the reason why model-based
approaches that simply use model generated data for augmenting Q-learning (Feinberg
et al., 2018; Buckman et al., 2018; Janner et al., 2019b) have not been as successful as
SVG methods. Amos, Stanton, et al. (2020) observe the same in their experiments and
recommend using dynamics models for policy improvement (i.e., value gradient estimation)
and not for Q-learning.

However, recent work by D’Oro and Jaskowski (2020) has proposed a new model-
based approach to improving Q-learning in gradient space, which could be used in place
of or together with model-based value gradient estimation. We analyze this approach in
next subsection.

5.1.3 Improving value-based prediction using MAGE

Model-based Action-Gradient-Estimator (MAGE) Policy Optimization is a novel MBRL
method by D’Oro and Jaskowski (2020) that aims to improve Q-function action-gradient
estimates by leveraging di�erentiable dynamics and reward models. The main concern
raised by the authors is that vanilla �tted Q-learning focuses on obtaining accurate
action-value estimates, while policy optimization algorithms that use the DPG estimator
need accurate Q-function action gradients. Their proposed approach attempts instead to
solve

minimize� E
s,t∼train
a=�(s)

s′∼p (s,a)

‖‖‖∇a[Q�(s, a, t) − (R (s, a) + Q�(s′, �� (s′), t + 1))]
‖‖‖ . (5.11)

In other words, the objective is to minimize the error between the estimated Q-function
action gradient (or action-gradient for short) and the action-gradient of the TD target,
which stands in for the true action-gradient.

Note that computing the objective function in eq. (5.11) involves di�erentiating through
the sampled state s′ ∼ p (s, a). Both the original MAGE implementation and ours achieve
this by reparameterizing the dynamics model and using the pathwise derivative estimator.
Thus, MAGE �ts our de�nition of an SVG method since it uses a model-based 1-step
expansion of the value function and computes its gradient using the derivatives of the
dynamics model.

In this subsection, we seek to evaluate if MAGE can solve the issues with Q-learning
identi�ed in the previous subsection. We use the same quadratic Q-function model, data-

5.1 | MODEL-BASED PREDICTION

53

collection and preprocessing procedures, and tricks by Fujimoto et al. (2018) for Q-function
stabilization (which were also used in the original MAGE paper). Following D’Oro and
Jaskowski (2020), we add the penalty term −�(Q�(s, a, t) − (r + Q�(s′, �� (s′), t + 1)))

2
to

the objective function of eq. (5.11) as a regularization to avoid degenerate solutions (see
Appendix B.1 of D’Oro and Jaskowski (2020)). 1 Furthermore, we use the true dynamics
and reward function to isolate MAGE from the e�ects of model learning.

0 10 20 30 40

epoch

0

5

10

15

20

R
el

at
iv

e
er

ro
r

True value

0 10 20 30 40

epoch

0.0

2.5

5.0

7.5

10.0

12.5

Bootstrapped value

exploration
None

gaussian

Figure 5.10: Errors of the approximate action-value function against the true value function (left)

and the bootstrapped TD target (right) using MAGE learning.

0 10 20 30 40

epoch

0.2

0.4

0.6

0.8

C
os

in
e

si
m

il
ar

it
y

True action-gradient

0 10 20 30 40

epoch

Bootstrapped action-gradient

exploration
None

gaussian

Figure 5.11: Action-gradient accuracy of the approximate action-value function against the true

action-gradient (left) and the TD target’s action-gradient (right) using MAGE learning.

Figure 5.10 shows the relative error of the learned Q-function against the true Q-
function (left) and the TD target (right). Similar to �tted Q-learning in �g. 5.7, MAGE
improves the action-value predictions over time, likely in part due to the regularization
term (the value errors are in fact a little lower than the ones observed in �tted Q-learning).
On the other hand, �g. 5.11 (left) shows that MAGE is consistent in improving the action-
gradient accuracy against the true action-gradient, unlike �tted Q-learning in �g. 5.8.
One interesting observation is that the action-gradient accuracy against the TD target
action-gradient, which is the one actually used as a target during training, only slightly
improves during training and has high variance, as seen in �g. 5.11 (right).

1 We use � = 0.05 as in the original paper.

54

5 | MODEL LEARNING

0 10 20 30 40

epoch

0.0

0.2

0.4

0.6
C

os
in

e
si

m
il

ar
it

y

Fitted Q-Learning

0 10 20 30 40

epoch

MAGE

exploration
None

gaussian

Figure 5.12: Accuracy of the SVG estimated via DPG(0) using the approximate action-value function

obtained via TD(0) (left) and the one obtained via MAGE (right).

Finally, �g. 5.12 compares the accuracy of SVGs estimated via DPG using the learned
Q-function obtained via �tted Q-learning (left) vs. MAGE (right). We can observe that
MAGE gives better value gradient estimates and is able to consistently improve them from
the starting accuracy induced by randomly generated Q-function models, unlike �tted
Q-learning. However, this comes at the cost of introducing dynamics and reward models,
which also need to be learned from data.

In this subsection, we did not take into account the interaction between learning
environment models and learning value functions. In the next subsection, we wrap up this
section’s investigation on model-based prediction by combining both and comparing the
use of the environment model for MAGE, MAAC or both.

5.1.4 Model-based prediction roundup

We wrap up our experiments on model-based prediction with a comparison of the
di�erent approaches discussed so far. This time, we learn environment models and Q-
functions from data, speci�cally 2000 trajectories collected with an exploratory policy
�� (s) + � , � ∼  (0, 0.3I). We �t dynamics and reward model to the training data by
optimizing the negative log-likelihood loss and MSE loss respectively. We stop training each
model when their respective losses stop improving in the validation set for 3 consecutive
epochs, a technique known as early stopping. The models are then used in di�erent ways
depending on the prediction approach.

The �rst approach is MAGE, in which we use the models to compute the action-gradient
loss of eq. (5.11) to be optimized in the training set. We run SGD on the Q-function with
this loss until the relative error between the Q-function and its TD target stops improving
in the validation dataset for 3 consecutive epochs. We chose to monitor this metric on the
validation set since the action-gradient loss is much more unstable (refer back to �g. 5.11,
right). Once traning of the Q-function stops, we use it in the DPG(0) estimator to obtain
estimates of the SVG with minibatches of 256 states sampled from the validation set.

The second approach is MAAC, in which we obtain the Q-function by �tted Q-learning
as in section 5.1.2. Here we also use early stopping based on the relative error between the

5.1 | MODEL-BASED PREDICTION

55

Q-function and its TD target. The Q-function is then used in combination with the learned
environment models to compute an SVG estimate using MAAC(4) with minibatches of
256 states sampled from the validation set.

The third approach is MAAC + MAGE, in which we �t a Q-function as in MAGE, but
combine it with the environment models to estimate the SVG using MAAC(4). This is a
novel combination that, to best of our knowledge, hasn’t been tried in previous work. In
fact, Amos, Stanton, et al. (2020) went so far as to say that there is more risk of failure
when using the model for Q-function updates. However, this is likely due to their use
regular �tted Q-learning in their experiments, which we saw is faulty in section 5.1.2.

2 3 4 5 6

Dimension

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

G
ra

d
ie

n
t

ac
cu

ra
cy

strategy
mage

maac

maac+mage

Figure 5.13: Gradient accuracy distribution of di�erent model-based prediction approaches against

environment dimensionality.

We evaluate each approach across environments of di�erent dimensions, where
dim() = dim(). For each dimension size, we sample 20 di�erent environments, run
each model-based prediction approach and compute the accuracy of the estimated SVGs
Figure 5.13 shows the gradient accuracy distributions as box-plots against the environment
dimensions. We observe that MAGE is consistently behind the other two, with its accuracy
worsening with increasing environment dimension. This is likely due to its use of the
DPG estimator, which we saw is inferior to MAAC(K) in chapter 4. This hypothesis is
corroborated by the fact that MAAC+MAGE is as good as MAAC alone, so it is unlikely
that Q-function learning is the cause for the underperformance of MAGE. On the other
hand, we see that using a Q-function learned via MAGE in MAAC(K) does not provide a
signi�cant improvement in gradient accuracy.

This wraps up our investigation on model-based prediction in gradient space. In the
next section, we compare these di�erent approaches in a full SVG algorithm for model-
based control.

56

5 | MODEL LEARNING

5.2 Model-based control

We �nish our exploration of model learning in SVG methods by integrating the ap-
proaches analyzed in section 5.1.4 with a full SVG algorithm like algorithm 3.

Our dynamics and reward model learning remain the same, except that the data now
comes from a replay bu�er generated from the execution of the exploratory policy in the
environment over all past iterations of algorithm 3. In the following experiments, we always
use the “Gaussian” exploration setting of previous experiments, as it showed to be the
superior data collection method for learning environment and Q-function models.

To more closely mimic existing SVG algorithms, e.g., sac-svg (Amos, Stanton, et al.,
2020), we perform one step of SGD on the Q-function’s objective (either the MAGE or the
�tted Q-learning one) before each policy improvement step (line 8) of algorithm 3. This
is in contrast to the approach in previous sections in which we would �t the Q-function
until its relative error against its TD target stopped decreasing on a validation. Most RL
algorithms, however, do not have a validation set for the Q-function, a characteristic that
seems to have been inherited from early actor-critic algorithms such as Deep Deterministic
Policy Gradients (DDPG) (Lillicrap et al., 2016).

We collect results from runs of the algorithm across 20 di�erent environment initializa-
tions, each with its respective random initial policy. Before any iterations of algorithm 3,
we initialize the replay bu�er by collecting 20 trajectories with the initial exploration
policy. This is so that we have enough data by the �rst time model learning starts, an
approach commonly used to avoid over�tting models to the small amount of data collected
over the �rst few iterations.

At the end of every iteration of the algorithm, we compute metrics on a randomly
sampled batch of transitions from the replay bu�er. Figures 5.14 to 5.17 plot these metrics
against the number of iterations. Lines denote the median results across the 20 runs
and the shaded regions, their 95% con�dence interval. All results in these section are in
environments with dim() = dim() = 2 and H = 100. Additional results in environments
with dim() = dim() = 4 can be found in appendix B.1, which show similar behavior to
the ones in this section.

Figure 5.14 shows the empirical KL divergence between the learned model and the
environment dynamics. We see that model learning consistently �nds good models, at
least in KL divergence terms, regardless of the approach used for Q-function learning
or policy improvement. Recall that we’re also using an exploratory behavior policy and
mixing the experience of the current iteration with ones from past iterations in the replay
bu�er. Thus, our models should be protected from over�tting to on-policy dynamics as
we’ve seen in section 5.1.1.

Figure 5.15 shows the suboptimality gap of the target policy over the course of the
algorithm. Consistent with our observations in section 5.1.4, MAAC and MAAC+MAGE
o�er the best results, likely due to their superior gradient prediction quality, while MAGE
produces the worst results. In fact, MAGE alone leads to policy divergence, worsening
the suboptimality gap of the target policy over time. This shows how LQG is not a trivial
problem, even for sophisticated RL algorithms like MAGE.

5.2 | MODEL-BASED CONTROL

57

0 20 40 60 80 100

Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

D
y
n

am
ic

s
em

p
ir

ic
al

k
l maac

maac+mage

mage

Figure 5.14: Empirical KL divergence between the learned model and the true dynamics against the

number of iterations of algorithm 3.

0 20 40 60 80 100

Iteration

10−1

101

103

P
ol

ic
y

su
b

op
ti

m
al

it
y

ga
p maac

maac+mage

mage

Figure 5.15: Suboptimality gap of the target policy vs. the number of iterations of algorithm 3.

Figure 5.16 shows the accuracy of gradient estimates along training for the di�erent
approaches. As we can see, MAGE alone produces very poor estimates in the beginning of
training, even producing some with negative cosine similarity with the true value gradient,
i.e., directions in policy parameter space that are not ascent directions in the objective
function. This is likely the reason for the poor suboptimality gap results of MAGE in
�g. 5.15. On the other hand, both MAAC and MAAC+MAGE start out with good gradient
accuracy but show a gradual decrease in that metric over time. However, this does not
seem to be a re�ection of the quality of the models, since results with MAAC using perfect
models also showed a downward trend in gradient accuracy (see appendix B.2). Instead,
this trend seems to be due to the convergence to the optimal policy, which implies lower
gradient norms, thus making the gradient estimation task harder (since small errors lead
to large deviations in gradient direction).

We also look at metrics for the approximate Q-function during training in �g. 5.17 Recall
that the Q-function is learned in tandem with the policy, with every policy improvement
(gradient) step preceded by one SGD step on the Q-function’s objective, be that from
MAGE or regular �tted Q-learning. Interestingly, the quality of the learned Q-function
seems to be better when the MAAC estimator is being used and less dependent on the

58

5 | MODEL LEARNING

0 20 40 60 80 100

Iteration

−0.2

0.0

0.2

0.4

0.6

P
ol

ic
y

gr
ad

ac
c

maac

maac+mage

mage

Figure 5.16: Gradient accuracy of estimated SVG against the number of iterations of algorithm 3

0 20 40 60 80 100

Iteration

0.85

0.90

0.95

Q
va

l
re

la
ti

ve
er

r

maac

maac+mage

mage

0 20 40 60 80 100

Iteration

0.6

0.7

0.8

Q
va

l
ob

s
gr

ad
ac

c

0 20 40 60 80 100

Iteration

0.0

0.2

0.4

Q
va

l
ac

t
gr

ad
ac

c

Figure 5.17: Top: relative error between learned and true Q-functions. Bottom left: state-gradient

accuracy of learned Q-function. Bottom right: action-gradient accuracy of learned Q-function.

use of MAGE. This exposes a complex relation between Q-function learning and policy
improvement. Since changing the policy moves the target for the approximate Q-function
(by changing the on-policy true Q-function), the quality of the gradient estimator seems
to have an indirect impact on the quality of the learned Q-function.

Overall, the results in this section seem to partially corroborate the observation by
Amos, Stanton, et al. (2020) that there is more risk of failure when using the model for
Q-function updates, even through sophisticated methods like MAGE. However, this only
seems to be the case when the model is used exclusively for MAGE Q-function updates.
In fact, we’ve shown that one may combine MAGE and MAAC to achieve as good, if
not slightly better, results as using MAAC with regular, model-free �tted Q-learning.
We’ve also shown evidence that environment model learning seems to not be a�ected by

5.2 | MODEL-BASED CONTROL

59

either the Q-function learning or policy improvement steps, while these last two seem
interdependent. Future work may dive deeper into the interplay between the choice of
gradient estimator and its indirect impact on the performance of Q-function learning.
Furthermore, empirical studies can be done on harder environments to evaluate if there
are signi�cant bene�ts of incurring the cost of combining MAAC and MAGE (the latter is
signi�cantly more computationally intensive that �tted Q-learning).

61

Chapter 6

Conclusions & Frontiers

Deep Reinforcement Learning has made great strides in developing autonomous agents
that learn to control a system from scratch. Model-based methods, and Stochastic Value
Gradient methods in particular, now justify the added complexity and computational cost
of learning environment models in tandem with a policy by achieving unprecedented
sample e�ciency in continuous control benchmarks. However, this added complexity
further exacerbates the brittleness of model-free RL. Past studies already showed a lack
of understanding by the RL community of how the behavior of RL methods re�ects the
conceptual framework motivating their development. Furthermore, SVG algorithms are
usually evaluated w.r.t. the overall performance of the learned policy, not showing how
each component has contributed to such result. As such, these algorithms can fail in
unexpected ways, making designing new model-based methods and deploying them in
real applications a daunting task.

This thesis proposes a �ne-grained analysis of the SVG framework by using Linear
Quadratic Gaussian environments, which enables us to compute the ground-truth value
gradient and value functions and compare them to the corresponding estimates produced
by the RL algorithm. We developed a benchmark to automatically generate random LQG
environments that allow for evaluating SVG methods across a variety of scenarios with
varying di�culties. Crucially, our implementation supports easy computation of the
optimal policy and the ground-truth value, value functions and value gradient for a given
(linear deterministic) policy. Although we use these tools to evaluate the components
of SVG methods, they are general enough to be useful to researchers studying other RL
algorithms.

Our analysis consists of several empirical experiments leveraging our LQG benchmark
to inspect the inner workings of SVG methods. We provide a comparison of two broad
categories of gradient estimator formulas using perfect models to highlight the impact
of sample approximation error. The results show that a bias-variance trade-o� occurs
between estimators, favoring a biased formula for the value gradient that produces better
estimates with fewer samples. We also perform experiments analyzing both model and
Q-function learning for the tasks of prediction (estimating the value and gradient for
the current policy) and control (iteratively using the estimated gradient to update the
target policy). The results show that, overall, value gradient estimation using a Q-function

62

6 | CONCLUSIONS & FRONTIERS

obtained through �tted Q-learning tends to be more unstable than using a learned model
for gradient estimation, as long as the data is not exclusively on-policy. We also show that
the model can be used to obtain better Q-function approximators using the Model-based
Action-Gradient-Estimator approach. However, this technique is not as e�ective as using
the model directly in the gradient estimation step.

Many open problems remain which relate to and could build on this thesis’ work. We
describe below some of the frontiers which we consider most relevant, mostly extending
the experiments of this thesis.

1. Environments with high controllability index. Intuitively, the controllability index of
an environment measures the time lag between the execution of an action and the
time by which we see an e�ect in all states. Thus, the higher the index, the less
controllable the environment is. Tsiamis and Pappas (2021) showed that system
identi�cation (using the least squares algorithm) requires a number of samples
bounded by an exponential function of the controllability index. They also showed
that there are environments with controllability indexes that grow linearly with the
state dimension; a subclass of these are exponentially hard to learn. It is possible to
implement the generation of such environments in our benchmark. An interesting
study would be to investigate the relationship between the controllability index and
the hardness of estimating the value gradient. Given that models can be harder to
learn in these environments, a comparison of model-based and value-based methods
for value gradient estimation could be interesting.

2. Model transferability between environments. We focused on model learning for con-
trol of a single environment in this work. However, environment dynamics in the real
world can often change over time (weather conditions or upgrades to the hardware
of a robot, for example). Furthermore, new tasks can be speci�ed by tweaking the
reward function. In such cases, it may be possible to reuse a previously learned model
to update the target policy and reduce the amount of data collected for model learning
and gradient estimation. Future work may leverage the LQG benchmark to generate
perturbations of an environment and evaluate how model accuracy degrades as a
function of divergence between environment parameters. A comparison with how a
learned value function degrades as the environment changes could give guidance as
to which RL methods are better suited to transfer learning.

3. MAAC and MAGE in non-linear environments. An obvious limitation of this thesis is
the exclusive use of environments with linear dynamics. While LQG environments
can be useful to discard less promising RL methods, they don’t serve to distinguish
more promising approaches. For instance, both MAAC and MAAC+MAGE perform
equally well for control in the experiments of section 5.2. However, perhaps a non-
linear environment could be challenging enough to show a gap between the two
approaches, possibly justifying the added complexity and computational cost of
MAGE. On the other hand, doing a �ne-grained analysis similar to this thesis in
non-linear environments is challenging since general closed-form solutions (like
those given by LQG) don’t exist for non-linear dynamics. A compromise could be to
implement a customizable non-linear environment with known dynamics, like the
Industrial Benchmark by Hein et al. (2017), using frameworks like PyTorch (Paszke

6 | CONCLUSIONS & FRONTIERS

63

et al., 2019) to produces estimates of the real value and its gradient using Monte
Carlo methods. This benchmark could also serve to evaluate the learning of more
complicated, non-linear dynamics models.

4. Balancing model- and value-based approaches with MAAC(�). One could also build
on top of this work and explore the balance between model and value function use in
the MAAC(K) estimator. Speci�cally, by varying the number of steps K in the rollout,
we can induce more or less reliance on model vs. value function accuracy. Longer
rollouts tend to lead compounding model errors and vanishing/exploding gradients,
as we saw with MAAC(∞). On the other hand, we saw with MAAC(0) and DPG(0)
that only relying on the value function isn’t ideal for SVG prediction. A common
way to interpolate between these two extremes is to average all rollout lengths
with exponentially decaying weights for longer ones. A classical example is TD(�),
where � ∈ (0, 1) is the parameter that interpolates between using 1-step rollouts
(� → 0) and full ones with no bootstrapping (� → 1) (Sutton and Barto, 2018).
This approach has been used in modern algorithms by Schulman, Moritz, et al.

(2016) to construct estimates of the advantage function for actor-critic algorithms
using real experience in the environment to construct the K -steps estimates, rather
than model-based rollouts. One can similarly construct a MAAC(�) estimator and
use the benchmark developed here to evaluate its behavior as � varies from 0 to 1. It
is possible that with the right choice of � and a MAGE-learned Q-function, one can
achieve better learning stability and higher returns.

65

Appendix A

LQG derivations

Proof of lemma 2.2.1.

Base case Optimal cost-to-go from timestep N onwards.

V ⋆(s, N) = 1
2s

ᵀCf s + c
ᵀ
f s

= 1
2s

ᵀVN s + v
ᵀ
N s + vN ,

for
VN = Cf , vN = cf , vN = 0 .

Recursion Let t < N and assume V ⋆(s, t + 1) is quadratic with symmetric Vt+1 ∈ ℝn×n,
vt+1 ∈ ℝn and vt+1 ∈ ℝ. We may express Q⋆(s, t) as follows

Q⋆(s, a, t) = c(s, a) + E[12 f (s, a, wt)
ᵀVt+1f (s, a, wt) + v

ᵀ
t+1f (s, a, wt) + vt+1] . (A.1)

Let � = [sᵀ aᵀ]ᵀ. Expanding the expectation in eq. (A.1),

E[12 (F� + f + wt)
ᵀVt+1(F� + f + wt) + v

ᵀ
t+1(F� + f + wt) + vt+1]

= 1
2 (F� + f)

ᵀVt+1(F� + f) + 1
2 E[w

ᵀ
t Vt+1wt] + v

ᵀ
t+1F� + v

ᵀ
t+1f + vt+1

= 1
2�

ᵀFᵀVt+1F� + (f
ᵀVt+1F + v

ᵀ
t+1F)� + 1

2 Tr(�Vt+1) +
1
2f

ᵀVt+1f + v
ᵀ
t+1f + vt+1

⏟⏞⏞⏟⏞⏞⏟
qt

.

Where in the �rst equality above we used that E[wt] = 0 and the second equality follows
from the cyclic property of the Tr operator and that E[wtwᵀ

t] = �. Substituting the result
above in eq. (A.1) and expanding the de�nition of c(s, a),

Q⋆(s, a, t) = 1
2�

ᵀ
(C + F

ᵀVt+1F⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Qt

)� + (F
ᵀVt+1f + F

ᵀvt+1 + c⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
qt

)
ᵀ
� + qt . (A.2)

66

APPENDIX A

Taking the gradient of eq. (A.2) w.r.t. the action and setting it to zero,

Qass + Qaaa + qa = 0⟹ a = −Qaa−1Qas
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Kt

s + (−Qaa−1qa⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
kt

) .

Finally, substituting Kts + kt for a in eq. (A.2),

V ⋆(s, t) = 1
2s

ᵀ
(Qsst + QsatKt + K

ᵀ
tQaaKt

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Vt

)s

+ (Qsatkt + K
ᵀ
tQaatkt + qst + K

ᵀ
t qat⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

vt

)s

+ 1
2k

ᵀ
tQaatkt + qa

ᵀ
t kt + qt

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
vt

.

(A.3)

67

Appendix B

Extra model-based control

results

B.1 More state and action variables

Figures B.1 to B.4 show metrics from runs of algorithm 3 across 20 di�erent envi-
ronments with dim() = dim() = 4 and H = 100. Lines denote the median results and
shaded regions, their 95% con�dence interval.

0 20 40 60 80 100

Iteration

0

2

4

6

D
y
n

am
ic

s
em

p
ir

ic
al

k
l maac+mage

mage

maac

Figure B.1: Empirical KL divergence between the learned model and the true dynamics against the

number of iterations of algorithm 3.

68

APPENDIX B

0 20 40 60 80 100

Iteration

100

102

104

106

P
ol

ic
y

su
b

op
ti

m
al

it
y

ga
p maac+mage

mage

maac

Figure B.2: Suboptimality gap of the target policy vs. the number of iterations of algorithm 3.

0 20 40 60 80 100

Iteration

0.0

0.2

0.4

0.6

P
ol

ic
y

gr
ad

ac
c

maac+mage

mage

maac

Figure B.3: Gradient accuracy of estimated SVG vs. the number of iterations of algorithm 3

B.2 Model-based control with perfect models

B.2 | MODEL-BASED CONTROL WITH PERFECT MODELS

69

0 20 40 60 80 100

Iteration

0.85

0.90

0.95

Q
va

l
re

la
ti

ve
er

r

maac+mage

mage

maac

0 20 40 60 80 100

Iteration

0.0

0.2

0.4

Q
va

l
ob

s
gr

ad
ac

c

0 20 40 60 80 100

Iteration

0.0

0.2

0.4
Q

va
l

ac
t

gr
ad

ac
c

Figure B.4: Top: relative error between learned and true Q-functions. Bottom left: state-gradient ac-

curacy of learned Q-function. Bottom right: action-gradient accuracy of learned Q-function.

0 1000 2000 3000 4000 5000

Iteration

0

5

10

S
u

b
op

ti
m

al
it

y
ga

p seed
780

781

782

783

784

0 1000 2000 3000 4000 5000

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

G
ra

d
ac

cu
ra

cy

Figure B.5: Metrics of model-based control with MAAC with perfect models (no learning). Subopti-

mality of target policy (left) and gradient accuracy (right) vs. number of policy improvement itera-

tions.

71

References

[Amos, Rodriguez, et al. 2018] Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob
Sacks, Byron Boots, and J. Zico Kolter. “Di�erentiable MPC for End-to-end
Planning and Control”. In: NeurIPS. 2018, pp. 8299–8310 (cit. on p. 17).

[Amos, Stanton, et al. 2020] Brandon Amos, Samuel Stanton, Denis Yarats, and An-
drew Gordon Wilson. “On the model-based stochastic value gradient for contin-
uous reinforcement learning”. In: CoRR abs/2008.1 (2020) (cit. on pp. 3, 7, 17, 33,
34, 39, 52, 55, 56, 58).

[Antos et al. 2008] András Antos, Csaba Szepesvári, and Rémi Munos. “Fitted Q-
iteration in continuous action-space MDPs”. In: Advances in Neural Information

Processing Systems 20. Ed. by J C Platt, D Koller, Y Singer, and S T Roweis.
Curran Associates, Inc., 2008, pp. 9–16. url: http://papers.nips.cc/paper/3233-
fitted-q-iteration-in-continuous-action-space-mdps.pdf (cit. on p. 50).

[Asadi et al. 2018] Kavosh Asadi, Evan Cater, Dipendra Misra, and Michael L.
Littman. “Equivalence Between Wasserstein and Value-Aware Loss for Model-
based Reinforcement Learning”. In: CoRR (June 2018). arXiv: 1806.01265 (cit. on
p. 17).

[Brunton and Kutz 2019] Steven L. Brunton and J. Nathan Kutz. Data-Driven Sci-

ence and Engineering: Machine Learning, Dynamical Systems, and Control. Cam-
bridge University Press, 2019. doi: 10.1017/9781108380690 (cit. on p. 22).

[Buckman et al. 2018] Jacob Buckman, Danijar Hafner, George Tucker, Eugene
Brevdo, and Honglak Lee. “Sample-E�cient Reinforcement Learning with
Stochastic Ensemble Value Expansion”. In: (2018), pp. 8224–8234. url: http :
//papers .nips .cc/paper/8044- sample- e�icient- reinforcement- learning- with-
stochastic-ensemble-value-expansion%20http://arxiv.org/abs/1807.01675 (cit. on
p. 52).

[Byravan et al. 2019] Arunkumar Byravan et al. “Imagined value gradients: model-
based policy optimization with tranferable latent dynamics models”. In: CoRL.
Vol. 100. Proceedings of Machine Learning Research. PMLR, 2019, pp. 566–589
(cit. on p. 3).

http://papers.nips.cc/paper/3233-fitted-q-iteration-in-continuous-action-space-mdps.pdf
http://papers.nips.cc/paper/3233-fitted-q-iteration-in-continuous-action-space-mdps.pdf
https://arxiv.org/abs/1806.01265
https://doi.org/10.1017/9781108380690
http://papers.nips.cc/paper/8044-sample-efficient-reinforcement-learning-with-stochastic-ensemble-value-expansion%20http://arxiv.org/abs/1807.01675
http://papers.nips.cc/paper/8044-sample-efficient-reinforcement-learning-with-stochastic-ensemble-value-expansion%20http://arxiv.org/abs/1807.01675
http://papers.nips.cc/paper/8044-sample-efficient-reinforcement-learning-with-stochastic-ensemble-value-expansion%20http://arxiv.org/abs/1807.01675

72

REFERENCES

[Chan et al. 2020] Stephanie C Y Chan, Samuel Fishman, Anoop Korattikara, John
Canny, and Sergio Guadarrama. “Measuring the Reliability of Reinforcement
Learning Algorithms”. In: ICLR. OpenReview.net, 2020 (cit. on p. 4).

[Charnes et al. 1976] A Charnes, E L Frome, and P L Yu. “The Equivalence of General-
ized Least Squares and Maximum Likelihood Estimates in the Exponential Family”.
In: Journal of the American Statistical Association 71.353 (1976), pp. 169–171. doi:
10.1080/01621459.1976.10481508. url: https://www.tandfonline.com/doi/abs/10.
1080/01621459.1976.10481508 (cit. on p. 44).

[Chen and Jiang 2019] Jinglin Chen and Nan Jiang. “Information-Theoretic Consid-
erations in Batch Reinforcement Learning”. In: 36th International Conference on

Machine Learning, ICML 2019 2019-June (May 2019), pp. 1792–1817. url: http:
//arxiv.org/abs/1905.00360 (cit. on p. 16).

[Chua et al. 2018] Kurtland Chua, Roberto Calandra, Rowan McAllister, and
Sergey Levine. “Deep Reinforcement Learning in a Handful of Trials using
Probabilistic Dynamics Models”. In: NeurIPS. 2018, pp. 4759–4770 (cit. on p. 16).

[Clavera et al. 2020] Ignasi Clavera, Yao Fu, and Pieter Abbeel. “Model-Augmented
Actor-Critic: Backpropagating through Paths”. In: ICLR. OpenReview.net, 2020
(cit. on pp. 3, 33, 34, 38, 39).

[D’Oro and Jaskowski 2020] Pierluca D’Oro and Wojciech Jaskowski. “How to Learn
a Useful Critic? Model-based Action-Gradient-Estimator Policy Optimization”. In:
NeurIPS. 2020 (cit. on pp. 7, 19, 34, 47, 52, 53).

[D’Oro, Metelli, et al. 2019] Pierluca D’Oro, Alberto Maria Metelli, Andrea Tirin-
zoni, Matteo Papini, and Marcello Restelli. “Gradient-Aware Model-based Policy
Search”. In: CoRR (Sept. 2019). arXiv: 1909.04115. url: http://arxiv.org/abs/1909.
04115 (cit. on p. 17).

[Dayawansa 2001] Wijesuriya P. Dayawansa. “Mathematical control theory: deter-
ministic �nite dimensional systems [2nd edition] [book review]”. In: IEEE Trans.

Autom. Control. 46.4 (2001), pp. 673–675 (cit. on p. 23).

[Deisenroth and Rasmussen 2011] Marc Peter Deisenroth and Carl Edward Ras-
mussen. “PILCO: A Model-Based and Data-E�cient Approach to Policy Search”.
In: Proceedings of the 28th International Conference on Machine Learning, ICML

2011, Bellevue, Washington, USA, June 28 - July 2, 2011. Ed. by Lise Getoor and
Tobias Scheffer. Omnipress, 2011, pp. 465–472. url: https://icml.cc/2011/papers/
323_icmlpaper.pdf (cit. on p. 3).

[Dong et al. 2020] Kefan Dong, Yuping Luo, Tianhe Yu, Chelsea Finn, and Tengyu Ma.
“On the expressivity of neural networks for deep reinforcement learning”. In: ICML.
Vol. 119. Proceedings of Machine Learning Research. PMLR, 2020, pp. 2627–2637
(cit. on p. 52).

https://doi.org/10.1080/01621459.1976.10481508
https://www.tandfonline.com/doi/abs/10.1080/01621459.1976.10481508
https://www.tandfonline.com/doi/abs/10.1080/01621459.1976.10481508
http://arxiv.org/abs/1905.00360
http://arxiv.org/abs/1905.00360
https://arxiv.org/abs/1909.04115
http://arxiv.org/abs/1909.04115
http://arxiv.org/abs/1909.04115
https://icml.cc/2011/papers/323_icmlpaper.pdf
https://icml.cc/2011/papers/323_icmlpaper.pdf

REFERENCES

73

[Donti et al. 2017] Priya L. Donti, J. Zico Kolter, and Brandon Amos. “Task-based
end-to-end model learning in stochastic optimization”. In: NIPS. 2017, pp. 5484–
5494 (cit. on p. 17).

[Engstrom et al. 2020] Logan Engstrom et al. “Implementation Matters in Deep RL:
A Case Study on PPO and TRPO”. In: ICLR. OpenReview.net, 2020. url: https:
//github.com/implementation-matters/code-for-paper (cit. on p. 4).

[Fairbank and Alonso 2012] Michael Fairbank and Eduardo Alonso. “Value-
gradient learning”. In: IJCNN. IEEE, 2012, pp. 1–8 (cit. on pp. 19, 34).

[A. M. Farahmand et al. 2017] Amir Massoud Farahmand, André Barreto, and
Daniel Nikovski. “Value-Aware Loss Function for Model-based Reinforcement
Learning”. In: Proceedings of the 20th International Conference on Arti�cial Intel-

ligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA.
Ed. by Aarti Singh and Xiaojin (Jerry) Zhu. Vol. 54. Proceedings of Machine
Learning Research. PMLR, 2017, pp. 1486–1494 (cit. on p. 17).

[A.-m. Farahmand 2018] Amir-massoud Farahmand. “Iterative Value-Aware Model
Learning”. In: NeurIPS. 2018, pp. 9090–9101. url: http://papers.nips.cc/paper/
8121-iterative-value-aware-model-learning (cit. on pp. 9, 17).

[Feinberg et al. 2018] Vladimir Feinberg et al. “Model-Based Value Estimation for
E�cient Model-Free Reinforcement Learning”. In: (Feb. 2018). url: http://arxiv.
org/abs/1803.00101 (cit. on p. 52).

[François-Lavet et al. 2018] Vincent François-Lavet, Peter Henderson, Riashat Is-
lam, Marc G Bellemare, and Joelle Pineau. “An Introduction to Deep Reinforce-
ment Learning”. In: Foundations and Trends in Machine Learning 11.3-4 (2018),
pp. 219–354. doi: 10.1561/2200000071 (cit. on pp. 1, 2).

[Fujimoto et al. 2018] Scott Fujimoto, Herke van Hoof, and David Meger. “Address-
ing Function Approximation Error in Actor-Critic Methods”. In: ICML. Vol. 80.
Proceedings of Machine Learning Research. PMLR, 2018, pp. 1582–1591. url:
http://proceedings.mlr.press/v80/fujimoto18a.html (cit. on pp. 47, 50, 53).

[Gibbs and Su 2002] Alison L Gibbs and Francis Edward Su. “On Choosing and Bound-
ing Probability Metrics”. In: International Statistical Review 70.3 (2002), pp. 419–
435. doi: 10.1111/j.1751-5823.2002.tb00178.x. url: https://onlinelibrary.wiley.
com/doi/abs/10.1111/j.1751-5823.2002.tb00178.x (cit. on p. 17).

[I. Goodfellow et al. 2016] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. http://www.deeplearningbook.org. MIT Press, 2016 (cit. on p. 5).

[I. J. Goodfellow et al. 2016] Ian J. Goodfellow, Yoshua Bengio, and Aaron C.
Courville. Deep Learning. Adaptive computation and machine learning. MIT
Press, 2016 (cit. on p. 33).

https://github.com/implementation-matters/code-for-paper
https://github.com/implementation-matters/code-for-paper
http://papers.nips.cc/paper/8121-iterative-value-aware-model-learning
http://papers.nips.cc/paper/8121-iterative-value-aware-model-learning
http://arxiv.org/abs/1803.00101
http://arxiv.org/abs/1803.00101
https://doi.org/10.1561/2200000071
http://proceedings.mlr.press/v80/fujimoto18a.html
https://doi.org/10.1111/j.1751-5823.2002.tb00178.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2002.tb00178.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2002.tb00178.x
http://www.deeplearningbook.org

74

REFERENCES

[Hafner et al. 2020] Danijar Hafner, Timothy P Lillicrap, Jimmy Ba, and Moham-
mad Norouzi. “Dream to Control: Learning Behaviors by Latent Imagination”.
In: ICLR. OpenReview.net, 2020 (cit. on pp. 3, 33, 34, 39).

[Heess et al. 2015] Nicolas Heess et al. “Learning Continuous Control Policies by
Stochastic Value Gradients”. In: NIPS. 2015, pp. 2944–2952. url: http://papers.
nips.cc/paper/5796-learning-continuous-control-policies-by-stochastic-value-
gradients (cit. on pp. 3, 16, 31).

[Hein et al. 2017] Daniel Hein et al. “A benchmark environment motivated by indus-
trial control problems”. In: SSCI. IEEE, 2017, pp. 1–8. isbn: 9781538627259. doi:
10.1109/SSCI.2017.8280935. url: http://ieeexplore.ieee.org/document/8280935/
(cit. on p. 62).

[Henderson et al. 2018] Peter Henderson et al. “Deep reinforcement learning that
matters”. In: AAAI. AAAI Press, 2018, pp. 3207–3214 (cit. on p. 4).

[Hessel et al. 2019] Matteo Hessel, Hado van Hasselt, Joseph Modayil, and David
Silver. “On Inductive Biases in Deep Reinforcement Learning”. In: (July 2019).
url: http://arxiv.org/abs/1907.02908 (cit. on p. 6).

[Hochreiter 1998] Sepp Hochreiter. “The vanishing gradient problem during learn-
ing recurrent neural nets and problem solutions”. In: International Journal of

Uncertainty, Fuzziness and Knowlege-Based Systems 6.2 (Nov. 1998), pp. 107–116.
issn: 02184885. doi: 10.1142/S0218488598000094 (cit. on p. 32).

[Ilyas et al. 2020] Andrew Ilyas et al. “A Closer Look at Deep Policy Gradients”. In:
ICLR. OpenReview.net, 2020 (cit. on pp. 4, 29, 35, 37).

[Islam et al. 2017] Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina
Precup. “Reproducibility of benchmarked deep reinforcement learning tasks for
continuous control”. In: CoRR abs/1708.04133 (2017) (cit. on p. 4).

[Janner et al. 2019a] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine.
“When to trust your model: model-based policy optimization”. In: NeurIPS. 2019,
pp. 12498–12509 (cit. on p. 16).

[Janner et al. 2019b] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine.
“When to Trust Your Model: Model-Based Policy Optimization”. In: NeurIPS. 2019,
pp. 12498–12509 (cit. on pp. 32, 52).

[Kautsky et al. 1985] J Kautsky, N K Nichols, and P V A N Dooren. “Robust pole
assignment in linear state feedback”. In: International Journal of Control 41.5
(1985), pp. 1129–1155. doi: 10.1080/0020718508961188. url: https://doi.org/10.
1080/0020718508961188 (cit. on p. 25).

http://papers.nips.cc/paper/5796-learning-continuous-control-policies-by-stochastic-value-gradients
http://papers.nips.cc/paper/5796-learning-continuous-control-policies-by-stochastic-value-gradients
http://papers.nips.cc/paper/5796-learning-continuous-control-policies-by-stochastic-value-gradients
https://doi.org/10.1109/SSCI.2017.8280935
http://ieeexplore.ieee.org/document/8280935/
http://arxiv.org/abs/1907.02908
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1080/0020718508961188
https://doi.org/10.1080/0020718508961188
https://doi.org/10.1080/0020718508961188

REFERENCES

75

[Le et al. 2019] Hoang M. Le, Cameron Voloshin, and Yisong Yue. “Batch Policy Learn-
ing under Constraints”. In: 36th International Conference on Machine Learning,

ICML 2019 2019-June (Mar. 2019), pp. 6589–6600. url: http://arxiv.org/abs/1903.
08738 (cit. on p. 16).

[Levine and Abbeel 2014] Sergey Levine and Pieter Abbeel. “Learning neural net-
work policies with guided policy search under unknown dynamics”. In: NIPS.
2014, pp. 1071–1079 (cit. on p. 16).

[Lillicrap et al. 2016] Timothy P Lillicrap et al. “Continuous control with deep rein-
forcement learning”. In: 4th International Conference on Learning Representations,

ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. Ed.
by Yoshua Bengio and Yann LeCun. 2016. url: http://arxiv.org/abs/1509.02971
(cit. on pp. 50, 56).

[Liu et al. 2021] Zhuang Liu, Xuanlin Li, Bingyi Kang, and Trevor Darrell. “Regu-
larization Matters for Policy Optimization - An Empirical Study on Continu-
ous Control”. In: International Conference on Learning Representations (2021). url:
https://github.com/xuanlinli17/iclr2021_rlreg (cit. on p. 4).

[Ângelo G. Lovatto et al. 2020] Ângelo G. Lovatto, Thiago P. Bueno, Denis D. Mauá,
and Leliane N. de Barros. “Decision-aware model learning for actor-critic meth-
ods: when theory does not meet practice”. In: Proceedings on "I Can’t Believe It’s

Not Better!" at NeurIPS Workshops. Vol. 137. Proceedings of Machine Learning
Research. PMLR, Dec. 2020, pp. 76–86. url: http://proceedings.mlr.press/v137/
lovatto20a.html (cit. on p. 4).

[Ângelo Gregório Lovatto et al. 2021] Ângelo Gregório Lovatto, Thiago Pereira
Bueno, and Leliane Nunes de Barros. “Gradient estimation in model-based
reinforcement learning: a study on linear quadratic environments”. In: Intelligent

Systems. Ed. by André Britto and Karina Valdivia Delgado. Cham: Springer
International Publishing, 2021, pp. 33–47. isbn: 978-3-030-91702-9 (cit. on p. 6).

[Mnih et al. 2015] Volodymyr Mnih et al. “Human-level control through deep rein-
forcement learning”. In: nature 518.7540 (2015), pp. 529–533 (cit. on p. 15).

[Moerland et al. 2020] Thomas M. Moerland, Joost Broekens, and Catholijn M.
Jonker. “Model-based Reinforcement Learning: A Survey”. In: Proceedings of the

International Conference on Electronic Business (ICEB) 2018-Decem (June 2020),
pp. 421–429. url: http://arxiv.org/abs/2006.16712 (cit. on p. 2).

[Mohamed et al. 2020] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and An-
driy Mnih. “Monte Carlo Gradient Estimation in Machine Learning”. In: J. Mach.

Learn. Res. 21 (2020), 132:1–132:62 (cit. on p. 31).

[Myung 2003] In Jae Myung. “Tutorial on maximum likelihood estimation”. In: Journal

of Mathematical Psychology 47.1 (Feb. 2003), pp. 90–100. issn: 00222496. doi: 10.
1016/S0022-2496(02)00028-7 (cit. on p. 17).

http://arxiv.org/abs/1903.08738
http://arxiv.org/abs/1903.08738
http://arxiv.org/abs/1509.02971
https://github.com/xuanlinli17/iclr2021_rlreg
http://proceedings.mlr.press/v137/lovatto20a.html
http://proceedings.mlr.press/v137/lovatto20a.html
http://arxiv.org/abs/2006.16712
https://doi.org/10.1016/S0022-2496(02)00028-7
https://doi.org/10.1016/S0022-2496(02)00028-7

76

REFERENCES

[Pardo et al. 2018] Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormu-
shev. “Time Limits in Reinforcement Learning”. In: ICML. Vol. 80. Proceedings of
Machine Learning Research. PMLR, 2018, pp. 4042–4051 (cit. on p. 10).

[Paszke et al. 2019] Adam Paszke et al. “PyTorch: An Imperative Style, High-
Performance Deep Learning Library”. In: Advances in Neural Information

Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035. url: http :
//papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf (cit. on pp. 27, 62).

[Polydoros and Nalpantidis 2017] Athanasios S Polydoros and Lazaros Nalpan-
tidis. “Survey of Model-Based Reinforcement Learning: Applications on Robotics”.
In: Journal of Intelligent and Robotic Systems 86.2 (2017), pp. 153–173. doi: 10.1007/
s10846-017-0468-y. url: https://doi.org/10.1007/s10846-017-0468-y (cit. on p. 2).

[Rajeswaran et al. 2017] Aravind Rajeswaran, Kendall Lowrey, Emanuel V
Todorov, and Sham M Kakade. “Towards Generalization and Simplicity in
Continuous Control”. In: Advances in Neural Information Processing Systems

30. Ed. by I Guyon et al. Curran Associates, Inc., 2017, pp. 6550–6561. url:
http://papers.nips.cc/paper/7233- towards-generalization-and-simplicity- in-
continuous-control.pdf (cit. on p. 25).

[Recht 2019] Benjamin Recht. “A Tour of Reinforcement Learning: The View from
Continuous Control”. In: Annual Review of Control, Robotics, and Autonomous

Systems 2.1 (May 2019), pp. 253–279. issn: 2573-5144. doi: 10 . 1146 / annurev -
control-053018-023825. url: http://arxiv.org/abs/1806.09460 (cit. on pp. 6, 22).

[Ruder 2016] Sebastian Ruder. “An overview of gradient descent optimization algo-
rithms”. In: CoRR abs/1609.04747 (2016) (cit. on pp. 15, 16).

[Santamaría et al. 1997] Juan Carlos Santamaría, Richard S Sutton, and Ashwin
Ram. “Experiments with Reinforcement Learning in Problems with Continuous
State and Action Spaces”. In: Adapt. Behav. 6.2 (1997), pp. 163–217 (cit. on p. 5).

[Schulman, Heess, et al. 2015a] John Schulman, Nicolas Heess, Theophane Weber,
and Pieter Abbeel. “Gradient estimation using stochastic computation graphs”.
In: NIPS. 2015, pp. 3528–3536 (cit. on pp. 2, 31).

[Schulman, Heess, et al. 2015b] John Schulman, Nicolas Heess, Theophane Weber,
and Pieter Abbeel. “Gradient Estimation Using Stochastic Computation Graphs”.
In: Advances in Neural Information Processing Systems 28: Annual Conference on

Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Que-

bec, Canada. Ed. by Corinna Cortes, Neil D Lawrence, Daniel D Lee, Masashi
Sugiyama, and Roman Garnett. 2015, pp. 3528–3536. url: http://papers.nips.cc/
paper/5899-gradient-estimation-using-stochastic-computation-graphs (cit. on
pp. 18, 19).

http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/s10846-017-0468-y
https://doi.org/10.1007/s10846-017-0468-y
https://doi.org/10.1007/s10846-017-0468-y
http://papers.nips.cc/paper/7233-towards-generalization-and-simplicity-in-continuous-control.pdf
http://papers.nips.cc/paper/7233-towards-generalization-and-simplicity-in-continuous-control.pdf
https://doi.org/10.1146/annurev-control-053018-023825
https://doi.org/10.1146/annurev-control-053018-023825
http://arxiv.org/abs/1806.09460
http://papers.nips.cc/paper/5899-gradient-estimation-using-stochastic-computation-graphs
http://papers.nips.cc/paper/5899-gradient-estimation-using-stochastic-computation-graphs

REFERENCES

77

[Schulman, Moritz, et al. 2016] John Schulman, Philipp Moritz, Sergey Levine,
Michael I. Jordan, and Pieter Abbeel. “High-dimensional continuous control
using generalized advantage estimation”. In: ICLR (Poster). 2016 (cit. on p. 63).

[Silver et al. 2014] David Silver, Guy Lever, Deepmind Technologies, G U Y Lever,
and U C L Ac. “Deterministic Policy Gradient (DPG)”. In: Proceedings of the 31st

International Conference on Machine Learning 32.1 (Jan. 2014), pp. 387–395. issn:
1938-7228. url: http://proceedings.mlr.press/v32/silver14.html (cit. on pp. 6, 33,
47).

[Sutton and Barto 2018] Richard S Sutton and Andrew G Barto. Reinforce-

ment Learning: An Introduction. Second. The MIT Press, 2018. url: http : / /
incompleteideas.net/book/the-book-2nd.html (cit. on pp. 1, 63).

[Szepesvári 2010] Csaba Szepesvári. Algorithms for Reinforcement Learning. Synthe-
sis Lectures on Arti�cial Intelligence and Machine Learning. Morgan & Clay-
pool Publishers, 2010. doi: 10.2200/S00268ED1V01Y201005AIM009. url: https:
//doi.org/10.2200/S00268ED1V01Y201005AIM009 (cit. on pp. 1, 9, 11).

[Tits and Yang 1996] A L Tits and Yaguang Yang. “Globally convergent algorithms
for robust pole assignment by state feedback”. In: IEEE Transactions on Automatic

Control 41.10 (1996), pp. 1432–1452. doi: 10.1109/9.539425 (cit. on p. 25).

[Todorov and Weiwei Li 2005] E Todorov and Weiwei Li. “A generalized iterative
LQG method for locally-optimal feedback control of constrained nonlinear stochas-
tic systems”. In: Proceedings of the 2005, American Control Conference, 2005. 2005,
pp. 300–306. doi: 10.1109/ACC.2005.1469949 (cit. on p. 5).

[Emanuel Todorov 2006] Emanuel Todorov. “Optimal control theory”. In: Bayesian

brain: probabilistic approaches to neural coding (2006), pp. 269–298 (cit. on pp. 5,
11).

[Emanuel Todorov et al. 2012] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mu-
JoCo: A physics engine for model-based control”. In: IEEE International Con-

ference on Intelligent Robots and Systems. IEEE, Oct. 2012, pp. 5026–5033. isbn:
9781467317375. doi: 10.1109/IROS.2012.6386109. url: http://ieeexplore.ieee.org/
document/6386109/ (cit. on pp. 5, 26).

[Tsiamis and Pappas 2021] Anastasios Tsiamis and George J Pappas. “Linear Systems
can be Hard to Learn”. In: CoRR abs/2104.0 (2021) (cit. on pp. 6, 62).

[Richard B Vinter and R. Vinter 2010] Richard B Vinter and RB Vinter. Optimal

control. Springer, 2010 (cit. on p. 5).

[Zabczyk 1992] Jerzy Zabczyk. Mathematical control theory - an introduction. Systems
& Control: Foundations & Applications. Birkhäuser, 1992 (cit. on p. 23).

http://proceedings.mlr.press/v32/silver14.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.2200/S00268ED1V01Y201005AIM009
https://doi.org/10.2200/S00268ED1V01Y201005AIM009
https://doi.org/10.2200/S00268ED1V01Y201005AIM009
https://doi.org/10.1109/9.539425
https://doi.org/10.1109/ACC.2005.1469949
https://doi.org/10.1109/IROS.2012.6386109
http://ieeexplore.ieee.org/document/6386109/
http://ieeexplore.ieee.org/document/6386109/

	Introduction
	Model-based Reinforcement Learning
	Stochastic Value Gradient methods
	When theory doesn't meet practice
	Linear Quadratic Gaussian environments
	Contributions of this thesis

	Background
	Reinforcement Learning
	Linear Quadratic Gaussian regulator
	Problem statement
	Solutions by dynamic programming

	Stochastic Value Gradient methods
	Model learning
	Value gradient estimation

	The LQG Benchmark
	Randomized LQG instances
	Transition dynamics
	Cost function
	Initial state distribution

	Randomized linear policies
	Analytical solutions
	Visualizations
	Environment diversity
	Policy diversity

	Discussion

	Value Gradient Estimation
	Gradient estimation in SVG methods
	The MAAC estimator
	The DPG estimator

	Proposed analysis
	Empirical results
	Gradient estimation for fixed policies
	Impact of gradient quality on policy optimization

	Discussion

	Model Learning
	Model-based prediction
	Model learning in isolation
	Model-based vs. value-based prediction
	Improving value-based prediction using MAGE
	Model-based prediction roundup

	Model-based control

	Conclusions & Frontiers
	LQG derivations
	Extra model-based control results
	More state and action variables
	Model-based control with perfect models

	References

