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Resumo

COELHO, R. S. The k-hop connected dominating set problem: approximation
algorithms and hardness results. 2017. 86 f. Tese (Doutorado) - Instituto de Mate-
mática e Estatística, Universidade de São Paulo, São Paulo, 2017.

Seja G um grafo conexo e k um inteiro positivo. Um subconjunto D de vértices de G
é um conjunto dominante conexo de k-saltos se o subgrafo de G induzido por D é conexo
e se, para todo vértice v em G, existe um vértice u em D a uma distância não maior do
que k de v. Estudamos neste trabalho o problema de se encontrar um conjunto dominante
conexo de k-saltos com cardinalidade mínima (Mink-CDS).

Provamos que Mink-CDS é NP-difícil em grafos planares bipartidos com grau má-
ximo 4. Mostramos que Mink-CDS é APX-completo em grafos bipartidos com grau
máximo 4. Apresentamos limiares de inaproximabilidade para Mink-CDS para grafos
bipartidos e (1, 2)-split, sendo que um desses é expresso em função de um parâmetro
independente da ordem do grafo. Também discutimos a complexidade computacional do
problema de se computar tal parâmetro.

No lado positivo, propomos um algoritmo de aproximação para Mink-CDS cuja ra-
zão de aproximação é melhor do que a que se conhecia para esse problema. Finalmente,
quando k = 1, apresentamos dois novos algoritmos de aproximação para a versão do
problema com pesos nos vértices, sendo que um deles restrito a classes de grafos com
um número polinomial de separadores minimais. Além disso, discutimos uma formulação
de programação linear inteira para essa versão do problema e provamos resultados po-
liédricos a respeito de algumas das desigualdades que constituem o politopo associado à
formulação.

Palavras-chave: algoritmos de aproximação, complexidade computacional, conjunto do-
minante conexo de k-saltos, separador k-disruptivo minimal, limiar de inaproximabilidade,
poliedro
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Abstract

COELHO, R. S. The k-hop connected dominating set problem: approxima-
tion algorithms and hardness results. 2017. 86 pp. Tese (Doutorado) - Instituto
de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2017.

Let G be a connected graph and k be a positive integer. A vertex subset D of G is a
k-hop connected dominating set if the subgraph of G induced by D is connected, and for
every vertex v in G, there is a vertex u in D such that the distance between v and u in G is
at most k. We study the problem of finding a minimum k-hop connected dominating set of
a graph (Mink-CDS). We prove that Mink-CDS is NP-hard on planar bipartite graphs of
maximum degree 4. We also prove that Mink-CDS is APX-complete on bipartite graphs
of maximum degree 4. We present inapproximability thresholds for Mink-CDS on bipar-
tite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the
input graph which is not a function of its number of vertices. We also discuss the complex-
ity of computing this graph parameter. On the positive side, we show an approximation
algorithm for Mink-CDS. When k = 1, we present two new approximation algorithms
for the weighted version of the problem, one of them restricted to graphs with a poly-
nomially bounded number of minimal separators. Finally, also for the weighted variant
of the problem where k = 1, we discuss an integer linear programming formulation and
conduct a polyhedral study of its associated polytope.

Keywords: approximation algorithms, computational complexity, k-hop connected dom-
inating set, k-disruptive separator, inapproximability threshold, polyhedra
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Chapter 1

Introduction

A dominating set of a graph G is a vertex subset D such that, for every vertex v

outside D, there is a vertex u in D adjacent to v. Graph domination, that is, the study

of dominating sets, has become one of the most effervescent themes in graph theory. To

get a sense of its explosive growth, in the past four years alone, Google Scholar registered

thousands of publications on this topic; indeed, there have been even whole books devoted

to it [HHS97, HHS98, DW12]. The success of the theory of graph domination is partly due

to its widespread applicability. Throughout the years, dominating sets have been used to

model problems arising in such diverse domains like social network theory, combinatorial

game theory and bioinformatics [HHS98]. The history of graph domination stretches back

to the early sixties, when the concept of a dominating set was first explicitly formulated

by Ore [Ore62] and Berge [Ber62]. Since then, the subject of domination has branched

out into countless variations such as independent domination, acyclic domination, total

domination and paired domination just to name a few.

This thesis is centered around a particular type of domination, namely k-hop connected

domination. Formally, a k-hop connected dominating set of a graphG, where k is a positive

integer, is any vertex subset D that induces a connected subgraph of G and such that,

for every vertex v of G, there is a vertex u in D within distance at most k from v, or, in

other words, u is at most k edges or “hops” apart from v in G. From this point on, we

1



2 INTRODUCTION 1.0

refer to 1-hop connected dominating sets shortly as connected dominating sets.

Introduced by Sampathkumar and Walikar [SW79], connected dominating sets re-

ceived little attention in the beginning. At the “applied” end of the academic research

spectrum, this situation started to change around the late nineties with the populariza-

tion of wireless networking. Unlike classical networks with a wired rigid infrastructure,

wireless networks, by their very nature, lack a physical backbone to enforce some measure

of topology control. To circumvent this problem, experts have come up with the idea of

a virtual backbone , that is, a cluster of nodes in the network that work cooperatively

in order to reduce overall routing costs and perform secondary tasks such as attenuat-

ing signal interference and monitoring battery power consumption (which is crucial, for

example, in the case of sensor networks deployed in remote regions).

Broadly speaking, virtual backbones must satisfy three conditions: (i) every node not

in the virtual backbone should reach some node in the virtual backbone through a short

sequence of relay nodes; (ii) for every pair of nodes in the virtual backbone, there should

be a path entirely contained within the virtual backbone linking them together, that

is, the virtual backbone has to induce a connected “subnetwork” of the original network

and (iii) virtual backbones should be small to minimize overhead. Unsurprisingly, k-hop

connected dominating sets turned out to be an appropriate graph-theoretical abstraction

for representing virtual backbones combinatorially. This conceptual bond between virtual

backbones and k-hop connected dominating sets has spawned (and continues to do so)

a vast body of application-oriented works, most of which thoroughly discussed in the

surveys [BDTC05, YWWY13, YYSS15].

Shifting now the narrative towards the theoretical side of the story, connected dom-

inating sets, as mathematical objects interesting in their own right, have also resonated

within the combinatorial optimization community. When one phrases, in the language

of graph theory, the challenge of locating virtual backbones in wireless networks, one is

faced with the minimum weight k-hop connected dominating set problem (Mink-WCDS):

given a vertex-weighted graph G, that is, a graph whose vertices have positive integers
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(or weights) assigned to them, the objective is to find a minimum weight k-hop connected

dominating set of G, that is, a k-hop connected dominating set D of G such that the sum

of the weights of the vertices in D is minimum. We write Mink-CDS for the unweighted

variant of the problem, and, when k = 1, we write simply Min(W)CDS. Throughout

the text, whenever the acronym Mink-(W)CDS is used in this manner, that is, without

specific mention to the value of k, then k should be read as any fixed positive integer.

After the release of the first edition of Garey and Jonhson’s seminal “Computers

and Intractability” book [GJ79], there was a surge of papers [PLH83, BK85, WFP85,

MB87, DM88, CCJ90, CS90, AR92, Kei93] dedicated to the investigation of the com-

putational tractability and NP-hardness of MinCDS on special classes of graphs such

as bipartite graphs, co-comparability graphs, permutation graphs, planar graphs and

so on. Subsequent to these developments, thanks to the consolidation of the field of

approximation algorithms over the past decades, the approximability of MinCDS has

been, time and time again, the target of numerous works [GK98, GK99, RDJ+04, DH05,

CC08, DGP+08, GWZ+10, CACdVK+16]. Finally, in the last six years, some authors

[SdCL11, FW12, GLdCS14] have also carried out computational experiments with inte-

ger linear programming (ILP) formulations for MinCDS.

A panoramic view, however, of the literature on Mink-CDS uncovers some discrepan-

cies. Whereas Mink-CDS has been fertile ground for research in applied areas, there is a

limited amount of papers that address Mink-CDS, when k ≥ 2, from the approximability

(especially in the general case) and computational hardness perspectives, as opposed to

MinCDS. It is precisely this contrast that has motivated us to work on this problem.

Specifically, we were driven mainly by the following questions:

1. Can we extend to Mink-CDS some of the insights that were proven fruitful in the

design of approximation algorithms for MinCDS?

2. Does Mink-CDS become easier (in regard to its approximability) when restricted to

graphs with small diameter (say k+ 1)? (Note that Mink-CDS is trivial on graphs
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with diameter at most k since, in such graphs, every single vertex is an optimal

solution.)

3. Does the inapproximability threshold for Mink-CDS, under a reasonable complexity

assumption, depend on k? To put it differently: does the approximation hardness

of Mink-CDS vary when k grows?

4. Is Mink-CDS, on general graphs, amenable to a polyhedral study? In other words,

can we, for instance, characterize all graphs G for which some natural associated

polyhedron (say the convex hull of the incidence vectors of k-hop connected domi-

nating sets of G) is full-dimensional? Can we find strong valid inequalities for this

polyhedron and, furthermore, can we prove sufficient and necessary conditions for

these inequalities to be facet-defining?

In what follows we present high-level answers to the aforementioned questions:

1. It appears that some of the techniques that have yielded approximation algorithms

for MinCDS are not very easily adaptable to Mink-CDS when k ≥ 2. Actually, even

when these techniques do apply, the approximation algorithms that they produce

seem to have poorer performance guarantees (in comparison with the approxima-

tions for MinCDS). In Chapter 5, we attempt to argue the reasons for that. On

a more positive note, also in Chapter 5, we prove a sort of “meta-approximation”

result which says that every approximation for MinCDS can be converted into

an approximation for Mink-CDS, for every k ≥ 2, at the expense of a worsened

performance guarantee.

2. We answer this question for k = 1 in an asymptotic sense, that is, we prove, in

Chapter 6, that the inapproximability threshold for MinCDS on graphs with di-

ameter 2 is, asymptotically speaking, the same as the one for MinCDS on general

graphs.
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3. We show, in Chapter 6, that MinCDS and Mink-CDS for all k ≥ 2 share the same

inapproximability threshold, and it is independent of k.

4. We answer these questions partially for k = 1 in Chapter 4.

During the development of this work, we presented some of our results in confer-

ences [CMW15, CW16] and, more recently, we had a paper [CMW17] accepted in the

Journal of Combinatorial Optimization, already available online.

1.1 Organization of the thesis

The remainder of this thesis is organized as follows. In Chapter 2, we introduce most of

the notation and terminology used throughout our work. In Chapter 3, we give an overview

of the literature on Mink-CDS and we also list our contributions and discuss how they

relate to some of the known results for the problem. We conduct a polyhedral study for

MinCDS in Chapter 4. After that, in Chapter 5, we present approximation algorithms for

Mink-CDS and, in Chapter 6, we compare them to some of our own results concerning

approximation lower bounds. Lastly, in Chapter 7, we present concluding remarks and

suggestions of avenues for future research.
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Chapter 2

Preliminaries

In this chapter, we introduce basic notation and terminology used throughout the

thesis. We gather them in separate sections according to the subject under discussion.

2.1 General notation and terminology

We assume that the reader is familiar with asymptotic notation and with some core

concepts in computational complexity theory such as decision problems, polynomial-time

reductions, polynomial-time computable functions, polynomial-time decidability of sets

and well-known complexity classes. When in doubt, the reader may look into [GJ79,

AB09].

We use mostly standard notation for set theory. Henceforth, the word set means any

collection of distinct (that is, no repetitions allowed) elements. We denote by Z, Q and

R the sets of integer, rational and real numbers, respectively. Moreover, for every A ⊆ R,

we define A>0 = A \ {x ∈ A : x ≤ 0}. We also define A≥0 = A>0 ∪ {0} and B = {0, 1}.

For every set W , P(W ) denotes the power set of W , that is, the set of all subsets of W .

For every real-valued function f defined on a set W and every non-empty finite subset

X ⊆ W , we write f(X) as a shorthand for
∑

a∈X f(a). Finally, for every l ∈ Z>0, H(l)

denotes the lth harmonic number, that is, H(l) =
∑l

i=1(1/i).

From now on, the word minimal or maximal (with respect to a certain property) for a

7
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set means minimal or maximal by inclusion. For every setW and every subset C ⊆ P(W ),

a tranversal of C is a subset T ⊆ W such that T has non-empty intersection with every

element of C.

2.2 Graph theory

In the course of this work, a graph G is an ordered pair (V,E), where V , a finite set,

is called the vertex set of G and E, a set of two-element subsets of V , is called the edge

set of G. Sometimes we also denote the vertex and edge sets of G by V (G) and E(G),

respectively. The graph whose vertex set is empty is called the null graph . An edge

between two vertices v and u is denoted by vu and we say that the edge vu is incident

with v and u or that v and u are adjacent . We also say that v and u are the endpoints

of vu. A graph H is said to be a subgraph of G, denoted by H ⊆ G, if V (H) ⊆ V (G)

and E(H) ⊆ E(G). In this case, we also say that G is a supergraph of H. We write

H = G if H ⊆ G and G ⊆ H.

For any X, Y ⊆ V (G), we define EG(X, Y ) = {vu ∈ E(G) : v ∈ X, u ∈ Y }. We also

define δG(X) = EG(X, V (G) \X) and EG(X) = EG(X,X). If the graph G is clear from

context, we omit the subscript G when using δG(·), EG(·, ·) and EG(·). Furthermore, we

write G[X] to denote the subgraph of G induced by X, namely the graph (X,E(X)).

We also say that X induces G[X]. We write G−X to denote the graph produced by the

removal of X from G, that is, (V (G)\X,E(G)\(δ(X)∪E(X))). Similarly, for F ⊆ E(G),

G− F denotes the graph (V (G), E(G) \ F ).

A path in a graph G is a sequence of distinct vertices such that every two consecutive

vertices in the sequence are adjacent. A (v, u)-path is a path that starts at vertex v and

ends at vertex u. The set of internal vertices of a (v, u)-path is the set that contains all

the vertices in the path except v and u. We say that two or more paths are vertex-disjoint

if they do not have vertices in common (except, possibly, the first and last vertices). A

cycle is a closed path, that is, a path whose first and last vertices coincide. A chord in
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a cycle is an edge joining two non-consecutive vertices in the cycle. A chordless cycle

is a cycle without chords. An induced cycle is a chordless cycle that is induced in G by

some vertex subset. The length of a path is equal to the length of its sequence minus 1.

A graph G is said to be connected if there is a path from v to u in G for any

v, u ∈ V (G). A graph is said to be disconnected if it is not connected. A component

of G is a connected subgraph H ⊆ G such that, for every connected H ′ ⊆ G, H ⊆ H ′

impliesH = H ′. Note that a graph is connected if and only if it has exactly one component.

Throughout this thesis, the null graph is considered to be disconnected, since it has zero

components.

A shortest path between two vertices v and u in the same component of a graph G

is a path of minimum length over all paths between v and u in G. For any two vertices v

and u in G, we denote by distG(v, u) the length of a shortest path from v to u in G when

there is one. If v and u belong to different components, then we define distG(v, u) = ∞.

When no confusion arises, we omit the subscript G in distG(·, ·). The diameter of G,

denoted by diam(G), is defined as maxv,u∈V (G) dist(v, u).

Let k ∈ Z>0. We denote by Gk the kth power of G, which is defined as the graph with

vertex set V (G) where two vertices are adjacent if and only if they are within distance at

most k in G, that is, Gk = (V (G), {vu : distG(v, u) ≤ k}). For every v ∈ V (G), the open

k-neighborhood (or open neighborhood when k = 1) of v in G, denoted by Nk
G(v)

(or NG(v) when k = 1), is defined as {u ∈ V (G) : dist(v, u) ≤ k} \ {v}. The closed

k-neighborhood (or closed neighborhood when k = 1) of v in G, denoted by Nk
G[v],

is defined as Nk
G(v) ∪ {v}. We extend these concepts to arbitrary non-empty subsets of

vertices. For every non-empty X ⊆ V (G), we define Nk
G(X) = (∪v∈XNk

G(v)) \ X and

also Nk
G[X] = Nk

G(X) ∪ X. For any v, u ∈ V (G), if v ∈ Nk
G(u), then we say that v is a

k-neighbor (or neighbor when k = 1) of u. We say that a vertex v is k-universal (or

simply universal if k = 1) in G if Nk
G[v] = V (G). As usual, we drop the subscript G

when the graph G is apparent.

A k-hop dominating set (k-DS for short or DS if k = 1) of a graph G is a set
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D ⊆ V (G) such that Nk[D] = V (G). If D is a k-DS of G and G[D] is connected, then we

say that D is a k-hop connected dominating set (k-CDS for short or CDS if k = 1) of

G. From this point onwards, k denotes any fixed positive integer. For simplicity, if D is a

(C)DS of G, then we call D a (connected) dominating set. For any undefined terminology

and notation, we refer the reader to [Die06]. Along the text, various names of classes of

graphs are mentioned and, in order to keep the presentation streamlined, we have decided

to omit most of their definitions. If necessary, the reader should consult [BLS99, GYZ13]

or the references cited in the following chapters.

2.3 Polyhedral theory

Unless otherwise stated, all vectors mentioned in this thesis are column real vectors.

If v is a vector, then we denote by vT the transpose of v. Sometimes we omit the

superscript T that indicates the transpose of a vector to avoid cluttering the notation.

Let n ∈ Z>0. Let us define 0n and 1n to be the vectors all of whose n entries are zeroes and

ones, respectively. Sometimes we write 0 and 1 when n is implicit. We say that vectors

v1, . . . , vl ∈ Rn are affine-independent if the system of linear equations
∑l

i=1 λiv
i = 0

and
∑l

i=1 λi = 0 over R, where λ1, . . . , λl are the unknowns, has exactly one solution,

namely λi = 0 for i ∈ {1, . . . , l}. For every v ∈ Rn and i ∈ {1, . . . , n}, we denote by vi the

ith entry of v. A convex combination of the vectors v1, . . . , vl is any vector expressed

as
∑l

i=1 γiv
i where γ1, . . . , γl ∈ R≥0 and

∑l
i=1 γi = 1.

A halfspace in Rn is a set of the form {x ∈ Rn : aTx ≥ b}, where a ∈ Rn \ {0} and

b ∈ R. A set of the form {x ∈ Rn : aTx = b} is called a hyperplane in Rn. A polyhedron

P in Rn is any set in the form {x ∈ Rn : Dx ≥ c}, where D is a matrix and c is a vector of

appropriate dimensions. We say that a polyhedron P has dimension at least (at most) `

if there exists at least (at most) ` + 1 affine-independent vectors in P . We denote the

dimension of P by dim(P ).

The convex hull of a finite set of vectors W ⊆ Rn, denoted by conv(W ), is the set
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of all vectors in Rn that can be written as convex combinations of vectors in X. Notice

that conv(W ), for any finite set W ⊆ Rn, is a polyhedron. Furthermore, we say that a

polyhedron P is a polytope if there exists a finite set W ⊆ Rn such that P = conv(W ).

Consider π ∈ Rn \ {0}, π0 ∈ R and a polyhedron P . An inequality πTx ≥ π0 is

said to be valid for P if P ⊆ {x ∈ Rn : πTx ≥ π0}. A vector x∗ ∈ Rn violates the

inequality πTx ≥ π0 if πTx∗ < π0. If πTx ≥ π0 is valid for P , then a set of the form

{x ∈ P : πTx = π0} is said to be a face of P . In this case, we also say that πTx ≥ π0

induces a face of P . Observe that every face of a polyhedron is also a polyhedron. A

face F of P is said to be a proper face if ∅ 6= F 6= P . Furthermore, F is called a facet

if dim(F ) = dim(P ) − 1. In other words, a facet is a maximal proper face of P . Finally,

if {x ∈ P : πTx = π0} is a facet of P , then we say that the inequality πTx ≥ π0 defines

(or induces) a facet of P . For further details concerning polyhedral theory, the reader is

referred to [Sch86, CCZ14].

2.4 Optimization problems

In this work, we address mainly optimization problems. An optimization problem

Π is defined as a quadruple (IΠ,SOLΠ,mΠ, goalΠ), where:

1. IΠ is the set of instances of Π.

2. SOLΠ is the feasible solution function that associates to every x ∈ IΠ the set

of feasible solutions SOLΠ(x) of x.

3. mΠ is the measure function , defined for pairs (x, y) such that x ∈ IΠ and y ∈

SOLΠ(x). For every such pair, mΠ(x, y) is a positive integer which is the value of

the feasible solution y of the instance x of Π.

4. goalΠ ∈ {max,min} determines if Π is a maximization or a minimization problem.

For every x ∈ IΠ, we define OPTΠ(x) = goalΠ{mΠ(x, y) : y ∈ SOLΠ(x)}. Throughout

this thesis, we assume that mΠ is computable in polynomial time. Moreover, we also
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assume that IΠ and SOLΠ(x), for every x ∈ IΠ, are polynomial-time decidable sets.

To briefly illustrate how optimization problems can be formalized within the frame-

work we have just described above, let us consider the maximum weight clique problem

(MaxWClique). In what follows, we define the set of instances, the feasible solution

function, the measure function and the goal of MaxWClique:

(i) IMaxWClique is the set of all ordered pairs (G,w), where G is a graph and w is

function that assigns positive integers to the vertices of G, that is, w : V (G)→ Z>0.

(ii) For every (G,w) ∈ IMaxWClique, SOLMaxWClique(G,w) is the set of all cliques of

G, that is, vertex subsets C of G such that vu ∈ E(G) for every distinct v, u ∈ C.

(iii) For every (G,w) ∈ IMaxWClique and every C ∈ SOLMaxWClique(G,w),mMaxWClique((G,w), C)

is defined as w(C), that is, the sum of the weights of the vertices in C. Recall that

w(C) =
∑

v∈C w(v);

(iv) goalMaxWClique = max.

Henceforth we give all the definitions of optimization problems in a more straightfor-

ward fashion. Finally, it is important to notice that any optimization problem Π has an

associated decision problem, say ΠD, which we call the decision version of Π. If Π is a

minimization problem, then ΠD asks, given ` ∈ Z>0 and x ∈ IΠ, if there is y ∈ SOLΠ(x)

such that mΠ(x, y) ≤ `. Analogously, if Π is a maximization problem, then ΠD is the

decision problem that asks, given ` ∈ Z>0 and x ∈ IΠ, if there is y ∈ SOLΠ(x) such that

mΠ(x, y) ≥ `.

2.5 Approximation algorithms

Let Π be an optimization problem. For every instance x of Π and every feasible so-

lution y of x, the approximation factor (or performance guarantee) of y, denoted by

RΠ(x, y), is defined as the maximum betweenmΠ(x, y)/OPTΠ(x) and OPTΠ(x)/mΠ(x, y).
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We say that y is an r-approximate solution for x if RΠ(x, y) ≤ r. An algorithm A is said

to be an r-approximation algorithm (or an r-approximation for short) for Π if, for

every input instance x of Π, A outputs an r-approximate solution A(x) of x in polyno-

mial time (in the size of x). We should emphasize that r does not need to be a constant;

actually, r can be a function of the size (or of any parameter) of the input instance. If r

is indeed a constant, then we say that A is a constant approximation for Π.

A polynomial-time approximation scheme (PTAS for short) for a problem Π

is a family of algorithms {Aε}ε∈Q>0 such that for every fixed rational ε > 0, Aε is a

(1 + ε)-approximation for Π. We denote by APX the class of optimization problems (or

the approximation class) that have a constant approximation.

We say that an optimization problem Π is APX-complete under L-reductions (or

simply that Π is APX-complete) if Π belongs to APX and there is an L-reduction from

every problem in APX to Π. An L-reduction from an optimization problem ΠA to an-

other optimization problem ΠB is a quadruple (f, g, α, β), where f and g are polynomial-

time computable functions (that is polynomial-time algorithms), and α and β are positive

constants such that the following conditions hold:

(i) If I is an instance of ΠA, then f(I) is an instance of ΠB.

(ii) OPTΠB(f(I)) ≤ αOPTΠA(I) for every instance I of ΠA.

(iii) For every instance I of ΠA and every feasible solution S to f(I) with objective value

mΠB(f(I), S), the algorithm g returns a solution g(S) to I with objective value

mΠA(I, g(S)) such that

|OPTΠA(I)−mΠA(I, g(S))| ≤ β |OPTΠB(f(I))−mΠB(f(I), S)|.

For more information regarding other approximation measures (besides the performance

guarantee), other approximation classes and approximation-preserving reducibilities (be-

sides L-reductions), we direct the reader to [Cre97, APMS+99, CKST99].
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Chapter 3

Literature review and contributions

In this chapter, we highlight some of the known results in the literature on Mink-CDS

and mention the contributions of our work. To make the literature review part clearer, in

the first three sections, we discuss positive results (by that we generally mean algorithms

for polynomial-time solvable cases as well as approximation algorithms) for Mink-CDS,

then we move on to negative (that is, NP-hardness and inapproximability) results for

the problem and, finally, we touch on works that deal with computational experiments

to assess the strength and practicality of ILP formulations for Mink-CDS. Hereafter, let

G be a (possibly vertex-weighted) n-vertex connected graph (that is, a connected graph

with n vertices).

3.1 Polynomial cases and approximation algorithms

Many authors have devised efficient algorithms for MinCDS on restricted classes of

graphs, such as distance-hereditary [DM88], permutation [CS90], doubly chordal [Mos93],

strongly chordal [WFP85] and trapezoid graphs [Lia95]. MinWCDS, that is, the weighted

counterpart of MinCDS, is known to be solvable in polynomial time on series-parallel

[WFP85], interval [RR88], distance-hereditary [HGC98] and permutation graphs [AR92].

Furthermore, Mink-CDS can be solved efficiently on distance-hereditary graphs [BD98],

HT-graphs [Dra93] and graphs with bounded treewidth [BL15]. The gist of these algo-

15
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rithms usually boils down to a clever combination of structural insights, problem-tailored

data structures and a direct application of general algorithmic design techniques, mainly

dynamic programming or divide and conquer.

On the side of approximation algorithms for Min(W)CDS and Mink-CDS, we dis-

cuss the following works, placing more emphasis on approximations for the general case.

Starting with MinCDS, the first contributions, to the best of our knowledge, were given

by Guha and Khuller [GK98]. Their ideas ultimately led to the development of two cat-

egories of approximation algorithms for MinCDS: local algorithms, that is, algorithms

that expand a connected partial solution (according to some greedy criteria) until it be-

comes a dominating set of the input graph; and global algorithms, that is, algorithms that

begin by finding a “good” dominating and possibly disconnected partial solution that is

further augmented to induce a connected subgraph. Usually, local algorithms operate

only “within the confines” of the open neighborhood (or sometimes of larger neighbor-

hoods, say, the open 2-neighborhood) of the partial solution under construction. Due to

this “shortsightedness” trait, local approximation algorithms tend to perform worse than

global algorithms in terms of solution quality. Guha and Khuller [GK98] presented a local

2(H(∆(G)) + 1)-approximation and a global (ln ∆(G) + 3)-approximation for MinCDS.

Six years later, Ruan et al. [RDJ+04] introduced a (ln ∆(G) + 2)-approximation for

MinCDS. Ruan et al.’s work helped shape a new strand of approximation algorithms for

the problem, which we refer to as potential-guided algorithms. Such algorithms gradually

build a partial solution for the input graph by enlarging the empty set one vertex per

iteration while seeking to greedily optimize a real-valued function defined for every vertex

subset of the input graph, called the potential function. This function encodes how close

to being a CDS a partial solution is in such a way that a partial solution corresponds to

a CDS if and only if it is a “local optimum” (for some precise notion of local optimum) of

the potential function. In each iteration, a vertex is chosen so as to optimize its marginal

value (under the potential function) with respect to the partial solution built up to that

point. The potential function must be carefully selected in order to fulfill a list of technical
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side requirements. In essence, these requirements play two important roles. Firstly, they

ensure solution feasibility when the algorithms halts (that is, when the algorithm finds a

local optimum) and, secondly, they endow the potential function with a “submodular-like

flavor”, which comes in handy in the proof of the approximation factor.

Building on some of the ideas in Ruan et al.’s paper, Du et al. [DGP+08] pro-

posed another potential-guided approximation algorithm with a performance guarantee

of (1 + ε)(1 + ln(∆(G)− 1)), where 0 < ε ≤ 1 is a previously fixed constant. The main

difference between Ruan et al. [RDJ+04] and Du et al. [DGP+08] algorithms is that while

the former “grows” a partial solution one vertex at a time, the latter iteratively adds to

the partial solution a non-empty vertex subset of the input graph with size at most 1/ε

and with optimal weighted marginal value (under the potential function) relative to the

current partial solution. In the context of Du et al.’s work, “weighted marginal value”

simply means the total marginal value of the added vertex subset divided by its size.

Finally, Du et al. [DGP+08] prove the already mentioned approximation factor by using

a much more involved and refined analysis.

After staying dormant for nearly 20 years, local approximation algorithms for MinCDS

have been recently revived by Khuller and Yang [KY16]. The work of these two authors

was essentially motivated by the following question: how can the performance of local

approximations for MinCDS be enhanced if one allows them to use larger neighbor-

hoods (that is, open t-neighborhoods for t ≥ 2) and more sophisticated greedy criteria to

expand the partial solution iteration after iteration? Improving on Guha and Khuller’s

paper [GK98], they managed to derive two new local approximations for the problem, one

with a performance guarantee of H(2∆(G)+1)+1 and another with a performance guar-

antee of H(∆(G)) +
√
H(∆(G)) + 1. Lastly, we would also like to mention that Bonsma

and Zickfield [BZ08] gave a 4/3-approximation for MinCDS on cubic graphs.

For MinWCDS, that is, when we allow vertices to have arbitrary positive integer

weights, Guha and Khuller [GK98] proposed a 3 lnn-approximation for general n-vertex

graphs, which was then improved to a (1.35+ε) lnn-approximation, for every fixed ε > 0,
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by the same authors in [GK99].

To the extent of our knowledge, no approximation algorithms for Mink-CDS on gen-

eral graphs have been proposed so far. Ren and Zhao [RZ11], however, presented an

approximation algorithm for a generalization of Mink-CDS. In the minimum connected

set cover problem (MinCSC), we are given a universe (a non-empty finite set) U , a sub-

set C ⊆ P(U), a graph G with vertex set C, and the objective is to find K ⊆ C with

minimum cardinality such that G[K] is connected and K covers U (that is, every ele-

ment of U belongs to some element of K). Note that every instance of Mink-CDS can

be efficiently reduced to an instance of MinCSC. For every graph G, set U = V (G),

C = {Nk
G[v] : v ∈ V (G)}, and, finally, let G be the graph such that V (G) = C and, for

every distinct u, v ∈ V (G), the vertices in G that correspond to Nk
G[u] and Nk

G[v] are

adjacent if and only if uv ∈ E(G). Note that G and G are isomorphic graphs; indeed,

the only thing that differentiates them is how their respective vertex sets are labelled.

Ren and Zhao’s [RZ11] algorithm for MinCSC outputs a Dc(G)(H(maxX∈C |X|−1)+1)-

approximate solution, where Dc(G) is the maximum distance in G taken over all pairs of

vertices X, Y ∈ C such that X ∩ Y 6= ∅.

Notice that Ren and Zhao’s algorithm translates into a 2k(H(∆(Gk))+1)-approximation

for Mink-CDS. We should stress that Ren and Zhao’s paper [RZ11] addresses MinCSC

(not MinCDS), even though in its last section they argue that MinCSC generalizes

MinCDS. (Actually, as mentioned earlier, MinCSC can be seen as a generalization of

Mink-CDS for all k.)

Before closing this section, we should also point out that there is a substantial pool

of works dealing with polynomial-time approximation schemes as well as distributed ap-

proximations for Min(W)CDS and Mink-CDS on special classes of graphs. For a se-

lection of these papers, we recommend the reader to go to [WAF02, CHL+03, DMP+05,

DH05, NH06b, ZGWD09, GWZ+10, CACdVK+16, AdMRS17, JPD17] and other refer-

ences therein.
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3.2 NP-hardness and inapproximability results

As for NP-hardness results, MinCDS has been proven to be NP-hard, for example, for

split [WFP85], chordal bipartite [MB87], and planar bipartite graphs [WFP85]. Moreover,

Nguyen and Huynh [NH06a] showed that Mink-CDS is NP-hard on planar unit disk

graphs of maximum degree 4 and Lokshtanov et al. [LMP+13] proved that Mink-CDS is

NP-hard on graphs with diameter k+ 1. These are the strongest NP-hardness results for

Mink-CDS as far as we know. For further details concerning computational complexity

results for MinCDS, we direct the reader to the excellent (but now somewhat outdated)

book by Haynes, Hedetniemi and Slater [HHS98].

When it comes to approximation hardness results, Chlebík and Chlebíková [CC04]

showed that, for every fixed ε > 0, there is no (1 − ε) lnn-approximation algorithm

for MinCDS on n-vertex bipartite and split graphs, unless NP ⊆ DTIME(nO(log logn)).

Four years later, the same authors [CC08] proved that there exist constants C > 0 and

B0 ≥ 3 such that, for every B ≥ B0, it is NP-hard to approximate MinCDS to within a

factor of lnB−C ln lnB on bipartite graphs with maximum degree at most B. Moreover,

Bonsma [Bon12] proved that MinCDS is APX-complete on cubic graphs. As far as we

know, there have been no inapproximability results for Mink-CDS (that is, for general

k) prior to this thesis.

3.3 Polyhedral results and computational experiments

with ILP formulations

Although experimental papers related to ILP formulations for Mink-CDS fall out of

the scope of this thesis, in the sequence, we very briefly mention some works in this line

of research. In 2011, Simonetti, da Cunha and Lucena [SdCL11] proposed and tested an

ILP formulation for MinWCDS with an exponential number of constraints. In 2012, com-

pact formulations were introduced and empirically evaluated by Fan and Watson [FW12].
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Three years ago, a hydrib approach combining a Benders’ decomposition algorithm with

a branch-and-cut method was developed by Gendron, Lucena, da Cunha and Simon-

etti [GLdCS14]. Gendron et al.’s experimental results, to the best of our knowledge, still

stand out as the best ones overall (in terms of running time, integrality gaps and sizes of

instances solved to optimality).

In regard to polyhedral results, we are not aware of any papers that directly address

Mink-CDS (for general k or even for any particular value of k). Nevertheless, we must

cite the work of Fujie [Fuj04], who conducted a polyhedral study for a problem compu-

tationally equivalent to MinCDS (in the sense of polynomial-time reductions) known as

the weighted maximum leaf spanning tree problem (MaxWLST): given a vertex-weighted

connected graph G, find a spanning tree of G such that the sum of the weights of its leaves

is maximum. Notice that an n-vertex graph has a CDS with at most l vertices if and only

if it has a spanning tree with at least n − l leaves (and this can easily be generalized

to a weighted setting). For a sample of papers concerning computational tests with ILP

formulations for MaxWLST, we refer the reader to [Fuj03, LMS10, RLU15, GS17] and

references therein.

3.4 Contributions

Our contributions advance the state of the art of the literature on Mink-CDS in

three directions: approximation algorithms, inapproximability and polyhedral results for

Mink-CDS and MinCDS.

Firstly, on the side of polyhedral results, we present, in Chapter 4, a polyhedral

study related to a natural ILP formulation (with vertex-based decision variables only)

for MinWCDS. We characterize the graphs for which the associated polytope (called the

connected dominating set polytope) is full-dimensional, we discuss valid inequalities for

this polytope and show necessary and sufficient conditions under which these inequalities

are facet-inducing.
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As for approximation algorithms, in Chapter 5, we prove a type of meta-approximation

theorem which says that, for every graph G, an f(G)-approximation for MinCDS on G

can be turned into a kf(Gk)-approximation for Mink-CDS on G. As a consequence, we

derive an algorithm that finds, for every fixed 0 < ε ≤ 1, a k(1 + ε)(1 + ln(∆(Gk)− 1))-

approximation for Mink-CDS on G, which is an improvement (asymptotically by a factor

of 2) on Ren and Zhao’s 2k(H(∆(Gk)) + 1)-approximation [RZ11]. To the best of our

knowledge, when k ≥ 2, this approximation algorithm for Mink-WCDS on general graphs

is the first to appear in the literature.

We also propose two approximation algorithms for MinWCDS, one of them restricted

to special classes of graphs (to be formally defined in Chapter 5), namely graphs with a

polynomial number of minimal separators (which are vertex subsets whose removal dis-

connects the graph). The first algorithm has an approximation factor which is logarithmic

in the number of minimal separators of the input graph. Thus, we deem it more suitable

for graphs with “few” separators (possibly graphs without induced long cycles, as will be

discussed in greater length in Chapter 5).

The second approximation algorithm works on general graphs and it has a performance

guarantee that depends on a parameter of the input graph, namely the cardinality of

its largest minimal separator, which is independent of its order (in the sense that this

parameter does not necessarily grow with the number of vertices of the graph). Therefore,

this second algorithm seems to be more appropriate for graphs whose minimal separators

contain a small number of vertices (say bounded by a constant). Interestingly, we show

that, for certain classes of graphs, the approximation factor of this algorithm is close to

the best one can hope for, assuming P 6= NP.

In regard to hardness results, we show, in Chapter 6, that MinCDS is Ω(log n)-hard to

approximate even on n-vertex split graphs with diameter 2 if NP 6⊆ DTIME(nO(log logn)).

Asymptotically, this threshold is the same as the one proved by Chlebík and Chle-

bíková [CC04] for MinCDS but it holds for the smaller class of split graphs of diameter 2

(surely the smallest value of the diameter for which the problem is non-trivial). Also in
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Chapter 6, we prove that Mink-CDS is NP-hard on planar bipartite graphs of maximum

degree 4, thus extending and improving on a theorem of White, Farber and Pulleyblank

[WFP85] that says that MinCDS is NP-hard on planar bipartite graphs. Moreover, we

present inapproximability thresholds for Mink-CDS, generalizing the ones already known

for MinCDS, on bipartite graphs and on a superclass of split graphs called (1, 2)-split

graphs. We also show that Mink-CDS is APX-complete on bipartite graphs of maximum

degree 4; this can be considered a step towards a generalization of Bonsma’s [Bon12]

result (who proved that MinCDS is APX-complete on cubic graphs) for all k. We would

like to emphasize that these results are shown to hold for every fixed k.



Chapter 4

Polyhedral results

In this chapter, we study MinWCDS from a polyhedral viewpoint. First, in Sec-

tion 4.1, we present an ILP formulation for the problem, and, next, in Section 4.2, we

single out the class of graphs for which the associated polyhedron (which we call the CDS

polytope) is full-dimensional. Also in Section 4.2 we carry out an in-depth analysis of

some valid inequalities for this polytope by showing necessary and sufficient conditions

that make them facet-defining. Then, we discuss the separation problem for a class of

valid inequalities, namely the separator inequalities. Throughout this chapter, if nothing

is stated, G denotes a connected graph.

4.1 A vertex-based ILP formulation for MinWCDS

We first present some definitions. A separator of G is defined to be a vertex subset

S ⊆ V (G) such that G− S is disconnected. A vertex v ∈ V (G) is cut vertex if {v} is a

separator of G; if v is not a cut vertex, then v is called a non-cut vertex . We denote by

S(G), C(G) and C(G) the sets of all minimal separators, cut vertices and non-cut vertices

of G, respectively. For every non-empty subset A ⊆ R, we denote by AV (G) the set of

vectors all of whose entries are indexed by the vertices of G and belong to A.

We now state a theorem proved by Kanté, Limouzy, Mary and Nourine [KLMN11], to

be referenced many times, that characterizes CDSs of a graph G in terms of tranversals

23
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of the set of all separators of G.

Theorem 4.1 (Kanté et al. [KLMN11]). A vertex subset D of a connected graph G is a

CDS if and only if D ∩ Γ 6= ∅ for every separator Γ of G.

Consider an instance (G,w) of MinWCDS. In what follows, we present an ILP for-

mulation for MinWCDS (which we refer to as formulation F) based on Kanté et al.’s

result. For every vertex v ∈ V (G), we assign a 0-1 decision variable xv to v in such a way

that xv = 1 if and only if v is included in the solution.

(F) minimize
∑

v∈V (G)

w(v)xv

subject to
∑
v∈Γ

xv ≥ 1 for every separator Γ of G (4.1)

x ∈ BV (G)

The inequalities (4.1) are called separator inequalities . For every separator Γ of G,

the separator inequality associated with Γ ensures that the solution contains at least

one of the vertices in Γ. Therefore, by Theorem 4.1, we conclude that F is a valid ILP

formulation for MinWCDS.

4.2 Studying the CDS polytope

For every D ⊆ V (G), we define χD as the incidence vector of D, that is, the 0-1

vector in BV (G) such that, for every v ∈ V (G), χDv = 1 if and only if v ∈ D.

The connected dominating set polytope (or CDS polytope for short) associated

with G, denoted by PCDS(G), is defined as

PCDS(G) = conv({x ∈ BV (G) : x is the incidence vector of a CDS of G}).

First, we determine the dimension of PCDS(G).
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Proposition 4.2. Let G be an n-vertex connected graph. Then dim(PCDS(G)) = n −

|C(G)|. Therefore, PCDS(G) is full-dimensional if and only if G is 2-connected.

Proof. First, let us prove that dim(PCDS(G)) ≤ n − |C(G)|. Note that if v ∈ C(G),

then, by Theorem 4.1, we know that v belongs to every CDS of G, which implies that

dim(PCDS(G)) ≤ n−|C(G)|. Moreover, if v ∈ C(G), then V (G) \ {v} induces a connected

subgraph of G and, therefore, χV (G)\{v} is a CDS of G. That said, it is not too difficult to

show that all the vectors in the set {χV (G)}∪{χV (G)\{v} : v ∈ C(G)} are affine-independent

and belong to PCDS(G). Consequently, dim(PCDS(G)) ≥ |C(G)| = n− |C(G)|.

Now let us show the second claim holds, namely that PCDS(G) is full-dimensional if and

only if G is 2-connected. If G is 2-connected, then C(G) = ∅ and so dim(PCDS(G)) = n.

For the converse, if PCDS(G) is full-dimensional, then G has no cut vertices. Hence, by

definition, G is 2-connected.

From this point forward, in order to ease some of the proofs, we assume that we are

dealing only with 2-connected graphs. In what follows, we present an argument to justify

this assumption. In essence, we prove that MinWCDS restricted to 2-connected graphs

is computationally equivalent to the same problem restricted to graphs with cut vertices.

Lemma 4.3. If MinWCDS on 2-connected graphs is polynomial-time solvable, then

MinWCDS is polynomial-time solvable on graphs with cut vertices.

Proof. Suppose there is an efficient algorithm for solving MinWCDS on 2-connected

graphs, say A. We claim that there is also a polynomial-time algorithm that solves the

same problem on graphs with cut vertices. Let (G,w) be an instance of MinWCDS and

suppose that G has at least one cut vertex. Next we describe a reduction that takes (G,w)

and produces another instance (H,w′) of MinWCDS, where H is 2-connected, in such a

way that any optimal solution for one of these instances can be efficiently turned into an

optimal solution for the other. We define H as follows: V (H) = V (G) ∪ {v∗ : v ∈ V (G)}

and E(H) = {vv∗ : v ∈ V (G)} ∪ {vu∗, v∗u, vu, v∗u∗ : vu ∈ E(G)}. We call the vertices of

H that belong to {v∗ : v ∈ V (G)} star vertices. Lastly, w′(v) = w′(v∗) = w(v) for every
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v ∈ V (G). It is easy to check that (H,w′) can be constructed in polynomial time in the

size of (G,w).

Now let us define the projection of a vertex in H onto a vertex in G. If w ∈ V (H) is

a star vertex of H, then, by construction, w = v∗ for some v ∈ V (G) and, in this case,

v is said to be the projection of w onto G. If w is not a star vertex of H, then w itself

is its projection onto G. In the sequence, we argue that H is 2-connected. To do that, it

suffices to show that H − x is connected for every vertex x ∈ V (H).

Claim 4.4. H is 2-connected.

Proof. Since, by the construction of H, NH(v) = NH(v∗) for every v ∈ V (G), then for any

x, a, b ∈ V (H), a 6= x and b 6= x, if there is an (a, b)-path in H that goes through x, then

there is an (a, b)-path in H − x. So H has no cut vertices. Therefore, H is 2-connected.

Claim 4.5. Let D′ ⊆ V (H) be a minimal CDS of H. Then there is a minimal CDS of

H with exactly |D′| vertices, none of which is a star vertex.

Proof. Suppose that v∗ ∈ D′ for some v ∈ V (G). Note that NH(v) = NH(v∗). Therefore,

H[D′] is connected if and only if H[(D′ \ {v∗}) ∪ {v}] is connected. Similarly, D′ is a DS

of H if and only if (D′ \ {v∗}) ∪ {v} is a DS of H. Thus, (D′ \ {v∗}) ∪ {v} is a minimal

CDS of H with exactly |D′| vertices and no star vertices.

Note that any minimal CDS of G, by the construction of H, is also a minimal CDS

of H. Conversely, since for every minimal CDS D of H, there is a minimal CDS of H

with no star vertices and with size exactly |D|, it follows that OPTMinWCDS(G,w) =

OPTMinWCDS(H,w′).

So, to conclude, if A is an efficient algorithm for solving MinWCDS on 2-connected

graphs, then there is a polynomial-time algorithm A′ for solving the same problem on

graphs with cut vertices: given (G,w), run the reduction as described to obtain (H,w′),

run A on (H,w′) and then project the solution returned by A onto G, thus finding an
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optimal CDS of (G,w). Note that A′ always runs in polynomial-time and its correctness

follows from all our previous claims and remarks.

We prove in the sequence the converse implication, that is, if there is an efficient way

of solving MinWCDS on graphs with cut vertices, then there is also an efficient way

of solving the same problem on 2-connected graphs. To accomplish that, we introduce

a sort of intermediate problem, which is a variant of MinWCDS called the minimum

weight connected dominating set problem with a fixed vertex (MinWCDSFV): given a

vertex-weighted graph G and a vertex u ∈ V (G), find a minimum weight CDS of G that

contains u. The main idea of the proof is to show that MinWCDS on 2-connected graphs

can be reduced to polynomially many instances of MinWCDSFV and, then, each of

these instances of MinWCDSFV, in turn, can be reduced to an instance of MinWCDS

on graphs with cut vertices.

Lemma 4.6. If MinWCDS is polynomial-time solvable on graphs with cut vertices, then

MinWCDS is polynomial-time solvable on 2-connected graphs.

Proof. First we describe a reduction that maps an instance of MinWCDSFV, say (G,w, u),

to an equivalent instance (Hu, w
′) of MinWCDS, where Hu is a graph with a cut vertex.

Here we mean equivalent in the sense that any optimal solution to one of these instances

yields, in polynomial time, an optimal solution to the other. Let Hu be the graph with

vertex set V (Hu) = V (G) ∪ {zu} and edge set E(Hu) = E(G) ∪ {zuu}. Now, we define

w′(v) = w(v) for every v ∈ V (G) and w′(zu) = 0. Observe that u is a cut vertex in Hu

and that (Hu, w
′) can be built in polynomial time in the size of (G,w, u).

By Theorem 4.1, every CDS of Hu includes u. Additionally, it is easy to check that no

minimal CDS of Hu contains zu. Therefore, every minimal CDS of Hu is also a minimal

CDS of G that contains u. Conversely, every minimal CDS of G that contains u is a

minimal CDS of Hu. Consequently, OPTMinWCDS(Hu, w
′) = OPTMinWCDSFV(G,w, u).

Note that is also straightforward to check that, for every instance (G,w) of MinWCDS,

OPTMinWCDS(G,w) = minu∈V (G) OPTMinWCDSFV(G,w, u).
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To finish the proof of the lemma, assume that there is a polynomial-time algorithm A

that solves MinWCDS on graphs with cut vertices. Then there is a polynomial-time

algorithm A′ for solving MinWCDS on 2-connected graphs: given (G,w), for every vertex

u in G, run the reduction as described to obtain (Hu, w
′), then run A on (Hu, w

′) and

return the solution with minimum weight among all solutions found. Note that A′ always

runs in polynomial time and its correctness follows from all our previous remarks.

Now we focus on some of the basic valid inequalities for the CDS polytope.

Proposition 4.7. Let G be a 2-connected graph and v be a vertex in G. Then the following

statements hold for PCDS(G):

(i) The inequality xv ≤ 1 is facet-defining.

(ii) The inequality xv ≥ 0 is facet-defining if and only if there is no separator in G of

size exactly 2 that contains v.

Proof. Let G and v be as in the hypothesis.

(i) Let F1
v = {x ∈ PCDS(G) : xv = 1}. Clearly, dim(F1

v ) ≤ n − 1. So now it suf-

fices to show that there are n affine-independent vectors in F1
v . Indeed, since G is

2-connected, then V (G) \ {u} is a CDS of G for every u ∈ V (G) \ {v}. So all the

vectors in the set {χV (G)} ∪ {χV (G)\{u} : u ∈ V (G) \ {v}} are CDSs of G, affine-

independent and belong to F1
v . Therefore, dim(F1

v ) = n− 1.

(ii) Let F0
v = {x ∈ PCDS(G) : xv = 0}. Then, of course, dim(F0

v ) ≤ n−1. Firstly, assume

that there is no separator in G of size 2 containing v. In this case, it is not too difficult

to check that all the vectors in the set {χV (G)\{v}} ∪ {χV (G)\{v,u} : u ∈ V (G) \ {v}}

are CDSs of G, affine-independent and belong to F0
v and, thus, dim(F0

v ) ≥ n − 1.

Conversely, suppose that the inequality xv ≥ 0 induces a facet of PCDS(G). We

claim that there can be no separators in G of size 2 containing v. In order to derive

a contradiction, suppose not and let {u, v} be a separator in G. Then xu + xv ≥ 1

is a separator inequality for PCDS(G). Therefore, since xu ≤ 1 is valid for the CDS
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polytope of G, one may easily check that F0
v ( {x ∈ PCDS(G) : xu = 1}. Hence, F0

v

is not a facet of PCDS(G), a contradiction.

Before we present Theorem 4.11, the main result of this section, we first introduce

some terminology. Let Γ be a separator of G. Then we say that a vertex v ∈ Γ is a

hanger in Γ if, for every component C of G − Γ, N(v) ∩ V (C) 6= ∅. We call Γ is a

(v, u)-separator , where v, u ∈ V (G), if v and u belong to different components in G−Γ.

A vertex v ∈ V (G) \ Γ is Γ-critical if v is a cut vertex of Cv, where Cv denotes the

component in G − Γ that contains v. We say that Γ protects a Γ-critical vertex v if,

for every component Q of Cv − v, there is a vertex u ∈ Γ such that NG(u) ∩ V (Q) 6= ∅.

Finally, a separator Γ is called safe if Γ protects every Γ-critical vertex in G.

In what follows, we state three auxiliary results which will turn out to be useful in the

proof of Theorem 4.11, one of them is a folklore result that provides a sufficient condition

for a valid inequality to be facet-inducing for a full-dimensional polyhedron.

Lemma 4.8. Let G be a connected graph and Γ a separator of G. Then Γ is a minimal

separator of G if and only if every vertex in Γ is a hanger.

Proof. Let Γ be a minimal separator of a connected graph G and let C be one of the

components inG−Γ. Consider v ∈ Γ and u ∈ V (C). Suppose, for the sake of contradiction,

that N(v) ∩ V (C) = ∅. Then Γ \ {v} is a (u, v)-separator in G, which contradicts the

minimality of Γ. Therefore, if Γ is minimal, every vertex in Γ is a hanger. Conversely,

if every vertex in Γ is a hanger, then it is easy to check that no proper subset of Γ

disconnects G and, thus, Γ is minimal.

Lemma 4.9. Let G be a connected graph, let D ⊆ V (G) be a CDS of G, let Γ be an

unsafe separator in G and let v ∈ V (G) \ Γ be a Γ-critical vertex that is not protected by

Γ. If v 6∈ D, then |D ∩ Γ| ≥ 2.



30 POLYHEDRAL RESULTS 4.2

Proof. Let G, Γ, D and v be as in the statement of the lemma. Recall that Cv denotes

the component of G − Γ that contains v. Since Γ is a separator of G, there is a vertex

u ∈ Γ∩D. Suppose, for the sake of contradiction, that D∩Γ = {u}. Since, by hypothesis,

Γ does not protect v, then there is a component Q of Cv−{v} such that NG(u)∩V (Q) = ∅.

We claim that V (Q)∩D = ∅. Indeed, if that were not the case, since v is a cut vertex of

Cv and v 6∈ D, there would be no path entirely contained in D connecting u to any vertex

in V (Q) ∩ D, a contradiction since G[D] is connected. Thus, V (Q) ∩ D = ∅. However,

this implies that D is not a DS of G because none of the vertices in V (Q) is dominated

by D, again a contradiction. Therefore, we conclude that |D ∩ Γ| ≥ 2.

Proposition 4.10. Let P be a full-dimensional polyhedron and F be a face of P induced

by the inequality πx ≥ π0, where π 6= 0. If, for every valid inequality π′x ≥ π′0 for P ,

where π′ 6= 0, the inclusion F ⊆ {x ∈ P : π′x = π′0} implies that π′ = ηπ and π′0 = ηπ0

for some η ∈ R>0, then F is a facet of P .

Theorem 4.11. Let G be a 2-connected graph and Γ a separator of G. Then the separator

inequality associated with Γ induces a facet of PCDS(G) if and only if the Γ is minimal

and safe.

Proof. Let G and Γ be as in the hypothesis. We prove first the necessity part of the

theorem. So suppose that the separator inequality associated with Γ induces a facet of

PCDS(G). Let FΓ = {x ∈ PCDS(G) : χΓx = 1}. Note that Γ must be minimal because, if

not, then it is easy to check that FΓ ( {x ∈ PCDS(G) : χΓ′
x = 1}, where Γ′ is a minimal

separator of G strictly contained in Γ. But this contradicts the assumption that FΓ is a

facet of PCDS(G).

Now let us show that if FΓ is a facet of PCDS(G), then Γ is a safe separator of G.

In order to obtain a contradiction, suppose that that is not the case, and consider the

following claim.

Claim 4.12. There is a Γ-critical vertex w ∈ V (G)\Γ such that x̃w = 1 for every extreme

point x̃ of FΓ.
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Proof. Since Γ is not safe, then there is a Γ-critical vertex w ∈ V (G) \Γ such that Γ does

not protect w. Suppose the claim is false. Then there is an extreme point x̃ of FΓ such

that x̃w = 0. Since x̃ is an extreme point of FΓ and FΓ is a facet of PCDS(G), then x̃ is

an extreme point of PCDS(G). Thus there exists a CDS D of G such that x̃ = χD. Since

w is a Γ-critical vertex of G that is not protected by Γ and w 6∈ D, then, by Lemma 4.9,

we conclude that |Γ ∩D| ≥ 2, which is a contradiction because x̃ = χD ∈ FΓ.

As a consequence of Claim 4.12, we deduce FΓ ( {x ∈ PCDS(G) : xw = 1} since

χV (G) ∈ {x ∈ PCDS(G) : xw = 1} \ FΓ (recall that |Γ| ≥ 2 because G is 2-connected

by hypothesis) and, from our previous remarks, it is easy to conclude that FΓ ⊆ {x ∈

PCDS(G) : xw = 1}. Once again, this contradicts the assumption that FΓ is a facet of

PCDS(G). Therefore, Γ is minimal and safe.

We have yet to prove the sufficiency part of the theorem, that is, that FΓ is facet-

defining for PCDS(G) if Γ is a minimal and safe separator of G. So suppose that Γ is indeed

minimal and safe. Consider a valid inequality π′x ≥ π′0 for PCDS(G), where π′ 6= 0. Let

F ′ be the face of PCDS(G) induced by π′x ≥ π′0 and suppose that FΓ ⊆ F ′. Our goal is to

show that π′ = ηχΓ and π′0 = η for some η ∈ R>0. We begin by determining the entries

of π′.

We claim that π′v = 0 for every vertex v ∈ V (G) \ Γ. We split the proof of this claim

in two cases, depending on whether v is or is not a Γ-critical vertex of G. First we address

the Γ-non-critical vertices in G−Γ. Let us define Du = {u}∪ (V (G) \Γ) for every u ∈ Γ.

We know that Γ is minimal by hypothesis and so, for every Γ-non-critical vertex v in

G−Γ, Lemma 4.8 ensures that Du and Du \{v}, for any u ∈ Γ, are CDSs of G. Moreover,

again for any u ∈ Γ and any Γ-non-critical vertex v in G−Γ, both χDu and χDu\{v} belong

to FΓ and also F ′, since F ′ contains FΓ. Therefore, π′v = 0, as claimed.

Now we prove that π′v = 0 for every Γ-critical vertex v in G − Γ. Since Γ is safe by

hypothesis, then, for every Γ-critical vertex v in G−Γ, there is a vertex u ∈ Γ, such that

D̂v = {u} ∪ (V (G) \ (Γ ∪ {v})) is a CDS of G. So, for every Γ-critical vertex v in G− Γ,

both χD̂v and χD̂v∪{v} belong to FΓ and F ′, since F ′ contains FΓ. Thus, π′v = 0.
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Finally, we claim that π′v = π′0 for every v ∈ Γ. Indeed, since χDv belongs to FΓ and

F ′ for any v ∈ Γ, it follows that π′v = π′0. Note that π′0 6= 0 since, by hypothesis, π′ 6= 0.

In fact, π′0 > 0 given that π′χV (G) = |Γ|π′0 ≥ π′0 and |Γ| ≥ 2. Therefore, π′ = ηχΓ and

π′0 = η where η = π′0. So, by Proposition 4.10, we conclude that FΓ is a facet of PCDS(G),

and this ends the proof of the theorem.

The next result guarantees that facet-defining separator inequalities for the CDS poly-

tope are the only facet-defining inequalities with non-negative integer coefficients and

right-hand side equal to 1.

Proposition 4.13. Let G be a 2-connected graph and π ∈ ZV (G)
≥0 . Suppose πx ≥ 1 is

a valid inequality for PCDS(G). Then there exists a minimal separator Γ of G such that

{x ∈ PCDS(G) : πx = 1} ⊆ FΓ, where FΓ is the face of PCDS(G) induced by the inequality

χΓx ≥ 1.

Proof. Define Sπ ⊆ V (G) as the vertex subset of G such that v ∈ Sπ if and only if

πv > 0. Of course, Sπ 6= ∅. Moreover, note that Sπ must be a separator of G because, if

not, then by Theorem 4.1, V (G) \ Sπ would be a CDS of G and this would contradict

the validity of the inequality πx ≥ 1 since πχV (G)\Sπ = 0. Now let Γ be a minimal

separator of G such that Γ ⊆ Sπ. It is not difficult to see that every point in PCDS(G)

that satisfies πx ≥ 1 also satisfies the separator inequality associated with Γ. Therefore,

{x ∈ PCDS(G) : πx = 1} ⊆ FΓ, where FΓ is the face of PCDS(G) induced by Γ.

At this point, we would like to briefly discuss the computational complexity of the

separation problem associated with the separator inequalities : given a graph G and a

vector x̃ ∈ RV (G) such that 0 ≤ x̃ ≤ 1, decide if x̃ satisfies the separator inequalities for

G or else find a separator of G, say Γ, such that χΓx̃ < 1? By the celebrated result of

Groetschel, Lovász and Schrijver [GLS12], that establishes the computational equivalence

between separation and strong optimization problems over compact convex sets, it follows

that the separation problem related to the separator inequalities reduces to the so-called
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minimum weight separator problem (MinWS): given a graph with non-negative rational

weights assigned to its vertices, find a minimum weight separator in it, that is, a separator

such that the sum of the weights of its constituent vertices is minimum. In 2000, Henzinger,

Rao and Gabow [HRG00] presented a strongly polynomial-time algorithm that solves

MinWS in O(κ1nm log(n2m)) time for any input vertex-weighted graph with n vertices,

m edges and vertex-connectivity (that is, the size of a smallest separator in the graph)

κ1. Therefore, the next proposition follows immediately from our previous remarks.

Proposition 4.14. The linear relaxation of formulation F can be solved in polynomial

time

Before concluding this section, we would like to make an important observation about

some of the results proven here. Let n,m ∈ Z>. We say that two polyhedra, say P ⊆ Rn

and Q ⊆ Rm, are isomorphic if there are affine transformations tP : Rn → Rm and

tQ : Rm → Rn such that tP (tQ(x)) = x for every x ∈ Q and tQ(tP (y)) = y for every

y ∈ P . If P and Q are isomorphic, it is possible to prove that there is a one-to-one

correspondence between the extreme points of P and Q. As mentioned in Section 3.3 of

Chapter 3, Fujie [Fuj04] published a paper (that has only come to our knowledge recently)

presenting a polyhedral study for MaxWLST (the weighted maximum leaf spanning tree

problem) wherein he gives a vertex-based ILP formulation for the problem and proves

sufficient and necessary conditions under which some valid inequalities define facets of

the associated polytope. By examining Fujie’s work, it is straightforward to see that his

ILP formulation with vertex-based decision variables for MaxWLST and formulation F

for MinWCDS induce isomorphic polytopes.



34 POLYHEDRAL RESULTS 4.2



Chapter 5

Approximation algorithms

In this chapter, we discuss approximation algorithms for Mink-CDS and Min(W)CDS.

In Section 5.1, we address a “meta-approximation” algorithm for Mink-CDS. Next, in Sec-

tion 5.2, we discuss two approximations for MinWCDS, one of them restricted to special

classes of graphs.

5.1 A “meta-approximation” for Mink-CDS

We show first a meta-approximation algorithm for Mink-CDS, namely algorithm

ApproxMink-CDS (see Algorithm 1). This algorithm uses (as a subroutine) an approx-

imation algorithm, say A, for MinCDS. Given an input graph G, ApproxMink-CDS

computes Gk, and then it runs A on Gk, thus finding a CDS, say D, of Gk. Finally,

it connects the components of G[D] (in case G[D] is disconnected) by adding at most

(k − 1)(|D| − 1) extra vertices to D.

Theorem 5.1. Let G be a graph. If there exists an algorithm for MinCDS with approxi-

mation factor f(G), then, for every k ∈ Z>, there exists an approximation algorithm for

Mink-CDS with approximation factor kf(Gk).

Proof. Let G be the input graph and let A be the polynomial-time f(G)-approximation

algorithm for MinCDS (used in step 2). Clearly, ApproxMink-CDS runs in polynomial

35
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Algorithm 1 ApproxMink-CDS

Input: A graph G
Subroutine: An approximation algorithm A for MinCDS

Output: An approximate k-CDS of G
1: Compute Gk . the kth power of G
2: D ← A(Gk) . A is an approximation algorithm for MinCDS

3: S ← D

4: while G[S] is not connected do
5: Take vertices v and u in different components of G[S] such that distG(v, u) is minimum

6: Compute a shortest (v, u)-path in G
7: Let P be the set of internal vertices of the path obtained in line 6
8: S ← S ∪ P
9: end while
10: return S

time. Moreover, it produces a k-CDS of G.

Let S ⊆ V (G) be the solution output by ApproxMink-CDS. Since a k-CDS of G

is a CDS of Gk, it follows that OPTMinCDS(Gk) ≤ OPTMink-CDS(G). Thus, to complete

the proof, it suffices to show that |S| ≤ kf(Gk)OPTMinCDS(Gk). By hypothesis, we have

that |D| ≤ f(Gk)OPTMinCDS(Gk). If G[D] is connected, then the proof is finished.

Assume now that G[D] has at least two components. Let t be the number of iterations

performed by the while loop in lines 4–9. Let S0 = D and, for every j ∈ {1, . . . , t}, let Sj

be the set S at the end of the jth iteration of the while loop. For every j ∈ {1, . . . , t},

let uj and vj be the vertices chosen in the jth iteration in line 5, let Cuj and Cvj be the

components of G[Sj−1] that contain uj and vj, respectively, and let Pj be the set P chosen

in line 7 in the jth iteration. Fix some j ∈ {1, . . . , t}. Since Gk[Sj−1] is connected, there

is an edge of Gk with an endpoint, say w, in V (Cuj) and an endpoint, say y, in some

superset of V (Cvj). Since y and w are adjacent in Gk, then y is within distance at most k

from w in G and, thus, the same holds for uj and vj. Therefore, |Pj| ≤ k−1 and G[Sj] has

at least one component less than G[Sj−1]. So we conclude that t ≤ |D| − 1. Furthermore,

we have |S| ≤ |D|+ (k − 1)(|D| − 1) ≤ k|D|, and the result follows.
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It is known that Du et al. [DGP+08] proposed an approximation algorithm for MinCDS

with ratio (1 + ε)(1 + ln(∆(G)− 1)) for every fixed 0 < ε ≤ 1. The following is a conse-

quence of Theorem 5.1 using Du et al.’s algorithm as a subroutine.

Corollary 5.2. For every k ∈ Z> and every fixed 0 < ε ≤ 1, there exists a polynomial-

time algorithm for Mink-CDS with approximation ratio k(1 + ε)(1 + ln(∆(Gk) − 1)),

where G is the input graph.

As mentioned in Chapter 3, Ren and Zhao [RZ11] presented an approximation al-

gorithm for the minimum connected set cover problem (a generalization of Mink-CDS,

as discussed earlier in Chapter 3) that, for every input graph G and every k, translates

into a 2k(H(∆(Gk)) + 1)-approximation for Mink-CDS. Since ln(`− 1) < H(`) for every

integer ` ≥ 2, Corollary 5.2 shows an improvement (asymptotically by a factor of 2) on

Ren and Zhao’s algorithm.

Observe that algorithm ApproxMink-CDS indicates that Mink-CDS admits a con-

stant approximation on bounded degree graphs (because if ∆(G) is bounded from above

by a constant, then the same holds for ∆(Gk) for fixed k). The approximation factor of

this algorithm follows from the previous corollary and can be expressed in terms of k and

the degree bound.

Corollary 5.3. For every k ∈ Z>, there is a constant approximation algorithm for

Mink-CDS on bounded degree graphs.

Before we go to the next section, we would like to offer some comments to address

Question 1 that was posed at the end of Chapter 1. Recall that, in Section 3.1 of Chapter

3, we grouped all approximation algorithms that have been proposed so far for MinCDS

in three classes, namely global, local and potential-guided algorithms. It is straightfor-

ward to see that ApproxMink-CDS fits into the category of global approximations for

Mink-CDS since it is an algorithm that begins by finding a good (but possibly discon-

nected) k-DS of the input graph and ends up adding more vertices into the solution to

make it connected. We did succeed in proving a local approximation for Mink-CDS but
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we chose not to include it in this work because its proven performance guarantee is much

inferior to ApproxMink-CDS (as is normally the case with local approximations when

compared with global approximations). What we want to argue here is why we failed to

design a potential-guided approximation for Mink-CDS.

Note that, for any graph G, if D is a CDS of G, then G[D ∪ S] is connected for

every S ⊆ V (G). This simple observation turns out to be instrumental in the proofs

that appear in [RDJ+04] and [DGP+08], the only papers, as far as we know, that have

proposed potential-guided algorithms for MinCDS. Unfortunately, this statement does

not generalize when it comes to k-CDSs. To be more precise, it is not true that, for every

k-CDS D of G and every S ⊆ V (G), G[D ∪S] is connected. Not only that, if G[D ∪S] is

indeed disconnected, it seems to be hard to (i) upper bound the number of components

of G[D ∪ S] by some function of |D| or (ii) to prove an upper bound strictly in terms of

|D| on the number of vertices that need to be added into the solution in order to make

G[D∪S] a connected subgraph of G. These two technicalities are precisely what rendered

all our struggles ineffective. Finally, it would be nice to see if one could either solve these

issues (if not on general graphs, then perhaps on restricted classes of graphs) or if one

could get passed them altogether by coming up with a totally different kind of algorithmic

insight for an approximation for Mink-CDS.

5.2 Approximations for Min(W)CDS

We turn now our attention to MinWCDS. Before we describe the approximation

algorithms for MinWCDS, we define some concepts. Recall that a separator of a graph

G is a subset Γ ⊆ V (G) such that G − Γ has more components than G. We say that

a subset Γ ⊆ V (G) is a k-hop domination disruptive separator (or k-disruptive

separator for short) if Γ is a separator of G and, for every component C of G − Γ,

V (C) is not a k-CDS of G. In other words, Γ is a k-disruptive separator of G if and

only if Γ intersects every minimal k-CDS of G. Note that a vertex subset of G is a 1-
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disruptive separator of G if and only if it is a separator of G. We denote by Sk(G) (or

simply S(G) when k = 1) the set of all minimal k-disruptive separators of a graph G.

Let σk(G) = maxΓ∈Sk(G) |Γ| and we write σ(G) when k = 1.

We say that a class C of graphs has a polynomial number of minimal k-disruptive sep-

arators (or that C has poly-k-separators for short) if there exists a univariate polynomial

p such that |Sk(G)| ≤ p(n) for every n-vertex graph G belonging to C. We also say that

a graph G has poly-k-separators if G belongs to some class with poly-k-separators. For

simplicity, when k = 1, we write poly-separators to refer to minimal poly-1-separators.

Many well-studied classes of graphs have poly-separators. Examples include chordal

graphs [CG06], circular-arc graphs [Klo96], weakly chordal graphs [BT01], co-comparability

graphs with bounded dimension [BLS99], 2K2-free graphs [DSM16] and P4-sparse graphs

[NP06] (for more examples, see [KK98]).

Now we discuss two approximation algorithms for MinWCDS. The first one (see

Algorithm 2), called CoverApproxMinWCDS, works on classes of graphs with poly-

separators. In order to explain how this algorithm functions, we have to define an aux-

iliary problem, namely the minimum weight set cover problem (MinWSC), which has

the following description: given a universe U , a subset C ⊆ P(U) and a weight function

w′ : C→ Z>, the objetive is to find a minimum weight cover K ⊆ C of U .

In short, CoverApproxMinWCDS works as follows: firstly, it takes an instance

(G,w) of MinWCDS on graphs with poly-separators and reduces it to an equivalent in-

stance of MinWSC, in the sense that an optimal solution to one of these instances yields

in polynomial time an optimal solution to the other; and, secondly, it runs on the result-

ing instance an approximation algorithm for MinWSC, proposed by Chvátal [Chv79],

denoted here as MinWSC-Chvátal.

Before we delve into the details of CoverApproxMinWCDS, we need to make two

remarks. First, we would like to mention that Berry, Bordat and Cogis [BBC99] designed

an algorithm that, for every given n-vertex graph G, enumerates all minimal separators of

G in O(n3) time per separator. In what fallows, we denote this algorithm by the acronym
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BBC; it will be used as a subroutine in Algorithm 2. Second, we would like to, once more,

draw attention to Theorem 4.1, stated in Chapter 4, which is a result, proven by Kanté et

al. [KLMN11], that characterizes CDSs of graphs in terms of transversals of separators.

Algorithm 2 CoverApproxMinWCDS

Input: A graph G with poly-separators and a weight function w : V (G)→ Z>
Subroutine: MinWSC-Chvátal (an approximation for MinWSC) and algorithm BBC
Output: An approximate CDS of G
1: Run algorithm BBC on G to compute S(G)

2: for all v ∈ V (G) do
3: Fv ← {Γ ∈ S(G) : v ∈ Γ}
4: end for
5: F ← {Fv : v ∈ V (G)}
6: Let w′ : F → Q> be the weight function s.t. w′(Fv) = w(v) for every v ∈ V (G)

7: K ←MinWSC-Chvátal(S(G),F , w′)
8: S ← {v ∈ V (G) : Fv ∈ K}
9: return S

Theorem 5.4. Let (G,w) be an instance of MinWCDS, where G is a graph with poly-

separators. Algorithm CoverApproxMinWCDS applied to (G,w) outputs anH(|S(G)|)-

approximate solution in polynomial time.

Proof. First, note that, since G has poly-separators by hypothesis, the algorithm always

runs in polynomial time. Let S ⊆ V (G) be the solution output by the algorithm. By

construction, S is a transversal of S(G), and thus, by Theorem 4.1, S is a CDS of G. As

proved in [Chv79], for any instance (U,C, w′) of MinWSC, Chvátal’s algorithm finds an

H(`)-approximate cover of U , where ` is the cardinality of the largest set in C. Therefore,

CoverApproxMinWCDS yields anH(|S(G)|)-approximate solution for MinWCDS on

(G,w).

Notice that most of the classes of graphs with poly-separators mentioned earlier (for

example, chordal graphs, weakly chordal graphs, P4-sparse graphs) exclude graphs with

long induced cycles. That seems to be no coincidence. There have been a few papers
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studying lower and upper bounds on the maximum number of minimal separators over

all n-vertex graphs, a quantity usually denoted as sep(n). Fomin, Kratsch, Todinca and

Villanger [FKTV08] showed in 2008 that sep(n) ∈ Ω(1.4422n) ∩ O(1.7087n) and, then,

four years later, Fomin and Villanger [FV12] were able to improve the upper bound to

O(n1.6181n). Recently, Gaspers and Mackenzie [GM15] found a simpler proof of this upper

bound and they also managed to lift the lower bound to ω(1.4521n). Interestingly, both

of these lower bounds are achieved by artificially constructed families of n-vertex graphs

either with many (usually Ω(n)) “short” induced cycles (by short we mean containing

exactly 4 vertices) or with few (usually O(1)) very long induced cycles (spanning a large

fraction of the number of vertices). Therefore, we posit that CoverApproxMinWCDS

may perform well, possibly better then Guha and Khuller’s (1.35 + ε) lnn-approximation

for MinWCDS, on n-vertex graphs with relatively high edge density and small chordality

(that is, graphs all of whose induced cycles contain at most some low constant number of

vertices), like split graphs (which have fewer minimal separators than vertices).

Lastly, we discuss one more approximation algorithm for MinWCDS, which we call

LPApproxMinWCDS (see Algorithm 3). Recall that, for every graph G, σk(G) denotes

the cardinality of the largest k-disruptive minimal separator of G. For simplicity, some-

times we write σk (and σ if k = 1) when the graph G is implicit or irrelevant. We prove

that LPApproxMinWCDS is a σ-approximation for MinWCDS. Before we do that,

we would like to stress one peculiar aspect of the approximation factor of this algorithm:

not only is σ a parameter of the input graph independent of its size (because it does not

necessarily grow as a function of the size of the graph; for instance, σ(T ) = 1 for every

tree T and σ(C) = 2 for every cycle C), but also, as will be shown next, computing σ

(actually, computing σk for any fixed k) is an NP-hard problem.

Theorem 5.5. For every k ∈ Z>, it is NP-hard to compute σk(G) even for planar

bipartite graphs G with maximum degree 4.

Proof. The maximum doubly connected cut problem (MaxDCC) consists in finding in a

connected graph G a doubly connected cut (S, S) of maximum cardinality, that is, a
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partition (S, S) of V (G) that maximizes the number of crossing edges (which are edges

in E(S, S)) and such that G[S] and G[S] are connected.

Haglin and Venkatesan [HSV91] showed that the decision version of MaxDCC is NP-

complete on 3-connected cubic planar graphs. We present a reduction from MaxDCC to

the decision version of our problem, which asks, given a graph G and an integer q, if G

has a minimal k-disruptive separator containing at least q vertices.

Let G be a 3-connected cubic planar graph. We build from G a graph G′ as follows.

First, we take G and subdivide each of its edges exactly once. For every e ∈ E(G), we

denote by we the vertex of the subdivision of edge e. For every v, we take a new path Pv

(disjoint from the subdivision of G), with initial vertex uv and with k vertices. Then, for

every v ∈ V (G), we add the edge uvv (that is, we append the path Pv to v). Therefore,

V (G′) = V (G)∪{we : E(G)}∪ (∪v∈V (G)V (Pv)) and so G′ has |V (G)|+ |E(G)|+ k |V (G)|

vertices. The construction of G′ is depicted in Figure 5.1. Clearly, G′ can be constructed in

time polynomial in the size of G. Furthermore, G′ is planar, bipartite and it has maximum

degree 4.

e
v

(a) Graph G

v
we

Pv
uv

(b) Graph G′

Figure 5.1: Graph G′ obtained from G with the construction described in the proof of Theo-
rem 5.5.

Observe that each vertex v in V (G) is a cut vertex of G′. Thus every minimal

k-disruptive separator in G′ that contains any vertex of V (G) has size exactly 1. Moreover,

for every v in V (G), it is clear that no minimal k-CDS of G′ intersects V (Pv). Conse-

quently, every minimal k-disruptive separator of G′ of size larger than 1 is contained in

{we : e ∈ E(G)} (remember that a vertex subset is a minimal k-disruptive separator if
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and only if it is minimal tranversal of the set of all minimal k-CDSs). It is easy now to

see that (S, S) is a doubly connected cut in G if and only if {wf ∈ V (G′) : f ∈ E(S, S)}

is a minimal k-disruptive separator of G′. Therefore, G has a doubly connected cut with

at least q crossing edges if and only if G′ has a minimal k-disruptive separator of size at

least q.

Now we can address LPApproxMinWCDS (shown below). In essence, Algorithm 3 is

an LP-rounding procedure that works as follows: given an instance (G,w) of MinWCDS,

LPApproxMinWCDS efficiently solves the linear relaxation of formulation F on (G,w)

(discussed in Section 4.1 of Chapter 4) using a separation routine for the separator in-

equalities (namely, an algorithm by Henzinger, Rao and Gabow [HRG00], henceforth

denoted as HRG, mentioned in Section 4.2 of Chapter 4).

Two key observations have to be made: (i) each time the separation oracle is called,

only minimal violated cuts (that is, violated separator inequalities associated with mini-

mal separators) are added into the cut pool and (ii) we use an auxiliary variable to store

the size, say t, of the current largest violated cut added up to that point (that is, the

size of the largest minimal separator returned by the separation oracle). Once an optimal

solution, say x∗ ∈ RV (G), for the linear relaxation of F on (G,w) has been computed, the

algorithm repeatedly tries to round up and down the fractional coordinates in x∗ until

a CDS of G is found and it does so by carefully increasing t (and, thus, decreasing 1/t,

known as the rounding threshold).

Theorem 5.6. Let (G,w) be an instance of MinWCDS. Algorithm LPApproxMin-

WCDS outputs, in polynomial time, a σ(G)-approximate solution for MinWCDS on

(G,w).

Proof. Consider an instance (G,w) of MinWCDS. Let x∗ ∈ RV (G) be the solution of the

linear relaxation of F found in line 1 and let t be as indicated in line 2. Moreover, let us

define, for every integer q ∈ Z>, the vertex subset Dq = {v ∈ V (G) : x∗v ≥ 1/q}. We say

that 1/q is a valid rounding threshold for (G,w) and x∗ if Dq is a CDS of G. First we
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Algorithm 3 LPApproxMinWCDS

Input: A graph G and a weight function w : V (G)→ Z>
Subroutine: The HRG algorithm
Output: An approximate CDS of (G,w)

1: Let x∗ ∈ RV (G) be an optimal solution to the linear program
min

{∑
v∈V (G) w(v)xv :

∑
v∈Γ xv ≥ 1 for all separators Γ in G,0 ≤ x ≤ 1

}
found by using the HRG algorithm as the separation routine

2: Let t be the size of the largest violated cut added in line 1

3: S ← ∅
4: repeat . The algorithm tries to find a valid rounding threshold
5: S ← {v ∈ V (G) : x∗v ≥ 1/t}
6: t← t+ 1

7: until S is not a CDS of G
8: return S

prove that every valid rounding threshold yields an approximate solution for MinWCDS

on (G,w).

Claim 5.7. If 1/q is a valid rounding threshold for (G,w) and x∗, then Dq is a q-approximate

solution for MinWCDS on (G,w).

Proof. Suppose 1/q is a valid rounding threshold for (G,w) and x∗. Let OPT∗ be the

objective value of x∗, that is, OPT∗ =
∑

v∈V (G) x
∗
vw(v). By the definition of Dq and x∗,

we have that w(Dq) =
∑

v∈Dq w(v) ≤ q
∑

v∈Dq x
∗
vw(v) ≤ q

∑
v∈V (G) x

∗
vw(v) = qOPT∗.

Hence, the claim follows since OPT∗ ≤ OPTMinWCDS(G,w).

Claim 5.8. The value 1/σ(G) is a valid rounding threshold for (G,w) and x∗.

Proof. As mentioned earlier, recall that only minimal violated cuts are added into the cut

pool in line 1. Therefore, for every Γ ∈ S(G) (recall that S(G) is the set of all minimal

separators of G), we have that χΓx∗ ≥ 1. Actually, for every Γ ∈ S(G), note that

max{x∗v : v ∈ Γ} ≥ 1/|Γ| ≥ 1/σ(G).

Thus, Dσ(G) is a transversal of the set of all minimal separators (hence all separators) of
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G. Then, by Theorem 4.1, we conclude that Dσ(G) is a CDS of G. Consequently, 1/σ(G)

is a valid rounding threshold for (G,w) and x∗.

By the definition of variable t in line 2, we have that t ≤ σ(G). By Claim 5.8, the

value of t never goes above σ(G) during the execution of the repeat-until loop in lines 4–7,

thus we conclude that the algorithm always runs in polynomial time and, furthermore,

Claim 5.7 ensures that the returned solution S has an approximation factor at most σ(G),

that is, w(S) ≤ σ(G)OPTMinWCDS(G,w).

We discuss now why we were not able to extend Theorem 5.6 to Mink-WCDS, that

is, what prevented us from deriving, say, a σk-approximation for Mink-WCDS.

Taking a closer look at algorithm LPApproxMinWCDS, one can say that its most

vital component is the polynomial-time solvability of the linear program in line 1, which

is guaranteed by the fact that the separation problem associated with the separator

inequalities admits an efficient separation procedure. A very natural generalization of

this linear program would be as follows: given an instance (G,w) of Mink-WCDS, find a

vector x ∈ Rn, where 0 ≤ x ≤ 1, that minimizes the objective function
∑

v∈V (G) xvw(v)

subject to the constraints
∑

v∈Γ xv ≥ 1 imposed on all k-disruptive separator Γ in G.

Let us call such constraints the k-disruptive separator inequalities . Clearly, if the

separation problem related to the k-disruptive separator inequalities were computationally

tractable, then the polynomial-time solvability of the “generalized version” of the linear

program in line 1 would easily follow.

So here we get to the crux of matter: perhaps it is not the case that k-disruptive

separator inequalities can be separated efficiently and, of course, that comes down to the

fact that computing minimum weight k-disruptive separators in general vertex-weighted

graphs appears to be an NP-hard problem. We tried to prove the NP-hardness of the

so-called minimum weight k-disruptive separator problem (Mink-WS), but we were not

successful, and this prompts us to state the following conjecture:
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Conjecture 5.9. For every k ∈ Z>, if k ≥ 2, then Mink-WS is an NP-hard problem on

general graphs.

Another intriguing matter related to Mink-WS is the very combinatorial structure

of minimal k-disruptive separators, which seems to be much more complex, we think,

when compared to “regular” minimal separators (that is, 1-disruptive separators). At

first, one is tempted to prove some kind of relation between the sets Sk(G), S(G) and

S(Gk) that holds for every graph G. We attempted to show that Sk(G) ⊆ S(G)∪S(Gk).

However, as illustrated in Figure 5.2, already for k = 2, such inclusion is false. It is

straightforward to check, in Figure 5.2, that the set of vertices S = {x, y, z} is a minimal 2-

disruptive separator and not a minimal separator because it properly contains a separator,

for instance S ′ = {y, z}. Moreover, one can check that the vertices x, y, z do not form a

separator in the square of the graph depicted in Figure 5.2. It would be interesting to find

out, for general graphs or even for particular classes of graphs, how the set of all minimal

k-disruptive separators, when k ≥ 2, “interacts” with some other graph parameters.

Figure 5.2: The vertex subset S = {x, y, z} is a minimal 2-disruptive separator but it is not a
minimal separator.



Chapter 6

Hardness results

In this chapter, we address hardness results for Mink-CDS. In Section 6.1, we begin

by proving some inapproximability results for the “classic” variant of the problem where

k = 1. Then, in Section 6.2, we focus on Mink-CDS.

6.1 Hardness results for MinCDS

In this section, we strengthen some known results in the literature on MinCDS con-

cerning hardness of approximation. Before we state and prove them, we introduce some

notation and terminology. For any graph G, we denote by α(G) and ω(G) the stability

number (the size of the largest stable set) and the clique number (the size of the largest

clique) of G, respectively. We say that G is a split graph if V (G) can be partitioned

into two sets, say K and S, such that K is a clique and S is a stable set in G. Such

a partition (K,S) is called a split partition of G. We point out that Heggernes and

Kratsch [HK07] designed a O(n) algorithm (henceforth called the HK algorithm) that

finds a split partition for any given n-vertex split graph.

We now discuss the main results of this section. Firstly, we show that MinCDS is

Ω(log n)-hard to approximate even on n-vertex split graphs with diameter 2, assuming

NP 6⊆ DTIME(nO(log logn)). Our proof is based on an NP-hardness result given by Lok-

shtanov et al. [LMP+13] for MinCDS on split graphs with diameter 2. We show that

47
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the polynomial-time reduction discussed in [LMP+13] can actually be leveraged to prove

hardness of approximation for MinCDS on split graphs with diameter 2. First, we present

two theorems, for future reference, and a support lemma.

Theorem 6.1 (Chlebík and Chlebíková [CC04]). For every fixed ε > 0, MinCDS cannot

be approximated to within a factor of (1− ε) lnn on n-vertex split graphs and on bipartite

graphs, unless NP ⊆ DTIME(nO(log logn)).

Theorem 6.2 (Golumbic [Gol04], Theorem 6.2). Let G be a split graph and let (K,S)

be a split partition of G. If K is a maximum clique and S is a maximum stable set in G,

then (K,S) is the unique split partition of G.

Lemma 6.3. For every fixed ε > 0, MinCDS cannot be approximated to within a factor

of (1 − ε) lnn on n-vertex split graphs with a unique split partition having both sides of

even cardinality, unless NP ⊆ DTIME(nO(log logn)).

Proof. In what follows, we describe a polynomial-time reduction that, for every given

split graph G, produces a split graph G′ with a unique split partition having both sides

of even cardinality.

The reduction goes as follows. Let G be a split graph. We run the HK algorithm on

G to obtain a split partition (K,S) of G. Let p = |K| and ` = |S| and suppose that

K = {c1, . . . , cp} and S = {s1, . . . , s`}. It is straightforward to see that we may assume

that S is a maximal stable set in G. Let G′ be a disjoint copy of G. For each v ∈ V (G), we

denote by v′ the copy of v in G′. Consider the natural split partition K ′ = {v′ : v ∈ K}

and S ′ = {v′ : v ∈ S} of G′. We now define a graphH obtained from the union of G and G′

by adding all possible edges between vertices inK andK ′. Clearly, (K∪K ′, S∪S ′) is a split

partition of H, and α(H) = |S∪S ′| and ω(H) = |K ∪K ′|. Hence, by Theorem 6.2, H has

a unique split partition. Moreover, this split partition has both sides of even cardinality.

It is easy to prove that if G has a CDS with at most q vertices, then H has a CDS

with at most 2q vertices. The converse also holds. Indeed, suppose H has CDS D̂ such

that |D̂| ≤ 2q. We may assume that D̂ ⊆ K ∪K ′. We can also suppose, without loss of
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generality, that |D̂ ∩K| ≤ |D̂ ∩K ′|. Since D̂ is a CDS of H, then, by the construction

of H, we conclude that D̂ ∩K is a CDS of G with at most q vertices.

Thus, we conclude that OPTMinCDS(H) ≤ 2OPTMinCDS(G). Now we are ready to

prove the lemma. Assume NP 6⊆ DTIME(nO(log logn)) and suppose, for a contradiction,

that there exists an approximation algorithm with ratio (1− ε) lnn, where ε < 1 is a

fixed positive constant, for MinCDS on n-vertex split graphs with a unique split partition

having both sides of even cardinality. Let us call such algorithm Aε. Consider the following

algorithm A′ that, for every n-vertex split graph G, runs as follows.

Step 1. Check if nε < 2. If yes, then solve MinCDS on G by brute force and return an

optimal solution. Otherwise, go to the next step;

Step 2. Run the reduction described previously on G to obtain H;

Step 3. Run Aε on H to obtain D̂;

Step 4. Compute D from D̂ (as explained in the reduction) and return D.

One may easily check that A′ is a polymonial-time algorithm. We claim that A′ al-

ways returns a (1 − ε2) lnn-approximate CDS of G. Indeed, if A′ halts on step 1, then,

by construction, it returns an optimal CDS of G. Suppose that A′ halts after step 4.

By hypothesis, |D̂| ≤ (1 − ε) ln |V (H)|OPTMinCDS(H). But now, since |D̂| ≥ 2|D|,

OPTMinCDS(H) ≤ 2OPTMinCDS(G), |V (H)| = 2n and nε ≥ 2, we conclude that

|D| ≤ ((1− ε) lnn1+ε) OPTMinCDS(G) = ((1− ε2) lnn) OPTMinCDS(G).

Therefore, the existence of A′ contradicts Theorem 6.1, and the result follows.

The next result indicates that the inapproximability threshold for MinCDS in Theo-

rem 6.1, proven by Chlebík and Chlebíková [CC04], remains unchanged, asymptotically

speaking, even if we restrict the problem to graphs of diameter 2. We note that the re-

duction constructed in the proof of Chlebík and Chlebíková’s result produces graphs with

diameter greater than 2.
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Theorem 6.4. For any constant c < 1/4, MinCDS cannot be approximated to within a

factor of c lnn even on n-vertex split graphs with diameter 2, unless NP ⊆ DTIME(nO(log logn)).

Proof. Let us first recall the reduction constructed by Lokshtanov et al. [LMP+13] to

show that MinCDS is NP-hard on split graphs with diameter 2.

Given a split graph G with a unique split partition having both sides of even car-

dinality, first we run the HK algorithm to find the split partition (K,S) of V (G). We

define a graph G′ with vertex set V (G′) = S ∪K ′, where K ′ = {ze : e ∈ E(G[K])}. For

every edge e = uv ∈ E(G[K]), G′ has an edge zew for every w ∈ (NG(u) ∪ NG(v)) ∩ S.

Moreover, G′ has all possible edges between vertices belonging to K ′, that is, K ′ induces

a clique in G′. This construction is depicted in Figure 6.1. Clearly, G′ is a split graph

with diameter 2 and can be constructed in time polynomial in the size of G. Furthermore,

observe that |V (G′)| ≤ |V (G)|2.

K

S

u1

u2

1

2

3

4

(a) Graph G with split parti-
tion (K,S).

S

u1

u2

z{1,2}

z{1,3}

z{1,4}

z{2,3}

z{2,4}

z{3,4}

K ′

(b) Graph G′ with diameter 2 and
split partition (K ′, S).

Figure 6.1: Reduction described in the proof of Theorem 6.4.

We prove first that, for every CDS D of G with |D| = q, we can find in polynomial

time a CDS D′ of G′ with |D′| ≤ (q + 1)/2. We may assume that D ⊆ K. Note that

if |D| is odd, then D is properly contained in K because, by hypothesis, |K| is even.

Consider D̃ ⊆ V (G) defined as follows: let D̃ = D if |D| is even and let D̃ = D ∪ {v}

otherwise, where v ∈ K \ D. Note that, by construction, |D̃| is even. Let s = |D̃| and

suppose that D̃ = {v1, . . . , vs}. Let D′ = {z{vi,vi+s/2} ∈ V (G′) : i = 1, . . . , s/2}. Observe

that |D′| ≤ (q + 1)/2. Since D is a CDS of G, then, by the construction of G′, it is
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straightforward to check that D′ is a CDS of G′. Thus, we conclude that, for every CDS

of G with size q, we can find, in polynomial time, a CDS of G′ with size at most (q+1)/2.

Thus, we conclude that OPTMinCDS(G′) ≤ OPTMinCDS(G).

Now we prove that, for every CDS D′ of G′ with |D′| = q, we can find in polynomial

time a CDS D of G such that |D| ≤ 2q. We may assume that D′ ⊆ K ′. In this case, the

set D = {u, v ∈ V (G) : z{u,v} ∈ D′} has the desired properties.

Thus, given an α ln |V (G′)|-approximate CDS of G′, where α is some positive constant,

we can find, in polynomial time, a 4α ln |V (G)|-approximate CDS of G.

To conclude the proof of the theorem, assume that NP 6⊆ DTIME(nO(log logn)), take a

constant c < 1/4, and suppose there exists an approximation algorithm, say Ac, with ratio

c lnn, for MinCDS on n-vertex split graphs with diameter 2. Let A′ be the algorithm for

MinCDS on the class of graphs G described in Lemma 6.3 defined as follows: given G, it

constructs G′, as we mentioned previously, and runs Ac on G′. For ε ≤ 1− 4c < 1, note

that algorithm A′ obtains a (1 − ε) ln |V (G)|-approximate CDS of G, a contradiction to

Lemma 6.3.

6.2 Hardness results for Mink-CDS

In this section, we address complexity issues regarding Mink-CDS from the standpoint

of finding exact or approximate solutions.

As mentioned in Chapter 3, Nguyen and Huynh [NH06a] showed that Mink-CDS is

NP-hard on planar unit disk graphs with maximum degree 4. Their proof, which is quite

involved, clearly implies that Mink-CDS is NP-hard on planar graphs with maximum

degree 4. The next result, with a simpler proof, has the same implication. Furthermore, it

strengthens and generalizes a theorem of White et al. [WFP85] who showed that MinCDS

is NP-hard on planar bipartite graphs.

Theorem 6.5. For every k ∈ Z>, the decision version of Mink-CDS is NP-complete on

planar bipartite graphs of maximum degree 4.
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Proof. We say that a vertex subset K of a graph G is a connected vertex cover (CVC) of

G if every edge in G has at least one endpoint in K and G[K] is connected. The minimum

connected vertex cover problem (MinCVC) seeks for a CVC of G of minimum cardinality.

Fernau and Manlove [FM09] proved that the decision version of MinCVC is NP-

complete on planar bipartite graphs of maximum degree 4. We present a polynomial-time

reduction from the decision version of MinCVC to the decision version of Mink-CDS,

which is clearly a problem in NP.

Let G be a connected planar bipartite graph with maximum degree 4. For each edge

e ∈ E(G) with endpoints u and v, we remove e from G, take a disjoint path Pe with k+ 1

new vertices, and then add edges weu and wev, where we is an endpoint of Pe. Let G′ be

the graph obtained from G with this procedure. Clearly, G′ is planar bipartite, and has

maximum degree 4. The reduction is depicted in Figure 6.2.

u v

(a) An edge e = uv of graph G.

u v

we Pe

(b) Pe is a path with k + 1 vertices
and endpoint we.

Figure 6.2: Gadget described in the proof of Theorem 6.5.

We claim that G has a CVC of size at most q if and only if G′ has a k-CDS of size at

most |E(G)|+ q.

Let K be a CVC of G with |K| ≤ q. Take D = K ∪ {we : e ∈ E(G)}. Clearly, the

size of D is at most |E(G)|+ q. Since K induces a connected vertex cover of G, it follows

that D induces a connected subgraph of G′. For every e ∈ E(G), the distance between

each vertex of Pe and its endpoint we is at most k. Consequently, D is a k-CDS of G′

such that |D| ≤ |E(G)|+ q.

Let D′ be a k-CDS of G′ with |D′| ≤ |E(G)| + q. Take K = D′ ∩ V (G). Since, for

every e ∈ E(G), the path Pe in G′ has k+ 1 vertices, we conclude that we ∈ D′, and thus
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|D′∩ (V (G′)\V (G))| ≥ |E(G)|. Consequently, |K| ≤ q. Since we ∈ D′ for every e ∈ E(G)

and D′ induces a connected subgraph of G′, we conclude that K is a vertex cover of G

and G[K] is connected. Therefore, K is a CVC of G, and this completes the proof.

Let p, q ∈ Z>. We say that a graph G is (p, q)-split if there is a partition (K,S) of

V (G) such that α(G[K]) ≤ p and ω(G[S]) ≤ q. We call such a partition a (p, q)-split

partition. Note that every split graph belongs to the class of (p, q)-split graphs, since

every split graph is a (1, 1)-split graph (see Gyárfás [Gya98]).

We present now an inapproximability result for Mink-CDS that can be seen as a

generalization of Theorem 6.1. First, we observe that every split graph has a 2-universal

vertex (just take any vertex in the clique side of a split partition). Thus, Mink-CDS be-

comes trivial on split graphs for every k ≥ 2, and therefore one can only obtain a result like

Theorem 6.6 for a superclass of split graphs. We were able to prove an inapproximabilty

result for the class of (1, 2)-split graphs, as we show in what follows.

Theorem 6.6. For every k ∈ Z> and every fixed ε > 0, Mink-CDS cannot be approx-

imated to within a factor of (1 − ε) lnn on n-vertex (1, 2)-split graphs and on bipartite

graphs, unless NP ⊆ DTIME(nO(log logn)).

Proof. We first prove the claimed inapproximability threshold for bipartite graphs. We

next show a reduction from MinCDS on split graphs to Mink-CDS on bipartite graphs.

Naturally, we assume that k ≥ 2 because the result is already proven for k = 1.

Let G be a split graph. Firstly, we run the HK algorithm on G and obtain a split

partition (K,S) of G. Let G′ be the graph obtained from G as follows. For every v ∈ S,

take a disjoint path Pv with k−1 new vertices and endpoint v′, and add an edge connecting

v to v′. Additionally, take another disjoint path Ph with k+1 new vertices and endpoint h.

Then, for each v ∈ K, add an edge connecting v to h. Finally, remove all edges with both

endpoints in K. We depict the construction of G′ from G in Figure 6.3. Clearly, G′ is

bipartite and can be constructed in time polynomial in the size of G. Furthermore, observe

that |V (G′)| ≤ k|V (G)|+ k + 1.
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KS

(a) Graph G with split
partition (K,S).

KS

hPh

v′

v

Pv

(b) Bipartite graph G′

obtained from G
when k = 3.

Figure 6.3: Reduction described in the proof of Theorem 6.6 (bipartite case).

We claim that G has a CDS of size at most q if and only if G′ has a k-CDS of size

at most q + 1. Let D be a CDS of G such that |D| ≤ q. We may assume, without loss of

generality, that D ⊆ K. Let us define D′ = D ∪ {h}. Since D is a CDS in G, then D′ is a

k-CDS in G′. Hence, for every CDS of G with size at most q, we can find, in polynomial

time, a k-CDS of G′ with size at most q + 1.

Consider now a k-CDS D′ of G′ such that |D′| ≤ q + 1. Since D′ induces a connected

subgraph of G′ and |V (Ph)| = k+ 1, we conclude that h ∈ D′. Let us define D = D′ ∩K.

Since D′ is a k-CDS of G′, one may easily verify that D is a CDS of G and |D| ≤ q. Hence,

for every k-CDS of G′ with size at most q+1, we can find, in polynomial time, a CDS of G

with size at most q. Therefore, we conclude that OPTMink-CDS(G′) = OPTMinCDS(G)+1.

Assume NP 6⊆ DTIME(nO(log logn)) and suppose, to the contrary, that there ex-

ists an approximation algorithm for Mink-CDS on n-vertex bipartite graphs with ratio

(1− ε) lnn, where ε < 1 is some fixed positive constant. Let us call such algorithm Aε.

Consider the following algorithm A′ that, for every input n-vertex split graph G runs as

follows.

Step 1. Check if n < k + 2. If yes, then solve MinCDS on G by brute force. Otherwise,

go to the next step;

Step 2. Check if OPTMinCDS(G) < 1/ε (by enumerating, via brute force, all possible
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solutions, if any, with at most b1/εc vertices; remember that ε is a fixed constant).

If yes, then solve MinCDS on G by brute force. Otherwise, go to the next step;

Step 3. Check if nε2 < (k+1). If yes, then solve MinCDS on G by brute force. Otherwise,

go to the next step;

Step 4. Run the reduction described previously on G to obtain G′;

Step 5. Run Aε on G′ to obtain D′;

Step 6. Compute D from D′ (as explained in the reduction) and return D.

It is immediate that A′ is a polynomial time algorithm. Now we claim that A′ al-

ways find a (1 − ε4) lnn-approximate CDS of G. If A′ halts before step 4, then it re-

turns an optimal CDS of G. Suppose now that A′ halts after step 6. By hypothesis, we

have that |D′| ≤ (1 − ε) ln |V (G′)|OPTMinCDS(G′). But since |D′| > |D|, n ≥ k + 2,

OPTMinCDS(G) ≥ 1/ε and nε2 ≥ (k + 1), we conclude that

|D| ≤ (1− ε) lnn1+ε2(1 + ε)OPTMinCDS(G) = (1− ε4) lnnOPTMinCDS(G).

Therefore, the existence of A′ contradicts Theorem 6.1, and the result follows.

Now we prove the result for (1, 2)-split graphs. Since the reduction for (1, 2)-split

graphs is quite similar to the one we discussed for bipartite graphs, we present only

a sketch of the proof. The idea is to show a reduction from MinCDS on split graphs

to Mink-CDS on (1, 2)-split graphs. Consider a split graph G. As before, we begin by

runnning the HK algorithm on G and we obtain a split partition (K,S) of G.

LetG′ be the graph obtained fromG as follows. For every vertex v ∈ S, we replace it by

a path Pv with k vertices in such a way that vertex v is identified with an endpoint of Pv.

We keep all other vertices and edges of G intact. In summary, V (G′) = K ∪ (∪v∈SV (Pv))

and E(G′) = E(G) ∪ (∪v∈SE(Pv)). Furthermore, note that |V (G′)| ≤ k|V (G)|. Note also

that α(G′[K]) = 1 and ω(G′[V (G′) \K]) = 2. Thus, G′ is a (1, 2)-split graph. Moreover,

it can be constructed in time polynomial in the size of G.
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It is not hard to see that G has a CDS of size at most q if and only if G′ has a k-CDS

of size at most q. Therefore, OPTMink-CDS(G′) = OPTMinCDS(G).

Assume that there exists an approximation algorithm for Mink-CDS on n-vertex

(1, 2)-split graphs with ratio (1− ε) lnn, where ε < 1 is some fixed positive constant.

Let us call such algorithm Aε. Consider the following algorithm A′ that, for every input

n-vertex split graph G runs as follows.

Step 1. Check if nε < k. If yes, then solve MinCDS on G by brute force. Otherwise, go

to the next step;

Step 2. Run the reduction described previously on G to obtain G′;

Step 3. Run Aε on G′ to obtain D′;

Step 4. Compute D from D′ (as explained in the reduction) and return D.

One may easily check that A′ is a polynomial-time algorithm. We claim that A′

always returns a (1− ε2)-approximate CDS of G. If A′ halts in step 1, then it returns an

optimal CDS of G. Suppose now that A′ halts after step 4. By hypothesis, we have that

|D′| ≤ (1− ε) ln |V (G′)|OPTMinCDS(G′). But since |D′| = |D|, |V (G′)| ≤ kn, nε ≥ k and

OPTMinCDS(G) = OPTMink-CDS(G′), we conclude that

|D| ≤ (1− ε) lnn1+εOPTMinCDS(G) = (1− ε2) lnnOPTMinCDS(G).

Therefore, under the hypothesis that NP 6⊆ DTIME(nO(log logn)), the existence of A′

contradicts Theorem 6.1, and so the result follows.

As we mentioned in the literature review subsection, Bonsma [Bon12] proved that

MinCDS is APX-complete on cubic graphs. The next theorem can be seen as a move in

the direction of extending Bonsma’s result.
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Theorem 6.7. For every k ∈ Z>, Mink-CDS is APX-complete on bipartite graphs of

maximum degree 4.

Proof. We present an L-reduction from MinCVC to Mink-CDS. In fact, we show that

the reduction described in the proof of Theorem 6.5 is an L-reduction. Then, we use the

fact that MinCVC is APX-hard on bipartite graphs of maximum degree 4 [EGM10].

Let G be a bipartite graph with maximum degree 4, and let G′ be the graph obtained

from G using the reduction presented in the proof of Theorem 6.5. Observe that, for

each CVC K of G, we can construct, in polynomial time, a k-CDS D of G′ such that

|D| ≤ |K| + |E(G)| (see the proof of Theorem 6.5). Taking K as a minimum CVC of

G, we can conclude that OPTMink-CDS(G′) ≤ OPTMinCVC(G) + |E(G)|. (This inequality

will be used next.)

Since every vertex in G has degree at most 4, for every CVC K of G, it follows

that |E(G)| ≤ 4|K|. Therefore, for each CVC K of G, we can find, in polynomial time, a

k-CDS D of G′ such that |D| ≤ 5|K|. Thus, OPTMink-CDS(G′) ≤ 5 OPTMinCVC(G).

Conversely, given a k-CDS D of G′, we know that, for each e ∈ E(G), the set D

contains we and at least one of the endpoints of e. Thus, if we take K = D ∩ V (G), we

have that K is a CVC of G and |K| ≤ |D| − |E(G)|. Therefore,

|K| −OPTMinCVC(G) ≤ |D| − |E(G)| −OPTMinCVC(G) ≤ |D| −OPTMink-CDS(G′).

This concludes the proof of the L-reduction. Consequently, Mink-CDS is APX-hard on

bipartite graphs of maximum degree 4. By Corollary 5.3, we know that the problem is in

APX, and therefore it is an APX-complete problem.

In the proof of Theorem 5.6, given in Section 5.2 of Chapter 5, we showed that,

for every graph G, there exists a σ(G)-approximation algorithm for MinWCDS, where

σ(G) is the cardinality of the largest minimal separator of G. We next prove that the

approximation ratio of algorithm LPApproxMinWCDS, though simple as it is, is near-

optimal. But before we do that, we need the following lemma, which can be considered a
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step towards a generalization of Theorem 4.1 (which is the result of Kanté et al. [KLMN11]

that shows that a vertex subset of a graph is a CDS if and only if it is a tranversal of the

set of all separators of the graph).

Lemma 6.8. Let G be a graph and Sk(G) be the set of all minimal k-disruptive separators

of G. A set D ⊆ V (G) is a minimal k-CDS of G if and only if D is a minimal transversal

of Sk(G).

Proof. Firstly, we prove that every k-CDS of G is a transversal of Sk(G). Let D ⊆ V (G)

be minimal a k-CDS of G and consider a k-disruptive separator Γ of G. We claim that

D∩Γ 6= ∅. Indeed, if D∩Γ = ∅, then D is entirely contained in some component of G−Γ,

a contradiction to the fact that Γ is a k-disruptive separator of G.

We next show that every minimal transversal of Sk(G) is a minimal k-CDS of G. Let

D ⊆ V (G) be a minimal transversal of Sk(G). Firstly, suppose to the contrary that G[D]

is not connected. Since D intersects every k-disruptive separator of G, there must be a

component of G[D], say C, such that V (C) is a k-CDS of G; otherwise, V (G) \D would

be a k-disruptive separator of G, contradicting the assumption on D. As we have shown

before, V (C) contains a transversal of Sk(G), but, since V (C) is strictly contained in D,

this contradicts the minimality of D. Thus, G[D] is connected.

We now claim that D is a k-DS of G. Suppose to the contrary that there exists a

vertex v ∈ V (G) such that v 6∈ Nk[D]. Therefore, Nk[v] ∩D = ∅ and we conclude that v

is not a k-universal vertex of G, that is, {v} is not a k-CDS of G. Let us define Γ = Nk(v).

We claim that Γ is a k-disruptive separator of G. Clearly, G − Γ is disconnected. Let C

be a component of G− Γ. If v ∈ V (C), then V (C) = {v} and we already know that {v}

is not a k-CDS of G. If v 6∈ V (C), then v 6∈ Nk(V (C)) and, once again, V (C) is not a

k-CDS of G. Hence, Γ is a k-disruptive separator of G, a contradiction to the fact that

D is a transversal of Sk(G). This concludes the proof that D is a k-DS of G. Since G[D]

is also connected, D is a k-CDS of G. Finally, D is a minimal k-CDS of G because any

k-CDS of G strictly contained in D would be a transversal of Sk(G), a contradiction the

fact that D is a minimal transversal.
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Let D ⊆ V (G) be a minimal k-CDS of G. We have shown that D intersects every

minimal k-disruptive separator of G. Now, we claim that D is a minimal transversal of

Sk(G). Observe that any transversal of Sk(G) strictly contained in D would be a k-CDS

of G, and this contradicts the fact that D is a minimal k-CDS of G. Therefore, D is a

minimal transversal of Sk(G) and the result follows.

So now let us prove, assuming P 6= NP, that the performance guarantee of algorithm

LPApproxMinWCDS is close to the best we can hope for.

Theorem 6.9. For every k ∈ Z> and a fixed integer p ≥ 2, let Gp be the class of graphs

G with σk(G) = p. For every k ∈ Z> and every fixed ε > 0, if P 6= NP, then Mink-CDS

cannot be approximated to within a factor of

max
{
p− 1− ε, 10

√
5− 21

}

on the class Gp. Moreover, this claim holds even when we restrict it to (1, 2)-split graphs

in Gp.

Proof. Let H be a hypergraph. We say that H is simple if none of its hyperedges is

contained within another. Moreover, for every integer p ≥ 2, we say that H is a p-uniform

hypergraph if all of its hyperedges have cardinality exactly p. A subset K ⊆ V (H) is said

to be a vertex cover of H if K intersects each hyperedge of H. The minimum hypergraph

vertex cover problem (MinHVC) consists in finding a vertex cover of H of minimum

cardinality.

We show an L-reduction from MinHVC on simple p-uniform hypergraphs (fixed p ≥ 2)

to Mink-CDS on the class Gp. We consider two cases.

Case 1: p ≥ 3.

Dinur, Guruswami, Khot and Regev [DGKR05] proved that, under P 6= NP, MinHVC

has no (p− 1− ε)-approximation on p-uniform simple hypergraphs, for every p ≥ 3 and

every fixed ε > 0.
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Let H be an n-vertex p-uniform simple hypergraph with |E(H)| ≥ 2. From H, we

construct a graph G with V (G) ⊇ V (H) as follows. For every e ∈ E(H), we take a

disjoint path Pe with k new vertices, and denote by we one of its end vertices. Then, we

add an edge connecting we to every vertex in e. Finally, we make all vertices belonging

to V (H) pairwise adjacent in G, that is, G[V (H)] is a clique. This construction is depicted

in Figure 6.4. Note that G is a (1, 2)-split graph that can be constructed in polynomial

time in the size of H.

(a) A 4-uniform hypergraphH with
3 hyperedges (dashed circles).

(b) Path Pe with k vertices and end
vertex we.

(c) GraphG. The vertices of the hy-
pergraph H induce a clique in G.

Figure 6.4: Reduction from MinHVC to Mink-CDS: construction of G from the hypergraph
H.

Recall that Sk(G) denotes the set of all minimal k-disruptive separators of G. We

claim that Sk(G) = E(H). It is easy to see that E(H) ⊆ Sk(G). Now we prove that

Sk(G) ⊆ E(H). For that, it suffices to show that, for every minimal k-disruptive separator

Γ of G, there exists e ∈ E(H) such that Γ = N(we) ∩ V (H). Consider Γ ∈ Sk(G). Note

that, every minimal k-CDS of G is contained in V (H). Therefore, due to the minimality

of Γ, since, by definition, Γ intersects every minimal k-CDS of G, one may easily check
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that Γ ⊆ V (H). Suppose, to the contrary, that N(we) ∩ V (H) 6= Γ for all e ∈ E(H).

Since N(we) ∩ V (H) ∈ Sk(G) for every e ∈ E(H), again, by the minimality of Γ, it

follows that, for every e ∈ E(H), N(we) ∩ V (H) is not strictly contained in Γ. Hence,

(N(we)∩V (H))\Γ 6= ∅ for every e ∈ E(H). By the construction of G, we conclude that Γ

is not a separator of G, a contradiction. Therefore, we have Sk(G) = E(H). Consequently,

σk(G) = p, that is, G ∈ Gp.

Now, we claim that G has a k-CDS of size q if and only if H has a vertex cover of

size q. Consider a k-CDS D of G. We may assume that D is minimal and that D ⊆ V (H).

By Lemma 6.8, D is a transversal of Sk(G). Since E(H) = Sk(G), we conclude that D is

a vertex cover of H.

Conversely, let K be a vertex cover of H. We may assume that K is minimal. Since

E(H) = Sk(G), it follows that K is a transversal of Sk(G). By Lemma 6.8, K is a k-CDS

of G. Hence, we conclude that OPTMink-CDS(G) = OPTMinHVC(H), and this finishes the

proof of the L-reduction.

Thus, every α-approximation for Mink-CDS on (1, 2)-split graphs in Gp yields an

α-approximation for MinHVC on p-uniform simple hypergraphs. In view of the result

shown by Dinur et al. [DGKR05], we conclude that, if P 6= NP, for every ε > 0, there

is no (p − 1 − ε)-approximation algorithm for Mink-CDS on (1, 2)-split graphs in the

class Gp.

Case 2: p = 2.

In this case, we refer to the minimum vertex cover problem (MinVC), which is simply

the restriction of MinHVC to graphs (which are 2-uniform hypergraphs); and for this

problem, Dinur and Safra [DS05] showed that MinVC has no (10
√

5−21)-approximation

if P 6= NP. In order to prove the result we claim, we use the same reduction discussed

before, and from H (which is now a graph) we construct a (1, 2)-split graph G with

σk(G) = 2. The result follows analogously, this time using the inapproximability result

for MinVC.
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Chapter 7

Conclusions

We studied, in this thesis, the minimum weight k-hop connected dominating set prob-

lem, a generalization of the well-known minimum connected dominating set problem. We

proved that, for every k, the decision version of Mink-CDS is NP-hard on planar bipar-

tite graphs of maximum degree 4 (showing that the hardness of MinCDS carries over to

Mink-CDS on the same subclass of graphs, since White et al. [WFP85] had proved that

MinCDS is NP-hard on planar bipartite graphs).

We also proved a number of results on the (in)approximability of Mink-CDS. We

showed that Mink-CDS is APX-complete on the class of bipartite graphs with maximum

degree 4 (we recall that it has been proven by Bonsma [Bon12] that MinCDS on cubic

graphs is APX-complete).

We showed that the inapproximability threshold ((1− ε) lnn) of MinCDS that holds

already for n-vertex split graphs (and also for bipartite graphs), proved by Chlebík and

Chlebíková [CC04], can be generalized to Mink-CDS on (1, 2)-split graphs (and also for

bipartite graphs). We note here that, for k ≥ 2, the last result does not hold for split

graphs (on which the problem is trivial). We also showed an inapproximability threshold

close to that of Chlebík and Chlebíková [CC04] for MinCDS on the smaller class of

split graphs of diameter 2 (the smallest value of the diameter for which the problem is

non-trivial).

63
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On the positive side, we presented a type of meta-approximation theorem which says

that, for every graph G, an f(G)-approximation for MinCDS on G can be turned into a

kf(Gk)-approximation for Mink-CDS on G. As a consequence, we obtained an algorithm

for Mink-CDS that returns a k(1+ε)(ln(∆(Gk)−1)+1)-aproximate k-CDS for every graph

G and every fixed 0 < ε ≤ 1. This result improves (asymptotically by a factor of 2) on the

approximation originally proposed by Ren and Zhao [RZ11] for the minimum connected

set cover problem (a generalization of Mink-CDS). Ren and Zhao’s algorithm translates

into a 2k(H(∆(Gk)) + 1)-approximation for Mink-CDS. Furthermore, we showed two

approximation algorithms for the weighted version of MinCDS, one of them restricted to

graphs with polynomially many minimal separators, a class that includes, for instance,

chordal graphs.

As future steps, we think it would be interesting to further investigate the graph pa-

rameter σk(G), possibly finding classes of graphs G for which this parameter is bounded

by a constant, or graphs for which Sk(G) is polynomially bounded. Likewise, it would be

worthwhile to settle or refute Conjecture 5.9, which concerns the computational complex-

ity of finding minimum weight k-disruptive separators in general vertex-weighted graphs.

Another line of research would be the design of better approximation algorithms for

Mink-CDS, when k ≥ 2, for special classes of graphs, such as the cubic graphs.
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