
Requirements Engineering

in

Software Startups:

a Qualitative Investigation

Jorge Augusto Melegati Gonçalves

Dissertation submitted

to the

Institute of Mathematics and Statistics

of the

University of São Paulo

for

obtainment of the title

of

Master of Science

Program: Ciência da Computação

Supervisor: Prof. Dr. Alfredo Goldman vel Lejbman

São Paulo, January 2017

Requirements Engineering

in

Software Startups:

a Qualitative Investigation

This version of the dissertation contains corrections

and suggested changes by the Judging Committee

during the defense of the original version

of the work, held on 06/03/2017.

A copy of the original version is available

at the Institute of Mathematics and Statistics,

University of São Paulo.

Judging Committee:

• Profa. Dra. Xiaofeng Wang - Free University of Bolzano-Bozen (Italy)

• Prof. Dr. Fabio Levy Siqueira - EP-USP

• Prof. Dr. Rafael Prikladnicki - PUC-RS

Acknowledgments

I would like to thank Professor Alfredo for the several lessons taught, for being patient with me

and for allowing me to take my time to develop this research.

I am very grateful to all interviewees that spent some precious time talking about their startups

and experience. Without their help this work would not be possible. I expect that the results justi�ed

your o�ering. You should be certain that everything was done to make the best out of it. I also feel

very thankful to everyone in the Institute that made this possible including professors, secretaries

and colleagues.

Lívia, thank you for your support and patience. I am also very grateful to all my family, specially

my brother Bruno who really helped me when needed. Finally, I would like to dedicate this work

to my grandfather Natal who passed away during this journey. He is one of the most responsible

people for my achievements.

i

ii

Resumo

GONÇALVES, J. A. M. Engenharia de Requisitos em Startups de Software: uma inves-

tigação qualitativa. 2017. 90 f. Dissertação (Mestrado) - Instituto de Matemática e Estatística,

Universidade de São Paulo, São Paulo, 2017.

Startups de software enfrentam um mercado muito exigente: elas devem entregar soluções alta-

mente inovativas no menor período de tempo possível. Recursos são limitados e tempo para alcançar

o mercado é pequeno. Então, é extremamente importante coletar os requisitos certos e que eles se-

jam precisos. Entretanto, os requisitos de software geralmente não são claros e as startups fazem um

grande esforço para identi�car quais serão implementados. Esse contexto afeta como as atividades

de engenharia de requisitos são executadas nessas organizações. Este trabalho procura compreender

o estado-da-prática da engenharia de requisitos em startups de software. Usando uma abordagem

iterativa, dezessete entrevistas foram realizados em três diferentes estágios com fundadores e/ou

gestores de diferentes startups de software brasileiras operando em diferentes setores e com difer-

entes estágios de maturidade. Os dados foram analisados usando técnicas de teoria fundamentada

como codi�cação aberta e axial através da comparação contínua. Como resultado, um modelo con-

ceitual do estado-da-prática da engenharia de requisitos em startups de software foi desenvolvido

consistindo da suas in�uências do contexto (fundadores, gerente de desenvolvimento de software,

desenvolvedores, modelo de negócio, mercado e ecossistema) e descrição das atividades (time de

produto; levantamento; análise, validação e priorização; e documentação). Técnicas oriundas de

metodologias de desenvolvimento de software e desenvolvimento de startups também são apresen-

tadas e seu uso em no contexto de startups é analisado. Finalmente, a partir de uma analogia de

maus cheiros presente na literatura de desenvolvimento de software, algumas más práticas e maus

comportamentos identi�cados em startups de software são apresentados e algumas sugestões de

solução são propostas.

Palavras-chave: startups de software, engenharia de requisitos, engenharia de software experi-

mental.

iii

iv

Abstract

Gonçalves, J. A. M. Requirements Engineering in Software Startups: a Qualitative Inves-

tigation. 2017. 90 f. Dissertação (Mestrado) - Instituto de Matemática e Estatística, Universidade

de São Paulo, São Paulo, 2017.

Software startups face a very demanding market: they must deliver high innovative solutions

in the shortest possible period of time. Resources are limited and time to reach market is short.

Then, it is extremely important to gather the right requirements and that they are precise. Nev-

ertheless, software requirements are usually not clear and startups struggle to identify what they

should build. This context a�ects how requirements engineering activities are performed in these

organizations. This work seeks to characterize the state-of-practice of requirements engineering in

software startups. Using an iterative approach, seventeen interviews were conducted during three

stages with founders and/or managers of di�erent Brazilian software startups operating in di�erent

market sectors and with di�erent maturity levels. Data was analyzed using grounded theory tech-

niques such open and axial coding through continuous comparison. As a result, a conceptual model

of requirements engineering state-of-practice in software startups was developed consisting of its

context in�uences (founders, software development manager, developers, business model, market

and ecosystem) and activities description (product team; elicitation; analysis, validation and prior-

itization; product validation and documentation). Software development and startup development

techniques are also presented and their use in the startup context is analyzed. Finally, using a bad

smell analogy borrowed from software development literature, some bad practices and behaviors

identi�ed in software startups are presented and solutions to avoid them proposed.

Keywords: software startups, requirements engineering, empirical software engineering.

v

vi

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Startup de�nition . 2

1.2 Requirements engineering . 3

1.3 Startup development methodologies . 4

1.4 Objectives . 5

1.5 Organization . 5

2 Related work 7

2.1 Software development in startups . 7

2.2 Startup development methodologies . 9

2.2.1 Customer development . 9

2.2.2 Lean startup . 10

2.2.3 Design thinking . 11

2.2.4 Desing sprint . 12

2.2.5 Discussion . 13

2.3 Requirements engineering . 13

2.4 Conclusion . 17

3 Research design 19

3.1 Data collection . 20

3.1.1 Interview guide . 20

3.2 Data analysis . 21

3.2.1 Open coding . 22

3.2.2 Axial coding . 22

3.2.3 Iterative process . 23

4 Data collection and analysis 27

4.1 Chronology . 27

4.1.1 Stage 0 . 27

4.1.2 Stage 1 . 28

4.1.3 Stage 2 . 30

4.1.4 Stage 3 . 30

vii

viii CONTENTS

4.2 Interviews . 31

5 Requirements engineering in software startups model 35

5.1 In�uences . 35

5.1.1 Founders . 36

5.1.2 Software development manager . 36

5.1.3 Market . 37

5.1.4 Business model . 39

5.1.5 Developers . 40

5.1.6 Ecosystem . 41

5.2 Product team . 42

5.3 Process . 44

5.4 Activities . 44

5.4.1 Elicitation . 45

5.4.2 Analysis, Validation and Prioritization . 46

5.4.3 Product Validation . 48

5.4.4 Documentation and Communication . 48

5.5 Summary . 49

5.6 Used practices and problems . 50

6 Bad smells and recommendations 55

6.1 Know-it-all founder . 56

6.2 Stubborn developer . 57

6.3 Closed-minded team . 58

6.4 Blocked ideas . 58

6.5 Validate and do not waste . 59

6.6 Not spread knowledge . 59

6.7 Discussion . 60

7 Conclusions 61

7.1 Main contributions . 61

7.2 Threats to validity . 62

7.3 Future work . 63

7.4 Production during this research . 64

A Interview guide 65

Bibliography 69

List of Figures

1.1 Startups practices: business and software development. 4

2.1 Customer development process. 10

2.2 Build Measure Learn loop. 11

3.1 An interview transcription after labeling in AtlasTI tool. 23

3.2 Labels and categories in AtlasTI tool. 23

3.3 Whiteboard used during data analysis. 24

3.4 Research process. 24

4.1 Number of labels and categories through �rst stage analysis. 29

4.2 Model after stage 1. 30

4.3 Data collection and analysis chronology. 31

5.1 Hunter-Gatherer evolution model for startups. Extracted from [NDSA15]. 40

5.2 Requirements engineering process model. 43

5.3 Requirements engineering process. 54

ix

x LIST OF FIGURES

List of Tables

2.1 Software development formation process categories 8

4.1 Interviews . 32

5.1 Comparison between models. 35

5.2 Summary of in�uences on requirements engineering process. 50

5.3 Summary of di�erences between user and client targeted startup. 51

5.4 Practices mentioned in the interviews. 52

6.1 Bad smells and related concepts from model. 56

xi

xii LIST OF TABLES

Chapter 1

Introduction

Software startups are at the heart of the technological revolution that has taken place in the

world for the last �fty years. They are, at same time, an e�ect of scienti�c and technological

developments and a cause of several changes in the way mankind consume, communicate and

live. Facebook, the actual worldwide biggest social network, has approximately 1 billion users1 and

Amazon had total sales of 89 billions dollars in 20142. Facebook and Amazon are only two examples

of how deep changes induced by successful startups are.

The current historical period is characterized by an unprecedented speed of technological devel-

opment, an increasing globalization and several changes in society. Startups and other organizations

face this context in their day-to-day life. In this highly changing environment, software requirements

are di�cult to extract and they change frequently [PGU+14]. Nevertheless, the capacity of innova-

tive solutions delivery is very important for startups success [DD05]. After the "dot-com" bubble

burst [TM14] in the beginning of the century, the importance of how startups work has grown.

Since then, from the criticism of used practices, some new startups development methodologies

have emerged in the industry like Customer Developer [Bla07] and Lean Startup [Rie11]. These

new techniques are presented through the description of practical experiences and examples of their

use. Even having a gap between theory and practice [Pat13], they are getting increasingly atten-

tion in specialized media and industry events. Although a huge publishing and media sucess, there

are few evidences in literature of these techniques real use as pointed out by Paternoster et al.

[PGU+14].

An important concept to requirements engineering is the stakeholder. The term was coined by

Freeman and Reed [FR83] in relation to stockholders of a company and refers to "those groups

without whose support the organization would cease to exist". The authors also list the common

list of stakeholders: "shareowners, employees, customers, suppliers, lenders and society". In software

development, the term is commonly used to refer to software users and other people related to

the task like other teams in the company, owners, etc. Traditionally, they are the main source

of requirements and identifying them is one of the tasks in requirements engineering as will be

discussed in section 1.2.

Nevertheless, startups must handle several stakeholders. Not only users but also investors and

founders that have committed time and/or money and have their expectations and beliefs on what

should be accomplished. The developers themselves have their own expectations and want the best

1Available in http://newsroom.fb.com/company-info/. Accessed 2017-01-16.
2Available in http://www.bbc.com/news/business-31051044. Accessed 2017-01-16.

1

2 INTRODUCTION 1.1

for the organization. Still, startups have limited human and �nancial resources and the time to

reach the market is short. Hence, more speci�c software requirements engineering techniques would

be very welcome for software startups.

As a �rst step on this direction, a detailed description of software requirements engineering

state-of-practice would make possible the evolution of the startups development methodologies or

even the creation of new practices that aim a better e�ciency on startup creation and management.

In a software startups literature systematic mapping, Paternoster et al. [PGU+14] devote a spe-

ci�c section for requirements engineering. The authors have not found any study focused on software

requirements engineering practices but acknowledge that requirements engineering practices:

• are limited to some key practices;

• present an increasing di�culty because of a growing number of users;

• demand, from several authors perspectives, more user involvement.

Given such context, the research question that will guide this study is:

How requirements engineering practices are executed in software startups?

In the following sections, some term de�nitions will be made to determine this study scope.

First, a discussion on what a software startup is. Then, a description of requirements engineering

and some methodologies used in industry on startup development. Finally, this study objectives are

presented and the text organization is provided.

1.1 Startup de�nition

Paternoster et al. recognized in their systematic mapping [PGU+14] that di�erent authors

adopted di�erent de�nitions to what a startup is. In this sense, it is important to make clear

which de�nition is used by this research. Sutton [Sut00] proposed a de�nition based on which char-

acteristics a startup presents: little or no operation history; limited resources; multiples in�uences;

and dynamic technologies and markets. After analyzing several other studies, Paternoster et al.

have expanded this de�nition adding other aspects: innovation, fast growth, time pressure, third

party dependency, focus on one product and �at organizational structures.

Although several studies use de�nitions similar to this one, it can leave out some representative

cases. For instance, Clinkle3 had received US$30 million to build a brand new mobile payment

technology through sound but was still considered by media as a startup. This de�nition also ex-

cludes groups formed inside large companies to develop new products and technologies ([ABG+10],

[VMM16], [RS16]). These groups face similar challenges and are in similar situations that the

so-called startups. So, we preferred to stay with Ries' de�nition [Rie11]: "a startup is a human

institution designed to deliver a new product or service under conditions of extreme uncertainty".

This de�nition covers innovation, time pressure and focus on only one product that has a direct

e�ect on requirements engineering, this research focus. At the same time, it sets aside characteristics

like little or no operation history and limited resources. As said before, these characteristics would

exclude organizations that face similar contexts to conventional startups.

3Available in http://www.businessinsider.com/inside-story-of-clinkle-2014-4. Accessed 2017-01-16.

1.2 REQUIREMENTS ENGINEERING 3

Given Ries' de�nition, it can be tempting to only call startup a company that is building some-

thing brand-new. Nevertheless there are companies that are making some kind of technological

improvement or bringing a technology to a new market then they are also facing extreme uncer-

tainties. As stated by Amason et al. [AST06]: "Every new venture represents some type of innovation

and these various types of innovation can be placed along a continuum. At one end are the revo-

lutionary innovations that spark dramatic and radical change for whole segments of an industry.

At the other end are that evolutionary innovations that modify and re�ne existing practices". In

the case of software startups another point should also be made, as Häsel et al. [HKB10] states:

"companies can develop a completely new software technology to realize their products or rely

on existing standards, frameworks, and components". That is, a software startup can disrupt or

innovate in the software itself or software can be a mean to do it.

1.2 Requirements engineering

According to Nuseibeh and Easterbrook [NE00], "the primary measure of success of a software

system is the degree to which it meets the purpose for which it was intended". Thereafter the authors

de�ne Requirements Engineering (RE) as the process of discovering that purpose by identifying the

stakeholders and their needs, documenting the discoveries for future analysis, communication and

implementation. In their Requirements Engineering textbook, Kotonya and Sommerville [SK98]

enumerate the activities performed under RE: elicitation; analysis and negotiation; documentation

and validation.

Elicitation is requirements engineering �rst stage and its main objective is to �nd out the

problem to be solved and, thereby, de�ne system boundaries. The �rst task is to identify the

system stakeholders, that is as said before, people that have some interest in it. The most common

stakeholders are clients, users and developers themselves. From interacting with these stakeholders,

it is possible to determine which requirements should be implemented. This task can be extremely

hard for startups that focus a large group of people, for instance, one that is building a website or

an app.

During elicitation stage, several stakeholders provide di�erent requirements. Inevitably, several

inconsistencies appear: con�icts on di�erent sources, lack of necessary details to allow implementa-

tion or inadequacy to project scope. Hence, it is necessary a stage to analyze and detail requirements

and negotiate with stakeholders which requirements will be implemented. An Extreme Program-

ming principle proposed by Beck and Andres [BA05], which is present in several agile methodologies,

is the Customer Always Available. According to this principle, at least one client is always colo-

cated with the development team: working together with them, helping with requirements analysis

and negotiation and, even, answering questions that could show up. Although most of startups use

agile methodologies [PGU+14], there is no descriptions in literature of how this is done in software

startups.

Once the requirements are selected, they are documented to be observed during development

and further validation on software deliveries. Under agile methodologies, working software is more

important than a comprehensive documentation as pointed out in Agile Manifesto [BBvB+01].

Nevertheless, Selic [Sel09] warns that it is possible to misunderstand this phrase. According to

the author, the principle refers to documents describing implementation plans created before any

4 INTRODUCTION 1.4

knowledge about the problem or the solution has been absorbed. Instead, he advocates that we

need documentation at a higher level closely related to application concepts and requirements over

technological details.

Finally, requirements should also be validated before their implementation to check if they are

complete and consistent. That is, it should be checked if requirements certainly and completely meet

users expectations. It is also important to de�ne tests to verify if a requirement has accomplished

its objectives after implementation.

1.3 Startup development methodologies

Requirements engineering is closely related to software startups business activities as shown in

�gure 1.1. As Cheng and Atlee [CAJ07] state: "requirements reside primarily in the problem space

whereas other software artifacts reside primarily in the solution space". This is also important

for agile methodologies where there are roles directly related to business like Product Owner in

Scrum [Sch04] or the Customer Always Available in Extreme Programming [BA05]. In this sense,

it is important to discuss the software product management concept. According to Ebert [Ebe07],

Software Product Management is the discipline and business process that guide a product from

inception to delivery. Then, it is important to analyze which product management techniques are

being used by startups since they will tell how part of requirements engineering is done.

Figure 1.1: Startups practices: business and software development.

According to Blank [Bla13], the way a new product was launched by startups followed a tradi-

tional formula that could only end in a complete success or a huge failure. This formula consisted

of: writing a business plan, present it to possible investors, assemble a team, create and build the

product and sell it. The dot-com bubble burst led entrepreneurs to question if this traditional

way was the most suitable for startups. In this context, new methodologies focused on startups

appearead like Customer Development [Bla07] and Lean Startup [Rie11]. Besides that, techniques

brought from product design began to be used like Design Thinking [Bro09].

1.5 OBJECTIVES 5

1.4 Objectives

In summary, we discussed what we want to study (requirements engineering activities) and in

which context (software startups). Software development in startups are di�erent from software

development in general because they face an unique context in which they should produce a lot

with few. Some methodologies and techniques were developed to be used in this context and they

might in�uence how requirements engineering are executed in software startups. In which extent

this is true is still not well explored in literature.

Our intent is to reduce the gap between theory and practice providing a detailed study on what

actually happens concerning software requirements in software startups. Then, this research main

goal is to develop a state-of-practice model of requirements engineering in software startups. Besides

that, since startup methodologies are in evidence, a secondary objective is derived: verify if these

methodologies are used and to what degree. And once the requirements engineering processes are

mapped for startups, another possible secondary objective is to provide some practical advice to

these companies.

1.5 Organization

This text is organized as follow. In chapter 2, related work is presented and discussed. In chapter

3, the research design is presented and in chapter 4 the research execution is detailed. In chapter

5, the requirements engineering conceptual framework developed during the research is presented,

discussed and related to others works in literature. In chapter 6, some bad practices perceived are

presented and recommendations are made to software startups. Finally, in chapter 7, a conclusion

is presented including this work major contributions, its major limitations, how these limitations

were minimized and possibilities for future studies.

6 INTRODUCTION 1.5

Chapter 2

Related work

As presented previously, there is little discussion on the literature concerning speci�cally re-

quirements engineering for startups. Some studies focused on software development as a whole in

software startups. These studies are presented and discussed in section 2.1. Given this research sec-

ondary objective - to verify to which extent startup development methodologies are used in software

startups - the most common methodologies are presented in section 2.2. Finally, in section 2.3 an

overview of literature in requirements engineering is presented. And since startups tend to use agile

methodologies as they are product-driven, focus on small teams and embrace changes instead of

avoiding them ([Tai10] and [CO08]), this last section also focus on agile requirements engineering.

2.1 Software development in startups

Paternoster et al. conducted a systematic mapping study on software development in startups

[PGU+14]. The authors concluded that software development in startups is "not supported by a

scienti�c body of knowledge". Although the authors examined 43 primary studies, only 4 were fo-

cused on software development in startups, used a evidence-based research methodology and made

a strong contribution to the �eld. Besides that, 3 of these 4 studies were based on the same data.

The systematic mapping study extracted work practices and divided them in categories: process

management practices; software development practices; managerial and organization practices; and

tools and technologies. Software development practices were divided in requirements engineering

practices; design and architecture practices; implementation, maintenance and deployment prac-

tices; and quality assurance practices.

The subsection dedicated to requirement engineering practices focused on requirement elicita-

tion. They state that practices "are often reduced to some key basic activities". They grounded this

argument in the works of Crowne [Cro02] and Zettel et al. [ZMMW01]. The �rst listed reasons to

startups failures and included requirements related reasons. For instance, "product isn't a product"

or "requirements become unmanageable" that occurs when there are more requirements than the

team can deliver and there is no way to decide among them. The latter proposed a lightweight

development methodology for startups. This methodology has only few activities related to require-

ments engineering like "collect scenarios" and lacks discussion on, for instance, how decide between

requirements. They also discussed how di�cult is to elicit and detail requirements in an innova-

tive market and when �nal users are unknown - requirements are market-driven rather speci�c to

a customer. On their conclusion, authors acknowledge that demonstrating problem/solution �t is

7

8 RELATED WORK 2.1

required to discover what the user really needs.

Coleman and O'Connor [CO08] employed Grounded Theory to study software development

process formation in Irish software startups. The authors developed a theoretical framework with

categories and their relations to explain software development process in startups. The categories

found are described in table 2.1.

The software development manager will determine which process model will be used as a guide

to process activities and this model will be subject to process tailoring. The software development

manager is a founder or someone hired in the beginning of company activities. In both cases, the

manager will bring a development culture including a software development methodology like RUP

[Kru04] or XP [BA05] that will be the used process foundation. Besides techniques, the manager also

brings a management style. The management style could be: "command and control" or "embrace

and empower". The �rst occurs when there is no trust on developers and they must be constantly

observed and analyzed. The latter, when developers perform their tasks with more independence

because of a greater trust level. The management style is also in�uenced by the founder(s) and they

can have a technological background or not. Therefore, the software development process is formed

by the management style within a tailored process based on a well-known methodology.

Software development man-
ager experience

The software development manager (a founder or someone
hired in the beginning of the startup life) will mold the
process used by the current �rm.

Founder experience S/he can be from IT area or not but s/he will deter-
mine, within software development manager, the manage-
ment style.

Management style The authors detected two di�erent types: "command and
control" when there is no trust on developers and they are
kept under strict control and "embrace and empower" when
there is big trust on development team and they are allowed
to do tasks with less or even without supervision.

Process tailoring The chosen process are not, generally, strictly followed.
They are adapted to the organization needs and market
requirements.

Market requirements The market where the �rm operates can demand speci�c
requirements like high availability, extensive documentation
or high delivery speed.

Table 2.1: Software development formation process categories

Giardino et al. developed a software development model for startups also through grounded

theory [GPU+15]. The authors called it the Green�eld Startup Model and it is composed of seven

main categories that are:

• Speed-up development;

• Evolutionary approach;

• Product quality has low priority;

• Team is the catalyst of development;

2.2 STARTUP DEVELOPMENT METHODOLOGIES 9

• Accumulated technical debt;

• Initial growth hinders performance;

• Several lack of resources.

As implications of their model, authors recognized that startups use a light-weight methodology,

empower team members and focus on a minimal set of functionalities. Their work also discussed

technical debt ([Cun93]) in software startups. They concluded that the speed-up in the beginning

of the startup creates a lot of technical debt that may hinder the development performance in the

future when the startup grows.

2.2 Startup development methodologies

In this section, it will be described some startup development methodologies that are being

used. These methodologies have arisen after the dot-com bubble burst. According to Thiel [TM14],

during the bubble period "the most 'successful' companies seemed to embrace a sort of anti-business

model where they lost money as they grew". Then, a disbelief in the traditional way products have

been launched emerged. Following the traditional path, a company should develop a business plan,

present it to possible investors, build a team, create the product and then sell it as described by

Blank [Bla07].

2.2.1 Customer development

According to Blank, the traditional product development method does not work for startups. Ac-

tually, these methods work well for products where there can be problems in development and/or

distribution but they do not work well when the product may not be accepted by customers.

Nevertheless, in software and web markets, most of problems are acceptance or adoption related.

According to the author, most of startups fail because of lack of customers and not due to prod-

uct developments mistakes. Then, he proposes the Customer Development process that focus in

the client and in the market since the beginning. The process comprehends four steps: customer

discovery, customer validation, customer creation and company building.

In customer discovery stage, Blank suggested that the possible customers are more listened and

hypothesis about the market and the product should be tested. The team should look for customer

problems, check if the product could solve them and try to estimate how much customers are willing

to pay for it. Ideas should be evaluated through three lens:

• technological: if the product can be developed now, how much would be spent in research

and development and if there would be intellectual property issues;

• customer related: besides evaluating if the product solves a customer problem, the market

size should also be checked, if there are other competitors and if your product will have

competitive advantages over these possible competitors;

• oportunity: if it is a unique idea, nonexistent in the current market and if the idea is possible

and not something unsustainable.

10 RELATED WORK 2.2

In customer validation stage, a repeatable sales process must be built and, mostly, a check

done if the business model makes sense. Sales metrics are used in this moment like customer long

time value (LVM) and return on investment (ROI). It is possible that the product proves to be

unsustainable. In this case, the process should come back to the previous stage, starting over, but

more knowledge on market is available.

Once the product is validated, that is, it has been proven that is desirable and viable, the next

stage takes place: customer creation. In this stage, the goal is to grow the customer base. There

are several marketing techniques to keep up with that ([CSS12]). Finally, an organization must be

created (or adapted in case it already exists) and verify if its mission agrees with the developed

product. In �gure 2.1, the Customer Development process is summarized.

Figure 2.1: Customer development process.

2.2.2 Lean startup

Eric Ries was a student in a Blank's course where the latter presented his Customer Devel-

opment methodology. This was a condition imposed by Blank in his investment on Ries' startup

[Bla13]. Ries realized that there was a relation between this new methodology and the Japanese

lean manufacturing techniques that were already been used in software development [PP03]. Then,

he applied lean principles, mainly elimination of waste, in the process of creating a startup - the

Lean Startup methodology arose.

According to the author, startups should avoid a long phase on business plan creation and

planning where no revenue is created, the so-called stealth mode. On the contrary, they should use

small Build-Measure-Learn cycles represented in �gure 2.2. During these cycles the team should not

take their ideas on the market for granted but instead take them as hypothesis that should be tested

as soon as possible. In this sense, he proposes the Minimum Viable Product (MVP) concept that

is to build the least minimum set of features (Build) that allows the hypothesis evaluation through

metrics (Measure), validating the initial hypothesis or not, that is, learning something about the

market (Learn).

A startup should replace a complete business plan for a market vision with an objective to build

a business. From this vision, through several Build-Measure-Learn cycles, it would be possible to

develop a product that meets the market needs even when it takes to changes on the initial idea.

This course change is called pivot.

Lean Startup got a lot of attention. The book that introduced the methodology was still between

the most sold even after four years from its publication1. College courses about it have been o�ered

1According to http://www.chicagotribune.com/bluesky/originals/chi-sxsw-eric-ries-kickstarter-bsi-20150316-

2.2 STARTUP DEVELOPMENT METHODOLOGIES 11

Figure 2.2: Build Measure Learn loop.

([Nob11], [Pau15], [Har15]) and studies about it have been performed ([Moo12], [Hui13]) including

investigations about its e�ectiveness like [DS16].

2.2.3 Design thinking

Design Thinking is a set of techniques proposed to systematize activities performed by designers

during product development. The name oppose the scienti�c method in which all parameters of a

problem are de�ned before searching for a solution. Design Thinking is based on solutions, allowing

several possibilities to be explored at the same time. Design thinking tackles "wicked problems"

[BPI92]. The "wicked" term was �rst used by Rittel and Webber [RW73] to describe planning

problems. The authors call the problems scientists and engineers have usually focused upon as

"tame" problems. These problems have clear missions and it can be veri�ed if a solution has been

reached or not. Nevertheless, wicked problems can have "an exhaustive inventory of [..] conceivable

solutions[...]". There are several versions of the method in which stages have di�erent names but

without changing the process core. Simon [Sim96] enumerates the following stages:

• Determine: �nd out what is the problem whose solution is looked for and which is the target

audience;

• Research: review the problem and try to remember all obstacles, revisit prior proposed

solutions;

• Creation: identify possible clients needs, create as many as possible ideas to solve the problem

(brainstorm);

• Prototype: create product drafts and present them to the target audience, obtaining as many

as possible comments and critiques (feedback);

• Choose: review objects, analyze the results and identify the most promising ideas;

story.html. Accessed 2017-01-16.

12 RELATED WORK 2.2

• Implement: develop the chosen solution and deliver it to the client;

• Learn: obtain clients' impressions, discuss what can be improved, measure project success.

Mueller and Thoring [MT12] compare Design Thinking and Lean Startup. The authors describe

their similarities like innovation focus; user-centered approach; test prototypes; rapid iteration and

their di�erences like scope; project initiation; user research; synthesis; customer, users and stake-

holders; ideation; iteration/pivoting; adaption of deployments; quantitative evaluation; business

model and qualitative evaluation.

Johansson-Skoldberg et al. [JSWÇ13] discuss the design thinking discourse. According to the

authors, there are actually two discourses: designerly thinking and design thinking. The �rst one is

the academic construction of the professional designer's practices, trying to understand the "non-

verbal competence of the designers". While the latter is when the design practice is used beyond the

design context including their methods into practical management for instance. The second discourse

is more important to our work since as pointed out by the authors, this concept "became a portal

for the whole design area to contribute to innovation" and "a way to deal with a complex reality".

The authors mention that design thinking in management area could be linked to three di�erent

origins and the �rst one is related to innovation. This �rst origin is a book written by IDEO's CEO

(IDEO is the world's largest design company [JSWÇ13]) Tim Brown [Bro09]. Still according to the

authors, the stories in this book are compelling but "there is no published theoretical framework".

IDEO's design thinking became very popular in startups common literature and a brief descrip-

tion will follow. Brown [Bro08] described the design process as a "system of spaces rather than a

prede�ned series of orderly steps". Each space comprises di�erent activities. The �rst is inspiration

focused on the circumstances that lead to the innovation ("a problem, an opportunity, or both").

Example questions in this space are "what's the business problem?" or "where's the opportunity".

The second is ideation that is the "process of generating, developing, and testing ideas that may lead

to solutions". This space is more related to the ideas of brainstorming and prototyping. Generally,

the process will loop through these �rst two space until the idea is re�ned. Finally, the last space

is implementation when the solution is presented and the team can move on to the next project. In

software startups, these steps can be used to foster innovation, new ideas that are very important

for the organization.

2.2.4 Desing sprint

Design Sprint [BLW15] is a process developed inside Google Ventures, a Google subsidiary that

invest in startups besides providing an environment so they can grow including tools, networking

and even human resources2. Design Sprint is a �ve-days process to answer critical questions about

business through design, prototyping and customer-based ideas tests. The process promises to any

company the possibility to create and test virtually any idea in 40 hours.

It is described as stages performed in a �ve-day working week and what should be done in each

day.

• Monday: unpack - during this day the knowledge from di�erent areas should be shared.

2Available at http://www.gv.com/sprint/. Accessed 2017-01-16.

2.3 REQUIREMENTS ENGINEERING 13

• Tuesday: sketch - each person should work by herself, developing in details an idea to solve

the problem. After the sketches, the best ideas will be chosen through a weighted voting.

• Wednesday: decide - in this day, which solutions will have a prototype, how the prototype

will be built and last day interview participants start to be chosen.

• Thursday: prototype - this day should be the highest working day when the team works to

implement the prototypes decided the day before.

• Friday: test - the prototypes should be presented to the customers in interviews made one

by one and learning should be done at most.

As a summary, Design Sprint brings some ideas from Design Thinking creating a step-by-step to

be used in innovative teams. Since several times software startups are very innovate, Design Sprint

could become a very important tool. Nevertheless, it is still very new and no other uses besides

those described in the book were found.

2.2.5 Discussion

In summary, the methodologies presented although ranging from startups focused (like Lean

Startup) to more general relating to innovation (Design Thinking) have some points in common.

All of them advocate some kind of prototyping and listening the users more often. These elements

attack the main reason given to the dot-com bubble: a long period investing in a product without

any feedback from user. These points also are strictly related to requirements engineering.

Although several handbooks have been published and some methodologies are really discussed in

the media, software startups seem to not been following them as found out on interviews performed

by Bosch et al. [BOBL13]. The authors explain: "our interviewees con�rms that it is very di�cult

to know how to work in a straightforward manner in early stage startups, and that operational

process support, i.e. decision-making support, is limited". As a response to this problem, the authors

propose the Early Stage Software Startup Development Model (ESSSDM) extending Lean Startup

principles.

2.3 Requirements engineering

Requirements Engineering research is very well established based on a strong research commu-

nity. Cheng and Atlee [CAJ07] perform a description of the �eld state-of-the-art and research future

directions. The authors divide the subject in the following �elds: elicitation, modeling, requirements

analysis, validation and veri�cation, requirements management and evaluation-based research. In

elicitation, works had focused on techniques to improve this activity including metaphors and per-

sonas, brainstorming and creativity workshops, feedback techniques (models, model animations,

simulation and storyboards). In Requirements Analysis, works focused on well-formedness errors

like ambiguity, inconsistency or incompleteness. And also techniques to help prioritize, visualize

and analyze helping "a manager to select an optimal combination of requirements to be imple-

mented". Research in Validation and Veri�cation has focused on improving stakeholder feedback

like animations, simulations and derived invariants. Evaluation-based research is described as an

orthogonal to the previous works and "whose mission is to assess the state of the practice and

14 RELATED WORK 2.3

evaluate proposed advances to the state of the art". As recommendations made by the authors we

can mention: researchers should work with practitioners so they can have an understanding of the

real problems that the latter face and RE researches should not neglect evaluation and empirical

research. Another classi�cation on requirements engineering research can be found in [Zav95].

Neill and Laplante [NL03] perform a survey to understand the state of the practice on Require-

ments Engineering. The participants were obtained from a database of then prospective, current

and former graduate students of the authors' university. The authors concluded that their major

�nds were that formal methods are rarely used, ad-hoc practices do not impact quality, the waterfall

model was still popular and object-oriented techniques were not dominant. The last results can be

explained since the study is quite old and object oriented was not yet wide-spread. And maybe

today the waterfall model is not so popular. But the two �rst conclusions may still be valid.

An even older work from Siddiqi and Chandra [SC96] draws attention to some important facts

like requirements incompleteness, requirements engineering reconciliation between technical and

social factors, tacit information elicitation, di�cult to handle market-driven innovations through

classical requirements engineering techniques, impossibility to make requirements correct at the

�rst time and RE becoming more of a design and integration exercise. They conclude stating their

belief that "the key mission for requirements engineering community is to continually narrow the

ever-growing gap between research and practice".

Requirements elicitation is the focus of a work of Zowghi and Coulin [ZC05]. The authors

present a list of techniques, approaches and tools to support this activity. The authors conclude

that requirements elicitation depends on a large number of factors like "the system being developed,

the stage of the project, and the application domain" and that "almost all projects a combination

of several di�erent techniques will be necessary to a successful outcome".

Milne and Maine [MM12] discuss the in�uence of power and politics in requirements engineer-

ing. They �nd that power operates through formal and informal channels and seniority does not

necessarily translate into e�ective power. Other characteristics are important as sources of power

like expertise and personal characteristics. They conclude that, in many circumstances, to come up

with the best requirements "requires political as well as technical skills".

The agile methodologies use has been a concern on requirements engineering point of view since

the beginning as pointed out on a position paper by Eberlein and Leite [EL02]. After years, a

systematic literature review performed by Inayat et al. [ISM+15] identi�ed 21 works on practices

and challenges of agile requirements engineering. Although, according to the authors, "the uneven

distribution of authors across geographic regions means that the empirical evidence reported by the

21 studies could not be considered generalizable." The practices are:

• face-to-face communication;

• customer involvement and interaction;

• user stories;

• iterative requirements;

• requirements prioritization;

• change management;

2.3 REQUIREMENTS ENGINEERING 15

• cross-functional teams;

• prototyping;

• testing before coding;

• requirements modeling;

• requirements management;

• review meetings and acceptance tests;

• code refactoring;

• shared conceptualizations;

• pairing for requirements analysis;

• retrospectives;

• continuous planning.

As challenges of agile requirements engineering, the authors mention:

• minimal documentation;

• customer availability;

• budget and time estimation;

• neglecting non-functional requirements;

• customer inability and agreement;

• contractual limitations;

• requirements change and its evaluation.

An important study was conducted by Cao and Ramesh [CR08] when they extracted data from

16 organizations that employ agile practices to understand how requirements engineering practices

are performed in this context. The authors identi�ed the following practices:

• Face-to-face communication over written speci�cations: instead of formal requirements docu-

mentation, agile team rather use stories to de�ne high level requirements that will be discussed

in details with customers during development;

• Iterative requirements engineering: requirements are not pre-de�ned but emerge during de-

velopment;

• Requirements prioritization goes extreme: the highest priority requirements are �rst imple-

mented while in traditional methods besides business value also consider risks, costs and

implementation dependency;

16 RELATED WORK 2.4

• Managing requirements change through constant planning: in each cycle �nish, changes can

be made to requirements, others can be added or removed to better �t customer needs;

• Prototyping: instead of creating formal requirements, agile teams create prototypes to validate

and re�ne requirements although there is a risk of creating unreal expectations to customers;

• Test-driven development: since tests specify code behaviors, they can be seen as a requirements

engineering activity as they become an explicit speci�cation and not just a veri�cation code;

• Use review meetings and acceptance tests: at the end of development cycles, meetings are

performed to review implemented features and obtain feedback but also to verify if the project

is running as expected - this practice leverages customer thrust in the team and allows problem

identi�cation as early as possible.

Fogelström et al. investigate the applicability of agile methodologies in market-driven software

development [FSO10]. The authors compare properties of the two subjects and present �ndings

from a case study. They warn about some misalignment between these two areas described below.

• Development context: agile methods are oriented towards a client (bespoke development)

since from beginning and focused in a project instead of product management usual in market-

driven products.

• Business context: agile methods assume that there is a client responsible to tell what brings

her value in addition to �nance development as opposed to market-driven products that the

own company will �nance their development.

• Understanding of value: since agile methods focus on a client, understanding of value is

simpler considering the client will tell it meanwhile, in market-driven products, this under-

standing is more di�cult demanding more complex tools like customer value analysis.

• Assumptions about requirements: agile methods suppose that requirements are vague or

unknown in the beginning of the project but, for market-driven products, huge e�orts could

have been made previously to gather requirements.

The �rst three items can be observed in startups. Most of them develop a product to an open

market (sometimes it does not even exist), the company itself must �nance the development and

understanding of value is really hard by the same reasons discussed.

Meanwhile, Sillitti et al. [SCRS05] investigate the di�erences and similarities between agile and

document-driven approaches in managing uncertainty in requirements. The authors conclude that

agile methodologies are more customer centric and �exible and they seems to provide better results

at least in the relationship with the customer.

Another interesting work is a systematic literature review performed by Silva et al. [SMMS11]

on user-centered design and agile methods. The authors identi�ed "recurring themes and patterns

of the most common activities and artifacts used by teams integrating agile methods and UCD

[User-Centric Design]".

Discussion on requirements engineering can also be found in information systems literature

like in [LME+12]. In this paper, Lockerbie et al. explore the impact of software requirements on

system-wide goals.

2.4 CONCLUSION 17

2.4 Conclusion

As mentioned earlier, there is no speci�c work on requirements engineering in software startups.

Then the degree to what the related work results can be seen in software startups is unknown.

For instance, given agile requirements engineering practices found, will they be present in software

startups? And how software startups handle market-driven requirements that most of them face in

daily basis? This work will also add to the requirements engineering research: now applied to a new

context and could be an inspiration to other di�erent contexts not yet studied. This study secondary

objective - to understand to what degree startups development methodologies are used in software

startups - is very important to give a feedback to the authors and the community. Depending on

how these methodologies are used, a better guide to the improvement of them can be �gured out.

18 RELATED WORK 2.4

Chapter 3

Research design

This research aim is, essentially, to �nd out how a process or processes set (Requirements Engi-

neering) is performed in a determined context (software startups). That is, it tries to understand a

human behavior. According to Seaman [Sea99], human behavior is one of few phenomena demanding

qualitative methods to be studied. Hence, a qualitative research is a natural choice.

The selection of the research method to be used is very important. Several elements should

be taken in account like research question nature, researcher experience, study scope, etc. Myers

[Mye97] mention four research methods for qualitative studies: action research, case study, ethnog-

raphy and grounded theory. In the following paragraphs each of these methods will be presented

and a discussion on their applicability to this study.

Davison et al. [DMK04] say: "the application focus of [Action Research] involves solving orga-

nizational problems through intervention while at the same time contributing to knowledge". That

is, an action research design consists of a real-life problem solution development combined with a

deep study of the related phenomenons. Then, this research method requires a deep involvement

between the research and, in this case, the target startup. Although one of the secondary objectives

of this research is to give advice to software startups, this research main goal is to understand how a

startups works, that is, it is exploratory. In this sense, it would be more valuable to contact several

di�erent startups touching di�erent contexts. Then action research would not be the best option to

our research.

According to Easterbrook et al. [ESSD08], in software engineering research, "ethnography can

help to understand how technical communities build a culture of practices and communication

strategies that enables them to perform technical work collaboratively". This method is based

on �eld observation and also demands a huge involvement with the target startup. As for action

research, since there are several di�erent startup contexts (di�erent maturity stages, markets on

which companies operate, startup sta� experience level, etc.), it is important to explore several

startups what would be very costly using ethnography without getting much better results.

The same issue would happen with a case study. Even in a multiple-case case study, it is expected

to use a variety of di�erent data sources. Besides that, as mentioned by Easterbrook et al., "the

major weakness of case studies is that the data collection and analysis is more open to interpretation

and researcher bias". This could be very problematic given the researcher inexperience. Better

results could be obtained using a more de�ned set of tools that will guide the researcher getting

results.

In this sense, our �nal option, grounded theory is well suited. Several data collection and analysis

19

20 RESEARCH DESIGN 3.1

techniques are discussed by one of the authors of the method [SC90]. Besides that, grounded theory

is "extremely useful in developing context-based, process-oriented descriptions and explanations

of the phenomenon" [Mye97]. The objective is to build a theory grounding it in empirical data

through continuous data collection and analysis. Then grounded theory seems like a good option

to be used in this research: it gets good results for research questions similar to ours through

a large set of data and give speci�c tools that would be a valuable guide to an inexperienced

researcher. Also, grounded theory has been used in an important study in this subject: Coleman

and O'Connor [CO08] studied how the software development process is formed in software startups

through interviews with Irish software startups and used grounded theory to develop a theoretical

framework for process formation.

Although grounded theory is a very suitable option, following it strictly is very hard for inex-

perienced researches. Then we chose to take it as a guide and basically use some of their analysis

techniques instead of doing everything it presents. In the following section, data collection and anal-

ysis techniques chosen are described and why these choices were made is explained. Then, grounded

theory analysis techniques are discussed and some choices made are explained.

3.1 Data collection

Given the research exploratory bias, it is important that the data collection techniques used in

this study foster the arising of new facts that were not expected by the researcher. Myers [Mye97]

mentions some techniques for collecting empirical data like "interviews, observational techniques

such as participant observation and �eldwork, through to archival research". In this study, interviews

are one of the best suited options since it makes possible to get in touch to several di�erent contexts.

A in-depth participant observation or �eldwork would be time-consuming without creating novel

facts. Nevertheless, interviews in the startup workplace would be valuable to the researcher get some

information to improve the research results. Archival research also would be time-consuming and

could limit companies sample since some of them would not provide data due information security

concerns.

Still according to Seaman [Sea99], interviews can be structured when the interview already has

a closed set of questions that should be answered by the interviewee or they can be unstructured

when the interviewer only have one or more topics about which the interviewee will talk. Between

them, there are also semi-structured interviews when the interview has a prior question set but he

is allowed to do other questions depending on how the interview goes. In this case, it is common to

use a interview guide.

This last approach was chosen since it is possible to let the interviewee tell more details and

novel facts but, using an interview guide, restrict unnecessary digressions that could make interviews

too long and lacking important elements. Besides interviews, �eld notes could also be made by the

researcher to complement data.

3.1.1 Interview guide

The interview guide was developed consisting of three parts. First, it was important to measure

the interviewee background, knowledge level on software development and startup development

methodologies, her role in the startup and about the startup itself: a little about its history and

3.2 DATA ANALYSIS 21

product. After that, the main part consisted of four open questions, each one on a requirements

engineering stage. And �nally, a feedback from the interviewee on the interview to gather any other

information that s/he would �nd interesting for the research. The interview guide is presented in

appendix A.

3.2 Data analysis

Once interviews and �eld notes represent data, it is important to select proper data analysis

tools. Grounded Theory was developed by Glaser and Strauss and, according to them, "is the

discovery of a theory based on data systematically obtained and analyzed in social research" [GS67].

As pointed out by Urquhart et al. [ULM10], there are several other de�nitions found in literature,

nevertheless according to them, four main characteristics are common:

• the main goal is to build a theory;

• the researcher must avoid that her prior knowledge takes her to create hypothesis before the

study - in this case, the research would be con�rmatory;

• analysis and conceptualization are made throughout the process of data fusion and comparison

where all data chunks are compared with existent categories to see if they create a new

category, supplement a pre-existent or create a relation;

• "data chunks" are obtained through theoretical sampling when the researcher decides, from

analysis, when he is going to do the next sampling.

After a book [SC90] published by Strauss, now in cooperation with Corbin, there was a clear

divergence between both original authors that created two main streams on grounded theory. Heath

and Cowley [HC04] perform a comparison between these two streams. The authors discuss the di�er-

ence between induction (Glaser) and deduction (Strauss) emphasis, the di�erent stages: substantive

and theoretical (Glaser) vs open, axial and selective (Strauss) and �nally theory discovery (Glaser)

vs theory construction (Strauss). According to Kendall [Ken99], the axial coding was the core of the

di�erences and according to him, Glaser considered the other stream more conceptual description

than emergent theory. Nevertheless, according to Strauss and Corbin, one of the key factors to

write a new book was the di�culty that new researchers found while using grounded theory [SC90].

Given the researcher little experience on the topic, this research is based on techniques described

by Strauss and Corbin [SC90]. An interesting discussion on using grounded theory on requirements

engineering research is presented in [JG14].

The authors propose three stages for grounded theory: open coding, axial coding and selective

coding. This research used only open and axial coding. The �nal stage, selective coding, is when a

theory is built. Since creating a theory is beyond our objective, selective coding will not be done.

We expect that at the axial coding end we will have a conceptual framework that will meet our

objectives. These two stages will be described in the following subsections and tools used during

this research to perform this stage will be described.

22 RESEARCH DESIGN 3.2

3.2.1 Open coding

Open coding is the �rst stage in the process proposed by Strauss and Corbin [SC90]. According

to the authors, "it is the analytical process in which concepts are identi�ed and its properties and

dimensions are discovered in data". In this context, it is important to de�ne the concepts used by

the authors:

• Concept: "is the abstract representation of a fact, an object or an action/interaction", that

is, a "labeled phenomenon";

• Category: meanwhile concepts are accumulating during conceptualization, they should be

grouped together behind more explanatory terms, the so-called categories.

Once the categories are de�ned, there should be speci�c characteristics to describe them. These

characteristics are properties and dimensions.

• Property: "is a characteristic or attribute, general or speci�c, of a category";

• Dimension: "represent the location of a property along a line or a band". For instance, let

luminosity be a property of a category, the dimension would vary from light to dark.

Still according to the authors, there are many ways to perform open coding depending on

analysis granularity: from line by line, phrase by phrase, paragraph by paragraph or even to read

the whole document. After reading �rst interviews, a phrase by phrase analysis was chosen but,

sometimes, phrases fragments could also represent a concept.

Open coding was made with AtlasTI tool1 support. AtlasTI is a commercial tool developed to

help qualitative research handling data and performing coding. The tool was used to add labels to

interviews transcriptions and also group labels into categories. This was very useful because, for

instance, after labeling the �rst nine interviews there were more than two hundred labels. In �gures

3.1 and 3.2, the labeling and categories processes in AtlasTI are presented.

3.2.2 Axial coding

The process second stage is axial coding that, according the authors, "is the process of con-

necting categories to its subcategories, and is called axial because it occurs on a category axis,

associating categories on properties and dimensions level". That is, during this stage, relations

between categories including subcategories and cause-consequence are made and properties and

dimensions are organized (this job already started in open coding).

During this stage, other features from the analysis tool were used to group labels together.

These groups represented categories, subcategories, properties and dimensions. To picture categories

and identify their relationships, a whiteboard was used to draw categories, relationships and their

properties and dimensions. A whiteboard was chosen because drawing and erasing was easier and

quicker than in software. Besides that, the whole model could be seen at once. A picture of the

whiteboard is shown in �gure 3.3.

1Avaible online on http://atlasti.com. Accessed 2017-01-16.

3.2 DATA ANALYSIS 23

Figure 3.1: An interview transcription after labeling in AtlasTI tool.

Figure 3.2: Labels and categories in AtlasTI tool.

3.2.3 Iterative process

At the end of axial coding, it is expected that a set of categories and subcategories within their

properties and dimensions have emerged and help to answer how requirements engineering process

is made in software startups. Nevertheless, it is possible that, after this process is done once, there

are missings points where phenomenons or practices are not well explained and other rounds of data

collection and analysis are needed. That is, this research process will be iterative. Actually, this is

advocated by Strauss and Corbin [SC90]. This process will stop when new data does not bring any

more novelty. This idea is represented in �gure 3.4.

Actually, the iterative idea is present in the whole process even during stages themselves. That is,

axial coding did not start after open coding ended. Actually it started after labeling few interviews

24 RESEARCH DESIGN 3.2

Figure 3.3: Whiteboard used during data analysis.

Figure 3.4: Research process.

and continued until the analysis end. Labels were also merged, split, grouped, had their group

changed and all of these happened several times throughout several days. For instance, after the

labeling of the �rst round of interviews, there were more than two hundreds labels. Then, an iterative

process took place to re�ne labels and categories: some were removed, new were added and others

were merged. This process happened due to a growing understanding about the data by the analyst.

In this chapter, the research design was presented. First, qualitative research methods were

presented and their applicability to this research was discussed. Grounded theory was chosen as a

guide. Data collection consisted of semi-structured interviews performed using an interview guide

and �eld notes regarding observations were also taken when possible. Data analysis consisted of open

3.2 DATA ANALYSIS 25

and axial coding. Each stage consisted of data collection and data analysis and improvements could

also be made to the interview guide. In the following chapter, the research execution is described

including how many interviews were made in each stage and how the interview guide evolved.

26 RESEARCH DESIGN 3.2

Chapter 4

Data collection and analysis

In this chapter, the research data collection and analysis are presented. This element is important

while reporting a qualitative study as described by Miles and Huberman [MHS13]. According to

the authors, the reporter of a qualitative study should provide the "natural history of inquiry". In

this way, the study can be repeated elsewhere and its credibility can be assessed. This point in also

valued in empirical studies on requirements engineering as pointed by Daneva et al. [DDMP14]: "the

more explicitly a research design is described, the easier it is for readers of empirical RE papers

to evaluate the generalizability of the research being published". In section 4.1, a description of

how the research evolved through time is presented and in section 4.2 a summary of the interviews

performed is presented.

4.1 Chronology

The research reached theoretical saturation after three stages. Each stage was performed as

described in the previous chapter: interview guide creation or improvement, interviews and data

analysis. Besides that, another stage was performed before interviews used for data analysis. During

this stage, the researcher tried to improve his skills and learn from other researchers that faced

similar challenges. This stage is called as Stage 0 and is described in subsection 4.1.1. The following

subsections describes details about each other cycle.

4.1.1 Stage 0

As the researcher had not prior experience with interviews and qualitative data analysis, this �rst

stage consisted of three interviews with other researchers from the Department who had already

made interviews and/or grounded theory analysis. This period took place between August and

September 2015. During interviews, the researcher took notes about tips on each subject. The

�rst two interviews were about interviewing process and themes discussed included: how to control

the interview pace; creating a relationship during an interview to increase trust and foster details

gathering and also some practical ones like to avoid noisy places. One interviewee said she has lost

an interview due to a recorder problem and this induced us to use two recorders to have a backup.

For the interview about grounded theory, it was important to get practical advices since books

about the subject only give simple examples. One suggestion was to use pieces of paper instead of

software to perform coding. Although this suggestion was not followed because it looked slower and

27

28 DATA COLLECTION AND ANALYSIS 4.1

would demand more space, it inspired the white board solution to picture the relationship between

categories. Besides advice, interviews made during this stage were also important to give practical

experience to the researcher in performing future interviews.

4.1.2 Stage 1

Once the research preparation was ready, it was time to reach possible interviewees. The in-

terviewees list was created based on �rst author's contacts and other university students who own

startups. We also used a snowball approach to get other possible interviewees. Some people were also

contacted to name people that could be interviewed. Possible interviewees were contacted through

emails. Arrangements were made to perform meetings. A meeting were preferred since this way the

researcher could observe the startup working environment. But, after some contacts, this require-

ment became more �exible because of di�culties with interviewees' schedules. Then meetings and

calls were performed.

A spreadsheet was created to handle emails with possible interviewees. This spreadsheet had

rows grouped by a contact. Each group header contained the interview name, last sent email date,

last answer received date and interview date. The line was also colored according to the contact

status: green for interview done, yellow to waiting for an answer and red for failed contact. A

contact was marked as failed after two emails sent without an answer or when the participation in

the research had been denied. After the header, there rows representing emails sent, containing its

date, its answer date and a brief summary.

Emails started to be sent in December, 2015 and two interviews were made then. But, most

of interviews in this stage were made in January, 2016. In this stage, nine interviews were made

and recorded using two devices to prevent data loss. In research plan, it was expected to do few

interviews before start analyzing. This number of interviews should not be too small because data

from di�erent contexts is needed. But not too big because analyzing interviews could bring insights

to the next interviews. Nevertheless, the contact process was very productive and several interviews

were arranged in the beginning. Since people could get frustrated and not participate in the future

if their interviews were postponed, it was preferred to make the arranged interviews and analyze a

bigger amount of data.

Following an advice received during the stage 0, the researcher started transcribing himself

the interviews. Although giving several insights and being a start to analysis, transcribing was

too time-consuming. After four interviews, recorded interviews were sent to a third party to be

transcribed. Nevertheless, the researcher still reviewed the transcription, listening again to the

record and �xing transcription errors. This review process is the analysis process start. Both the

spreadsheet and transcription processes were made throughout the whole research. In this stage,

transcribed interviews summed up 72 pages.

In the beginning, some analysis tools used for grounded theory studies were evaluated. There

were few open source solutions and they were still very simple. Some commercial solutions were

really expensive like NVivo. AtlasTI was chosen because it has been used in other related studies

([JG14], [GPU+15] and [KDR+07]), it was considered simple to use and it was a�ordable through

a student license.

The analysis then took place during February and March. The coding process consisted of

labeling and categorizing labels using tools available at AtlasTI. This process consisted of doing

4.1 CHRONOLOGY 29

these two activities throughout several days and sometimes more than once a day. This process

favored a more in-depth contact with data by the researcher. Another activity was added using

the whiteboard to picture relationships. Finally, these three activities: labeling, categorizing and

connecting categories were made at the same time, forging a model. In �gure 4.1 it is presented

how the number of labels and categories evolved through ten days of analysis. This period starts

after all �les have been labeled once.

2 4 6 8 10
100

120

140

160

180

200

220

240

Days

N
u
m
b
er

of
la
b
el
s

Labels

20

25

30

35

40

45

50

N
u
m
b
er

of
ca
te
go
ri
es

Number of Labels
Number of Categories

Figure 4.1: Number of labels and categories through �rst stage analysis.

By the beginning of April, a paper [MG16] was submitted to a workshop to present the results

of this �rst stage. In �gure 4.2, the model after this �rst stage is presented. In the �gure, we

can see that the in�uences on requirements engineering processes (founders, software development

manager, market, business model, ecosystem and founders) were already identi�ed. Though, some

details (categories) were still to be found.

In this moment, the product team role was already identi�ed and elicitation techniques were

already described. Between elicitation and implementation phases, only prioritization has been

identi�ed. Validation and �nal validation stages were identi�ed but these concepts were not so well

detailed. Validation comprehended the stage when a requirement is prototyped or other kind of

experiment was made to check if it is worth implementing. Final validation was the stage when

the implemented requirements was checked if it was done correctly. The documentation stage was

identi�ed as how the team would write requirements details. In the following stages, this stage will

comprehend also communication between team members.

30 DATA COLLECTION AND ANALYSIS 4.2

Figure 4.2: Model after stage 1.

4.1.3 Stage 2

The interview guide had a few changes after the �rst stage results. Mainly we stopped asking

about Customer Development and Design Sprint since they revealed to be unknown in the context.

To get more information about a possible product team or who performs this role, a question was

added asking who is responsible for product guidance. We did not use the term product team to

avoid an in�uence on the interviewee. Then a new round of interviews were performed in May,

2016. This round consisted of �ve interviews. Transcriptions of interviews made during this stage

summed 47 pages. The data analysis was made during July and August. Few new phenomenon

appeared. That indicates that theoretical saturation was close. First, more focus on requirements

analysis was needed. In the �rst stage, it was resumed to a prioritization stage but it was clear

that requirements are treated and evolved before implementation. Then, it was clear that analysis,

validation and prioritization worked together to prepare a requirement to be implemented and

represented a stage consisting of these three activities. Besides that, one of the interviewees when

asked for suggestions for the interview mentioned requirements evolution. Although this concept is

very important, developing it further would be beyond the scope of this work and will be left as

a suggestion for a future work. Finally, other dimensions of some categories were also grounded in

this stage.

4.1.4 Stage 3

Again the interview guide was modi�ed but this time only a question regarding requirements

analysis was added. This new round of interviews took place in September, 2016 and consisted

of three interviews. As a result, more details about requirements analysis were gathered and for

other aspects no new phenomenon appeared. It was concluded that theoretical saturation had been

reached.

In �gure 4.3, a summary of chronology is presented.

4.2 INTERVIEWS 31

Figure 4.3: Data collection and analysis chronology.

4.2 Interviews

All interviews were in Portuguese and took between 21 and 48 minutes and, most of the time,

followed the interview guide. While answering questions, the interviewee was set free to talk and tell

his/her experience. Sometimes, the interviewee started to digress but the interview guide helped the

interviewer to stick to the plan. The interviewees list is described in table 4.1 including interviews

details like the research stage during the interview took place, the interviewee role in the startup

and the market sector where the startup operates. The interview time summed 9 hours and 37

minutes and the transcriptions using Times New Roman font size 12 have 181 pages.

The startups that participated in this study are located in the cities of São Paulo, São José dos

Campos and Campinas. São Paulo is Brazil's main economical city and its metropolitan area has

more than 20 million inhabitants. The latter two are medium sized cities, located in São Paulo state

and in a radius of less than 100 km from the city of São Paulo. All cities contain great universities

and a �ourishing innovation culture. The interviewees distribution across the cities were: São Paulo,

14 startups, São José dos Campos, 2 startups, and Campinas, 1 startup.

In most cases, they were companies running for a long time considering they are startups: 14

(82%) of them were running for 2 years or more and 3 (18%) were running for at least 1 year but less

than 2. This long-running characteristic was important to the research since most of interviewees

were founders or working for a long time in the startup, so they were able to give details about

how processes evolved throughout startup history. Nevertheless, in the last stage, new startups were

looked for to participate in the research. It was noted that even startups in an early-stage accelerator

that we visited were running for some time. Some reasons could explain such e�ect: founders think

they can do it by themselves or a so self-con�dent about their product in the beginning to search

for help; or maybe they are not aware of the existence of such environments; or accelerators demand

in their selection process a more well-de�ned team or idea. Anyway this discussion is beyond this

study scope. Another valuable interviewee would be with failed startups. Although this was not

made, by the time of writing, at least, two startups interviewed do not exist anymore. In both

cases, there were not markets for the products being developed.

Interviewees' roles in startups varied from commercial/strategical roles such as CEOs, technical

roles (technical leaders or CTOs) or product-related roles (products directors or managers). Before

scheduling the interview, all were asked if they would be able to answer questions related to re-

quirements engineering and software development. It is interesting to say that even CEOs said that

they were able to do that. This indicates how important software development is important in a

software startup. Of course, when a technical person was interviewed, more details about software

development were available. In some interviews, more than one person attended. This was useful

to gather more data and perform some kind of triangulation of views inside the company. In total,

32 DATA COLLECTION AND ANALYSIS 4.2

Interview
Research

stage
Interviewee Position Market sector

I1 1 Founder and software director Internet of Things

I2 1 Founder and software director Automation

I3 1 Founder and CEO Health

I4 1 Technical Leader Real state

I5 1 CEO Finance and Defense

I6 1 Founder and technical leader E-commerce

I7 1 Mobile leader Sharing economy

I8 1 Product Director e-Learning

I9 1 Product Manager e-Learning

I10 2
CEO, Product Manager

and 2 Software Development managers
Advertising

I11 2 CEO Virtual reality

I12 2 CTO
Social network and

Data Mining (2 startups)

I13 2 CTO E-commerce

I14 2 CTO Speci�c o�ce software

I15 3 CTO Advertising

I16 3 CTO and CEO Web

I17 3 Product director E-commerce

Table 4.1: Interviews

23 people participated in interviews: in one interview four people participated.

In general, interviewees had a great experience on startups: 2 (12%) of them had worked from

2 to 3 years in startups and 14 (82%) had worked for more than 3 years not necessarily in the same

startups. Only one interviewee (6%) had worked for less than one year in startups. At the same

time, they had worked in few startups: for 5 interviewees (29,4%) it was their �rst experience in

startups, other 5 it was their second startup. Finally, 7 (41.2%) have worked in 3 or more startups.

In interviewees when there were more than one interviewee, it was considered the answer of the

interviewee who talked more during the interview.

In this chapter, the research chronology was presented and why some decisions were taken

was detailed. The model evolution was described and the interviewees list was presented including

some demographics about startups and interviewees that participated in this study. In the next

4.2 INTERVIEWS 33

chapter, the research results will be presented including the model �nal version and details about

the methodologies practices use and problems mentioned in the interviews.

34 DATA COLLECTION AND ANALYSIS 4.2

Chapter 5

Requirements engineering in software

startups model

In this chapter we present the conceptual model developed as a result of the research. In section

5.1, the context elements that in�uence the RE process in software startups are presented. In section

5.3 the process is described, in section 5.2, the product team role is presented and �nally in section

5.4 requirements engineering practices are presented and how in�uences are related to them. In

section 5.5, a summary of the model is presented. Finally, in section 5.6, practices from software

and startup development methodologies that were mentioned during interviews and problems faced

by these startups are listed.

5.1 In�uences

Our main research result is a conceptual model that describes requirements engineering process

in software startups. This model is composed by two components: context and activities. The

context comprises the environment where the development team is inserted including elements that

in�uence the whole startup, they are: Founders, Software Developer Manager, Market, Business

Model, Developers and Entrepreneurship Ecosystem. The �rst three elements are closely related to

categories identi�ed by Coleman and O'Connor [CO08] as presented in table 5.1. In this section, the

context in�uences are presented. The process is the requirements engineering process itself within

its properties and practices and it is presented on section 5.3.

This model
Software development

process formation model

Founders Background of founder

Software development

manager

Background of software

development manager

Market
Market requirements and

Market sector

Table 5.1: Comparison between models.

35

36 REQUIREMENTS ENGINEERING IN SOFTWARE STARTUPS MODEL 5.1

5.1.1 Founders

Founders are the startup creators and so they are very in�uent in how the organization works.

They can have a technology background or not. In the �rst case, it is natural that they have an

in�uence on how requirements engineering practices are done but in the latter case this also happens.

According to table 4.1 on page 32, I4 told that his team used to have a Scrum based process. But

it was abandoned since startup founders viewed it as a "waste of time". After almost an year, the

team started again using a Scrum based process because the result without any methodology was

worse.

Generally, founders are "born entrepreneurs" having founded several companies (I3, I6, I8 and

I12), sometimes still running more than one (I3 and I12) and many times they have never worked

for a consolidated �rm.

Discussion. An in�uence of founders on software development has also been found by Seppänen

et al. [SOL16] in interviews performed with European software startups. Even when the founder did

not do any software development, "s/he participated at higher level: target setting, management

and evaluation". Some engineering practices like architecture design may seem as a unnecessary for

an outsider because they do not create code. Then even extremely necessary, they can be neglected

to alocate resources in "more important" tasks. The founder background is also one of the categories

in the process formation in startups by Coleman and O'Connor's model [CO08]. The authors also

mention that the founders will in�uence the management style used in the organization. How much

they trust their team will make them follow any of the two management styles: "command and

control" or "embrace and empower".

5.1.2 Software development manager

As several interviewees told (I1, I5, I12, I13 and I16), the software development manager is

responsible for process and architecture decisions. I13 who have already worked as a manager for

several startups and owned others told: "In each context I made a composite of practices that

will better �t there and the process will be based on that" And it is very common that s/he also

performs programming tasks (I1, I4, I10 and I16). In this sense, s/he is responsible to model the

requirements engineering process and choose practices to be used. Then, his or her knowledge and

experience on requirements engineering techniques will be determinant to their use. For instance,

s/he can:

• prevent a practice use: although not directly requirements related, for instance, I1 said that

his team was not using pair programming because he had a bad experience with it and "lost

his faith" on it;

• promote a practice use: I14 said: "[...] I've always intended to try simple and lean solutions

to check if that feature would really add value";

• postpone practices use: I7 said: "I don't know if it makes sense for a startup at the beginning

to invest more time in [learning] tools or more time in [developing] features".

Discussion. Again in Coleman and O'Connor's model, the background of the software devel-

5.1 INFLUENCES 37

opment manager is very important in the process formation [CO08]. The manager can be a founder

when he has a technological background and is selected to do so or someone hired in the startup

history beginning. The authors states that "it was clear that where the software development man-

ager had worked before, what their responsibilities were, what process and process improvement

model was used[...] shaped the process that the software development manager used in their current

company."

5.1.3 Market

The market where the startups operates is a very powerful determinant for the process followed.

According to table 4.1 on page 32, I5 was a founder of a startup operating in the defense and

�nancial markets. To be able to sell its products in these critical markets, the organization had to

use very strict process since it was required and checked by clients.

A common classi�cation to startups is dependent on their market - the B2B vs B2C. B2B stands

to business-to-business and refers to product or services marketed to other organizations instead of

consumers - the case of business-to-consumers (B2C). Although these classes work well for business

and strategy concerns, they do not work well for the purpose of this work. For instance, I9 worked

for a startup which product was a platform targeted to elementary and high schools, the users are

the students, parents and teachers but the schools are going to pay for it. This example would be

classi�ed as a B2B startup: marketing, negotiation and operations are related to another business -

the school - but the requirements will be related to the �nal users: students, parents and teachers.

This situation is very similar to a classic B2C situation: there are several end users that have

di�erent expectations on the software. And it is also very di�erent from B2B when the number of

end users is much inferior like a startup that was developing machines to agricultural automation.

Hence, it is necessary another classi�cation in the context of requirements engineering comprising

the di�erence between businesses that have a large number of customers and the others that have a

few clients. In this classi�cation, we distinguish between user-targeted startups and client-targeted

startups.

• User-targeted startup: when the target market is a large number of users even when a

company or organization is responsible to pay for the product or service for large groups of

users. B2C startups are the common examples of this situation: e-commerces, other websites,

mobile apps, etc. But it can also happen to a B2B startup when there is a large group of

users. For instance, the school who pays for students, teachers and students' parents to use a

software.

• Client-targeted startup: when a client or a few group of them are clearly identi�ed and

they are easily reachable. This is the case for B2B companies who develop a speci�c solution

and generally have few clients. For instance, the agricultural automation startup who adapts

its solution depending on the client.

The market types in�uence how requirements elicitation and analysis are performed. These

di�erence are detailed in subsections 5.4.1 and 5.4.2.

Discussion. Coleman and O'Connor [CO08] also mention demands speci�c from a market. In

their model, there is a category called market requirements and an example used is very similar

38 REQUIREMENTS ENGINEERING IN SOFTWARE STARTUPS MODEL 5.1

to our interviewee who operates in defense market. On type of customers, a similar discussion is

made by Eberlein and Leite [EL02]. They call users and clients two types of customers. In their

view, users are individuals who interact with the system and clients are those that will have their

needs ful�lled by the software system. [Bla07] also states the di�erence between user, people who

will actually use the system, and the economic buyer, the one who has budget allocated to spend

on the product. In the high school example, students, parents and teachers are users and the school

principal is the economic buyer.

A user-targeted startup handles market-driven requirements while a client-targeted startup han-

dles customer-speci�c development. There are several works in literature about market-driven re-

quirements engineering and its challenges. According to Regnell and Brinkkemper, in the market-

driven situation "a software producer develops a product that is o�ered to an open market with

many customers" [RB05]. The authors also recognize di�erences between market-driven for con-

sumer and for enterprise concerning, for instance, usability issues and product image. Besides that,

market-driven elicitation is focused on new requirements combined with market analysis while

customer-speci�c, also called bespoke development, is focused on negotiation and con�ict resolu-

tion. Requirements analysis is also di�erent as mentioned by Potts [Pot95], "one party does not

always 'elicit' requirements from another, nor does it 'play back' requirements so that the other

may accept. reject or re�ne them".

Karlsson et al. searched for which challenges market-driven requirements engineering imply

for companies dealing with it [KDR+07]. They conducted 14 interviews and a focus group with

practitioners. The challenges identi�ed were:

• marketing and development team communication;

• easy comprehension requirements documentation;

• managing the new requirements constant �ow;

• requirements volatility;

• requirements interdependence and traceability;

• requirements are invented rather than discovered;

• implementing and improving requirements engineering within the organization;

• resource allocation to requirements engineering;

• selecting the right process;

• organization stability;

• release planning based on uncertain estimates.

Since challenges faced by market-driven software development and startups we called user-

targeted are very similar, we can expect that results in literature could be applied for this type of

software startups.

5.1 INFLUENCES 39

5.1.4 Business model

The startup business model will also in�uence requirements engineering process and how strong

other context elements will be through two di�erent dimensions: maturity and reason for soft-

ware.

Maturity. The business model can still be under development, that is, the organization has

not understood its market yet and how to make pro�t. Or the business model can be more mature

and the organization has already a business model already complete. In the �rst scenario, founders

participate more in requirements engineering because it can change if the startup will success or fail.

I8 said that founders take part in prioritization meetings because what the development team does

can a�ect the company revenue on that month. A similar behaviour has been identi�ed in I1, I3, I4,

I6, I9, I12 and I13 (see table 4.1 on page 32). On other hand, if the business model is more mature,

it is possible that breakthrough requirements become less common and most of development time

is spent on �xing bugs and small improvements. This scenario was observed in I5, I7 and I10.

Reason for software. This in�uence is related to the reason why the startup develops software.

Software can be a product itself like in the example of agricultural automation - a pattern recognition

software was responsible to detect when the vegetables are good or not or when the startup develops

a mobile game. On the opposite direction, software can only be a way to achieve a business goal.

For instance, an online real state agency. Generally, when software is not core, it is very important

to create some kind of competitive advantage. For instance, the online real state agency pretended

to make the rent process simpler than a traditional real state agency using technology. These

di�erences will re�ect on who will tell what the requirements are. If the software is the product

itself, the requirements are clearer, but in the other case, the business rules will dictate software

requirements.

Discussion. The di�erence on software startups maturity is discussed by di�erent authors.

Wang et al. [WEB+16] try to understand which challenges are faced by software startups in dif-

ferent development stages. They use two development series of stages: problem/solution �t and

product/market �t. First, the problem/solution �t is obtained through a process of learning and

follows the steps: de�ning or observing a problem, evaluating the problem, de�ning a solution, and

evaluating the solution. Second, the product/market �t is obtained through a product development

process that follows the steps: concept, in development, working prototype, functional product with

limited users, functional product with high growth, and mature product. One of identi�ed concerns

is problem solution �t and according to the authors this is considered "the biggest challenge faced

by software startups at all stages". But they also recognize: "market related challenges such as cus-

tomer acquisition and scaling become increasingly perceivable". These �ndings are closely related

to the business model in�uence in our model since while the concern is building the product, most

of requirements are related to this task and while the product development evolves other tasks

become more common.

Another work towards an evolution model for software startups was made by Nguyen-Duc et

al.[NDSA15]. The authors propose a model based on the Cyne�n framework and a design thinking

model to achieve this goal. The model consists of representing two di�erent types of activities: hunt-

ing (activities in the chaotic domain) that are related to "generating ideas, elicitation requirements

and market and customer development" and gathering that are related to "requirements description,

prototype implementation, automated testing, system integration and deployment". The authors

40 REQUIREMENTS ENGINEERING IN SOFTWARE STARTUPS MODEL 5.1

then describe startups development through picturing the volume of these two type of activities in

a plane which axes are early-later phases and unknown-known. Generally, in early phases, hunting

activities are greater than gathering activities. As the company evolves, hunter activities decrease

and gather activities grow. Figure 5.1 is an example given by the authors.

Figure 5.1: Hunter-Gatherer evolution model for startups. Extracted from [NDSA15].

In non-scienti�c literature, there are also frameworks to understand a startup evolution. Croll

and Yoskovitz in their Lean Analytics book [CY13] propose �ve stages for a startup: Empathy,

Stickiness, Virality, Revenue and Scale.

As mentioned in section 1.1, an innovation can be revolutionary or evolutionary or somewhere

between [AST06]. This also plays a role for a startup. Häsel et al. [HKB10] identify four di�erent

competences pro�les (IT manager, e-entrepreneur, web developer and e-business expert) and con-

cludes that the founders preference between them while hiring people depends on how innovative

are the startups' products.

5.1.5 Developers

In software startups, developers play an active role in software development practices selection.

Di�erent from consolidated �rms, they are listened more often because they have an equity share.

Or just because it is hard to startups attract talents and they are treated very well to not leave.

We must remember that talents are rare (as mentioned in several interviews like I8 and I14). In

this sense, they can:

• refuse to use some techniques: they do not believe the techniques will work or just do not

want to perform them. While explaining why he does not use the process he wants, I1 said

"to implement concepts I just can't say: guys here it is. I have to go slowly in such manner".

• bring their experience and suggest the use of some techniques: I7 mentioned this phenomenon.

I2 said that a former team member used design thinking while in the company because this

employee had a previous experience with it.

Another aspect mentioned by interviewees was that they prefer developers that have interest in

the business rather than those that just do what is asked for them.

5.1 INFLUENCES 41

Discussion. Kajko-Mattsson and Niktina [KMN08] while trying to improve the process of star-

tups recognize that developers bring their experience and suggest techniques. Chow and Cao [CC08]

veri�ed agile software development project key success factors. In their study, hypothesis concerning

team enviroment and team capability were supported. Agile-friendly project team environment was

one of elements inside these categories. Nerur et al. [NMM05] also discuss people related problems

while migrating to agile development methodologies. Vijayasarathy and Turk [VT08] say that "it is

intriguing that personal interest is, by far, the most important factor in�uencing the agile adoption

decision". Given the close relation between software development and startup development method-

ologies and since requirements engineering is also part of software development, it is expected that

this in�uence exists.

In information systems literature, individual innovation orientation and its in�uence on the

organization innovation competence is also explored. This point is discussed by Nambisan [Nam02].

He focus even more the individual manager as a key component of entrepreneurial success and give

examples where successful innovative software products were created by individual developers like

Lotus Notes and Java. The understanding of business by software developers and manager is also

described as key factor for innovation in [GT07].

5.1.6 Ecosystem

Besides the market that a startup operates, there are other external forces that in�uence how

requirements engineering process are made. They are related to the entrepreneurship ecosystem

where the startup is. The ecosystem is formed by startups, entrepreneurs, angels and venture capital

�rms and universities [MW14]. In this work, we identi�ed three elements that in�uence requirements

engineering process concerning the ecosystem: knowledge spread, human resources availability and

capital availability. Each element plays an in�uence as detailed below:

• knowledge spread: related to how much contact startups had with methodologies or sto-

ries of other successful startups and entrepreneurs. For instance, acceleration programs and

mentors provide knowledge to founders and teams favoring techniques use. According to table

4.1 on page 32, I3 said: "we started at [an acceleration program] and they taught us startup

things, MVP and since then our target is to build a MVP".

• human sources availability: relates to how di�cult is to �nd people able to work for the

startups. The lack of human resources was mentioned several times in interviews. For instance,

I8 said that his company had money to hire more people but it was not possible because they

were not �nding people with the required knowledge. Without proper team size, developers

will have to work more, deadlines will longer or harder to achieve. Founders and/or investors

will pressure to remove "unnecessary" practices.

• capital availability: relates to how much money the startup has and how di�cult is to

get more capital to grow. In Brazil, it is very hard to get capital to create a startup. A

symptom identi�ed in interviews was that several startups run more than one product or

run a main product and o�er consulting services on the same �eld. This is necessary because

they lack capital and perform these activities to survive. The author had an experience in the

Silicon Valley and this approach is discouraged there: you must focus on only one product.

42 REQUIREMENTS ENGINEERING IN SOFTWARE STARTUPS MODEL 5.2

Unfortunately, interviews at Silicon Valley would be necessary to give more details and it

would beyond the scope of this study. Working in di�erent threads makes the process more

complex and will increase team workload leading to similar e�ects as described in the previous

item.

Discussion. In literature, we can �nd works comparing ecosystems like Suzuki et al. [SKB02]. In

this work, the authors conducted a survey comparing entrepreneurship in Japan and Silicon Valley

in four dimensions: entrepreneurial motivation, risks and obstacles, perceived growth factors and

supporting infrastructure. They concluded that Japanese entrepreneurs were more society-oriented,

more concerned about personal and globalization risks, focused on strategic and R&D and have

better access to bank loans and government �nancing. Meanwhile, Silicon Valley entrepreneurs

were more motivated by individualistic reasons, more concerned on market and �nancial risks,

focused on growth-orientation, customers and capital in�ow and have better access to professional

services and venture capital.

Cukier et al. [CKK15] propose a scale to assess a ecosystem maturity. In this sense, it is important

to compare São Paulo ecosystem, where all startups interviewed are, to other ecosystems. The scale

consisted of the following marks: Nascent, Evolving, Mature and Self-Sustainable. According to

the authors, São Paulo is still in an Evolving stage that is there are "a few successful companies,

some regional impact, job generation and small local economic impact". Meanwhile Silicon Valley

is a Self-Sustainable ecosystem that have "thousand of startups and �nancial deals, at least a

2nd generation of entrepreneurs mentors, specially angel investors, a strong network of successful

entrepreneurs[...] and presence of high quality technical talent". This di�erence can explain some

results and also indicates future works replicating this study on di�erent ecosystem maturity levels.

Another problem mentioned was lack of capital. Wonglimpiyarat [Won06] concludes that venture

capital �nancing is one of catalysts for the region economic development.

The previous elements exercise in�uence on requirements engineering process in software star-

tups from in speci�c activities or the whole process. On �gure 5.2, they are shown and will be

discussed in more detail in the following sections.

5.2 Product team

As an actor in requirements engineering process, it is common to see a product team �gure. This

team is not a software development team neither its members are developers. Nevertheless, they

work very closely to the development team and its role is to understand the product goals and to

conduct its development. The product team is generally present when the product is user-targeted

and it acts like a proxy to real users. They can use di�erent tools that were already mentioned like

interviews, surveys and focus groups. The team execute most of requirements engineering stages,

specially, elicitation and prioritization phases. This function can also be performed by the founder

since s/he generally knows a lot about the market.

In interview I10, the product manager talked about his role: "Part of my job is to be a �lter...

Even inside the company, I see my role as a �lter because we cannot do everything. [...] I have to

understand what the real problem is and tackle from only one side and from all". The interviewee

5.2 PRODUCT TEAM 43

Figure 5.2: Requirements engineering process model.

I7 said: "the product team makes some brainstorm sessions". A CTO (I12) said: "we have two

guys concerned... trying to develop the product. [...] there must be someone responsible because it

is very important. In the beginning, there were no one and everyone was lost. Someone should be

responsible for the product to have a vision".

Product team experience is very important for methodologies and good practices use. I7 told

di�erences she has found while working with two di�erent product managers. When a more expe-

rienced person took care of the product, "he used AB tests and was very good with it" but when

not so experienced people perform this role, she complained that they should gather more data but

he was not doing it.

Discussion. Similar roles are present in agile methodologies like Scrum and Extreme Program-

ming. In Scrum [Sch04], the role of Product Owner is to write customer-centric stories, prioritize

them inside the Product Backlog. Although originally described as a only person job, the �gure of

Product Owner team was described in [DSCE08] and [Bas13]. De-Ste-Croix and Easton [DSCE08]

says: "this team provided the direction for the product development" and it is exactly the same for

our interviewees. For Extreme Programming [BA05], "product managers write stories, pick themes

and stories in the quarterly cycle, pick stories in the weekly cycle, and answer questions as imple-

mention uncovers under-speci�ed areas of stories". And "a product manager doesn't just pick a

bunch of stories at the beginning of the project and then sit back". It is interesting, though, that

none of interviewees that mentioned product teams as something from a agile methodology. They

see product team as a natural structure, something that is common sense. Blank [Bla07] distin-

44 REQUIREMENTS ENGINEERING IN SOFTWARE STARTUPS MODEL 5.4

guishes the product development team and customer development team. The �rst will implement,

develop, assemble the product itself and it is related to a traditional product development process.

The latter is the one that will try to understand what should be built. According to the author,

it is important that this team has "the capacity to put themselves in their customers' shoes".

This customer development team is very similar to what is called product team in the startups

interviewed. Nevertheless, Blank highlights that the product development team should not cease

to exist, instead both teams should work in parallel. This role can be performed by the founders

since they already have knowledge on the market and that is why they created the company in the

�rst place. Seppänen et al. [SOL16] mapped software startups initial team competencies and their

results call attention that the "founder tends to be the sole owner of the innovation and its related

competency domains."

5.3 Process

The process as a whole had some important characteristics that have been grounded. First of

all, software startups do not follow a strict methodology. Instead, they build a process through

gluing techniques from di�erent methodologies. As I13 (see table 4.1 on page 32) who have already

worked or owned several startups told that he had made a composite of practices that will better

�t that startup. A common behavior is to follow the example of an successful startup. The most

mentioned example was Spotify1.

Furthermore, the process is not set at advance and followed inde�nitely. Instead, it is changing

and improving as the team learns more about the product and the team themselves. Generally, this

improvement is achieved incorporating new practices as the team grows in number (I2) or when

someone proposes a practice (I7). But it is also possible to regress and stop using any practice, for

instance, when a startup stopped using Scrum as reported before. An interesting example is given

by I3 that feels that they are not following the best possible process and they can make it better

but they prefer to focus on creating the product �rst.

It was observed a great knowledge spectrum on software and startup methodologies. Some

interviewees only heard of Lean Startup that is already a well-known subject. Nevertheless, there

are others that know several methodologies and try to apply concepts learned on their startups like

I14. More details about mentioned practices are presented in section 5.6.

Discussion. The practice of adapting a methodology to the startup and adding or removing

practices was already observed by Coleman and O'Connor [CO08] - they called it process tailoring.

Actually, this is already discussed in literature before like when Zettel et al. [ZMMW01] proposes

a lightweight process for "e-business startups companies" since the processes used then were "im-

mature and ad-hoc".

5.4 Activities

In the following sections, the di�erent activities taken place during requirements engineering

process will be detailed. It is important to highlight that the process is not as linear as it looks like

1The Spotify development process is presented in https://labs.spotify.com/2014/03/27/spotify-engineering-
culture-part-1/ and https://labs.spotify.com/2014/09/20/spotify-engineering-culture-part-2/. Accessed in 2017-01-
16.

5.4 ACTIVITIES 45

after these descriptions. Actually, a requirement has di�erent paths throughout the process. New

requirements are not created only in the beginning but also during analysis, validation, implemen-

tation and a �nal product validation. A requirement also can return to analysis phase during any

other following stage. And of course, many requirements may not be implemented after all because

during validation it is detected that it is not worth implementing. The �rst subsection discusses the

product team that was several times mentioned in interviews and have a big role in the process.

5.4.1 Elicitation

During elicitation stage, requirements that software can implement are obtained. But this is

extremely hard for startups since they are building something innovative and users may not know

what the software will do. One approach used by some startups is to map problems and not solutions

proposed by clients or users. As I9, a product manager, said: "(...) several times, people come with

the solution but the solution always change, the idea is always map the problem to never lose the

point". And I9, a CEO, mentioned: "The client has a problem. Instead of saying that he has to

solve that problem he comes with a solution. (...) But this is wrong. How can he imagine a solution

better that someone who makes a living of it?" So, the most important objective during this stage

is to understand the user or client, that is, their problem.

Nevertheless, understanding your audience is very di�erent if the market is client or user tar-

geted. In the former, the team only have to ask to the clients what is their problem and talk to them

until reaching a good understand of the situation. But, in the latter, this cannot be done. There are

several users, the team will not be able to reach them all and each user will have a di�erent view

of what is most important. Then the product team appeared to act as a proxy to the real users. In

elicitation, the product team is responsible to understand users and market and to guide product

development, that is, which features will be developed and how the product will be positioned in

the market.

During interviews, several requirements sources were mentioned. They are:

• business objectives analysis (I4, I8 and I10);

• use of competitors products (I9);

• ideas from developers or product team (I10);

• must-have requirements, innate to the product ordering a product when developing an e-

commerce platform (I13);

• from sales team, specially on client-targeted startups (I3 and I5);

• development team, specially when represent features not visible to the client or user (I4 and

I11).

Some techniques used to elicit requirements were also mentioned like:

• user interviews (I4, I7, I8, I9, I11, I12 and I13);

• brainstorm sessions (I7);

46 REQUIREMENTS ENGINEERING IN SOFTWARE STARTUPS MODEL 5.4

• ideation process (I8).

One behavior that was observed through all the companies is that the elicitation process occurs

continually. That is, ideas come from everywhere and are continuously created. Besides that, since

time-to-market is important and vital to organization �nancial health, bugs or other problems

always appear. This phenomenon creates a continuous �ow throughout the whole process. In other

words, the next stages will also occur several times because of these always fresh requirements.

Finally, another factor that will in�uence on how requirements are created is why software is

made in �rst place. The business model software reason discussed in subsection 5.1.4. If software is

the product itself, the pre-requirements (ideas, bugs, etc) are more close to the �nal requirements.

But when software is just a mean to reach a business goal, software requirements demand more

time and thinking to get from product requirements.

5.4.2 Analysis, Validation and Prioritization

In this subsection, we comprehend several activities that are performed to requirements since

their elicitation until they are implemented. These activities comprehend:

• requirements analysis and detailing, including its viability and alignment to startup view;

• validation, that is, to test if that feature will be useful to the user, and;

• prioritization, that is, determine in which order requirements will be developed.

Although textbooks, like [SK98], usually separate these activities we chose to discuss them

together because they represent adjustments from elicited requirements before implementation.

Requirements analysis comprises di�erent tasks performed over the requirement preparing it

to be implemented and it is very di�erent in each startup. The most common activity mentioned is

the discussion on the idea (I3, I15 and I16, see table 4.1 on page 32). During this moment, developers

and product managers try to understand which is the best option to implement that idea into a

feature or product and how validation could be done. During this stage, an alignment between

strategy and technology is discussed (I13, I14, I15 and I16). The feature scope could be reduced to

�t a faster release (I17). Consistency check was only mentioned twice (I5 and I15) despite being

mentioned many times in requirements engineering textbooks.

Validation is a key activity for software startups. During this moment, the team will check if

a requirement is something desirable to the user. Common methodologies discussed in this context

like Lean Startup [Rie11] and Design Thinking [Bro09] advocate that the minimum possible should

be developed to test the user desire towards the product or service. Although knowledge about

these methodologies is limited, as discussed earlier, most of interviewed startups perform some kind

of validation of their requirements using little or no development. In a client-targeted startups I1

said "generally we perform a validation before implementation through user interface. We develop

a wireframe using what we understood from the requirement and check with the clients". In a user

targeted startup I4 said: "we tried to make a test before implementation with a solution wireframe".

I8 told an interesting history about a feature that before being added to their website was made by

humans to check if it was worth implementing.

Some techniques to validate a requirement were mentioned like:

5.4 ACTIVITIES 47

• MVP (I3, I4, I10, I11 and I14);

• mock-ups (I4) and prototypes (I1, I2, I3, I5 and I11);

• surveys (I16 and I17) and focus groups (I17)

Other related technique also mentioned was smoke tests (I5). The term "smoke test" comes

from software development and is "a relatively simple check to see whether the product "smokes"

when it runs" [McC96]. The interviewee used the term a marketing technique to check if there is

an interested market for the feature as mentioned in non-scienti�c literature2. Another interviewee

(I6) said that they check if someone has already made something similar before implementing.

Interviewee I9 said that validation before implementation is risk dependent. That is, if it is

something simple, it is not worth testing, but if that feature development will take many resources,

then a validation stage takes place.

A mentioned potential problem (I3 and I4) while using validation techniques like MVP is related

to the company image to customers. Developing a mock could be seen as a low quality or less

commitment to the product and this feeling can make users or clients go away.

Prioritization. To get a requirement implemented or even to analyze or validate it an order

has to be de�ned. Hence, prioritization is being performed always. This was detected both in the

case of sprints use (I1, I4, I10 and I14, Scrum in�uence) or when a prioritized list is maintained (I9

and I12, Kanban in�uence). A task list containing other tasks not related to software development

was also mentioned by I1 and I6. In I2, this was justi�ed because of the small team size.

In startups interviewed (I1, I4, I13), prioritization takes places in two layers: in a upper layer,

founders and/or higher managers discusses which milestones will be more important to the orga-

nization. This happens because of the importance that software development represents as already

mentioned in section 5.1.1. Once milestones are selected and sent to development team, the team

or the product team when present are generally responsible to determine the task order to reach

those milestones. In client-targeted startups, prioritization is simpler and comes down just to ask

to the client as mentioned by I2, I11, I12 and I14.

It was also important to understand which aspects were taken into account while prioritizing.

The following elements a�ected prioritization:

• �rm strategy was mentioned by I7, I8, I9, I12 and I13. In the same sense, I2, I3 and I4 said

that to develop features to demonstrate the product was the most important;

• value to the user mentioned by (I12 and I15);

• prevent blocking other teams (I1);

• essential features (I16) or high priority situations like critical bugs (I14).

A cost-e�ective analysis was also mentioned by I14.

2One example is https://www.startinno.com/blog/2015/4/8/smoke-testing-what-is-it-and-why-should-you-care.
Accessed in 2017-01-16.

48 REQUIREMENTS ENGINEERING IN SOFTWARE STARTUPS MODEL 5.4

5.4.3 Product Validation

After implementing a requirement, a �nal validation stage takes place. We called it product

validation. For startups, it is more important to understand if the requirement correctly satis�es

an user desire. This moment is very important for startups: after the software is ready, the learning

cycle about the market is closed and market knowledge is derived. Requirements correctness can

be e�ectively tested. That is if what has been implemented is what the user has desired or the

client was expecting. For instance, features implemented may not be used (I14) and even a long

time has been committed to developing it (I14). Through user feedback and technical analysis, new

requirements can emerge like new features, bug �xes or code refactoring, re-feeding the process.

Mechanisms to evaluate user interaction with the product through metrics using tools like Google

Analytics are very common (I1, I3, I4, I6, I9, I11, I12, I13 and I14). I3 recognized: "[a �nal product

validation and metrics analysis] are very important for us because change how we develop our �nal

product. Our current goal is precisely to iterate over the product with user feedback". In a client-

targeted startup, the client is asked if the implemented feature is coherent to what s/he asked (I1,

I2 and I12).

Generally, several changes to the product can reach production stage at the same moment and

this is described as a di�culty in the whole process. It makes hard to isolate e�ects caused by each

feature and the impact of them is hard to measure as mentioned by I9.

It is interesting to tell that failure is seen as natural. I6 told that several times had thrown

away programming hours even performing validation before implementation. When asked if it can

be avoided, he said that "I do not think so, it is going to happen things like that". This attitude

agrees with Ries [Rie11] that sees failure as part of the learning process.

Discussion. Actually, veri�cation and validation are discussed in requirements engineering lit-

erature like in [CAJ07] but they are more concerned about the requirement itself. That is, if the

requirement description is valid and veri�ed.

It is interesting to note that startups very often only realize that something built is not what

the users wanted in the end of the task. Even though validating assumptions as soon as possible

is present in all well-known startup development methodologies and listening to the client is also

mentioned in agile methodologies, founders and teams still continue to fail in this task. It is beyond

this study's scope to understand why this happen. Nevertheless, knowledge does not seem to be

the only reason. Even people aware of these methodologies still made these mistakes. Maybe it is

lack of discipline or just an e�ect of time pressure to achieve goals. Anyway, it is something that

compromises startup success rate.

5.4.4 Documentation and Communication

The documentation stage is a set of practices that occurs during all requirements engineering

process. But more than document, the biggest concern here was to communicate. The main reason

to create di�erent artifacts was to spread knowledge about users problems and solution proposed

throughout the organization.

The documentation level varied substantially through interviewed startups. There are startups

that do not have clear practices to keep track of requirements and just count on emails and contracts

(I2, see table 4.1 on page 32). On the other hand, the startup that operates on defense market (I5)

5.6 SUMMARY 49

has a strictly documenting process as a result of market requirements. However, most of startups

actually do some kind of requirements documentation generally using simple tools like physical

boards or electronic tools simulating them. A tool mentioned several times was Trello3 that is

a simple web-based SaaS emulating a Kanban board. Sometimes, bigger teams also use medium

complexity tools like issue trackers or agile project management tools. One startup had tried a

traditional project management tool but it did not worked out. This might have happened because

of the agile mindset in the team and this was not targeted by the tool.

One important thing that was observed in some startups was that the knowledge is tacit. As

I5 said "we did not spend much time documenting because information is in people". This can be

very problematic at least in two situations: when the company grows and newcomers must come

to others to get information, delaying development process and when a person leaves the company

and takes with her information without spreading it in the team. Nevertheless, simple tools help

communication between di�erent teams (including non-technical) since they do not demand learning

a new tool. This fact was mentioned by I16 and I17.

Discussion. The tacit knowledge problem was also found by Valtanen and Ahonen [VA08]

while improving processes for small software companies. The authors say: "in a small organization

the information is often transferred in discussions and the documentation is neglected".

5.5 Summary

In previous sections, requirements engineering process was presented including a set of in�uences

that determine why the practices are done this way. Throughout the text, several pieces of interviews

were added to illustrate and to ground our conclusions. Although not the same, startups generally

do the activities described in traditional requirements engineering: elicitation, analysis, validation

and documentation. These activities are not homogeneous across startups. The process is generally

not linear but, instead, it is common to come back and forth through di�erent stages. Nevertheless,

a linear process �ow described in the previous section is represented in �gure 5.3 that summarizes

the activities.

The in�uences on requirements engineering process in software startups can be grouped in three

groups:

• Human: consisting of people related in�uences that dictates which practices will be used,

they are: Founders, Software Development Manager and Developers.

• Business: consisting of business related in�uences that dictates how the practices will be

used, they are: Business model and Market.

• Ecosystem: consisting of the entrepreneurship context where the startup exists including

accelerators, venture capital funds, universities, government, entrepreneurs, etc.

Finally, table 5.2 summarizes the in�uences and describe how they a�ect the processes and

activities in software startups. Market in�uence spawns di�erent set of practices therefore it is more

detailed in table 5.3.

3Avaible at https://www.trello.com. Accessed 2017-01-16.

50 REQUIREMENTS ENGINEERING IN SOFTWARE STARTUPS MODEL 5.6

In�uence How?

Founders Most of the time, they know the market the startup is operation
in and may be responsible to guide the product development. Since
development is important to the startup survival, they care a lot about
the process. Sometimes they prevent the use of some methodologies
practices because they see it as a "waste of time".

Software Devel-

opment Manager

S/he can be a founder or someone hired in the beginning of the com-
pany. S/he is responsible for architectural and process decisions. The
manager is the person that will determine which practices will be
used.

Developers Since talent is very important to startups but they are scarce and hard
to attract, the developers have great in�uence on which practices the
startup will follow. They can bring their expertise from elsewhere,
slow down the adoption of practices or deny their use.

Business Model There are three ways the business model impact the process. First,
how innovative is the business model, if it is disruptive, there will be a
need for more attempts to understand what the user will want to pay
for. If the innovation is related to an existent market, the problems
will be easier since what the product should do is more clear. Second,
the reason why software is developed also matters. If software is just a
mean to achieve a business goal, requirements are really closer to the
business and, for instance, their validation will demand more e�ort.
Meanwhile, if the software is the product itself, requirements are closer
to the implementation and validation can be made easier. Finally, how
developed the software is determine the presence of founders or other
high managers. That is, when the product is in an early-stage, they
will be more present than when the product is more mature.

Market The di�erence between user and client targeted startup determine
di�erent set of practices. This fact is explored in details in table 5.3.

Ecosystem The ecosystem in�uence through three aspects: knowledge, capi-
tal and human resources. Through acceleration programs and other
knowledge spreading initiatives (university courses, entrepreneurs
groups), the awareness of methodologies like Lean Startup grows and
founders know the challenges they will face and can be prepared to
them. Capital availability dictates if the startup will be able to focus
on its main product or will have to �ght to survive through creat-
ing side products or services. It will also impact the time pressure
the team will face. Finally, the availability and quality (knowledge
on practices) of human resources will dictate which practices will be
followed.

Table 5.2: Summary of in�uences on requirements engineering process.

5.6 Used practices and problems

A secondary objective of this research was to map at what extent startup development method-

ologies are used in software startups. To achieve this goal, as showed in the interview guide A,

one of the parts of the interview was dedicated to picture the interviewee background including

5.6 USED PRACTICES AND PROBLEMS 51

Activity Client targeted User targeted

Product team

Most tasks can

be accomplished asking to

the client

There are several

users and a product team

acts as a proxy

Elicitation Easier: just ask to the client(s)

Harder: ideas can come from anyone

and a deep user investigation may take

place

Analysis and

Prioritization
Made within the client Internal discussions

Validation
Simpler: the client is already

asking the features

Harder: use of metrics, prototypes,

MVPs

Table 5.3: Summary of di�erences between user and client targeted startup.

his knowledge on these methodologies and her use of them. Since agile methodologies for software

development are also considered a good option for startups [Tai10], the interview guide also goes

into these questions.

In a general way, no startup followed strictly a methodology except the one that operates in

critical markets. This result is similar to others in literature [CO08]. Instead of that, techniques

from di�erent methodologies are used for product or software development according to the startup

needs. The practices mentioned are presented in table 5.4. Some practices are more common and

they are discussed below.

On product development subject, although not fully implemented, it is common that inter-

viewees had some level of knowledge of Lean Startup. Almost all of startups run some kind of

Build-Measure-Learn cycle. Some really implement the MVP (Minimum Viable Product) concept.

They try to develop an experiment to test if an assumption about what the user want is really

true: de�ne a metric that will be used throughout the process, develop the minimum necessary to

test that hypothesis, measure the results and learn from the results. One interviewee told a story

about a new process that was made manually �rst to check if it would take more users to sign-up to

the product and after the result was positive, the automatic process that would demand software

development e�ort was built. Other startups just mentioned less complex tests like prototypes or

mock-ups. Generally, these experiments are made by client-targeted startups or as a intermediate

step for internal veri�cation if something being built is the expected. In this latter case, some tools

to create wireframes are commonly used.

Still on product development, from Design Thinking [Bro09], ideation process was mentioned

by one startup. In the same sense, brainstorm sessions were also mentioned by another startup. In

both cases, the intent was to foster new ideas to develop the product and were performed by the

product team.

Another question during the interview was related to problems faced by startups mostly con-

cerning requirements. The most common problem is how to follow a requirement performing all

activities at them and understanding how long they are taking to be implemented. Another re-

52 REQUIREMENTS ENGINEERING IN SOFTWARE STARTUPS MODEL 5.6

Practice
Original

methodology

Mentioned

by

Automated tests XP I5, I8 and I9

Backlog Scrum I4

Brainstorm Design thinking I7

Code review XP I10

Continuos integration XP I4, I7, I8, I9 and I10

Ideation process Desing thinking I8

Informative workspace XP I7, I8 and I9

Limit work-in-progress Kanban I6

Metaphor XP I1

MVP Lean Startup I10, I11, I14 and I16

Pair programming XP I10, I12 and I15 said it was
used eventually.

Planning poker XP I4 and I10

Prioritized list Kanban I9 and I12

Sit together XP I1, I2, I3, I9, I10 and I16. It
was observed on these inter-
views. Others could also be
like this but it was not ob-
served because they were in-
terviewed through a call.

Small tasks I6 and I7

Sprints Scrum I1, I4, I10, I13 and I17

Technical debt control I10

Validated learning Lean startup I7

Visualizing locks Kanban I7

Table 5.4: Practices mentioned in the interviews.

lated problem was how to estimate the time to implement a requirement. Time pressure was also

mentioned as something that make more di�cult to follow a process.

In this chapter, the data analysis results were presented detailing a model on the state-of-

practice of requirements engineering in software startups. In the �rst section, context in�uences

were discussed and in the second section the activities. A discussion is made in third section and

�nally, in the fourth section, practices used in the interviewed startups are presented and problems

faced by startups are mentioned. This chapter aim was to describe the situations startups face. After

this research where seventeen interviews were performed and several pages of data were analyzed,

5.6 USED PRACTICES AND PROBLEMS 53

some behaviors that led to non-optimal processes were clear. These behaviors are presented in the

next chapter using the bad smells metaphor.

54 REQUIREMENTS ENGINEERING IN SOFTWARE STARTUPS MODEL 5.6

Figure 5.3: Requirements engineering process.

Chapter 6

Bad smells and recommendations

A well-known problem for startups is failure. Although several startups have good proposals

and ideas, they fail before reaching their commercial potential [Cro02]. And the failure rate is high:

Wang et al. mention that 75% of funded startups fail. As a consequence several studies in literature

try to tackle this problem by understanding why startups fail or providing better practices to avoid

failure.

Crowne [Cro02] lists reason to startup failure according to its stage: startup, stabilization,

growth and maturity. In startup stage, reasons are Developers are inexperienced, Product isn't really

a product, Product has no owner, No strategic plan for product development, Product platform is

unrecognized. In stabilization phase, they are Founders won't let go, Development team fails to gel,

Product is unreliable, Requirements become unmanageable, Product expectations are too high, Service

provision delays development. In growth stage: Skill shortage delays development, Platform creep

delays development, Product pipeline is empty and No process for product introduction. Finally, in

maturity stage, "product development is robust and predictable with proven processes".

Giardino et al. [GWA14] develop a behavioral framework to understand why early-stage software

startups fail. They performed a literature review and a multiple-case study. The startups researched

by them focused on development of the product and its marketing instead of understanding, in the

�rst moment, the user problem and the solution �t to it.

On the other hand, several works try to instruct startups to use better practices. An interesting

option to format these suggestions is a pattern structure. A good de�nition of what a pattern is was

given by Gordijn and Akkermans [GA03]: "a pattern describes a problem which occurs over and over

again in an environment, and describes one or more solutions for the identi�ed problem as well as

consequences (e.g. trade-o�s) as a result of applying the pattern". Patterns were initially proposed

to architecture by Alexander et al. [AI77] and �rst used on software development by Gamma et al.

[GHJV94]. Some works on startups patterns are presented now. Hokkanen and Leppanen [HL15]

propose patterns that validate the startup hypothesis through user involvement. They are Validate

product with the right people, Knowing what to ask about the product and Validate usability

before measuring. In another paper [LH15], the authors proposed four more patterns: 20% Rule,

Incubator, Internal startup and Exit. Leppanen [Lep14] proposed three patterns to start a startup:

Self-funding, Venture capital and Validated product. In a related work, Ruseva [Rus15] proposed

the patterns: The core of every business and Options for software. Cukier and Kon [CKK15] also

proposed patterns to build a startup from scratch.

Eloranta [Elo14] worked towards a pattern language for startups and described three patterns

55

56 BAD SMELLS AND RECOMMENDATIONS 6.1

(Unique value proposition, Serve single customer segment �rst and Develop only what is need now)

and proposed seven others that were not detailed in the paper. In the same sense, we have worked

in the same direction [MG15] describing the patterns: Practice agility, On giants' shoulders, Simple

tools, Early validations, Empower, In the coulds and Failure can be a good thing.

Although several patterns works were found, code smells, another metaphor used in software

development literature ([MVL03], [FBZ12]) could also be used. This metaphor was also used for

software architecture ([GPEM09]). Luo et al. [LHC10] discuss the relation between anti-patterns

and bad smells in code. Fowler and Beck, in their book about code refactoring [FB99], created the

concept of bad smells of code. Bad smells are "certain structures in the code that suggest (sometimes

they scream for) the possibility of refactoring. According the authors, this is possible because they

had seen lots of code.

After the interviews performed during this research and the contact with several other startups

during ecosystem events, the author was able to do a parallel: identify some behaviors and practices

that suggest that a startup is not in the right path. In this section, bad smells that were identi�ed

are described including elements from interviews performed in this study or literature elements that

grounded these smells. Some recommendations are made to prevent or �x these bad behaviors. In

table 6.1, bad smells discussed are presented and to which requirements engineering model concepts

they are related to.

As concluded by Paternoster et al., the transference of results to industry is weak in software

startups [PGU+14]. The bad smell metaphor seemed like a good option to help transferring this

research results to the industry. It is not a closed methodology that contains a comprehensive number

of practices. They are only pieces of information to help founders, managers and developers on �xing

bad behaviors that could lead to bad results or even failure. Since it was observed that startups use

only some practices of methodologies and according to their needs, the direct applicability of these

pieces of advice should be very useful.

Bad smell Model concept(s)

Know-it-all founder Founders

Stubborn developer Developers

Closed-minded team Market, Business model, Elicitation

Blocked Ideas Elicitation

Validate and do not waste Validation, Ecosystem

Not spread knowledge Documentation and Communication

Table 6.1: Bad smells and related concepts from model.

6.1 Know-it-all founder

The startups founders are the most concerned about the startup future. They spend time and

�nancial resources and sometimes they do not even have a �xed income until the startup starts to

make revenue. Generally, they create the startup to operate in a market they are already familiar

with (I3, I4 and I6, see table 4.1 on page 32). From it all, it is common that founders interfere in the

6.2 STUBBORN DEVELOPER 57

software development process even when they do not have a technological background. And if the

development does not follow the expected speed they will try to change the used process although

practices are used successfully in several other teams. Then, it is common that development teams

in startups follow a "just-do-it" approach that is doomed to failure.

This problem happened in I4. The technical leader interviewed told that the startup used to

follow a Scrum process. One year before the interview took place, the founders found that it was

too cumbersome and called it "a waste of time". But, since then, the product quality fell and the

team morale was also low. So by the time of the interview, they decided to go back and to follow a

process.

Founders must control their anxiety and let their development team produce software according

to the process they feel appropriated to their case. There is a big knowledge body about process and

practices on software development and how to achieve better processes. Even when these practices

seem slow, they have a purpose. Founders should trust their software development manager and

team and allow them to be more independent. And this is only possible if they hire the right people:

committed to the project and with good skills. Of course, they should not leave the team without

any supervision. A good advice could be to entrepreneurs willing to create a software startup to

read a little about software development. There are lots of good introduction books on the subject

out there.

6.2 Stubborn developer

Startups lack �nancial resources and struggle to reach market as soon as possible to start creating

an income and also to avoid any possible competitors. In this context, processes and practices used

by a startup team and specially by a development team must take this into account. The software

development team cannot do whatever they want and forget that the whole organization depends

on them. Maybe they will spend much time trying to do the best solution. As already mentioned,

the development team is one of the key factors to agile success ([CC08]).

The opposition to techniques or practices was mentioned several times. I1 has said that he could

not tell team members to use a practice at once. He has to be patient and make it happen slowly.

I4 told that "several team members do not like meetings so they decided to avoid them". I9 said it

was really hard to designers to iterate in small cycles.

Sometimes, the code will not be the best possible nor the architecture will be perfect nor the

best tools will be available. Developers and the software developer manager should be aware of

best practices, be open-minded and think globally. They should know that, generally, agile is a

better approach for startups and there are product development techniques developed specially to

startups. Not only developers but also everyone involved in startups creation (managers, founders,

others teams' employees) should be aware of these methodologies and take actions to increase

familiarity with best practices: participate in meetings, read books or other materials, etc. From

these attitudes, not only the startup but the ecosystem will also bene�t and then society as a whole

with greater companies.

Unfortunately, a good environment not necessary leads to the company success. I6 told that his

development had "a very good energy and it was very good". Nevertheless, the company struggled

to get customers and the team that was made of six people turned to only one. But, as mentioned

58 BAD SMELLS AND RECOMMENDATIONS 6.5

by I4, the software quality and team morale went down without good practices and a well-known

process. Several discussions on this subject can be found on literature like [Rie11].

6.3 Closed-minded team

It is common that at the startup launch, founders have an idea and pass it to developers to

implement. Just after a long time spent on development, they realize that the solution was not

being used. Although the methodologies mentioned advocate against this behavior: Blank [Bla07]

mentions several examples in this book, startups still follow this path.

The interviewees I1, I10 recognized this error. I1 said that they had an idea and thought that

it would be the right thing to do. When they did it, they realized it was wrong. Then they started

to work on side projects to survive until they found a sustainable product. The founder in I10 told

that they learned Lean Startup "in practice before the book was published". They had worked for

two years in a project, developing and selling, and realized that nobody wanted to pay for it. Then,

they had an idea, developed marketing artifacts for a week, sell it and then they started to develop

the new product. Bosch et al. [BOBL13] also found this problem in their study.

Startup founders, managers and employees must listen to their users. This can be achieved

directly through user interviews, feedback forms and other contact ways or indirectly through

experiments and metrics. A closed startup that do not examine its environment including its market

is doomed to failure. They should be open and try to learn about their users through feedback.

Sometimes lessons could be controversial to what insiders are thinking [Rie11] then the latter must

rethink about the subject. A pivot can also occur and should be taken naturally.

6.4 Blocked ideas

Usually, there is a responsible for the product guidance or even a product team that is responsible

for that. Then they can think that only them can know what should be done next. Nevertheless,

innovation is very important and leaving to only one person or small group to think can bias

product development. In this sense, startups should foster intrapreneurial behaviors among their

employees. According to Antoncic and Hisrich [AH01], intrapreneurial behaviors are attitudes taken

by employees innovating and seeking new business opportunities for the whole without being asked

to do so. And one way to increase these behaviors is empowerment. This correlation has been

supported by studies like [VMM16] and [RW13]. Also, according to [ABG+10], managerial support

and tolerance for risk taking have a positive and signi�cant impact on innovation performance.

Gordon and Tarafdar [GT07] highlights the fact that the creativity of a team surpass the sum of

the individuals capacity and also that business involvement are essential to innovations since they

are the incorporation of knowledge into a product, service or process.

Since innovation is so vital, elicitation techniques and policies should allow and foster anyone

inside, or even outside the company, to give ideas and suggestions. This is specially true when the

product or service is used by all.

6.7 VALIDATE AND DO NOT WASTE 59

6.5 Validate and do not waste

It is common that ideas are taken for granted in startups. A great idea looks like the solution that

will disrupt the market. Even though it demands a lot of resources, it is implemented and put in the

market. Then, most of the time it does not work as expected. This story is the main motivation to

the creation of startup development methodologies like Customer Development and Lean Startup.

Nevertheless, there are still startups that commit the same mistake: develop a solution that nobody

uses. This phenomenon was also observed by Bosch et al. [BOBL13].

Startup team can decide to not follow any methodology but they must be understand what

problems these methodologies are trying to solve. And the most important problem is validation.

Validation is very important to reduce development waste even more when resources are scarce.

Development should be made in small stages as big as it makes possible to test if the idea is correct.

Most of startups interviewed in this research performed some kind of validation and had good

results. I15, from a successful startup, said that "you should put your pride aside" and "look at

data to check if clients are engaging with the product". According to table 4.1 on page 32, I17 told

that they collect the maximum data available before investing time and money.

6.6 Not spread knowledge

Software startups start their operations with the fewest possible people. In this stage, developers

build the solution from the beginning and they know everything about it. As the team grows, the

newcomers do not know how the solution was made and the former do not concern on spreading

the word. Since "software development is a human-based knowledge-intensive activity" [LH09],

newcomers are not able to perform their best, that is, giving new ideas.

Since innovation is very important to startup survive, it is important that the knowledge is

shared throughout the organization. Then, documentation can be used to foster knowledge sharing

besides helping process organization. Santos et al. [SGSF11] veri�ed in a case study that individual's

learning increased and that improved Organizational Learning. This learning increasing can be

something towards Scrum implementation. Nevertheless, the authors recognize that the results

could not be generalized because it was based on only one organization.

Evidences on knowledge sharing importance for innovation can also be found on Information

Systems (IS) literature. Gordon and Tarafdar [GT07] investigated how information technology com-

petences in�uence its ability to innovate. The authors say: "the idea of 'IT competence' derives from

the resource-based view of the �rm, which has gained considerable support and acceptance in the

strategic management and organizational design literature". They have found that "an IT-based

competence in collaboration and communication accelerated the sharing of information and knowl-

edge across departments." And although most of the time this was used to the delivery of goods and

services, occasionally this competence allowed innovative services to be delivered. Another compe-

tence mentioned was Business Involvement and the knowledge of the business could be related to

innovation in the studied organizations.

In the interviews performed in this study, I9 mentioned documentation importance for when a

developer leaves the organization. I9 was a startup formed by only three founders and they were

the only members of the company. One of them said that documentation was important even for

their own communication. It made easier to select technical solutions.

60 BAD SMELLS AND RECOMMENDATIONS 6.7

6.7 Discussion

In this chapter, six bad smells or behaviors seen in software startups were presented. Also

attitudes to prevent or mitigate them were also discussed. In summary, not understanding the

errors already done in the past by other startups perpetuates mistakes in these organizations.

Strictly following a methodology is not necessary but, at least, founders and other team members

should be aware of the best practices. Be open to other ideas, do not take anything for granted and

validate everything and share knowledge between team members. Of course, this is not the success

recipe. Startups may fail by several other reasons: con�icts between partners, small market for a

product, not economically viable product, etc. But following these hints, they will mitigate other

failure reasons.

Chapter 7

Conclusions

This work used techniques from grounded theory to study requirements engineering practices

in software startups. Taking our initial research question: "How requirements engineering practices

are executed in software startups?", one can take our conceptual framework to answer that. The

Requiremens Engineering Process is in�uenced by Founders, Software Development Manager, De-

velopers, Business Model, Market and Ecosystem and it does not follow strictly a methodology but

instead it is built according to what is needed and it is also continuously evolving as the team learns

about its market, product, user or client and the team itself. The process can be managed by a

Product Team that resembles the Product Team concept from Scrum [Sch97]. Their duties include

elicit, analyze, validate and prioritize requirements giving a direction to the product development.

The proposed model organization separated some stages to a requirement: it is elicited (creation),

it is analyzed, validated and prioritized among others (preparation), it is built (implementation)

and �nally its implementation is checked (product validation). Each of these stages receive di�erent

in�uences from the context elements described before.

Once primary objective is discussed, a discussion about secondary objectives takes place. The

�rst secondary objective was to assess startups and software development methodologies level of

knowledge and use by interviewees. The level of knowledge turned out to be very heterogeneous

ranging from little to full mastery at least at conceptual level. The use as said before is partial since

the techniques are done partially and glued together to create a custom process. It is interesting to

tell though that some main fundamentals are almost ubiquitous like learning from the user feedback

- sometimes this is just an utopia but there is a will to do so.

Finally, to make recommendations to software startups we proposed another metaphor already

present in software development literature: smells. The same path has been made to patterns and

smells could also be applied here. We proposed six bad smells, that is behaviors and practices

that indicate bad solutions. The bad smells were Know-it-all founder, Stubborn developer, Closed-

minded team, Blocked ideas, Validate and do not waste and Not spread knowledge. Each description

is followed by recommendations to avoid and/or �x that smell.

7.1 Main contributions

This study on Requirements Engineering in the context of Software Startups reached the main

contributions as follow.

61

62 CONCLUSIONS 7.2

• Detected the in�uence that the Ecosystem exercise in software startups practices. In the study

discussion, elements like capital availability, human resources capacity and foster institutions

like acceleration programs had in�uences clearly grounded.

• Discussed the importance of developers feeling towards practices and how they help forge

practices inside software startups - that is a clear di�erence to other companies.

• Transferred another metaphor (smells) from software development literature to software star-

tups. Since, as discussed earlier, startups do not follow strictly methodologies, small pieces of

information like patterns and bad smells could be a way to reach better results.

• The study also give more evidence to support studies already present in literature related to

software development in startups like process formation.

Finally, the discussion of processes in software startups is important. One may think that han-

dling the well-known startups problems like lack of capital and/or time-to-market is just doing

everything as fast as possible but process is important. As pointed out by Valtanen and Ahonen

[VA08], when employees have a process to follow, they plan their actions better and this is even

more important in a startup context.

7.2 Threats to validity

Since the research beginning, threats to validity were a concern. This must be true for all

scienti�c work but in our case it demanded special attention. Since it was di�cult to get interviewees,

each of them needed to be transcribed and a lot of time was consumed to analyze it, the overall

research design was very laborious. Then, redoing everything would be very hard.

Besides that the author is partner of a software startup then a clear threat was the research

bias. His prior knowledge and conceptions about the subject could have an e�ect on data collection

and analysis. This threat was mitigated by the use of well-known techniques (grounded theory).

Furthermore, the interview guide developed was another way to keep the interview focused and

prevent a possible in�uence on the interviewee. The research inexperience could also be a problem.

Then, before even designing the research, a discipline on Experimental Software Engineering has

been taken. Unfortunately, a speci�c discipline on Grounded Theory was not available during the

time what would have been very good.

Another threat could be the opportunistic approach used to reach interviewees. But, as described

earlier, it was possible to get startups and people who operate in di�erent markets, have di�erent

sizes and maturity stages.

An important technique to increase validity was to compare results to other studies in literature.

In case of process formation, there are clear similarities to Coleman and O'Connor [CO08] study

since four in�uences identi�ed in the present study are also present in their work. In the case

of Developers in�uence, there were references from agile software development literature ([CC08],

[NMM05], [VT08]) that mention this factor and, since the practices are closer, a similar in�uence is

expected. And Ecosystem is a theme already very discussed in software startups literature ([CKK15],

[MW14]).

An interesting discussion on assessing grounded theory studies is made by Jantunen and Gause

[JG14]. Some techniques they used are also present in this work. They are:

7.3 FUTURE WORK 63

• Prolonged engagement: this study took a year, consisting of seventeen interviews in three

rounds. Analysis was made through several cycles when data was read multiple times and

always compared to new facts.

• Triangulation: although this study was conducted by a sole researcher, the preferred place

to make interviews were where the startup run their operation that be their own o�ce or a

co-working space. Although many of them were made through a call, the in-place interviews

made possible to the researcher make some notes about working space.

• Peer debrie�ng: again nevertheless this study was conducted by a sole researcher, it was

consistently discussed with his supervisor. Besides that, a paper containing the �rst research

stage results was published and presented to the software startup research community.

• Referential adequacy: like the referenced study, this work had all interviews recorded and

transcribed and labels and memos are stored in AtlasTI tool.

• Member checking: the resulting model was never directly presented to the interviewees but

questions added in following versions of the interview guide were based in the results obtained

in the previous research stages.

7.3 Future work

This work spawn di�erent streams for future works. Actually each detected in�uence can be bet-

ter scrutinized including the ecosystem. This study could be replicated in di�erent ecosystems with

di�erent maturity levels and a comparison between them could give more diverse insights. Coming

out of processes description, experiments or study cases can be made to check when methodologies

are more well followed the startups' success rates will be better. For instance, a deeper investiga-

tion on founders in�uence on software development in software startups even when they are not

technical could be performed and if this has a correlation to startup success. Another interesting

investigation would be detailing di�erences or evolution of requirements engineering practices in

software startups with di�erent maturity stages. A more detailed study on product team and its

role in business and software development would also be important.

A discussion on the di�erence between requirements engineering in software consolidated �rms

and startups could be made in depth. In our study, the product validation can already be seen as

one aspect of this di�erence. Interviewing consolidated �rms or a literature review focused could

give more aspects.

Other points not well discussed by this work could be more explored like non-functional require-

ments and requirements management. Non-functional requirements have been neglected initially by

agile practitioners but some practices have been proposed to tackle this problem [ISM+15]. How

startups can tackle this problem and if they are already concerned about this would be a valuable

contribution. Requirements management, mainly how they evolve through time, was mentioned

during interviews but more investigation on it was left to be done in future works as well. Some

question rise from this theme: how startups handle requirements changes during development? Are

they aware of it? These theme is very important given requirements volatility present in startups

context.

64 CONCLUSIONS

Besides that, given the smell metaphor, several other smells could be identi�ed, explained and

more advice can be given to founders and developers in software startups. The smells described

here were concerned on requirements engineering. From software startups scienti�c literature and

other books could be rephrased using the smell metaphor. It could also be possible to extrapolate

some bad smells from software startups to software development in general or even organizations

in general.

7.4 Production during this research

During this course, some contributions have been made not necessarily related to the theme of

this work. They are described now.

• The author helped the development of a scienti�c tool for metabolic calculation using the

Extreme Programming methodology. The tool can be used by researchers and practitioners

on physical exercise to understand how a person obtains energy during exercise. A paper

entitled "GEDAE-LaB: A Free Software to Calculate the Energy System Contributions during

Exercise" was published in the Public Library of Science One journal [BMB+16].

• A work-in-progress paper entitled "Software Development Patterns for Startups" was ac-

cepted to the Writing Group of the 10th Latin American Conference on Pattern Languages

of Programs (SugarLoafPLoP 2014) when was presented and discussed.

• The previous paper was improved and became "Seven patterns for Software Startups" that

was accepted to the 22nd Conference on Pattern Languages of Programs (PLoP 2015) [MG15].

• A colaboration started during the conference that led to another paper accepted to the 11th

Latin American Conference on Pattern Language of Programs (SugarLoafPLoP 2016) entitled

"Early-Stage Software Startup Patterns - Towards a Pattern Language".

• As already mentioned, the stage 1 of this research was presented as the paper entitled "Require-

ments Engineering in Software Startups" during the 2nd International Workshop on Software

Startups [MG16].

Appendix A

Interview guide

In this chapter, the interview guide used during the interviews are presented translated in English

from Portuguese that was the language used in the interviews. The �nal version is presented within

comments about changes made during di�erent research stages.

1. In how many startups have you worked for and/or founded?

a) 1

b) 2

c) 3 or more

2. How long at total have you worked for startups?

a) Less than 1 year

b) From 1 to 2 years

c) From 2 to 3 years

d) More than 3 years

3. Which title best describes the position you had in your last startup?

a) Software developer

b) Tech manager or director

c) Marketing

d) Operations

e) Strategy

f) Other, what?

4. For how long does your current startup exist?

a) Less than 1 year

b) From 1 to less than 2 years

c) 2 years or more

5. Brie�y describe your last startup product. How software development is related to it?

6. Which of the following techniques do you know? Do you try to use them?

a) Lean Startup

b) Design Thinking

65

66 APPENDIX A

c) Scrum

d) Extreme Programming

e) Kanban

f) AB tests

g) MVP

Elicitation

7. Which of the following phrases best describes how the features that your company develop

will have:

a) Developers' ideas

b) Ideas from other company teams (marketing, operations, etc.)

c) Surveys or user interviews

d) Suggestions form in an website/app?

e) Other?

Negotiation

8. Once a idea is created, is it discussed somehow before getting implemented? Who takes into

this discussion?

9. Given the possible features list, how, in your startup, is de�ned which will be implemented

in the next release?

a) Development team meeting (with or without other company members) b) Managers' deci-

sion (manager, director, etc)

c) Survey with users

d) Developer will (what s/he is most interested in)

e) Other?

Validation

10. Given the features that will be implemented in your startup, is there any kind of veri�cation

if it will attend an user expectation before getting implemented? If yes, how?

11. In your startup, is it veri�ed if a implemented features is being used by users? If yes, how?

Documentation

12. How does your startup document the features that will be implemented?

a) E-mails sent between team members

b) Paper writing

c) Stick notes in a board

d) Wiki

e) Issue tracker (e.g. Bugzilla)

f) Project tracking tools (e. g. Jira)

g) Other?

13. In your opinion, what determines how the requirements engineering process will be made in

your startup?

INTERVIEW GUIDE 67

14. Is anyone responsible to guide the product development?

15. Any other details about features to be implementation choice that was not covered in this

interview?

16. Any comments?

68 APPENDIX A

Bibliography

[ABG+10] Lut�hak Alpkan, Cagri Bulut, Gurhan Gunday, Gunduz Ulusoy, and Kemal Kilic.
Organizational support for intrapreneurship and its interaction with human capital to
enhance innovative performance. Management Decision, 48(5):732�755, 2010. 2, 58

[AH01] Bostjan Antoncic and Robert D Hisrich. Intrapreneurship: Construct re�nement and
cross-cultural validation. Journal of business venturing, 16(5):495�527, 2001. 58

[AI77] Christopher Alexander and Murray Ishikawa, Sara anfd Silverstein. Pattern languages.
Center for Environmental Structure, 2:1977, 1977. 55

[AST06] Allen C. Amason, Rodney C. Shrader, and George H. Tompson. Newness and novelty:
Relating top management team composition to new venture performance. Journal of
Business Venturing, 21(1):125�148, 2006. 3, 40

[BA05] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change.
The XP series. Addison-Wesley, 2005. 3, 4, 8, 43

[Bas13] Julian M. Bass. Agile method tailoring in distributed enterprises: Product owner
teams. Proceedings - IEEE 8th International Conference on Global Software Engi-

neering, ICGSE 2013, pages 154�163, 2013. 43

[BBvB+01] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Je�ries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Je� Sutherland, and
Dave Thomas. Manifesto for agile software development, 2001. 3

[Bla07] Steve Blank. The Four Steps to the Epiphany: Successful Strategies for Products that

Win. Cafepress.com, 2007. 1, 4, 9, 38, 43, 58

[Bla13] Steve Blank. Why the Lean Start Up Changes Everything. Harvard Business Review,
91(May):64, 2013. 4, 10

[BLW15] Richard Ban�eld, C. Todd Lombardo, and Trace Wax. Design Sprint: A Practical

Guidebook for Building Great Digital Products. O'Reilly Media, 2015. 12

[BMB+16] Rômulo Bertuzzi, Jorge Melegati, Salomão Bueno, Thaysa Ghiarone, Leonardo A
Pasqua, Arthur Fernandes Gáspari, Adriano E Lima-Silva, and Alfredo Goldman.
Gedae-lab: A free software to calculate the energy system contributions during ex-
ercise. PloS one, 11(1):e0145733, 2016. 64

[BOBL13] Jan Bosch, Helena Holmström Olsson, Jens Björk, and Jens Ljungblad. The Early
Stage Software Startup Development Model: A Framework for Operationalizing Lean
Principles in Software Startups. Lean Enterprise Software and Systems, pages 1�15,
2013. 13, 58, 59

[BPI92] Richard Buchanan, The M I T Press, and Design Issues. Wicked problems in design
thinking. Design Issues, 8(2):5�21, 1992. 11

69

70 BIBLIOGRAPHY

[Bro08] Tim Brown. Design thinking. Harvard business review, 86(6):84, 2008. 12

[Bro09] Tim Brown. Change by Design: How Design Thinking Transforms Organizations and

Inspires Innovation. HarperCollins, 2009. 4, 12, 46, 51

[CAJ07] Betty H C Cheng, Joanne M Atlee, and M Joanne. Research Directions in Requirements
Engineering. Proceeding FOSE '07 2007 Future of Software Engineering, pages 285�
303, 2007. 4, 13, 48

[CC08] Tsun Chow and Dac-Buu Cao. A survey study of critical success factors in agile
software projects. Journal of Systems and Software, 81(6):961�971, 2008. 41, 57, 62

[CKK15] Daniel Cukier, Fabio Kon, and Norris Krueger. Designing a maturity model for software
startup ecosystems. In International Conference on Product-Focused Software Process

Improvement, pages 600�606. Springer, 2015. 42, 55, 62

[CO08] Gerry Coleman and Rory V. O'Connor. An investigation into software development
process formation in software start-ups. Journal of Enterprise Information Manage-

ment, 21(6):633�648, 2008. 7, 8, 20, 35, 36, 37, 44, 51, 62

[CR08] Lan Cao and Balasubramaniam Ramesh. Agile requirements engineering practices: An
empirical study. IEEE Software, 25:60�67, 2008. 15

[Cro02] Mark Crowne. Why software product startups fail and what to do about it. Evolution of
software product development in startup companies. IEEE International Engineering

Management Conference, 1:338�343, 2002. 7, 55

[CSS12] Dave Cha�ey, Paul Russell Smith, and Paul Russell Smith. eMarketing eXcellence:

Planning and optimizing your digital marketing. Routledge, 2012. 10

[Cun93] Ward Cunningham. The wycash portfolio management system. ACM SIGPLAN OOPS

Messenger, 4(2):29�30, 1993. 9

[CY13] Alistair Croll and Benjamin Yoskovitz. Lean Analytics: Use Data to Build a Better

Startup Faster. Lean (O'Reilly). O'Reilly Media, Incorporated, 2013. 40

[DD05] Eric Deakins and Stuart Dillon. A helical model for managing innovative product
and service initiatives in volatile commercial environments. International Journal of

Project Management, 23:65�74, 2005. 1

[DDMP14] Maya Daneva, Daniela Damian, Alessandro Marchetto, and Oscar Pastor. Empirical
research methodologies and studies in Requirements Engineering: How far did we come?
Journal of Systems and Software, 95:1�9, 2014. 27

[DMK04] Robert M. Davison, Maris G. Martinsons, and Ned Kock. Information Systems Journal
: Principles of Canonical Action Research. 14:65�86, 2004. 19

[DS16] Yngve Dahle and Martin Steinert. Does Lean Startup really work? In Engineer-

ing, Technology and Innovation (ICE) \& IEEE International Technology Management

Conference, 2016 International Conference on, pages 166�170, 2016. 11

[DSCE08] Alan De-Ste-Croix and Alan Easton. The product owner team. Proceedings - Agile

2008 Conference, pages 274�279, 2008. 43

[Ebe07] Christof Ebert. The impacts of software product management. Journal of Systems and
Software, 80:850�861, 2007. 4

BIBLIOGRAPHY 71

[EL02] Armin Eberlein and Julio Leite. Agile Requirements De�nition: A View from Re-
quirements Engineering. International Workshop on Time-Constrained Requirements

Engineering, TCRE 2002, pages 1�5, 2002. 14, 38

[Elo14] Veli-Pekka Eloranta. Towards a pattern language for software start-ups. In Proceedings
of the 19th European Conference on Pattern Languages of Programs, page 24. ACM,
2014. 55

[ESSD08] Steve Easterbrook, Janice Singer, Margaret-anne Storey, and Daniela Damian. Se-
lecting Empirical Methods for Software Engineering Research. Guide to Advanced

Empirical Software Engineering, pages 285�311, 2008. 19

[FB99] Martin Fowler and Kent Beck. Refactoring: Improving the Design of Existing Code.
Component software series. Addison-Wesley, 1999. 56

[FBZ12] Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. Automatic detection
of bad smells in code: An experimental assessment. Journal of Object Technology,
11(2):1�38, 2012. 56

[FR83] R. Edward Freeman and David L. Reed. Stockholders and shareholders: a new per-
spective on corporate governance. California Management Review, 25(3):88�106, 1983.
1

[FSO10] Nina Dzamashvili Fogelström, Tony Gorschek Mikael Svahnberg, and Peo Olsson. The
impact of agile principles on market-driven software product development. Journal of
Software Maintenance and Evolution, 22(May 2009):53�80, 2010. 16

[GA03] Jaap Gordijn and JM Akkermans. Value-based requirements engineering: exploring
innovative e-commerce ideas. Requirements engineering, 8(2):114�134, 2003. 55

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:

elements of reusable object-oriented languages and systems. Addison-Wesley Reading,
1994. 55

[GPEM09] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. Toward a
catalogue of architectural bad smells. In International Conference on the Quality of

Software Architectures, pages 146�162. Springer, 2009. 56

[GPU+15] Carmine Giardino, Nicolo Paternoster, Michael Unterkalmsteiner, Tony Gorschek, and
Pekka Abrahamsson. Software Development in Startup Companies: The Green�eld
Startup Model. IEEE Transactions on Software Engineering, 42(September):233, 2015.
8, 28

[GS67] Barney Glaser and Anselm Strauss. The discovery of grounded theory : strategies for

qualitative research. Aldine Pub. Co, Chicago, 1967. 21

[GT07] Steven R. Gordon and Monideepa Tarafdar. How do a company's information technol-
ogy competences in�uence its ability to innovate? Journal of Enterprise Information

Management, 20(3):271�290, 2007. 41, 58, 59

[GWA14] Carmine Giardino, Xiaofeng Wang, and Pekka Abrahamsson. Why early-stage soft-
ware startups fail: A behavioral framework. Lecture Notes in Business Information

Processing, 182 LNBIP:27�41, 2014. 55

[Har15] Rainer Harms. Self-regulated learning, team learning and project performance in en-
trepreneurship education: Learning in a lean startup environment. Technological Fore-
casting and Social Change, 100:21�28, 2015. 11

72 BIBLIOGRAPHY

[HC04] Helen Heath and Sarah Cowley. Developing a grounded theory approach: A comparison
of Glaser and Strauss. International Journal of Nursing Studies, 41:141�150, 2004. 21

[HKB10] Matthias Häsel, Tobias Kollmann, and Nicola Breugst. IT Competence in Internet
Founder Teams. Bise, 2(4):209�217, 2010. 3, 40

[HL15] Laura Hokkanen and Marko Leppanen. Three patterns for user involvement in startups.
In Accepted to 20th European Conference on Pattern Languages of Programs, 2015. 55

[Hui13] Alexis Hui. Lean change: Enabling agile transformation through lean startup, kotter
and kanban: An experience report. In Agile Conference (AGILE), 2013, pages 169�174.
IEEE, 2013. 11

[ISM+15] Irum Inayat, Siti Salwah Salim, Sabrina Marczak, Maya Daneva, and Shahaboddin
Shamshirband. A systematic literature review on agile requirements engineering prac-
tices and challenges. Computers in Human Behavior, 51(0):�, 2015. 14, 63

[JG14] Sami Jantunen and Donald C. Gause. Using a grounded theory approach for exploring
software product management challenges. Journal of Systems and Software, 95:32�51,
2014. 21, 28, 62

[JSWÇ13] Ulla Johansson-Sköldberg, Jill Woodilla, and Mehves Çetinkaya. Design Thinking:
Past, Present and Possible Futures. Creativity and Innovation Management, 22(2):121�
146, jun 2013. 12

[KDR+07] Lena Karlsson, Asa G Dahlstedt, Björn Regnell, Johan Natt och Dag, and Anne Pers-
son. Requirements engineering challenges in market-driven software development - An
interview study with practitioners. Information and Software Technology, 49:588�604,
2007. 28, 38

[Ken99] Judy Kendall. Axial coding and the grounded theory controversy. Western journal of

nursing research, 21(6):743�757, 1999. 21

[KMN08] Mira Kajko-Mattsson and Natalja Nikitina. From Knowing Nothing to Knowing a
Little: Experiences Gained from Process Improvement in a Start-Up Company. In
Computer Science and Software Engineering, 2008 International Conference on, vol-
ume 2, pages 617�621. Ieee, 2008. 41

[Kru04] Philippe Kruchten. The rational uni�ed process: an introduction. Addison-Wesley
Professional, 2004. 8

[Lep14] Marko Leppänen. Patterns for starting up a software startup company. Proceedings

of the 19th European Conference on Pattern Languages of Programs - EuroPLoP '14,
pages 1�7, 2014. 55

[LH09] Meira Levy and Orit Hazzan. Knowledge Management in Practice: The Case of Agile
Software Development. 2009 Icse Workshop on Cooperative and Human Aspects of

Software Engineering, pages 60�65, 2009. 59

[LH15] Marko Leppänen and Laura Hokkanen. Four patterns for internal startups. Proceedings
of the 20th European Conference on Pattern Languages of Programs - EuroPLoP '15,
pages 1�10, 2015. 55

[LHC10] Yixin Luo, Allyson Hoss, and Doris L. Carver. An ontological identi�cation of relation-
ships between anti-patterns and code smells. IEEE Aerospace Conference Proceedings,
2010. 56

BIBLIOGRAPHY 73

[LME+12] James Lockerbie, Neil Arthur McDougall Maiden, Jorgen Engmann, Debbie Randall,
Sean Jones, and David Bush. Exploring the impact of software requirements on system-
wide goals: A method using satisfaction arguments and i* goal modelling. Requirements
Engineering, 17:227�254, 2012. 16

[McC96] Steve McConnell. Daily build and smoke test. IEEE software, 13(4):144, 1996. 47

[MG15] Jorge Melegati and Alfredo Goldman. Seven patterns for software startups. In Pro-

ceedings of 22nd Conference on Pattern Languages of Programs, 2015. 56, 64

[MG16] Jorge Melegati and Alfredo Goldman. Requirements Engineering in software startups :
a grounded theory approach. In 2nd Internation Workshop on Software Startups, 2016.
29, 64

[MHS13] Matthwe B. Miles, A. Michael Huberman, and Johnny Saldaña. Qualitative Data

Analysis: A Methods Sourcebook. SAGE Publications, 2013. 27

[MM12] Alastair Milne and Neil Maiden. Power and politics in requirements engineering: Em-
bracing the dark side? Requirements Engineering, 17:83�98, 2012. 14

[Moo12] Dobrila Rancic Moogk. Minimum viable product and the importance of experimenta-
tion in technology startups. Technology Innovation Management Review, 2(3):23, 2012.
11

[MT12] Roland M. Mueller and Katja Thoring. Design Thinking Vs Lean Startup: A Com-
parison of Two Userdriven Innovation Strategies. In Proceedings of 2012 International

Design Management Research Conference, pages 151�161, 2012. 12

[MVL03] Mika Mantyla, Jari Vanhanen, and Casper Lassenius. A taxonomy and an initial
empirical study of bad smells in code. In Software Maintenance, 2003. ICSM 2003.

Proceedings. International Conference on, pages 381�384, 2003. 56

[MW14] Yasuyuki Motoyama and Karren K Watkins. Examining the connections within the
startup ecosystem: A case study of st. louis. Louis (September 1, 2014). Kau�man

Foundation Research Series on City, Metro, and Regional Entrepreneurship, 2014. 41,
62

[Mye97] Michael D. Myers. Qualitative research in information systems. Management Infor-

mation Systems Quarterly, 21(June):1�18, 1997. 19, 20

[Nam02] Satish Nambisan. Software �rm evolution and innovation-orientation. Journal of En-
gineering and Technology Management - JET-M, 19(2):141�165, 2002. 41

[NDSA15] Anh Nguyen-Duc, Pertti Seppänen, and Pekka Abrahamsson. Hunter-gatherer cycle:
a conceptual model of the evolution of software startups. In Proceedings of the 2015

International Conference on Software and System Process - ICSSP 2015, pages 199�
203. ACM, 2015. ix, 39, 40

[NE00] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a roadmap. ICSE
2000 Proceedings of the Conference on The Future of Software Engineering, 1:35�46,
2000. 3

[NL03] Colin. J. Neill and Phillip A. Laplante. Requirements engineering: the state of the
practice. IEEE Software, 20(6), 2003. 14

[NMM05] Sridhar Nerur, Radhakanta Mahapatra, and George Mangalaraj. Challenges of Mi-
grating to Agile Methodologies. Communications of the ACM, 48(2):72�78, 2005. 41,
62

74 BIBLIOGRAPHY

[Nob11] Carmen Nobel. Teaching a ' Lean Startup ' Strategy. Harvard Business School, pages
1�2, 2011. 11

[Pat13] Matthias Patz. Lean startup : adding an experimental learning perspective to the
entrepreneural process. Master's thesis, University of Twente, Janeiro 2013. 1

[Pau15] Danielly Ferreira Oliveira de Paula. Model for the innovation teaching (moit): um
modelo baseado em design thinking, lean startup e ágil para estudantes de graduação
em computação. Master's thesis, Universidade Federal de Pernambuco, 2015. 11

[PGU+14] Nicolò Paternoster, Carmine Giardino, Michael Unterkalmsteiner, Tony Gorschek, and
Pekka Abrahamsson. Software development in startup companies: A systematic map-
ping study. Information and Software Technology, April 2014. 1, 2, 3, 7, 56

[Pot95] Colin Potts. Invented requirements and imagined customers: requirements engineer-
ing for o�-the-shelf software. Proceedings of 1995 IEEE International Symposium on

Requirements Engineering (RE'95), pages 128�130, 1995. 38

[PP03] Mary Poppendieck and Tom Poppendieck. Lean Software Development: An Agile

Toolkit: An Agile Toolkit. Agile Software Development Series. Pearson Education,
2003. 10

[RB05] Björn Regnell and Sjaak Brinkkemper. Market-driven requirements engineering for
software products. Engineering and Managing Software Requirements, pages 287�308,
2005. 38

[Rie11] Eric Ries. The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to

Create Radically Successful Businesses. The Lean Startup: How Today's Entrepreneurs
Use Continuous Innovation to Create Radically Successful Businesses. Crown Business,
2011. 1, 2, 4, 46, 48, 58

[RS16] Kevin Reuther and Christian-Andreas Schumman. Intrapreneurship : Increasing Em-
ployees' Responsibility for an Enhancement of Innovation Performance. In Engineer-

ing, Technology and Innovation (ICE) \& IEEE International Technology Management

Conference, 2016 International Conference on, pages 147�149, 2016. 2

[Rus15] Radostina Ruseva. Patterns for startup business models. In Proceedings of the 20th

European Conference on Pattern Languages of Programs, pages 1�11. ACM, 2015. 55

[RW73] Horst W J Rittel and Melvin M. Webber. Dilemmas in a general theory of planning.
Policy Sciences, 4(2):155�169, 1973. 11

[RW13] JPC Rigtering and Utz Weitzel. Work context and employee behaviour as an-
tecedents for intrapreneurship. International Entrepreneurship and Management Jour-

nal, 9(3):337�360, 2013. 58

[SC90] Anselm L. Strauss and Juliet M. Corbin. Basics of qualitative research: grounded theory
procedures and techniques. Sage Publications, 1990. 20, 21, 22, 23

[SC96] Jawed Siddiqi and M Chandra. Requirements engineering: the emerging wisdom. Ieee
Software, 1996. 14

[Sch97] Ken Schwaber. Scrum development process. In Business Object Design and Implemen-

tation, pages 117�134. Springer, 1997. 61

[Sch04] Ken Schwaber. Agile Project Management with Scrum. Best practices. Microsoft Press,
2004. 4, 43

BIBLIOGRAPHY 75

[SCRS05] Alberto Sillitti, Martina Ceschi, Barbara Russo, and Giancarlo Succi. Managing un-
certainty in requirements: A survey in documentation-driven and Agile companies.
Proceedings - International Software Metrics Symposium, 2005(Metrics):145�154, 2005.
16

[Sea99] Carolyn B. Seaman. Qualitative methods in empirical studies of software engineering.
IEEE Transactions on Software Engineering, 25(4):557�572, 1999. 19, 20

[Sel09] Bran Selic. Agile documentation, anyone? IEEE Software, 26(6):11�12, 2009. 3

[SGSF11] Viviane Santos, Alfredo Goldman, Ana Carolina M Shinoda, and Andre L. Fischer. A
view towards Organizational Learning: An empirical study on Scrum implementation.
SEKE 2011 - Proceedings of the 23rd International Conference on Software Engineering

and Knowledge Engineering, pages 583�589, 2011. 59

[Sim96] Herbert A. Simon. The Sciences of the Arti�cial (3rd Ed.). MIT Press, Cambridge,
MA, USA, 1996. 11

[SK98] Ian Sommerville and Gerald Kotonya. Requirements Engineering: Processes and Tech-

niques. John Wiley & Sons, Inc., New York, NY, USA, 1998. 3, 46

[SKB02] Kan Ichiro Suzuki, Sang Hoon Kim, and Zong Tae Bae. Entrepreneurship in Japan
and Silicon Valley: A comparative study. Technovation, 22(10):595�606, 2002. 42

[SMMS11] Tiago Silva, Angela Martin, Frank Maurer, and Milene Silveira. User-Centered Design
and Agile Methods: A Systematic Review. Agile Conference (AGILE), 2011, pages
77�86, 2011. 16

[SOL16] Pertti Seppänen, Markku Oivo, and Kari Liukkunen. The initial team of a software
startup. In Engineering, Technology and Innovation (ICE) \& IEEE International

Technology Management Conference, 2016 International Conference on, pages 57�65,
2016. 36, 44

[Sut00] Stanley M Sutton. The Role of Process in a Software Start-up. IEEE Software, pages
33�39, 2000. 2

[Tai10] Marko Taipale. Huitale�a story of a �nnish lean startup. In Lean Enterprise Software

and Systems, pages 111�114. Springer, 2010. 7, 51

[TM14] Peter A. Thiel and Blake Masters. Zero to One: Notes on Startups, Or how to Build

the Future. Crown Business, 2014. 1, 9

[ULM10] Cathy Urquhart, Hans Lehmann, and Michael D. Myers. Putting the 'theory' back
into grounded theory: Guidelines for grounded theory studies in information systems.
Information Systems Journal, 20:357�381, 2010. 21

[VA08] Anu Valtanen and Jarmo J. Ahonen. Big improvements with small changes: Improving
the processes of a small software company. Lecture Notes in Computer Science (in-

cluding subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes in Bioin-

formatics), 5089 LNCS(2006):258�272, 2008. 49, 62

[VMM16] Sergio Edú Valsania, Juan A. Moriano, and Fernando Molero. Authentic leadership
and intrapreneurial behavior: cross-level analysis of the mediator e�ect of organiza-
tional identi�cation and empowerment. International Entrepreneurship and Manage-

ment Journal, 12(1):131�152, 2016. 2, 58

[VT08] Leo R. Vijayasarathy and Dan Turk. Agile software development: A survey of early
adopters. Journal of Information Technology Management, XIX(2):1�8, 2008. 41, 62

76 BIBLIOGRAPHY

[WEB+16] Xiaofeng Wang, Henry Edison, Sohaib Shahid Bajwa, Carmine Giardino, and Pekka
Abrahamsson. Key Challenges in Software Startups Across Life Cycle Stages. In
Lecture Notes in Business Information Processing, pages 169�182. Springer, 2016. 39

[Won06] Jarunee Wonglimpiyarat. The dynamic economic engine at Silicon Valley and US
Government programmes in �nancing innovations. Technovation, 26(9):1081�1089,
2006. 42

[Zav95] Pamela Zave. Classi�cation of research e�orts in requirements engineering. Proceedings
of 1995 IEEE International Symposium on Requirements Engineering (RE'95), 29(4),
1995. 14

[ZC05] Didar Zowghi and Chad Coulin. Requirements elicitation: A survey of techniques,
approaches, and tools. Engineering and Managing Software Requirements, pages 19�
46, 2005. 14

[ZMMW01] Jörg Zettel, Frank Maurer, Jürgen Münch, and Les Wong. LIPE: a lightweight process
for e-business startup companies based on extreme programming. Product Focused

Software Process Improvement, pages 255�270, 2001. 7, 44

	List of Figures
	List of Tables
	Introduction
	Startup definition
	Requirements engineering
	Startup development methodologies
	Objectives
	Organization

	Related work
	Software development in startups
	Startup development methodologies
	Customer development
	Lean startup
	Design thinking
	Desing sprint
	Discussion

	Requirements engineering
	Conclusion

	Research design
	Data collection
	Interview guide

	Data analysis
	Open coding
	Axial coding
	Iterative process

	Data collection and analysis
	Chronology
	Stage 0
	Stage 1
	Stage 2
	Stage 3

	Interviews

	Requirements engineering in software startups model
	Influences
	Founders
	Software development manager
	Market
	Business model
	Developers
	Ecosystem

	Product team
	Process
	Activities
	Elicitation
	Analysis, Validation and Prioritization
	Product Validation
	Documentation and Communication

	Summary
	Used practices and problems

	Bad smells and recommendations
	Know-it-all founder
	Stubborn developer
	Closed-minded team
	Blocked ideas
	Validate and do not waste
	Not spread knowledge
	Discussion

	Conclusions
	Main contributions
	Threats to validity
	Future work
	Production during this research

	Interview guide
	Bibliography

