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Resumo

Modelos de Aprendizado Profundo necessitam de uma vasta quantidade de dados anotados para

serem criados. Entretanto, existem muitas áreas onde obter dados anotados é uma tarefa custosa.

Neste cenário, o uso de Aprendizado Profundo se torna bastante difícil. Uma maneira de lidar com

essa situação é usando a técnica de Aprendizado Ativo. Inicialmente, essa técnica cria um modelo

com os dados anotados disponíveis. Depois disso, ela incrementalmente escolhe dados não anotados

que irão, potencialmente, melhorar à acurácia do modelo, se adicionados aos dados de treinamento.

Para selecionar quais dados serão anotados, essa técnica necessita de uma medida de incerteza sobre

as predições geradas pelo modelo. Entretanto, tal medida não é usualmente realizada em modelos

de Aprendizado Profundo. Uma nova técnica foi proposta para lidar com a problemática de medir

a incerteza desses modelos, chamada de Monte Carlo Dropout. Essa técnica permitiu o uso de

Aprendizado Ativo junto com Aprendizado Profundo para tarefa de classi�cação de imagens. Essa

pesquisa visa averiguar se ao modelarmos a incerteza em modelos de Aprendizado Profundo com a

técnica de Monte Carlo Dropout, será possível usar a técnica de Aprendizado Ativo para tarefa de

análise de sentimento, uma área com uma vasta quantidade de dados, mas poucos deles anotados.



Abstract

Deep Learning models rely on a huge amount of labeled data to be created. However, there

are a number of areas where labeling data is a costly process, making Deep Learning approaches

unfeasible. One way to handle that situation is by using the Active Learning technique. Initially, it

creates a model with the available labeled data. After that, it incrementally chooses new unlabeled

data that will potentially increase the model accuracy, if added to the training data. To select

which data will be labelled next, this technique requires a measurement of uncertainty from the

model prediction, which is usually not computed for Deep Learning methods. A new approach has

been proposed to measure uncertainty in those models, called Monte Carlo Dropout. This technique

allowed Active Learning to be used together with Deep Learning for image classi�cation. This re-

search will evaluate if modeling uncertainty on Deep Learning models with Monte Carlo Dropout

will make the use of Active Learning feasible for the task of sentiment analysis, an area with huge

amount of data, but few of them labeled.

Keywords: Deep Learning, Active Learning, Sentiment Analysis
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Chapter 1

Introduction

Deep Learning(DL) methods have achieved state-of-the-art results in a varied number of do-
mains, ranging from Machine Translation [SVL14] to Object Classi�cation and Image Detection
[KSH12]. However, to provide such results, DL models rely on a large amount of labeled data. For
example, the task of object classi�cation for 1000 di�erent classes required more than 1 million an-
notated images to train the ImageNet model[KSH12]. This scenario creates a challenge on applying
DL methods on areas which only unlabeled data is available, but labeling is a costly process. For
instance, using Deep Learning to diagnose Alzheimer on Magnetic Resonance Image(MRI) scans
would require domain experts on that area to label the data [MFC+10].

One approach to handle the problem of few labeled data is the Active Learning(AL) technique.
This technique divides the available data into two distinct groups, labeled and unlabeled data. The
labeled group is used to create an initial model which is evaluated and used to select the most
informative samples from the unlabeled group. These samples are annotated by an oracle, i.e. a
domain expert, and added to the labeled group. With the new samples added to the labeled group,
a new model is created and the AL cycle restarts. Therefore, this technique grants the model the
option to select which data will be used for training. By adding this �exibility to the model, it is
expected that learning occurs without the necessity of a large quantity of annotated data [TK02].
This approach was proven successful on a range of tasks, such as object classi�cation [VG14] and
text classi�cation [SC00].

To use the AL technique it is required to de�ne which examples in the unlabeled data group
are the most informative, in other words, it is necessary to de�ne a selection policy for unlabeled
data. Most policies are based on the con�dence score of the model for the unlabeled samples, or the
uncertainty of the model on the samples it classify [Set09]. Although an important concept, this is
not commonly measured in DL, making it di�cult to apply AL techniques on it.

One approach to measure uncertainty on DL methods is the Monte Carlo Dropout technique,
which is based on Variational Inference and Bayesian Neural Networks [GG15b]. This technique
was further explored on the context of Bayesian Convolutional Neural Networks together with AL
to classify handwritten digits, which achieved a test error bellow 1.43% using around 900 labeled
images [GIG17]. Therefore, these new results indicate that it is possible to perform Deep Active

Learning, AL together with DL. Following this idea, we believe that this can be used on other
classi�cation tasks, such as sentiment analysis. This task involves classifying a text as having a
positive or negative feeling. This type of text is produced daily on websites such as Facebook and
New York Times. However, most of the data produced is unlabeled, meaning that the amount of
unlabeled data is always surpassing the amount of labeled data. By creating a model that can select
which text an user should classify, we would enable a dynamic model, that could be incrementally
developed without the need of a vast training set of labeled texts.

1
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Train Model

Measure Unlabeled Data Uncertainty

Select Most Informative Unlabeled Examples

Label Informative Examples

Add Examples to Labeled Group

Figure 1.1: Simpli�ed diagram of the Active Learning cycle

This research will focus on applying the modelling of uncertainty for DL methods and the use
of AL for the task of sentiment analysis. To perform such task, the Large Movie Review Database
[MDP+11] and Subjectivity Dataset [PL04] will be used, because of their use on well stablished
researches on the area of sentiment analysis. We believe that by measuring uncertainty using the
Monte Carlo Dropout technique, it will be possible to achieve higher accuracy values than by using
only the conventional uncertainty measurements from Deep Learning models.

1.1 Motivation

To bring the advantages of DL models to di�erent areas, we need to deal with tasks with few
labeled data. AL is one possible framework that addressed the problem with few labeled data and
machine learning. To use AL, we need to measure the model's uncertainty over unlabeled data and
select the samples which will bene�t our model the most, if they were labeled. To perform such
selection, we need to select the samples which the model is more uncertain about its classi�cation,
we need the uncertainty measurement of the samples, as can be seen in Figure 1.1. This is not usu-
ally computed for DL models, because of the complexity to perform such measurements. Recently,
the Monte Carlo Dropout technique has been proposed to allow for an easier measurement of the
model uncertainty. This approach has been tested in the context of Image Classi�cation together
with Active Learning, achieving the best results in comparison with other AL approaches [GIG17].
Based on these results, this research aims at verifying if the Monte Carlo Dropout technique can be
applied to di�erent task using the AL framework. Therefore, we aim at evaluating how the Monte

Carlo Dropout coupled with the AL framework behaves for a di�erent problem, sentiment analysis,
and a di�erent architecture than the one used for Image Classi�cation.

We strongly believe that by verifying the behavior of this technique for a di�erent task context,
we can verify if the technique is task or architecture dependent or if it can generalize to new tasks
and architectures.

1.2 Objective

The main objective of this research is to investigate the use of AL together with DL for the
task of sentiment analysis, using the Monte Carlo Dropout as an uncertainty measurement. This
will require the understanding on how uncertainty can be measured in a DL model, ranging from
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the classical approach of using the softmax function as an uncertainty measurement of the model
to the rationale behind the Monte Carlo Dropout for uncertainty measurement.

To evaluate this goal, the following research questions were created:

• Q1: On the task of sentiment analysis, does modelling the uncertainty measurement of the
model using the Monte Carlo Dropout technique help us achieve a better accuracy value in
the Active Learning context ?

• Q2: Does Monte Carlo Dropout provides best uncertainty measurements then using the soft-
max output as a uncertainty measurement, the classical approach used in DL models ?



Chapter 2

Related Work

The combination of DL methods and sentiment analysis tasks is not new. Many researchers
have already explored di�erent DL architectures and approaches to handle sentiment analysis. For
document level classi�cation (verify if a document has a positive or negative opinion), the common
approaches use a combination of Long-Short Term Memories (LSTM) models and Convolutional
Neural Networks (CNN) to handle text data. Basically, both LSTM and CNN are used to encode
the document into an input array. This array is then fed into another DL model, such as a Neural
Network, and a classi�cation is generated. This approach has been used in the works of [TQL15]. In
that work, the authors encoded each text paragraph using a LSTM. Following that, each encoded
paragraph is used as an input to another Recurrent Neural Network, creating the document encod-
ing, which is used to perform the sentiment classi�cation. Another work that uses LSTM to encode
the document text for classi�cation is [XCQH16]. This works modify the LSTM architecture, adding
it a cache mechanism. This is achieved by splitting the memory of the LSTM into di�erent groups,
where each has it own rate for the forgetting gate. The authors argue that allowing some memories
to have higher and lower forgetting gates, allows the network to learn about both global and local
semantic features. Finally, one work that uses a CNN to encode the document instead of a LSTM
is the one of [Kim14]. In this work, the author uses a CNN to create di�erent n-gram �lters for
analysing the text. The document is then represented as the composition of these n-grams �lters.
The authors show that this network achieves similar results than using LSTM models, but with the
facilities of using a CNN model, such as faster model training.

From these works, we have perveived that Deep Learnign models achieved state-of-the art results
on the the task of sentiment analysis. Additionally, most works on the area rely on encoding the
document data into an continuous array, using a LSTM or a CNN to achieve that task. Because of
these results and the abundance of text data that can be gathered online, we believed that research
on combining Active Learning (AL) and DL models would be abundant. However, this was not the
case. We have found few works addressing a AL together with DL.

One work that addresses the question of using DL together with AL is the CEAL framework
[WZL+17]. Di�erent from other Active Learning frameworks, this model exploits unlabeled data
to train the model. The unlabeled data which the model is most certain about are assigned a la-
bel and used as training data. After this data is used, their labels are erased and they are added
again to the unlabeled data pool. Therefore, this framework guarantees that more data will be used
for training on each Active Learning cycle. This strategy achieved better results when compared
with other Active Learning techniques for image classi�cation on the CACD dataset [CCH14] and
Caltech-256 dataset [GHP07]. Although the results are expressive enough, there is a limitation on
how the framework handles model uncertainty. Uncertainty measurement is given by the output
of the softmax layer in the model, a classical approach to handle uncertainty in DL models. Al-
though the softmax function produces a valid probability distribution, the result it produces should
not be trustworthy when dealing with uncertainty. It is possible to produce unrecognizable images

4
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that achieve a high accuracy prediction by networks which use the softmax layer as the prediction
layer [NYC14]. One of the main reasons behind that is the use of Maximum Likelihood Estimation
(MLE) for estimating the model's parameter. This technique �nds parameters that maximise the
likelihood of the model to produce the observed data, or the training data. This means that the
probability distribution generated by the softmax function is based solely on a point estimate of
the model's parameters. When feeding the softmax with a single point estimate, it tends to provide
overly con�dent predictions, even for data far away from the observed data. If we could pass the
entire distribution of the model's parameters, our softmax output would provide better predictions.
[Gal16]. Another reason for not interpreting the softmax output as true uncertainty estimates is
that since most DL methods work with high dimensional data, the classi�cation space allocated to a
given class may be far bigger than the area which is inhabited by the training examples. Therefore,
images that are deep into a classi�cation region may generate high con�dence prediction, even if
the images are very di�erent from the natural images for that class [NYC14]. Therefore, we can
understand that the probability distribution provided by the softmax output is not a sound mea-
surement for uncertainty in the model's predictions.

Another work that deals with Deep Learning and Active Learning is the creation of a Bayesian
Convolutional Neural Network, that extracts the model uncertainty by using the Monte Carlo

Dropout technique [GIG17]. This model has achieved an error of only 1.43% for the MNIST dataset
by using fewer than 900 labeled images. However, this strategy does not use the unlabeled data to
further increase the training set, which is an approach that could be used.

When considering text data, theMonte Carlo Dropout technique was also used in task of Named
Entity Recogniton (NER) in the work of [SYL+17]. In this work they have used AL to identify if
they could achieve state-of-the-art results in the NER task using less annotated data. The Monte

Carlo Dropout technique was one of the techniques used to provide uncertainty measurements for
selecting new samples for labeling in the experiment. For the NER task, the Monte Carlo Dropout

was slightly outperformed by a metric devised by the researchers. However, the designed metric used
to measure the uncertainty cannot be easily generalized to other contexts, which is not the case for
the Monte Carlo Dropout technique. The researchers found that both uncertainty measurements
have achieved state-of-the-art results using 25% of the labeled data.

Another work that address text data and the AL technique is the work of [ZW16]. In this work,
the researchers do not use the classi�cation uncertainty of the model to select samples from the
unlabeled dataset. Instead, they select unlabeled samples that, if added to the training data, would
most a�ect the word embedding representation of the words. A word embedding is a vectorial rep-
resentation of a word, mostly used to give a dense input to a neural network when dealing with text
data [MCCD13]. In their research, they have observed that their technique has outperformed other
techniques that use uncertainty measurements on sentence and document classi�cation tasks. Their
technique was compared with uncertainty measurements that use the softmax output as an uncer-
tainty measurement. As we have discussed, using the softmax output is not a sound uncertainty
measurement. Therefore, further comparisons could be made if the Al model that used uncertainty
measurement used the Monte Carlo Dropout to better estimate the uncertainty.

There are also other researches on NLP tasks using AL, but using Machine Learning models
instead of DL methods. For example, in [KSP+15], the authors �rst train a baseline linear SVM
classi�er on 1,600,000 tweets (50% positive and 50% negative), achieving an accuracy of 83.01%.
After that, they create a dataset with 11,389 tweets (43% positive, 16% negative and 41% neutral)
and separate it into a series of batches with 1000 tweets each. Each batch of data is fed into the
baseline algorithm, where two scenarios are tested: The algorithm can use Active Learning and
choose 100 tweets from each batch to be manually labeled and added to training set, or not use
Active Learning and not retrain the model. In the �rst setting, the average accuracy for a batch
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of tweets is 41.8%, while for the second, 34.9%. Although these accuracies are not very high, it is
necessary to understand that the baseline algorithm was trained for binary classi�cation (positive
and negative tweets), and the test data contains 41% of neutral tweets, which may cause the low
accuracy over the batches. However, even the baseline algorithm does not possess a high accuracy
for the binary classi�cation of tweets, which only have 140 characters. It is possible that the linear
SVM model used may not be robust enough to handle tweets text information in order to perform
a better classi�cation.

Finally, to the best of our knowledge, we could not �nd any work that combines a pure LSTM
DL model with AL. Although [SYL+17] uses a LSTM in their model, a CNN is responsible for
encoding the text data. Therefore, the LSTM is used for a signi�cant smaller input than if it was
responsible for encoding the whole text unto a vectorial representation. Therefore, we believe this
is be one of the �rst works that tries to combine a pure LSTM model with the AL technique.



Chapter 3

Background

This chapter will introduce the necessary information used on the rest of this work. Initially,
we will address the mathematical notation used to explain the necessary concepts. After that, from
section 3.2 through 3.3.3 we will provide the background notions for the creation and understanding
of the Monte Carlo Dropout technique. On section 3.4, we will explain how a Recurrent Neural

Network works and on section 3.5, how the active learning technique works. Finally, the �nal
section of this chapter, 3.6 explains how we can combine Monte Carlo Dropout, Recurrent Neural
Networks and Active Learning. Therefore, this sections will be an overview of the approach used in
this research, allowing the reader to skip sections it already has knowledge about and focus only on
how the techniques are going to be combined together.

3.1 Mathematical Notation

Through this work, we will use the following mathematical notation. Bold upper case letters
X will denote matrices while bold lowercase letters x will denote vectors. Scalars will be de�ned
by standard letters, such as x. Subscripts are used to denote di�erent variables, such as W1 and
W2. Also, bold lowercase letters will denote a row vector. If the variable also has a subscript, it
will denote a certain row from a matrix. For example, x1 will denote the �rst row of matrix X. To
represent a scalar inside a matrix variable we will use three number, one to identify the variable,
other to identify the row of the matrix and the last one, to identify the column of the matrix. For
example, to identify the �rst row and column of the matrix X2, we will use the variable x2,1,1.

When dealing with machine learning models, their parameters will be described by the θ vari-
able and we will use superscripts such as fθ to denote a model parametrised by the variable θ.
Additionally, λ will describe an array of variables, i.e. λ = µ, σ.

Finally, a common operation in machine learning models is the Hadamard product, where we
multiply two vectors element-wise. To diferentiate this operation from the dot product between
vectors, we will represent the Hadamard product with the symbol �.

3.2 Uncertainty and Deep Learning

Deep Learning(DL) is a sub�eld of machine learning interested in the training and use of large
Neural Networks (left part of Figure 3.1). One of the most common tasks associated with DL is
supervised learning. In this setting, the Deep Learning model is presented with a set of training
inputs, X = [x1,x2, ...,xn] and an associated set of outputs, Y = [y1,y2, ...,yn]. The task of the
model is to learn a function Y = fθ(X) capable of transforming the inputs X into the outputs Y
using the parameters θ. Therefore, in order to use DL methods, we need to choose a model fθ and
�nd the best θ parameters for this model, an activity called training.

7
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In order to train a DL model we need to de�ne an objective function. This function is responsible
for measuring how well the outputs of our network are matching the real outputs in our training
set, Y . Most of the approaches used to train these models tries to minimize this objective function.
However, we can also view the training step of these models through a probability perspective.

3.3 Bayesian Neural Network

One approach that can be used to estimate the parameters of a model is the Bayesian method,
where each parameter of our network will be de�ned by a probability distribution, as can be seen
on the right part of Figure 3.1.

A Bayesian Neural Network uses Baye's theorem to �nd a probability distribution for the pa-
rameters. The theorem can be de�ned by Equation 3.1

x2

x1

x3

h2

h1

h3

h4

o ŷ

w1,1,1

w2,1,1

x2

x1

x3

h2

h1

h3

h4

o ŷ

Figure 3.1: Examples of two distinct approaches to Neural Networks. (Left) A classical Neural Network,
where each parameter is a scalar value. (Right) A Bayesian Neural Network, where each parameter is de�ned
by a probability distribution.

p(θ|X,Y) =
p(Y|X, θ)p(θ)

p(Y|X)
(3.1)

In order to understand Equation 3.1 for the context of a DL model, each individual piece of the
equation must be analyzed. The �rst piece is the term p(θ), our prior term. This term indicates an
initial guess of the behaviour of our model's parameters. The choice of the probability distribution
over our parameters happens before our model see any data, meaning that this choice is made when
the model is created. The second term of our equation is p(Y|X, θ), which is called the likelihood
function. This likelihood function is a probability distribution that measures how probable the
predictions Y are, given the model's input data, X, and parameters, θ. Finally, the term p(Y|X)
is the regularization term, used to guarantee that our posterior distribution p(θ|X,Y) sums to 1,
meaning that it is a valid probability distribution. Once all these values are computed and we apply
these values in the equation 3.1, we get a posterior distribution of our parameters, p(θ|X,Y). This
posterior distribution captures the most probable parameters given our observed data.

The Bayesian approach gives a probability distribution over our model's parameters. Therefore,
in order to give a prediction, y∗ for an unseen input x∗ we can use the following equation:
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p(y∗|x∗,X,Y) =

∫
p(y∗|x∗, θ)p(θ|X,Y)dθ (3.2)

As Equation 3.2 shows, we calculate the probability of a model parameter to generate a predic-
tion y∗ scaled by the posterior probability of that parameter p(θ|X,Y). This procedure is applied
to all θ parameters.

This approach is a costly operation, since integrating over the entire parameter space is a com-
putationally costly procedure. A di�erent approach for prediction is instead to generate t output
samples, by sampling a new parameter con�guration from our posterior distribution for each new
output, as can bee seen on Equation 3.7 and best visualized on Figure 3.2

ŷ1 = p(y∗|x∗, θ̂1); θ̂1 ∼ p(θ|X,Y ) (3.3)

ŷ2 = p(y∗|x∗, θ̂2); θ̂2 ∼ p(θ|X,Y ) (3.4)

... (3.5)

ŷt = p(y∗|x∗, θ̂t); θ̂t ∼ p(θ|X,Y ) (3.6)

p(y∗|x∗) =
1

t

t∑
k=1

p(y∗|x∗, θ̂k) (3.7)

θ ∼ p(θ|X,Y) ŷ

Get t Classi�cations

Classifications = [ ŷ1 ŷ2 ŷ3 ... ŷt ]

Figure 3.2: Example of a Bayesian Neural Network used for classi�cation. The Network needs to make a
prediction for a given input. There will be t predictions for the input and for every prediction, we sample
new parameterts from the posterior distribution and use these parameters to run our Network, generating a
new prediction. With these predictions, we can measure the model uncertainty.

Besides obtaining the expected value of our prediction, we can also use the t output predictions
to calculate the prediction variance, quantifying how uncertain the model is about its prediction. If
the predictions have a low variance, we can understand that our model is con�dent on its prediction.
Uncertainty measurements can be specially useful when our model needs to make a prediction on
out of distribution data [Gal16]. On this scenario, the model has been trained on a set of data,
but receives an example completely di�erent from the training set to make a prediction. In that
setting, the model should not be con�dent on the prediction it delivers, and it must also return an
uncertainty measurement to make that clear to anyone that will use the prediction.
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Although using a Bayesian Neural Networks allows the measurement of uncertainty, using the
full Bayesian approach is infeasible for most models in practice. This is because of the constant
p(Y|X) that can be seen on equation 3.1. In order to calculate this constant, it is necessary to
integrate over all possible θ values, as can be seen on Equation 3.8

p(Y|X) =

∫
p(Y|X, θ)p(θ)dθ (3.8)

If we do not calculate the constant on Equation 3.8, we cannot calculate the full posterior
distribution p(θ|X,Y). Therefore, most deep learning models are trained with di�erent methods
than the full Bayesian approach.

3.3.1 Classical Neural Network

The main idea behind the Bayesian approach is to �nd the full posterior distribution over all
possible parameters settings. Since doing this is infeasible for most models, instead of evaluating
all possible parameter settings, we can �nd a point estimate of the parameter settings that would
provide the best approximation for p(θ|X,Y). We can adapt the Bayesian approach to perform
such a task as can be seen on 3.9.

θ = argmaxθ
p(Y|fθ(X))p(θ)

p(Y|X)
1 (3.9)

Since we are calculating the argmax, the regularization term p(Y|X) will not a�ect the argmax
computation. Therefore, we can update the equation:

θ = argmaxθp(Y|fθ(X))p(θ) (3.10)

Assuming that our training data is independent and identically distributed (i.i.d), we can turn
our 3.10 into 3.11.

θ = argmaxθ

N∏
i=0

p(yi|fθ(xi))p(θ) (3.11)

In order to avoid numeric over�ow, we can calculate the log of the probabilities, turning a prod-
uct into a summation 3.13.

1We can use the softmax function to turn fθ(X) into a probability distribution. The softmax function is de�ned
by: softmax(xi) =

exi∑
j e

xj



3.3 BAYESIAN NEURAL NETWORK 11

θ = argmaxθ

N∑
i=0

log(p(yi|fθ(xi)))p(θ)) (3.12)

θ = argmaxθ

N∑
i=0

log(p(yi|fθ(xi))) + log(p(θ)) (3.13)

This technique is called Maximum A Posteriori estimation and we can use it to �nd a point
estimate of our parameters. On most DL models, this is achieved by maximizing an objective func-
tion, log(p(yi|fθ(xi))) or minimizing the negative of this same objective function, which turns the
objective function into the cross-entropy error. Also, it is common to add to the objective function a
regularization term for our weights, log(p(θ)). One common regularizer is the L2 regularizer, which
assumes that our weights are drawn from a Normal distribution [GBC16] 2. To maximize/minimize
these functions we can use techniques such as backprogation [RHW88] and Gradient Descent as
can be seen on Algorithm 1. In the algorithm we update the model's parameters until they do not
change much from one iteration to the next, this means that the parameters have converged to a
certain value 3. By training a model in this manner produces a network similar to the one displayed
on the left part of Figure 3.1, since every parameter of our model will be a scalar value.

Algorithm 1 Training of a Neural Network with scalar parameters

1: Given dataset X, Y,
2: Set learning rate η,
3: Randomly initialise parameters θ,
4: repeat
5: Choose S as random subset of X of size M.
6: Calculate the gradient of an objective function with respect to θ:

∆̂θ ← − 1
M

∑M
i=1 logp(yi|fθ(xi))− log(p(θ))

7: Update θ:

θ ← θ + η∆̂θ

8: until θ has converged.

By choosing only a single parameter setting for our model, we guarantee that our model will
behave deterministically, meaning that for every input it receives it will always display the same
output. Although this makes training our model feasible, we cannot extract proper uncertainty
measurements from it. Therefore, it can be complicated to use such models on tasks where we
must assess the con�dence of our models, i.e classifying medical images. Also, it is not possible to
di�erentiate if our model is receiving an out of distribution example or not when performing its
prediction.

3.3.2 Variational Inference

Both Bayesian and Maximum Likelihood approaches have major drawbacks. While the full
Bayesian approach is intractable, the use of a point estimate of our parameters does not allow a
precise measurement of uncertainty for our model. However, it is possible to look back to the full
Bayesian approach and observe our posterior distribution. It is understandable that computing the

2Regularization techniques will be discussed in section 3.3.3
3This approach can lead to over�tting problems, but it is a theoretical approach to cover the basics of the process.
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posterior distribution for most models is unpractical. Instead, we de�ne another distribution, qλ(θ)
that is as close as possible to the true posterior distribution of our Bayesian approach, as can be
seen on Figure 3.3. This method is called Variational Inference [JGJS99] and qλ(θ) is a variational
distribution parametrized by λ.

p(θ|X,Y )

qλ(θ)

Figure 3.3: Example of the variational inference technique.

One way to measure the similarity between distributions is by evaluating the Kullback-Leibeler
(KL) divergence between the distributions [Kul59]. This measurement can be seen on equation 3.14

KL(qλ(θ)||p(θ|X,Y)) =

∫
qλ(θ)log

qλ(θ)

p(θ|X,Y)
dθ (3.14)

From Equation 3.14, we can observe that we still need the posterior distribution p(θ|X,Y),
which still does not allow the computation of qλ(θ). However, we can change the original de�nition
of the KL divergence into 3.15:

KL(qλ(θ)||p(θ|X,Y))− ELBO(λ) ≤ logP (Y|X) (3.15)

On Equation 3.15, the Evidence Lower Bound (ELBO) term is de�ned as: 4

ELBO(λ) =

∫
qλ(θ)logp(Y|X, θ)dθ −KL(qλ(θ)||p(θ)) (3.16)

Since p(Y|X) is a constant term, we can understand that by maximizing the ELBO term, we
will implicitly minimize the KL divergence. Also, Equation 3.16 does not depend on p(θ|X,Y),
meaning that we can calculate its value. Therefore, in Variational Inference, we will maximize the
ELBO term to approximate qλ(θ) to p(θ|X,Y).

Using the machine learning perspective, we can observe that the ELBO is our objective func-
tion, and we can optimize it using backpropagation in order to �nd the best values for our λ values.
But, in practice, we need to make some changes on the original ELBO function. The �rst change is
that instead of calculating the ELBO for our full training set, we will calculate it for only a batch
of our training set, turning 3.16 to 3.17.

4The full process on turning the KL diverge into Equation 3.15 is de�ned on appendix A
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ELBO(λ) =
N

M

∑
i∈B

∫
qλ(θ)logp(yi|xi, θ)dθ −KL(qλ(θ)||p(θ)) (3.17)

Where B represents the batch of examples and M is the size of the batch. The second problem
with using ELBO in practice is to calculate the log likelihood term

∫
qλ(θ)logp(yi|xi, θ)dθ, since

this is a costly operation. In order to deal with this problem, we can use a Monte Carlo integration
approach, called the re-parametrization trick [KW13].

Re-parametrization trick

Before explaining the necessity of the re-parametrization trick, it is necessary to understand
what happens in our network when we are using the ELBO function as our optimization function.
First, recall that our neural network has the format presented on the left part of Figure 3.1.

When using Variational Inference, the weights of our network are the θ parameters of our model,
and these values are de�ned by our variational distribution qλ(θ), meaning that θ ∼ qλ(θ). Therefore
we can see that Equation 3.17 turns into 3.18.

ELBO(λ) =
N

M

∑
i∈B

∫
qλ(θ)logp(yi|fθ(xi)dθ −KL(qλ(θ)||p(θ)) (3.18)

Therefore, when we are calculating our gradients in respect to λ, we need to calculate the fol-
lowing derivative 3.19

N

M

∑
i∈B

∂

∂λ

∫
qλ(θ)logp(yi|fθ(xi)dθ −

∂

∂λ
KL(qλ(θ)||p(θ)) (3.19)

In order to visualize this gradient calculation, we can see it as a computational graph on Figure
3.4.

F

θ

λ

∼ qλ(θ)

= ELBO(λ)Backpropagation

∂F
∂θ

∂F
∂λ

Figure 3.4: Example of backpropagation for Variational Inference

As can be seen on Figure 3.4, we must calculate the gradient over a random node θ, which
is not a possible operation using backpropagation. The re-parametrization trick is an alternative
approach to remove the stochastic variable from our computation graph. In order to achieve that,
we will assume that our qλ(θ) can be re-parametrized as a parameter free distribution p(ε), turn-
ing θ = g(λ, ε) where g(., .) is a deterministic di�erentiable function. For a practical example of a
re-parametrization, consider that our variational distribution qλ(θ) is de�ned by a Gaussian distribu-
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tion N (θ;µ, σ2), where λ = (µ, σ2). In that case, our variational distribution can be re-parametrized
by p(ε) = N (ε; 0, 1) and g(λ, ε) = µ + σ2ε. Based on this example, we turn the ELBO equation
from 3.18 to 3.20 and the computational graph from Figure 3.4 to 3.5

F

θ

µ
ε σ2

F = ELBO(λ)
θ = g(µ, σ2, ε) = µ+ σ2ε
ε ∼ N (ε; 0, 1)

Backpropagation

∂F
∂θ

∂F
∂µ

∂F
∂σ2

Figure 3.5: Example of backpropagation using reparametrization trick for Variational Inference

ELBO(λ) =
N

M

∑
i∈B

∫
pεlogp(yi|fg(λ,ε)(xi)dε−KL(qλ(θ)||p(θ)) (3.20)

We can see in Figure 3.5 that the node representing θ has turned from an stochastic node into
a deterministic node. Allowing the �ow of derivatives to reach the λ variables. This is not the only
advantage of using the re-parametrization trick. We can now estimate the log likelihood term in
Equation 3.20 using a Monte Carlo Integration method. First, let's call the derivative of our likeli-
hood function as LL and de�ne it by Equation 3.21.

LL(λ) =
∂

∂λ

∫
pεlogp(yi|fg(λ,ε)(xi))dε (3.21)

Now, our estimator of LL, L̂L, can be de�ned by 3.22.

L̂L(λ) = f ′(g(λ, ε))
∂

∂λ
g(λ, ε) (3.22)

Now, we can see that the expected value of our estimator will be the true derivative value,
Ep(ε)[L̂L(λ)] = LL(λ). Therefore, we can turn 3.20 into 3.23 using our stochastic estimator:

ˆELBO(λ) =
N

M

∑
i∈B

logp(yi|fg(λ,ε)(xi))−KL(qλ(θ)||p(θ)) (3.23)

Where Ep(ε)( ˆELBO(λ)) = ELBO(λ)

Therefore, using the re-parametrization trick not only allows us to �ow gradients through the
network, but also to estimate the log likelihood function derivative using Monte Carlo Integration.
With that knowledge in hand, we can use 3.23 as our �nal objective function and optimize it to
�nd the best λ values for our variational distribution qλ(θ).
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Practical Algorithm

Together with the re-parametrization trick and Monte Carlo Integration, we can now derive a
practical algorithm to train our model using Variational Inference. Recall that our objective func-
tion is 3.23 and we are going to minimize this function in order to apply backprogation to the λ
parameters of our variational distribution qλ(θ).

However, before presenting the algorithm, we must de�ne how we will factorize our variational
distribution over the weights. One of the early approaches of using Variational Inference factorize
qλ(θ) for each weight scalar [HvC93]:

qλ(θ) =

L∏
i=1

qλ(Wi) =

L∏
i=1

Ki∏
j=1

Ki+1∏
k=1

qµi,j,k,σi,j,k(wi,j,k) =
∏
i,j,k

N (wi,j,k;µi,j,k, σ
2
i,j,k) (3.24)

This means that we must sample each weight scalar from its respective variational distribution.
Since the original work used a Gaussian distribution, we must hold for each weight scalar, two
new variables, µ, σ, meaning that our number of parameters will also increase. Furthermore, by
factorizing our distribution in that manner, we will loose any weight correlations in our network.
In order to avoid such problems, we can instead factorize our distribution for each weight row wl,i

in each weight matrix Wl. Turning our factorization into:

qλ(θ) =
L∏
l=1

Rows∏
i=1

qλ(wl,i) =
∏
l,i

N (wl,i;µl,i, σ
2
l,i) (3.25)

Since we are using the re-parametrization trick, our factorization of the weights will turn from
qλl,i(wl,i) into wl,i = g(λ, εl,i). Also, we need to specify a parameter free distribution, p(εl,i), which
depends on the distribution qλ(θ). Once that function is chosen, we can now use Algorithm 2 to cal-
culate our λ values [Gal16]. In order to make the notation simple, on Algorithm 2, p(ε) =

∏
l,i p(εl,i)

and θ = g(λ, ε).

Algorithm 2 Minimize divergence between qλ(θ) and p(θ|X,Y )[Gal16]

1: Given dataset X, Y,
2: Set learning rate η,
3: Randomly initialise parameters λ,
4: repeat
5: Sample M random variables ε̂i ∼ p(ε), S a random subset of X of size M.
6: Calculate the Monte Carlo estimator of the ELBO w.r.t to λ:

∆̂λ← −N
M

∑
i∈B

∂
∂λ logp(yi|fg(λ,ε̂i)(xi) + ∂

∂λKL(qλ(θ)||p(θ))

7: Update λ:

λ← λ+ η∆̂λ

8: until λ has converged.

With this algorithm, we can make our predictions following a similar approach to Equation 3.7:
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q̃λ(y∗|x∗) :=
1

t

t∑
k=1

p(y∗|x∗, θ̂k) (3.26)

with θ̂t ∼ qλ(θ).

Although a practical approach, we can see that this approach is complicated to explain, not
only our weights are now probabilities distributions, but our objective function has also changed.
However, there is still a third approach which is similar to Variational Inference and does not change
the network architecture, called Monte Carlo Dropout.

3.3.3 Monte Carlo Dropout

The technique of Monte Carlo Dropout is an approach proposed on [GG16]. This approach
aims at extracting uncertainty measurements from DL models trained with Dropout, an stochastic
regularization technique. Before delving into the rationale behind this approach, it is necessary to
explain what is Dropout.

Dropout

One of the most common problems that a�ects DL models is over�tting. This problem arises
when the model adapts too well to the training data, but cannot generalize to new data. One regu-
larization technique used to handle such issue is named Dropout [HSK+12]. In order to understand
how Dropout works, let's consider a neural network with two layers. This network will have two
distinct weight matrices, W1 and W2. In a common neural network setting, to train our network
we would generate a prediction as such:

z1 = xW1 (3.27)

a1 = σ(z1) (3.28)

z2 = a1W2 (3.29)

ŷ = softmax(z2) (3.30)

After that, we would plug our ŷ prediction into an objective function and use backpropagation to
update W1 and W2. This would happen for every x ∈ X. However, dropout modi�es our neural by
dropping some hidden units along the forward pass. For every forward pass, we sample two distinct
vectors ε̂1, ε̂2 with dimensions corresponding to the x dimension and a1 dimension, respectively.
The element of each vector ε̂i are sampled from a Bernoulli distribution with probability 1 − pi,
where 0 ≤ pi ≤ 1, for i = 1, 2. Therefore, our forward pass turns into:
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x̂ = x� ε̂1 (3.31)

z1 = x̂W1 (3.32)

a1 = σ(z1) (3.33)

â1 = a1 � ε̂2 (3.34)

z2 = â1W2 (3.35)

ŷ = softmax(z2) (3.36)

Using that approach, after each forward pass we use just a portion of our hidden units to gen-
erate our output. Also, during backpropagation we just update the hidden units responsible for
generating our output. This means that we maintain the same ε̂1, ε̂2 during a forward and back-
ward pass in our model. After training our model, we scale both x and a1 by 1

1−pi to generate a
prediction on unseen data.

This technique was further studied in [SHK+14], where some assumptions about Dropout were
made. One of them is that training a network with Dropout is similar to training an assemble of
di�erent networks and using the expected value of their prediction as the prediction for a new data
example. In that work, Dropout was also used to train di�erent networks for tasks such as image
and text classi�cation, and the networks trained achieved better accuracy for the test data than
models that did not use Dropout as a regularization technique.

Dropout as Monte Carlo Dropout

In order to derive the Monte Carlo Dropout technique from our network, we �rst need to un-
derstand that we want our network trained with dropout to behave in a similar manner than a
Bayesian Neural Network. The �rst main di�erence between Dropout and a Bayesian Neural Net-
work is that Dropout add stochastic noise into the input of each layer of our network, x,a1. However,
in a Bayesian Neural Network, our stochasticity is generated by the uncertainty we have over the
model's parameters. This di�erence can be removed, if we adapt the original Dropout technique as
follows [Gal16]:

ŷ = softmax(z2)

= softmax(â1W2)

= softmax((a1 � ε̂2)W2)

= softmax((a1diag(ε̂2))W2)

= softmax(a1(diag(ε̂2)W2))

= softmax(σ(z1)(diag(ε̂2)W2))

= softmax(σ(x̂W1)(diag(ε̂2)W2))

= softmax(σ((x� ε̂1)W1)(diag(ε̂2)W2))

= softmax(σ((xdiag(ε̂1))W1)(diag(ε̂2)W2))

= softmax(σ(x(diag(ε̂1)W1))(diag(ε̂2)W2))
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We can see now that we have added stochasticity over our weights using Dropout. Let's call S
as the random variable de�ned over the set of the real weight matrices, W and Ŝ as the realization
of S. With that notation, we can write Ŝ1 = diag(ε1)W1 and Ŝ2 = diag(ε2)W2 turning our ŷ
prediction into:

ŷ = softmax(σ(xŜ1)Ŝ2) = f Ŝ1,Ŝ2(x) (3.37)

Now, let's plug 3.37 into a objective function typically associated with classi�cation tasks:

ES1,S2(x, y) = −logp(y|f Ŝ1,Ŝ2(x)) + α1||W1||2 + α2||W2||2 (3.38)

Where α1||W1||2 + α2||W2||2 is the the L2 regularization term and ||W||2 = WTW.

If we calculate the objective function over a batch with size M. we turn 3.38 into:

ES1,S2 = − 1

M

∑
i∈B

logp(yi|f Ŝ1,Ŝ2(xi)) + α1||W1||2 + α2||W2||2 (3.39)

Instead of calculating the full posterior distribution over our random variables S, we can in-
stead approximate them by a posterior distribution qλ(θ), λ = {W1,W2} and θ = {S1,S2}. We
can apply the re-parametrization trick here, by using a Bernoulli distribution p(ε), generating the
following re-parametrization:

g(λ, ε̂i) = {diag(ε̂1,i)W1, diag(ε̂2,i)W2}

p(ε) =
∏
l

Bernoulli(1− pl)

With the re-parametrization trick, we can turn our objective function 3.39 into:

Eλ = − 1

M

∑
i∈B

logp(yi|fg(λ,ε̂i)(xi)) + α1||W1||2 + α2||W2||2 (3.40)

Which will have the following derivative calculated when we apply backpropagation:

∂

∂λ
Eλ = − 1

M

∑
i∈B

∂

∂λ
logp(yi|fg(λ,ε̂i)(xi)) +

∂

∂λ
(α1||W1||2 + α2||W2||2) (3.41)

We can understand than when we compute the derivative of λ, we are actually computing the
derivate of our error function in relation to W1 and W2. For a more compact notation, we instead
of writing the same formula twice, changing the derivative variable, we will summarize the deriva-
tive using ∂

∂λ .
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Now, with our objective function de�ned, we can now describe the training of such a network
using Algorithm 3 [Gal16].

Algorithm 3 Optimisation of a Neural Network using dropout

1: Given dataset X, Y,
2: Set learning rate η,
3: Randomly initialise parameters λ,
4: repeat
5: Sample M random variables ε̂i ∼ p(ε), S a random subset of X of size M.
6: Calculate the monte carlo estimator of the ELBO w.r.t to λ:

∆̂λ← −N
M

∑
i∈B

∂
∂λ logp(yi|fg(λ,ε̂i)(xi) + ∂

∂λ(α1||W1||2 + α2||W2||2)

7: Update λ:

λ← λ+ η∆̂λ

8: until λ has converged.

We can see that Algorithm 2 and 3 are very similar algorithms, with just a couple of di�erences:

• The regularization term in Algorithm 2 is de�ned by KL(qλ(θ)||p(θ)) and on algorithm 3 as
α1||W1||2 + α2||W2||2

• The scale of ∆̂λ

However, it is possible to deal with both of these di�erences. For the �rst di�erence, depending
on the prior distribution p(θ) we have de�ned over our parameters, we have the following equation:

∂

∂λ
KL(qλ(θ)||p(θ)) =

∂

∂λ
N(α1||W1||2 + α2||W2||2) (3.42)

This approximation is called KL condition [Gal16] and assuming it, we have that:

∂

∂λ
Edropout(λ) =

∂

∂λ

1

N
ELBO(λ) (3.43)

Where E is the objective function of our Neural Network trained with Dropout.

Therefore, we can see that the optimization of a neural network using Dropout is the same as
the optimization of a neural network using Variational Inference for speci�c distributions qλ(θ)
dictated by the re-parametrization g(λ, ε). Therefore, any neural network trained with Dropout is
a Bayesian Neural Network and we can assess all the properties of a Bayesian Neural Network in
that setting [Gal16].

With that setting, a prediction with our neural network will be a similar procedure as the one
seen in Variational Inference:
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q̃λ(y∗|x∗) :=
1

t

t∑
k=1

p(y∗|x∗, θ̂k, ε̂k) (3.44)

with ε̂t ∼ p(ε) and θ̂t = g(λ, εt). This means that we will make t passes over our network
and collect t predictions, sampling di�erent Dropout parameters ε for each new prediction. These t
samples will allow our network to measure uncertainty in a similar manner than using the Variational
Inference and the Bayesian approach.

3.4 Recurrent Neural Network

Most machine learning models are created with the assumption that every input it receives is
independent from each other input in the set. In that manner, a single input must contain all the
necessary information to be classi�ed into a classi�cation label. However, this assumption does not
hold true for all input types, for example, text data. If we want to predict the next word in the
sentence �A dog belongs to the family �, we cannot consider only the word �family� as input, we
should look at the whole sequence of text to perform a better classi�cation. Although conventional
neural networks cannot handle sequential data, there is a modi�cation of neural networks that can,
called Recurrent Neural Network.

These models have been widely used in tasks such as machine translation [SVL14] and speech
recognition [GJ14]. We can see a Recurrent Neural Network as a neural network that take as input
not only the input it should classify, but also the past hidden state it computed, as can be seen on
Figure 3.6.

On Figure 3.6, we can see that xt is an input at time step t and ht is the computation of the
hidden state for the same time step t. Since every step receives the past hidden step as another
input, we can see that this hidden state symbolizes the �memory� of our network, since it captures
information about the previous time steps in our network. In order to compute such state, Equation
3.45 can be used. Once the hidden state is computed, we can use it to compute the output ŷt of
our network at time step t using Equation 3.46. Furthermore, the parameters U,W,V are shared
through the network. For example, the weight matrix W used in step t− 1 is the same as the one
used in step t.

ht = σ(Uxt + Wht−1) (3.45)

ŷt = softmax(Vht) (3.46)

Although this architecture was designed to handle dependency between inputs, they present
issues when they need to represent unbounded distance dependencies in an input [Hoc98]. For
example, suppose we have a sequence of 10 di�erent words. In order to calculate the gradients
for an objective function at time step 10, we would need to apply the chain rule through the 10
steps of the Recurrent Neural Network. By �owing the gradient through the network through ten
steps, we can have two distinct problems. If the norm of the gradients are ≤ 1, than when we reach
early time steps of our networks, the gradient can already be zero through all these multiplications,
creating the vanishing gradient problem. On the other hand, if the norm of our gradients are ≥ 1,
than our gradient can explode when �owing through the network. Although we can deal better with
exploding gradients [PMB12], dealing with the vanishing problem is harder, since we are essentially
losing information. However, there exists a model architecture created with this problem in mind,
called Long Short Term Memory (LSTM).
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Figure 3.6: Example of a Recurrent Neural Network. We can see that each step of the network receives the
past state hi to perform its computation.

3.4.1 Long Short Term Memory

Although we can consider an LSTM a new architecture, this model does not drastically changes
the Recurrent Neural Network setting. Instead, it updates how the hidden state ht is computed
[HS97]. We can see how the hidden state is computed on Image 3.7

xt

f c̃t i o

ht−1

ct−1 X

X

+

Xtanh

ct

ht

LSTM Cell

Figure 3.7: Representation of an LSTM cell. There are three type of nodes in the image. The green rect-
angles represent gate operations. The square nodes represent mathematical operations, where the �X� nodes
represent element-wise multiplication and the �+� represent addition. Finaly, the losangle represents that the
input is passed thorough a function, in our case, a the hyperbolic tangent function (tanh). The other nodes
represent input and output of the LSTM cell.

We can also translate Figure 3.7 using mathematical equations, as can be seen in Equation 3.52.
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f = σ(Ufxt + Wfht−1) (3.47)

i = σ(Uixt + Wiht−1) (3.48)

o = σ(Uoxt + Woht−1) (3.49)

c̃t = tanh(Ugxt + Wght−1) (3.50)

ct = f � ct−1 + i� c̃t (3.51)

ht = o� tanh(ct) (3.52)

We can see that now in order to compute the hidden state ht, we need three inputs, ht−1, ct−1
and xt. Also, it can be seen that it outputs two values as well, the original hidden state ht and ct.
This new input/output ct, called the cell state, will actually be responsible for keeping memory of
past information on our network. In order to understand how the cell state does that, it is necessary
to understand the gate functions, i, f ,o. These functions are the ones used to modify the cell state.
The �rst gate, f is called the forget gate. It is used to select which information from ct−1 should
be forgotten. For example, if we have a sentence such as "The girl was doing her tasks and the boy
was doing ...", in order to select the right pronoun we would not need the beginning of the sentence,
and the network could forget about it when choosing the next word.

The second gate that needs to be addressed is the input gate, i. This gate is used to select which
values of the candidate cell state c̃t should be added to the new cell state ct. Therefore, looking at
how the new cell state is computed, ct = f � ct−1 + i� c̃t, we can see that �rst we decide what to
forget from the past cell state, f � ct−1. After that we compute a new candidate cell state and select
which information from it should be used, i � c̃t. Finally, we add together both parts to compute
our new cell state ct.

With our cell state computed, we can compute our hidden state ht using the cell state and the
output gate, o. This gate is responsible for looking into the cell state and selecting what we should
output from it. For example, maybe at time step t we do not need our full memory cell ct to perform
a classi�cation, but just the initial half of it. In that situation, the output gate is responsible for
selecting the proper information from ct.

Using this structure to calculate the hidden state, this model can handle the problem of the
vanishing gradient for longer sequences of data. Because of this behavior, this model has been used
on a wide range of natural language processing tasks, such as image captioning [KL15] and question
answering [XZS16].

3.4.2 Recurrent Neural Networks and Dropout

Recurrent Neural Networks can su�er from over�tting such as any conventional neural network.
However, applying dropout to a Recurrent Neural Network is not as straightforward as on other
neural networks. By applying Dropout over all connections of the network, even the recurrent ones,
that compute ht, we amplify the noise generated by Dropout over the recurrent steps, hurting
the learning process [BOK+13]. However, using Dropout on the non-recurrent connections 3.8 has
proven to reduce over�tting on several task [ZSV14].

However, there is another approach when using Dropout on a Recurrent Neural Network, which
is derived if we use the Variational Inference optimisation objective for this case, called the Vari-
ational Recurrent Neural Network [GG15a]. Recall that the optimisation function of Variational
Inference is the ELBO function 3.16. To adapt this function to our Recurrent Neural Network, we
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ŷ1

h0 h2

x2

ŷ2
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Figure 3.8: Example of dropout applied to the non-recurrent connections of a Recurrent Neural Network.
The dashed lines represent the dropout happening and the color change on each line show that for each time
step t, we will sample a di�erent dropout mask.

can start by evaluating our log-likelihood function:

∫
qλ(θ)log(p(y|fθy (hT)))dθ =

∫
qλ(θ)log(p(y|fθy (xT, f

θ
h(xT,hT−1))))dθ (3.53)

=

∫
qλ(θ)log(p(y|fθy (fθh(xT , f

θ
h(...fθh(x1,h0))))))dθ (3.54)

With a sequence of data X = [x1, ...,xT], θ = {U,W,V}, fθh the hidden state function 3.45,
fθy the output function 3.46 and h0 = 0.

In that setting, we can use Monte Carlo Integration and turn 3.54 into 3.55:

∫
qλ(θ)log(p(y|fθy (hT)))dθ ≈ log(p(y|f θ̂y (f θ̂h(xT, f

θ̂
h(...f θ̂h(x1,h0)))))) (3.55)

With θ̂ ∼ qλ(θ). Using Monte Carlo Integration, we can plug 3.55 into the full ELBO function,
we will arrive at the following equation:

ELBO(λ) = −
N∑
i=1

log(p(y|f θ̂iy (f θ̂ih (xi,T, f
θ̂i
h (...f θ̂ih (xi,1,h0)))))) +KL(qλ(θ)||p(θ)) (3.56)

We can observe that for every new sequence xi, we will sample new samples from our variational
distribution, meaning that θi ∼ qλ(θ). However, this parameters will be used at every time step in
the sequence xi, as depicted in Figure 3.9.

If we now use Dropout to re-parametrize our variational distribution qλ(θ), we will arrive in a
similar objective function demonstrated in 3.3.3. This means that our sampling from qλ(θ) results
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Figure 3.9: Example of Variational Recurrent Neural Network using dropout. The dashed lines represent the
dropout happening and the colored lines show that the dropout mask used for the connections are maintained
for every time step of a sequence input

to applying a Dropout mask (randomly zeroing rows) for every θ parameter, U,W and V for every
time step t ≤ T [GG15a]. This does not change if we are using an LSTM model, the only di�erence
will be that our θ parameters will be {Uf ,Ui,Uo,Ug,Wf ,Wi,Wo,Wg,V}.

The Variational Recurrent Neural Network is more robust when dealing with over-�tting is-
sues while also achieving better generalization error than using Dropout only on the non-recurrent
connections on a language generation task [GG15a]. Furthermore, using this technique also allows
the measurement of uncertainty of a prediction from our network using the same idea presented in
section 3.3.3.

3.5 Active Learning

Active learning(AL) is an iterative technique used to train models when few labeled data is
available. It starts by dividing the available data in two distinct groups, labeled and unlabeled
data. After that, it trains a model with the labeled data and after evaluating the trained model, it
asks an oracle, i.e. a domain expert, to annotate the most informative data in the unlabeled data
group. After the oracle performs this task, the new data is added to the labeled group and a new
model is generated. Figure 3.10 illustrates the process of AL.

One of the most researched areas related to AL is how to select the most informative samples to
be labeled by the oracle. There are two distinct approaches to select these samples, called agnostic

and non-agnostic AL [SPdC17]. In agnostic AL, the samples are selected without using the model
information. For example, when we can select the sample randomly, or cluster based strategies to
sample the data [Das11]. This is approach is the complete opposite of the non-agnostic AL. In
that setting, we select the most informative samples by using assessing model information about
the unlabeled data points. One of the most used techniques in that setting is by measuring the
model uncertainty over the samples. In the case of machine learning, the uncertainty of an input
data can be de�ned as how certain the model is on classifying a given input data. For example, a
model can assert that an image belongs to class X with 90% certain or that the image belongs to
class Y with 20% of certain. It can be perceived that the model is uncertain about the classi�cation
it provided. Therefore, the most informative data for a model should be the ones on which it has
higher uncertainty about its prediction.

With that uncertainty measured on the unlabeled data, it is possible to use Uncertainty Selec-

tion Policies to select the most informative data. One of the most simple ones is the Least Con�dent
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Figure 3.10: Active Learning cycle. We start with few labeled examples on our training set. We use this
training set to train an initial model. Once the model is trained, we use it evaluate the unlabeled set and
measure the uncertainty of the model over the example on this set. We select the ones the model is more
uncertain about and pass it to an oracle. The oracle labels these examples, which are now added to the
training set, allowing the cycle to restart.

strategy (LC). This policy selects the unlabeled data the model is least con�dent about [LG94].
This policy can be expressed by the following formula:

x∗LC = argmaxx(1− Pθ(ŷ|x)) (3.57)

Where ŷ is the class with highest prior probability for the input data x corresponding to the
trained model Pθ with θ parameters. In the context of models such as Variational Inference 3.3.2
and Monte Carlo Dropout 3.3.3, Pθ(ŷ|x)) would be the number of time the classi�cation ŷ was
generated by the number of forward passes thorough the network, T , as can be seen in the following
equation:

predictionx = argmaxc=0,1

T∑
t=1

1[yt = c]

x∗LC = argmaxx(1− predictionx
T

)

In the binary setting, the maximum value achieved by LC is 0.5 and minimum of 0.
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A di�erent approach to compute the model's uncertainty about a sample is using Entropy (H),
which measures the amount of information found on the model's predictive distribution:

H(y|x) = −
C∑
c

Pθ(y = c|x)logPθ(y = c|x) (3.58)

By selecting the samples with highest amount of entropy, we would select the sample which the
model is �guessing� the prediction.

x∗H = argmaxx(H(y|x)) (3.59)

This idea can be easily adapted to Variational models by taking the mean probability for each
class in the task, as can be seen in the following equation:

Ĥ(y|x) = −
C∑
c

((
1

T

T∑
t

Pθt(y = c|x))log(
1

T

T∑
t

Pθt(y = c|x))) (3.60)

Similar to LC, the Entropy metric has a minimum of 0 when the model make the same predic-
tion for every forward pass.

A third approach on measuring the model's uncertainty is through the use of the mutual infor-
mation metric, which not only consider the predictive distribution Pθ(y|x), but also the posterior
distribution p(θ|X) over the model's parameters θ:

I(y|x) = H(y|x)− Ep(θ|X)[H(y|x, θ)] (3.61)

To allow the use of multiple forward passes used in Variational methods, we need to turn 3.61
into:

Î(y|x) = −
C∑
c

((
1

T

T∑
t

Pθt(y = c|x))log(
1

T

T∑
t

Pθt(y = c|x))) +
1

T

∑
c,t

p(y = c|x, θt)logp(y = c|x, θt)

Î(y|x) = Ĥ(y|x)− Eqλ(θ)(Ĥ(y|x, θ))

Although all three metrics measure uncertainty, the type of uncertainty they measure can be
di�erent. For example, if our model's binary prediction for an input x is {1, 0, 1, 0}, we have predic-
tive uncertainty, where the model is uncertain about the prediction it is generating. However, if our
model outputs {0.5, 0.5, 0.5, 0.5}, we can see that the prediction itself is constant, but the model
itself is not con�dent in the prediction it is generating. In that case we have model uncertainty. The
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mutual information metric is useful for capturing model uncertainty, while the other two metrics
are not. However, all three metrics can capture predictive uncertainty [Gal16].

Furthermore, we can see that all three metrics address uncertainty in a di�erent manner. There-
fore, there is no overall better metric for every task. Comparisons between active learning metrics
have already been made [SC08] and mixed results were achieved. This suggests that the metric
choice should be based on the application being developed.

3.5.1 Cost-E�ective Active Learning

A di�erent approach to AL is the Cost-E�ective Active Learning (CEAL) technique [WZL+17].
In a standard AL cycle, we use one of our uncertainty measurements to identify the most useful
samples from our unlabeled group. The most informative samples are the ones the model has least
con�dence in its classi�cation. These samples are then passed to an oracle, which labels the samples
and add them to them labeled group, allowing the AL cycle to restart.

However the CEAL technique adds a new intuition about this idea. Instead of selecting only
samples which the model is least con�dent about, the CEAL also looks at samples where the model
is most con�dent about. For example, suppose we are using the Entropy metric and we are eval-
uating examples on our unlabeled group. If the Entropy value for a sample is 0.5, we can assume
that the model has the highest amount of uncertainty about that example and it should be a useful
example to be labeled by the oracle. However, what happens if one of our samples has an Entropy
value of 0 ? We can understand that our model is highly con�dent in the classi�cation of that
example. What the CEAL technique proposes is that in each round of our AL cycle, we not only
select the sample with higher uncertainty, but we exploit the examples with lowest uncertainty score
as well.

To explore the examples with lowest uncertainty scores, the CEAL techniques proposes that
we temporally label the examples with lowest uncertainty scores with the labels the model has
predicted, which we will call CEAL examples. After that, we add both the CEAL examples and
the oracle labeled examples to the labeled group and we train a new model. Once we have �nished
training the new model, we remove the CEAL examples from our labeled group and we restart the
CEAL cycle. This can be better illustrated on Figure 3.11.

Furthermore, in order to implement the CEAL cycle we need to de�ne a threshold for selecting
the unlabeled examples the model is more certain about. We consider as the most certain unlabeled
examples the ones which have an uncertainty measurement below a given threshold δ.

However, as we iterate over the CEAL cycle, we need to re�ne our threshold value as our model
become more robust in order to guarantee that our auto-labeling process stay reliable [WZL+17].
We can do that with Equation 3.62.

δ =

{
δ0, if t = 0.

δ − dr ∗ t, if t > 0
(3.62)

Where δ0 is our initial threshold value, t is our current AL iteration and dr is the variable
controlling the threshold decay rate.

By using the CEAL mechanism, it is believed that we can achieve some bene�ts over the common
AL cycle. The �rst one is by allowing better gradient estimates when training our model, since we
will be training each AL cycle with at least more data than common AL. The second bene�t is
that we do not allow outliers to a�ect our model as much as in the common AL cycle, since our the
gradient of our CEAL examples can counterbalance the selected outliers [WZL+17].
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Figure 3.11: The CEAL cycle. We can see that is almost the same as the AL cycle. However we select the
examples that the model are more uncertain and uncertain from the unlabeled group. The examples the model
are more uncertain are fed to the oracle, as happens on the AL cycle. However, the unlabeled examples the
model is more certain about (The CEAL examples) are assigned the predicted label by the model add added
directly to labeled group. Once we train a new model using the data labeled by the oracle and CEAL examples,
we remove the CEAL example from the labeled group and we restart the CEAL cycle.

3.6 Active Learning with Monte Carlo Dropout

With all the necessary information provided in the past sections, we can now introduce how
we are going to combine the technique of Active Learning with Deep Learning and Monte Carlo
Dropout. First let's remember the AL cycle presented in Figure 3.10. It has four distinct steps:

• Train model: We train the model with the current labeled data we have.

• Select Unlabeled data: We used the trained model to identify potentially useful unlabeled
data points to the model. This is achieved by selecting the unlabeled data which the model
is more uncertain on its classi�cation.

• Label the data: The selected data is then labeled by an oracle. This new data is added into
the labeled data group and a new model can now be trained, restarting the AL cycle.

By detailing these steps, we can now explain how we are going to approach each of these tasks
in the AL cycle

3.6.1 Training the model

In this step we train a classical DL model with the labeled data we have in the labeled group.
This model will be a LSTM network trained with both Dropout and L2 regularization on it's
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weights, {Uf ,Ui,Uo,Ug,Wf ,Wi,Wo,Wg,V}, meaning that it will be a Variational LSTM Net-

work.

Here, we will use the classical approach of training a DL model. This means that optimization
will be performed using Stochastic Gradient Descent and the model will be trained by a �xed num-
ber of epoches.

Once this model is trained, we will use it to extract the uncertainty measures from our unlabeled
data.

3.6.2 Selecting most informative unlabeled data

In order to select the most informative unlabeled data, we need to perform two distinct steps
for each unlabeled data point in our unlabeled data group:

• Generate Monte Carlo Dropout predictions: For each data point in our unlabeled data
group, we need to generate t predictions for it using the Monte Carlo Dropout technique.

• Measure model uncertainty: For each data point in our unlabeled group, we will use the
t associated predictions to it and calculate an uncertainty metric for that data point, such as
Entropy or Mutual Information. Once we have this value for each data point, we can rank
these points and select the ones with higher uncertainty estimates. These will be the data
points that will be passed to the oracle.

These are the main crucial steps we need to select the most informative points from our unla-
beled group. However, let's perform them step by step.

First, let's assume that we have 10 unlabeled points on our unlabeled group, where xi represent
the ith data point in our unlabeled group:

unlabeled group =


x1
x2
...
x10


Now, for each xi the unlabeled group we will generate t predictions for it. For example, let's

assume we are doing binary classi�cation and in our �rst round of predictions, we get the following
predictions for our unlabeled points:

unlabeled group =


x1 : [0]
x2 : [1]

...
x10 : [1]


This predictions were generated by the following procedure: We sample a Dropout mask from

our Bernoulli distribution and apply it to our trained model. With this mask applied, we will them
generate our predictions. In the above example, we can see that our x1 data point was classi�ed
as being of class 0 and our x2 point was classi�ed as being from class 1. Now we will perform this
predictions step again, but we will sample a new Dropout mask from our Bernoulli distribution.
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Therefore, we can assume that we are using a di�erent network to predict our data points than the
one used in the �rst prediction.

With that said, let's assume that our second step generated the following predictions:

unlabeled group =


x1 : [0, 0]
x2 : [1, 0]

...
x10 : [1, 0, ]


We can now see that the second step has generated di�erent predictions from our �rst step for

both x2 and x10. We perform this cycle until we have reached the total number of t predictions.

Now let's assume that t = 6 and we have obtained the following result in the end:

unlabeled group =


x1 : [0, 0, 0, 0, 0, 0]
x2 : [1, 0, 1, 0, 1, 0]

...
x10 : [1, 0, 1, 1, 1, 1]


We can see that for x1 all our t steps have generated the same prediction. Therefore, we can

understand that our network is certain on classifying this data point as being 0. However, that is
not the case for x2. For that data point, 50% of our predictions were 0 and the other 50% were
of class 1. Therefore, we now that our model is highly uncertain about classifying this data point.
The same occurs for x10, but with a smaller uncertainty that the one seen on x2, since only one
prediction was not classi�ed as 1.

We can use the uncertainty metrics provided in 3.5 to measure this uncertainty for each data
point. For each data point, let's use all it's t predictions to calculate the Least Con�dent uncertainty
metric for them, as can be seen on Figure 3.12.


x1 : [0, 0, 0, 0, 0, 0]
x2 : [1, 0, 1, 0, 1, 0]

...
x10 : [1, 0, 1, 1, 1, 1]



Unlabeled Group 
x1 : 0
x2 : 0.5

...
x10 : 0.12



Variation Ratio

Figure 3.12: Turning the t predictions generated by the use of Monte Carlo Dropout into a single value
using the Variation Ratio uncertainty metric.

We can now rank all the data points inside the unlabeled group based on the Least Con�dent
values, as shown in Figure 3.13.

Now, our most informative samples will be the ones with higher value for the selected uncertainty
metric. For example, we could choose the top 2 two data points and we would them select both x2

and x10 to be labeled by the oracle. Additionally, we must emphasize that this procedure won't
change if we choose to use Entropy or Mutual Information instead of Least Con�dent.
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
x1 : 0
x2 : 0.5

...
x10 : 0.12



Variation Ratio 
x2 : 0.5
x10 : 0.12

...
x1 : 0



Ranked Variation Ratio

Figure 3.13: Displaying how we rank our unlabeled data points by their highests values of the corresponding
uncertainty metric, in this example, the Variation Ratio metric was used.

3.6.3 Oracle

After selecting the most informative data points in the previous step, we can now ask for the
Oracle to label each data point and add them to the labeled group, allowing the AL cycle to
restart. The Oracle can be either a human expert that can appropriately label the data points or
a computer program, which already knows beforehand the appropriate labels for the data points.
The computer approach is a simple and cheap approach to perform experiments in AL.

Once the Oracle �nishes labeling our example and the data is added to labeled group, our AL
cycle can restart.

3.6.4 Cost-E�ective Active Learning and Monte Carlo Dropout

The process of using CEAL and Monte Carlo Dropout together is the same process presented
in Section 3.6.2. This means that no modi�cations to the process of using the Monte Carlo Dropout

technique are necessary, we just need to ensure that our AL cycle is modi�ed to attend the CEAL
cycle, explained in Section 3.5.1.



Chapter 4

Experiments Design

The primary goal of this research is to evaluate if measuring uncertainty in DL models using
the Monte Carlo Dropout technique could allow the creation of more accurate models using the AL
framework. With this objective in mind, we raised two research questions1.2 and designed a set of
experiment to exploit the use of the Monte Carlo technique; we had to consider several aspects,
such as the datasets used in our models and the approach used to perform the AL experiments.

4.1 Dataset

To train a supervised learning model, it is necessary to have a labeled dataset corresponding to
the task that the model aims to solve. This section details the two datasets used in this research.

4.1.1 Large Movie Review Dataset

The �rst dataset employed in this research is the Large Movie Review Dataset (LMRD). It is
composed of 50000 labeled movie reviews. 25000 reviews are already separated for training purposes.
The remaining 25000 reviews are used for tests. This separation is done primarily to test if our model
is generalizing for unseen data, which is way the test the model in the training data. Furthermore,
both training and tests sets are balanced as can be seen in Figure 4.1.

Figure 4.1: Number of positive and negative reviews for training and test set.

32
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The number of words per review in the dataset represents another characteristic that should be
noticed. Figure 4.2 shows the histogram of the number of words per movie review. We can see that
most of the reviews have a size of 250 words. However, we can see that the distribution doesn't
follow a Gaussian distribution, meaning that the average will not be a signi�cant characteristic of
the data. In order to have a more realistic approach when building our DL model, we have decided
to use at most 600 words per movie review. By using this maximum amount of words, we cover
more than 90% of the movie reviews in the positive dataset. We can see the similar behavior on the
negative movie reviews, as can be seen in Figure 4.3.

Figure 4.2: Histogram for the size of the positive movies reviews in the Large Movie Review Dataset for
the training set.

Figure 4.3: Histogram for the size of the negative movies reviews in the Large Movie Review Dataset for
the training set.
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Finally, we observed the number of words in the movie reviews on the test dataset. As can be
seen in Figure 4.4 and 4.5, they display a similar behavior with the training dataset. Therefore, we
can conclude that by using at most 600 words in the movie reviews, we will cover more than 90%
of the reviews on both datasets.

Figure 4.4: Histogram for the size of the positive movies reviews in the Large Movie Review Dataset for
the test set.

Figure 4.5: Histrogram for the size of the negative movies reviews in the Large Movie Review Dataset for
the test set.

Furthermore, every review is stored in an ASCII �le with raw text data. Since the task is to
perform sentiment analysis, no stemming or stop words removal technique will be used, to avoid
removing intentional words that describe an "emotion". However, some reviews still contain HTML
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markup on the raw data, and a pre-processing stage will be performed to remove such items.

4.1.2 Subjectivity Dataset

The second dataset used in the research is the Subjectivity Dataset (SD), �rst introduced in
[PL04]. This dataset contains 10000 sentences divided into two di�erent classes: subjective and ob-
jective sentences. The former are sentences extracted from the rotten tomatoes movie reviews and
the latter are sentences removed from movie plot summaries from the IMDB webpage. The iden-
ti�cation of subjective and objective sentences can be an important subtask for sentiment analysis
[ZWL18].

Similar to the LMRD, this dataset is perfectly balanced as can be seen in Figure 4.6. However,
di�erent than the LMRD, it does not have a de�ned test set, meaning that the test set must be
created manually.

Figure 4.6: Number of subjective and objective sentences.

While the LMDR is mainly used to evaluate our model and access the AL cycle on a large model,
the SD is used for evaluating our approach on a smaller task, leading also to faster experimentation.
One of the main rationales behind this decisions can be seen on the histogram of the Subjective
and Objective sentence sizes, as can be seen in Figures 4.7 and 4.8.
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Figure 4.7: Histogram of word counts for the Subjective sentences.

Figure 4.8: Histogram of word counts for the Objective sentences.

We can see from Figures 4.7 and 4.8 that the number of words in each sentence is smaller than
the ones in the LMRD. Also, for faster experimentation, we have used, at maximum, 20 words per
sentence when running the model.

4.1.3 Validation and Test Splits

To perform activities such as hyperparameter search or evaluating our model in the AL cycle,
we will need a validation and a test dataset. LMRD already provides a test dataset with 25000
perfectly balanced examples, as shown in Figure 4.1. For the validation dataset, we have decided
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Dataset Train Set Validation set Test set

Large Movie Review Dataset 22500 2500 25000
Subjectivity Dataset 8100 900 1000

Table 4.1: Number of examples in each set Large Movie Review Dataset and Subjectivity Dataset.

to use 10% out of the 25000 training examples provided for the LMRD 1.

As for the SD, a test set is not provided beforehand, meaning that we must create it manually.
Since the dataset o�ers 10000 perfectly balanced examples, as shown in Figure 4.6, we have chosen
to use 10% of the total data as our test dataset. Furthermore, for the remaining 90% of the data,
we managed to use 10% of it for the SD validation and the remaining data as the SD training set.
The number of data in each dataset split can be better summarized in Table 4.1.

4.2 Model De�nition

After de�ning our datasets, we can now describe the DL model that will be used to perform our
experiments. This section will de�ne the base model that we will use in the AL experiments and
how we will validate it using the datasets de�ned in Section 4.1.

4.2.1 Baseline

In order to validate our model, it is necessary to de�ne a baseline and verify if our model can
achieve a similar or superior result than this baseline. For this type of comparison, we have decided
to use as our baseline the model proposed on [MDP+11]. This paper not only introduces the LMRD
4.1, but also creates a model that achieves 88.89% accuracy on the dataset. The model used to ob-
tain this accuracy uses word vectors representations and a linear SVM model for classi�cation. We
expect that our DL model will achieve a similar or superior accuracy result on the LMRD.

We will not use a baseline for the SD, since this dataset is mainly used for faster experiments.
Also, we strongly believe that if our model reaches the baseline accuracy for the LMRD, it will be
able to perform on the SD adequately.

4.2.2 Proposed Model

Our proposed DL model is composed of four distinct layers:Word Embedding, LSTM, Fully
Connected and a Softmax layer; When we receive a sentence, we transform each word in an em-
bedding representation, or a continuous vector. After that, we pass the entire sentence through the
LSTM layer. This layer is a dynamic layer, meaning that its size will be generated in accordance
to the sentence size. For example, if we have a sentence with 10 words, we will have an LSTM
module with 10 layers of computation. After the LSTM generates the �nal vectorial representa-
tion, we pass this vector into the Fully Connected layer. The �nal layer, the Softmax transform
the output from the Fully Connected layer into a probability distribution over the two available
classes of both of our datasets. We can better visualize this architecture in Figure 4.9

Word Embeddings

The word embeddings layer in our network is a V ×D matrix, where V is the maximum number
of words in the vocabulary and D is the size of the word embedding or the dimension of the vector.

1The 10% rule was an empirical number we choose. We used a number that would be higher enough to validate
our model and not big enough to a�ect training our model.
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Figure 4.9: Proposed model for our research. Every word is transformed into an word embedding and feed
sequentially to a LSTM layer. Once every word is procesed in the LSTM layer, the �nal output of this layer
is passed through a Fully Connected layer. Finally, the output of the Fully Connected layer is transformed
into the predictions of the network using a the Softmax layer.

This means that each word is mapped into a 1 ×D vector before being fed into the LSTM layer.
There are several reasons to make this transformation. The �rst advantage is the embedding rep-
resentation is memory e�cient and allow an easier manipulation by the neural network in contrast
with the common sparse representation used in classical Natural Language Processing (NLP) tasks.
Secondly, this vectorial representations often carry semantic information, meaning that correlated
words tend to have a similar vectorial representation. This can be an useful feature for many NLP
tasks [MCCD13].

Usually, there are three distinct approaches when dealing with word vectors. The �rst one is to
randomly initiate this matrix and allow the backpropagation process to further improve this vectors
during training. The second one is to use techniques such as the Skipgram or the GloVe method to
create this word vectors, as seen on [MCCD13] and [PSM14]. Normally, these vectors are trained on
corpus such as the entire Wikipedia. However, this can be a costly operation, since training these
word vectors on an enormous corpus can take a lot of time and computational resources. Because
of such problems, the third approach is to use pre-trained word embeddings. These pre-trained
word embeddings are typically trained on a large corpora by the institutions that developed the
methodology to create these word embeddings, such as the GloVe pre-trained word embedding
made available by Stanford University 2.

In this research, we have chosen to use the third approach to deal with our word embeddings. We
adopted the GloVe pre-trained word embeddings, which were trained on the Wikipedia corpus. One

2https://nlp.stanford.edu/projects/glove/
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Hyperparameter Description

Batch Size The number of examples that our model will process on a single step
of the Stochastic Gradient Descent algorithm.

Number of Epoches The number of times we will pass through our entire training dataset.
Embedding Matrix Dropout Probability to drop rows from the embedding matrix.
Word Embedding Dropout Probability to drop elements from the word embedding vector before

feeding it into the LSTM layer.
Variational Dropout Probability to drop weights from the matrices in

the LSTM layer.
LSTM Output Dropout Probability to drop elements from the LSTM output vector.
L2 Weight Decay Weight decay regularizer.
LSTM Layer Size Number of neurons in the LSTM layer.
Fully Connected Layer Size Number of neurons on the Fully Connected layer.
Learning Rate Controls how fast we adjust the weights in our model.

Table 4.2: Hyperparameters used in the model presented in 4.2.2

Hyperparameter Value Set Distribution

Batch Size {x : x ∈ [32, 64, 128]} Uniform
Number of Epoches {x : x ∈ [4, 8, 10, 12, 14, 16]} Uniform
Embedding Matrix Dropout {x : 0.2 ≤ x < 1} Uniform
Word Embedding Dropout {x : 0.2 ≤ x < 1} Uniform
Variational Dropout {x : 0.2 ≤ x < 1} Uniform
LSTM Output Dropout {x : 0.2 ≤ x < 1} Uniform
L2 Weight Decay {x : 3.1e− 5 < x < 1e− 3} Exponential
LSTM Layer Size {x : 128 ≤ x ≥ 1024} Exponential
Fully Connected Layer Size {x : 128 ≤ x ≥ 1024} Exponential
Learning Rate {x : −4 < x < −0.6} Exponential

Table 4.3: Hyperparameters value's sets and distributions used for Random Search.

of the main reasons for this decision is that Stanford made available word embedding with di�erent
dimension sizes. Because of that, we have selected a dimension size with a trade-o� between the
robustness of the word embeddings and the training time required to use such embeddings. With
that trade-o� in mind, we have chosen to use the GloVe embeddings with 100-dimensional size,
meaning our embedding matrix will have a dimension of V × 100.

Hyperparameter Tuning

An essential task on every DL model consist in selecting the appropriate values for each hyper-
parameter for the model. Table 4.2 display all the hyperparameters used in our model.

To select the best hyperparameter con�gurations, we will use the LMRD validation dataset.
Each sample hyperparameter con�guration will be evaluated on the LMRD dataset.

To generate di�erent hyperparameters con�guration, we have chosen to use the Random Search

technique. This technique works based on de�ning a distribution for each of our parameters. To
create a hyperparameter con�guration, we sample each hyperparameter value from its correspond-
ing distribution. Table 4.3 described the values and distributions used for each hyperparameter
presented in Table 4.2.
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Based on the de�nitions in Table 4.3 de�ned, we can them sample each hyperparameter distri-
bution to create a hyperparameter con�guration. We will test 60 hyperparameters con�gurations
on our validation dataset and select the hyperparameter con�guration that provided the highest
accuracy value on the validation dataset. After that, we will use the selected hyperparameter
con�guration and use it to evaluate our model in the test dataset of the LMRD and verify if our
model achieves an accuracy similar or better then the one de�ned in our baseline Section 4.2.1.

Furthermore, the best hyperparameter con�guration found will also be used for our model when
we are using it in the Active Learning (AL) experiments.

4.3 Active Learning Experiments

This section describes all the necessary details that we de�ned to perform our AL experiments.
We will explain how we will answer our research questions with our AL models and some �ne
details of how the experiment will work. Finally, we present an overall visualization of how the
whole process will occur.

4.3.1 Active Learning Models

To answer our research questions, di�erent models need to be created. To address the research
question Q1, it will be necessary to create an AL model with the Monte Carlo Dropout technique
and other with a random measurement of uncertainty. To address Q2, it will be necessary to create
another AL models, where the uncertainty measurement is coming from the softmax result from the
output layer of our DL model. Therefore, to perform our research, 3 di�erent models will be created:

• ALU: Model created using the combination of Active Learning and Uncertainty handling.
The uncertainty will be extracted using the Monte Carlo Dropout technique.

• ALS: Model created by using AL and the softmax output as the uncertainty handling
mechanism.

• LSTM_RANDOM: Model created by using AL, but selects a random unlabeled data to
be annotated by the oracle. Therefore, this method does not use any information about the
uncertainty handling of the unlabeled data and it is expected to be the lower bound on the
experiment (Worst performance the model can reach using AL).

All of the models will be based on the proposed model presented in Section 4.2.2.

It is also worth mentioning that ALU will be created with three di�erent selection policies,
the Least Con�dent, Entropy and Mutual information metrics, named ALU_LC, ALU_H and
ALU_I.

With the models created, the following comparisons will be performed:

• Accuracy: The number of correctly classi�ed examples divided by the total amount of
examples. We will measure if any of our ALU models outperform our LSTM_RANDOM
model. The accuracy will be collected at each AL iteration using the test set of the LMRD
or the SD.

• Selection policies: The accuracy for each of the di�erent selection policies tested and verify
if the selection strategies can present signi�cant accuracy di�erences.
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• Uncertainty measurement: Observe if using the softmax layer as an uncertainty measure-
ment will underperform under a proper uncertainty measurement in a DL environment.

To display the results of such comparisons, a graph containing the measurements will be pro-
duced similarly to the approach used on [WZL+17]. This can be seen on Figure 4.10.

Figure 4.10: Example of a graph that will be used to compare Monte Carlo Dropout AL with an standard
DL model. The lower bound is represented in the graph by the LSTM_RANDOM model. The dotted lines
represent the other active learning methods. The values on this graph are only for demonstration purposes,
since no experiment has been performed yet

In Figure 4.10, we can see that the �x� axis represent the amount of labeled data presented to
the model and the �y� axis represent the accuracy measure of the model.

The 4.10 will be mainly used to address Q1. This means that we will observe if any of the ALU
models reach a better accuracy than the LSTM_RANDOM model with the same amount of
data. If any of our ALU models achieve a better accuracy curve than our LSTM_RANDOM,
we will further address Q1 by testing the CEAL approach 3.5.1. We will verify if CEAL can reach
a higher accuracy than using just our ALU models alone. To compare that we will create a CEAL
model using the metric that provided the best result for our ALU model. We will them be able to
compare both curves as shown in Figure 4.11
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Figure 4.11: Example of a graph that will be used to compare the best ALU model found on 4.10 with our
CEAL model. We can see that both ALU and CEAL use the same uncertainty metric. The values on this
graph are only for demonstration purposes, since no experiment has been performed yet

Again, if any of ourALUmodels achieve a better accuracy curve than our LSTM_RANDOM,
we will select the uncertainty metric (Least Con�dent, Entropy orMutual Information) that achieved
the best accuracy curve and use it to make the comparisons needed to address Q2. With this metric
de�ned, we will create an AL model that uses both softmax and the selected uncertainty metric to
choose examples from the unlabeled group. Di�erent from the Monte Carlo Dropout technique, we
use only one softmax result from our network to perform our uncertainty computations.

After creating this model, we will evaluate if the softmax underperforms for the AL setting
in comparison with our model that uses the Monte Carlo Dropout technique. This can be better
visualized in Figure 4.12.
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Figure 4.12: Example of a graph that will be used to compare the best ALU model found on 4.10 with the
ALS model. We can see that both ALU and ALS use the same uncertainty metric. The values on this graph
are only for demonstration purposes, since no experiment has been performed yet

We can see on Figure 4.12 that similar to 4.10, the �x� axis indicates the number of training
data used and the �y� axis, the accuracy of the model.

Additionally, all experiments will be performed 3 times and the results will be averaged when
presented in both graphs. The main reason to run all the experiments 3 times is to use di�erent
model's parameters at each run. For example, our models will have weight parameters, in each
experiment the initial values of these parameters will be di�erent. This will guarantee that our
results will not be based on a single random initialization of these parameters. Furthermore, we
believe that using a high amount of experiments, we would achieve more sound results, but due to
practical considerations, we have chosen to do minimum of 3 rounds of experiments.

4.3.2 Labeled and Unlabeled Group

To perform an AL cycle, we need an initial labeled and unlabeled group. For both LMRD and
SD, we will create the labeled and unlabeled group based only on their training datasets. For
LMRD, we will use 1% of the train set as the initial labeled group and the rest of the train set
as the unlabeled group. However, for SD, we have decided to use only 10 examples as our initial
labeled group and the rest of the train set as the unlabeled group. This can be better visualized
in Table 4.4. We have chosen this number because of the SD dataset is a simpler dataset than the
LMRD and we belive that using a big quantity of data initially would allow our �rst run of active
learning to achieve an expressive result earlier, therefore, we have chosen a smaller initial size for
our initial labeled group.
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Dataset Labeled Group Unlabeled Group

Large Movie Review Dataset 225 22275
Subjectivity Dataset 10 8090

Table 4.4: Number of examples in labeled and unlabeled groups for both the Large Movie Review Dataset
and Subjectivity Dataset.

4.3.3 Unlabeled Group Samples

One of the crucial steps of an AL cycle is to use our model to evaluate the examples in the
unlabeled group to select the most informative cases to be labeled by the oracle. Nevertheless, due
to some limitations, such as memory size and the time to run our experiments, we cannot evaluate
all the unlabeled group at each AL step. Before using our model to evaluate the examples in our
unlabeled data group, we will sample 2000 examples from our unlabeled group and select the most
informative examples from these 2000 examples. This behavior will happen for both LMRD and
SD as well.

4.3.4 Number of Monte Carlo Dropout Passes

For the Monte Carlo Dropout technique, we must perform t stochastic passes and collect t
di�erent classi�cations from our model. When selecting the value of t, we must consider a trade-o�
between the speed of performing Monte Carlo Dropout and the accuracy of our uncertainty metric.
Based on this trade-o� and the t values used in both [GIG17] and [GG15a], we have chosen to use
t = 100 and then use the collected 100 classi�cations to calculate our uncertainty metrics de�ned
in 3.5.

4.3.5 CEAL Parameters

For the CEAL cycle, we have chosen to use the values of α as 0.005 and dr as 0.000001. We
have used these values based on [WZL+17], but we have not performed any random search for these
parameters, as has happened for the hyperparameters of our proposed model.

4.3.6 Overall Approach

To summarize our approach to perform our active learning experiments, we can take a look at
Figure 4.13 that describes the whole process we will use to perform our active learning experiment.

Active

Learning

Iteration

Accuracy

on Test

Dataset

Figure 4.13: The process to perform our Active Learning experiments.

We can see on 4.13 that for each iteration of our AL cycle, we will collect the accuracy mea-
surement on the test set of the dataset we are currently using (LMRD or SD). This will be the
procedure used to build the graphs displayed in Figures 4.10, 4.11 and 4.12. To de�ne our AL
iteration, we must perform the following steps:

• Train model: We use the labeled group to train our model. This model will be used to
evaluate the examples in our unlabeled group.
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• Sample Unlabeled Group: We sample 2000 examples from the unlabeled group. These
2000 samples will be the ones evaluated by our model.

• Perform 100 Monte Carlo Dropout Predictions: We use the Monte Carlo Dropout

technique to generate 100 predictions for our 2000 unlabeled examples, creating a 2000× 100
matrix.

• Calculate Uncertainty Measurements: Using our 100 predictions for each of our sampled
unlabeled examples, we calculate the model's uncertainty measurement for each of those
samples. These measurements can be the metrics of Variation Ratio, Entropy andMutual
Information.

• Rank Unlabeled Samples: using the value from our uncertainty metric, we rank our
sampled unlabeled examples in descending order.

• Select Most Informative Samples: We select the k items from the ranked unlabeled
examples. These examples are the ones considered the most informative ones.

• Oracle labelling: The oracle will them label our k most informative unlabeled samples.

• Add examples to labeled group: Once the oracle has �nished labelling our k most
informative examples, we can add these examples to our labeled group and restart our cycle.

This process can be fully visualized in Figure 4.14. It must be said that at the end of each AL
iteration we will have a new model to evaluate the test set of one of our datasets.

This procedure is the same one used for our AL experiments when using both random and
softmax approach. For our random approach, it is not necessary to perform any t Monte Carlo

Dropout predictions and we don't need to any uncertainty measurement on the unlabeled samples.
This means that we will rank our unlabeled examples randomly. For the softmax AL, we do not
need the t Monte Carlo Dropout predictions, but instead, we collect a single prediction from the
network and then calculate the uncertainty measurements. All of the other steps displayed in Figure
4.14 remain the same for both random and softmax Active Learning.
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Figure 4.14: The necessary steps to perform an iteration of our Active Learning cycle using the Monte
Carlo Dropout technique.



Chapter 5

Experimental Evaluation

This chapter covers all the investigations performed on this work. They mirror the details
provided in Chapter 4. The �rst part of this chapter speci�es the technologies employed to implement
the code used in this work. Following that, we will present the comparison of our model with
the baseline model described in Section 4.2.1. Finally, we will show our Active Learning (AL)
experiments and explain the iterative process we have used to perform our experiments.

5.1 Technologies Used

To implement the model proposed in Section 4.2.2 we have used the Python programming lan-
guage version 3.6 together with TensorFlow version 1.7.0 1. TensorFlow was used to create our
Deep Learning model and the Extract-Transform-Load (ETL) pipeline, used to feed data into the
DL model. It is also essential to detail all the machines used to conduct the experiments in this
thesis. In total, three distinct computers were used to perform the experiments in our work, Tables
5.1, 5.2 and 5.3 describe the components of each of these machines.

Furthermore, all the code used in this research is open source and can be found on GitHub 2.

5.2 Baseline Evaluation

Before proceeding with our Active Learning experiments, it was necessary to evaluate if our
proposed model was adequate to solve the sentiment analysis task we have proposed.

Our �rst step was to implement the model and perform a random search on the model hyper-
parameters, as described in Section 4.2.2. We have conducted 60 random search steps, evaluating
60 di�erent hyperparameters con�gurations in the LMRD validation set. The hyperparameter con-
�guration that achieved the best result (91.9%) on the validation set is described in Table 5.4.

Component name Description

Distribution Ubuntu 18.04
Central Processing Unit (CPU) Intel(R) Core(TM) i7-6900K CPU 3.20GHz
Random-Access Memory (RAM) 64Gb DIMM DDR4
Graphics Processing Unit (GPU) GeForce GTX 1070
Graphics Processing Unit (GPU) Memory 8Gb

Table 5.1: Con�guration for the �rst machine used in this research experiments.

1https://www.tensor�ow.org/
2https://github.com/LIAMF-USP/deep_active_learning
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Component name Description

Distribution Ubuntu 18.04
Central Processing Unit (CPU) Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz
Random-Access Memory (RAM) 64Gb DIMM DDR4 Synchronous 2133 MHz
Graphics Processing Unit (GPU) GeForce GTX 1060
Graphics Processing Unit (GPU) Memory 6Gb

Table 5.2: Con�guration for the second machine used in this research experiments.

Component name Description

Distribution Debian 9.5
Central Processing Unit (CPU) Intel(R) Xeon(R) CPU E3-1230 V2 @ 3.30GHz
Random-Access Memory (RAM) 32Gb DIMM DDR4
Graphics Processing Unit (GPU) GeForce GTX TITAN X
Graphics Processing Unit (GPU) Memory 12Gb

Table 5.3: Con�guration for the third machine used in this research experiments.

After that we evaluated our proposed model with the hyperparameters described in Table 5.4
using the LMRD test set. We have achieved an accuracy of 88.9%. Since our baseline model achieved
an accuracy of 88.89%, we can understand that our model has reached a similar result than our
baseline, being �t for the task of sentiment analysis provided by the LMRD.

Furthermore, using the same hyperparameter con�guration provided by Table 5.4, we have found
an accuracy of 90.6% for or SD validation set and an accuracy of 88.5% for our SD test set.

5.3 Active Learning Experiments Evaluation

This section describes all the Active Learning experiments performed in this work. We adopted
an iterative approach when performing our experiments. First, we identi�ed if there is any di�er-
ence between the Monte Carlo Dropout models (ALU models) and our random (LSTM_RANDOM)
model; as a result, our �rst iterations were then focused on discovering if the curves di�er. If we
reached that point, we would be able to further address both of our research questions.

Additionally, the reason for limiting the scope of our experiments at the beginning of this work

Hyperparameter Description

Batch Size 64
Number of epochs 16
Embedding Matrix Dropout 0.267
Word Embedding Dropout 0.568
Variational Dropout 0.855
LSTM Output Dropout 0.694
L2 Weight Decay 0.0003097047
LSTM Layer Size 285
Fully Connected Layer Size 285
Learning Rate 0.00410

Table 5.4: Best hyperparameter con�guration found using the validation set of the LMRD
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Parameter Description

Unlabeled Data Queries (Q) The number of example we will select from the unlabeled group
to be labeled by the oracle.

Number of epochs (EPO) At each AL cycle, we will train our model for a given number of
epochs. This variable de�nes this quantity.

Dropout Values (DROP) The dropout probability for the weights in our network.
Number of Active Learning Cycles (NC) The number of AL cycles we have run for a given experiment.

Table 5.5: Parameters that will be address in the Active Learning Experiments Evaluation

is due to the large amount of time taken to run a complete AL experiment. Since at the beginning
of this research we were testing the initial hypothesis, we believe it was not a sound decision to
make experiments with all the available models (ALU_LC, ALU_E and ALU_I), since we did not
know how much time it took to perform a full AL experiment cycle.

With that decision in mind, the rest of this Section describes all the iterations used for our
Active Learning Experiments, addressing the results in each iteration and what has changed from
the last iteration.

5.3.1 Notation

Before addressing the AL experimental iterations, we must de�ne the notation adopted through
this section. We will talk about four di�erent parameters concerning our AL experiments. These
parameters can be seen on Table 5.5.

5.3.2 Active Learning Experiments - Iteration 1

In our �rst iteration, we have focused on generating accuracy curves for two di�erent models,
the Monte Carlo Dropout model using theMutual Information metric (ALU_I) and the random
model (LSTM_RANDOM). We have chosen the ALU_I model beforehand because, in the works
of [GIG17] and [SYL+17], the Mutual Information metric was the one that achieved the best result.
Therefore, we believe it was the safest metric to test �rst.

We have also decided to use the LMRD dataset for this experiment, with the assumption that
if there were a signi�cant di�erence in the model's curves for this dataset, the same result would
follow for the SD as well.

In this initial iteration, we tested if using the same hyperparameter displayed in Table 5.4 we
would achieve di�erent curves for our models. Table 5.6 presents the parameters con�guration used
for our �rst experiment.

Parameter Value

Unlabeled Data Queries (Q) 50
Number of epochs (EPO) 16
Number of Active Learning Cycles (NC) 50

Table 5.6: Parameters used for our �rst iteration. Dropout Values (DROP) was omitted because in the �rst
iteration, we have not created a single value for all our dropout masks. Instead we have used the individual
dropout values found on Table 5.4

After running the experiments, the results obtained did not follow our assumptions. Not only
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both of our curves do not di�er by much, but the model, using almost 2700 samples could not
even achieve an accuracy of 60%. After that results, we decided to make a few adjustments to our
experiments.

5.3.3 Active Learning Experiments - Iteration 2

After the results found on Iteration 01, we decided to look back in the papers and code that
created and applied the technique of Monte Carlo Dropout into DL tasks. We have perceived that
both [Gal16] and [GIG17] used a distinct concept we were not exploring. At each AL cycle, they
have trained the DL model for a high number of epochs. For example, in [GIG17], the researchers
trained their convolutional model for over 50 epochs for the task of digit recognition on the MNIST
dataset, a rather simple problem that doesn't require that number of epochs for convergence. One
of the rationales found on [Gal16] for this behavior is the fact that as we have a high number of
epochs, the number of weight con�gurations that the model will see will increase. This makes the
network more robust when we sample di�erent weights for predicting unseen data.

Based on that �nding, we have decided to increase the number of epochs we train a model in
each AL cycle from 16 to 200, as can be seen on Table 5.7.

Parameter Value

Unlabeled Data Queries (Q) 50
Number of epochs (EPO) 200
Number of Active Learning Cycles (NC) 50

Table 5.7: Parameters used for our second iteration. Dropout Values (DROP) was omitted because in
the �rst iteration, we have not created a single value for all our dropout masks. Instead we have used the
individual dropout values found on Table 5.4

After making that modi�cation, we did another experiment using the LMRD, obtaining the
graph displayed in Figure 5.1

Figure 5.1: Comparison between our ALU_I and our LSTM_RANDOM model for the LMRD dataset
using EPO=200, Q=50 and NC=50
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We can see from Figure 5.1 that we have di�erent curves now. After 1600 examples, we can
clearly see that our ALU_I model starts to distance further away from our LSTM_RANDOM
model. We have observed a positive result towards the Monte Carlo Dropout technique. However,
by using now EPO=200 and Q=50, we have taken too much time to perform an experiment, which
is something we were not comfortable with.

5.3.4 Active Learning Experiments - Iteration 3

Although we had a positive result in Iteration 2, we had the problem that our experiments took
to much time to run. We explored the e�ects of both [GIG17] and [Gal16] and found two other
aspects in the code they have provided for their �ndings. The �rst aspect is that, at each AL cycle,
they selected from the unlabeled group 10 examples for the oracle to label. Therefore, they have
signi�cantly reduced the number of data points added, at each cycle, to the labeled dataset. The
second aspect we have found is that they have used a value of 0.5 for every Dropout probability in
their network. This is very di�erent from the approach we have used since we are using di�erent
probabilities for di�erent parts of our network.

Based on the results of Iteration 2 and these new �ndings, we decided to update our AL param-
eters, as can be seen on Table 5.8. Additionally, we have also expanded the value of our NC value
to allow for a greater quantity of data to be used by our models, since now every AL cycle will only
add 10 new data points to the labeled group, instead of 50.

Parameter Value

Unlabeled Data Queries (Q) 10
Number of epochs (EPO) 150
Dropout Values (DROP) 0.5
Number of Active Learning Cycles (NC) 100

Table 5.8: Active Learning Parameters used for our third iteration.

Using these new con�gurations, we have reached the result displayed in Figure 5.2. We can
now see a permanent trend were our ALU_I model has achieved a better accuracy with the same
amount of data over our LSTM_RANDOM model.
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Figure 5.2: Comparison between our ALU_I and our LSTM_RANDOM model for the LMRD dataset
using EPO=150, Q=10, NC=100 and DROP=0.5.

To further validate the result achieved, we have decided to plot the same graph displaying the
standard deviation around each point to verify if there is still an overlap between the curves, as can
be seen in Figure 5.3.

Figure 5.3: Comparison between our ALU_I and our LSTM_RANDOM model for the LMRD dataset
using EPO=150, Q=10, NC=100 and DROP=0.5 using the standard deviation around each point.

We can see that there is no overlap between the curves. Based on that result, we believe we
have found a signi�cant di�erence between the curves. Therefore, we have decided to make the same
experiments using di�erent uncertainty metrics, Entropy and Least Con�dent.
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5.3.5 Active Learning Experiments - Iteration 4

After the positive results in Iteration 3, we have decided to make our complete AL experiments
and verify the accuracy curves for both of our Entropy and Least Con�dent metrics as well. In this
iteration, we decided not to change any of our AL parameters, meaning that they remain the same
ones displayed in Table 5.8.

Therefore, in this iteration, we created two new models:

• ALU_E: Monte Carlo Dropout together with the Entropy metric.

• ALU_LC Monte Carlo Dropout together with the Least Con�dent metric.

After running the AL experiments for these new models, we have achieved the results displayed
in Figures 5.4 and 5.5.

Figure 5.4: Comparison between our ALU_E and our LSTM_RANDOM model for the LMRD dataset
using EPO=150, Q=10, NC=100 and DROP=0.5.
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Figure 5.5: Comparison between our ALU_LC and our LSTM_RANDOM model for the LMRD dataset
using EPO=150, Q=10, NC=100 and DROP=0.5.

We can see from both Figures 5.4 and 5.5 that the curves don't di�er much. This is the complete
opposite result we have achieved in Iteration 3, especially when we put all the curves in the same
graph, as can be seen in Figure 5.6.

Figure 5.6: Comparison between our ALU_I, ALU_E, ALU_LC and our LSTM_RANDOM model for
the LMRD dataset using EPO=150, Q=10, NC=100 and DROP=0.5.

We can see that theALU_E andALU_LC behave almost precisely as the LSTM_RANDOM,
meaning that measuring the uncertainty with their proposed metrics, have provided no bene�t for
this task. Only the ALU_I model has provided a signi�cantly better accuracy curve.

Finally, we have also decided to combine our ALU_I model with CEAL cycle and see if we
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would achieve a better result for this task. We have named the model CEAL_I. After running our
experiments, we have found the result displayed in Figure 5.7.

Figure 5.7: Comparison between our CEAL_I, ALU_I and our LSTM_RANDOM model for the LMRD
dataset using EPO=150, Q=10, NC=100 and DROP=0.5.

We can see in Figure 5.7 that our CEAL_I model has achieved a better accuracy curve than
ALU_I and LSTM_RANDOM. To further validate this result, we decided to plot the same
graphs, but displaying the standard deviation too, in a similar manner than the graph shown in
Figure 5.3. This new graph can be seen in Figure 5.8.

Figure 5.8: Comparison between our CEAL_I, ALU_I and our LSTM_RANDOM model for the LMRD
dataset using EPO=150, Q=10, NC=100 and DROP=0.5 using the standard deviation around each point.

We can see from Figure 5.8 that at around 600 training examples, the CEAL_I model has a
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very high standard deviation compared to both ALU_I and LSTM_RANDOM. However, after
800 training examples, the CEAL_I achieves better results than both of the other models. One of
the possible reasons for this behavior is that, at the beginning of the CEAL cycle, its auto-labeling
step may not be too e�cient yet. As new data is added to the labeled group, this mechanism may
improve further and further, allowing the model to perform better.

With that results in hand, we have to perform similar comparisons, but now, comparing our
best ALU model with a model that measures uncertainty using the softmax function.

5.3.6 Active Learning Experiments - Iteration 5

In this Iteration, we will compare our ALU_I (best model found in Iteration 4, without using
CEAL) with a model that uses softmax instead of the Monte Carlo Dropout to handle uncertainty.
Therefore, we will create a softmax model that uses the same metric as our ALU_I model, the
Mutual Information, the ALS_I model. Additionally, we will use the same AL parameters dis-
played in Table 5.8.

After creating this model and performing the AL experiments, we have reached the results dis-
played in Figure 5.9.

Figure 5.9: Comparison between our ALU_I, ALS_I and our LSTM_RANDOM model for the LMRD
dataset using EPO=150, Q=10, NC=100 and DROP=0.5.

We can see in Figure 5.9 that ourALS_Imodel performs better than our LSTM_RANDOM,
but worse than our ALU_I model. We can further visualize this by plotting the standard deviation
for the ALS_I model, as can be seen in Figure 5.10.
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Figure 5.10: Comparison between our ALS_I, ALU_I and our LSTM_RANDOM model for the LMRD
dataset using EPO=150, Q=10, NC=100 and DROP=0.5 using the standard deviation around each point.

We can see that the ALS_I has a lower standard deviation that outALU_I curve, but still,
they do not overlap. Therefore, for the LMRD, we can understand that modelling the uncertainty
with the Monte Carlo Dropout and the Mutual Information metric has given positive results for
achieving better accuracy results with the same amount of data than the other approaches.

Based on these results on the LMRD, we have decided to apply the same experiments in the
SD. In that case, we would have signi�cantly smaller model than the one used for the LMRD. We
would them verify if the results found here also apply in a smaller dataset and model.

5.3.7 Active Learning Experiments - Iteration 6

In this iteration, we have decided to perform the same experiments we have performed for our
LMRD using the SD instead. Since the model will be smaller and the number of data is also smaller
than the LMRD, we have decided to increase our Number of Cycles (NC) from 150 to 400, in order
to reach a more robust accuracy curve. Besides that change, the AL parameters will remain the
same ones established in Table 5.8.

We performed the experiments for our four models:ALU_I, ALU_E, ALU_LC and LSTM_RANDOM
using our SD, instead of the LMRD. After creating these models, we compared each one of them
with the LSTM_RANDOM model, as can be seen in Figures 5.11, 5.12, 5.13.
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Figure 5.11: Comparison between our ALU_I and our LSTM_RANDOM model for the SD dataset using
EPO=150, Q=10, NC=400 and DROP=0.5.

Figure 5.12: Comparison between our ALU_E and our LSTM_RANDOM model for the SD dataset using
EPO=150, Q=10, NC=400 and DROP=0.5.
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Figure 5.13: Comparison between our ALU_LC and our LSTM_RANDOM model for the SD dataset using
EPO=150, Q=10, NC=400 and DROP=0.5.

Figures 5.11, 5.12, 5.13 illustrates that all of the ALU models have achieved a better accuracy
curve than our LSTM_RANDOM. This outcome respresents a di�erent result than the one
found for our LMRD, in which only the ALU_I performed better than our random model.

To compare the models, we need to visualize them together, as can be seen in Figure 5.14.

Figure 5.14: Comparison between our ALU_I, ALU_E, ALU_LC and our LSTM_RANDOM model for
the SD dataset using EPO=150, Q=10, NC=400 and DROP=0.5.

We can see that theALU curves look similar to each other. Also, the curves reach a plateau after
2500 examples. Although the curves reach a similar accuracy value at the end of the experiments,
there is one ALU model that reaches this value �rst, which is the ALU_I model. This model
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Metric name 1009 1509 2009 2509 3009

ALU_I 0.85 ± 0.005 0.86 ± 0.007 0.86 ± 0.010 0.87 ± 0.001 0.86 ± 0.008
ALU_E 0.85 ± 0.007 0.85 ± 0.012 0.85 ± 0.008 0.86 ± 0.004 0.87 ± 0.004
ALU_LC 0.85 ± 0.002 0.85 ± 0.008 0.86 ± 0.001 0.86 ± 0.003 0.88 ± 0.006

LSTM_RANDOM 0.83 ± 0.007 0.84 ± 0.010 0.84 ± 0.008 0.85 ± 0.004 0.86 ± 0.008

Table 5.9: Comparison of accuracy for each model given a number of training examples. Every accuracy
value is presented with the standard deviation for that number of training examples.

reaches the best accuracy in the graph roughly at 1500 training examples, while the other ALU
models reach that accuracy approximately at 2600 examples. See Table 5.9 for better visualization
of this �nding.

We found a similar result for LMRD dataset, where the ALU_I model also performed better.
However, we must remember that the other ALU models did not perform better than our random
model for the LMRD. Furthermore, di�erent from the LMRD, the accuracy di�erence between the
ALU models is not that strong, since it is a 1% di�erence in accuracy between the ALU_I and
the other ALU models.

After �nding these results, we decided to test our CEAL approach on the SD as well. Since the
best model for SD was the ALU_I, we will use our CEAL model with the same metric as the
ALU_I, the Mutual Information. After performing this experiment, we have reached the result
displayed in Figure 5.15.

Figure 5.15: Comparison between our ALU_I, CEAL_I and our LSTM_RANDOM model for the SD
dataset using EPO=150, Q=10, NC=400 and DROP=0.5.

For our SD, we have not obtained any gain using the CEAL approach, as we have seen for the
LMRD dataset. However, the CEAL_I does not underperform in comparison with the ALU_I,
it just does not reach a better accuracy curve.

Finally, we compared outALU_Imodel with a model which uses the softmax as the uncertainty
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estimative together with the Mutual Information metric, the ALS_I model. After performing the
experiments, we reached the result displayed in Figure 5.16.

Figure 5.16: Comparison between our ALU_I, ALS_I and our LSTM_RANDOM model for the SD dataset
using EPO=150, Q=10, NC=400 and DROP=0.5.

Although the ALS_I model reaches the same accuracy as the ALU_I model, we can see
that the ALU_I model reaches this accuracy at 1500 training examples while the ALS_I model
reaches it roughly at 2600 training examples. Therefore, we can conclude that out ALU_I model
provided a better accuracy curve. This was the same result achieved in the LMRD, where ALU_I
performed better than our ALS_I model. We believe this further reinforces that the Monte Carlo

Dropout technique overperforms the softmax for the case of uncertainty handling.

Finally, the graphs with the standard deviation plotted can be seen in the Appendix Chapter B.
We have not include these graphs in this Iteration because there is no signi�cant overlap between
the curves, except at the end of the graph.

5.4 Final Analysis

After performing the full set of experiments for both LMRD and SD, we can now properly
address the two proposed research questions of this work. The research question Q1 aimed to verify
if measuring uncertainty with the Monte Carlo Dropout technique would provide any improvement
when we perform Active Learning for the task of sentiment analysis. Although for the LMRD,
only the combination of Monte Carlo Dropout and Mutual Information provided better accuracy
than the random model, this was not the case for the SD, where all metrics performed better than
the random model. This validates one of the conclusions found on [SC08], which states that the
uncertainty metrics are problem dependent, indicating that there is no overall best metric for all
situations. However, we can positively verify that measuring the uncertainty with Monte Carlo

Dropout helped in the case of Active Learning.

Nevertheless, we must also address that it seems that larger models using Monte Carlo Dropout

produce a better uncertainty estimate than smaller models. This can be seen in the di�erence be-
tween the curve in Figures 5.6 and 5.14. In the LMRD, the accuracy di�erence between the best
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ALU model and the random model is around 5% while it is approximately 2% in the SD. This also
reinforces one of the �ndings of [Gal16], which states that large models produce better uncertainty
measurements.

For Q2, we want to verify if Monte Carlo Dropout would be a superior approach for uncertainty
than using the softmax results as uncertainty measures. Figures 5.9 and 5.16 show that the Monte

Carlo Dropout models performed better than the softmax models, meaning that the right uncer-
tainty metric together with the Monte Carlo Dropout can provide a superior result than merely
using the softmax result as an uncertainty evaluation.

Although we had positive results for both research questions, there are issues that we have found
relating to both Monte Carlo Dropout and AL that needs to be addressed, since they are at the
core of this work.

The �rst problem was related to the use of Monte Carlo Dropout. Finding the right hyperpa-
rameters was a hard task to accomplish. Although trial and error is common when �nding hyperpa-
rameters, AL is a slow procedure, making that search costly. We tried to use random search using
all the available training data we had, but we have not achieved the expected results, as seen in
Section 5.3.2. In a real situation, where the user only has a small quantity of labeled data, �nding
these hyperparameters would be a di�cult task and even time consuming. This is true because the
user would need to perform a considerable amount of Active Learning cycles to verify if the results
are improving, which for a real problem, can be a huge barrier.

However, the main problem with Active Learning found through this research is the amount of
time taken to run a single experiment. At each AL cycle, we need to retrain the model for a large
amount of epochs. This is an extremely slow procedure while also consuming a lot of computational
resources (CPU and GPU included). Moreover, we have used an LSTM Network for performing our
experiments. This network takes the size of the largest sentence we are using to train our model. For
example, if we have a sentence with 600 words, as it happens in LMRD, we would have a network
with 600 layers. Furthermore, the LSTM is a sequential architecture, meaning that it requires that
we process one input at a time. This makes the use of LSTM in Active Learning extremely slow,
since training an LSTM is a slow process and cannot be easily parallelized. Although this is not
always the case for Deep Learning architectures, i.e., Convolutional Neural Networks don't su�er
from this issue, the models produced are still large, meaning that they have multiple processing
layers. If we want to to use Active Learning with Deep Learning, we reason that this is one of the
main problems that should be dealt with.

Because of these �ndings, we strongly believe that further research in engineering approaches
need to be done to handle that inherent problem with AL. This has happened for DL, with libraries
such as TensorFlow and PyTorch, which allowed a huge improvement in the development and use
of DL models. We believe that this is a necessary step for enabling Active Learning to be performed
with larger datasets and on real problems too.

Finally, AL assumes one assumption that can be problematic. We expect that a model will �t
our data before actually understanding the data distribution. We can choose a model that may not
be able to �t our data or even select a model that is too complex over a simpler model that would
�t our data. This can lead to both under�tting and over�tting in the use of AL. We have found that
this is an inherent problem of Active Learning, but we must shed light on it, to alert any research
that wants to replicate or use AL for their experiments.



Chapter 6

Conclusion

Uncertainty play a key role on the use of many techniques regarding Deep Learning models.
From measuring the con�dence of a model's prediction to using techniques such as Active Learning,
model's uncertainty measurement is a necessity. However, there are few approaches to measure un-
certainty in Deep Learning models. One of these approaches is the Monte Carlo Dropout technique.

This work aimed at evaluating this technique using the Active Learning framework for the
task of sentiment analysis. We have evaluated if measuring the uncertainty using the Monte Carlo

Dropout would allow for a better performance using Active Learning in contrast of randomly se-
lected unlabeled examples. We further explored if the Monte Carlo Dropout would provide a better
uncertainty measurement than using the softmax as an uncertainty measurement. Therefore, our
work provides the following contributions:

• An intrinsic comparison of Monte Carlo Dropout with random sampling strategies for the
Active Learning framework for the task of sentiment analysis.

• An intrinsic comparison of Monte Carlo Dropout with the softmax uncertainty measurement
for the Active Learning framework for the task of sentiment analysis.

We conducted an iterative set of Active Learning experiments aimed at �nding the best param-
eters for performing the experiments while also answering our research questions. After performing
all our iterations, we have found that in factMonte Carlo Dropout provides gains in comparison with
both random sampling and softmax uncertainty measurements. In both cases, the accuracy curve
obtained by models using the Monte Carlo Dropout was superior than the random and softmax
approaches. For example, the Monte Carlo Dropout model using the Mutual Information metric
achieved, on average, 5% more accuracy than the random model using the same amount of data
using the Active Learning framework.

However, we have also found that some results where not consistent between datasets. While in
one dataset a given technique performed better, in the other dataset, the same technique did not
perform as well. Furthermore, we have also found that the Monte Carlo Dropout technique tends
to work better for large Deep Learning models than small Deep Learning models as theorized in
[Gal16].

Additionally, this master's research also provides contributions on additional questions related
to Active Learning:

• An iterative experimentation scheme for performing Active Learning Experiments.

63
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• Analysis of important parameters used to perform Active Learning Experiments together with
Monte Carlo Dropout

• Practical considerations for the use of Active Learning on real world tasks.

We believe this discussion is essential for further research approaches using Active Learning and
also for the practical use of Active Learning in real world problems.

6.1 Future Work

Although we have made an intrinsic comparison using theMonte Carlo Dropout technique, there
is still a huge amount of experiments we can cover to better address this technique. From comparing
Monte Carlo Dropout with other techniques, such as Semi-supervised techniques or model ensem-
bles, to updating Active Learning approaches with Monte Carlo Dropout, there is a huge number
of experiments that should be made. However, we strongly believe that in order to further allow
Active Learning to be used by more researches and developers, engineering research should be made.

This Section will cover some ideas we believe are interesting paths to follow after performing
this research, aiming both at Monte Carlo Dropout and the engineering behind the use of Active
Learning.

6.1.1 CEAL and Monte Carlo Dropout

In this research, we have combined the CEAL technique (Section 3.5.1) with the Monte Carlo

Dropout technique. Although the CEAL approach was not the best overall method to use, it achieved
a great result for Large Movie Review Dataset and has reached almost the best result for the Sub-
jectivity Dataset. This lead us to believe that the combination of the CEAL technique with Monte

Carlo Dropout can be fruitful, especially if we consider the original paper that presented CEAL. In
[WZL+17], the research have used the CEAL technique together with Active Learning for the task
of image recognition. Although the CEAL approach achieved better results that the other models
that they compared CEAL to, CEAL still uses softmax as an uncertainty measurement for selecting
unlabeled data. As he have seen in Section 5.4, the softmax underperformed in comparison with
the Monte Carlo Dropout approach. Therefore, we strongly believe that we could make experiments
combining the CEAL with Monte Carlo Dropout for the task of Image Recognition. We would
compare this new approach and verify if it performs better than the CEAL approach. This could
potentially lead to a new Active Learning technique that uses a sound uncertainty measurement
strategy to use both certain and uncertain example to guide the next steps of the Active Learning
cycle.

Furthermore, the experiments would be performed using a Convolutional Neural Network instead
of a Long-Short Term Memory (LSTM) network. A Convolutional Neural Network is faster to train
and to run than a LSTM. That is because the convolutional operations can be easily parallelized
in a GPU. This cannot happen for a LSTM, that reads its input sequentially, not allowing for
parallelized approaches. This will lead to faster and easier experiments to run as well.

6.1.2 Active Learning Parameters

In our research, we have explored only a few of the Active Learning parameters, such as the
number of epochs to train the model. However, more parameters can be evaluated. The size of
the unlabeled group to evaluate, the DL architectures used and the number of labels for our data
can provide valuable information when experimenting with Active Learning. For example, in our
research, we have used sentiment analysis task that consider only two possible labels, Positive and
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Negative, therefore all our samples are divided in two distinct groups. We believe this allows for
random models to perform better, since the chance for them to selecting meaningful examples from
both classes is higher. In [SYL+17] and [GIG17], the task they have used for Active Learning has a
bigger amount of labels. In [GIG17], the researches experiment with the MNIST dataset, which has
10 di�erent classi�cation classes. In both of these works, the di�erence between the accuracy curve
of the Monte Carlo Dropout models and the random model was higher than the one found in this
research. We believe one of the reasons may be the number of classes between the task. Therefore,
this would be an useful topic to further research on.

6.1.3 Active Learning Selection Visualization

Although we are using the Monte Carlo Dropout technique to select unlabeled examples, we
have not explored in this research the type of examples the model is selecting. This means that
are not visualizing what is the model uncertain about. For example, the model may initially take
longer sentences �rst over smaller ones. Or maybe, the model is selecting sentence which possess
words rarely seen on other sentences. By visualizing the sentences the model is taking, we would
be able to further understand the uncertainty being measured by it. This would allow us to further
improves our uncertainty selection policies, as has happened in [SYL+17] where they created a new
uncertainty selection policy based on the samples the model was selecting from the unlabeled group.

6.1.4 Active Learning Engineering

One of the main reasons for the increasing popularity of Deep Learning models was the creation
of big datasets and the use of Graphical Processing Units (GPU). However, in research and business,
we can also see that this advancement was aided by open source libraries that allowed developers
to easily implement these models and use GPUs resources. Libraries such as TensorFlow1 and Py-
Torch2 ease the process of developing Deep Learning models. Not only that, these libraries address
issues such as the ETL pipeline and model evaluation as well. If we want Active Learning to be
used by more researches and outside of academia we believe that a similar path must be taken, and
a library must be created.

The library should address the whole Active Learning cycle and easily allow the integration of
Deep Learning models developed from a di�erent range of libraries. Furthermore, the library should
also focus on engineering questions related to how we sample the unlabeled group and how we train
our model. Additionally, we need to focus on �nding better solutions for not retraining the model
at each Active Learning step. As we have discussed in Section 5.4, retraining a DL model is a costly
and time consuming operation. We understand that we use Maximum Likelihood Estimation to �nd
the weight parameters of a DL model, and because of that, these parameters cannot be considered
a valid posterior for when we retrain a new model with new data. However, we must think of a more
practical approach than retraining the model at each Active Learning cycle, even if that approach
is not mathematical our statistically sound. We have made an initial experiment considering this
approach, as can be seen on Appendix B.2, but further research must still be made to solidify this
scenario.

Finally, we understand that this path is one of an engineering research, but we further state
that this is a necessary research to do. If we want to enable the use of technology to more and more
people, we need engineering solutions for this mean and Active Learning is not di�erent.

1https://github.com/tensor�ow/tensor�ow
2https://github.com/pytorch/pytorch
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6.1.5 Update Active Learning cycle for Deep Learning models

In our work, in every step of the Active Learning cycle, we have trained the whole DL model.
Although this is the classical approach in Active Learning, we have experienced that it possess
major drawbacks when using DL, since training the whole model is a costly process. One approach
to better handle that issue is to not train the whole model again at each cycle, but just the Clas-
si�cation layer of the network. To better understand what that means, we can visualize our DL
model as a combination of two distinct networks, the Feature Learner layer and the Classi�ca-
tion layer. The Feature Learner layer is the one responsible for receiving the raw input data and
convert it into a more optimal format that allow to better separate the classi�cation instances of the
problem. Once the Feature Learner produces this result, the Classi�cation layer produces the
�nal decision of the network. In our case, we could see the LSTM layer as the Feature Learner
and our Fully Connected and Softmax layers as the Classi�cation learner.

Based on that distinction, we strongly believe that a more adequate Active Learning cycle to
use together with a DL model is the following one:

• Train the model with the available labeled data.

• Use the model to select the most informative samples from the unlabeled data.

• Give the data for the oracle to label it

• Retrain only the Classi�cation layer of the model with the new labeled data ( Once we have
enough data, retrain the whole model, both Feature Learner and Classi�cation layers)

• Restart the Active Learning cycle

By using this cycle, we will guarantee that we will train our model faster during each Active
Learning cycle, since we will only train a subset of its network. Furthermore, we believe that we
would have less noise results, since we will not retrain our Feture Learner layer at each cycle.
Because of that, we thing that it will be worth to experiment with that new Active Learning cycle,
however, we understand that this setting now possess new hyperparameters, such as the threshold
on the amount of data needed to retrain the whole model at an Active Learning cycle. This would
need to be found empirically, but we still believe that this cycle is more optimal than the one used
in this research and could potentially achieve better results than the ones found on this work.



Appendix A

Evidence Lower Bound

This chapter will be used to described how the Evidence Lower Bound(ELBO) was derived
when we are measuring the similarity between qλ(θ) and p(θ|X,Y). Remember that to measure the
similarity between the distributions we are measuring the KL divergence between them A.1:

KL(qλ(θ)||p(θ|X,Y)) =

∫
qλ(θ)log

qλ(θ)

p(θ|X,Y)
dθ (A.1)

We can start rewriting this equation using the following steps:

KL(qλ(θ)||p(θ|X,Y)) =

∫
qλ(θ)log

qλ(θ)

p(θ|X,Y)
dθ (A.2)

KL(qλ(θ)||p(θ|X,Y)) =

∫
qλ(θ)[logqλ(θ)− logp(θ|X,Y)]dθ (A.3)

Now, recall that:

p(θ|X,Y) =
p(Y|X, θ)p(θ)

p(Y|X)
(A.4)

Therefore we can expand A.3 into A.8:

KL(qλ(θ)||p(θ|X,Y)) =

∫
qλ(θ)[logqλ(θ)− log p(Y|X, θ)p(θ)

p(Y|X)
]dθ (A.5)

KL(qλ(θ)||p(θ|X,Y)) =

∫
qλ(θ)[logqλ(θ)− [logp(Y|X, θ)p(θ)− logp(Y|X)]]dθ (A.6)

KL(qλ(θ)||p(θ|X,Y)) =

∫
qλ(θ)[logqλ(θ)− logp(Y|X, θ)p(θ) + logp(Y|X)]]dθ (A.7)

KL(qλ(θ)||p(θ|X,Y)) =

∫
qλ(θ)[logqλ(θ)− logp(Y|X, θ)p(θ)]dθ + logp(Y|X) (A.8)
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Because:

∫
qλ(θ)logp(Y|X)dθ = logp(Y|X)

∫
qλ(θ)dθ (A.9)

Since qλ(θ) is a valid probability distribution,
∫
qλ(θ)dθ = 1. Therefore,

∫
qλ(θ)logp(Y|X)dθ =

logp(Y|X). With that step explained, we can further expand A.8 into A.14.

KL(qλ(θ)||p(θ|X,Y)) =

∫
qλ(θ)[logqλ(θ)− logp(Y|X, θ)p(θ)]dθ + logp(Y|X) (A.10)

KL(qλ(θ)||p(θ|X,Y)) =

∫
qλ(θ)[logqλ(θ)− [logp(Y|X, θ) + logp(θ)]]dθ + logp(Y|X) (A.11)

KL(qλ(θ)||p(θ|X,Y)) =

∫
qλ(θ)[logqλ(θ)− logp(Y|X, θ)− logp(θ)]dθ + logp(Y|X) (A.12)

KL(qλ(θ)||p(θ|X,Y)) =

∫
qλ(θ)[logqλ(θ)− logp(Y|X, θ)− logp(θ)]dθ + logp(Y|X) (A.13)

KL(qλ(θ)||p(θ|X,Y)) =

∫
qλ(θ)[log

qλ(θ)

logp(θ)
− logp(Y|X, θ)]dθ + logp(Y|X) (A.14)

We can see that:

∫
qλ(θ)

qλ(θ)

logp(θ)
dθ = KL(qλ(θ)||p(θ)) (A.15)

After identifying that, we can further expand A.14 into A.18:

KL(qλ(θ)||p(θ|X,Y)) =

∫
qλ(θ)[log

qλ(θ)

logp(θ)
− logp(Y|X, θ)]dθ + logp(Y|X) (A.16)

KL(qλ(θ)||p(θ|X,Y)) = −
∫
qλ(θ)logp(Y|X, θ)dθ +KL(qλ(θ)||p(θ)) + logp(Y|X) (A.17)

KL(qλ(θ)||p(θ|X,Y)) +

∫
qλ(θ)logp(Y|X, θ)dθ −KL(qλ(θ)||p(θ) = logp(Y|X) (A.18)

Now, if we call
∫
qλ(θ)logp(Y|X, θ)dθ −KL(qλ(θ)||p(θ)) as F, we can see that A.18 turn into

A.19:

KL(qλ(θ)||p(θ|X,Y)) + F = logp(Y|X) (A.19)

Since the KL divergence is always ≤ 0, we can see that F ≤ logp(Y|X). Since in the Baye's
theorem A.4, the constant term p(Y|X) is called the evidence of our model, we can see that our F
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is an Evidence Lower Bound of that term. Therefore, that's why our F variable is actually called
the Evidence Lower Bound(ELBO) when we are using Variational Inference.



Appendix B

Additional Experiments

In this section we will cover additional performed experiments that were not displayed in Section
5.

B.1 Active Learning - Iteration 6 Additional Experiments

In Section 5.3.7 we have displayed the results of performing our Active Learning experiments
for the SD. However, in this Section, we did not displayed the graphs with the standard deviation
plotted. This section will present these graphs and analyze their results.

First, we can analyze the individual ALU models in comparison with the LSTM_RANDOM
model in Figures B.1, B.2 and B.3.

Figure B.1: Comparison between our ALU_I and our LSTM_RANDOM model for the SD dataset using
EPO=150, Q=10, NC=400 and DROP=0.5 using the standard deviation around each point.
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Figure B.2: Comparison between our ALU_E and our LSTM_RANDOM model for the SD dataset using
EPO=150, Q=10, NC=400 and DROP=0.5 using the standard deviation around each point.

Figure B.3: Comparison between our ALU_LC and our LSTM_RANDOM model for the SD dataset using
EPO=150, Q=10, NC=400 and DROP=0.5 using the standard deviation around each point.

We can see that even plotting the standard deviation, the curves do not overlap. We can see
more overlap when we plot all models together, as can be seen in Figure B.4, but as we have seen
in Table 5.9, although there is overlap in the end of the curves, the ALU_I model reaches a higher
accuracy earlier than the other models.
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Figure B.4: Comparison between our ALU_I, ALU_E, ALU_LC and our LSTM_RANDOM model for
the SD dataset using EPO=150, Q=10, NC=400 and DROP=0.5 using the standard deviation around each
point.

We can see the same scenario for the comparison of the CEAL_I and the ALU_I models,
were there is overlap in the end of the curve, but the ALU_I reaches a better accuracy earlier, as
can be seen in Figure B.5.

Figure B.5: Comparison between our ALU_I, CEAL_I and our LSTM_RANDOM model for the SD
dataset using EPO=150, Q=10, NC=400 and DROP=0.5 using the standard deviation around each point.

Finally, this scenario is also present in the comparison of the ALU_I and the softmax model
ALS_I, where the overlap happens, but the ALU_I reaches a better accuracy earlier, as can be
seen in Figure B.6.
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Figure B.6: Comparison between our ALU_I, ALS_I and our LSTM_RANDOM model for the SD dataset
using EPO=150, Q=10, NC=400 and DROP=0.5 using the standard deviation around each point.

B.2 Continuous Active Learning

One approach that we have researched in the Continuous Active Learning. This scenario work
as follows: we train our initial model with our de�ned number of epoches (150) and in the next
AL cycles, we do not reset the model, but instead train it for an addiational number of epoches.
This approach aims at solving one of the biggest problems of Active Learning, that is to retrain the
model at each step.

Based on this approach, we have de�ned a new AL mode, CONTINUOUS_ALU_I, based
on the Monte Carlo Dropout and Mutual Information metric. We have decided to further train our
continuous model for 50 epoches at each AL cycle. After creating this model, we have achieved the
results displayed in Figure B.7.
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Figure B.7: Comparison between our ALU_I, CONTINUOUS_ALU_I and our LSTM_RANDOM model
for the LMRD dataset using EPO=150, Q=10, NC=100 and DROP=0.5.

We can see in Figure B.7 that theCONTINUOUS_ALU_Imodel achieves a higher accuracy
early on, di�erent from the ALU_I and LSTM_RANDOM. However, we can also see that the
model achieves a plateau at around 500 training examples. During this research, we could not
understand why this model was behaving like that, but with more time in hands, we believe this
can be an useful path to further research on, specially considering the speed up we would enable in
using AL together with DL.
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