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Abstract

Moneda, L. G. Domain Generalization, Invariance and the Time Robust Forest. 2021. 120
f. Master thesis - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2021.

As time passes by, the performance of real-world predictive models degrades due to distribu-
tional shifts. Typical countermeasures, such as retraining and online learning, can be costly and
difficult to implement in production, especially when business constraints and culture are accounted
for. Causality-based approaches aim at identifying invariant mechanisms from data, thus leading to
more robust predictors at the possible expense of a decrease in short-term performance. However,
most such approaches scale poorly to high dimensions or require extra knowledge such as segmen-
tation of the data in representative environments. In this work, we review the literature on the
limitations of Machine Learning in real settings, with a focus on approaches that use causality con-
cepts to improve generalization. Motivated by the shortcomings discussed above, we develop Time
Robust Forests (TRF), a new algorithm for inducing decision trees with an inductive bias towards
learning time-invariant rules. The algorithm’s main innovation is to replace the usual information-
gain split criterion (or similar) with a new criterion that examines the imbalance among classes
induced by the split through time. Experiments with real data show that our approach can improve
long-term generalization, thus offering an interesting alternative for dynamical classification prob-
lems.

Keywords: Causal Invariance, Domain Generalization, Inductive Bias.
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Resumo

Moneda, L. Generalização de domínio, Invariância, e a Floresta Temporalmente Ro-
busta. 2021. 120 f. Dissertação de Mestrado - Instituto de Matemática e Estatística, Universidade
de São Paulo, São Paulo, 2010.

Com o passar do tempo, o desempenho de modelos preditivos em dados reais degrada devido
a mudanças na distribuição dos dados. Medidas típicas como o retreino e aprendizado em tempo-
real podem ser custosas e difíceis de implementar em produção, especialmente quando restrições
de negócio e cultura organizacional são levados em conta. Abordagens baseadas em causalidade
buscam identificar mecanismos invariantes nos dados, resultando em preditores mais robustos às
custas da diminuição de desempenho no curto prazo. Grande parte dessas abordagens, porém, não
escala bem com alta dimensionalidade, ou requer conhecimento extra, tal como a segmentação do
conjunto de dados em ambientes representativos. Neste trabalho, revisamos a literatura sobre as
limitações do Aprendizado de Máquina em cenários reais com um foco em abordagens que usam
conceitos de causalidade para melhorar a generalização. Motivados pelas deficiências discutidas
acima, desenvolvemos a Floresta Temporalmente Robusta (TRF), um novo algoritmo para induzir
árvores de decisão com um viés indutivo para o aprendizado de regras temporalmente invariantes.
A inovação do algoritmo está em substituir o habitual critério para divisão baseado em ganho de
informação por um novo critério que toma em consideração o desbalanceamento entre as classes a
serem separadas em uma perspectiva temporal. Experimentos com dados vindos de aplicações reais
mostram que nossa abordagem pode melhorar a generalização no longo prazo, oferecendo desta
forma uma alternativa para problemas de classificação de caráter dinâmico.

Palavras-chave: Invariância causal, Generalização de domínio, Viés indutivo.
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Chapter 1

Introduction

Machine Learning techniques are mainly evaluated by their ability to generalize, that is, to find
useful patterns from a training data sample that satisfactorily apply to unseen instances [Bis06].
Typically, that process involves a time dimension: training data refers to the past, while unseen
instances will be obtained in the future. This temporal characteristic is usually dismissed by a
time-stationary assumption of the data generating distribution. In practice, sampling distributions
are seldom stationary, which causes spurious correlations to be learned.1 By blindly minimizing
training error (or empirical risk), Machine Learning models absorb such relationships [ABGLP19]
and fail to generalize when deployed in a real setting, even when a generalization promise from the
validation stage is observed [DHM+20, RSG16]. This notion of generalization beyond the distribu-
tion observed in the training set is called Domain Generalization [GLP20], or Out of Distribution
(OOD) Generalization [Arj21].

Spurious correlations can be defined as the non-causal statistical relationships between the tar-
get and non-target variables [Pea97, Pea09]. Causal analysis, however, is most commonly used on
problems involving interventions or counterfactuals, as ensuring causal ordering of the relation-
ships can be detrimental to predictive performance (hence to generalization). Recently, however,
researchers have started advocating the benefits of ensuring properties of causal relationships even
for purely predictive problems [GLP20].

One such property is invariance: causal relationships are invariant with respect to different en-
vironments, which are external settings of the covariates [PJS17, Car03]. By enforcing invariance
in a learning algorithm, we regularize against spurious correlations [ABGLP19]. For example, In-
variant Causal Prediction [PBM15] learns invariant predictors by finding a subset of the covariates
such that the corresponding residual error when regressing on the target variable follows certain
properties. Invariant Risk Minimization [ABGLP19] attempts to remedy generalization issues by
optimizing an objective function that penalizes lack of invariance. The approach is more suited for
parametric models, and a practical objective function has only been derived for linear models.

The previous approaches strongly rely on acquiring data from different environments. Such data
can be collected from similar but different sub-populations [MPJ+16, SS18], or they can be fab-
ricated by manipulation, such as by altering image backgrounds [ABGLP19]. Another prevalent
source is time: as time passes by, we obtain different environments by a process known as dis-
tributional shift [QCSSL09]. Since data are often collected through extensive periods, obtaining
environments by segmenting time periods is appealing. Environment diversity is then corroborated
by observing that model performance decays over time [LLD+18, Rea18].

1There is often an inductive bias in learning algorithms towards estimating simpler accurate models, and for
complex tasks, spurious correlations are often simpler than non-spurious ones [WRS+17, ABGLP19]. A typical
example is learning to classify a wolf image by the presence of snow.
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2 INTRODUCTION 1.2

1.1 Contribution

In this work, we develop Time Robust Forests, a new recursive partitioning learning algorithm
for generating classification or regression tree ensembles robust against distributional shifts. The al-
gorithm takes time-stamped data segmented in groups composed of sequential examples to represent
environments, which it uses to learn more stable predictors. By exploiting the prevalent available
time ordering of data instances, we can balance short-term prediction performance and robustness
to out-of-distribution data, with nearly no overhead to the user. Being a recursive partitioning
learner, the proposed approach offers the flexibility of a non-parametric and nonlinear model while
inheriting a rich toolset for model analysis and interpretation [BFSO84].

1.2 Outline

The rest of this monograph is organized as follows: In Chapter 2, the needed concepts related to
predictive tasks are presented, like Empirical Risk Minimization, Validation, Dataset shift, and the
algorithms for the Decision Tree and Random Forests. At the same time, we briefly introduce the
challenges of generalization. In Chapter 3, we present the necessary concepts from the Causality
field to motivate their exploration to overcome the current challenges regarding generalization:
Spurious correlation, Causal Forests, Structural Causal Models, Independent Causal Mechanisms,
Interventions, and Environments. In Chapter 4, we review a couple of the current approaches
to achieve domain generalization (Invariant Causal Prediction (ICP), Invariant Risk Minimization
(IRM)) and briefly introduce others. In Chapter 5, the Time Robust Trees (TRT) and Time Robust
Forests are presented, followed by a motivational and a synthetic example to illustrate them, while
in Chapter 6 we test these algorithms in a variety of real-world data cases. Discussions about the
advantages, the limitations, and future work are found in Chapter 7.



Chapter 2

Statistical Learning Theory

2.1 The Empirical Risk Minimization inductive principle

The statistical learning theory seeks to answer which cases and how well one can learn a function
that maps one or more random variables to a random variable of interest. This fundamental problem
can be stated as the desire to learn the function f∗ that maps a random variable X to a target
variable Y , X f∗−→ Y . To learn it, we have at our disposal a training sample S, which means n pairs
of instances in which we observe X and Y associated, S = {(X1, Y1), (X2, Y2), ..., (Xn, Yn)}. We
assume the function f∗ we intend to learn belongs to a set of possible functions called hypothesis
space, f ∈ H. With all these elements, a learning algorithm is determined to learn a particular f̂
in H. A loss function L is defined to evaluate the quality of the learned function f̂ in the task of
associating the variables in X to Y , so it is possible to choose the best solution for this problem.
We want to minimize the expected loss considering the unknown distribution of X and Y , p(X,Y ).
The expected loss is called risk, represented for a certain function f as:

R(f) =

∫
L(Y, f(X))dp(X,Y ) (2.1)

Since we do not observe p(X,Y ), the practical setting of the learning problem is to minimize the
Equation 2.1 in respect to an independent and identically distributed (i.i.d.) sample from p(X,Y )
[Vap13], known as the Empirical Risk:

Remp(f) =
1

n

n∑
i

L(Yi, f(Xi)) (2.2)

The properties provided by this learning theory about the convergence of this empirical approach
and how well it generalizes depend on the i.i.d. assumption. The learned function f̂ is what we will
call a model1.

2.2 Generalization

Generalization is a widely used term in Machine Learning. The general meaning relates to
the ability to understand new instances of a problem after extracting supposedly general rules
from a number of specific examples. The f function presented in the ERM principle dictates the
relationship between any example coming from the distribution p(X,Y ), so there is no distinction
between how well f generalizes for any other random sample from this distribution. However, the
statistical learning problem we have presented is about learning from the training sample S, which
has a distribution ptrain(X,Y ). If we expect it to do well in p(X,Y ), it means we expect it to do well
in random samples from it. As a proxy for this random sample, a distribution ptest(X,Y ) obtained
from a different data set Stest is often used. While, in theory, generalization means doing well in

1The term model is overloaded since it is used to describe the data generating process and its joint distribution.

3



4 STATISTICAL LEARNING THEORY 2.3

p(X,Y ), in practice, it is assessed by how well the model does in ptest(X,Y ). The risk representing
the generalization power of the learned f̂ is represented by the risk Rtest(f) calculated replacing
p(X,Y ) with ptest(X,Y ) in Equation 2.1.

2.3 Model selection and validation

Machine learning success is backed by its empirical nature that enables one to verify the pre-
diction power of the models. There are two stages during model development where the model
is assessed. The first one is the Model Selection stage [K+95] [Sto74], in which one wants to se-
lect the best procedure possible among all the alternatives since there is typically no single best
option [WM+95], including learning algorithm, data pre-processing, feature engineering, hyper-
parameters, and decision threshold. The second stage is called validation, and it estimates how the
selected model from the previous stage will perform when used in a random sample of the true
distribution. Performance metrics are estimated in both of them as a proxy of the generalization
power of the models, so we can select the best one and estimate how good the solution using it
will be when facing the real-world data. While it is common to find practitioners that name either
stage as validation, each stage performs very different assessments. In the first stage, data is used
to make modeling decisions. In the second stage, data is used only to estimate future performance
(so no decisions are taken here).

More important than the usage of the performance metrics in both stages is the way they are
designed and their implications on how well they represent the generalization power of the model
[DHM+20]. In the following subsections, we review the most common design choices for model
selection and validation.

2.3.1 Data split: train, validation and test sets

Inspired by the theoretical framework of ERM, in which we learn from a sample and perfor-
mance boundaries are guaranteed for a random sample from the same distribution used to train, a
straightforward validation design is to randomly select a proportion of the data available to train
the model. In contrast, the remaining examples are used to assess its quality [Lar31]. Since a couple
of modeling decisions need to be made and practitioners want to use performance as a compass,
a third split is created, which is not used to train the model but to evaluate how it is impacted
by different choices for input variables (feature selection), type of model, hyper-parameters, etc. A
usual nomenclature is “Training set”, “Validation set” and “Test set”, or “Holdout set”. However,
practitioners will often use the last three terms interchangeably2.

Available Data

Training Validation Test

Figure 2.1: A common practice to evaluate models is to pretend we have unseen random i.i.d data by
splitting all the available data into three groups. The first is used to take modeling decisions, while the second
provide the final assessment in terms of predictive performance

Another common way of splitting the data to assess generalization is the K-fold cross-validation
[MT68]. It consists in slicing the data into K groups and performing training K times using every

2Note the confusion: the validation stage uses the test set portion, while the validation dataset is used in the
model selection stage to provide a less biased evaluation of different modeling decisions.



2.5 WHY GENERALIZATION IS CHALLENGING 5

slice as the test data once. In the end, the K measurements can provide average and standard
deviation about the performance metric.

All the mentioned methodological designs enable the user to perform bootstrapping, a resam-
pling technique consisting of sampling with replacement to have a variability measurement of the
estimated metrics, a common practice when the sample size is small or when a significant variance
in the results is expected.

2.4 Why generalization is challenging

The ERM is a widely used principle in Machine Learning as many learning algorithms indeed
rely on learning from an observed sample and have their properties guaranteed when they need
to generalize to a new i.i.d. sample. It turns out this assumption does not hold most of the time,
primarily due to what is called dataset shift.

Dataset shift can materialize as different categories of problems, and we focus on three of them.
We can have a change in the inputs’ distribution, p(X), a covariate shift; or we may have a change
in p(y), the output, a target shift, if p(Y | X) is fixed, and a generalized target shift if p(Y | X)
also changes; finally, we may have a change in p(Y | X), while p(Y ) is fixed, a conditional shift, also
called concept drift or pure concept drift [ZSMW13] [QCSSL09]. The term concept drift or shift is
sometimes used interchangeably with dataset shift.

When we have a covariate shift, it might happen that the new distribution does not share the
same input features’ range observed in the training examples. In a non-parametric model, the val-
ues might be truncated by what was observed. In contrast, a parametric model tries to generalize
following what we have learned with the available data and the given constraints about the func-
tional form. The generalization estimates will not reflect the actual performance, as distributionally
different examples are feeding the model. In the case of a learning algorithm that learns the optimal
average case, it will no longer be optimal since the average case has changed [Shi00] [SSN+08].

A target shift causes problems depending on the assumptions of the model [Sto09]. In Naive
Bayes [HY01], for example, a model of the joint distribution p(X,Y ) = p(X | Y )p(Y ), which is used
to compute p(X | Y ). Thus, a significant change in p(Y ) between train and test time will cause the
degradation of the predictions. If the change in test for p(Y ) is known, considering that p(X | Y )
is fixed, it is possible to learn from the train and succeed in the test, but it is not the usual case.

Concept shift causes problems because it means a change in the relationship between one or
more input variables and the target, p(Y | X). For example, if high average temperatures are posi-
tively associated with ice cream consumption, a concept drift could mean it becomes less associated,
disassociated, or inversely associated. Since a model has learned in a training set the initial associ-
ation and counts on it to do well in future predictions, any change in this association will degrade
the model performance.

There are other kinds of dataset shifts described in the literature: domain shift, when changes
in measurements make the relationship between variables change; sample selection bias, when the
distribution changes due to different filtering processes applied in training data and the sets the
model will be applied; source component shift, when the data is composed by different sources and
their proportion change; and imbalanced data, a deliberate dataset shift to favor some modeling
approaches [QCSSL09].

The behavior described in dataset shift brings a dynamic view of the data, while the described
framework under ERM expects a static and well-behaved dataset to learn from and generalize for
unseen instances. This dynamic nature of data is one of the things that makes generalization hard
by minimizing training error.

2.5 Domain Classifier

A Domain Classifier evaluates how much dataset shift there is in a particular problem. The
training data is also called the source domain, and the data on which we want to apply the model
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to solve a task would be the target domain [RGL18]. As in validation, we can use part of the source
domain as a target domain to emulate the unseen future situation. Framing the ERM assumption
using these definitions, we can say that learning algorithms expect the source domain and target
domain to be the same, to follow identical distributions and relationships. One way to verify how
far from this assumption we are is to use a Domain Classifier [RGL18]. This technique uses a model
trained to classify data points into source or target domains. For example, one can use the temporal
data split from the previous section, label the train data and the out of time holdout differently,
and build a binary classifier to identify them. A model with a strong performance in such a task can
easily differentiate past data from future data, which means the data from the future is very different
from what was observed in the past, while a bad classifier means they are indistinguishable. If the
classifier cannot differentiate source and target domains, learning from the source will be helpful to
generalize in the target, while the opposite makes it hard to extrapolate in the target domain.

2.6 Validation under dataset shift

Motivated by the challenges exposed in the Section 2.4 and the notion of source and target
domain described in the Section 2.5, instead of using a random split of the available data, it
became common to split it temporally, creating a past training set and assessing performance in
future unseen data. This design does not solve the challenges described, but it enables practitioners
to evaluate its effect and take action if needed. The more different types of dataset shift impact the
future data, the harder it is for a model trained on past data to generalize to the future data. If we
split the data in random proportions, we would lose the notion of dynamism and evaluate the model
in a likely unrealistic setting. The temporal split means the model will face a data distribution that
is more similar to the reality, which makes the validation stage closer to its final goal: assessing
model generalization power when applied to new examples.

Training Validation Test

Time

Figure 2.2: In order to make the validation stage closer to the real scenario, instead of using a random
sample, a time split is performed to offer the intuitive set of using past data to predict future outcomes. This
practice shows how validation strategy changed to better address the problem of spurious correlations.

2.7 Decision Tree

Classification and Regression Trees (CART) [BFSO84], also known as Decision Trees, is a par-
titioning representation that splits instances according to their characteristics until a decision or
inference can be made. To learn a decision tree classifier or regressor, algorithms such as ID3 [Qui86],
and C4.5 [Qui14] use a recursive approach that partitions the data using the available input in-
formation until it reaches different stop conditions to make a leaf, where it uses the containing
examples to make a prediction.

The splitting criterion differs depending on whether it is a regression or a classification task
or simply by different choices for the same task. In regression, one can use the variance reduction
[BFSO84], which tries to reduce as much as possible the variance of the target variable in the two
generated nodes after splitting in respect to the previous variance observed in the parent node, as
seen in the Equation 2.3, where Sleft and Sright are the sets of examples contained in the left and
right splits. At the same time, yi is the ith example of the target variable, and µ is the average of the
target for the respective split. In the classification case, the Gini Impurity measures the mistakes
of predicting the majority class, as given by Equation 2.4. In that equation, J is the number of
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classes, pi is the probability of being from the class i. Another option for the classification task is
the Information Gain [Qui86] that uses the Shannon Entropy H(X) [Sha48], where T represents
the training set, (X, Y ) = (X1, X2, X3, ..., Xk, Y ); and Sa(v) represents the subset from T where
the feature a has a certain value v ∈ vals(a), that is, Sa(v) = {x ∈ T | xa = v}. We see in Equation
2.5 that the IG compares the entropy difference with and without the split using the feature a.

IV (N) =
∑

i∈Sleft

(yi − µleft)2 +
∑

i∈Sright

(yi − µright)2 (2.3)

IG(p) = 1−
J∑
i=1

p2
i (2.4)

H(X) = −
n∑
i=1

P (xi)logP (xi)

H(T | a) =
∑

v∈vals(a)

|Sa(v)|
|T |

.H(Sa(v))

IG(T, a) = H(T )−H(T | a)

(2.5)

There are different stopping conditions in Decision Trees that work as hyper-parameters of the
model. The objective is to reduce overfitting since the limit case splits the data until the leaves
contain a single example. The maximum depth constraints the number of times the algorithm splits
the data by stopping it as soon as the current depth is equal to it. The root node is at depth 0, and
after a split, we increment it by one; the minimum samples to split considers we have a minimum
sample in a node in order to split it; the minimum samples at leaf constraints the number of
examples needed to consider a node a leaf, which means the minimum samples to make inferences.
Though there are other hyper-parameters the state-of-art decision trees implement, these are the
most relevant for this work.

We describe a simple version of the ID3 in the Algorithm 1. We do the first call to Learn-
DecisionTree with all the training data in X, a minimum number of examples to keep splitting
it, σ, and the maximum depth we want the tree to grow to, d. Notice σ and d constitute the stop
conditions. If these conditions are not met, we split the data by calling CreateSplit, which finds
the best split, apply it to the data creating two samples of it, Xleft and Xright, to which we keep
recursively splitting until the stop conditions are met. To find the best split, we use the Find-
BestSplit, which iterates in all possible variables and their values to evaluate them considering a
specific criterion, like the Gini Impurity.

2.8 Random Forest

A Random Forest [Bre01] is an ensemble of Decision Trees, which means it combines many
Decision Trees solving the same task to get a stronger model. If all the trees making the forest
were equal, there would not be any benefit in combining them. In order to provide some variability
to the trees, Random Forest has two main strategies: bootstrapping the training examples before
building a new tree and taking into consideration only a subset of the features when searching for
the optimal split. The number of trees in the forest is controlled by the number of estimators and
the number of features considered when splitting by the maximum features hyper-parameter.

If a Random Forest contains M estimators, the final prediction ŷ becomes 1
M

∑M
m=1 ŷm, which

means it takes the average result as the final output.
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Algorithm 1 Decision Tree ID3 Algorithm
1: procedure LearnDecisionTree(X, σ, d)
2: if d ≥ 1 and there are at least σ examples in X then
3: CreateSplit(X, σ, d)
4: end if
5: end procedure
6:
7: procedure CreateSplit(X, σ, d)
8: Xleft, Xright = FindBestSplit(X, σ)
9: LearnDecisionTree(Xleft, σ, d− 1)

10: LearnDecisionTree(Xright, σ, d− 1)
11: end procedure
12:
13: procedure FindBestSplit(X, σ)
14: score = -inf
15: for Every variable f in X do
16: for Every value vf of f do
17: Xleft = examples where Xf ≤ vf
18: Xright = examples where Xf > vf
19: if Number of examples in Xleft and Xright is greater than σ then
20: current_score = GiniImpurity(Xleft, Xright)
21: if current_score < score then
22: score = current_score
23: f∗ = f
24: v∗f = vf
25: end if
26: end if
27: end for
28: end for
29: if score 6= -inf then
30: Xleft = examples where Xf∗ ≤ v∗f
31: Xright = examples where Xf∗ > v∗f
32: else
33: Xleft = {}, Xright = {}
34: end if
35: return Xleft, Xright

36: end procedure



Chapter 3

Causality concepts

In this Chapter, we present some concepts related to causality to connect generalization to the
data generating process described by a Structural Causal Model (SCM), a series of relations seen as
descriptions of causes by their effects. The SCM is needed to define interventions and environments,
which are needed to describe the principle of the Independent Causal Mechanism. The principle
motivates the idea of invariance through environments, the core idea behind the inductive bias
on which Time Robust Trees are built. Although the contribution regards the usage of this new
algorithm for predictive tasks and without using a causal representation, the motivation and the
property behind it comes from the Causality field.

3.1 Structural Causal Models

To represent causal relationships, it is common to use Structural Causal Models (SCM) [Pea09],
an extension of the Structure Equation Modeling [Wri18].

Definition 1. A Structural Causal Model is composed of three sets: (V,U, F ), where V is the
endogenous variables set, which are defined by other variables inside the considered system; U are
the exogenous variables, assumed to be fully independent, , whose values are defined outside the
system; F is the set of functions that maps the values of the variables in V to other variables in V
and U , in the form Vi = fi(PAi, Ui), where PA are the parents of Vi, that is, the set of variables
in V that define Vi,

We can use the information about which variables define each other to factorize the joint dis-
tribution.

p(V1, ..., Vn) =

n∏
i=1

p(Vi | PAi)

A Directed Acyclic Graph (DAG) is a graphical representation of the relations in an SCM made
by connecting with directed arrows the variables in PAi to Vi. For example, consider the following
SCM:

X1 ← U1

X2 ← X1 + U2

Y ← 2X2 + U3

(3.1)

We can represent it as the following DAG, where we omit the U :

X1 X2 Y

9
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The DAG offers a graphical representation of an SCM, which provides clarity on the assignment’s
assumptions and enables the creation of graphical criteria for causal concepts [Pea09].

One important theorem is the Causal Markov Condition, which states that every variable Vi is
independent of all its non-descendants given its parents PA(Vi) under any intervention, a concept we
will define in a following section [VP91]. Using the example provided, it means that X1 ⊥⊥ Y | X2.

3.2 Spurious Correlation

Intuitively, spurious correlations are correlations that do not stand the test of time [ABGLP19].
To define correlation, Pearson [A+95] starts from a causation definition before he states the

importance of this broader association type, which ranges from absolute independence to complete
dependence. An event A would be considered a cause of the event B if A always precedes B, and
without A, B would not take place [Pea97], a notion later criticized since the B can have multiple
sufficient causes, which would make A not necessary. Having the notions of causation, Pearson
states that “Causation is correlation, except when correlation is spurious, when correlation is not
causation” [A+95]. Everything that presents association, when it is not via a causal relationship, is a
spurious association. For Pearson, correlation is powerful because though it is not always causation,
sometimes it is.

Yule (1926) highlights the kind of relationship in which even though two events might not
present a causal relationship, they can be related to each other indirectly by a very indirect chain of
causation. He considers this is the case when completely nonsense variables show association for a
short period [Yul26]. A classical repository for this case is the “Spurious Correlation website”1, where
one can find, for example, a plot showing a high correlation between divorce rate and margarine
consumption. Yule (1926) characterizes this case as a result of a small sample in a shorter period
than needed to give us the true correlation. Though the discussion from Yule and the examples
from the Spurious Correlation website are about this exact case, time series in a reasonably short
time, it is not that rare that this kind of nonsense correlation happens in large tabular data. We
take the parallel of something that happens by chance in a sample and that we would probably
not keep observing if we have access to the population. Some features correlate with the target in
supervised learning even if shuffled, a fact that enabled feature selection procedures like Permutation
Importance (PIMP) [ATSL10].

Reichenbach (1956) [RR56] introduces a third variable to define causality on his common cause
principle, according to Peters (2017) [HDPM17].

Definition 2. If two random variables X and Y are statistically dependent (Y 6⊥6⊥ X) there exists
a variable Z that causally influences both. (As a special case, Z may coincide with either X or Y ).
Furthermore, this variable Z screens X and Y from each other in a sense that given Z, they become
independent, X ⊥⊥ Y .

Thus this variable Z, also known as a confounder when not in the special case, becomes a source
of a spurious correlation when not considered in the analysis or not observed.

A classic example of the common cause case, known as confounding, is the observed spurious
correlation between ice cream consumption (X) and crime rate (Y ), which is confounded by day
temperature (Z). So in the summer, when it is hot, people consume more ice cream, but they also
occupy more public spaces and are more prone to crimes. We represent it by the DAG in Figure 3.1.
In this case, the spuriousness can be spotted in the causal structure that defines the phenomena
involving X, Y , and Z, which does not match the nonsense view of spuriousness since we can come
up with a story to explain it. We are not talking about something we observe by chance because
Z would cause this confusion about X and Y under every circumstance. The confounding case
does not cover other sources of non-causal association between X and Y , which is not related to a

1https://www.tylervigen.com/spurious-correlations
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common cause. One example is the conditioning in a common effect, which creates selection bias.
A typical example of this source of spuriousness regards the selection of a prestigious school that
uses sporting ability and academic ability to select its students. In the general population, these
traits are uncorrelated, while looking at the selected students in these schools will make us observe
a spurious negative correlation between academic and sporting ability [PM18].

Day Temperature

Crime Rate

Ice Cream Consumption

Figure 3.1: The common cause setting illustrates the concept of confounding, when a variable (Day Tem-
perature) impacts both the cause we are interested in isolate (Ice Cream Consumption) and outcome (Crime
Rates), which brings confusion to the relationship between the cause and the effect of interest.

As noted by Simon (1954) [Sim77], the spurious correlation problem needs a “precise and op-
erationally meaningful definition of causality”. Reinchenbach (1956) [RR56] took it further from
Pearson’s definition, then Pearl (2009) [Pea09] has offered theorems, concepts, and tools to enable
manipulation and study of phenomena related to cause and effect.

From Pearl’s framework, we present the definition of spurious association between two variables
X and Y [Pea09].

Definition 3. Two variables X and Y are spuriously associated if they are dependent in some
context and there exists two other variables (Z1 and Z2) and two contexts (S1 and S2) such that:

1. Z1 and X are dependent given S1 (i.e Z1 6⊥6⊥ X | S1)

2. Z1 and Y are independent given S1 (i.e Z1 ⊥⊥ Y | S1)

3. Z2 and Y are dependent given S2 (i.e Z2 6⊥6⊥ Y | S2)

4. Z2 and X are independent given S2 (i.e Z2 ⊥⊥ X | S2)

Notice this does not cover the common cause case since when we can observe all the variables
involved under the common cause, it would not produce a correlation between X and Y under the
causal Markov condition. The context variables S1 and S2 accept the empty case. Whenever we
observe a dependence between X and Y , and with the help of the control variables Z1 and Z2, given
the enumerated conditions, the only explanation for the dependence is a latent common cause, a
spurious association.

After starting this section with intuition and going through a couple of definitions, we get
back to intuition because the current causation concept is a construction to enable mathematical
manipulation and not a strict notion. Since spuriousness is constantly defined as causation absence,
it makes the latter contain a myriad of meanings. In general, we expect spurious relations not to
keep up, whether when we go from a sample of the data to the population, from one period of
the time to the next, or from one place to another. Even within this general view, though, we find
gaps. We can illustrate these gaps adapting Leibniz’s concepts of necessity and contingency [Ada82].
Necessary relations are true in every possible world, like gravity, while contingent ones are open
to different outcomes due to free will, as the relationship between salary and education years. A
contingent relationship could offer a certain degree of invariance, but we would hardly admit this
relationship is not open to changes.

Since characterizing the nature of the phenomena that orbits causation and randomness is
entirely out of scope, it is helpful to think about a spectrum from necessary causation to randomness.
Everything that departs from causation to randomness loses its keeping up property and becomes
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more spurious. We understand the notion of the community when talking about spurious correlations
refers to any relationship more or less apart from necessary causation and closer to randomness.

In this work, we will consider as a spurious correlation any relationship between variables that
might change if the SCM is modified, whether by interventions in exogenous variables, environment
changes, dataset shift, etc. These concepts will be described in the following sections.

3.3 Interventions and environments

An intervention replaces one or more of the functions fi defining the variables Vi in an SCM,
which includes replacing it with a constant. It models the replacement or modification of the causal
relationship between the variables of our problem. A valid intervention does not destroy too much
the causal relationship involving Y [ABGLP19]. Suppose we have the SCM presented in the Equa-
tion 3.1.

An example of intervention would be replacing X1 definition with X1 ← 10, which consists of
querying the model about what happens if one can force, determine or choose to set the variable
X1 to 10. Another example would be replacing the X2 equation by X2 ← 2X1 +N2.

Definition 4. Consider an SCM whose endogenous random variables are (X1, ..., Xd, Y ), and the
goal of learning is a predictive model for Y using X = (X1, ..., Xd). The set of environments εall is
defined by the distributions P (Y e, Xe) generated by a valid intervention e. An intervention e ∈ εall is
valid if the causal graph derived from the SCM remains acyclic, the variable of interest Y expectation
is the same, that is, E[Y e | Pa(Y )] = E[Y | Pa(Y )], and the variance V [Y e | Pa(Y )] remains finite.

Notice that an intervention is not necessarily human-driven or wanted. It covers the case of
exogenous variables changing due to the complex interaction of systems. Using this environment
definition, we argue that time is a good proxy for identifying them since many data changes happen
in sequences over time.

3.4 The principle of Independent Causal Mechanisms (ICM)

The principle of Independent Causal Mechanisms is defined by Scholkopf [SJP+12], as follows.

Definition 5. The causal generative process of a system’s variables is composed of autonomous
modules that do not inform or influence each other. In the probabilistic case, this means that the
conditional distribution of each variable given its causes (i.e., its mechanism) does not inform or
influence the other mechanisms.

The prominent example to illustrate this principle is the altitude and temperature relation-
ship [PJS17]. Imagine a dataset with the altitude and the average annual temperature from different
cities in a country, which provides us the joint probability p(a, t). One can factorize this probability
in two different ways.

p(a, t) = p(a | t)p(t)
= p(t | a)p(a)

(3.2)

These two factorizations suggest different assumptions about the causal structure. The first
suggests the causal graph T → A, and the second suggests A→ T . How would we know what the
right direction is?

Before analyzing the implications of these two possibilities, we could imagine interventions on
this problem, even if they are not reasonable or feasible.

Intervention 1: we somehow elevate all the cities in our dataset. What is the effect on the
average annual temperature? Considering what we know about physics, it is going to drop.
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Intervention 2: we artificially change the cities’ temperature by using a giant air conditioner.
What is the effect on altitude? We would not expect any change.

This brief imagination exercise reveals that an intervention could help us disambiguate such a
situation. We intervene in the hypothesized cause, and we watch for the effect. Though someone
can estimate from data both relationships, since nothing holds us from regressing T on A or A on
T , one of them is going to be a simple association, while the other reveals a causation mechanism
in which one can convert changes in A into changes in T .

What if the intervention is not available and our intuition cannot help with the causal direction
disambiguation? Instead of thinking about this data coming from a single country, imagine we have
different datasets from two countries, which are seen as the environments following the definition
from the previous section. We are going to identify them by a superscript.

pBrazil(a, t) = pBrazil(t | a)pBrazil(a)

pGermany(a, t) = pGermany(t | a)pGermany(a)
(3.3)

Brazil and Germany have a different distribution of cities altitude, but should not the rela-
tionship between altitude and temperature be equal no matter where we measure it? It follows (in
idealized settings), but only when we get the causal direction right. To make it clear, we can rewrite
it.

pBrazil(a, t) = p(t | a)pBrazil(a)

pGermany(a, t) = p(t | a)pGermany(a)
(3.4)

The invariance p(t | a) under different countries would enable Transfer Learning. Since it is
unnecessary to learn from Germany’s data to predict how to translate its cities’ altitude into tem-
perature predictions, we can reuse the same module learned from other countries.

3.4.1 ICM, Causal Discovery and a real example

The problem of identifying the relationships and their directions is known as causal structure
discovery, causal discovery, or structure identification, which is the problem needed to be solved
when deciding between T → A and A→ T .

With the assumption that the function connecting A and T is an Additive Noise Model (ANM),
there is a method based on the independence of residuals [MPJ+16]. The assumption is needed to
explore the invariance property we get when the causal model specification is correct. A correct
specification means the effects are defined by causes (causal direction) instead of the opposite (anti-
causal direction). Assuming an ANM:

Y = f(X) +NY

X = g(Y ) +NX
(3.5)

Where Y and the noise N are independent, and X is independent of N . The method to verify
it follows three steps.

1. Fit a function f as a non-linear model of X on Y

2. Compute the residual N = Y − f(X)

3. Check whether N and X are statistically independent

The results from Mooji (2016) [MPJ+16], which provides evidence of this method for other real
data cases, show a strong dependency in the anti-causal direction. We reproduce the result for the
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altitude and temperature case using data from Brazil [Mon21]. In Figure 3.2, the horizontal axis
of the two plots contains the X variable, which is the input, the cause. We can see that when
the temperature is taken as the cause of altitude (second plot), we observe the dependency. By
estimating the Pearson correlation between the residuals and the input, we have 0.077 (p-value,
0.06) for the anti-causal direction and 0.004 (p-value, 0.92) for the causal direction.
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Figure 3.2: The first plot shows no dependency between residuals and the cause, altitude. The second plot
shows a dependency, which indicates that the assumed cause, temperature, is in fact the effect.

3.5 Causal Forest

The Causal Forest [WA18], later extended to Generalized Random Forest, is a model to estimate
heterogeneous treatment effect from observational data, which means the ability to predict how a
treatment relates to an outcome. A treatment is any action we want to take to impact the outcome.
This task belongs to the Causal Inference field, in which the most important thing is to get right
how the outcome changes concerning changes in the treatment instead of making predictions with
the lowest error possible.

In general, causal claims are uncovered using Randomized Controlled Trials (RCT) [LF50]. In
the binary treatment case, it means we can observe two samples with the same input distribution,
except for the treatment. Randomization relies on exchangeability, which means the result for the
treatment does not depend on the particular group it is applied to, thus the result would be the
same had the other group received the treatment [HR20].

However, the Causal Forest proposes to do the same with non-experimental data. The specific
change in the Random Forest design algorithm intended to achieve it was an inspiration for the
Time Robust Forest we introduce later. To learn the effect of the treatment, the Causal Forest
forces that every leaf should contain at least k examples from the treated and the untreated group.
The prediction then becomes the difference of the target variable in the two groups. The fact they
are in the same leaf means their covariates are so similar that it gets us closer to an RCT setting.

We can formalize it by setting the observed data as the triple (XiYi,Wi), where Xi is the
covariates, Yi is the target variable, and Wi is the treatment class. We can learn a Causal Forest
by the following steps:

1. Draw a random subsample of size s from 1, ..., n without replacement, and then divide it into
two disjoint sets of size I and J , both of size s/2.

2. Grow a tree via recursive partitioning. The splits are chosen using the data from the J sample
but without using any information from I. The criterion maximizes the variance between
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classes of W while constrained by having at least k examples from every class W .

3. Estimate the leaf-wise responses using only the I sample observations’ Y .

Using such an algorithm, we estimate the effect of the treatment on a leaf, in the binary treatment
case, as:

τ̂(x) =
1

|i : Wi = 1, Xi ∈ Leaf
∑

i:Wi=1,Xi∈L(x)

Yi −
1

|i : Wi = 0, Xi ∈ Leaf
∑

i:Wi=0,Xi∈L(x)

Yi (3.6)

Equation 3.6 states the estimated average effect τ̂(x) is the difference between the treated and
the untreated examples from the set I that lie in the same leaf as the example x.

3.6 Generalization challenges under a causal view

In Section 2.4, we provided a brief overview of the dataset shift problem, which is characterized
by the distribution changing when learning from data. In this section, we discussed how the causal
relationship defined in the data generating process is helpful to understand how spuriousness makes
the dataset shift even worse. Further, we reviewed the concept of generalization and combined the
presented concepts to motivate the following sections.

We can split the issues caused by a concept drift problem in two. First, if there is a causal
relationship between Y and X, but p(Y | X) changes, we need to learn it again, and it thus
becomes a new piece of knowledge.That means that the Y in the data generating process described
by the underlying unknown SCM has changed. Second, the concept learned can involve an anti-
causal relationship, which is worse since anti-causal direction relationships are more prone to concept
drift [KPS18]. Furthermore, in the anti-causal conditional drift case, covariate shifts will change the
concept learned from the training data, making the p(Y | X) change in every training iteration
depending on how the X distribution changes.

In the case of causal concept drift, we end up in a trade-off between including more causal terms
prone to real concept drift to have a better performance in the short term or rely on the hardly
changing concepts to have a better performance in the long-term, in a scenario they would not be
updated.

We have defined generalization in Section 2.2. Still, after presenting the concept of Dataset Shift
and environments, it is clear it is insufficient to characterize the degree of generalization we expect
from our models. This degree is present in ICMs, which can perform well under distributions from
different environments. This notion of generalization is known as Out of Distribution (OOD) or
Out of Domain generalization [Wal45] [ABGLP19]:

ROOD(f) = maxe∈εallR
e(f) (3.7)

In this formulation, we do not expect to deal with a random sample from the same distribution
we have learned the model. We accept that the data will come from different environments, and
the learned model needs to generalize to all of them to some extent.

Notice that the Data Shift research literature, which characterizes the problem, is related to its
solution field, which is called Domain Adaptation [ZSMW13]. In this area, the concern is how to
adapt the learning problem when a dataset shift happens. In my experience with Machine Learning
models in the financial industry, the nature of most of the problems is so dynamic that any Ma-
chine Learning solution should be prepared for Domain Generalization in the first place instead of
considering adaptation as a particular case. A changing environment would be closer to being the
rule rather than the exception.

Beyond the expectation for i.i.d data, a second hypothesis is commonly made along with ERM
to guarantee the generalization bounds, which is about the capacity of the hypothesis class in which
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we look for possible functions to learn and the number of examples in the training set. In models
with a high capacity, like Neural Networks, the procedure used to train will favor the simplest
solutions, and spurious relationships are often simpler to learn than non-spurious ones [ABGLP19]
[WRS+17], like associating the snow to recognize a Husky instead of a complete profile of its shape.
That means simpler models are not the correct answer if one seeks predictors that remain accurate
in the long term.

We hypothesize that different kinds of relationships are included in a single problem: spurious,
causal and stationary, causal and dynamic, and the ones that resist during the whole training period
are more likely to respect the causal direction and survive in the future, which means a better OOD
generalization in problems with environmental changes.



Chapter 4

The search for Domain Generalization

Previous works offer different ways of achieving robustness by exploiting the environment in-
formation. Invariant Causal Prediction (ICP) [PBM15] is a feature selection algorithm to find the
subset of causal features by testing if the error in the residual on this subset follows a property
only found on the target variable’s parents under the needed assumptions, which results in select-
ing only the causal variables as inputs. Invariant Risk Minimization (IRM) [ABGLP19] modifies
the objective function to iterate in training environments and penalize the lack of invariance. A
penalization term is offered for the linear case. It learns at the same time the data representation
for all the training environments and the optimal out of distribution model elicited by this com-
mon representation. In addition to these works exploring the environment information, we present
Distributionally Robust Supervised Learning (DRSL) [Bag05], which uses adversarial learning to
learn a model that minimizes the error in the worst mix possible of the training examples. In this
chapter, we study how ICP, IRM, and DRSL work, while we briefly present other models that
leverage environment information to achieve domain generalization.

4.1 Stress test, Credibility and Data Augmentation

As domain generalization became a known problem, the validation strategy changed. In order to
avoid counting on the i.i.d assumption when validating models, practitioners developed other ways
to prove their models can adapt to the real world data [DHM+20], calling them stress-tests and
linking the results to how credible the model is. We briefly present a few ideas about identifying
generalization issues before studying algorithms that include an inductive bias to avoid these same
issues.

One issue is when the performance is different for the subgroups in the data. To identify it,
Stratified Performance Evaluations are done using a specific feature to identify these groups
(e.g., a gender feature) and evaluate the model for them, which comes from the Fairness literature
where stratifying the data by different social groups is a valuable step to understand the different
ways the model can impact them.

Model robustness is usually defined in terms of the ability to cope with the changes in the data
described by the Dataset Shift field. To verify it, Shift Performance Evaluations are performed
by changing the distribution of the input features. One might desire for a particular application
that a specific transformation of one feature does not affect the model performance, which means
invariance. This kind of evaluation connects with the notion of environments since one might test the
model when capturing pictures using a different device or conditions [HD19], or changing the data
acquisition process [BMA+19], which are examples of valid environments. In the end, this validation
strategy connects with the search for invariance in different domains, environments, contexts, etc.
Beyond validation, known desired invariances could improve the learning process itself via data
augmentation, especially in computer vision by transformations such as rotation, translation, pixel
flips, etc [SK19].

The Constrictive Evaluations are fine-grained versions of the shift evaluations focused on
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decision flip and counterfactual. If changing a specific feature should be order-preserving regarding
the model’s output, one can measure how it disturbed this expectation for the specific feature and
change.

4.2 Invariant Causal Prediction (ICP)

Peters [PBM15] explores the invariance in causal relationships through different environments
as a way to make predictive models more robust. As explained previously, an environment might
be interpreted as a different location, time, policy, etc. For example, in a healthcare problem, the
data from different hospitals can be considered as coming from different environments.

Consider the environments as e ∈ ε and the linear model case.

Y e = µ+Xeγ∗ + U e (4.1)

The superscript e means we have a model for every environment. Where µ is the constant
intercept, Xe are the input variables, Y e is the output, the target variable, and U e is the error
term.

In a supervised problem, we usually have many inputs, which we can also call predictors. Be
S∗ the set of causal predictors, which are represented by the non-zero parameters of the vector γ∗,
it is, S∗ := {k; γ∗k 6= 0}. So S∗ contains only the causal predictors, which are followed by non-zero
parameters. We are interested in this subset because of all the problems presented previously about
using non-causal predictors.

Hypothesis 1. (invariant prediction): there is a coefficient vector γ∗ = (γ∗1 , ..., γ
∗
p)t with supports

S∗ := {k : γ∗ 6= 0} ⊆ {1, ..., p} that satisfies

for all e ∈ ε : Xe there is an arbitrary distribution e
Y e = µ+Xeγ∗ + U e, U e ∼ FU and U e ⊥ Xe

S∗ ,
(4.2)

where µ ∈ R is an intercept, U e is a random noise with zero mean, finite variance, and the same
distribution FU for all e ∈ ε.

Peters (2015) [PBM15] shows that the parent variables of Y in a Structural Equation Model
satisfy the Hypothesis 1, which means that if we use only the parent variables in the model, the U e

distribution in every available environment e will have the same distribution and finite variance. At
a high level, the ICP algorithm works as follows:

1. For every S ⊆ {1, ..., p} and e ∈ ε:

(a) Fit a linear regression with the pooled dataset, it is, from all the environments. In the
case of linear regression, we get all the estimated parameters from the set S, γ̂pred(S).
Calculate the residuals R = Y −Xγ̂pred(S)

(b) Test the null hypothesis that the mean from the R is equal for every environment Ie,
e ∈ ε, using a two-sample t-test for the residuals in Ie and the ones in I−e (all the
environments, except for e), and combine the tests to all the environments e ∈ ε using
the Bonferroni correction. In addition to that, test if the R variance is identical for
Ie and I−e using an F test, combining it again using via Bonferroni for every e ∈ ε.
Finally, combine both p-values, the one from the same mean and the other about the
same variance, by using twice the value of the minimum value. If the p-value for the set
S is lower than α, reject S.

2. Then, we define the set Ŝ(ε):

Ŝ(ε) :=
⋂

S:H0,S(ε)not rejected

S (4.3)
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3. If the set S is rejected, we have: Γ̂S(ε) = ∅. Otherwise, we define Γ̂S(ε) as the conventional
confidence interval for (1− α) for the parameters γ̂pred(S).

The algorithm is independent of the kind of learning algorithm once the tests to define the set S
are done using the residuals R, where Ŷ can be generated by any other functional form derived
from different algorithms, like a random forest, lightgbm, or a neural network.

The environment concept plays a central role. Here we are exploiting the property of causal
invariance, so we need to identify the environments we expect to observe this invariance, and it is
through an iteration that we can find stable sets of features by checking for the hypothesis.

This method has one assumption and one pitfall that requires attention. First, the assumption
that the residuals’ variance is the same under different environments might not be valid in a specific
or even the general application. Second, there is a pitfall if there are highly correlated features
because, in a group of significantly correlated features, any of them can replace each other. Hence
they can alternate their presence in the S subsets, and then in step 2, we would not find an
intersection.

There is a contribution from Heinze-Deml (2017) [HDPM17] to overcome the second problem
by identifying these groups and consider the entire group as a single element for the intersection on
step 2.

Furthermore, running the method in different possible features sets will become prohibitive
quickly as the number of input features grows.

4.2.1 Synthetic example

If we use only the causal features to predict the target, considering no hidden confounding, we
can estimate the parameter from the data generating process, which is interesting since it pretty
much reveals to us “how things really relate”. In this case, any changes on different concepts, input
distribution, including valid interventions, will not affect it, and we end up with a robust model.

The ICP algorithm outputs to us this set of features Ŝ. Then it is a matter of using this set as
the input features of a learning algorithm to enjoy the benefits of correctly specifying the causal
predictors of the target variable.

X1 Y X2

Figure 4.1: In a very simple generating process, we have X1 causing Y , which causes X2. Consider Y the
variable of interest and X1 and X2 the available input variables.

Notice the environments play a central role. We need to generate it for at least two different
cases. We will consider that the environments will change the variance of X1. It is going to be
generated following the graph in Figure 4.1 and the following SCM.

X1 ← N(0, σ2)

Y ← X1 + N(0, 1)

X2 ← Y + N(0, 1)

(4.4)

When we run the ICP using the data generated by this SCM1, it outputs X1 as the causal
variables set, which is correct.

Performance under confounding

We consider no hidden confounding in the previous case, which means no unmeasured variable
that impacts both cause and effect. Unmeasured means this variable is unavailable for us. It will

1The code for this example and the one from the following section are available at https://github.com/lgmoneda/
msc-thesis/tree/main/literature/icp_synthetic_examples.ipynb

https://github.com/lgmoneda/msc-thesis/tree/main/literature/icp_synthetic_examples.ipynb
https://github.com/lgmoneda/msc-thesis/tree/main/literature/icp_synthetic_examples.ipynb
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not be present in the dataset and will not be part of the algorithm process, there is no expected
invariance between X1 and Y without controlling for the confounder, so it is not expected that the
method will work.

We simulate the unmeasured confounder case and the case where we do measure the confounder.
We include a confounder C1 to the previous setting’s graph and run the ICP algorithm.

X1 Y

C1

X2

Figure 4.2: Confounding happens when a variable (C1) influences both the outcome (Y ) and a cause of the
outcome (X1). This is a very common challenging set when learning causal relationships. The ICP works
under observed confounders.

In this case, the ICP outputs X1, C1. However, if we do not measure C1, the algorithm outputs
X1, X2, which is wrong.

ICP offers an interesting way to explore causal invariance in Machine Learning and helps us build
robust models. At the same time, it suffers from the traditional problem of unmeasured confounders.
It also has other weaknesses that might discourage its use, like the assumption of equal variance for
the error in every environment, the pitfall of highly correlated features, and the cost of searching
through every subset.

4.3 Invariant Risk Minimization (IRM)

In the Invariant Risk Minimization framework, the preference for invariance across the environ-
ments is expressed in the loss function by an additional term and an iteration on all the environments
in the training set [ABGLP19]. Consider the data was collected under different environments e ∈ ε,
it is De := {(Xe

i , Y
e
i )}ne

i . The training environments are a subset of all possible environments,
εtrain ⊂ εall. We present again the Equation 3.6 to make the IRM objective clear in terms of
minimizing the OOD Risk.

ROOD(f) = max
e∈εall

Re(f) (4.5)

The subscript all means we want to minimize it for all possible environments and not only the
ones in the training data.

The risk under a certain environment e is defined as Re(f) := EXe,Y e [L(f(Xe, Y e))], where L
is any loss function.

However, the function f has two stages. The first stage transforms the data from the different
environments to find a representation that enables a single optimal classifier for all of them. The
second one searches for this optimal classifier.

Definition 6. A data representation Φ : X → H elicits an invariant predictor ω ◦ Φ on all the
environments ε if there is a model ω : H → Y optimal for all environments at the same time, that
is, ω ∈ argminω̄:H→Y R

e(ω̄ ◦ Φ) for all e ∈ ε

H is the latent space in which the algorithm searches for a representation that enables the exis-
tence of the model ω. Therefore, the IRM paradigm can be described by the following optimization.
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min
Φ:X→H
ω:H→Y

∑
e∈εtrain

Re(ω ◦ Φ)

constrained to ω ∈ arg min
ω̄H→Y

Re(ω̄ ◦ Φ), for all e ∈ ε
(4.6)

However, this optimization is hard to solve since it involves ω and Φ at the same time. To work
around this problem, the authors propose the following approximation:

min
Φ:X→H

∑
e∈εtrain

Re(Φ) + λ
∥∥∥∇ω|ω=1.0R

e(ω ◦ Φ)
∥∥∥2

(4.7)

Where Φ becomes the complete invariant predictor without the need of composing it with ω,
which is fixed as 1, turning into a dummy model. The gradient norm penalty in the loss function,
the second term in the sum, is used to measure how optimal the model is in every environment e.
λ ∈ [0,∞] is the regularizer term that balances between the predictive power, the one minimizing
R following the ERM paradigm, and the invariance of the predictor 1.Φ(x).

Thus the objective function can be expressed as:

LIRM (Φ, ω) =
∑
e∈εtr

Re(ω ◦ Φ) + λD(ω,Φ, e) (4.8)

The D represents the penalization, and we need it to be differentiable with respect to Φ and ω.
In the case of learning an invariant predictor ω ◦ Φ, where ω is a linear regression learned with

least squares, we would have the penalty Dlin.

Dlin(ω,Φ, e) =
∥∥∥EXe [Φ(Xe)Φ(Xe)T ]ω − EXe,Y e [Φ(Xe)Y e]

∥∥∥2
(4.9)

It is a differentiable function that enables us to optimize the objective function using gradient
descent.

The conditions about what can be considered an environment in εall follows the Definition 4.
They need to be respected in the training environments to enable OOD, which implies optimal
performance in all the possible valid environments.

As seen, an environment can be seen as an intervention, which is when we modify one or more
equations from an SCM, forcing particular values or functional forms.

For example, consider the SCM C = (S,N ). An intervention e in C is the replacement of one or
more equations to obtain a new SCM, Ce = (Se,N e), represented by:

Sei : Xe
i ← fei (Pae(Xe

i ), N e
i ) (4.10)

We consider the variable Xe was intervened on if Si 6= Sei , that is, the equations are different,
or Ni 6= N e

i , that is, the noise term is different. In the Example A.7, an intervention would be
changing Xe

2 by Xe
2 → 0.

Arjovisky et al. (2019) [ABGLP19] details how the low error on εtrain and the invariance on εall
leads to low error on εall, and how learning these invariances from εtrain would be able to identify
the same invariances we expect to see on εall.

In order to learn valuable invariances, it is needed that a degree of diversity exists in the available
environments. Two random samples from the same dataset would not be able to offer this diversity.
An illustrative application of IRM for the linear model case using synthetic data can be found in
Appendix A.
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4.4 Distributionally Robust Supervised Learning

Instead of defining environments to achieve OOD generalization, DRSL [Bag05] changes the
optimization during the learning process to address the expectation of a change in the distribution
between the training samples available and the future unseen data. We present this model because
the min-max optimization resembles the Robust Time Tree design.

Considering the training data as ptrain(X,Y ) and the future data as ptest(X,Y ), we define a
family of possible distributions for ptest(X,Y ) denoted by Q using a constraint about how different it
is from the training sample in terms of KL-divergence, KL(ptest | ptrain(X)) < ε, in Equation 4.11.
The learned model is expressed as a set of parameters θ ∈ Θ, which represents the hypothesis space
H.

KL(f | g) =
∑
X

f(X)ln
f(X)

g(X)
(4.11)

Considering the objective is to learn the best model θ in the worst ptest case, the optimization
problem becomes the following min-max:

minθ∈Θmaxptest∈QEptest [g(X, θ)] (4.12)

Where g(X, θ) is the risk function:

g(X, θ) = Ep(Y |X)[L(Y, hθ(X))] (4.13)

In order to learn it with the available information, it is, the ptrain, an empirical risk function is
defined to use the training sample. The weights applied in the training data to create the test set
are represented by q, the β parameter is chosen to match the KL boundary ε. The final algorithm
proposed [Bag05] can be seen in the Algorithm 2.

Algorithm 2 Robust Supervised Learning Algorithm
1: procedure RobustSupervisedLearning(X, Y , β)
2: Initialize weights q = [ 1

N , ...]
3: while θ has not converged do
4: θ ← Learner(X,Y, q)
5: q̂ ← maxq∈Q

exp(βg(xi,yi,θ))∑
i exp(βg(xi,yi,θ))

6: q ← αq + (1− α)q̂
7: end while
8: end procedure

4.5 Other models exploring the ICM principle

There are other approaches designed to take advantage of the ICM principle. In the Recurrent
Independent Mechanisms (RIM) network [GLH+19], attention [VSP+17] is used to activate different
modules composed by RIMs. These modules learn different aspects of the problem, and it is expected
that the invariant aspects will be useful when it needs to predict data that differ from the training
distribution. Neural Causal Models [KBG+19] leverage known or unknown interventions in the
observational data to learn. The weakly supervised disentanglement approach [LPR+20] learns how
to disentangle components from high-dimensional feature spaces, like images, using the hypothesis
that they are composed by a small number of relevant factors that can change, thus exploring the
modularity of ICMs. The do-calculus in the presence of interventional data [BP14] is also used
to tackle the problem of learning from available data from a few environments and generalizing
to unseen environments. In Robust Supervised-Learning [Bag05], the environment concept is not
present, but the learning algorithm includes weighting training data to prepare the model for the



4.5 OTHER MODELS EXPLORING THE ICM PRINCIPLE 23

worst mixture possible of it, hoping it is also the worst case for the future and unseen examples.
Not related to ICM principle, but considering time, the environment we explore in this work, the
Temporal Decision Trees [KH01, KH10] use time in order to build the model rules, but it is about
sequential data, they are not independent of each other. In this case, the relationship between
examples is that they are part of a chain of events instead of being independently sampled under
the same generating process in a particular environment.
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Chapter 5

Time Robust Trees: Using Invariance to
Improve Generalization in Prediction
Tasks

In this chapter, we present the Time Robust Tree (TRT), in which the ensemble creates the Time
Robust Forest (TRF). We start with a simple example to motivate slicing the data into different
environments made of periods of time. The algorithm is presented before showing a few synthetic
examples that uncovers how to set its parameters and one of its limitations.

5.1 A recursive partitioning algorithm for learning time-invariant
predictions

Ideally, we want to learn concepts or models that we can transport to the future with minimal
effort. As discussed in the previous chapters, one way of achieving such a goal is to ensure invariance
to different environments, which are originated by valid interventions in a causal model.

Our proposed algorithm considers the time order of data instances to segment them as valid
environments. Typically, recursive partitioning schemes such as CART seek generalization ability
by setting a lower bound on the number of training instances available to grow a tree further or
by some post-processing technique. Instead of constraining a data split to have a minimum number
of training examples, we constrain the minimum number of examples on each period, thus forcing
the model to learn time-balanced splits. The algorithm does not assume any information regarding
environments other than the instance’s time period. Additionally, we can express the desire for time
stability by taking the average score by period or the worst case.

In terms of dataset shift, it involves learning concepts that do not drift with the hypothesis
that they are the most successful when transferred to other environments. In our case, where
environments are periods, it means the future. It expresses a preference for non-spurious variables,
which makes the TRT select its rules using causal predictors.

5.2 A Motivating Example

Before formally describing the proposed algorithm, we first motivate the necessity of time-robust
learning methods and explain the limitations of current approaches with a toy example. Thus assume
two finite-valued input variables X1 and X2, a binary target variable Y , and a time period Tperiod,
used to segment the data in different diverse environments. We use three time periods to illustrate,
thus Tperiod = {1, 2, 3}. Consider the data illustrated in Figure 5.1. Imagine the data from t = 1, 2
consists in the available training set, while the t = 3 comes from the future after deployment. We
will call it the holdout set. According to the example, X1 is mildly predictive and stable, while X2
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DT TRT
Variable Split value GI GI at t=1 GI at t=2 Max. GI

value
X1 3 0.49 0.50 0.40 0.50
X1 4 0.44 0.44 0.44 0.44
X1 5 0.49 0.50 0.40 0.50
X2 1 0.27 0.00 0.50 0.50

Table 5.1: Split evaluation process for the Decision Tree and the Time Robust Tree for the motivating
example

is a perfect predictor at t = 1, but its relationship with the target changes in the following periods,
representing a spurious correlation, or a non-static causal relation that shifted.

4 6

1.0

1.5

2.0

Time period 1

4 6

1.0

1.5

2.0

Time period 2

4 6

1.0

1.5

2.0

Time period 3 (Holdout)

X_1

X
_2

Figure 5.1: In this simple motivating example, in the time period 1, there is an exact split on X2 to separate
classes, which does not stand for the time period 2 and the period 3, the holdout. A less exact split on X1 is
present in every time period, which the Time Robust Tree prefers.

If the modeler uses all the available training data, a typical Decision Tree (DT) inducing algo-
rithm will combine the data from periods 1 and 2 into a single training data set to evaluate the
possible splits. In contrast, in the Time Robust Tree (TRT), as long as the modeler sets the period
information as the environment, we consider the split performance separately when looking at every
period. To illustrate it, we prune the example tree to have a single split in both cases. We use the
Gini impurity (GI) minimization process in Table 5.1.

We use the Area Under the Curve (AUC) to evaluate predictions’ quality. It goes from 0 to 1,
and the higher, the better. By learning these splits, the Decision Tree would achieve a 0.83 AUC on
training, but a poor result on holdout, 0.50 AUC, while the Time Robust Tree is worse in training,
0.67 AUC, but it keeps the same performance in the holdout.

In this motivating example, the time period-wise split choice illustrated resembles the Robust
Supervised Learning presented in Section 4.4. The first difference we note is that by using the worst
case from a training environment, we avoid being too pessimistic about the distributions we can
encounter after the training stage, which happens when we let an adversary function look for the
worst-case possible given a boundary by learning it as a mixture of the training examples [HNSS18].
However, this advantage depends on the quality of the environments in the terms discussed in
Section 4.3. We make further considerations about the environment split in Section 7.3. The second
important difference is that another design choice on TRT indirectly regularizes the split choice,
which is the requirement of keeping a minimum number of examples in every period in every node.
This second trait effect is illustrated in the following sections.
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5.3 Time Robust Trees

A Time Robust Tree is obtained by modifying the standard Decision Tree induction algorithm,
using the standard deviation reduction criteria for regression problems and impurity minimization
following the Gini impurity for classification problems. These impurity functions are identified as
L.

Consider a timestamp column Tstamp representing the data capture time with the same dimen-
sion of the random variables vectors (X1, ..., Xd, Y ), where the X variables represent inputs and Y
the variable of interest, the target. The time period Tperiod is an aggregation of sequential examples
when ordered by Tstamp using a human-centered concept, like hourly, daily, weekly, monthly, yearly,
or simply putting together a fixed number of examples and reducing Tstamp granularity.

Given n time periods Tperiod = t1, t2, . . . , tn in the training set, we find the best split s∗ to divide
the examples in Xnode into Xleft and Xright using the rule Xf ≤ vf where f is a feature from all
available features F at a certain value vf from all possible values for the feature f in the training
set Vf by applying recursively to every node data Xnode until the constraints are not satisfied, being
the first node the root containing all the training set. Consider the sample size from every period
as Nt, the chosen minimum number of examples by period to split as ρ, the maximum depth as d,
the minimum impurity decrease as g, and the impurity decrease after the split as ID(Xnode), which
is defined in Equation 5.4.

s∗ = min
∀f∈F,∀v∈Vf

max
t∈Tperiod

L(Xnode),

subject to |Xright,t| ≥ ρ, |Xleft,t| ≥ ρ and ID(Xnode) ≥ g,∀t ∈ Tperiod
(5.1)

The ρ is a scalar representing the minimum number of examples in every time period to perform a
split. The model also accepts the average loss criteria.

s∗ = min
∀f∈F,∀v∈Vf

1

|Tperiod|

Tperiod∑
t=1

L(Xt),

subject to |Xright,t| > ρ and |Xleft,t| > ρ,∀t ∈ Tperiod

(5.2)

For the predictions Ŷ , the average from the leaf is taken without any consideration about the
time period it belongs, Ŷ = 1

|Y |
∑
yi.

It is worth isolating in the Equation 5.3 one of the differences from TRT, the period-wise score,
which is taking into consideration how the model performs in the different periods defined by the
user to decide the optimal split. Notice the other difference, the hyper-parameter ρ, interacts a lot
with this part of the process, since higher ρ guarantees a higher sample in each period for their
evaluation regarding the split.

1

|Tperiod|

Tperiod∑
t=1

L(Xt) (5.3)

Similarly to the period-wise score, we have the impurity decrease calculation iterating over the
periods. The Lbefor_split(Xt) gives the impurity measurement in the node before splitting it with a
rule, while L(Xt) gives it after the split. Their contrast informs the decrease, which is weighted by
the number of examples from a particular period in that node and the total available in the sample.

ID(Xnode) =
1

|Tperiod|

Tperiod∑
t=1

|Xt|
Nt
∗ (Lbefore_split(Xt)− L(Xt)) (5.4)

The process is summarized in Algorithm 3. It starts with a call to LearnTimeRobustTree
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f vf Xleft Xright score current
score

periods
scores

X1 3 t1 = {(3, 1, 0), (3, 2, 1)},
t2 = {(3, 1, 0)}

t1 =
{(4, 1, 0), (5, 2, 1), (6, 1, 0), (6, 2, 1)},
t2 = {(4, 1, 0), (4, 2, 1), (5, 1, 1),

(5, 2, 0), (6, 1, 1)}

0.50 0.50 [0.50, 0.40]

X1 4 t1 = {(3, 1, 0), (3, 2, 1), (4, 1, 0)},
t2 = {(3, 1, 0), (4, 1, 0), (4, 2, 1)}

t1 = {(5, 2, 1), (6, 2, 1)},
t2 = {(5, 1, 1), (5, 2, 0), (6, 1, 1)} 0.44 0.44 [0.44, 0.44]

X1 5
t1 =

{(3, 1, 0), (3, 2, 1), (4, 1, 0), (5, 2, 1)},
t2 = {(3, 1, 0), (4, 1, 0), (4, 2, 1),

(5, 1, 1), (5, 2, 0)}

t1 = {(6, 2, 1)}, t2 = {(6, 1, 1)} 0.50 0.44 [0.50, 0.40]

X2 1 t1 = {(3, 1, 0), (4, 1, 0), (6, 1, 0)}, t2 =
{(3, 1, 0), (4, 1, 0), (5, 1, 1), (6, 1, 1)}

t1 = {(3, 2, 1), (5, 2, 1), (6, 2, 1)},
t2 = {(4, 2, 1), (5, 2, 0)} 0.50 0.44 [0.0, 0.50]

Table 5.2: The TRT simulation using the motivational example shows how the algorithm treat differently
the time periods data to find splits that are good for all of them

with all the features inX. Before learning a rule to split the data, there is a condition to stop learning
on the maximum depth and the minimum number of examples by period. In CreateSplit, the
algorithm learns a split that generates two subsets of the original data, Xleft and Xright, for which
we call the learning function again and keep splitting until the stop conditions are met. The search
for the particular split happens on FindBestSplit, where we discard any split that does not keep
the minimum number of examples in every period after applying it and evaluate the best as the one
with the lowest score calculated by PeriodWiseScore, which represents the implementation of
the Equation 5.2. In case we have opted to use the worst-case score, the PeriodWiseScore would
store the score calculated in every period and return the worst case to represent the split quality.
Similarly, we calculate the impurity decrease using the PeriodWiseImpurityDecrease, which
can use the average value for every period or the worst case.

There is nothing particularly different in the step from Time Robust Tree to Time Robust
Forest in comparison to the one from a Decision Tree to a Random Forest [Bre01]. Considering M
trees, the final prediction Ŷ becomes 1

M

∑M
m=1 Ŷm, a random proportion of the input features F is

considered when finding the best split for a node on Equation 5.1, and bootstrapping is performed
in the training data before learning every tree.

5.3.1 Simulating the algorithm

In this section, we simulate the algorithm call in the motivating example. It starts with a call
to LearnTimeRobustTree, with ρ = 5, d = 1 and g = 0. The conditional will test if d is equal
or greater than 1, which it is, and if there is at least 1 example from periods 1 and 2. Then the
CraeteSplit is called with the same parameters. The FindBestSplit is called inside it, which
we show the simulation in Table 5.2. We add a column exposing the PeriodWiseScore values.
The elements in Xleft and Xright are triples with the values of (x1, x2, y) for a particular data point,
we show them by period to make it easier to follow.

Since we have determined the maximum depth to be 1, after finding the first optimal split, we
would call LearnTimeRobustTree with d = 0, which would not pass the conditional to call
CreateSplit again. In Figure 5.2, we highlight the decision boundary resulting from this process.
The green dotted line represents the TRT rule, while the red one represents the DT.

5.3.2 Going deeper in the motivational example

The idea of the motivational example is to come up with a simple situation we believe illus-
trates how data behave in reality and show how the algorithm would deal with it. Nevertheless,
its simplicity raises multiple ways in which the naive approach can compromise the argument. In
this subsection, we briefly raise some of these issues as a prelude to what will be discussed in the
experimental section using real data.
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Algorithm 3 Time Robust Tree Induction Algorithm
1: procedure LearnTimeRobustTree(X, Tperiod, ρ, d, g)
2: if d ≥ 1 and there are ρ examples for every distinct period in Tperiod then
3: CreateSplit(X, Tperiod, ρ, d)
4: end if
5: end procedure
6:
7: procedure CreateSplit(X, Tperiod, ρ, d)
8: Xleft, Xright = FindBestSplit(X, Tperiod, ρ)
9: LearnTimeRobustTree(Xleft, Tperiod, ρ, d− 1, g)

10: LearnTimeRobustTree(Xright, Tperiod, ρ, d− 1, g)
11: end procedure
12:
13: procedure FindBestSplit(X, Tperiod, ρ) (Equation 5.1)
14: score = -inf
15: for Every variable f in X do
16: for Every value vf of f do
17: Xleft = examples where Xf ≤ vf
18: Xright = examples where Xf > vf
19: if Number of examples by time period for Xleft and Xright is greater than ρ then
20: current_score = PeriodWiseScore(Xleft, Xright, Tperiod)
21: impurity_decrease = PeriodWiseImpurityDecrease(Xleft, Xright, Tperiod)
22: if current_score < score and impurity_decrease > g then
23: score = current_score
24: f∗ = f
25: v∗f = vf
26: end if
27: end if
28: end for
29: end for
30: if score 6= -inf then
31: Xleft = examples where Xf∗ ≤ v∗f
32: Xright = examples where Xf∗ > v∗f
33: else
34: Xleft = {} , Xright = {}
35: end if
36: return Xleft, Xright

37: end procedure
38:
39: procedure PeriodWiseScore(Xleft, Xright, Tperiod)
40: current_score = 0
41: for Every distinct period t in Tperiod do
42: current_score += Score(Xleft,t, Xright,t)
43: end for
44: return current_score / |Tperiod|
45: end procedure
46: procedure PeriodWiseImpurityDecrease(Xleft, Xright, Tperiod)
47: impurity_decrease = 0
48: for Every distinct period t in Tperiod do
49: score = Score(Xleft,t, Xright,t)
50: total_count = |Xleft,t| + |Xright,t|
51: previous_score = Score(append(Xleft,t, Xright,t))
52: impurity_decrease += (total_count / Nt) * (previous_score - score)
53: end for
54: return impurity_decrease / |Tperiod|
55: end procedure
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Figure 5.2: After splitting the two classes using X1 ≤ 4 in the motivational example, the TRT decision
boundary for a single split can be represented by the green dotted line, while the DT one is represented by
the red dotted line.

We considered a single split, which is illustrative but not realistic. We modify it to let both
trees grow until the depth of 20 by setting it as their maximum depth. The number of examples
was multiplied by a factor of 20 to enable more splits. The training was repeated setting different
values of the minimum samples needed in the leaf for both models. To make it fair, since we have
two periods, this value is divided by 2 to set the minimum examples in each period in the TRT.
The Figure 5.3 can be interpreted as both models going from complex rules to simpler ones as the
number of minimum examples needed increases. We can see the TRT also suffered at the beginning
before having the training and holdout performance converging. The DT did the same, but later
in the curve. This result creates the hypothesis that the time-slicing only forces the model to be
simpler and that the benchmark would eventually perform as well as if the right hyper-parameters
were set. We will investigate this hypothesis in the real examples in Chapter 6 when we optimize
the benchmark to create a more fair comparison.

20 40 60 80 100
Minimum sample in the leaf
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Figure 5.3: Going beyond the first split in the motivational example for the DT and TRT does not compro-
mise the illustration of the TRT algorithm since the DT cannot find a better rule even without a constraint
to grow deeper.

Further, we can consider that practitioners will usually discard old data, either by intuition or
because they have built a reverse learning curve, a process in which we add examples to a model
from the most recent to the oldest and see how useful the added data is to predict an out of time
set. If we only use data from t = 2 to train the model, the DT and the TRT have the same holdout
performance, a 0.67 AUC. Though it helps the DT, the hypothesis behind the TRT design is that
old data can be helpful for two reasons. First, it might carry disappeared relationships, which we
cannot use to predict future data, revealing spurious correlations. Second, it also reveals the ones
that existed for a long time, which the persistent relationship suggests they are the most likely to
keep existing and provide a better generalization in future data. The same old data that perturbs
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DT should fuel TRT robustness. Later in this work, we verify using real cases if the benefit of
discarding old data can overcome the benefit of leveraging it to find stable relationships. Notice
that if we swap the data from t = 1 and t = 2, DT would again absorb the spurious relation and
fail to generalize.

5.3.3 Synthetic example

After a simple and illustrative example, we move to a synthetic data case to show a more realistic
setting, including the hyper-parameter definition. Once again, we include in the data generating
process a spurious feature, which is, a variable that suffers a concept drift that makes it non-stable
in the training set, X2. The example is extreme, since X2 mimics Y in t = 1, while it is random
in t = 2, both of them available for training. The X2 keeps random in the following periods, which
consist the holdout set. It emulates the hypothesis that unstable properties are less likely to persist.

X1 ∼ N(0, 1)

Y ∼ X1 + N(0, 1)

X2 ∼ f(e)

(5.5)

where e is the time period variable, which is our environment. In the training, we have two training
environments εtrain = {1, 2}. The f(e) defines X2 following:

f(e) =

{
Y , if e = 1

N(0, 1), if e 6= 1
(5.6)

We make it a binary classification task by converting y to a positive class when greater than
0.5, and to the negative one otherwise. The holdout is composed of the following periods, starting
at t = 3.

At first, we apply the TRT and the DT using similar hyper-parameters: 30 as maximum depth,
0.01 as minimum impurity decrease, 10 as a minimum sample by period for the TRT, and 20 as
a minimum sample to split for the DT since we have two periods. In this case, the TRT presents
an AUC of 0.83 in train and 0.81 in the holdout, while the DT performs around 0.92 AUC in
training and 0.64 in the holdout. It shows how the TRT avoids learning from the spurious variable
X2, which lowers its training performance but makes it succeed in the holdout, while the DT goes
in the opposite direction. However, in a real-world case, we need to define the hyper-parameters
following a process and objective criteria. In the following subsection, we show how to execute this
step when using the TRT.

5.3.4 Hyper-parameter Optimization

In the Section 2.3, we presented the K-fold validation design. We will apply it to the example
as the benchmark. However, during the hyper-parameter selection, this design pools together the
data from the periods and then select the set of parameters in which the performance is the highest.
This process does not favor the period-wise design from TRT. To overcome it, we use a K-fold that
generates folds containing just one environment, used as test folds. We identify this approach as
Environment K-Folds (Env K-Folds). Similar to what we use to learn the best split in the TRT,
Besides taking the average performance in the folds to decide the hyper-parameters, we evaluate a
second strategy when using the Env K-Folds. First, we average the performance in all folds consisting
of the same environment and hyper-parameter set, then we group by only hyper-parameters sets
and select the minimum performance, which is the worst environment case. Finally, among the
worst cases, we take the set with the highest performance to determine the model using the best
worst case. We identify this approach as Env K-folds Min-Max.

To evaluate these different designs, we bootstrap the data and repeat the process ten times.
The results are the average of these ten best models following each approach. As seen in Figure 5.4,
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the TRT performs significantly better than the DT in the holdout set when using the Env K-folds
Min-Max, while in the other two strategies, they are very similar.

Env K-fold Min-Max Env K-Fold Benchmark
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Figure 5.4: A hyper-parameter optimization design that keeps the period-wise evaluation from the TRT
algorithm is important to make the model keep its purpose of learning stable relationships.

5.3.5 Performance under no shift

If we modify the Function 5.6 defining X2 and keep the same function from t = 1 to all training
and future periods, we exclude the concept drift from the problem. Under this case, the TRT and the
DT perform similarly. Both get an 0.87 AUC score in train and holdout. If optimized, they achieve
a performance of around 0.90 AUC. However, the TRT requires more steps due to its period-wise
learning.

5.3.6 A limitation about the data generating process

In this second synthetic data example, we modify the first case to show the input empirical
support limitation from Time Robust Forest. Consider the following SCM, which is based on the
motivating example for IRM [ABGLP19]:

X1 ∼ N(0, g(e))

Y ∼ X1 + N(0, g(e))

X2 ∼ f(e)

(5.7)

as previously, e is the time period variable, εtrain = {1, 2}. The g function defines the variance for
every time period, g(e) : [1, 2]→ [0.1, 1], while the f(e) defines X2 following:

f(e) =

{
Y + N(0, e), if e = 1

N(0, e), if e = 2
(5.8)

If we use Time Robust Tree on this data, the results are going to be inconsistent because the
empirical supports for the two training environments do not overlap, as seen in Figure 5.5. We can
overcome this problem by using a scaler on every input. This scaler uses the minimum and maximum
value of the distribution to redistribute it between 0 and 1. However, this process is impossible to
carry out in a real scenario since we would never know which scaler to apply on unseen future data
once we expect future data to bring unseen environments on which it would not make sense to use
the learned scales from the training environments.

The exercises with synthetic data suggest two investigation paths. First, the fact that we needed
to perform the scaling in the training and holdout data could mean that the TRT success depends
on how much the empirical support for the different variables overlap in the environments available
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Figure 5.5: Data from different environments can have different support for the input features. It causes
problems for the TRT since it needs to find splits that are good for all the periods, which is impossible in the
non-overlapping areas of the inputs’ distributions.

for training and future unseen data. Second, the similar behavior the DT has shown in terms of
discarding the spurious correlation raises questions on if it will eventually perform as well as the
TRT under this scenario, or if the better performance seen in TRT means it does not sacrifice as
much complexity as the DT in order to prefer stable features. Third, if the TRT can focus on features
whose relationship with the target is stable, it could be used as a feature selection algorithm. All
these paths will be explored in Chapter 6.

5.4 Software package

The presented examples and the experiments we will present in the next chapter use the open-
source package1 developed after the algorithm was designed. It can be installed using pip the
package installer for Python by running pip install time-robust-forest. The model follows the scikit-
learn interface [PVG+11].

1https://github.com/lgmoneda/time-robust-forest

https://github.com/lgmoneda/time-robust-forest
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Chapter 6

Experiments

In the experiments chapter, we test a couple of real-world datasets to inspect the results towards
evidence that the TRF has interesting properties when dealing with future data. In our context,
using a different set of features, building different rules, resisting the test of time, or simply better
performance in an out of time holdout would be considered exciting results.

First, we describe the datasets used and how we have turned them into a predictive task. Then
we explain the experimental setting. The results are presented regarding holdout performance before
we take a deeper look into the drop in performance between test and holdout, how the future data
relates to the training sample, feature importance, impact of old data, and other specific analysis
to understand the particular outcomes of the experiments.

6.1 Real-world data benchmark

Seven public datasets1 with available timestamp information and a reasonable time range were
selected to validate the approach. Information about the features, target, and data volume can be
found in Table 6.1.

The GE News dataset [Mon20] contains six years of soccer news articles. The data contains
articles about 21 different clubs. We make one of them the positive case and transform it into a
binary classification. Some pre-processing is done to exclude mentions to the teams’ names and
different ways they are popularly called in order to not to trivialize the problem. A maximum
vocabulary of 300 words is defined using the top words in terms of frequency from the entire
corpus.

The 20 newsgroups [M+97] is a standard benchmark dataset. It contains 18000 newsgroups’
posts about 20 topics. It is split into training and testing considering the time order, though it
does not contain a timestamp column. Twenty different targets are used for all the topics to make
it a binary classification to evaluate the Time Robust Tree. Since there is no timestamp column,
we group the messages into nine periods in the training set containing 1300 messages each, except
for the last, with 914 instances. We have five time periods in the test with 1300 instances, and the
last one contains 1032. Since the dataset is small, the experiment was done multiple times using
bootstrapping, and a confidence interval is included in Figure 6.1.

Kickstarter is a website for crowdfunding, which is when its future customers fund a project.
In the Kickstarter dataset [Mou18], we have information about the country, currency, category,
main category, goal, and campaign state. The campaign state is used to create a binary target, in
which the positive class is a successful campaign, while the negative class holds the failed, canceled,
suspended, and live states.

The Animal Shelter dataset [Dao21] contains data about animals intakes and outtakes in a
shelter. We have built a target to predict if a specific animal will be adopted after the first 30 days
in the shelter, considering their intake characteristics, like conditions, type, sex, breed, and color.

1The source code and datasets are available on GitHub at https://github.com/lgmoneda/msc-thesis
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In the San Francisco Building Permits [Sha18] we have data about permit requests, and the
task is to predict if it is going to be approved. The Olist e-commerce data [Sio19] contains online
purchases and reviews, so we create a target to predict if a customer review is going to be five stars
or not. The Chicago Crime dataset [oC21] lists many types of infractions committed in the city,
and we use it for the task of predicting the binary target of arresting the criminal.

The GE News and the 20 newsgroups are slightly different from the other datasets since they
are textual, and it is needed to convert words to features, which means having hundreds of features.
Because of the difficulties of dealing with it, they are omitted from some of the further analyses
done in this chapter.

Dataset Categorical Features Numerical Features Target’s positive class Number of Examples

Kickstarter country, currency, category,
main_category goal Successful crowdfunding

campaign 378k

Olist seller_id,
product_category_name

price, freight_value,
product_name_length,

product_description_length,
product_photos_qty,
product_weight_g,
product_length_cm,
product_height_cm,

product_width_cm, differ-
ence_estimated_delivered,
difference_limit_delivered

A review score of 5 stars 114k

GE News 300 words - The article is about a certain
club (Flamengo) 139k

20 News groups 100 words - The section the article
belongs (one vs all) 18k

Animal shelter
Intake Type, Intake

Condition, Animal Type, Sex
upon Intake, Breed, Color

Age Upon Intake Adopted animal after 30 days
in the shelter 124k

Chicago crimes

Primary Type, Description,
Location Description, FBI

Code, Zone, Address,
Domestic

Latitude, Longitude, Beat,
District, Ward, Community

Area
Arrested criminal 397k

Building permits

Street Suffix, Proposed Use,
Unit Suffix, Fire Only Permit,
Existing Use, Neighborhoods

- Analysis Boundaries

Number of Existing Stories,
Number of Proposed Stories,
Supervisor District, Plansets,
Estimated Cost, Existing
Units, Proposed Units,

Proposed Construction Type,
Existing Construction

Permit conceded for a build
modification 198k

Table 6.1: The Table displays the available numeric and categorical features in every dataset tested in the
chapter. The categorical features were transformed into unique numeric values, since tree-based models can
deal with non-ordinal transformations.

6.1.1 Data split and benchmarks

A dataset is split into three parts to perform the experiment: train, test, and holdout. First,
a specific date from the timestamp column is chosen to split data between in time (past) and out
of time (future), then the in time data is randomly split into train and test, while we call the out
of time set the holdout. All plots contain test and holdout performance, so the former evaluates
how good the model performs in the in time and out of train data, while the latter is about the
ability to generalize to the out of time and out of train examples, which is an estimate of the
out-of-distribution performance.

Two learning algorithms were chosen as benchmarks. First, the Random Forest (RF), since it is
the most similar to the TRF, and it provides a fair comparison since we are not exploring boosting
for the TRF. We use the RF implementation from the Scikit-learn library [PVG+11]. Second, for
the GE News only, the LightGBM [KMF+17] which is state of the art for tree-based models. For
both of them, we apply the pyCaret library [Ali20] to tune their hyper-parameters using a 5-fold
in the train set. Notice this setting favors the benchmark since the implementations from these
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packages have other strategies to improve generalization beyond the maximum depth, the number
of examples to split, and the minimum impurity decrease to split, like the minimum child weight.

The TRF parameters are defined following the number of estimators and maximum depth from
the optimized RF. For the minimum examples by period, we use a similar value to the minimum
examples for a leaf from the RF. We do not optimize it following a grid search because the current
implementation is too slow for multiple fits. However, we test it with different values of minimum
examples by period using the same number of estimators and maximum depth to show how the
performance would change. The metric used to compare them is the AUC since all the tasks were
turned into classification ones.

6.1.2 Performance on unseen future examples

The performance in terms of AUC for the three sets can be seen in Table 6.2. The most interesting
part is not the aggregated metric, but how it changes from the in time period (test) to the out of
time (holdout), which can be seen in the column ∆ TRF-RF by verifying how the difference between
challenger and benchmark drops from test to holdout, and in Figure 6.1 on how the two performance
curves get closer or invert after the vertical dashed line that marks the holdout period start.

When we look solely at the aggregated AUC, the TRF performs better in the GE News and
Kickstarter tasks, while it has similar performance in the 20 Newsgroups and Chicago Crime, and
it is inferior in the other three. However, for all cases, the difference in AUC between TRF and RF
in the holdout is lower than the difference in the test. This result provides evidence that the TRF
deals better with out-of-distribution examples.

In Table 6.2 it is possible to verify that the cases where TRF becomes an interesting challenger
are the ones in which the benchmark has problems to perform in the holdout as well as it does in
the test. A domain classifier was trained using the holdout as the target to provide further evidence
about the TRF advantage under scenarios where the future data changes the most. The higher the
AUC for the domain classifier, the more significant the difference between test and holdout. The
results in Table 6.3 show the TRF performed better in the datasets with a more remarkable shift
between training data and holdout data, the ones with a higher AUC for the domain classifier.

Additionally, we inspect if the difference between the RF and TRF performance in the in time
test could guide if the TRF is a good choice for the task at hand. We regress the delta AUC in the
out of time holdout, our quantity of interest, by the delta AUC in the in time test, which is a piece
of information we could calculate at modeling time. In Figure 6.3, we see there is no relationship
between them in the experimental datasets used. There is no evidence that the delta AUC in time
could help in deciding about using the TRF.

6.1.3 The effect of older data

When discussing the motivational example from Chapter 5, we cited that practitioners can
discard old data from the learning process if it is not benefiting the model to predict the future. It
happens because the most recent data is usually the most similar to the future unseen cases. We
raised the hypothesis that while older data could be harmful to learning algorithms in general, the
TRF should take advantage of it. To discuss it, we have created reverse learning curves. We fixed
the same holdout we have been using, then trained multiple models using different data slices. The
first slice is the most recent data. We follow the time segmentation used to feed the TRF, which
means both models start receiving the data from the most recent time segment before the out of
time holdout, and in every step, they get an additional segment of the training set. In the first
step, since there is only one segment, the TRF works like an RF, except the RF implementation
has more hyper-parameters to optimize the learning. As we add segments, the TRF design should
start having different behavior. The results can be seen in Figure 6.4.

We expected the models’ performance to be closer in the first segment added, but we can observe
they had a reasonable difference in four out of six cases, meaning the scikit-learn implementation
differs reasonably from the TRF. Regarding how both models reacted to older data being added,
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Dataset Data split Volume Time range RF TRF ∆ TRF-RF
GE News Train 21k 2015-2017 .948 .904 -.044
GE News Test 5k 2015-2017 .905 .872 -.033
GE News Holdout 58k 2018-2020 .821 .834 .013
20 News Train 8k - .822 .780 -.042
20 News Test 2k - .774 .746 -.028
20 News Holdout 8k - .708 .703 -.005
Kickstarter Train 98k 2010-2013 .700 .689 -.011
Kickstarter Test 24k 2010-2013 .688 .681 -.007
Kickstarter Holdout 254k 2014-2017 .620 .648 .028
Animal Shelter Train 75k 2014-2017 .794 .790 .004
Animal Shelter Test 19k 2014-2017 .787 .783 .004
Animal Shelter Holdout 61k 2018-2021 .789 .787 .002
Olist Train 41k 2017 .720 .660 -.060
Olist Test 10k 2017 .649 .625 -.024
Olist Holdout 62k 2018 .636 .627 -.009
Chicago Crime Train 100k 2001-2010 .902 .900 -.002
Chicago Crime Test 61k 2001-2010 .900 .898 -.002
Chicago Crime Holdout 90k 2011-2017 .901 .899 -.002
Building Permits Train 90k 2013-2015 .974 .967 -.007
Building Permits Test 22k 2013-2015 .970 .963 -.007
Building Permits Holdout 87k 2016-2018 .959 .955 -.004

Table 6.2: When comparing the AUC in the holdout from the TRF to the RF, the benchmark gets better
performance on three cases. However, the difference between challenger and benchmark in the holdout always
drops compared to the same difference in the test.

Dataset Domain classifier AUC
Kickstarter 0.843

Olist 0.805
GE News 0.794

Chicago crimes 0.688
Animal shelter 0.684
Building permits 0.605

Table 6.3: The higher the AUC in a domain classifier, the higher the difference between the training data
and the data the model is applied to (holdout). TRF shows a better performance in the cases where this
difference is high.

the results are mixed. There was not a clear trend about always getting better or being harmed. But
notice the TRF curve has a positive slope both for Kickstarter and GE News, the two cases where
it performed better than the RF. Two interesting cases are the Olist and Chicago Crimes since the
curves for both models started very close, but the TRF degraded as we approached the oldest data
available. There is a chance it is not exactly that old data is impacting the TRF, but how the model
uses each segment. Depending on the volume of the new segments, they will prevent the trees from
growing until their maximum available depth, an aspect that deserves further investigation.

We can open this analysis to show not the aggregate performance in the holdout but its perfor-
mance over time. In Figure 6.5 and 6.6, the darker curves include older segments. The blue curves
represent the RF, while the green ones are for the TRF. It is not clear if the plots provide evidence
that the older data can change the shape of the performance degradation. In the Animal Shelter
dataset, we can see that adding older data made both models perform worse for future data from
the holdout. At the same time, the opposite was true for GE News. In general, for both models,
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the curves of different shades are very similar.

6.1.4 Feature importance and relationship with the score

In order to make feature importance comparable between RF and TRF, we use the permutation
importance approach, which is model agnostic. The permutation importance shuffles a feature and
checks how it impacts the model performance. It is used in the PIMP feature selection algorithm
[ATSL10]. If the output is positive, the performance dropped after the permutation, so the feature is
important for the model. The higher the output, the more important it is. If it is negative, the model
could perform better using a shuffled version of a feature, which means the original feature behaves
like a random noise in which the model could find some patterns during the training process.

The results for the tabular datasets can be seen in Table 6.4. The Kickstarter case is interesting
since the TRF has not used two features (currency, country) that the feature importance proved
not essential or close to random noise for the RF. It seems to support the hypothesis of the TRF as
a possible feature selection algorithm. In general, there was no disagreement in the most important
features, as we can see in Figure 6.8.

To make both algorithms’ behavior more explicit, we inspected how changes in the features
impacted their scores. Thus, we use a Generalized Additive Model (GAM) trained using the out of
time holdout, which we split into train and test. The features from the original model are used as
inputs, and its score is used as the output. The GAM is predicting how the RF or the TRF predict.
The results shown are the predictions in the test set from the GAM split. A grid of input values is
created to feed the GAM and reveal a functional form for both models use a particular feature.

A couple of illustrative cases can be found in Figure 6.9. We have only one numerical feature
in the Kickstarter dataset, the crowdfunding campaign’s goal, which is also the most important for
the two models. The TRF seems to use “goal” in a simpler way compared to the RF since close
to a goal of 100k, the effect in the score is pretty much the same. The main category feature also
does not support much disagreement, there are only a few cases in which the two models see an
opposite effect of a specific class, but it is more common to see higher impacts from the RF. The
same thing goes in the Animal Shelter with “Age Upon Intake” and in the Olist dataset with the
feature “difference_limit_delivered”: they are similar, but the impact on the score of these features
is less extreme for the TRF in general, which suggests the idea that its design could be just forcing
models to be simpler.

Is there any pattern in features that changed their importance from RF to TRF?

An abrupt importance change from RF to the TRF could provide insight into TRF learning
invariances. In Figure 6.8, we can see that in the Building Permits dataset, the least important
feature in the RF was critical to the TRF. Investigating it, we observed that the “Existing Use” and
“Proposed Use” have the same value 74% of the time, and the most important classes from them
have a very similar behavior over time in respect to the average target value, as seen in Figure 6.11.
It means the TRF has not found anything in particular. The two models are just using two different
features to extract the same signal.

Using the Figure 6.8 and analyzing in Table 6.4 the absolute importance of the features that
changed, we can see that changes in the feature importance from one model to the other mostly
happened for unimportant features. In all datasets, there were dominant features that made it to
the top of importance for both. We estimated the importance of the features while we added older
data to the reverse learning curve to clarify it. In Figure 6.12, we see the result for the Olist dataset,
in which for both models, the top features were stable as older data was added, while the other
features changed quite frequently.

In the GE News dataset, when we look at the top 20 most important words in Table 6.5, we
cannot see anything intuitively clear about the words selected by the TRF and the ones important
for the RF.
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RF TRF
Dataset Feature Importance Feature Importance

Kickstarter

goal .065 goal .087
category .012 main_category .010

main_category .010 category .009
currency .003 country -
country -.001 currency -

Animal Shelter

Intake Type .091 Intake Type .090
Age upon Intake .070 Age upon Intake .069
Sex upon Intake .030 Sex upon Intake .020
Intake Condition .020 Breed .016
Animal Type .008 Animal Type .013

Breed .004 Intake Condition .012
Color -.002 Color .001

Olist

difference_limit_delivered .046 difference_limit_delivered .040
difference_estimated_delivered .022 difference_estimated_delivered .024

freight_value .001 product_length_cm .002
product_length_cm .000 freight_value .001

price -.000 product_weight_g .001
product_category_name -.001 product_description_length .001

seller_id -.002 product_height_cm -.000
product_description_length -.002 price -.000

product_photos_qty -.002 product_category_name -.000
product_weight_g -.002 product_name_length -.001
product_height_cm -.002 product_width_cm -.001
product_width_cm -.003 product_photos_qty -.001

product_name_length -.004 seller_id -.001

Chicago Crime

FBI Code .234 FBI Code .095
Description .052 Primary Type .083

Primary Type .050 Description .079
Location Description .016 Location Description .013

Domestic .002 Domestic .001
Latitude .002 Beat .000
Longitude .001 Longitude .000

Beat .001 Zone -.000
Address .001 Community Area -.000
District .000 Latitude -.000
Ward .000 Ward -.000
Zone .000 Address -.000

Community Area .000 District -.000

Building Permits

Estimated Cost .174 Proposed Use .134
Existing Units .020 Existing Use .122

Existing Construction Type .018 Estimated Cost .091
Existing Use .013 Plansets .065

Proposed Units .009 Number of Proposed Stories .056
Supervisor District .002 Proposed Units .051

Number of Existing Stories .001 Number of Existing Stories .016
Plansets .001 Existing Units .009

Number of Proposed Stories .001 Existing Construction Type .007
Fire Only Permit .000 Supervisor District .006

Proposed Construction Type .000 Neighborhoods - Analysis Boundaries .005
Neighborhoods - Analysis Boundaries -.000 Proposed Construction Type .004

Proposed Use -.004 Fire Only Permit .003
Street Suffix -.007 Street Suffix -.000

Table 6.4: The permutation feature importance shows the RF and TRF had very few cases of disagreement
in the most important features. The most noticeable is in the Building Permits dataset, which we investigate
in the section 6.1.4

6.1.5 Time Robust Forest as a feature selection algorithm

In Chapter 5, we raised the question about the TRT design revealing a subset of the input
features whose relationship with the target is stable. Such a subset would be helpful to feed any
predictive model. To gather evidence to discuss it, we used the TRF’s feature importance to select
the most important ones or simply the ones used by the algorithm. For example, in the Kickstarter
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RF TRF
Feature Importance Feature Importance
atleta 0.043446 atleta 0.090731
cada 0.034933 sabe 0.036755
partidas 0.019554 cada 0.034831
primeiro 0.014367 partidas 0.021660
sabe 0.012230 lateral 0.016985
dia 0.010441 chegar 0.015238
cinco 0.009303 dia 0.012248
lateral 0.006325 cinco 0.011322
vídeo 0.006182 camisa 0.006628
rodrigo 0.005493 precisa 0.006192
defesa 0.004620 globoesporte 0.004892
globoesporte 0.004507 defesa 0.004150
precisa 0.004204 todos 0.003037
momento 0.003925 possível 0.002211
treinador 0.003699 lesão 0.001797
camisa 0.003505 vídeo 0.001595
hoje 0.003442 vitória 0.001177
difícil 0.003328 dentro 0.000943
possível 0.003327 neste 0.000874
todos 0.003132 nova 0.000581

Table 6.5: The 20 most important words in the GE News task for the RF and TRF. Many of them were
important in both models and there is no easy pattern differentiating which words the TRF prioritized.

dataset, 2 out of 5 features were not used by the TRF: the currency and the country. We optimized
an RF with this subset and compared it to the benchmark with all the features and the TRF. As
seen in Figure 6.1, from the five datasets we could perform this exercise, only one of them has shown
an improvement, the Chicago Crime. However, we can see the curve shifted vertically even before
the out of time period, which does not offer evidence that the set of features is remarkably robust to
future changes. Even in the Kickstarter case, where the TRF performed well, the feature selection
did not work. It might suggest that the time-wise splits used by the TRF play an important role,
and a feature can possess stable and unstable relationships with the target. The non-stable ones
could be very predictive during a specific period and be preferred by the learning algorithm. As we
have seen in the section 6.1.4, the “goal” was an important feature for the TRF, but its usage of
this feature was slightly different when compared to the RF, which means that even if we deliver
the set of features the TRF considers important to an RF, it might overfed.

6.1.6 The minimum examples by period

As mentioned, we have not performed a hyper-parameter optimization in the TRF, but we
reused the parameters from the optimized RF. However, we changed the minimum parameters by
period to understand its effect on the performance. One of the results from this experiment can be
seen in Figure 6.13. The dashed lines represent results from the TRF, while the continuous are from
the RF. We use the same colors for the same set from both models. Notice how the continuous green
curve representing the holdout is always above the dashed one, except for the GE News dataset. It
means that in most cases, there was no different value for this parameter that could make the TRF
deliver a holdout performance higher than the RF. Nonetheless, the TRF has performed better
when the RF could not pick a good value for this hyper-parameter.

We can also observe that the minimum examples by period assume low values in high-performing
models even when the datasets are large. The maximum value for the holdout curve from the TRF
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always happened at values lower than 25, which is expected, and we investigate the trade-off involved
in this choice in the next section. It opens a future investigation about how this volume affects the
model considering some periods have way fewer data than others. Bootstrapping all the periods
to have the same volume or using a percentage requirement would be interesting experiments. It
enforces the point on how different periods with different volumes of data impact the approach, as
mentioned in the section 6.1.3.

6.1.7 A knob to control the trade-off between stability and short-term perfor-
mance

The Figure 6.13 does not tell the entire history about hyper-parameter change and the influence
on the performance. For the Time Robust Tree, the parameter that controls the minimum number
of examples by period was hypothesized to be a knob to play with the trade-off between perfor-
mance and stability, which could be more pronounced than the similar parameter that controls the
necessary sample to split a node in the regular Decision Tree.

An experiment was done using a single DT and a TRT using the GE News dataset. As seen
in Figure 6.14, in the DT, the shape of the curve does not change as much as in the TRT, in
which it gets to the point of reverting the model performance degradation at the expense of a
high-performance drop cost. However, when we extended this experiment to the RF and TRF in
the other datasets, the TRF has not shown the same capability in general, as seen in Figure 6.15.
It still happens in the GE News case, but not different than in the RF. Further, in the Building
Permits, the RF shows this behavior while the TRF could not.

In Section 6.1.4, we have seen the numerical features seem to show a simpler behavior. When we
combine it to the performance curves in Figure 6.15, it suggests the TRF could be mostly pushing
to simpler model definitions instead of enabling it to learn rules the RF could not.

6.2 Evaluating the empirical support match in different environ-
ments

Considering the inductive bias in the TRF, the data must cover the same range of values in all
the features for all the environments to enable the algorithm to find a common split under different
contexts. To verify the empirical support match for numerical variables, we create quantiles using
the entire training set using n bins; group the data by the environment, which is the time segment,
e.g., year; count how many unique bins there are in every environment; divide it by the number of
bins and take the average.

In the categorical case, it is similar. We go directly to count the unique categories in every
environment since the quantile step is unnecessary. The result in Table 6.6 shows that most of the
cases had a high empirical support match. The lowest value belongs to the Kickstarter case, which
had a great benefit from the TRF, which suggests that different things come into play in terms of
favorable properties of a problem to offer a good use case for TRF. It indicates a path for further
investigation about how environment diversity and empirical support match relates.

Dataset Empirical Support match
Building permits 0.886
Animal shelter 0.859
Chicago crimes 0.849

Olist 0.784
Kickstarter 0.611

Table 6.6: The support match translates how the environments overlap in terms of feature coverage. The
higher, the better to find common splits. The relationship of support match and diversity of environments
needs further investigation.
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6.3 Would any practice be able to help the RF in the cases the
TRF was better?

When we did the impossible exercise of changing the parameter related to the minimum number
of examples in a leaf while looking to the future and unseen examples’ performance, the RF presented
a competitive performance in the Kickstarter dataset, as seen in Figure 6.13. It means it can learn
the needed rules to achieve it. The following question is: would we be able to reach that set of
hyper-parameters without looking into the future?

In the Kickstarter case, we can see the RF Holdout performance curve is superior to the TRF’s
one for most of the parameters, but the RF ended up picking a value in the region it is not better.
Since the most recent data resembles the future unseen, we optimize the RF’s hyper-parameters
by doing a second time split in the in time set. We will use two designs to try to surpass the TRF
performance: leaving the entire year of 2013 as a validation set for the optimization and leaving
only half of it. After the optimization, the final model is trained using the whole period, including
2013.

As seen in Figure 6.18, these approaches could indeed improve the benchmark performance.
Leaving 2013 as a validation set for the optimization process increased the performance in the out
of time set. Even in this case, the TRF could perform better. It means that the TRF could perform
better even under standard practices to improve generalization in an out of time set.

In the GE News case, the new optimization design could not improve the benchmark perfor-
mance.
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Figure 6.1: Comparing TRF to the RF in real-world public datasets. The benefits of using TRF vary
depending on the dynamics of every dataset. In general, it shows better robustness when facing future unseen
data.
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Figure 6.2: The more significant the difference between the source data and the target data, which is
translated by a high AUC for the domain classifier, the greater the benefit of learning invariant relationships
in order to generalize to future unseen data. The shade shows the regression estimates confidence interval
made with bootstrapping.

Figure 6.3: The delta AUC in the in time test set cannot guide the TRF performance in the out of time
holdout since there is no slope when we regress them.
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Figure 6.4: In a reverse learning curve, older data is added to the training set, and a fixed out of time
holdout is evaluated. We can see the TRF benefited most of older data exactly in the cases it performed better
than the RF, which is in the Kickstarter and GE News.
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Figure 6.5: We added older segments to the training set and observed how the shape of the curve for the
holdout performance overtime would change. In the three datasets in this figure, only the Animal Shelter
shows older data degrading the performance in the last year included in the holdout, but for both models.



48 EXPERIMENTS 6.3

2018 2019 2020
Year

0.78

0.80

0.82

0.84

0.86

0.88

A
U
C

Oldest time period included in train
2017
2016
2015
2017
2016
2015

(a) GE News

(b) Chicago Crime

2016.00 2016.25 2016.50 2016.75 2017.00 2017.25 2017.50 2017.75 2018.00
Year

0.930

0.935

0.940

0.945

0.950

0.955

0.960

0.965

A
U
C

Oldest time period included in train

2015
2014
2013
2015
2014
2013

(c) Building Permits

Figure 6.6: We added older segments to the training set and observed how the shape of the curve for the
holdout performance overtime would change. In the GE News, older data helped the TRF perform better in
the future, while in the Building Permits, it helped the RF.
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Figure 6.7: In general, the RF and the TRF shared the most important features.
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(a) Building Permits

Figure 6.8: For the Building Permits dataset, there was a case the least important feature for the RF
migrated to the most important in the TRF. We investigate this case in the section 6.1.4.
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Figure 6.9: The behavior of the most important numerical feature was very similar. At the most, we can
say that in the TRF, it is slightly smoother. The dashed line represents a 95% confidence interval generated
by the GAM.
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Figure 6.10: The bars display how belonging to a specific class from a categorical feature impacted the score
predicted by the RF and the TRF. We can see that the disagreement was very minimal.
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Figure 6.11: The three most common classes in the Proposed Use and Existing Use features from the
Building Permits datasets are equal and their relationship with the target over time is very similar. So the
large difference in the Proposed Use importance in the RF and TRF does not provide any insight.

Figure 6.12: In the horizontal axis, we have the oldest time segment, which was added to the training sample
during the reverse learning curve. (a) RF, (b) TRF. As we added older data for the training, the importance
of the features for the holdout prediction was stable for the top ones, while the unimportant changed in every
round.
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Figure 6.13: As we changed the minimum example by period (TRF) or the minimum example for a leaf
(RF) parameter, we could see how the performance in the different sets changed. The GE News dataset is the
only one the TRF could achieve a performance the RF could not by only changing the minimum examples
for a leaf node.
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Figure 6.14: The first image shows how the holdout performance change in time for a Decision Tree when
the parameter for the minimum examples to split changes, while the one in the bottom shows the same thing
for the Time Robust Tree’s minimum examples by period to split. The data is from the GE News dataset.
TRT shows an interesting impact on the performance curve shape over time.
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Figure 6.15: When changing the minimum examples needed in a leaf in the RF and by period in the TRF,
we expected to see a higher impact in the curve shape overtime in the TRF case, but it was not observed.
On (a) Kickstarter, (b) Olist e-commerce, (c) Animal Shelter, (d) 20 Newsgroups, (e) Chicago Crimes, (f)
Chicago Building Permits, (g) GE News.
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Figure 6.17: GE News

Figure 6.18: Changing the hyper-parameter optimization process could help the benchmark in the Kickstarter
case, but it was unable to achieve TRF’s performance. In GE News, the process could not happen the initial
benchmark. The base case is using the entire period with K-fold. The alternatives were leaving entirely or
partially the most recent data from the training period (2013) as the validation set for the optimization
process.
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Chapter 7

Conclusion

Time Robust Forest offers a new option to control the trade-off between short-term performance
and stability, which is an advantage in a couple of settings where updating models is costly and the
data distribution changes frequently. Beyond the practical implications, there is evidence that causal
properties are an exciting dimension of predictive tasks. Though it has a severe design limitation,
real-world data with a good time range should offer enough flexibility to enable a time period
segmentation to overcome it.

7.1 When to use TRF

The Kickstarter and the GE News case look different. While the first has a few inputs and the
RF could have performed better had the optimization process picked the right hyper-parameters,
the GE News has 300 inputs and a highly dynamic task. The domain classifier exercise points to
cases in which the data distribution changes more. However, we could see by the feature importance
analysis that there is not much room to look for better features in most cases since the signal will
concentrate on a few very important and reasonably stable features. It raises the hypothesis that
the task needs to offer many different signals to enable a TRF to perform differently than an RF.

7.2 How the model limitations impact its application

When using the Time Robust Forest, it is necessary to have a timestamp column, a reasonable
time range, and overlapping empirical supports for every period regarding the input features. The
timestamp is commonly available information in real-world datasets since every data is generated in
time, and it is common to store it. Long-range data is not uncommon since data time range follows
its generator activity duration, and it is common to have laboratories and companies persisting for
a couple of years. The empirical support of the input features in every period is the main limitation.
It is possible to play with the time period definition until there is a decent overlap between them.
As an example, imagine age as an input feature and an application for customer acquisition. If the
time period definition is too short, like a day, it is very likely not to contain the age range present
in other days. In the limit, one could define a time period short enough to have just one example
on it, which would make the application of the algorithm impossible. If we grow this time period,
there will be a size that will contain data about every age range for every period.

7.3 The environment segmentation as time periods

Though we segment the timestamp column in time periods to represent environments, it is an
approximation prone to problems. Considering as different environments two periods of time while
they were generated under the same environment does not harm our approach, except for requiring
more data, consisting of a trade-off between making sure every period contains just one environment
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and the data volume needed. Suppose we place two different environments in the same time period.
In that case, we are losing an opportunity to offer the model two cases we want to keep relationships
invariant and potentially enable the algorithm to create splits that are good only for one of the
environments in the same time period. However, we still want invariance between this period with
the two environments and all the other time periods in the training data. Thus, it is another side of
the segmentation trade-off. While having fewer segments provides a higher volume of data in every
period and enables learning more complex rules, it will also make it more likely that two different
environments are sharing the same time period compromising the inductive bias for invariant rules.

7.4 Generalizing for different environments

Though we present here time as the environment we iterate over to find invariance, the model
could have been presented as a Context Robust Forest. Context can take any environment to iterate,
like geographical locations, including compounded ones like geographical-time. If the concern is
generalizing under new data sources, like data from a new hospital in a healthcare application, one
can use the hospital as the context or hospital-time.

7.5 Regularizing for any non-stationary knowledge is not all we
need

By expressing our preference for stable and invariant relationships in the data, we can avoid
absorbing spurious correlations, but we also prevent the model from learning genuine non-stationary
relationships, which are causal but suffer constant concept drifts. Though invariant or slow-changing
aspects of the world are an essential piece for intelligence, it is also noted that we need to learn the
non-stationary parts of it [GB20]. The Time Robust Forest offers a way to find the slow-changing
or stationary relationships we take longer to learn - the longer the time range in the data, the
better to learn invariant properties. Intuitively, learning transient causal relationships helps us on
intelligence tasks. Using the soccer example, the transient piece of knowledge of which are the two
soccer clubs that classified to the championship finals can help in the task of identifying the club
theme of a sports article when the term "championship finals" is present, even though it is far from
being a stable property in respect to the two specific clubs.

7.6 Intersection with Domain Adaptation

Since disjoint input features for different environments is a general challenge in Machine Learn-
ing, there are approaches to perform a Domain Adaptation, such as Domain-adversarial Neural
Networks (DANN) [GUA+16] and Maximum Mean Discrepancy Adversarial Auto Encoder (MMD-
AAE) [LPWK18]. The general goal is to find a representation for the inputs that enables a better
generalization for any domain.

In the DANN, the representation is an output of a feature extractor, which learns in order to
solve at the same time the task of getting the target variable right and not getting the domain label
right - which means the features do not carry environment specific anymore.

In the MMD-AEE, this representation is learned with an Auto Encoder. An Auto Encoder is a
Neural Network architecture that learns a different representation of the input data by enabling it
to be expressed by the hidden layers of a network that learns this representation using as the target
output the input data itself [RHW85]. It learns how to represent the same data differently without
destructing the original signal.

Adjustments of the loss function enable the modeler to force additional properties beyond the
original information retention. One example of such loss is the Maximum Mean Discrepancy Dis-
tance (MMD) [GBR+12]. The MMD is a kernel-based approach that measures how different two
distributions are. Given two distributions, we can define the MMD as the distance between their



.0 FUTURE WORK 61

embeddings in the Reproducing Kernel Hilbert Space (RKHS). It is called the Maximum Mean Dis-
crepancy because it is equivalent to finding the function in the RKHS that maximizes the difference
in the expectations between the two distributions. The most widely used metric for the distance
between distributions is the Kullback-Leibler Divergence (KL-divergence). The usage of MMD in
this work is motivated by the architecture proposed by Li (2018) [LPWK18] to solve the prob-
lem of the input distributions not sharing the same empirical support when coming from different
environments.

7.7 Future work

Future lines of work for TRT itself or in Out of Distribution direction can explore automatic
environment segmentation, other ways to learn a representation to match environments’ empirical
supports, how to combine boosting while respecting the invariance preference, the addition of para-
metric models to improve generalization out of seen data boundaries, and ensembles of differently
regularized TRTs.
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Appendix A

Deriving IRM for the linear regression
case

In order to get a deeper understanding about the steps involved in the IRM paradigm, we derive
the case for the linear regression. Consider a linear regression, where X is the set of input variables,
Y is the target variable, β is the parameter vector, we want to estimate: Ŷ = β̂X. In this case, the
function Φ takes the form of βX.

To achieve it, we want to minimize the loss function L(β). Using Gradient Descent, the search
for the βs that minimize this function happens by the successive updates on them that take the
following form:

β̂t+1 = β̂t − γ∇β|β=β̂t
L(β) (A.1)

Starting in the regular case, when we use the ERM, the minimized loss function L is the mean
squared error. Thus, we learn β̂ using:

L(β) = MSE =
1

n
(Ŷ − Y )(Ŷ − Y )T ,where Ŷ = Xβ̂

∇β|β=β̂t
L(β) = − 1

N
XT (Xβ̂ − Y )

(A.2)

In the IRM, the loss function LIRM (Φ, ω) in Equation 4.8 is composed by two parts. The first
is identical to the ERM case, however, now we iterate over the set of environments available in the
training set εtrain. We distinguish the input matrix under a certain environment e as Xe and the
target variable as Y e. Notice that by using ω = 1.0, we obtain ω ◦ Φ equal to β.

Re(ω ◦ Φ) = Re(β̂) =
1

n
(Xeβ̂ − Y e)(Xeβ̂ − Y e)T (A.3)

The second part of LIRM (Φ, ω) is composed by λ, a constant acting as a hyper-parameter, and
the penalization function D, in this linear case it is Dlin 4.9. We highlight that Φ becomes our
predictor, which in this case means it is expressed by the parameters in β.

Dlin(ω,Φ, e) =
∥∥∥EXe [(Xeβ̂)T (Xeβ̂)]ω − EXe,Y e [(Xeβ̂)TY e]

∥∥∥2
(A.4)

Nonetheless, to update the parameters in β̂ we need the gradient. Since LIRM is composed
by a sum, the gradient first term coincides with the derivation done for the ERM case, while the
second term becomes ∇w|w=1.0Dlin(ω,Φ, e). Differentiating the Equation A.4 in respect to ω and
then replacing it by 1.0:
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∇w|w=1.0Dlin(ω,Φ, e) = 4
1

N
(((Xeβ̂)TXeβ̂)− ((Xeβ̂)TY ))

(Xe(Xeβ̂)T − ((Xeβ̂)TY e))
(A.5)

Finally, the update of the weights under the IRM paradigm is:

β̂t+1 = β̂t − γ
∑
e∈εtr

[
(− 1

N
(Xe)T (Xeβ̂ − Y e))

+λ(4
1

N
(((Xeβ̂)TXeβ̂)− ((Xeβ̂)TY e))(Xe(Xeβ̂)T

− ((Xeβ̂)TY e)))
] (A.6)

A.1 Synthetic examples

To exemplify, we use the equations derived in the previous section to compare the IRM to the
ERM paradigm1. Consider the following equations from the example provided by Arjovisky (2019)
[ABGLP19]

X1 ∼ N(0, environment)
Y ∼ X1 + N(0, environment)
X2 ∼ Y + N(0, 1)

(A.7)

They represent our training set. The Environment, however, can assume different values during
the training and after it. We use εunseen to represent unseen environments considering the training
examples available, they would be observed only when the model is applied to new data, which is
different than random examples extracted from the training set in order to validate the model.

εtrain = (0.1, 1.0)

εunseen = (0.2, 0.05, 0.5, 1.2)
(A.8)

As a consequence of the environment change, the relationship betweenX2 and Y will also change
on its functional form, since it is a non-causal relationship.

X2 ∼ N(0, 1) (A.9)

In this scenario, we want to build a model that can be trained on the data generated by the
SCM A.7 that does not overfit to the non-causal relationships present on it, in a way that when it
faces a new environment during the application stage, which follows the causal relationships present
in the training, but presents different spurious correlations, it is able to present a good performance.

For this illustrative example, we will use three models:

• ERM: a linear regression using gradient descent without any kind of regularization. It is the
benchmark model.

1The code is available at https://github.com/lgmoneda/msc-thesis/tree/main/literature/irm_logistic_
regression_from_scratch.ipynb

https://github.com/lgmoneda/msc-thesis/tree/main/literature/irm_logistic_regression_from_scratch.ipynb
https://github.com/lgmoneda/msc-thesis/tree/main/literature/irm_logistic_regression_from_scratch.ipynb
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• Oracle: It is a model built using the real parameters from the generating process for the
target, and zero for any variable that does not define it. In this case, β1 = 1 e β2 = 0.

• IRM: It uses the loss function from IRM and a lambda value optimized using only training
data. It is the challenger model.

As a performance metric, we use mean squared error (MSE) to compare the models. The error
is always taken from out of train data: in the first case, the test data, they come from seen environ-
ments, but it is a random sample not used for training, while in the second case, the holdout data,
they come from unseen environments.

As expected, the benchmark model explores the non-causal relationships to optimize the pre-
dictive performance showing the lowest error in the test data as seen in the Figure A.1. In this
same test set, the Oracle model presents the highest error precisely by the fact it does not ex-
plore the spurious correlations from it. The challenger model is worse than the benchmark. Notice
this situation is exactly the model validation framework extensively used to gather evidence about
generalization power.
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Figure A.1: IRM has a worse or indifferent performance when we compare it to the ERM case for a unseen
set that respects the i.i.d assumption, which means the data comes from environments that were observed in
the training examples. At the same time, the Oracle model does not perform as well, since it is not exploring
spurious correlations from the particular environment present in the train and random test data.

However, the environment not seen in the train present different spurious correlations than the
ones observed before, thus it is impossible to explore them. In this case, the performance ordering is
reversed, as seen in the Figure A.2. Now the challenger model is better than the benchmark, while
both are worse than the Oracle, which is expected.

Looking to the same results in a different perspective by grouping the data by environment, we
can see in the Figure A.3 how the same ordering in the aggregated results is observed in all training
environments and all unseen ones.

The hypothesis to argue that IRM is a better approach to general Machine Learning problems is
that it is expected in most problems to face many interventions and environments after the learning
stage.
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Figure A.2: When we exposed IRM and ERM to a data generated by the same process than the training
examples, but under a different environment, the ERM pays the price of exploiting spurious correlations and
shows the highest error, while IRM has a better performance. The Oracle, as expected, performs well, since
it follows the true causal relationships.
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Figure A.3: When we split the performance plot by environments, we can clearly see how IRM does better
than ERM in unseen environments, which means domain generalization.
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