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Resumo

MORIMITSU, H. Uma abordagem baseada em grafos para rastreamento de múlti-
plos objetos em vídeos estruturados com uma aplicação para o reconhecimento
de ações. 2015. 86 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universi-
dade de São Paulo, São Paulo, 2015.

Nesta tese, uma nova abordagem para o rastreamento de múltiplos objetos com o uso
de informação estrutural é proposta. Os objetos são rastreados usando uma combinação de
filtro de partículas com descrição das imagens por meio de Grafos Relacionais com Atributos
(ARGs). O processo é iniciado a partir do aprendizado de um modelo de grafo estrutural
probabilístico utilizando imagens anotadas. Os grafos são usados para avaliar o estado atual
do rastreamento e corrigi-lo, se necessário. Desta forma, o método proposto é capaz de
lidar com situações desafiadoras como movimento abrupto e perda de rastreamento devido à
oclusão. A principal contribuição desta tese é a exploração do modelo estrutural aprendido.
Por meio dele, a própria informação estrutural da cena é usada para guiar o processo de
detecção em caso de perda do objeto. Tal abordagem difere de trabalhos anteriores, que
utilizam informação estrutural apenas para avaliar o estado da cena, mas não a consideram
para gerar novas hipóteses de rastreamento. A abordagem proposta é bastante flexível e
pode ser aplicada em qualquer situação em que seja possível encontrar padrões de relações
estruturais entre os objetos.

O rastreamento de objetos pode ser utilizado para diversas aplicações práticas, tais como
vigilância, análise de atividades ou navegação autônoma. Nesta tese, ele é explorado para ras-
trear diversos objetos em vídeos de esporte, na qual as regras do jogo criam alguns padrões
estruturais entre os objetos. Além de detectar os objetos, os resultados de rastreamento
também são usados como entrada para reconhecer a ação que cada jogador está realizando.
Esta etapa é executada classificando um segmento da sequência de rastreamento por meio
de Modelos Ocultos de Markov (HMMs). A abordagem de rastreamento proposta é testada
em diversos vídeos de jogos de tênis de mesa e na base de dados ACASVA, demonstrando a
capacidade do método de lidar com situações de oclusão ou cortes de câmera.

Palavras-chave: Rastreamento de objetos, grafo, informação estrutural, filtro de partículas,
reconhecimento de ações.
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Abstract

H. MORIMITSU. A graph-based approach for online multi-object tracking in
structured videos with an application to action recognition. 2015. 86 p. Thesis
(Ph.D.) - Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2015.

In this thesis we propose a novel approach for tracking multiple objects using structural
information. The objects are tracked by combining particle filter and frame description with
Attributed Relational Graphs (ARGs). We start by learning a structural probabilistic model
graph from annotated images. The graphs are then used to evaluate the current tracking
state and to correct it, if necessary. By doing so, the proposed method is able to deal
with challenging situations such as abrupt motion and tracking loss due to occlusion. The
main contribution of this thesis is the exploration of the learned probabilistic structural
model. By using it, the structural information of the scene itself is used to guide the object
detection process in case of tracking loss. This approach differs from previous works, that
use structural information only to evaluate the scene, but do not consider it to generate new
tracking hypotheses. The proposed approach is very flexible and it can be applied to any
situation in which it is possible to find structural relation patterns between the objects.

Object tracking may be used in many practical applications, such as surveillance, activ-
ity analysis or autonomous navigation. In this thesis, we explore it to track multiple objects
in sports videos, where the rules of the game create some structural patterns between the
objects. Besides detecting the objects, the tracking results are also used as an input for
recognizing the action each player is performing. This step is performed by classifying a seg-
ment of the tracking sequence using Hidden Markov Models (HMMs). The proposed tracking
method is tested on several videos of table tennis matches and on the ACASVA dataset,
showing that the method is able to continue tracking the objects even after occlusion or
when there is a camera cut.

Keywords: Object tracking, graph, structural information, particle filter, action recogni-
tion.
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Chapter 1

Introduction

In this thesis, the problem of tracking multiple objects in videos is explored. Tracking
an object consists in finding its spatial position at every frame along the whole video. As
opposed to object detection, tracking relies on some temporal properties of videos in order to
restrict the search space and increase the processing speed. Particularly, smooth movement
is usually a strong assumption of most trackers, i.e. the position of an object in the next
frame should be very close to the position in the previous frame. However, that assumption
does not always hold, as the position may change abruptly in some situations, e.g. if the
video contains views from several camera viewpoints.

If the object is subject to abrupt motion, trackers relying on smooth movement will not
be able to find the object again, unless it comes close to the position where the tracking
was previously lost. Another situation which may cause tracking loss is when there is an
ambiguity between the object descriptor and the background or another object. In this case
it is possible that the tracker starts to follow the wrong target, thus causing the drift problem.
Drift is one of the main problems found when tracking objects over a long period of time.
In order to avoid it, it is important to have some mechanism to find the object again once
it is lost. Otherwise tracking may be lost forever, which is highly undesirable. In this work
we propose to redetect the object by relying on structural properties.

Structure is a very general term and may be defined differently according to the prob-
lem. For the purposes of this thesis, structure will be considered as the spatial relationships
between pairs of objects that can be measured numerically (e.g. the distance between them).
The structure will be explored by learning some statistical properties from these measure-
ments and then enforcing them on the image at each frame. The topology of the objects and
their relationships will be stored in graphs (more details are presented in Chapter 3).

1



2 INTRODUCTION 1.1

1.1 Motivation

Tracking multiple objects simultaneously is a challenging task. Due to the good results
demonstrated by single object trackers, using a set of them to track several objects in the
same scene could be an interesting option. However, applying this direct approach usually
presents some difficulties which are not always found on the single object tracking problem.

Most of the current state-of-the-art single object trackers rely on visual appearance fea-
tures to describe the object of interest, using texture and shape, among others. These ap-
proaches have two main drawbacks. The first one is that, if several objects have a similar
appearance, then one or more of the trackers can lose their targets. In fact, even when
dealing with only one object, tracking can be lost due to ambiguity with the background.
The second, and the main problem when tracking multiple objects, is dealing with occlusion.
When an object is partially of fully occluded, its appearance may change significantly, which
greatly affects the tracking performance. Therefore, a good method for multi-object tracking
must be able to recover tracking after it is lost due to occlusion.

In order to deal with such situations, it is necessary to: (1) realize that a tracking error
occurred, and (2) recover the correct target. For this, more data should be extracted from
the scene and then used to obtain the required information for making the decision. As it
will be further discussed in Chapter 2, many options have been explored before, each one
being most suited for a different situation. In this thesis we will be interested in studying
the use of spatial relations between objects to recover or correct online tracking. Online
tracking, as opposed to batch methods, only uses past information to predict the next state,
and thus, can be used in real time. We argue that, in some kinds of videos where the
scene represents a situation that usually follows a common spatial pattern, it is possible to
choose the most likely configuration of the objects by learning some structural properties
beforehand. Figure 1.1 shows an example of a table tennis video with a situation where
tracking is lost after two players intersect each other. Although the interaction is brief, this
already causes one of the trackers to misjudge its correct target and start to track the other
player instead. We intend to solve this kind of problem by exploring the spatial properties
of the scene, such as the distance between two objects.

We shall refer to videos that present discernible spatial patterns as structured videos.
It is assumed that scenes (or frames) of these videos contain elements that provide a kind
of stable spatial structure to be explored. A good example is sport videos. Sports rely on
a set of rules that usually constrain the involved objects to follow a set of patterns. These
patterns often present some spatial relationships that may be explored. For example, the
rules may enforce that the objects must be restricted to a certain area, or that they always
keep a certain distance among them. Another case is when evaluating videos of a set of
known interactions. In this situation, if a person is always using some object, then there is
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(a) (b) (c) (d)

Figure 1.1: Example of a multi-object tracking situation. Most single object trackers are able to
successfully track the targets when their appearance is clear (a). However, when overlap occurs (b),
they are not able to solve the ambiguity problem in appearance and the tracking is lost (c). We
propose to recover tracking after such events by using structural spatial information encoded in
graphs (d).

usually a strong constraint on the distance and relative position between them. Structure
may also be found in surveillance, where usually the location is known and controlled, thus
the region of interest is constrained by the environment itself. Examples include vision-based
monitoring for smart homes since people activities are stable given the environment (e.g.
cooking, eating, watching TV, etc.).

Structural relations are explored by using graphs to encode the spatial configuration of
the scene. In this thesis, particle filter was chosen as the single object tracker, due to its
simplicity and good results demonstrated in previous studies. However, theoretically any
other tracker could be used instead to benefit from the added structural information. This
makes the proposed framework very flexible and able to be used to potentially improve the
results of any single object tracking applied in multi-objects problems. As shall be explained
throughout this text, the graphs allow us to numerically evaluate the tracking state at each
frame. This value is then used to decide whether the current tracking is correct or if some
object was lost and, in this case, the state must be corrected. The graphs also contain the
necessary information for recovering the correct position of the target. With this approach it
is possible to improve the overall result by recovering tracking after situations of overlapping
between objects with similar appearance or when abrupt motion happens.

The use of structural information for recovering tracking is a topic that was not much
explored before. Indeed, several of the current state of the art methods based on tracking by
detection do use structural information at a different level, for evaluating the tracking state
and solving the data association problem between the frames. However, the detections are
usually carried out by off-the-shelf detectors that do not consider scene information. In that
sense, one main contribution of this thesis is to explore the learned probabilistic structural
model to guide the detection in case of tracking loss. This approach may greatly improve
the performance by reducing the search space.

We also show a practical application of tracking, where the results obtained from the
tracking step are used to perform action recognition. This is done by accumulating all the
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tracking results for each object over time to create sequences. Short segments of these se-
quences are then fed to multiple Hidden Markov Models which classify each of them into
one of a given set of possible actions for each object.

The proposed framework is tested using videos obtained from Youtube and also from the
ACASVA (De Campos et al. (2011)) dataset, which present more challenging conditions
such as changing of lighting, perspective and camera cuts.

1.2 Objectives

The objective of this thesis is to propose a novel approach to improve tracking of multiple
objects using structural information encoded in graphs. Besides, we also intend to show that
the tracking results can be applied for performing individual action recognition for each
object.

1.3 Contributions

The main contributions of this thesis are the following:

• a novel formalization of tracking in a flexible structural graph framework: the problem
of tracking multiple objects is modeled as a structural graph optimization problem.
Thus, it can be solved by relying on the structural properties extracted from the images.
Besides, the formulation is flexible and may be adapted to any kind of problem where
a structural graph can be defined;

• development of a probabilistic graph model that can be used to evaluate the structure
of a scene: several works use object models to perform tracking by detection, but
learning a structural model does not seem to have been much explored before;

• proposal of a method for dealing with abrupt motion by generating candidate object
locations based on the model: most of the works rely on visual features to find the
object after it is lost, but they fail to explore the structural relations;

• implementation of a novel framework for tracking multiple objects by evaluating mul-
tiple hypotheses with scene graphs: the probabilistic structural model is used to both
generate new tracking hypotheses and choosing the best configuration for each frame.
A framework containing the proposed model is implemented and tested on several
videos to analyze its behavior in real situations.
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1.4 Organization of this thesis

In Chapter 2 we present a review of some relevant previous works and how they con-
tributed to the development of our method.

In Chapter 3 the complete framework for tracking multiple objects using graphs is ex-
plained. We start by detailing the regular particle filter tracking approach and then explain
how graphs are integrated in order to deal with multiple objects.

In Chapter 4 we present how the action recognition is performed. In the beginning, the
overall framework is explained, followed by a detailed description of the models and methods
used in this step.

In Chapter 5 the experimental results obtained are exposed. We start by showing re-
sults obtained in the tracking step. We compare the obtained results of our approach with
other baseline methods. Afterwards, some results regarding the action recognition are also
presented.

In Chapter 6 we discuss the main conclusions of this work as well as suggestions for
future research and some final remarks.
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Chapter 2

Related work

2.1 Multi-object tracking

Multi-object tracking has been receiving great attention recently and many approaches
have been proposed. In this chapter we will discuss about some current works to give an
overview of the state of the art and then present how our approach is inserted in this field.

Predictive, or recursive models, such as the Kalman filter, have been used since the
beginning to deal with multi-object tracking (Reid (1979)). More recently, particle filter has
become more popular due to its ability to deal with non-linear and non-Gaussian models,
which frequently appear in tracking situations.

One strategy when using particle filters is to model all the objects simultaneously as
a single state and use a single filter to track all of them. However, by doing so, the state
space becomes very large and a huge number of particles may be necessary to obtain good
samples for estimation. Widynski et al. (2012) circumvent this problem by proposing a
ranked partitioned sampling scheme for resampling the particles. This is done by iteratively
updating the state vector of the particles for one object at a time. By doing so, new particles
do not need to be generated from a joint distribution considering all the parameters at the
same time, which in turn creates new particles that are closer to each of the objects. The main
drawback is that objects that are processed later are prone to be affected by errors created
when updating the state for previous ones. In that sense, the proposed ranking scheme shows
its importance by providing a probabilistic score that is used to process objects that are more
likely to be tracked correctly first, and thus to decrease the error for the next stages.

Another option is to track each object with a different filter. However, by itself, this
approach is not able to deal with objects with similar appearance, as the particles for different
objects may end up grouping in only one of them. Okuma et al. (2004) deal with this
problem by using a mixture particle filter. This method joins the different filters in a single
mixture model in order to represent the multimodal distribution observed when tracking
multiple objects. The joint multimodal distribution assures that all the filters do not end up

7
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representing the same single mode and keep tracking all the objects. Hu et al. (2015) also
use individual filters for each object, but they tackle the multi-object problem in another way.
They propose a more robust single object tracker that uses multiple features (color, edge and
Gabor textures) and sparse representation for the appearance model (Mei and Ling (2011)).
In a sparse representation framework, the object is represented by a linear combination of a
set of object templates and trivial templates. Object templates are obtained from successful
detections in previous frames and encode visual features. Trivial templates, on the other
hand, are typically a set of w×h binary vectors having only the i-th value set to one, where
w and h are the width and height of the tracked image, respectively. These templates form the
basis of the sparse representation and are important to both reduce the comparison overload
(by using sparse templates) and deal with partial occlusion (by only considering the visible
templates). The authors extend the classical approach to multi-object tracking by measuring
the amount of occlusion (when overlapping occurs) and handling it accordingly. If the overlap
is low, then the respective templates are used to guide the tracking of each overlapped object.
However, when it is high, they ignore the visual features altogether and instead rely only on
the motion model of the targets to continue tracking. Our method also uses particle filter
for tracking each object individually. We explore the graph information to avoid that all
trackers follow a single object. This is done by explicitly penalizing configurations where
two or more trackers overlap, and trying to find a better configuration which spreads them
on the scene.

Occlusion is one of the main challenges involved in multi-object tracking and some recent
works focus on dealing specifically with such situations. Tang et al. (2014) propose to extend
the well known Deformable Parts Model (DPM), proposed by Felzenszwalb et al. (2010),
to detect both single and pairs of persons. Although the parts model is somewhat robust
to partial occlusion, the authors show that the method already starts to fail in situations
with more than 20% of occlusion. They demonstrate that their approach can successfully
deal with different degrees of occlusion, even very severe ones. The single and pair detectors
can also be combined to deal with more crowded scenes. The main drawback is that it is
specifically designed for tracking two persons, and a different detector must be trained for
other types of objects. Grabner et al. (2010) tackle occlusion by embedding the environment
context into the model. For this, they detect a set of Harris points (Harris and Stephens
(1988)) and analyze their motion over time. The points that present correlated motion with
the target are used as supports to cast a vote for the object position at each time. Therefore,
when occlusion happens, the object can still be tracked by relying on the supports. Our
work follows a similar approach, by using the structural model to keep track or find the
most likely position of the target by using the other objects as supports.

Recently, the most popular approach is the one based on tracking by detection. This
method relies on using object detectors on every frame to extract target candidates. The re-
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sults obtained in this stage are usually noisy (containing both missing and wrong detections).
These results are usually first grouped into temporal segments called tracklets. Tracklets are
usually short segments created by connecting detections that present high appearance and
position correlation between frames. The main challenge comes from trying to create longer
paths from the tracklets. This corresponds to trying to solve a data correlation problem
that must be robust to occlusion, appearance change and appearance of new objects. This
has been one of the most active research topic on multiple object tracking, and countless
methods have been proposed. We will discuss only a few recent works that represent different
popular strategies.

One common choice is to model the situation as an energy minimization problem. In this
setup, a cost (energy) function is defined to provide a score for each possible configuration
and the state with the lowest cost should be the optimal tracking result. Milan et al. (2014)
propose an energy model that is composed of six terms which consider: the distance between
the estimated location and the detection, the plausibility of the motion model between
frames, the distances between multiple objects (to check if occlusion happens), the trajectory
persistence (continuity from one border of the image until the other), and a regularizer that
constraints the number of objects. All the terms are continuous and easily differentiable,
making it possible to use a gradient descent approach for minimizing the energy.

Since most multi-object tracking situations deal with human tracking, another notorious
approach consists in adapting the tracking paths according to human interactions. This is
usually done by modeling attraction and repulsion forces (e.g. groups tend to walk together,
while two persons in opposing directions will change their paths to avoid collision). Yan et al.
(2014) follow this approach by modeling three kinds of interactions: attraction, repulsion and
non-interaction. They are incorporated into a Bayesian framework to update the motion
model according to the interaction between each person and those that are in a surrounding
area.

Methods that rely on graph representations such as Markov Random Fields (MRF) and
Conditional Random Fields (CRF) have been receiving great attention lately. Zhang et al.
(2015) formalize tracking as an iterative labeling problem. To this aim, the detections are
considered as vertices of a graph and are connected both spatially (objects of the same
frame) and temporally (between frames). Following the MRF framework, unary and binary
terms are defined to evaluate the likelihood of each individual label, as well as their relations
with their neighbors. The unary function is defined as the probability P(y|l) that a given
object y is labeled with the object ID l. This value is obtained both from the motion model
and from a classifier that is trained with instances obtained from previous frames. The
binary term is decomposed into two types: spatial and temporal. The spatial term penalizes
configurations where neighbor objects receive the same label. The temporal term, on the
other hand, encourages neighbor labeling if the objects have similar properties. Wen et al.
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(2014) use hierarchical hypergraphs to build higher order relations to connect the tracklets.
The video is divided into segments which are iteratively connected while moving up in the
hierarchy, until obtaining a unique segment for the whole track. Inside each segment, a
hypergraph is built whose vertices are the tracklets and the hyperedges connect two or more
vertices that are likely to be part of the same path. The attributes of the hyperedges indicate
the probability of their vertices being part of the same path. The probability is computed by
considering three features: appearance similarity, motion model and trajectory smoothness.

Some previous works explored structural relations to improve tracking. Perhaps the clos-
est work to ours is that of Zhang and van der Maaten (2014). They use a model-free ap-
proach that learns the appearance and structural relations between the tracked objects
online. In the first frame, manual annotations are provided and used to initially train a His-
togram of Oriented Gradients (HOG) detector (Dalal and Triggs (2005)) for detecting the
object in the next frames, i.e. their approach is also based on tracking by detection. The struc-
tural relations are also learned from the first frame by training a Structured Support Vector
Machine (SVM), in a very similar fashion as that of the DPM detector (Felzenszwalb et al.
(2010)). The models are then updated while the tracking is being performed, using a gra-
dient descent approach. The candidate graphs are evaluated using the information obtained
from the HOG detectors as well as the distances between any two objects.

Although similar, their work differs from this one in the following aspects: (1) their
structural model only computes the difference between the observed distance and an ideal
value that comes from the online training. Our model considers both distance and angle
information obtained from a probability density function computed by evaluating several
training examples. (2) Although they use the structure to improve tracking and to deal
with occlusion, it is not used to guide the detection process, which could lead to improved
performance by restricting the search space. Our approach uses the structural model to
obtain candidates of where the target is likely to be found after tracking loss. (3) Their
method of tracking by detection does not consider motion models, while we rely on particle
filters.

Multi-object tracking has been applied to sports videos, with methods based on particle
filters being popular (Kristan et al. (2009); Okuma et al. (2004); Xing et al. (2011)). Many
works rely on background subtraction for tracking. Figueroa et al. (2006) first recover a
model of the background by using morphological operations coupled with heuristics based on
the intensity of the pixel values. Afterwards, the moving players are segmented by computing
the difference between the frame and the obtained model. In sports videos, often multiple
camera views are available. Morais et al. (2014) detect the players of a futsal game using
the Viola and Jones (2004) detector and then combine the results by projecting all of them
in a common projection of the field. The uncertainty of each detection is modeled by a
Gaussian Mixture Model which is then used to estimate the real position of each player.
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Other authors have tried to improve tracking by exploring more complex motion models.
Liu et al. (2013) used game context features designed specifically to model the motion
behavior of players during a team match. Those features consider local and global properties
of the scene such as relative occupancy or whether one player is chasing another. By this
way, the authors design a data association function that is more suited for tracking players
in team matches. Another challenging condition frequently found in sport scenes is mutual
occlusion. Zhang et al. (2013) tackle this issue by using a structured sparse model for each
person. This approach builds on the robustness of sparse models by reasoning that the
occlusion model is usually not sparse, but rather a structured connected area. This allows
the use of better models which are able to ignore features from large occlusion areas, e.g.
one player occluding another.

Another important issue that must be dealt with during tracking is abrupt motion.
Perhaps, the simplest way to deal with it is by generating some additional target loca-
tion hypotheses around the previous location to try to cover a broader region, as applied
in the work of Zhang et al. (2012). Another proposal explored by Kwon and Lee (2008)
and Zhou and Lu (2010) is to solve the same problem using spatial position information for
finding better candidates. This is done by dividing the image into several smaller regions and
using the information obtained from the density of states of each one to find new locations.
More recently, Su et al. (2014) propose to rely on visual saliency information to guide the
tracking and restore the target. We chose to use a different approach, instead of relying on
the features from the object to restore the tracking, we use the structural relations between
them to find the most likely new locations of the lost object. By doing so, the lost object
can be recovered as long as some are successfully tracked.

2.2 Action recognition

The field of action recognition is also vast and it has been the focus of much of the recent
research. Since action recognition is not the focus of this thesis, this section does not intend
to provide a thorough explanation of the current state of the art. Instead, it will give an
overview of some relevant research areas to contextualize our work. A more complete review
of action recognition methods can be found in the paper by Aggarwal and Ryoo (2011).

Most of action recognition works focus on action classification, which consists in providing
a label to a video or image containing one single action being performed. Examples of works in
this field include those by Schüldt et al. (2004), Blank et al. (2005) and Wang and Schmid
(2013). The first work extracts spatio-temporal invariant points from the videos. These points
correspond to an extension of Harris points (Harris and Stephens (1988)) to the 3D tempo-
ral domain. Each point is described by computing spatio-temporal Gaussian derivatives in
its neighborhood, which are then clustered using k-means. The clusters can be interpreted
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as a codebook, used in the classical bag-of-words approach (Yang et al. (2007)). Having
the codebook, each sequence can be described by a histogram of clusters and then classified
using a SVM. The paper by Blank et al. (2005) represents the actions as temporal volu-
metric shapes. Each action video is represented by a cube containing the volumetric shape
described by local and global features, including saliency and orientation. The cubes are then
classified by using the Nearest Neighbors procedure. One popular approach that has recently
shown promising results is the use of trajectories to classify action sequences. A trajectory
is obtained by following a point of interest throughout the video. Wang and Schmid (2013)
obtain trajectories from dense optical flow (Farnebäck (2003)). In order to deal with camera
motion, a homography is estimated between consecutive frames, and the trajectories that
follow the same motion pattern of the camera are removed to avoid clutter. Each trajectory
is described by segmenting it into a sequence of spatio-temporal cubes. The area inside each
cube is described by histograms of gradients and optical flows. The videos are then classified
using the bag of words approach (Yang et al. (2007)) with a linear SVM.

In this work, however, we are interested in dealing with another class of problems, where
many actions may be performed simultaneously. Furthermore, the actions performed by
each person may also vary over time. This kind of situation is related to the action local-
ization problem. Action localization consists in finding all the instances of a given action in
a longer video. Laptev and Pérez (2007) do so by formulating event detection as an object
detection problem. The “objects” consist of small sequences with various configurations of
spatial positioning and temporal length extracted from the videos, which are described by
spatio-temporal histograms of gradients and optical flows. The sequences are then classified
using a set of weak classifiers obtained by Adaboost (Viola and Jones (2004)). In the pa-
per by Lu and Little (2006), the authors propose a joint tracking and action recognition
framework where both are treated simultaneously. Thus, the action location is obtained
by tracking the target from the first frame. Afterwards, the sequence of tracking results is
used to classify the action by means of a set of Hidden Markov Models (HMM). The action
recognition module implemented in this thesis is inspired by this work and follows a similar
approach.



Chapter 3

Multi-object tracking based on

structural information

In this chapter the proposed tracking framework is explained. The tracking relies on the
following assumptions:

• A representative set of annotated examples is available for training the model;

• The number of tracked objects is fixed and it is specified beforehand;

• The topology of the graph is predetermined by a provided adjacency matrix;

• The initial position of each object is provided in the first frame;

• There exists a structural relation pattern between the objects that can be learned and
explored for tracking.

The proposed method presents some interesting advantages. Firstly, it performs online
tracking, i.e. it only depends on past information and, therefore, it may be used on real time
applications. Secondly, the probabilistic graph model is very flexible and, provided that the
training set is representative enough, it is able to cover a wide range of configurations. The
graph is also able to encode specific structural relations, e.g. it can enforce that object
1 is always to the left of object 2, simply by not providing any training example where
this configuration is not followed. Redetecting a lost target can also be done efficiently by
restricting the search space to areas that are according to the learned structure. As shall
be presented in the experimental results, this redection step significantly amends the drift
problem.

3.1 Framework

Figure 3.1 shows a flowchart of the process, which is based on particle filters and graphs.

13
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Figure 3.1: Overview of the proposed framework.

First, the model graph GM of the image structure is learned using annotated training
images as described in Section 3.3.2. For the tracking step, the position of each of the
NO objects can be either manually annotated in the first frame of the video or obtained
automatically using detectors. In this work, we adopt the former option. Multiple hypotheses
about the state of each object i are kept by using a set of trackers

P ti = {(P i
j , w

i
j)|j = 1, ..., nti} (3.1)

where P i
j is the j-th tracker of object i, wij is a temporal confidence score and nti represents

the number of trackers for object i at instant t.
Abrupt motion is usually caused by a sudden change in speed or direction of the target.

It can also happen when the object enters an occluded area, such as behind a wall or outside
the field of view of the camera. Another reason is either in case the camera is cut off for a
moment, or when the same scene is observed from another point of view. These events will
be referred to as camera cuts. Abrupt motion is handled by continuously generating new
hypotheses about the position of each target. For this, GM is used to generate candidates
on the most likely locations (Section 3.4.1). Each candidate yields a new pair (P i

k, w
i
k = 0)

which is then added to P ti . All trackers in P ti are then updated by applying their respective
state dynamics.

After including the candidates in the set, a temporal score is computed for every P i
j ∈ P ti
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(Section 3.4.2). This is done by using a greedy approach to generate the scene graphs GS
k

and evaluating them using the model graph GM (Section 3.4.3). The scores are then used
to remove undesired trackers from the set (Section 3.4.4). The final step consists in actually
choosing the best trackers from each set to provide the final multi-object tracking result
(Section 3.4.5). The next sections detail each step.

3.2 Tracking objects with particle filters

In this section the standard method of tracking with particle filters is presented. Particle
filter is an interesting method because it is able to deal with non-Gaussian and non-linear
models, as opposed to Kalman filters. For this reason, as evidenced by the works presented
in Chapter 2, many recent researches on tracking rely on particle filters.

3.2.1 Bayes recursive filter

Particle filter comes from the Bayes recursive filter. When the Bayes filtering function can-
not be solved analytically, particles are used to provide a numerical approximation. There-
fore, before presenting the particle filter, the Bayes recursive filter will be explained.

Statistics fundamentals

For completeness, some basic statistical properties that are used for deriving the fil-
tering function will be presented. For more details or proofs, the reader is referred to
Bussab and Morettin (2010). The most important definition is the Bayes’ theorem. Given
random variables X and Y , their conditional probability can be computed by

P(X|Y ) =
P(Y |X)P(X)

P(Y )
. (3.2)

The left-hand side of this equation is usually called posterior. On the right-hand side, the
denominator is referred to as evidence, while the numerator is composed of the likelihood
and the prior, respectively.

The joint probability of two variables can be expressed as

P(X, Y ) = P(X|Y )P(Y ). (3.3)

The same properties are still valid when conditioning the previous variables to another
one Z:

P(X|Y, Z) =
P(Y |X,Z)P(X|Z)

P(Y |Z)
. (3.4)
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P(X, Y |Z) = P(X|Y, Z)P(Y |Z). (3.5)

Finally, the marginal distribution of X over Y is given by:

P(X) =

∫
Y ∈Y

P(X, Y )dY. (3.6)

Bayes filter

A classical filtering problem operates over a Hidden Markov Model (Section 4.3). Let X
and O be the sets of states and observations, respectively. Let also xt ∈ X be a hidden state
at instant t and ot ∈ O an observation emitted by xt. It is assumed that the model is a
Markov process of first order (Section 4.3) and it is conditionally independent of the joint
of previous states and observations:

P(xt|x1:t−1,o1:t) = P(xt|xt−1), (3.7)

where x1:t−1 denotes a sequence of states from instant 1 until t− 1, and similarly for o1:t. In
the same sense, the observation is also conditionally independent from the joint of previous
states and observations:

P(ot|x1:t,o1:t−1) = P(ot|xt). (3.8)

The filtering problem consists in estimating the posterior distribution P(xt|o1:t) using
the Bayes’ theorem:

P(xt|o1:t) =
P(o1:t|xt)P(xt)

P(o1:t)
. (3.9)

This can be done by deriving this equation to use the posterior obtained at instant t− 1 as
a prior at instant t, as follows:

P(xt|o1:t) =
P(o1:t|xt)P(xt)

P(o1:t)

=
P(ot,o1:t−1|xt)P(xt)

P(ot,o1:t−1)

using the property of Equation 3.5:

=
P(ot|o1:t−1,xt)P(o1:t−1|xt)P(xt)

P(ot|o1:t−1)P(o1:t−1)
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now, by applying the Bayes’ theorem on the second term of the numerator:

=
P(ot|o1:t−1,xt)P(xt|o1:t−1)P(o1:t−1)P(xt)

P(ot|o1:t−1)P(o1:t−1)P(xt)

=
P(ot|o1:t−1,xt)P(xt|o1:t−1)

P(ot|o1:t−1)

finally, according to Equation 3.8:

=
P(ot|xt)P(xt|o1:t−1)

P(ot|o1:t−1)
. (3.10)

The prior can be further derived in terms of a marginal distribution over the previous
state:

P(xt|o1:t−1) =

∫
P(xt,xt−1|o1:t−1)dxt−1

using the property of Equation 3.5:

=

∫
P(xt|xt−1,o1:t−1)P(xt−1|o1:t−1)dxt−1

by applying the conditional independence of Equation 3.7:

=

∫
P(xt|xt−1)P(xt−1|o1:t−1)dxt−1. (3.11)

By doing so the previous posterior can be directly applied onto the equation to estimate
the new value. The evidence of Equation 3.10 can also be expressed in terms of a marginal
distribution:

P(ot|o1:t−1) =

∫
P(ot,xt|o1:t−1)dxt

=

∫
P(ot|xt,o1:t−1)P(xt|o1:t−1)dxt

=

∫
P(ot|xt)P(xt|o1:t−1)dxt. (3.12)

Replacing Equations 3.11 and 3.12 into Equation 3.10, we obtain the final form of the
filter:

P(xt|o1:t) =
P(ot|xt)

∫
P(xt|xt−1)P(xt−1|o1:t−1)dxt−1∫
P(ot|xt)P(xt|o1:t−1)dxt

. (3.13)

Except if the system presents some properties such as Gaussian distributions and linear
models, Equation 3.10 cannot be solved analytically. When the system is more complex,
then the result can only be approximated using, for example, a particle filter.
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3.2.2 Particle filter

Let xit be a hypothetical realization of the state xt and δ(xt − xit) be the Dirac delta
function centered on xit. A particle filter solves the filtering problem by approximating the
posterior P(xt|o1:t) by a weighted sum of NP Dirac masses:

P(xt|o1:t) =

NP∑
i=1

ηitδ(xt − xit), (3.14)

where each xit is called a particle with associated weight ηit.
This work employs particle filter using the ConDensation algorithm, which uses factored

sampling (Isard and Blake (1998)) to update the particles. The cloud of particles Pt =

{(xit, ηit)|i = 1, ..., NP} is obtained by resampling them, with repositions, from the past one
Pt−1 = {(xit−1, ηit−1)|i = 1, ..., NP}. By assuming

∑NP

j=1 η
j
t−1 = 1, the probability of each

particle i being chosen in this step is ηit−1. Hence, more likely particles can be sampled
several times, while others may not be chosen at all.

The particles are then propagated according to a proposal function xit ∼ q(xt|xi0:t−1,o1:t),
which is usually assumed to be the dynamics model P(xt|xt−1), yielding xit ∼ P(xt|xt−1).
The propagation phase involves two steps: drift and diffusion. Drift is a deterministic step,
which consists in applying the motion dynamics for each particle. Diffusion, on the other
hand, is random and it is used to include noise in the model. The new state of a particle i
can be expressed as:

xit = Dxit−1 +U , (3.15)

where D is the motion dynamics and U is the noise matrix.
Finally, the weights of the particles are updated according to the new observations ot as:

ηit =
ηit−1∑NP

j=1 η
j
t

P(ot|xit)P(xt|xt−1)
q(xt|xi0:t−1,o1:t)

. (3.16)

If the proposal function is the dynamics model, the weight update is simplified to:

ηit =
ηit−1∑NP

j=1 η
j
t

P(ot|xit). (3.17)

The final estimated state of a cloud of particle P may be computed using several heuris-
tics, but the most widely used is by computing the weighted average:

r(P ) = xt =

NP∑
i=1

ηitx
i
t (3.18)

In this work, we are also interested in evaluating the overall quality of a cloud P . We
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propose to do this by computing a confidence score based on the non-normalized weights of
the particles:

ζ(P ) = 1− exp

(
−

NP∑
i=1

ηit−1P(ot|xit)

)
. (3.19)

3.2.3 State and dynamics models

In this work, the objects to be tracked are represented by rectangular bounding boxes.
Each box is parameterized by its centroid and two measures: height and width. It is assumed
that the variation in scale is not significant. Therefore, the state of each particle is given by
a column vector xit = (xit, y

i
t)
T , which represents one candidate centroid. The motion model

is a random walk, i.e. D = I and U = Iu, yielding:

xit = xit−1 + u (3.20)

where I is the identity matrix and u = (ux, uy)
T such that ux and uy are noise terms that

follow a Gaussian distribution with zero mean.
More complex states and motion models could be used. For example, the state could also

include additional information such as the velocity, acceleration, orientation, scale and so on.
The greatest problem when considering more information is that each additional parameter
increases the search space in one dimension. Therefore, the number of particles necessary
to cover a significant part of this larger space increases exponentially. As when tracking
multiple objects the amount of particles necessary to track all of them may increase fast, it
was chosen to use the least amount of particles that produced good tracking results.

3.2.4 Color histogram-based tracking

The objects are tracked using color histograms as proposed by Pérez et al. (2002). The
method works by using color information obtained from the HSV color space. This color
model is interesting because it separates the chromatic information (Hue and Saturation)
from the shading (Value). However, the authors point out that the chromatic information is
only reliable when both the saturation and the value are not too low. Therefore, first an HS
histogram with NHNS bins is populated using only information obtained from pixels whose
Saturation and Value are above a given threshold of 0.1 and 0.2, respectively. The remaining
pixels are not discarded, because their information can be useful when dealing with images
which are mostly black and white. Those pixels are used to populate a V histogram that is
concatenated to the HS one built before. The resulting histogram is composed of NHNS+NV

bins. Following the original paper, the variables are set as NH = NS = NV = 10.
Each histogram corresponds to one observation ojt for object j at instant t for the particle

filter. Section 3.4.2 presents more details about how the histograms are compared in order
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to track each object.

3.3 Building the graphs

3.3.1 Attributed Relational Graph (ARG)

An ARG is a tuple
G = (V , E ,AV ,AE), (3.21)

where V = {vi|i = 1, ..., NO} represents a set of vertices (or nodes), E = {eij = (vi, vj)|i, j =

1, ..., NO} is a set of directed edges (or arcs), i.e. eij 6= eji and AV and AE are sets of
attributes of the vertices and the arcs, respectively.

Each frame of the video (also referred to as scene) is represented by one or more ARGs.
The vertices of G are the tracked objects, while the edges connect objects whose relations will
be analyzed. The desired relations are expressed using a binary adjacency matrixMA = (mij)

where mij = 1 if there is an edge from vi to vj. Figure 3.2 shows one possible scene graph
generated from the adjacency matrix:

MA =



0 1 0 0 1

1 0 0 0 1

0 0 0 1 1

0 0 1 0 1

1 1 1 1 0


. (3.22)

Figure 3.2: An example of a scene graph.

Two different kinds of attributes are used: the appearance and the structural attributes.
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Appearance attributes are related to each object and they are stored in AV . On the other
hand, structural attributes represent relations among objects, and thus constitute edge at-
tributes in AE .

3.3.2 Model graph

The topology of GM is obtained by means of an adjacency matrix MA, which must be
provided by the user. The set of attributes AME of GM is computed from a database of
annotated images. Each image is labeled with the state of each relevant object (typically a
surrounding bounding box and an object label). Let δk ∈ ∆(i, j) be one of the structural
attributes to be measured (e.g. the distance between two objects). The annotations are used
to estimate the probability density function (PDF) of δk. Inspired by Cho et al. (2013), the
set of chosen attributes is

∆(i, j) = {(θ(eij), d(vi, vj))}, (3.23)

and the PDF is estimated by means of histograms Hδk . The function θ(eij) represents the
clockwise angle between the horizontal axis and the vector −−→vivj and d(vi, vj) is the distance
between the two vertices (Fig. 3.3).

Figure 3.3: The structural attributes of the edges.

The histograms are built by iterating over all images and collecting the respective ob-
servations o, which cast a vote for the histogram bin Hδk(o). The PDF is then estimated by
normalizing Hδk to have a sum equal to one. Finally, the normalized histograms are then
used as the arc attributes AME = {Hδk |δk ∈ ∆(i, j)}. Since histograms suffer from the dis-
cretization problem, other approaches such as Kernel Density Estimation (Elgammal et al.
(2000)) or Gaussian Mixture Model (Karavasilis et al. (2015)) could be used instead. How-
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ever, the former may require a large amount of memory in case the training set is big, while
the latter either relies on setting a number of mixtures beforehand or requires a more com-
plex training (Blei et al. (2006)). Therefore, given the simplicity of histograms and the good
results observed in the experiments, we chose to use them to represent the distributions.

The appearance attributes in AMV are not learned from the database. Instead, they are
computed from annotations provided in the first frame of the tracking video. In our ex-
periments, the appearance was described by using color histograms. However, any other
appearance descriptor could also be considered, like HOG (Dalal and Triggs (2005)) or
SIFT (Lowe (2004)). Figure 3.4 shows one graph and the learned histograms for each at-
tribute.

Figure 3.4: An example of a model graph with the learned attributes. The red histograms represent
the vertices attributes (color model), while the green ones represent the angles and the blue ones
represent the distances.

3.3.3 Scene graph

Each graph GS
k of index k represents a different scene configuration. A vertex vi ∈ VS

of the scene graph GS
k is associated with one cloud of particles P i

j for object i. Let r(P i
j ) =

(xi,j1 , x
i,j
2 , ..., x

i,j
|X |) represent the final vector state obtained from Equation 3.18 for the particle

cloud P i
j . Assuming that xi,j1 and xi,j2 represent the 2D coordinates of the object in the image

space, the position of vi is obtained from

rP (P i
j ) = (xi,j1 , x

i,j
2 ), (3.24)
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i.e. rP (P i
j ) is a truncated version of r(P i

j ) that only includes the spatial coordinates.
The edges are then produced using the same matrix MA as in the training. However,

recall that each object is tracked by a set of different trackers. Therefore, each scene may
be described by multiple graphs with the same topology, which represent all the possible
combinations of different trackers for each object. If all the possible graphs are generated,
then each scene will be represented by

∏NO

i=1 |P ti | graphs. All these graphs could be evaluated
and the best one chosen according to the model to obtain the final tracking result, but this
could be computationally expensive due to the large number of combinations. Therefore, in
this work a different approach is used, which is explained in Section 3.4.3.

The set of structural attributes As of GS is not composed of PDFs as in GM , but of
single values for each measurement δl extracted from the current frame (i.e. the observations
of δk). The attributes of the vertices are the associated pairs (P i

j , w
i
j).

3.4 Tracking using graphs

3.4.1 Generating new candidates

Besides for tracking evaluation, the structural information of GM is also used to generate
new candidate positions for each tracked object. This step is important to deal with abrupt
motion. Since the attributes AME are all relative to the origin of each arc eij, the position of
vi must be known. Therefore, it is assumed that the trackers for every object will not all fail
at the same time. Good candidates can be generated by selecting the positions given by the
best trackers as origins. Candidate generation is controlled by using a matrix MC = (mij),
where mij indicates that, if object i is used as reference, then it generates mij candidates
for object j.

Let aMeij = {H(θ(eij)), H(d(vi, vj))} be the attribute of an edge eij from GM . A candidate
k is generated for object j as

(θ̂k = θk + uθ, d̂k = dk + ud) (3.25)

by simulating according to the distributions given by the histograms θk ∼ H(θ(eij)) and
dk ∼ H(d(vi, vj)), where uθ ∼ N (0, σθ) and ud ∼ N (0, σd) are Gaussian noises. Each
candidate position is then obtained by

(vi(x) + d̂k cos(θ̂k), vi(y) + d̂k sin(θ̂k)). (3.26)

Figure 3.5 shows the candidates generated for each object. The candidates are then used to
generate new particle clouds P j

k which are inserted in the set P tj . The clouds are initialized
by spreading the particles according to a Gaussian distribution centered on the candidate
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Figure 3.5: Example of candidates generated for one scene. Rectangles of the same color indicate
that they belong to the same object.

position.

3.4.2 Computing temporal scores of trackers

The temporal score wi measures the reliability of the associated tracker over time. This
is done by computing a weighted accumulation of instantaneous scores:

(wi)t = ρT (wi)t−1 + f(i, GS, GM), (3.27)

where ρT is a given constant and f(i, GS, GM) is the instantaneous score function for the
vertex vSi , which is associated with (P i, (wi)t). By doing so, trackers which consistently
perform well during longer periods of time have higher scores than those that are only
eventually good (usually incorrect trackers).

The instantaneous score is divided into two parts:

f(i, GS, GM) = ρFφ(i, GS) + (1− ρF )ψ(i, GS, GM), (3.28)

where ρF is a given weighting factor and φ(i, GS) and ψ(i, GS, GM) are the appearance and
structural score functions of vi, respectively.
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Appearance score

The appearance score is actually the confidence of the particle cloud Pi associated with
vertex vi as in Equation 3.19. Hence, it is set as

φ(i, GS) = ζ(Pi). (3.29)

The confidence score depends on the weights of the particles, which are based on the likeli-
hood P(ot|xit). The distribution is computed in the same way as in the work by Erdem et al.
(2012), using the Bhattacharyya distance dB:

P(ot|xit) = exp

(
−dB(HM , HS)2

2σ2

)
, (3.30)

where HM and HS are histograms of the model and the scene, respectively and

dB(HM , HS) =

√
1−

∑
j

√
HM(j)HS(j), (3.31)

where H(j) is the j-th bin of histogram H.

Structural score

Let mi be a vector representing the line i from the adjacency matrix MA (i.e. corre-
sponding to object i). Let also θSi = (HM

θ (θS(eij)))
NO
j=1 and dS

i = (HM
d (dS(vi, vj)))

NO
j=1 be the

vectors of the values obtained from the bins of the angle and distance model histograms,
respectively, i.e. the likelihoods of each structure measurement. The structure score is com-
puted using the dot product:

ψ(i, GS, GM) =
1

2‖mi‖1
mi · θSi +mi · dS

i , (3.32)

where ‖mi‖1 is the L1 norm ofmi. In other words, this score corresponds to the average of
the attributes of the edges originating from vi.

3.4.3 Generating scene graphs for evaluation

The best trackers are selected by building the scene graphs GS
k and computing the scores

explained before. Figure 3.6 shows some possible graphs that can be generated from some
given candidates. Therefore, one option would be to build all possible graphs and to find
the one which maximizes the overall score for every tracker. However, this approach was
not chosen for two reasons: (1) the number of graph combinations is usually very large
and unfeasible to be processed in real time (Figure 3.7), and (2), although the videos are
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assumed to be structured, it does not necessarily mean that the model graph expresses the
best configuration for every scene. Instead, it was chosen a greedy approach that fixes the
vertices for all objects except one and optimizes the score for one object at a time.

Figure 3.6: Examples of candidate graphs to be analyzed.

Figure 3.7: Representation of all possible graphs that can be generated from the candidates.

When using a greedy approach, the order in which the objects are processed is important.
Let {(P i

∗, w
i
∗)|i = 1, ..., NO} be the set of the best trackers of each object, i.e.

(P i
∗, w

i
∗)
t = arg max

(P i
j ,w

i
j)∈Pt

i

wij. (3.33)



3.4 TRACKING USING GRAPHS 27

A sequence is created by sorting wi∗ in ascending order and processing the objects i one
by one according to this sequence. The rationale is that, since all the other vertices will be
fixed, it is better to let the worst tracker vary first in order to have good references for the
resulting graph. Let P c

l be the tracker that is currently being evaluated. This yields a graph
GS
k whose set of vertices is

VSk = {v(P b
∗ )|b = 1, ..., NO} ∪ {v(P c

l )} \ {v(P c
∗ )}, (3.34)

where v(P ) represents the vertex associated with P . This graph is then used to compute the
score wcl with 1 ≤ c ≤ NO and 1 ≤ l ≤ |P tc|.

3.4.4 Removing undesired trackers

After computing the score for each tracker, those that are considered as non-significant
are removed. This is done by considering two criteria. The first one is thresholding, i.e.
removing as many trackers as possible whose scores are too low. More formally, let Qti

(1)
=

{(P i
j , w

i
j)|wij < τS, j = 1, ..., |P ti |}, where τS is a given score threshold. The thresholded set

is obtained by:

Qti
(2)

=

{(P
i
∗, w

i
∗)}, if |P ti | =

∣∣∣Qti(1)∣∣∣
P ti \ Qti

(1)
, otherwise.

(3.35)

The second criterion relies on the fact that one or more trackers will be representing very
similar positions (overlapping) for the same object. In such a case, it is not necessary to keep
all of them, because they increase the processing burden and do not introduce much informa-
tion. It is defined that two trackers P i

k and P i
l are overlapping when d(rP (P i

k), rP (P i
l )) < τdS ,

where τdS is a given overlapping distance threshold for the same object. The distance function
may vary depending on the application, but in this thesis we employ the Euclidean distance
between vectors. Let qi = ((P i

j , w
i
j)|(P i

j , w
i
j) ∈ Qti

(2)
) be a sequencing of Qti

(2) sorted in
decreasing order of weight. Overlapping trackers are removed by using a greedy approach
where the pairs (P i

a, w
i
a) ∈ qi are iteratively taken one by one following the ordering and

inserted into a new set Qti
(3) whenever they do not overlap with any existing tracker, i.e. :

(
Qti

(3)
)n

=



(
Qti

(3)
)n−1

∪ {(P i
a, w

i
a)}, if ∀(P i

b , w
i
b) ∈

(
Qti

(3)
)n−1

,

d(rP (P i
a), rP (P i

b )) ≥ τdS(
Qti

(3)
)n−1

, otherwise,

(3.36)

where the exponent n indicates the n-th iteration. At the end of this stage, the final set of

trackers P t+1
i =

(
Qti

(3)
)|Rt

i|
is obtained.
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3.4.5 Choosing the final trackers

Considering the temporal consistency of videos, it is interesting to try to avoid changing
trackers at each frame. However, in order to recover tracking after abrupt motion or appear-
ance ambiguity, it is also necessary to be able to detect when the tracker should be changed.
This is done by considering the temporal score of each tracker. For that, let {(P̃ i, w̃i)|i =

0, ..., NO} be the set of trackers used in the previous frame and {(P i
∗, w

i
∗)
t+1|i = 0, ..., NO},

be the current best ones as defined in Equation 3.33, but for the set P t+1
i . The first candidate

trackers for the current frame are given by the set F t0 = {(P i, wi)|i = 1, ..., NO}, where:

(P i, wi) =

(P i
∗, w

i
∗), if wi∗ > τT w̃

i

(P̃ i, w̃i), otherwise,
(3.37)

and τT is a given threshold for changing trackers. The final trackers are chosen as every P j

that does not overlap any other P k by:

F t1 = {(P j, wj)|∀(P k, wk) ∈ F t0, j 6= k, d(rP (P j), rP (P k)) > τdD}, (3.38)

where τdD represents a given distance threshold for different objects.
Overlapping trackers were not included because, when dealing with situations where both

appearance and structure are ambiguous (e.g. symmetrical scenes), this method may end
up associating multiple trackers with the same object. Therefore, this approach, which tries
to find a configuration where each tracker is associated with a different object, is proposed.
In other words, configurations where there is less overlapping between trackers of different
objects are favored.

Let M = {m} be the set of indices of the objects whose trackers were not included
in F t1 and ΩP = {ωm = (|P t+1

m |, wm∗ ,P t+1
m )} be a set of triplets containing the cardinality

and best temporal weight of each set of trackers P t+1
m . Let also ΩS = (ωm|ωm ∈ ΩP ) be a

sequencing of ΩP where the elements are ordered in increasing order of |P t+1
m | and secondly

by decreasing order of wM∗ (lexicographical order). In other words, the ωm are ordered by
the cardinality of their tracker sets, but any pair (ωj, ωk) that has the same cardinality is
ordered by its respective weight.

The best tracker for each overlapping objectm is chosen by iteratively following the order
given by ΩS. Therefore, the process starts by choosing the best trackers from the objects
which have the smallest number of candidate trackers. This is done because, as the trackers
are being chosen, the remaining free area (that is not covered by any tracker) is decreased. By
processing objects with more trackers later, it is more likely that they will have candidates
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in the free area. The set of final trackers for the overlapping objects is obtained by:

F tn+2 =


F tn+1 ∪ (Pm

k , w
m
k ), if [∃(Pm

k , w
m
k ) ∈ P t+1

m |wmk ≥ τOw
mor

d(rP (Pm
k ), rP (P a

l )) ≥ τdD , ∀(P a
l , w

a
l ) ∈ F tn+1]

F tn+1 ∪ (Pm, wm), otherwise,

(3.39)

where 0 ≤ n < |M| represents the iteration index, (Pm, wm) is as defined in Equation 3.37,
and τO is a given constant which represents a score weight threshold for changing trackers
after overlapping. In other words, Equation 3.39 states that a tracker P i

k is chosen for object
m if it passes one of two tests: the first one is that it must not overlap any previously selected
tracker for another object. The second test accepts overlapping trackers, but only if they
have a high enough score. If no candidate is able to fulfill any of the requirements, then the
first candidate obtained previously is chosen.

The final step consists in using the elements (P i, wi) ∈ F t|M|+1 to estimate the position
of each object at time t, which is obtained by rP (P i). The tracking update procedure that
is applied at each frame is summarized in Algorithm 3.1.
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1 Algorithm update_tracking(GM ,MA,MC ,Pt−1, τdD , τdS , τO, τS, τT)
Data: A model graph GM , adjacency and candidate matrices MA and MC ,

respectively, a set of sets of trackers Pt−1 = {P t−1i }, where
P t−1i = {(P i

j , w
i
j)} and various thresholds τ

Result: A set Pt with the updated trackers and another set F t = {Fi|Fi ∈ P ti}
containing the tracking decision for each object i

2 Pt ← Pt−1;
3 for 1 ≤ i ≤ |Pt| do
4 P ti ← P ti∪ generate_candidates(GM ,MC , i);

5 foreach P ti ∈ Pt do
6 foreach (P i

j , w
i
j) ∈ P ti do

7 apply_dynamics(P i
j);

8 best_weights← [];
9 for 1 ≤ i ≤ |Pt| do

10 (P i
∗, w

i
∗)← arg max(P i

j ,w
i
j)∈Pt

i
wij;

11 best_weights.append((P i
∗, w

i
∗));

12 best_weights.sort(key = wi∗);
13 foreach (P i

∗, w
i
∗) ∈ best_weights do

14 foreach (P i
j , w

i
j) ∈ P ti do

15 V ← P i
j ∪ {P k

∗ |k 6= i};
16 GS ← build_graph(V ,MA);
17 f ← graph_score(GS);
18 wij ← update_score(f);

19 remove_low_scores(P ti , τS);
20 remove_overlapping(P ti , τdS);
21 F t ← choose_best_trackers(Pt, τdD , τO, τT);
22 return Pt,F t;

Algorithm 3.1: Tracking update algorithm.



Chapter 4

Action recognition

In this chapter, the proposed approach for performing action recognition will be ex-
plained. Action classification is applied on each person present in the scene independently.
Therefore, in one single scene many actions may be performed at the same time. It is also
assumed that the actions of each individual change over time. Figure 4.1 shows an overview
of the action framework.

Figure 4.1: Overview of the action recognition framework.

The action classification is performed using Hidden Markov Models which operate over
sequences of observations. The process starts by accumulating the results obtained from the
tracking phase. Each person i at instant t is represented by a sliding window of tracking
results õit = (õit−bNW /2c, õ

i
t−bNW /2c+1, ..., õ

i
t, ..., õ

i
t+bNW /2c−1, õ

i
t+bNW /2c), where NW is the length

of the window. In order to classify the sequence, feature vectors are extracted from each õit.
This is accomplished by first computing the Histogram of Oriented Gradients (Section 4.1)
and then reducing it using Principal Component Analysis (Section 4.2), yielding the new
sequence of observations oit.

As usual, it is assumed that the set of possible actions is known beforehand. For each
action j, a different HMM Zj is trained using annotated data. Since the training is supervised,
each training instance consists of a sequence and an action label. The detailed training steps
are explained in Section 4.3.3. After all HMMs are trained, the classification consists in
finding which of the Zj best represents each observation oit (Section 4.3.2). As evidenced by
the definition of oit, we follow the conventional approach of building the sequence around
the center. The main advantage is that in this way it is possible to provide a label while the
action is being performed, as opposed to providing it at the end. On the other hand, it also
implies that future data is required. Therefore, the action recognition must be delayed by

31
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bNW/2c frames. However, as NW is usually small compared to the frame rate of the videos,
the delay is not significant in practice.

4.1 Histogram of Oriented Gradients (HOG)

The Histogram of Gradients is a descriptor proposed by Dalal and Triggs (2005). It is
used for representing the shape of an object, which is built by computing the image gradients
and then populating a histogram in which each bin represents one gradient direction.

Computing the HOG consists in applying a series of standard methods in sequence over
the initial image until obtaining the final histogram. In their paper, Dalal and Triggs (2005)
provide a detailed coverage of many choices for each step and the observed results. For
brevity, in this section only the actual method used in this work, which corresponds to the
optimal configuration found by the authors, will be detailed. Figure 4.2 shows the main steps
involved in computing the HOG.

Figure 4.2: Overview of HOG chain. Adapted from (Dalal and Triggs (2005)).

The first step consists in computing the gradient of the image. This may be done by
convolving the image with the simple centered kernelsKH = [−1, 0, 1] andKV = [−1, 0, 1]T

for obtaining the horizontal and vertical gradients, respectively. The convolution of an image
I by a kernel matrix K with NR rows and NC columns is represented by IC = I ∗K and
can be computed by:

IC(x, y) =

bNR/2c∑
r=−bNR/2c

bNC/2c∑
c=−bNC/2c

I(x+ c, y + r)K (bNC/2c+ c, bNR/2c+ r), (4.1)

where the values inside the parenthesis indicate a position inside the image or kernel.
The convolution of I by KH and KV yields two gradient images IGX and IGY , respec-

tively. These images are then used to compute the gradient direction at each pixel:

IGD(x, y) = arctan

(
IGY (x, y)

IGX(x, y)

)
, (4.2)

and the gradient magnitudes:

IGM(x, y) =
√
IGX(x, y)2 + IGY (x, y)2. (4.3)

The image is then divided in cells using a rectangular grid. Typically, each cell is an 8×8
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square. Each pixel inside the cell then casts a vote for its gradient orientation, to create a
cell histogram. The votes are weighted by IGM , i.e. stronger gradients contribute more to the
histogram. According to the authors, building a histogram with 9 bins using the unsigned
gradients values (only considering the interval [0◦, 180◦]) provides the best results.

To account for contrast and illumination changes, the cells are grouped into larger rect-
angular blocks, which partially intersect each other. The histograms of each cell inside the
block are then concatenated to form a larger vector. In this work, each block is a square
containing 2× 2 = 4 cells. The blocks share two cells with a neighbor block, i.e. the bottom
two cells of a block are shared with its bottom neighbor and so on. Among the normalization
choices, the most widely used and also employed here is the L2 −Hys norm. This norm is
computed by first computing the L2 norm followed by a clipping which limits the maximum
values to 0.2. After this step, the resulting vector is once again normalized with the L2 norm.

After normalizing all the blocks, the HOG descriptor is obtained by concatenating all
the block histograms. One important fact to notice is that the HOG descriptor by itself is
not invariant to shape and scale changes. Therefore, a fixed window size must be chosen
beforehand to represent the object of interest. Since HOG is most widely applied for person
detection, the window size is typically chosen as a vertical rectangle of 64× 128 pixels. Due
to the construction constraints, HOG descriptors are only comparable when extracted from
windows of the same size. In order to overcome this restriction, the most commonly adopted
approach is to resize the original detection to the chosen size before extracting its HOG.

As mentioned, each cell histogram is represented by a vector of length 9. As each block
is a square comprising 4 cells, then its corresponding histogram contains 36 bins. Each block
can be viewed as a 16× 16 square, where half of it intersects with its horizontal and vertical
neighbors. Since the window size is 64× 128 pixels, it can be seen that the window contains
7×15 = 105 blocks. Finally, by multiplying this value by the histogram length of each block,
it can be seen that the resulting HOG vector has a high dimensionality of 105× 36 = 3780.
As it is usually intractable to classify data of this order of magnitude, we chose to reduce
the descriptor length by using Principal Component Analysis.

4.2 Principal Components Analysis (PCA)

Essentially, PCA aims at applying an orthonormal transformation to multivariate data
so that it becomes uncorrelated. The main point is that, if the data is uncorrelated, then
it is possible to ignore (remove) one variable (axis) without affecting the variance of the
others. In other words, by applying PCA it is possible to reduce the dimensionality of
the data by discarding bases while minimizing the variance loss. This property is important
because, according to Information Theory, the more uncertainty exists, the more information
is available. Thus, keeping the data with as much variance as possible also minimizes the
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information loss.
The contents of this section are based on the publications of Callioli et al. (2007)

and Shlens (2014). Let O = [o1,o2, ...,oN ]T be a data matrix where each oi is one ob-
servation vector. It will be assumed that all the variables of O have zero mean. Let also
CO = 1

N
OOT be the covariance matrix of O. The goal of PCA is to find a matrix P to

transform the data as Y = PO such that the correlation matrix CY = 1
N
Y Y T is diagonal.

As shown in the paper by Shlens (2014), this problem corresponds to finding the eigen-
vectors of CO. In fact, as also explained in the same material, another approach, and ac-
tually the most used in practice, is performing the Singular Value Decomposition to obtain
the Principal Components. However, explaining the SVD is out of the scope of this thesis,
so we will focus on giving an overview of how to obtain the eigenvectors of the covariance
matrix.

The eigenvectors of a square matrix, such as CO, can be found by solving:

COv = λv

(CO − λI)v = 0, (4.4)

where v is an eigenvector of CO corresponding to the eigenvalue λ and I is the identity
matrix. From this formulation, it is clear that the eigenvalues are necessary to compute the
eigenvectors. Eigenvalues can be obtained by solving the characteristic polynomial of CO:

p(λ) = det(CO − λI). (4.5)

Each eigenvector will represent a base of the space transformation. Data reduction can be
performed by simply transforming the data using only the bases with the highest variances,
which minimizes the information loss.

4.3 Hidden Markov Model (HMM)

Hidden Markov Models are able to model the statistical properties of signals that present
some temporal constraints. More specifically, it can be successfully used for problems that
follow the Markov property, i.e. the state at time t only depends on a finite set of states at
previous time instants. The most widely studied situation assumes that the state at time
t only depends on the state at time t − 1. In this case it is said that the HMM follows a
Markov property of first order. In this chapter it is assumed that the HMMs are always of
first order. The contents of this section are based on the publications of Duda et al. (2001)
and Fink (2008).

In a typical Markov problem, the signal is represented by a sequence of observations
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at successive time instants. Let o = (o1, o2, ..., oT ) be such a sequence of length T . It is
assumed that this sequence is generated by a discrete stochastic process, which includes a
finite number of states and state transitions. More formally, a basic Markov model (without
hidden states) is represented by a finite set of states

S = {s1, s2, ..., sNS
}, (4.6)

which will be referred to only by their indices, i.e. i = si. It also requires a matrix of state
transition probabilities

A = {aij|aij = P(St = j|St−1 = i)} such that
∑
j

aij = 1 for all i (4.7)

and a vector of starting probabilities

π = (πi|πi = P(S1 = i)). (4.8)

A Markov model can be interpreted as a complete directed graph where the arcs are labeled
with transition probabilities. Figure 4.3 shows an example of a Markov model.

Figure 4.3: Example of a Markov model with three states. Each circle represents one state, and
the directed edges the transitions from one state to another

In the basic model, it is assumed that the observation corresponds to the states them-
selves, i.e. each oi is directly mapped to a state si. However, in real situations it is often
not possible to observe the states directly. For example, when modeling human speech, one
might use each state to represent one phoneme and then follow one sequence of phonemes
to produce a word. In practice, though, the phonemes cannot be perceived directly, only
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the sound they produce. Therefore, it is necessary to extend the basic model to account
for the visible states (sounds) and the invisible ones (phonemes). By doing so, the HMM
is obtained. In this approach, the basic Markov model discussed before corresponds to the
hidden part, that cannot be directly observed. Each hidden state now emits a visible symbol
(observation) oi. This symbol is generated according to a distribution that can be either dis-
crete (a finite set of possible observations) or continuous (modeled by a probability density
function). In this project the emissions are obtained by continuous distributions given by a
Gaussian mixture model. Hence, the emission probabilities are modeled by the vector:

b =

(
bj

∣∣∣∣∣bj =

NM∑
m=1

cjmN (µjm,Cjm)

)
(4.9)

where cjm is a normalization constraint such that

NM∑
m=1

cjm = 1 and 0 ≤ cjm ≤ 1, for all (j,m). (4.10)

The probability of a hidden state j emitting a specific observation ok shall be represented
by:

bj(ok) = P(ok|St = j) =

NM∑
m=1

cjmN (ok|µjm,Cjm) =

NM∑
m=1

cjmgjm(ok), (4.11)

whereN (ok|µm,Cm) = gjm(ok) represents the probability of obtaining ok from a multivariate
Gaussian (normal) distribution with mean vector µjm and covariance matrix Cjm. Figure 4.4
shows an example of a HMM.

When working with HMMs, there are usually three central problems to be considered:
evaluation, decoding and learning. However, in the scope of this thesis, the decoding problem
is not going to be studied and thus, will not be explained. On the other hand, another problem
will be considered, which will be referred as the classification problem. A short description
of each problem is provided below:

• Evaluation: This problem consists in, given a HMM, determining the probability that
an observed sequence was generated from that model.

• Classification: In this problem, it will be assumed that a set of different HMMs is
available and the interest is in finding which of those best represents a particular
sequence.

• Learning: This problem is concerned to, given a set of observations and a coarse struc-
ture of the model (e.g. number of hidden states), finding the parameters that maximize
the probability of the model generating those observations.

In the following sections, the three aforementioned problems will be further explained.
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Figure 4.4: Example of a Hidden Markov model. The three hidden states (inside the ellipse) rep-
resent the unobservable properties of the data. Each hidden state has a probability of emitting a
certain observable signal (red arrows).

4.3.1 Evaluation

Suppose that a sequence o = (o1, o2, ..., oT ) is given. Since each hidden state can only
emit one observation at a time, then this sequence can only be generated by walking through
a path of states s = (s1, s2, ..., sT ) with the same length T . If the path is known, then the
production probability of a HMM Z can be simply obtained by

P(o|s, Z) =
T∏
t=1

bt(ot). (4.12)

The probability that such a path s is followed is computed by the product of the respec-
tive state transition probabilities. If we define a0i = πi and s0 = 0, we can write:

P(s|Z) = π1

T∏
t=2

at−1,t =
T∏
t=1

at−1,t. (4.13)

By combining Equations 4.12 and 4.13, it is possible to compute the probability that the
sequence o is generated by following the specific path s by:

P(o, s|Z) = P(o|s, Z)P(s|Z) =
T∏
t=1

at−1,tbt(ot). (4.14)

In order to compute the total production probability, it is necessary to accumulate over
all the possible paths, which include all possible permutations of states in a sequence of
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length T . This can be expressed as:

P(o|Z) =
∑
s

P(o, s|Z) =
∑
s

P(o|s, Z)P(s|Z). (4.15)

As there are NS
T possible paths, if this approach were implemented as an algorithm,

its complexity would be O(TNS
T ). For most problems, an exponential complexity is not

tractable and thus, cannot be used in practice. Fortunately, a much more efficient approach
can be derived by exploring the Markov property.

As it can be seen in Equation 4.14, each term only depends on the current and previous
states. It is not necessary to know at which time point each state is visited or in which order.
Therefore, the computations for each state can be done in parallel throughout the time line.
To this aim, a recurrence relation that leads to the well-known forward algorithm can be
used. The first step is to define the forward variables αt(i), that correspond to the probability
that the first part of the observation until Ot is evaluated and the state i is reached at time
t:

αt(i) = P(O1, O2, ..., Ot, St = i|Z). (4.16)

At the beginning, the probability α1(i) of generating the observation O1 at state i is
given by the starting probability πi and the emission probability bi(O1):

α1(i) = πibi(O1). (4.17)

Afterwards, the new probabilities for the next time instant t + 1 can be obtained by
combining the results computed at the last time instant t. For each state j at time t + 1,
it is necessary to consider all possible paths that come from all other states i at time t.
Additionally, the new observation Ot+1 must be generated from sj. Therefore, the forward
variables can be updated by:

αt+1(j) =

(∑
i

αt(i)aij

)
bj(Ot+1). (4.18)

By computing until time T , NS results will be obtained, one for each state. As the
complexity of computing each path is O(TNS), the complexity of the forward algorithm is
O(TNS

2). Finally, the probability of model Z producing the sequence o is:

P(o|Z) =
N∑
i=1

αT (i). (4.19)

The pseudocode for performing the Forward procedure is shown in Algorithm 4.1. The
production probability can be directly obtained by summing up the respective values of the
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resulting matrix, as presented in Algorithm 4.2.

1 Algorithm forward(o, Z)
Data: A sequence of observations o = (o1, o2, ..., oT ) and a HMM Z = (S,π,A, b)
Result: A NS × T matrix α containing all αt(i) values

2 α← zeros_matrix(NO, T);
3 for 1 ≤ i ≤ NS do
4 α1(i)← πibi(o1);

5 for 1 ≤ t ≤ T − 1 do
6 for 1 ≤ j ≤ NS do
7 for 1 ≤ i ≤ NS do
8 αt+1(j)← αt+1(j) +αt(i)aijbj(ot+1);

9 return α;
Algorithm 4.1: Forward algorithm.

1 Algorithm prod_prob(α)
Data: A matrix of forward variables α
Result: The production probability P(o|Z)

2 prob ← 0;
3 for 1 ≤ i ≤ NS do
4 prob ← prob + αT (i);

5 return prob;
Algorithm 4.2: Production probability algorithm.

4.3.2 Classification

In some situations, several HMMs Zi, each representing a different class ωi are available.
In this case, an observation o may be classified by finding the model Zj that maximizes the
posterior probability Zj = arg maxiP(Zi|o). By using the Bayes’ theorem, this expression
may be rewritten as:

Zj = arg max
i

P(o|Zi)P(Zi)

P(o)
. (4.20)

Since the denominator is independent of Zi, it can be ignored for the classification purpose,
yielding:

Zj = arg max
i

P(o|Zi)P(Zi). (4.21)

Notice that the first term is the production probability explained in Section 4.3.1, which
implies that the classification problem depends on the evaluation problem. Besides that, it is
also necessary to know P(Zi). This knowledge may come from an expert or from observation
of the data, if available. For simplicity, however, this term is often ignored, and classification
is done based solely on the evaluation result. In practice, this corresponds to setting P(Zi) =

1/N for all 0 < i ≤ N .
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4.3.3 Learning

A good model represents the properties of the data as precisely as possible. In order to
do so, the free parameters of the model can be improved by observing the data. In the case
of HMMs, the free parameters are the initial probabilities π, the transition probabilities A
and the emission probabilities b. The values of each of these parameters provides an answer
to the following question: out of the total outputs one state can provide, how many of them
are expected to follow this specific path? Using mathematical terms, this corresponds to
finding the optimized parameters âij and b̂i(ok) defined as:

âij =
expected number of transitions from i to j
expected number of transitions out of state i

, (4.22)

b̂i(ok) =
expected number of emissions ok from state i

total number of emissions from state i
. (4.23)

When using continuous emission models, the second step actually corresponds to finding the
parameters of the probability density functions that best model the observations.

Two fundamentally different methods exist for training: the Baum-Welch and the Viterbi
algorithms (more details in the book of Fink (2008)). The former can be seen as the Ex-
pectation Maximization algorithm applied to HMMs. The Baum-Welch algorithm evaluates
all possible paths and thus, find parameters that optimize the model for all possible state
configurations for the given observations. The Viterbi algorithm, on the other hand, first try
to estimate the most likely path each observation will take and then optimize the parame-
ters only for the obtained path. The Viterbi approach may be more efficient but it does not
always provide the best global configuration.

In this work, we will use the Baum-Welch algorithm. One of the main reasons for this
choice is that the Baum-Welch results can be used to analytically optimize the parameters
of the continuous emission models, which is not possible when using the Viterbi approach.

Forward-Backward Algorithm

In order to optimize the parameters of the model, it is necessary to know what is the
probability P(St = i|o, Z) of being in a state i at a given instant t. This can be done
by using the Forward-Backward algorithm. Very similarly to the forward case, but in the
opposing sense, backward variables are defined to represent the probability of generating the
remaining sequence (Ot+1, Ot+2, ..., OT ) starting from state i:

βt(i) = P(Ot+1, Ot+2, ..., OT |St = i, Z) (4.24)
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As in the forward approach, βt(i) can be computed by using a recurrence relation of the
form:

βt(i) =

1, if t = T∑
j aijbj(Ot+1)βt+1(j), otherwise.

(4.25)

Having both the forward and backward variables, it is possible to compute the desired
probability. First, by applying the rule from Equation 3.5, we have:

P(St = i|o, Z) =
P(St = i,o|Z)

P(o|Z)
(4.26)

The denominator is the production probability obtained by solving the evaluation problem.
The numerator can be rewritten using the forward and backward variables:

P(St = i,o|Z) = P(O1, O2, ..., Ot, St = i|Z)P(Ot+1, Ot+2, ..., OT |St = i, Z)

= αt(i)βt(i) (4.27)

By replacing this in Equation 4.26, we obtain:

γt(i) = P(St = i|o, Z) =
αt(i)βt(i)

P(o|Z)
(4.28)

The value γt(i) represents the probability of being in state i at instant t. Analogously,
it also represents the expected number of transitions out of state i at the next time step. A
pseudo code of the Backward procedure is provided in Algorithm 4.3. As it can be seen, the
algorithm is just a reversed version of the Forward procedure. By combining these results
with those obtained from the Forward step (Algorithm 4.1), the values of γt(i) can be easily
computed.

1 Algorithm backward(o, Z)
Data: A sequence of observations o = (o1, o2, ..., oT ) and a HMM Z = (S,π,A, b)
Result: A NS × T matrix β containing all βt(i) values

2 β ← zeros_matrix(NO, T);
3 for 1 ≤ i ≤ NS do
4 βT (i)← 1;

5 for T − 1 ≥ t ≥ 1 do
6 for 1 ≤ j ≤ NS do
7 for 1 ≤ i ≤ NS do
8 βt(j)← βt(j) + aijbj(ot+1)βt+1(i);

9 return β;
Algorithm 4.3: Backward algorithm.
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Baum-Welch Algorithm

The Baum-Welch algorithm optimizes the model parameters by using the production
probability P(o|Z). This algorithm guarantees that the new model Ẑ produces the observa-
tions with equal or higher probability:

P(o|Ẑ) ≥ P(o|Z) (4.29)

Notice that this method may not provide the best possible fit, as it is bounded to stop
at a local maximum. One simple way to overcome this problem is to run several training
instances and choose the best one.

The Baum-Welch represents a variant of the Expectation Maximization algorithm. Be-
sides representing the probability γt(i) = P(St = i|o, Z) for a state in general, it is also
interesting to represent the same probability but restricted to a specific transition from
state i to j as follows:

γt(i, j) = P(St = i, St+1 = j|o, Z)

=
P(St = i, St+1 = j,o|Z)

P(o|Z)

=
αt(i)aijbj(ot+1)βt+1(j)

P(o|Z)
. (4.30)

Notice that this value represents the overall probability of going through transition (i, j)

at instant t. By computing γt(i, j) for each pair (i, j) over all time instants t and averaging
by the probability of leaving state i, the new estimates for the transition probabilities are
obtained:

âij =

∑T−1
t=1 P(St = i, St+1 = j|o, Z)∑T−1

t=1 P(St = i|o, Z)
=

∑T−1
t=1 γt(i, j)∑T−1
t=1 γt(i)

. (4.31)

The probability of leaving each state at the first time instant can be used as a starting
probability:

π̂i = P(S1 = i|o, Z). (4.32)

When using discrete emission probabilities, the new values can also be estimated analo-
gously:

b̂j(ok) =

∑T−1
t=1 P(St = j, Ot = ok|o, Z)∑T

t=1P(St = j|o, Z)
=

∑
t:Ot=ok

P(St = j|o, Z)∑T
t=1P(St = j|o, Z)

=

∑
t:Ot=ok

γt(j)∑T
t=1 γt(j)

.

(4.33)
Notice that in the numerator of the equation only the instants t where ok was observed are
considered.

However, when using continuous emission models, the parameters of the mixture models
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must be computed instead. This can be done by following a similar procedure to that used
for discrete models. In order to do so, we observe that the parameters cjk of the mixture
models merely represent the expected number of times the k-th mixture will be used when
generating the emission for state j. Let ξt(j, k) represent the probability of using mixture k
in state j at instant t, defined as follows:

ξt(j, k) = P(St = j,Mt = k|o, Z)

=
P(St = j,Mt = k,o|Z)

P(o, Z)

=

∑N
i=1P(St−1 = i, St = j,Mt = k,o|Z)

P(o, Z)

=

∑N
i=1 αt−1(i)aijcjkgjk(ot)βt(j)

P(o, Z)
. (4.34)

Once again, by using the same procedure as in Equation 4.31, the new mixture weights
can be obtained by:

ĉjk =

∑T
t=1P(St = j,Mt = k|o, Z)∑T

t=1P(St = j|o, Z)
=

∑T
t=1 ξt(j, k)∑T
t=1 γt(j)

. (4.35)

By knowing the probability of each mixture being selected, it is now possible to update
the parameters of each one of them. Since a Gaussian mixture model is being used, the
parameters to be estimated are the mean vector and the covariance matrix. They can both
be computed by using the classical formulas for statistical mean and covariance, weighted
by the probability of the mixture being chosen as follows:

µ̂jk =

∑T
t=1P(St = j,Mt = k|o, Z)ot∑T
t=1P(St = j,Mt = k|o, Z)

=

∑T
t=1 ξt(j, k)ot∑T
t=1 ξt(j, k)

. (4.36)

Ĉjk =

∑T
t=1P(St = j,Mt = k|o, Z)(ot − µ̂jk)(ot − µ̂jk)T∑T

t=1P(St = j,Mt = k|o, Z)

=

∑T
t=1 ξt(j, k)(ot − µ̂jk)(ot − µ̂jk)T∑T

t=1 ξt(j, k)
. (4.37)

By considering that the variance of a set of data X can be rewritten as:

Var[X] = E[XXT ]− E[X]E[X]T , (4.38)
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Equation 4.37 can be rewritten as:

Ĉjk =

∑T
t=1P(St = j,Mt = k|o, Z)otot

T∑T
t=1P(St = j,Mt = k|o, Z)

− µ̂jkµ̂Tjk

=

∑T
t=1 ξt(j, k)otot

T∑T
t=1 ξt(j, k)

− µ̂jkµ̂Tjk. (4.39)

The advantage of this formulation is that each side of the difference can be computed in
parallel in a single pass through the data. A pseudo code of the Baum-Welch procedure can
be seen in Algorithm 4.4.
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1 Algorithm baum-welch(o, Z, stop_thresh, max_iter)
Data: A sequence of observations o = (o1, o2, ..., oT ), an initial HMM

Z = (S,π,A, b), a stopping threshold stop_thresh and an iteration
threshold max_iter

Result: The updated HMM Ẑ
2 count← 0; diff ←∞;
3 α← forward(o, Z); β ← backward(o, Z);
4 prev_prob← prod_prob(α);
5 while diff > stop_thresh and count < max_iter do
6 π̂ ← zeros_matrix(NS, 1);
7 Â← zeros_matrix(NS, NS);
8 b̂← zeros_matrix(NS, 1);
9 for 1 ≤ i ≤ NS do

10 γ(i)← 0;
11 for 1 ≤ t ≤ T do
12 γt(i)← αt(i)βt(i)/prev_prob;
13 γ(i)← γ(i) + γt(i);

14 for 1 ≤ j ≤ NS do
15 sum_γt(i, j)← 0;
16 for 1 ≤ t ≤ T − 1 do
17 γt(i, j)← αt(i)Aijbj(Ot+1)βt+1(i)/prev_prob;
18 sum_γt(i, j)← sum_γt(i, j) + γt(i, j)

19 Âij = sum_γt(i, j)/γ(i);

20 for 1 ≤ k ≤ NM do
21 sum_ξt(i, k)← 0;
22 sum_ξt(i, k)x← zeros_matrix(NO, 1);
23 sum_ξt(i, k)xxT ← 0;
24 for 1 ≤ t ≤ T − 1 do
25 ξt(i, k)← 0;
26 for 1 ≤ j ≤ NS do
27 ξt(i, k)← ξt(i, k) + αt(j)ajicikgik(Ot)βt(i)/prev_prob;

28 sum_ξt(i, k)← sum_ξt(i, k) + ξt(i, k);
29 sum_ξt(i, k)x← sum_ξt(i, k)x+ ξt(i, k)ot;
30 sum_ξt(i, k)xxT ← sum_ξt(i, k)xxT + ξt(i, k)otot

T ;

31 ĉik ← sum_ξt(i, k)/γ(i);
32 µ̂ik ← sum_ξt(i, k)x/sum_ξt(i, k);
33 Ĉik ← sum_ξt(i, k)xxT/sum_ξt(i, k)− µ̂ikµ̂Tik;

34 b̂← (ĉ, µ̂, Ĉ);
35 Ẑ ← (S, π̂, Â, b̂);
36 α← forward(o, Ẑ);
37 β ← backward(o, Ẑ);
38 prob← prod_prob(α);
39 diff ← abs(prev_prob− prob);
40 (π,A, b)← (π̂, Â, b̂);
41 prev_prob← prob;
42 count← count+ 1;

43 return Ẑ;
Algorithm 4.4: Baum-Welch algorithm.
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Chapter 5

Results

In this chapter, the results both for the tracking and the action recognition modules
will be presented and discussed. For each module, the datasets used for training and testing
are explained. Afterwards, we present how the parameters for each method were computed
based on training data. Finally, experimental results are shown.

5.1 Multi-object tracking

The software was developed in Python with the OpenCV library1. As explained in Sec-
tion 3.2, each object is individually tracked using particle filters with color histograms as
proposed by Pérez et al. (2002).

5.1.1 Datasets

The two datasets used for testing the tracking framework are described below.

Youtube table tennis

This dataset is composed of 6 videos containing 6737 frames in total. All the videos are of
doubles matches of competitive table tennis collected from Youtube. Figure 5.1 shows some
sample frames from this dataset. The videos were edited to remove unrelated scenes (e.g.
preparation stage, crowd) and then manually annotated with bounding boxes for training
and groundtruth. The videos are encoded at resolutions varying from 640×360 to 854×480

at 30FPS.

ACASVA

We selected three videos from the ACASVA (De Campos et al. (2011)) dataset of bad-
minton doubles matches from the Olympic games in London 2012. As in the table tennis

1http://opencv.org/

47

http://opencv.org/
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Figure 5.1: Sample frames from the Youtube table tennis dataset.

dataset, the videos were edited to remove parts that do not show the game itself and anno-
tations were created manually to be used as groundtruth. The resulting videos were encoded
at 854× 480 at 30FPS and contained 5766 frames. Figure 5.2 displays some sample frames
from this dataset.

Figure 5.2: Sample frames from the ACASVA badminton dataset.

5.1.2 Evaluation measurements

The tracking results are evaluated using five measurements for each frame. First, let NO

be the number of expected objects and NF the number of frames of the video. Let also GBi
j

and EBi
j be the sets of points (pixels) inside the groundtruth and estimated bounding boxes,

respectively, of the object j in frame i and c(B) represent the centroid of a bounding box
B. All the measurements are computed for every frame and then averaged by dividing their
sum by NFNO.
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The first measurement is the center error (CERR) used in Adam et al. (2006), which
consists of the Euclidean distance between the centroids of the bounding boxes, defined as

CERRi =

NO∑
j=1

d(c(GBi
j), c(EB

i
j)). (5.1)

The second measurement is the center displacement (CDIS), that evaluates the stabil-
ity of the tracking. This is done by computing the distances between the center of each
corresponding bounding box in two consecutive frames:

CDISi =

NO∑
j=1

d(c(EBi
j), c(EB

i−1
j )) (5.2)

The third measurement is the hit detection ratio (HITR). As proposed by Su et al.
(2014), a detection is considered successful when I(c(GBi

j), EB
i
j) = 1, where I(·) is an

indicative function that is equal to one when c(GBi
j) ∈ EBi

j. Therefore, the measurement is
obtained by

HITRi =

NO∑
j=1

I(c(GBi
j), EB

i
j). (5.3)

The fourth measurement is the hit team ratio (HITT). This is a relaxed version of the
HITR, where we consider that the tracking is correct even if the bounding boxes for the
two players of the same team are swapped. Therefore, this measurement is only used for
evaluating tracking for the sports datasets. The reason for using this measurement is that
the appearance of players of the same team are very similar, and even for a human observer it
is not trivial to identify each player correctly after situations of occlusion or camera cut. More
formally, this measurement is computed by the following procedure. Consider the situation
for the pair of players 1 and 2 of the same team. First we find the correspondence with the
highest intersection: (j∗, k∗) = arg maxj,k=1,2(GB

i
j ∩ EBi

k). If j∗ 6= k∗ then we swap EBi
1

and EBi
2. The same procedure is applied for the other team. After correcting the bounding

boxes, HITT is computed in the same way as HITR.
The fifth one is the object intersection ratio (OBJI) which measures the amount of

intersection between the bounding boxes of the groundtruth and the result for the same
object. This measurement is similar to the success plot used in the benchmark by Wu et al.
(2015). More formally, it is defined as:

OBJIi =

∑NO

j=1 |GBi
j ∩ EBi

j|
max{|GBi

j|, |EBi
j|}
. (5.4)
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5.1.3 Estimation of parameters

We separated the Youtube videos into two sets, one for parameter estimation and another
for evaluation. The set for parameter estimation was composed of one video containing
2461 frames. This video contained a longer table tennis match containing all the expected
challenging situation including overlapping between players of the same team and camera
cuts. The model graph was learned using annotations available for all the other 5 videos.

The graph parameters were chosen by running tests on the evaluation video. We have to
estimate three parameters: the feature weight ρF , the old weight factor ρT and the threshold
for removing trackers τS. The parameters were estimated by keeping all of them fixed, except
one. The fixed parameters were empirically chosen beforehand and their values are shown
in Table 5.1. We chose to evaluate the results using the CERR measure, which is one of
the most commonly adopted in tracking works. For reference, we ran the raw particle filter
tracking on this video and the observed error was CERR = 138.

Table 5.1: Initial fixed parameters used for estimating the new ones.

feature weight ρF = 0.5
old temporal weight factor ρT = 0.75
score threshold for removing trackers τS = 0.25

The first parameter tested was the feature weight ρF . As can be seen in Figure 5.3, if the
color model is totally ignored, the performance is very poor. However, the best results are
obtained when the feature weight is kept low, showing that the structure is very important
in this kind of video. Following the observed results, we chose to work with ρF = 0.4.

The analysis of the old weight factor ρT in Figure 5.4 shows that changing it does not
significantly affect the results, except when its value is high. Indeed, when a high factor
is used, the situation is the same as tracking with a single tracker, since no candidate will
be able to have a higher score than older trackers. Thus, the observed result is similar to
using raw particle filters. However, by analyzing the center displacement measure, it is clear
that higher values increase the stability of the results. In that sense, this parameter is set as
ρT = 0.75, which keeps the error low while providing good stability.

Finally, from Figure 5.5 we observe that by using lower threshold values τS for removing
trackers, the results are better. This happens because higher values may end up removing
correct trackers in some cases, up to the point where only one tracker is kept, which is also
similar to the raw particle filter approach. However, it is also important to notice that, by
keeping more trackers, the running time is also impacted. As shown in the same Figure 5.5,
when using no threshold, the performance is more than two times slower than when using
a high value. Therefore, a good choice of parameter must take into consideration both the
accuracy and running time. Hence, the value chosen for this parameter was τS = 0.25.
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Figure 5.3: Center error according to feature weight ρF .
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Figure 5.4: (a) Center error according to old weight factor ρT . (b) Variation in center stability
caused by changing the parameter.

Table 5.2 summarizes all the parameters chosen for evaluation. The same values were
used for all the experiments, independently of the dataset.

5.1.4 Results on datasets

We tested our approach on videos of table tennis doubles matches obtained from Youtube.
These videos are interesting because they present challenging real world conditions like
appearance change, occlusion and camera cuts. They also present some structure enforced
by the rules of the game, which is captured by the graph model.
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Figure 5.5: (a) Center error according to threshold for removing trackers τS. (b) Variation in
performance (frames per second) caused by changing the parameter.

Table 5.2: Parameters for the tracking framework.

number of particles per object Np = 50
initial particle spread deviation σc = 10
overlapping distance between same object τdS = 50
overlapping distance between different objects τdD = 25
feature weight ρF = 0.4
old temporal weight factor ρT = 0.75
score threshold for removing trackers τS = 0.25
threshold for changing tracker τT = 1.25
threshold for changing after overlapping τO = 0.75

The task in these videos was to track all the four players and the table. We purposely
track using only the torso of the players in order to create more appearance ambiguity and
check whether the graph model can deal with this situation. As before, all the tests were
performed five times and the average of all of the results was taken. The model graph was
learned using a leave-one-video-out approach. The candidates matrix is the same as in the
synthetic tests, while the chosen adjacency matrix was:

MA =



0 1 0 0 1

1 0 0 0 1

0 0 0 1 1

0 0 1 0 1

1 1 1 1 0


.

This matrix considers the relations between players of the same team and all the players and
the table. The relationship with the table is important because the players should be close
and on opposite sides of it during the game. On the other hand, exploring the relationships
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between players of the same team helps to deal with temporary occlusions.
We compare our approach with other methods from the literature. The first one was the

same particle filter color tracker we used, but without the graph information. In this way we
could verify whether the addition of graphs bring any significant improvement to the classical
approach. The second one was SPOT (Zhang and van der Maaten (2014)), that was men-
tioned in Chapter 2. As explained before, this tracker also considers structural information
and, therefore, it is a good baseline for our results. The last tracker is STRUCK (Hare et al.
(2011)), a single object tracker that, according to a recent benchmark (Wu et al. (2015))
was the best performing method in several datasets.

The results are presented in Table 5.3. The values correspond to the average of the results
obtained from all five videos weighted by their respective number of frames. As pointed by
all the measurements, the use of graphs clearly improves the tracking results. Particularly,
the use of graphs successfully improves the results over the regular particle filter tracker. One
point to note is that STRUCK performed similarly or worse than the particle filter approach.
That is explained because the videos in the dataset often contain many situations of camera
cuts. When this happens, both PF and STRUCK can only recover tracking when the target
gets close to the point where it was lost. In that sense, the particle filters usually are able to
recover the target more often because the particles usually are spread in a broader area than
the STRUCK search radius. Since STRUCK conducts a dense neighbor search, as opposed
to the sampled spread of PF, its search area must be kept smaller and thus, it is unable to
redetect the target in many situations. It can also be observed that SPOT did not provide
good results on these datasets. According to the observed results, the main reason seems to
be that the structural model used by SPOT is sometimes too rigid and not very suited for
a situation where the structural properties between the objects are subject to large changes
in a short amount of time, such as in these sports videos.

Table 5.3: Observed results on both datasets. The arrows indicate whether lower or higher values
are better.

Dataset Method CERR ↓ OBJI ↑ HITR ↑ HITT ↑
Youtube table tennis PF + Graph 42 0.56 0.71 0.79

PF 103 0.45 0.56 0.61
SPOT 81 0.34 0.40 0.44
STRUCK 155 0.37 0.48 0.49

ACASVA badminton PF + Graph 40 0.50 0.63 0.81
PF 67 0.41 0.51 0.60
SPOT 59 0.27 0.32 0.37
STRUCK 74 0.41 0.53 0.62

Figure 5.6 shows some results observed on the videos. As it can be seen, our approach
successfully recovers tracking after occlusion of camera cuts, while PF and STRUCK are
not able to redetect the target after such situations. It is interesting to note that sometimes
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even the more robust STRUCK tracker is not able to deal with temporary occlusion, losing
one of the targets, as shown in the third row of Figure 5.6. SPOT, on the other hand, does
not suffer significantly from the abrupt motion. However, as it is evident from the pictures,
sometimes the more rigid model ends up causing many tracking misses at the same time.
These results further evidence the flexibility of the proposed method, that is able to accept
a wide range of spatial configurations.

Figure 5.6: Tracking results for both datasets. Each method is represented by a different color.
Blue: ours, red: particle filter, green: SPOT, white: STRUCK. The first two rows show results
after a camera cut, while the last ones show situations of momentary occlusion. The first column
represents the initial situation, in the second column, camera cut or occlusion happens and then,
the third one shows the results after a few frames.

We also evaluated the behavior of each tracker during the video. Figure 5.7 shows how
the CERR and HITT vary over time in a video. As it is more clear on the charts from the
ACASVA dataset, both PF and STRUCK suffer from the drift problem over time. Although
they are good at the beginning, once they lose the target, it is difficult to recover, thus
causing larger errors as the videos move on. The analysis of the Youtube video also shows
that the STRUCK tracker did not perform well on this video. This is explained because the
chosen video contains many camera cut situations. As mentioned before, this is a particularly
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challenging situation for trackers based on local search only. In that sense, it can be seems
that the use of structural information is successful in keeping the tracking more reliable even
during longer videos.
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0 500 1000 1500 2000 2500
Frame

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

CE
RR

STRUCK
SPOT
PF
PF + Graph

0 500 1000 1500 2000 2500
Frame

0.0

0.2

0.4

0.6

0.8

1.0

HI
TT

STRUCK
SPOT
PF
PF + Graph

ACASVA badminton

0 500 1000 1500
Frame

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

CE
RR

STRUCK
SPOT
PF
PF + Graph

0 500 1000 1500
Frame

0.0

0.2

0.4

0.6

0.8

1.0

HI
TT

STRUCK
SPOT
PF
PF + Graph

Figure 5.7: Center error and hit team ratio for one video from each dataset including object
overlapping and camera cuts. The charts were smoothed using a moving average window of 100
frames.

5.2 Action recognition

The action recognition module was inspired by the work of Lu and Little (2006) and
was implemented using PCA-HOG descriptors classified by HMMs. The HOG descriptors
are extracted using OpenCV, while the PCA and HMM are implemented by the sklearn
library2.

The HOG descriptors are extracted from the bounding boxes of the objects obtained from
the tracking module. However, different from Lu and Little (2006), HOGs are extracted as

2http://scikit-learn.org/stable/

http://scikit-learn.org/stable/
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proposed by the original authors (Dalal and Triggs (2005)). As the observed results using
this approach proved to be reasonable, we decided to keep the current implementation.
In fact, this should not have a strong impact on the results, as the descriptor proposed
by Lu and Little (2006) is just a simpler version of the original.

5.2.1 Dataset

The action recognition module was tested using videos of table tennis matches obtained
from Youtube. As opposed to the ones using for testing the tracking module, the videos in
this dataset were obtained from singles matches (one player at each side of the table). The
main reason for this choice was to obtain a clearer view of each player as they performed
their actions, decreasing the possibility of occlusion. The dataset was composed of 15 videos
containing 9427 frames. All the frames were manually annotated with bounding boxes for
each player as well as action labels. Figure 5.8 shows a few example images collected from
the dataset used in this test.

Figure 5.8: Sample frames from the dataset used for action recognition.

Based on the work of Wang et al. (2013), we decided to recognize four actions performed
by each player: serve, backhand, forehand and others, where the last one is merely a wildcard
that represents anything else. As the background is very different for each player (e.g. the
player in the back is partially occluded by the table), a different set of HMMs was trained
for each one, yielding a total of 8 HMMs.

The videos were separated into two sets, one for estimating the parameters of the de-
scriptors and classifiers and another for evaluation. The estimation set was composed of
11 videos with 5672 frames, while the remaining 4 videos with 3755 frames were used for
testing. The sets were divided in this way because the videos in the first set were shorter or
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with missing annotations. Therefore, we preferred to conduct the evaluation tests using the
more complete videos.

5.2.2 Estimation of parameters

The parameters were estimated by following a 5-fold cross-validation approach on the
estimation set and computing the average hit ratio for each configuration. The experiments
involved tests for finding the best number of components from PCA, the length of one action
sequence and the number of states of the HMMs.

Figure 5.9 shows the performance results for different number of principal components
(PCs). The values correspond to the average between the two players. As it can be seen,
the hit ratio reaches the top between 25 and 150 PCs. This result shows that, although a
higher number of PCs encode more of the original information, it also hinders classification,
as the search space increases exponentially. Due to the higher accuracy and considering the
computer complexity, we chose to work with 25 PCs.
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Figure 5.9: Variation of classification performance according to the numbers of PCs.

The sequence length and number of HMM states were tested simultaneously in order to
find the best combination. The results are shown in Table 5.4. Results in the upper right part
of the matrix are not shown due to a limitation in sklearn library that does not allow to train
models with more states than the number of available observations. The table shows that
changing these parameters does not affect significantly the performance. We have also tried
to use different values for each object, but the observed results did not show any expressive
changes. Since the results are very similar, we chose to work with the lowest parameters
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for both variables. The final parameters chosen for the evaluation task are summarized in
Table 5.5.

Table 5.4: Classification hit ratio according to the sequence length and the number of hidden states.

seq.length / hmm states 5 10 15 20 25
5 0.54 - - - -
10 0.52 0.51 - - -
15 0.55 0.56 0.43 - -
20 0.56 0.48 0.49 0.50 -
25 0.54 0.53 0.54 0.49 0.42

Table 5.5: Final parameters for the action recognition.

number of principal components 25
sequence length 5
number of HMM states 5

5.2.3 Results on dataset

For this task, the bounding boxes obtained from tracking were collected beforehand
and stored. Afterwards, they were segmented into individual action sequences according to
the groundtruth. Therefore, the evaluation set was represented by several sequences, where
each one should correspond to a complete action. The tests were then conducted in the same
fashion as in the estimation phase. They were evaluated in a 5-fold cross-validation approach
where 80% of the sequences were used for training using the groundtruth data, while the
remaining 20% sequences were provided by the tracking results.

We shall refer to as player 1, the player who is closer to the camera and thus, not occluded
by the table, while player 2 is the other one. The results obtained for both players are shown
in Table 5.6. As it is apparent, the results for player 2 are slightly worse than for player 1.
This can be explained mainly due to the fact that this player may or may not be partially
occluded by the table. Therefore, the shape descriptor may be different depending on the
position of this player, which causes some classification issues. More detailed results can be
seen in the confusion matrix presented in Table 5.7. Figure 5.10 shows some examples of
action sequences that were classified.

Table 5.6: Observed hit ratio results for the action recognition task.

Mean St. deviation
Player 1 0.55 0.05
Player 2 0.47 0.05

The results show that the classification is reasonable for player 1, while the player 2
presents more errors. The backhand action for player 1 presents the worse results, but this is
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Table 5.7: Confusion matrix of the action classification.

Player 1

Others Forehand Backhand Serve
Others 0.72 0.12 0.16 0
Forehand 0.28 0.52 0.20 0
Backhand 0.44 0.16 0.40 0
Serve 0.10 0.20 0.10 0.60

Player 2

Others Forehand Backhand Serve
Others 0.68 0.12 0.20 0
Forehand 0.48 0.20 0.32 0
Backhand 0.40 0.08 0.52 0
Serve 0 0.20 0.40 0.40

Figure 5.10: Examples of action sequences, the first five columns represent the action for player
1, while the others for player 2. Each row correspond to one action: (1) others, (2) forehand, (3)
backhand and (4) serve.

not surprising. The reason is that, since the player has his back to the camera, this action is
difficult to be perceived. The same can be said for player 2, on the opposite sense, where this
action performs better, since his arms and hands are visible during this motion. However, it
is clear that the classification for this player suffers for the reason explained before.
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Chapter 6

Conclusions

6.1 Contributions and discussion

We proposed a graph based approach to explore the structural information of a filmed
scene and use it to improve tracking of multiple objects in structured videos. Each object
in the scene represents one vertex of the graph, and edges are included to consider their
spatial relations. Before the actual tracking, a probabilistic graph model is trained to learn
the structure of the scene. The graph is then used for two purposes: (1) evaluate the current
tracking state to check if the multiple objects are being correctly tracked and (2) generate
new likely target locations to try to recover tracking in case it is lost. During the tracking,
each object is individually tracked using particle filters. By merging the current tracking with
the candidates generated by the model, multiple graphs are built. They are then evaluated
according to the model, and the best one is chosen as the new global tracking state.

One of the advantages of the proposed framework is that, although during this thesis it
was built over particle filters, it does not really rely on any information specific from that
model. Therefore, the single object tracker could be potentially replaced by any other more
suitable choice for other types of objects. This makes the method very flexible and able to
deal with a wider range of applications.

We also used the tracking results to recognize the actions of the players in table tennis
matches. This step was done by extracting PCA-HOG features from the image and then
classifying them using HMMs. One different HMM was trained for each of the chosen actions
(serve, backhand, forehand, others) using annotated data.

The results show that the proposed method successfully increases the tracking precision
over other baseline methods on the sports datasets used in this thesis. As shown by the results
this is mainly due to the fact that the use of the graphs allows us to recover tracking after
challenging conditions such as temporary occlusion and camera cuts. The action recognition
also showed convincing results, indicating it may be a viable option for further studying.

Therefore, based on the all the evidence collected during this thesis, we draw the following
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conclusions:

• When structural patterns can be found in the scene, the structural information plays
an important role in improving multi-object tracking. As shown by the results, the
combination of graphs with particle filter significantly improved the tracking results
on the structured sports dataset over other approaches.

• A structural model complements the appearance descriptors, as the tracking precision
is affected positively as structure information is combined with the visual features.
However, appearance cannot be completely replaced by structure alone, as ignoring
the former completely ends up decreasing the tracking performance.

• The drift problem can be greatly amended by relying on structural cues. As mentioned
before, the drift is a serious challenge when tracking in longer videos. However, the
collected results show that the proposed structural model successfully redetects lost
targets after a short period of time, thus decreasing this problem.

6.2 Limitations and Future work

One limitation of the proposed framework is that the color-based tracker used for each
object is not very robust against appearance or illumination changes. It is also sensible to
initialization parameters, i.e. tracking may present poor results if the provided bounding box
does not cover the object properly. As the graphs also use the tracker score for evaluating, if
the color model is not representative enough, the whole tracking may be affected. This effect
can be seen in the resulting videos, where sometimes objects with similar appearance change
trackers, which might not happen if the proposed approach of generating new candidates is
not used. However, as evidenced by the results, the overall result for all videos is better than
when using other methods.

There are two main paths that we are interested in pursuing in the future to improve this
method. The first one consists in making the method more self adaptive. One way to do so
is to automatically adjust the number of candidates generated from each reference object,
or to use the global structure as a whole to choose the best locations. This could be done by
computing a reliability score for each object, combining the hypothesis of all of references
into a single set and choosing only the best options.

Another option is, when working with particle filters, to automatically adjust the amount
of particles generated for each candidate. This could improve the performance by generating
fewer particles in locations that are not very likely to be correct. One direct approach for
this is to use the graph score as a base for computing the number of particles. However, this
method puts a lot of importance on the structure, and thus it may provide bad results if the
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trained model is not rich enough. One alternative would be to generate just small clouds of
particles at each location and increase them in case the initial evaluation seems good.

Finally, the tracking can be extended by removing the need of training a model before-
hand. An interesting research direction would be to adapt the method to train an adaptive
model that could be improved as the tracking is happening.

The other path for improving this work concerns the action recognition module. In fact,
we originally intended to use the action recognition results to feed the tracking module as
well, creating a joint framework where both modules would contribute to the other. But,
due to time constraints, this could not be implemented within this thesis. Nonetheless, this
remains as a very interesting path to investigate in the future.

The main motivation for this approach is that one of the challenges of tracking is to
correctly estimate the size of the bounding box surrounding the object. It is usually assumed
that the proportions of the object do not change, but as evidenced by the players in the table
tennis matches, it is easy to see that this assumption is not always reasonable. By knowing
the action of a player, it would be possible to know whether the width of the bounding box
needs to be increased (e.g. if the player spreads his arm) or reduced, for example.

6.3 Scientific production

The work developed during this thesis led the Ph.D. candidate to publish three papers
in international conferences:

• Henrique Morimitsu, Roberto M Cesar Jr and Isabelle Bloch. Attributed graphs for
tracking multiple objects in structured sports videos. In CVsports workshop of the
International Conference on Computer Vision (ICCV). 2015.

• Henrique Morimitsu, Roberto M Cesar Jr and Isabelle Bloch. A spatio-temporal ap-
proach for multiple object detection in videos using graphs and probability maps. In
Image Analysis and Recognition, pages 421-428. Springer. 2014.

• Henrique Morimitsu, Roberto M Cesar Jr and Isabelle Bloch. A graph-based approach
for object detection and action recognition in videos. In FEAST Workshop of the
International Conference on Pattern Recognition (ICPR). IAPR. 2014.
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