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Abstract

Leon, Leissi M. C. Efficient Hierarchical Layered Graph Approach for Multi-
Region Segmentation. 78 f. Tese (Doutorado) - Instituto de Matemática e Estatística,
Universidade de São Paulo, São Paulo, 2019.

Image segmentation refers to the process of partitioning an image into meaningful re-
gions of interest (objects) by assigning distinct labels to their composing pixels. Images are
usually composed of multiple objects with distinctive features, thus requiring distinct high-
level priors for their appropriate modeling. In order to obtain a good segmentation result,
the segmentation method must attend all the individual priors of each object, as well as
capture their inclusion/exclusion relations. However, many existing classical approaches do
not include any form of structural information together with different high-level priors for
each object into a single energy optimization. Consequently, they may be inappropriate in
this context. We propose a novel efficient seed-based method for the multiple object seg-
mentation of images based on graphs, named Hierarchical Layered Oriented Image Foresting
Transform (HLOIFT). It uses a tree of the relations between the image objects, being each
object represented by a node. Each tree node may contain different individual high-level
priors and defines a weighted digraph, named as layer. The layer graphs are then integrated
into a hierarchical graph, considering the hierarchical relations of inclusion and exclusion. A
single energy optimization is performed in the hierarchical layered weighted digraph leading
to globally optimal results satisfying all the high-level priors. The experimental evaluations of
HLOIFT and its extensions, on medical, natural and synthetic images, indicate promising re-
sults comparable to the state-of-the-art methods, but with lower computational complexity.
Compared to hierarchical segmentation by the min-cut/max-flow algorithm, our approach
is less restrictive, leading to globally optimal results in more general scenarios, and has a
better running time.

Keywords: Multiple object segmentation; hierarchical image segmentation; image segmen-
tation based on graphs; interactive segmentation; superpixels; medical image segmentation.
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Resumo

Leon, Leissi M. C. Abordagem Eficiente baseada em Grafo Hierárquico em Ca-
madas para a Segmentação de Múltiplas Regiões. 78 f. Tese (Doutorado) - Instituto
de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2019.

A segmentação de imagem refere-se ao processo de particionar uma imagem em regiões
significativas de interesse (objetos), atribuindo rótulos distintos aos seus pixels de com-
posição. As imagens geralmente são compostas de vários objetos com características dis-
tintas, exigindo, assim, restrições de alto nível distintas para a sua modelagem apropriada.
Para obter um bom resultado de segmentação, o método de segmentação deve atender a
todas as restrições individuais de cada objeto, bem como capturar suas relações de inclusão
/ exclusão. No entanto, muitas abordagens clássicas existentes não incluem nenhuma forma
de informação estrutural, juntamente com diferentes restrições de alto nível para cada ob-
jeto em uma única otimização de energia. Consequentemente, elas podem ser inapropriadas
nesse contexto. Estamos propondo um novo método eficiente baseado em sementes para
a segmentação de múltiplos objetos em imagens baseado em grafos, chamado Hierarchical
Layered Oriented Image Foresting Transform (HLOIFT). Ele usa uma árvore das relações
entre os objetos de imagem, sendo cada objeto representado por um nó. Cada nó da árvore
pode conter diferentes restrições individuais de alto nível, que são usadas para definir um
dígrafo ponderado, nomeado como camada. Os grafos das camadas são então integrados em
um grafo hierárquico, considerando as relações hierárquicas de inclusão e exclusão. Uma
otimização de energia única é realizada no dígrafo hierárquico em camadas, levando a re-
sultados globalmente ótimos, satisfazendo todas as restrições de alto nível. As avaliações
experimentais do HLOIFT e de suas extensões, em imagens médicas, naturais e sintéticas,
indicam resultados promissores comparáveis aos métodos do estado-da-arte, mas com menor
complexidade computacional. Comparada à segmentação hierárquica pelo algoritmo min-
cut/max-flow, nossa abordagem é menos restritiva, levando a resultados globalmente ótimos
em cenários mais gerais e com melhor tempo de execução.
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1
Introduction

Image segmentation is the task of partitioning an input image into regions of interest by
assigning distinct labels to their composing pixels. Hence, all of the pixels sharing a same
label in the image form an object, see Figure 1.1. The image segmentation involving the
partitioning of image into a foreground and a background (representing every other part of
the image that is not the foreground) is known as binary segmentation, see Figure 1.1(a).
It can only be used to segment one object at a time. However, in practice, we often need to
segment multiple objects from a single image simultaneously, where each label corresponds
to a different object in the image, as shown in Figure 1.1(b).

(a) (b)

Figure 1.1: Examples of image segmentation. (a) A binary segmentation of a horse from its back-
ground and (b) a multi-object segmentation of birds from their background.

The image segmentation task is not only one of the most fundamental and challenging
problems in image processing and computer vision, but also has impact in different research
areas such as Ecology, Medicine, Neurology and Artificial Intelligence (Gordon et al., 2016;
Toennies, 2012; Visser et al., 2016). For example, in medical imaging, image segmentation
can be used to isolate the objects corresponding to different organs in Magnetic Resonance

1
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Images (MRI), helping to analyze their forms, volumes and textures for the diagnostic of
pathologies (Jackowski e Goshtasby, 2005). However, to achieve an ideal segmentation in
medical imaging, we usually have critical obstacles to face such as noise, inhomogeneity
effects, low contrast and complexity of objects. The incorporation of prior knowledge into
the segmentation algorithm is useful for more accurate results.

The segmentation task can fall into one of three categories: manual segmentation process,
automatic segmentation and interactive segmentation. The manual segmentation process
can be a tedious work for humans, being time-consuming and prone to errors due to the
large amount of data. The automatic segmentation algorithms usually model the objects of
interest, through a training process on a large amount of manually labeled data. On the other
hand, an interactive segmentation method combines computers and humans’ expertise. Seed-
based methods can be employed for interactive segmentation, where a set of “seed” pixels (or
scribbles), specifying the regions of interest and their respective labels, is indicated by the
user. This partial labeling is then propagated to the other pixels, allowing the user to evaluate
the result and edit the final segmentation by adding more seeds if it is not satisfactory, until
no further modification is needed.

Our work belongs to the seed-based class of segmentation methods, which requires as in-
put some seeds/scribbles representing the localization of the regions of interest as constraints.
We mainly focus on the interactive graph-based segmentation approach for multi-object seg-
mentation. In the context of interactive segmentation, our method has the following pipeline:
1) A user/method provides an initial input; 2) the algorithm produces its resulting segmen-
tation; 3) the user may provide further constraints based on the previous results, and go
back to step 2. This process repeats until the results are satisfactory.

In this chapter, we briefly start presenting some state-of-the-art methods and discuss
how the usage of prior information from the target objects may improve the multi-object
segmentation results. Then we highlight our proposal and give the supporting reasons for
choosing Oriented Image Foresting Transform (OIFT) (Miranda e Mansilla, 2014) for the
energy optimization. Finally we provide a summary of our main contributions and briefly
outline the organization of this thesis.

1.1 Interactive graph-based segmentation

Currently, interactive graph-based methods are commonly used in image segmentation
tasks, where the image is modeled as a connected graph. Graph-based image segmenta-
tion is popular, because graphs can naturally represent image parts and their relation-
ships (Golodetz et al., 2017). Here, the image segmentation task can be interpreted as a
graph partition problem subject to hard constraints, such as seed pixels selected in the im-
age domain for the foreground regions and background (anywhere outside the foreground).
Examples of interactive graph-based methods are watershed from markers (Cousty et al.,



1.1 1.1. INTERACTIVE GRAPH-BASED SEGMENTATION 3

2010), random walks (Grady, 2006), fuzzy connectedness (Ciesielski et al., 2007), graph
cuts (GC) (Boykov e Funka-Lea, 2006), grow cut (Li et al., 2012), minimum barrier dis-
tance (Ciesielski et al., 2014) and image foresting transform (IFT) (Ciesielski et al., 2018;
Falcão et al., 2004). Figure 1.2 shows an example of interactive image segmentation by
IFT (Ciesielski et al., 2018; Falcão et al., 2004) for the single object segmentation of the
liver. (a) The user provides seeds as hard constraints representing foreground and back-
ground; and then an initial graph partition is obtained by energy optimization. (b) The
initial segmentation can be further edited by adding new foreground and/or background
seeds in order to improve the results.

(a) (b)

Figure 1.2: Example of interactive image segmentation by IFT. (a) An input CT image of the liver
with the initial segmentation result from the user selected seeds (purple stroke for background and
yellow stroke for the object). (b) An improved segmentation result for the liver is obtained by adding
more seeds.

Some methods, including the min-cut/max-flow algorithm, can provide global op-
timal solutions according to a graph-cut measure in graphs and can be described
in a unified manner according to a common framework, which we refer to as,
Generalized GC (GGC) (Ciesielski et al., 2012). Oriented Image Foresting Transform
(OIFT) (Falcão et al., 1998; Miranda e Mansilla, 2014) and Oriented Relative Fuzzy Con-
nectedness (ORFC) (Bejar e Miranda, 2015) are GGC methods designed for directed
weighted graphs, which have low computational complexity compared to the min-cut/max-
flow algorithm (Boykov e Funka-Lea, 2006).

Image segmentation can also be interpreted as a classification problem at the pixel
level. Not surprisingly, machine learning-based methods are among the most promi-
nent solutions to the segmentation problem, especially after the advent of deep learn-
ing techniques (He et al., 2016). In this context, a state-of-the-art method in grabcut-
style (Rother et al., 2004) for interactive segmentation with minimal user involvement is
Deep Extreme Cut (Maninis et al., 2018). It considers extreme points (left-most, right-most,
top and bottom pixels at the object boundary) as 4 clicks for each object, and the Convo-
lutional Neural Network (CNN) produces the segmented masks. This type of user input is
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usually a good choice for single-shot algorithms, since from the 4 indicated points we can infer
object’s bounding box, and consequently, all points outside the box belong to background.
At first glance, this seems to be better than other types of user inputs, since arbitrary points
do not allow us to draw any further conclusions. However, it is not possible in general to
get a segmentation result with ground truth quality using only a 4 points selection, since
considerable residual errors all around the boundary are quite common (Figures 1.3a and c).
Moreover, user input in grabcut-style is usually not appropriate to perform further correc-
tions, such that a different type of corrective action is usually employed in approaches like
GrabCut (Rother et al., 2004), resulting in a less user-friendly interface due to the multiple
types of input. On the other hand, deep learning techniques require a lot of annotated data
for training the network and for many applications the availability of gold standard is quite
limited.

(a) (b)

(c) (d)

Figure 1.3: The results of segmentations on two natural images by Deep Extreme Cut and by
a particular case of HLOIFT, in single object setting and with no hight-level priors. (a,c) The
results by Deep Extreme Cut with 4 clicks. (b,d) The results by HLOIFT with arc-weight estimation
from (de Miranda et al., 2010) using only 3 and 2 clicks, respectively. Notice, that Deep Extreme
Cut has poor boundary adherence in the pepper segmentation while in the flower segmentation it
invades the surrounding green area of the leaves.

In this work, we focus on the interpretation of the image segmentation as a graph
partition problem subject to hard constraints, given by seed pixels selected in the image
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domain, such that a refined segmentation can be obtained with an arbitrary level of pre-
cision, leading to a high-quality ground-truth data. The intended methods in graphs are
very flexible. Besides being easily extensible for multidimensional images, they allow several
customizations, such as the usage of different image elements as its nodes (e.g., superpix-
els (Leon e de Miranda, 2019)), the learning of graph weights by means of machine learning
techniques (de Miranda et al., 2010) (see Figures 1.3b and d), or even the incorporation of
learning by deep learning techniques (Wolf et al., 2017; Wolf et al., 2019). For the sake of
simplicity and space constraints, here we focus only on the base form of the proposed method
at the pixel level, without the use of training images, and discuss the use of high-level priors
that can be easily set based on the application knowledge.

1.2 Multi-object segmentation

Most successful segmentation methods usually incorporate some image prior informa-
tion. In the context of multiple object segmentation, each object may present its own
distinctive features, requiring different high-level priors. Priors or global object proper-
ties refer to some prior knowledge used to guide the segmentation process. For exam-
ple, priors such as connectedness (Mansilla et al., 2016; Vicente et al., 2008), shape con-
straints (Gulshan et al., 2010; Isack et al., 2016; Mansilla e Miranda, 2013b; Veksler, 2008),
convexity prior (Gorelick et al., 2017), and boundary polarity (Miranda e Mansilla, 2014;
Singaraju et al., 2008) are potentially useful high-level priors for object segmentation, al-
lowing the customization of the segmentation to a given target object.

Also, it is advantageous for the segmentation method to explore the structural interac-
tion/relations between the different objects in the image, whenever it is possible. In order
to obtain a good segmentation result, the segmentation method must attend all individual
object priors and capture the contextual or structural relations between them. However,
many existing methods do not include any form of structural information or only include
high-level priors for single object segmentation (Gulshan et al., 2010; Mansilla et al., 2016;
Miranda e Mansilla, 2014; Vicente et al., 2008). Consequently, they may be inappropriate
in the context of multiple objects.

Most of the methods for multi-object segmentation that include structural informa-
tion are based on graph-cut optimization and are performed by a min-cut/max-flow algo-
rithm (Delong e Boykov, 2009; Delong et al., 2012; Ulén et al., 2013). These methods usually
use priors, based on inclusion or exclusion interactions between objects. However, their glob-
ally optimal results are restricted only to some particular cases. For example, they cannot
represent the inclusion of a pair of adjacent objects in a third object. Also they usually have
a high computational cost.

The methods based in Layered Optimal Graph Image Segmentation for Multiple Objects
and Surfaces (LOGISMOS) (Oguz e Sonka, 2014; Yin et al., 2010) require an approximated
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pre-segmentation whenever the objects present complex shapes. Note that the fast segmenta-
tion obtained by our proposed method could also be used as a starting point for LOGISMOS.

In the context of segmentation by the Image Foresting Transform (IFT) framework, in or-
der to incorporate structural information among objects, the methods usually employ Fuzzy
Object Models (FOMs) (Miranda et al., 2009; Mohammadianrasanani, 2013; Rittner et al.,
2014; Sun et al., 2014; Tong et al., 2013; Udupa et al., 2013, 2014, 2011, 2012). However,
these approaches are based on separate IFT executions per object, that do not incorporate
structural information and the high-level priors of all objects into a single energy optimiza-
tion, limiting their potential.

In Figure 1.4, we have an example of multi-object segmentation by IFT in a Computed
Tomography (CT) image composed of three objects representing the liver, aorta and the
abdominal region, which are shown in yellow, cyan and red color, respectively. Initially,
IFT gets unsatisfactory results (Figure 1.4a). By adding more seeds the segmentation result
is improved, however, it still presents many errors (Figure 1.4b). Our hypothesis is that
by the usage of high-level priors, such as the geodesic star convexity and the boundary
polarity from bright to dark pixels for the three regions, superior segmentation results can
be obtained. Unfortunately, the existing IFT based approaches for multi-object segmentation
do not support the incorporation of these constraints related to global object properties.

(a) (b)

Figure 1.4: Example of multi-object segmentation by IFT. (a) A given input CT image with its
initial segmentation result from the user selected seeds, where purple stroke stands for background,
while yellow, cyan and red colors stand for the liver, aorta and the abdominal region respectively.
(b) By adding more seeds an improved result is obtained, but it still has many imperfections.

1.3 Proposal

In this work, we circumvent the aforementioned problems, by proposing a hierarchical
layered graph-based approach for the multiple object segmentation problem, named as Hi-
erarchical Layered OIFT (HLOIFT), using a single energy optimization. A graph used in
HLOIFT for a segmentation of m objects is formed with m layers, copies of image scene
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graph, each associated with an object. The hierarchy considers inclusion and exclusion con-
straints between objects as in Delong e Boykov (2009), but each object in the image can
also have its own set of high-level priors. Further, we formulate the integration of individual
object constraints and structural priors from layers, within a single energy optimization,
overcoming the mentioned limitations from previous works and conserving the low compu-
tational cost of OIFT.

1.3.1 Why optimization by OIFT?

The proposed method in this work uses a modified OIFT algorithm (Miranda e Mansilla,
2014) as its main optimization algorithm, as justified for the following reasons:

• The OIFT algorithm has a good balance between accuracy and robustness in prac-
tice (Tavares et al., 2017).

• It achieves globally optimal results according to a graph-cut measure (Miranda e Mansilla,
2014).

• It has low computational cost (linear for most applications).

• It is flexible, allowing the incorporation of different high-level priors, such as shape
constraints (de Moraes Braz et al., 2019) and boundary polarity, into a single energy
for object segmentation.

1.3.2 Contributions

Therefore, our main contributions are as follows.

• Theoretical: We propose a new seed-based method for multi-object segmentation
allowing high-level priors for image objects and the hierarchical constraints between
them.

• Generality: Our approach is less restrictive than most methods in use and leads
to globally optimal results in more general scenarios compared to Delong e Boykov
(2009).

• Complexity: Our method has lower computational complexity as compared to meth-
ods based on the min-cut/max-flow algorithm.

1.4 Outline

Our work is organized as follows: In Chapter 2, we introduce some required definitions and
review the OIFT method with some commonly used priors. Our new algorithm HLOIFT, is
described in Chapter 3 and the proof of its correctness is given in Appendix A. In Chapter 4,
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we present the experimental results, including the 3D case and the usage of superpixels for
the nodes. The usage of superpixels allows us to reduce the running time of HLOIFT while
conserving its accuracy. There is also some quantitative experimental evaluation of HLOIFT,
comparing it against IFT and hierarchical segmentation by the min-cut/max-flow algorithm.
Finally, the remaining conclusions are stated in Chapter 5.



2
Background

This chapter provides the theoretical foundations of our proposed method. Here,
we describe the image and digraph definitions, the related methods and algorithms,
and the high-level priors to be used in HLOIFT. The details provided here are nec-
essary for fully understanding our proposal and the results presented in subsequent
chapters.

2.1 Definitions

2.1.1 Image

An (2-dimensional) image is a pair (I, I), where I is a finite set of pixels identified
with the 2-tuples of integers (i.e., I ⊂ Z2) and I is a mapping that assigns to each pixel
t ∈ I its intensity I(t), that is, either a real number (in case of monochromatic image) or
an appropriate vector in Rk.

2.1.2 Image as digraph

An image can be interpreted as a weighted digraph (i.e., directed graph) G = (N ,A, ω)

whose nodes (vertices) are the pixels in the image domain N = I, arcs/edges listed in
A are the ordered pairs (s, t) ∈ I2 of pixels (usually, in 2D images, identified with either
4- or 8-neighborhoods), and the weight map ω associates to each arc (s, t) ∈ A a value
ω(s, t) ∈ [−∞,∞] (usually defined as ω(s, t) = ‖I(t)−I(s)‖).1 We use the notations t ∈ A(s)

and (s, t) ∈ A to indicate that t is adjacent to s.

2.1.3 Symmetric digraph

A digraph G is symmetric if for all (s, t) ∈ A, the pair (t, s) is also an arc of G, that
is, (t, s) ∈ A. All digraphs we consider in this work are symmetric. Notice, that in the
symmetric weighted digraphs we may still have ω(s, t) 6= ω(t, s).

1The symbol ‖ · ‖ denotes the standard Euclidean norm in Rk.

9
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2.1.4 Image segmentation

In binary segmentation, whose goal is to separate an object O1 from its background
O0 = I\O1, we consider two non-empty disjoint seed sets S0, S1 ⊂ I indicating, respectively,
O0 and O1 (i.e., aiming for O1 ⊃ S1 and O0 ⊃ S0). So, we assume that S1∩S0 = ∅. Actually,
the object O1 is identified with its labeling L : I → {0, 1}, which is the indicator (i.e.,
characteristic) function of O1. (That is, O1 = {v ∈ I : L(v) = 1}). In particular, the seeds
give us a partial labeling, L(t) = 1 for all t ∈ S1 and L(t) = 0 for all t ∈ S0, which is
propagated to all unlabeled pixels during the algorithm. All this notation may be easily
extended for multiple object segmentation.

Image segmentation can be formulated as a graph cut (GC) problem subject to hard con-
straints. In the case of directed weighted graphs, there are two important classes of energy
formulations within the Generalized GC framework, the Max-Min2 and Min-Sum optimiz-
ers (Ciesielski et al., 2012). The algorithms presented in this work are Max-Min optimizers
while the classical min-cut/max-flow algorithm is a Min-Sum optimizer.

2.2 Related methods

2.2.1 Image Foresting Transform (IFT)

The Image Foresting Transform (IFT) (Falcão et al., 2004) is a modification of Dijkstra’s
shortest paths algorithm (Dijkstra, 1959) allowing multiple sources and general connectiv-
ity functions (Monotonically Increasing (MI) functions). IFT uses definitions such as path,
connectivity function, spanning forest and optimum path value. For a given image graph G,
a path is a sequence of pixels π = 〈t1, t2, . . . , tk〉, where (ti, ti+1) ∈ A, for 1 ≤ i ≤ k − 1. We
use πt to indicate that pixel t is the terminus of the path. To explicitly indicate the origin
of the path, we use the notation πs t = 〈s = t1, t2, . . . , tk = t〉, where s indicates the origin
and t the terminus. A path is trivial when k = 1. If πs and τ = 〈s, t〉 are both paths, we
denote as πs · τ the concatenation of the two paths. We denote as Π(G, t) the set of all paths
in the graph G with terminus t, while Π(G) =

⋃
t∈I Π(G, t) denotes all possible paths in G.

A spanning forest is a function P that assigns to each pixel t in I either some other
adjacent pixel in I, or a distinctive marker nil not in I, with no containing cycles. Thus, for
any pixel t ∈ I, a spanning forest P defines a path πPt recursively as 〈t〉 if P (t) = nil (root
node), and πPs · 〈s, t〉 if P (t) = s 6= nil (predecessor node of t).

A connectivity function is a function f : Π(G)→ R, that assigns to each path π a path
cost value f(π). Usually, the path cost depends on the arc weights ω along the path. In this
work, we use connectivity functions (f) constrained to paths starting in a given set of seed
pixels S ⊆ I. This constraint is modeled by defining a new path-cost function fS(π), which
is equal to f(π) when the origin of π belongs to S, and it is equal to +∞ otherwise.

2Min-Max optimizer is a dual equivalent problem.



2.2 2.2. RELATED METHODS 11

A path πt is optimum if f(πt) ≤ f(τt) for any other path τt ∈ Π(G, t). The optimum path
value Vopt(t) is obtained by taking to each pixel t the cost of one optimum path with terminus
at t, which is defined by Vopt(t) = min∀πt∈Π(G,t) {f(πt)}. The IFT algorithm (Algorithm 1)
solves this path cost optimization problem. It receives an image graph G, a MI connectivity
function f and a set of seeds S, and it computes a label map L, a spanning forest P : I →
I ∪ {nil} of optimum paths πPt associated to each pixel t ∈ I, and a connectivity map V ,
such that V (t) = f(πPt ). For the sake of simplicity, Algorithm 1 is presented here for binary
segmentation.

Algorithm 1. – General IFT Algorithm

Input: Image graph G = (N ,A, ω), non-empty disjoint seed sets S0, S1 ⊂ N , and the
path-cost function f : Π(G)→ R.

Output: Optimum-path forest P : N → N ∪ {nil}, the path-cost map V : N → [−∞,+∞]

and label map L : N → {0, 1}.
Auxiliary: Priority queue Q, variable tmp, and a status function S : N → {0, 1}, where S(t) =

1 for processed nodes and S(t) = 0 for unprocessed nodes.

1. For each t ∈ N , do
2. Set S(t)← 0, P (t)← nil and V (t)← f(〈t〉);
3. If t ∈ S0, then
4. L(t)← 0, and insert t in Q;
5. If t ∈ S1 then
6. L(t)← 1, and insert t in Q.
7. While Q 6= ∅ do
8. Remove s from Q such that V (s) is minimum;
9. Set S(s)← 1;
10. For each (s, t) ∈ A such that S(t) = 0 do
11. Compute tmp← f(πPs .〈s, t〉)
12. If tmp < V (t) then
13. Set P (t)← s, V (t)← tmp and L(t)← L(s)

14. If t /∈ Q then insert t in Q.

In the case of non-MI functions, the IFT algorithm produces a spanning forest P , but
the paths πPt may not be optimum (i.e., we may have f(πPt ) = V (t) 6= Vopt(t)). However, the
computed spanning forest P may be optimal according to other optimality criteria, as proved
for the cost function of Oriented Image Foresting Transform (OIFT) (Miranda e Mansilla,
2014), as presented next.

2.2.2 Oriented Image Foresting Transform (OIFT)

The Oriented Image Foresting Transform (OIFT) method is build upon the IFT frame-
work by exploring the object-contour orientation in digraphs, using non-MI connectivity
functions (Miranda e Mansilla, 2014). It improves the segmentation results because it helps
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to distinguish between two similar and nearby boundary segments with opposite orientations
from distinct objects.

The OIFT algorithm is a Max-Min optimizer, that is, its resulting segmentation gives
a global optimum solution subject to the seed constraints by maximizing the graph-cut
measure εmin defined as:

εmin(L) = min{ω(s, t) : (s, t) ∈ A & L(s) > L(t) = 0} (2.1)

For the sake of simplicity, the OIFT algorithm is being presented here without the ex-
plicit forest calculation, from which its name comes from. We can do this, since the label
map L without the forest is sufficient for the segmentation task. The OIFT segmentation,
indicated by L, can be computed by Algorithm 2, in a connected and symmetric digraph
G, as described in Mansilla e Miranda (2013a). Alternatively, its segmentation can also be
obtained by Algorithm 1, using the following non-MI connectivity function f ?:

f ?(〈t〉) =

{
−∞ if t ∈ S0 ∪ S1

+∞ otherwise

f ?(πr s · 〈s, t〉) =

{
ω(s, t) if r ∈ S1

ω(t, s) otherwise
(2.2)

Algorithm 2. – OIFT Algorithm

Input: Image graph (N ,A, ω), non-empty disjoint seed sets S0 and S1.
Output: The label map L : N → {0, 1}.
Auxiliary: Priority queue Q, variable tmp, the cost function V : N → [−∞,∞], and a status

function S : N → {0, 1}, where S(t) = 1 for processed nodes and S(t) = 0 for
unprocessed nodes.

1. For each t ∈ N , do
2. Set S(t)← 0 and V (t)←∞;
3. If t ∈ S0, then
4. V (t)← −∞, L(t)← 0, and insert t in Q;
5. If t ∈ S1 then
6. V (t)← −∞, L(t)← 1, and insert t in Q.
7. While Q 6= ∅ do
8. Remove s from Q such that V (s) is minimum;
9. Set S(s)← 1;
10. For each (s, t) ∈ A such that S(t) = 0 do
11. If L(s) = 1 then tmp← ω(s, t)

12. Else tmp← ω(t, s);
13. If tmp < V (t) then
14. Set V (t)← tmp and L(t)← L(s)

15. If t /∈ Q then insert t in Q.
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Note that in line 12 of Algorithm 2, the arc weight ω(t, s) of the reversed arc (t, s) is
used (rather than that of chosen (s, t) ∈ A). That is why a symmetric digraph is required.
The value V (t) assigned in line 14 constitutes a contribution, to the energy εmin(L) given by
(2.1), that a consecutive change of labeling L(t) from L(s), already fixed, to 1−L(s) would
represent. For every node t considered in lines 10-15 the value V (t) represents the worst
(minimum) weight (w0 or w1, as defined in Remark 1) of the arcs (v, t) ∈ A from already
processed object nodes v (i.e., with S(v) = 1).

Remark 1. Notice, that if we define the weight functions w0 and w1 on A as w1(s, t) =

ω(s, t) and w0(s, t) = ω(t, s), then the execution of lines 11 and 12 in Algorithm 2 is equiv-
alent to the execution of a single line: “tmp ← wL(s)(s, t)”. Also, if consecutive line 14 is
executed, then V (t) becomes wL(s)(s, t). In this case, the path-cost function from Equation 2.2
can also be expressed as f ?(〈v0, . . . , v`〉) = wL(v0)(v`−1, v`) for ` > 0.

In Section 2.3.1, we explain how the boundary polarity prior of OIFT is treated.

2.3 High-level priors

The usage of some prior knowledge of the objects is usually necessary in order to obtain
successful segmentation results. In this section, we briefly describe some individual and
structural priors used, such as boundary polarity, shape priors and geometric interactions.

2.3.1 Boundary polarity

To explore the boundary polarity, the arc weights ω(s, t) are defined as a combination of
an undirected dissimilarity measure ψ(s, t) between neighboring pixel s and t, multiplied by
an orientation factor, as follows:

ω(s, t) =


ψ(s, t)× (1 + α) if I(s) > I(t),
ψ(s, t)× (1− α) if I(s) < I(t),
ψ(s, t) otherwise,

(2.3)

where α ∈ [−1, 1] and we usually have ψ(s, t) = |I(t) − I(s)|. Other options for ψ(s, t) are
discussed in (Ciesielski e Udupa, 2010; de Miranda et al., 2010). Note that, in general, we
have ω(s, t) 6= ω(t, s) for α 6= 0. As shown in Figure 2.1(b), for α > 0, the segmentation by
OIFT favors transitions from bright to dark pixels, and α < 0 favors the opposite orientation,
as shown in Figure 2.1(c).

Finally, for multi-object segmentation we consider multiples αi values, each associated
to a different object.



14 CHAPTER 2. BACKGROUND 2.3

(a) Input image (b) α > 0 (c) α < 0

Figure 2.1: Example of segmentation by OIFT. (a) A given input image with the user selected seeds,
where the red color stands for background, while yellow stands for the object (central bone). (b) A
segmentation result by OIFT favoring transitions from bright to dark pixels; and (c) a segmentation
by OIFT favoring transitions from dark to bright pixels.

2.3.2 Geodesic star convexity

Shape priors have been widely utilized in medical image segmentation to improve seg-
mentation accuracy and robustness (Bai et al., 2017). A common shape prior is the star
shape prior (SSP) (Veksler, 2008). An object has a star shape with respect to a given
center c if for any point p inside the object, all points on the straight line segment between
the center c and p also lie inside it (Figure 2.2).

(a) (b)

Figure 2.2: Star Convexity: (a) A star-convex object. (b) Violation of the star-convexity prior,
where p is a point of the given object and c is the star center considered.

The geodesic star convexity prior (GSC) corresponds to a discrete version of SSP
defined directly in the image domain, by considering shortest paths in the image graph,
returned by IFT with the additive path-cost function (geodesic), as the line segments. It
considers all the given object seeds as center points, prioritizing the segmentation of an
object with more regular shape (Mansilla et al., 2013). OIFT subject to the geodesic star
convexity prior can be obtained by setting the weights of some arcs in the created digraph to
−∞, according to the scheme proposed in Mansilla e Miranda (2013b), prior to computing
the OIFT. For the natural image presented in Figure 2.3a, Figure 2.3b shows a segmentation
result without any shape priors, while the corresponding segmentation with the GSC prior
is shown in Figure 2.3c.
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(a) (b) (c)

Figure 2.3: (a) Input image with seeds selected by the user. (b) Segmentation result by OIFT
without the Geodesic Star Convexity. (c) Result by OIFT with Geodesic Star Convexity, favoring a
segmentation with a more regular shape.

It is also possible to simultaneously handle boundary polarity and shape priors in OIFT,
according to the results as presented in Mansilla e Miranda (2013b).

2.3.3 Geometric interactions

The contribution of Delong e Boykov (2009) for multi-object segmentation is a binary
multi-layered formulation, defining a layer for each object, encoding the geometric interac-
tions between the different objects in the image. These interactions refer to the inclusion of
one object within another object or the exclusion between them, while enforcing a minimal
distance between the object contours in different layers.

However, as a Min-Sum optimizer of data terms is used in Delong e Boykov (2009), their
globally optimal results are restricted only to some particular cases, because it cannot always
be converted to a submodular energy. For example, Figure 2.4 illustrates an example using
geometric interactions between three objects: liver (O1), aorta (O2) and abdominal region
(O3), with yellow, blue and red colors respectively, where O1 is excluded from O2, and both
are included in O3. Global optimum results of the Min-Sum optimizer by Delong e Boykov
(2009) cannot be obtained in this case, while our proposed approach solves this problem for
the Max-Min optimzer with global optimum results (Figure 2.4b).
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(a) Input image (b) Segmentation by our proposed method

Figure 2.4: Example of segmentation using geometric interactions. Given an input image (a)
involving three objects: liver (O1), aorta (O2) and abdominal region (O3) with selected seeds in
yellow, blue and red colors respectively. We have O1 excluded from O2, and both are included in O3.
Then, the segmentation result by our proposed method is shown in (b).



3
Proposed method

We propose the Hierarchical Layered Oriented Image Foresting Transform
(HLOIFT) as a new seed-based method for multi-object segmentation (Leon e Miranda,
2017). Figure 3.1 shows an overview of our framework. For a given input image, seeds sets
for some objects, and the tree of relations between objects, the HLOIFT method has the
following steps: (1) Each layer is constructed as a weighted digraph representing one object
with its own priors (described in Section 3.2.1). (2) HLOIFT defines a setup for the inter-
layer connections representing the hierarchical constraints, such as inclusion and exclusion
relations (described in Section 3.2.2). (3) HLOIFT uses an extension of the OIFT algorithm
to compute an optimal cut over the hierarchical layered digraph, giving as output a labeled
image (described in Section 3.2.3).

We first present some required notations and definitions.

17
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INPUT

. Image: I 

. Set of seeds

. Priors for objects

. Tree of Relations: h

. Parameter of distance:  

1*. Set of object-digraph construction

2*. Hierarchical digraph construction

3*. Energy optimization

HLOIFT OUTPUT

. Labeled image 

1 2

3

4

h

Figure 3.1: Overview of our framework. Given the input parameters, a hierarchical weighted di-
graph of layers (digraphs) is constructed using the inclusion (solid line) and exclusion (dashed line)
hierarchical constraints between objects, and a graph-cut measure is optimized by our algorithm.
Finally, we have a labeled image as output. (Compare to Figure4.13. Notice, that only three seeds
are used.)
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3.1 Notations and definitions

Let L = {1, . . . ,m} denote an index set, where each element in L is associated with an
object we consider and m is the number of objects to be segmented.

The HLOIFT graph associated with L and image (I, I) will be defined on the set of
nodes N = L × I. The HLOIFT resulted segmentation of the image will be identified with
a binary variable X : N → {0, 1}, where, for i ∈ L the ith object Oi and the background O0

are defined, respectively, as

Oi = {t ∈ I : X(i, t) = 1} and O0 = I \
⋃
i∈LOi. (3.1)

Each object/background Oi, i ∈ L ∪ {0}, will be identified with a corresponding set Si ⊂ I
of seeds, aiming for Si ⊆ Oi. Only the seed sets Si for the leaves in the tree of relations and
background must be non-empty, since nested boundaries can be discovered by the inclusion
relation as will be demonstrated in the experiments.

The hierarchy between the objects is understood as a prior knowledge on any pair 〈Oi, Oj〉
of objects we consider: either Oi∩Oj = ∅, or one of them is properly contained in the other.
This prior is represented as a function h : L → {1, . . . ,m + 1}, referred to as a tree, and
defined as follows. If Om+1 = I (the image domain and the root of the tree), then h(i) = j

if, and only if, Oj is the smallest of the objects properly containing Oi. If h(i) = j, then we
will refer to Oj as the parent of Oi (or say that the tree node j is the parent of i). See the
left lower part of Figure 3.1 for a graphical representation of h. We say that the objects Oi

and Oj (or just nodes i and j) are siblings, provided i, j ∈ L are distinct and h(i) = h(j).
In particular, any sibling objects are disjoint.

In addition, we will use the distance parameter ρ ≥ 0, which indicates the minimum
distance between the boundaries of siblings and of the parent-offspring pairs of objects.
More specifically,

(C) for siblings Oi and Oj we will assume that ‖s − t‖ > ρ for every s ∈ Oi and t ∈ Oj,
while for parent-offspring pair 〈Oj, Oi〉 (i.e., with h(i) = j) that t ∈ Oj whenever there
exists an s ∈ Oi with ‖s− t‖ ≤ ρ.

The hierarchy h, with no parameter ρ, is understood as the consistency condition (C) with
ρ = 0. For ρ > 0, we require that the assumptions of h are, in a sense, strongly satisfied.

3.2 Hierarchical Layered OIFT (HLOIFT)

We present next the steps of our proposed method.
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3.2.1 Construction of the layers of our digraph

The first step of HLOIFT is to create a set of m layers, where each layer Hi, i ∈ L, is
used to represent a single corresponding object Oi. A layer Hi = (Ni,Ai, ωi) is a weighted
digraph, where Ni = {i}×I and each node t = (i, v) ∈ Ni = {i}×I correspond to the image
pixel p(t) = v. Thus, the node set N of HLOIFT digraph is defined as L × I =

⋃
i∈LNi

and p : N → I is the projection onto the second coordinate. See graphical representation of
layers in Figures 3.2, 3.3, and 3.4. Also, λ : L × I → L will denote the projection onto the
first coordinate, that is, λ(t) = i means that t belongs to the ith layer of the graph.

Let AI be an affinity defined on the original image graph (with N = I) as in the case of
OIFT. We will usually assume that, in the case of 2D images, AI is the 4- or 8-neighborhood
adjacency. We define the intra-layer adjacency Ai on Ni as this AI , that is, (s, t) ∈ Ai if,
and only if, (p(s), p(t)) ∈ AI . Similarly, if for an ith object we already have defined a weight
function ωi on the image (depending on the image intensities and, in some cases, according
to a given higher level prior), then the intra-layer weight function ωi is defined, for every
(s, t) ∈ Ai, as ωi(s, t) = ωi(p(s), p(t)). For HLOIFT to work properly we need to assume
that the values of these intra-layer weight functions are the finite real numbers (unless they
represent hard constraints, see star convexity constraint next), as opposed to the inter-layer
weight, defined below, which will have infinite values.

Of course, ωi should highlight the desired boundaries for Oi as clearly as possible and we
would like to incorporate in its definition the higher level priors whenever it is appropriate. In
particular, to utilize the object-contour orientations, that is, the boundary polarity priors,
we use in our experiments the same scheme that was adopted by the regular OIFT method,
defining ωi via formula (2.3) with ψ(s, t) = ||I(s)− I(t)||. (For other possible definitions of
ψ see, e.g., (Ciesielski e Udupa, 2010; de Miranda et al., 2010).) In this setting, each object
Oi has its own constant αi ∈ [−1, 1] (used in (2.3)), so that we can favor the segmentation of
Oi with transitions from bright to dark pixels with αi > 0, or the opposite orientation, with
αi < 0. Note that αi = 0 can be used to indicate that Oi has no boundary polarity prior.

If the ith layer is created using the Geodesic Star Convexity prior (GSC), then we
will be prioritizing the segmentation of Oi with more regular shape. A common shape prior
is the star shape prior (SSP) (Veksler, 2008), where a region has a star shape with respect
to a given center c if for any point p inside the region, all points on the straight line segment
between the center c and p also lie inside the region. The geodesic star convexity prior
(GSC) corresponds to a discrete version of SSP directly in the image domain, by considering
shortest paths in the image graph, returned by IFT with the additive path-cost functions,
as the line segments. It considers all the given seeds as center points of a region, prioritizing
the segmentation of the region with more regular shape. The geodesic star convexity prior
for the ith layer is obtained by setting the weights ωi of some arcs in Hi to −∞, according to
the scheme proposed in Mansilla et al. (2013). Moreover, it is still possible to simultaneously
handle boundary polarity and shape priors (Mansilla e Miranda, 2013b).
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3.2.2 Hierarchical digraph construction (setup of inter-layer con-

nections)

In this step, HLOIFT generates a hierarchical layered weighted digraphH = (N ,A, ω) as
the union of all layered graphs Hi, i = 1, . . . ,m, with additional interlayer arcs connecting
only some of the distinct layers. The choice of these arcs, as well as their weights chosen
among −∞ and ∞, is subjugated to a sole requirement of ensuring the agreement of a
resulted segmentation with assumed hierarchical priors h and its related parameter ρ.

Specifically, the vertices s ∈ Ni and t ∈ Nj, with distinct i, j ∈ L, form an inter-layer
arc whenever, according the hierarchy consistency condition (C), a decision whether one of
them belongs (or not) to the object in question may force such decision for the other vertex.
Formally, this means that a pair 〈s, t〉 is an inter-layer arc in H (i.e., 〈s, t〉 belongs to A of
H) if, and only if, ‖p(s)− p(t)‖ ≤ ρ and either Oi and Oj are siblings, or one of them is the
parent of the other. The set of all inter-layer arcs coming from the siblings is denoted by As,
while Ap will stand for those associated with a parent/offspring pair. The weights of these
inter-layer arcs 〈s, t〉, with s ∈ Ni and t ∈ Nj (or, equivalently, with λ(s) = i and λ(t) = j),
are defined as follows.

• Inclusion. If Oj is the parent of Oi (i.e., h(i) = j), then we define ω(t, s) = ∞ and
ω(s, t) = −∞. Figure 3.2 shows, in this case, the arcs and their weights, where the
inter-layer arcs are formed according to a 4-neighborhood adjacency and the parameter
ρ is equal 1.

Layer  j

Layer  i

-∞

∞
ρ=1

Figure 3.2: Illustration of inter-layer arc construction, involving two objects Oi and Oj, for the
inclusion case (Oj is the parent of Oi, i.e., h(i) = j), where ω(s, t) = −∞ and ω(t, s) = ∞ for
λ(s) = i and λ(t) = j.

• Exclusion. If the objects Oi and Oj are siblings, then we put ω(s, t) = ω(t, s) = −∞.
See Figure 3.3.

Notice that, in the inclusion case, the pair 〈s, t〉 contradicts the consistency require-
ment (C) if, and only if, the associated cost of the arc in the cut has value −∞. This will be
used in the specific formulation of our algorithm HLOIFT (especially extra condition in line
13) and in the proof of our correctness theorem. Basically, the weight −∞ enforces that the
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Layer  i

Layer  j

-∞
-∞ρ=1

Figure 3.3: Illustration of inter-layer arc construction, involving two objects Oi and Oj, for the
exclusion case (Oi and Oj are siblings), where ω(s, t) = −∞ for all inter-layer arcs (s, t).

vertex connected to one just processed will be examined with the highest possible priority,
to ensure satisfaction of the consistency requirement (C).

In Figure 3.4, we give an example of the hierarchical layered digraph construction for a
case that cannot be optimized under the graph cut framework of Delong e Boykov (2009).
This case combines the inclusion and exclusion hierarchical constraints, such that we have
two mutually exclusive objects Oi and Oj, both contained within another object Ok. Globally
optimal segmentation in this case cannot be modeled with graph cuts, because it cannot be
converted to a submodular energy, more details in Delong e Boykov (2009). The proposed
HLOIFT method can compute globally optimal results in this case and also in other more
sophisticated cases, as described below.

ρ=0

-∞

∞

Layer  i

Layer  j

-∞

Layer  k

-∞

-∞

∞

Figure 3.4: Illustration of the inter-layer arc construction, involving three objects Oi, Oj and Ok,
where Ok is the parent of two sibling objects, Oi and Oj, i.e. h(i) = h(j) = k.

3.2.3 Energy optimization

In the final step, we execute the HLOIFT algorithm (Algorithm 3), which constitutes a
modified OIFT algorithm from (Mansilla e Miranda, 2013a; Miranda e Mansilla, 2014). It
is applied to the hierarchical layered graph H constructed above and its output maximizes
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a single energy εhmin (i.e., the solution X by HLOIFT is such that X = argmaxX′ εhmin(X ′),
among all solutions X ′ satisfying the seed constraints), a modification of energy εmin(L) =

min{ω(s, t) : (s, t) ∈ A & L(s) > L(t) = 0} defined in (2.1). This modification of εmin is
designed to ensure that the output satisfies also the hierarchical constraints imposed by h
and ρ.

Specifically, for a binary map X : N → {0, 1} described in Section 3.1 the energy εhmin of
X is defined as

εhmin(X) = min{εinclmin(X), εexclmin(X)}, (3.2)

where
εinclmin(X) = min{ω(s, t) : (s, t) ∈ A \ As & X(s) > X(t)},

εexclmin(X) = min{ω(s, t) : (s, t) ∈ As & X(s) = X(t) = 1}.

In other words, all arcs in the cut, except for the inter-layer arcs As associated to siblings,
are treated directionally, in the same way as in εmin. This part is expressed by the energy
εinclmin. However, the inter-layer arcs from As must be treated differently. First of all, there
is not directional information between them. Moreover, the siblings s and t influence one
another, according to (C), only when they both belong to their respective objects, that is,
when X(s) = X(t) = 1. This justifies the format of εexclmin. The formula for the combined
energy εhmin is defined as a minimum of the costs of all relevant arcs in the cut, the same
way as in εmin (only the meaning of the term “relevant” being changed).

We say that a sequence 〈S0, . . . ,Sm〉 of seed sets is consistent with (C) (with respect to
h and ρ) provided Si 6= ∅ for i = 0 and every i ∈ L with no offsprings and there exists a
sequence 〈O0, . . . , Om〉 satisfying (C) such that Si ⊆ Oi ⊂ I for every i ∈ L ∪ {0}.

Theorem 1 (Cut optimality by HLOIFT). For every image (I, I), a hierarchy tree h, a
distance parameter ρ ≥ 0, and a sequence 〈S0, . . . ,Sm〉 of seed sets consistent with (C), the
binary map X : N → {0, 1} computed by Algorithm 3 maximizes the energy εhmin(X) given by
(3.2) among all solutions satisfying the seed constraints and the consistency requirement (C).
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Algorithm 3. – HLOIFT Algorithm

Input: Hierarchical layered digraph H = (N ,A, ω), builded from an image according to
the tree h of hierarchical constraints and the distance parameter ρ; the seed sets
〈S0, . . . ,Sm〉 consistent with (C).

Output: The binary map X : N → {0, 1} identifying segmentation given by (3.1).
Auxiliary: Priority queue Q, variable tmp, the cost map V : N → [−∞,∞], and an array

of status S : N → {0, 1}, where S(t) = 1 for processed nodes and S(t) = 0 for
unprocessed nodes.

1. For each t ∈ N and i ∈ L do
2. Set S(t)← 0 and V (t)←∞;
3. If p(t) ∈ S0 then
4. V (t)← −∞, X(t)← 0, and insert t in Q;
5. If p(t) ∈ Si and λ(t) = i then
6. V (t)← −∞, X(t)← 1, and insert t in Q.
7. While Q 6= ∅ do
8. Remove s from Q such that V (s) is minimum;
9. Set S(s)← 1;
10. For each (s, t) ∈ A such that S(t) = 0 do
11. If X(s) = 1 then tmp← ω(s, t)

12. Else tmp← ω(t, s);
13. If tmp < V (t) and ¬ [(s, t) ∈ As and X(s) = 0], then
14. Set V (t)← tmp and X(t)← X(s);
15. If t /∈ Q then insert t in Q;
16. If (s, t) ∈ As and X(s) = 1 then
17. X(t)← 0.

Algorithm 3 is essentially identical to Algorithm 2 after we disregard lines 16-17 and the
extra condition on line 13. More specifically, if we have only one object (i.e., L = {1}), then
X = L and the condition from line 16 is never satisfied, so lines 16-17 can be removed. More
generally, lines 16-17 and the extra condition on line 13 are redundant when tree h has no
siblings. In this case, the optimality of HLOIFT regarding the maximization of εhmin(X) can
be deducted from Theorem 2 from Mansilla e Miranda (2013a).

In line 16 the condition is satisfied when s and t are siblings and p(s) ∈ Oλ(s) asX(s) = 1.1

Therefore, in line 17 we impose X(t) = 0, to ensure that p(t) /∈ Oλ(t), as required by (C).
More specifically, lines 16-17 ensure that for the output X we have no (s, t) ∈ As with
X(s) = X(t) = 1, that is, εexclmin(X) = −∞.

Concerning the computational complexity, HLOIFT is O(M +N), where N is the num-
ber of vertices in the graph H and M is the number of arcs in the graph H, when Q is
implemented using bucket sorting (Falcão et al., 2004) and O(M + N logN) (linearithmic

1In fact, the check condition X(s) = 1 on line 16 of Algorithm 3 is not strictly necessary. We are keeping
it only to facilitate the understanding.
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time) if Q is a heap. The Graph cut computational complexity is O(
√
M ∗ N2) = O(N2.5)

when H is a sparse graph, which is more than quadratic-time using a push-relabel based on
the highest label node selection rule (Boykov e Kolmogorov, 2004).

As a final note, observe that an interesting variation of Algorithm 3 could be considered.
Specifically, in the case of inclusion relation h(i) = j, we can additionally require that the
seeds in Sj belong exclusively to the parent object (i.e., Oi ∩ Sj = ∅). In other words, Sj
should be inserted as background seeds on its children’s layers to additionally impose that
the seeds in Sj do not belong to the offspring objects of j.

3.3 Extensions of HLOIFT

3.3.1 3D HLOIFT

A 3D image is a pair (I, I), where I is a finite set of voxels identified with the 3-tuples of
integers (i.e., I ⊂ Z3) and I is a mapping that assigns to each voxel t ∈ I its intensity I(t),
that is, either a real number (in case of monochromatic image) or an appropriate vector in
Rk.

From the implementation point of view, the only required changes of HLOIFT for the
segmentation of 3-dimensional images (volumes) are that now each layer has intra-layer arcs
in a 3D neighborhood and that the parameter ρ defines a sphere in space.

3.3.2 HLOIFT with superpixels

Here, we propose a superpixel-based adaptation of the HLOIFT method, leading to a
more efficient and adequate solution for multi-object segmentation in large images.

Superpixels can group pixels into perceptually meaningful atomic regions of similar and
connected pixels. Superpixel primitives are computationally much more efficient than their
pixel counterparts. For instance, superpixels can be used to create a Region Adjacency Graph
(RAG) greatly reducing the number of graph elements.

The superpixels are given by an unsupervised segmentation from a given image. The
most popular method for superpixel generation is SLIC, which starts with a selection of
k initial cluster centers, which are sampled on a regular grid spaced

√
|I|/k nodes apart.

Then, for the assignment step of each pixel to a cluster/superpixel, an adaptive k-means
clustering is used for SLIC.

In this work we used IFT-SLIC (Alexandre et al., 2015), which combines benefits
from both IFT (Image Foresting Transform) and SLIC (Simple Linear Iterative Cluster-
ing) (Achanta et al., 2012) to compute superpixels from a given input image.

IFT-SLIC converts the color space of the input image to CIELAB, in the case of colored
images, and starts with a selection of k initial cluster centers similar to SLIC. Then, for the
assignment step of each pixel to a cluster, instead of using an adaptive k-means clustering
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such as SLIC, IFT-SLIC considers IFT computations with a non-MI connectivity function,
featuring a parameter that controls the boundary adherence and compactness of the gener-
ated clusters. Then each cluster center is updated to be the closest pixel to its mean position
and the process is repeated for a total of n iterations.

Similarly to HLOIFT at the pixel level described before, the HLOIFT at superpixel level
is composed of three steps and produces a labeled image as result.

Set of object-digraph construction We first create a set of m weighted digraphs of su-
perpixels Hi, i = 1, . . . ,m, where each digraph corresponds to a single object Oi of
an (n-dimensional) image (I, I). Each graph Hi = (Ni,Ai, ωi) is a triple consisting of
a vertex set Ni, a directed edge set Ai and a weight function ωi. Each pair (Ni, Ai)
is an isomorphic copy of a Region Adjacency Graph (RAG) of the given image (I, I)

segmented in superpixels by IFT-SLIC (Alexandre et al., 2015), while ωi is a defined
weight function for every (s, t) ∈ Ai, being p(s) and p(t) the corresponding superpixels
of nodes s and t. For example, we may consider ωi(s, t) =| I(p(s)) − I(p(t)) |, where
I(p(t)) is the mean intensity inside superpixel p(t). Of course, ωi should also highlight
the priors for each object Oi whenever it is appropriate. For this purpose, we consider
the same modification scheme of the weight assignment that was adopted by the regu-
lar OIFT method (Miranda e Mansilla, 2014) for boundary polarity priors, where the
polarity of each Oi is defined to highlight boundary transitions from bright to dark
superpixels or from dark to bright.

Hierarchical digraph construction In this step, we generate a hierarchical weighted di-
graphH = (N ,A, ω) as the union of all object-digraphs of superpixelsHi, i = 1, . . . ,m,
with additional arcs connecting only some of the distinct object-digraphs, based on the
priors given by the parent tree h and the parameter ρ ≥ 0 representing the minimal dis-
tance between the object boundaries. The hierarchical prior between any pair 〈Oi, Oj〉
of objects is understood as an exclusion case when Oi∩Oj = ∅, or as an inclusion case
when one of them is properly contained in the other. For convenience, object Om+1 = I
is considered to be the root of the tree representing the image domain. The notation
h(i) = j indicates that Oi ⊂ Oj, being Oj the parent of Oi and we say that two objects
Oi and Oj are siblings if h(i) = h(j), meaning that both have the same parent. The
weights of the arcs for the inclusion case are given by ω(s, t) = −∞ and ω(t, s) = ∞
for h(i) = j, s ∈ Ni and t ∈ Nj, whenever the superpixels p(s) and p(t) have pixels
with a distance smaller than ρ. For the exclusion case we consider ‖p−q‖ > ρ for every
pixels p ∈ Oi and q ∈ Oj. Therefore, for the exclusion case, we have special arcs to
avoid overlapping between sibling objects, defining ω(s, t) = ω(t, s) = −∞, whenever
superpixels p(s) and p(t) have pixels with a distance smaller than or equal to ρ. Under
this scheme, it is possible to have many different and sophisticated cases of hierarchical
constraints which cannot be easily modeled with graph cuts (Delong e Boykov, 2009).

Energy optimization Finally, we execute our proposed method using an algorithm similar
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to Algorithm 3, as presented in Chapter 3, but running on the hierarchical weighted
digraph of superpixels H as constructed here. Its output maximizes a single energy
defined to ensure that the output satisfies all the constraints, including the constraints
imposed by h and ρ, according to the theoretical result presented in Leon et al. and
Appendix A.
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4
Experimental results

In this chapter, an experimental evaluation of HLOIFT is presented.
First, we analyze the effects of different high-level priors on the segmentation results,

showing that HLOIFT is a versatile method, which allows us to customize the segmentation
to some target objects according to their global properties (shape and polarity). Then, we
assess the performance of HLOIFT against the previously existing method for multiple object
segmentation by IFT (Miranda e Falcão, 2009) and the segmentation of multiple objects by
the hierarchical min-cut/max-flow algorithm (Delong e Boykov, 2009)

We also evaluate the usage of HLOIFT in 3-dimensional images (volumes). The main
challenges correspond to the required space and execution time, since in multidimensional
data the memory consumption grows exponentially with the increase in the number of di-
mensions. Here we present the results of applying HLOIFT to 3D volumes, through the
direct application of its proposed algorithm, without taking any additional precautions to
get a more moderate usage of memory, in order to test its viability in this more challenging
scenario.

Finally, we present experimental results for the superpixel-based adaptation of the
HLOIFT method, leading to a more efficient and adequate solution for multi-object segmen-
tation in large images, and show the improvement in the running time.

4.1 2D experimental evaluation

4.1.1 Setting the high-level priors

The proper configuration of the high-level priors for each object is essential to obtain
the desired segmentation of the target objects. Figure 4.1 shows a two-object segmentation
problem for a synthetic image composed of four nested boundaries. We present the results
using one internal seed for the object O1, an external seed for the background, the inclusion
relation h(1) = 2, ρ = 1.5 and ωi defined via formula (2.3) with ψ(s, t) = |I(s) − I(t)|.
HLOIFT with different priors for each object can provide any desired result, allowing the
easy customization of the segmentation to any particular result. For example, Figure 4.1(a)

29
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shows the result when O1 has boundary polarity setup from bright to dark and O2 from
dark to bright, while Figure 4.1(d) shows the result for the opposite orientation.
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Figure 4.1: Example of two object segmentation by HLOIFT, where O2 is parent of O1. Each
object has different high-level priors –db: polarity from dark to bright pixels, bd: polarity from bright
to dark pixels and g: geodesic star convexity prior.

Another important parameter is the ρ value, which controls the minimum distance be-
tween the object boundaries. In order to understand its effect on the results, Figure 4.2 shows
HLOIFT with geodesic star convexity prior to segment an image of archaeological fragments
(Figure 4.2a), with three sibling objects, using the simplest arc weights ωi(s, t) = ‖I(t)−I(s)‖
(Figure 4.2b). For ρ = 0, we get a bad result with touching objects (Figure 4.2c), which can
be avoided by using ρ = 2 (Figure 4.2d).
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Figure 4.2: Example showing how changing the ρ value from 0 to 2 can improve the archaeological
fragment segmentation by HLOIFT, avoiding a result with touching objects.
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4.1.2 Qualitative comparison with the IFT method

In this section, we compare the results obtained by HLOIFT against the IFT
method (Miranda e Falcão, 2009) for multi-object segmentation by seed competition, which
encompasses the watershed transform from markers. OIFT is not included here since it
is restricted only to binary segmentation (Mansilla e Miranda, 2013a). We used for this
experiment medical images, composed of multiple sophisticated objects.

Figure 4.3 shows an image segmentation task, using ωi defined via formula (2.3) with
ψ(s, t) = |I(s) − I(t)|, where the goal is to segment a gray-scale CT image composed of
three regions, O1 (central bone), O2 (patella) and O3 (knee), which are shown in yellow,
blue and red color, respectively. The first row shows the results for the IFT method by seed
competition, with user provided markers for the three objects, plus one additional external
marker for the background. In this example, HLOIFT requires markers only for the two inner
objects and for the background, as shown on the second row. For HLOIFT, we considered
ρ = 1.5 and the geodesic star convexity with boundary polarity from bright to dark (g+ bd)
for all objects (α = 0.75). In the second column, we can observe the differences highlighted
in the O1’s contour. IFT gives a poor result for O1, mixing bright and dark boundaries,
because it does not support the boundary polarity prior. On the other hand, HLOIFT can
be seen as an extension of OIFT for multiple object segmentation, allowing different priors
for each object, giving better results and requiring fewer seeds.

Figure 4.4 shows the segmentation of a MRI slice of a real foot, using ωi defined via
formula (2.3) with ψ(s, t) = G(s) + G(t), where G(.) denotes the magnitude of the Sobel
gradient. The objects of interest are the two large bones in the peritalar complex, namely,
the talus (O1) and the calcaneus (O2). These objects are modeled as siblings, i.e., both have
the same parent (image domain). We used for HLOIFT, the exclusion relation h(1) = h(2),
ρ = 0, the geodesic star convexity and boundary polarity (α = −0.75). IFT gives worse
results, capturing good part of the background as part of the objects, while HLOIFT gives
a more regular and correct segmentation.

Figure 4.5 shows a segmentation task of a CT image composed of three objects, liver
(O1), aorta (O2) and the abdominal region (O3), which are shown in yellow, cyan and red
color, respectively. The liver (O1) and aorta (O2) are modeled as two sibling objects con-
tained in the abdomen (O3), as defined by h. We used ωi defined via formula (2.3) with
ψ(s, t) = G(s) + G(t), where G(.) denotes the magnitude of the Sobel gradient. For the
same user provided seeds, the IFT gets unsatisfactory results, while HLOIFT can effectively
explore the inclusion and exclusion relations with ρ = 0, the geodesic star convexity, and
the boundary polarity from bright to dark pixels (α = 0.75) for the three objects leading to
superior results.
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Figure 4.3: Knee segmentation composed of three objects in a CT image, including the patella in
blue. (a-b) Result by IFT where the O1 is mixing bright and dark boundaries. (c-d) An improved
result for the central bone is obtained by HLOIFT with boundary polarity from bright to dark pixels,
requiring fewer seeds.
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Figure 4.4: Talus (O1) and calcaneus (O2) segmentation. The two objects are siblings. For
HLOIFT, we used ρ = 0, the geodesic star convexity and boundary polarity (α = −0.75).

In Figure 4.6, we use an axial cross section of a thoracic-abdominal CT image extracted
from an open database called 3D-IRCADb-02 (Soler et al., 2012) to segment six objects:
right lung (O1), liver (O2), heart (O3), left lung (O4), aorta (O5) and the thoracic-abdominal
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Figure 4.5: Liver (O1), aorta (O2) and abdomen (O3) segmentation on a CT slice image. For
HLOIFT, we used ρ = 0, h(1) = h(2) = 3 and the geodesic star convexity shape prior with the
bright to dark boundary polarity (α = 0.75).

region (O6). As input we have the image, the tree of relations (h) and some user seeds. We
used ωi defined via formula (2.3) with ψ(s, t) = |I(s)− I(t)|. For HLOIFT, we used ρ = 3.5,
boundary polarity from dark to bright pixels for O1, O4 shape constraint by geodesic star
convexity for O2 and O3, and boundary polarity from bright to dark pixels for O5 and O6.
It can be seen, the results obtained by HLOIFT are closer to the ground-truth compared to
the IFT results.
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Figure 4.6: An axial cross section of a thoracic-abdominal CT image segmentation. We consider
the following objects: right lung (O1), liver (O2), heart (O3), left lung (O4), aorta (O5) and the
thoracic-abdominal region (O6). HLOIFT obtained a result similar to the given ground-truth (manual
segmentation), in contrast to the output by IFT.

4.1.3 Comparison with multi-object segmentation by min-cut/max-

flow algorithm

In this section, we compare HLOIFT with multi-object segmentation by the min-cut/max-
flow algorithm in layered graphs (Delong e Boykov, 2009). For the sake of simplicity, we con-
sidered only the inclusion relation, since many cases combining the inclusion and exclusion
hierarchical constraints, such that when we have two mutually exclusive objects Oi and Oj,
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both contained within another object Ok, cannot be converted to a submodular energy to
perform the optimization by the graph-cut framework (Delong e Boykov, 2009). We used
the max-flow/min-cut code from (Boykov e Kolmogorov, 2004).

Figure 4.7 shows a flower segmentation using ωi(s, t) = G(s) + G(t), where G(.) de-
notes the maximum magnitude of the Sobel gradient for the three image channels. We used
ρ = 1.5 and no region constraints (shape constraints/boundary polarity). In general the re-
sults are similar for both methods. The min-cut/max-flow algorithm generates results with
a smoother contour, but sometimes this can lead to errors in some finer parts of the object,
such as the petals (Figure 4.7b).

(a) (b) (c)

Figure 4.7: Flower segmentation in two objects, the central part in cyan and the petals in yellow,
using the inclusion relation. (a) The input image. (b) Result by the min-cut/max-flow algorithm in
layered graphs. (c) Result by HLOIFT.

Besides being able to compute globally optimal results with arbitrary hierarchy con-
straints, the proposed HLOIFT method also has a better running time compared to the
min-cut/max-flow algorithm. Table 4.1 shows the running times for the flower segmentation
using different image resolutions in a laptop Intel Core i3-5005U CPU 2.00GHz ×4.

Image size (pixels) Time of HLOIFT (ms) Time of min-cut/max-flow (ms)
380× 320 114.65 323.61
760× 640 488.62 1,798.91

1520× 1280 1,823.55 19,021.71

Table 4.1: The running times for the flower segmentation by HLOIFT and the min-cut/max-flow
algorithm in layered graphs using different image sizes.
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4.1.4 Quantitative accuracy experiments

For quantitative accuracy results, we compared HLOIFT, with the multi-object segmen-
tation by IFT (Miranda e Falcão, 2009), its improved version by the relaxation procedure
proposed by Malmberg et al. (2010), and the hierarchical layered graph cut (Delong e Boykov,
2009; Delong et al., 2012), denoted as HLGC, using two datasets of medical images.

For fair comparison, only methods with the same type of user input were considered here,
in the form of a partial labeling.1 In order to stress the methods to their limit, in a more
challenging situation, we only consider simple arc weights with ψ(s, t) = |I(s) − I(t)|, so
that no a priori information on the brightness (or color/texture) distribution was taken
into account (de Miranda et al., 2010), nor enhancements based on deep learning tech-
niques (Wolf et al., 2017; Wolf et al., 2019).

For the first dataset, we used 40 slices from thoracic CT studies of size 512 × 512 to
segment the liver and the abdomen as its parent object. The second dataset was composed
of 40 real MR images to segment the talus and calcaneus bones as siblings, taking the foot
region as their parent. The same seeds were used for all the methods, which were progres-
sively obtained by eroding the ground truth objects and background for different radius
sizes (Figure 4.8a). Figure 4.8 illustrates an example of the segmentation of the liver and
abdomen for different methods. For the bones we used α = −0.5 and ρ = 3 pixels, while for
the liver we used α = 0.9 and ρ = 5 pixels. HLGC could not exploit the exclusion relation
for the bones, since it cannot be converted to a submodular energy for these sibling objects
inside the foot.

The mean accuracy curves according to the Dice coefficient are shown in Figure 4.9,
being the results in the left column obtained without shape constraints and the ones in the
right with Geodesic Star Convexity (GSC). The accuracy curves for the parent objects (foot
and abdomen) are not shown, since they had almost perfect results (Dice > 99%). HLOIFT
had the best results in most cases. Note also that it could benefit more from the usage of
the shape constraint by GSC for the liver compared to HLGC, since this latter approach
was already producing an object with regular shape and therefore was almost not affected
by the inclusion of GSC.

1Note that drawing scribbles for a partial labeling with a large brush can be quite effective to quickly
mark several object/background pixels, while accurately selecting extreme boundary points requires more
user attention and caution. Therefore comparing these different types of constraints is quite subjective.
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(a) Seeds by erosion (b) Segmentation by IFT

(c) Segmentation by HLGC (d) Segmentation by HLOIFT

Figure 4.8: (a) Seeds obtained by eroding the ground truth of each object/background with 48 pixels
radius. (b) Multi-object result by IFT. (c) The result by hierarchical layered graph cut (HLGC)
mistakenly assigns the aorta as part of the liver. (d) A better result is obtained by HLOIFT.
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Figure 4.9: The mean curves of Dice accuracy for different methods.
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4.2 3D experimental analysis

We present an experimental analysis of HLOIFT in 3-dimensional images (volumes) to
assess its performance considering different high-level priors. We use a synthetic image of
size 150 × 150 × 150 voxels composed of six distinct regions: Two dark cubes contained
in a brighter ball, which in turn is contained inside a bigger cube, surrounded by a white
background, and a small ball contained in one of the inner cubes. Then, we want to segment
it into three objects, where O1 and O2 are included in O3. By changing the boundary polarity
prior from “bright to dark” (bd) to “dark to bright” (db) for O1 and O3, we get different
results for the same input image with the expected global properties, demonstrating that
our algorithm is working correctly, as depicted in the slice views and 3D renderings of the
objects in Figures 4.10 and 4.11.

O1 O2
db

O3

(a)

(b)
(c)

Figure 4.10: (a) Given the input image with six regions and seeds for O1 (in yellow), O2 (in blue)
and background (in red), we obtain the result for O1 and O2 included in O3, where O1 has boundary
polarity from bright to dark and O2 from dark to bright. In (b) a slice view is shown and in (c) the
3D renderings of the objects.

In order to test our 3D HLOIFT in a real MR image, we reduced the image size by
interpolation to 120 × 120 × 90 = 1296000 voxels. We segmented the brain (Figure 4.12a)
and the lateral ventricles (Figure 4.12b) using the inclusion relation. The running time was
4.2 sec in a laptop IntelCore i3-5005U CPU 2.00GHz4.

The main challenges correspond to the required space and execution time, since in mul-
tidimensional data the memory consumption grows exponentially with the increase in the
number of dimensions. Here we present the results of applying HLOIFT to 3D volumes,
through the direct application of its proposed algorithm, without taking any additional pre-
cautions to get a more moderate usage of memory, in order to test its viability in this more
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O1 O2
db

O3

Figure 4.11: (a) Given the input image with six regions and seeds for O1 (in yellow), O2 (in blue)
and background (in red), we obtain the result for O1 and O2 included in O3, where O1 and O2 have
boundary polarity from dark to bright, and O3 has the opposite orientation from bright to dark. In
(b) a slice view is shown and in (c) the 3D renderings of the objects.

(a) (b)

Figure 4.12: Example of 3D HLOIFT segmentation in a real MR image. (a) The brain. (b) The
lateral ventricles.

challenging scenario. One possible idea, as future work, would be to avoid the explicit cre-
ation of the inter-layer arcs, since they have repeated weights−∞ or∞. When the intra-layer
weights of different layers differ only in relation to their values of αi, the base dissimilarity
values ψ(s, t) could be stored only once, being the orientation procedure of Equation 2.3
applied on-the-fly to save storage space. Another alternative solution is via the usage of
supervoxels, since they considerably reduce the execution time as it will be demonstrated
for superpixels in next section.



4.3 4.3. EXPERIMENTAL EVALUATION WITH SUPERPIXELS 41

4.3 Experimental evaluation with superpixels

This section presents an experimental evaluation of the usage of superpixels in HLOIFT
to assess its performance gains. In our first experiment, presented in Table 4.2, we show
the execution time gains of the proposed approach in comparison to Image Foresting Trans-
form (IFT) (Miranda e Falcão, 2009) and the multiple object segmentation by the regular
HLOIFT (Leon et al.) without superpixels, for different image resolutions and superpixel
sizes, for the segmentation of three objects in a CT image of the knee with inclusion and
exclusion relations. The usage of superpixels in HLOIFT significantly reduced the size of the
graph, resulting in a great saving of memory and computation time, thus compensating the
additional cost of the three object-digraphs (layers) of HLOIFT in relation to IFT that has a
single layer. Moreover, the segmentation results for different superpixel sizes were similar to
those obtained by HLOIFT at the pixel level demonstrating the robustness of the proposed
method (Figure 4.13).

171× 193 342× 386 684× 772 1368× 1544
IFT (Miranda e Falcão, 2009) 8.46 29.26 106.61 333.13

HLOIFT (Leon et al.) 54.55 200.44 724.73 2,878.91
HLOIFT superpixel size 10× 10 0.52 1.88 8.08 33.05
HLOIFT superpixel size 5× 5 1.61 8.14 24.78 91.29
HLOIFT superpixel size 3× 3 4.37 17.25 62.93 260.24

Table 4.2: Time in ms for the different methods and image resolutions.

We also compared the running time between our approach and the hierarchical min-
cut/max-flow algorithm with the inclusion case from Delong e Boykov (2009). Our approach
has the best running time. For the flower segmentation from Figure 4.7, composed of two ob-
jects with the inclusion relation and size of 1520×1280 pixels, our algorithm takes 158.35ms,
58.06ms and 20.38ms for superpixels of size 3×3, 5×5 and 10×10, respectively, while the reg-
ular HLOIFT takes 1, 823.55ms and the hierarchical min-cut/max-flow takes 19, 021.71ms.
All experiments presented in this section were conducted in a laptop Intel Core i3-5005U
CPU 2.00GHz ×4.
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SUPERPIXELS SIZE HLOIFT SUPERPIXELS

without superpixels (at the
pixel level)

3× 3

5× 5

10× 10

Figure 4.13: The segmentation of a CT image of the knee for different superpixel sizes.
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Conclusions

5.1 Final considerations

We proposed a new graph-based algorithm, named as HLOIFT, for multi-object seg-
mentation, allowing the integration of the individual high-level priors of each object and
the geometric constraints between them into a single energy optimization. The HLOIFT
algorithm was described in details, including its proof of correctness. Besides the theoretical
contribution in the context of the multi-object segmentation problem, our experiments show
that good segmentation results can be obtained, even when considering a simple measure
of intensity dissimilarity. Besides being faster than hierarchical min-cut/max-flow based ap-
proaches, it is also less restrictive, allowing globally optimal results for arbitrary hierarchies.

Finally, we presented how the HLOIFT method can be easily extended to work with 3D
images. However, we note that under this last scenario, the usage of supervoxels can play an
important role to circumvent memory concerns in machines with limited memory resources.
Therefore, we also proposed a superpixel-based adaptation of the HLOIFT method, leading
to a more efficient and adequate solution for multi-object segmentation in large images.

5.2 Publications

As results of this thesis, we have one conference publication, one submitted journal, one
workshop publication in a book and three workshop poster presentations. These contribu-
tions are listed below in chronological order of submission:

1. A conference paper (Leon e Miranda, 2017), in the 30th SIBGRAPI Conference on
Graphics, Patterns and Images (SIBGRAPI) held in Niteroi, Rio de Janeiro. Qualis
CAPES B1. Oral presentation. This paper was selected as one of the top papers of
the event and we were invited to submit an extended version to a journal.

2. Submission of a journal paper (Leon et al.) at the special issue of the Journal of Visual
Communication and Image Representation: Special Issue on Feature representations

43
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for medical images and activity understanding. Qualis CAPES A2. This extended
version was made in cooperation with Krzysztof Chris Ciesielski from Department
of Mathematics, West Virginia University, USA.

3. A book chapter (Leon e de Miranda, 2019), from the workshop of Women in Computer
Vision at European Conference in Computer Vision (WiCV@ECCV) held in Munich,
Germany. Published in the ECCV Workshop proceedings. Poster presentation.

4. A workshop poster (Leon e Miranda, 2018), in the Latinx in AI Coalition at NeurIPS
(LXAI@NeurIPS) held in Montréal, Canada. Poster presentation.

5. A workshop poster (Leon et al., 2019b) in the Women in Computer Vision at CVPR
(WiCV@CVPR), and a workshop poster (Leon et al., 2019a) in the Latinx in AI Coali-
tion at ICML (LXAI@ICML), both held in Long Beach, United States. Poster presen-
tation.

5.3 Future works

As future work, we are interested in:

1. To study and test other high-level priors such as connectivity priors, and spatial inter-
actions between objects, like their relative spatial positioning (up, down, left, right);

2. To evaluate our 3D image segmentation, also considering different high-level priors,
in open databases like 3D-IRCADb-02 (Soler et al., 2012), which contains axial cross
sections of CT thoracic-abdominal images (see Figure 5.1).

Figure 5.1: Example of a thoracic-abdominal image from 3D-IRCADb-02 dataset (Soler et al.,
2012).
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3. We would like also to handle relations of partial intersection of objects, as shown in
Figure 5.2, by using a negative parameter ρ;

Figure 5.2: Example of cells with overlapping regions. In the left we have the input image, and in
the right a desired segmentation.

4. We are interested in using a machine learning method to generate improved weighted
graphs and to adapt our method for an automatic medical image segmentation task.

5. We also intend to combine some training information by deep learning approaches in
HLOIFT, similar to what was done in Wolf et al. (2017); Wolf et al. (2019), and to in-
corporate in HLOIFT the relaxation procedure for directed graphs from Demario e Miranda
(2019), in order to circumvent the irregular boundaries from the max-norm energy of
HLOIFT.
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A
Appendix

A.1 Proof of Theorem 1

Since the digraph H is built from an image, it is symmetric and connected. So, it is easy
to see that upon its termination HLOIFT returns X defined on the entire set N . Therefore,
to finish the proof, we need only to show that such X satisfies the seed constrains and the
consistency requirements (C).

All notions considered below are based on the variables from Algorithm 3. In particular,
the values of these variables may change during the execution of the algorithm.

Define D = {t ∈ N : S(t) = 1}. Then, at any time, the partial binary map X is already
defined on D and, for every t ∈ D, the value of X(t) remains unchanged during the reminder
of the execution of the algorithm. (Such change can occur only during the execution of lines
14 or 17, and it can be applied only for t for which, in line 10, we had S(t) = 0, that is,
t /∈ D.)

Notice also that if t in Q is not a seed, then there exists an s ∈ D such that (s, t) ∈ A,
X(t) = X(s), and V (t) = wX(s)(s, t), where we use notation wi from Remark 1. In addition,
the value V (t) represents a “penalty” (i.e., a contribution to the final energy εhmin cost) of a
potential change of the value X(t) from its current value X(s) to 1−X(s).

Directly after the execution of the initialization loop 1-6, the queue Q will consists pre-
cisely of the nodes from the set S = {〈s, i〉 : i ∈ L & s ∈ Si}, that is, seed representations in
the HLOIFT graph N . Let X0 denote the map X defined on S at this time. Since, at this
time, we also have X(t) = −∞ for every t ∈ S, these values cannot ever be changed, as the
condition in line 13 is never satisfied. Also, for any X : N → {0, 1},

X satisfies the seed constrains if, and only if, X extends X0.

In particular, any X : N → {0, 1} returned by HLOIFT has this property. Therefore, to
finish the proof, it is enough to show that such X also satisfies the consistency requirements
(C).

By consistency of S with (C), the family X of all X : N → {0, 1} satisfying the seed con-
straints and the consistency requirement (C) is non-empty. In particular, any X ∈ X extends
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X0 and has energy εhmin(X) > −∞ (as, by the choice of inter-layer weights, εhmin(X) = −∞
only when X fails the consistency requirement (C)). Let E be the maximum of εhmin(X) over
all X ∈ X and let X0 be the family of all X ∈ X with εhmin(X) = E. Notice that E > −∞.

The two key steps of our proof are the following closely related versions of preservation
properties (P) and (Q). The above discussion shows that the assumptions of both of these
properties are satisfied directly after the execution of the initialization loop.

The property (P) reads as follows.

(P) Assume that, directly before an execution of the line 8, the current X (defined on a
D ⊂ N ) is a restriction of an X̄ ∈ X0. If, during the following execution of line 8, we
remove t from Q with V (t) < E, then the extension of X to D ∪ {t} also agrees with
X̄, that is, X(t) = X̄(t).

Indeed, if t ∈ S, then, as we argued above, X̄(t) = X0(t) = X(t). Otherwise, there is an
s ∈ D such that (s, t) ∈ A and the current values of V (t) and X(t) were fixed during the
execution of lines 8-17, when our node s was removed from Q. This means that we could
not have simultaneously (s, t) ∈ As and X(s) = 0.

If (s, t) ∈ As and X(s) = 1, then, during the execution of line 17, we have set X(t) = 0.
At the same time, we must have X̄(t) = 0, since otherwise we would have X̄(t) = 1 = X(s) =

X̄(s), making εhmin(X̄) = εexclmin(X̄) = −∞ 6= E, a contradiction. So, indeed,X(t) = 0 = X̄(t).
To finish the argument for (P) we can assume that (s, t) /∈ As. Then, the executions of

lines 8-17 ensures that X(t) = X(s). At the same time we must have that X̄(s) = X̄(t), as
otherwise

E = εhmin(X̄) ≤ εinclmin(X̄) ≤ wX̄(s)(s, t) = wX(s)(s, t) = V (t) < E,

impossibility.
Therefore, indeed X(t) = X(s) = X̄(s) = X̄(t), finishing the argument for (P).
The second preservation property is as follows.

(Q) Assume that, directly before an execution of the line 8, the current X (defined on a
D ⊂ N ) can be extended to an X̄ ∈ X0. If, during the following execution of line 8,
we remove t from Q with V (t) ≥ E, then the extension X to D ∪ {t} has a further
extension to an X̂ ∈ X0.

We have V (t) > −∞, as V (t) ≥ E > −∞. For the main part of the argument for (Q)
assume that we also have V (t) <∞.

As V (t) is finite, there must exist an s ∈ D such that (s, t) ∈ A is an intra-arc and the
current values of V (t) and X(t) were fixed during the execution of lines 8-17, when our node
s was removed from Q. We need to show that the extension X to D ∪ {t} has a further
extension to an X̂ ∈ X0. For i ∈ {0, 1} let Ri = {d ∈ D : X(d) = i}.
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If X(t) = 0, then the indicator (i.e., characteristic) function χR1 is the desired X̂ ∈ X0

extending X. Indeed, it certainly extends X (which, in turn, extends X0) and has an energy
εhmin(X̂) = min{εinclmin(X̂), εexclmin(X̄)} ≥ E > −∞, where the equation is justified by εexclmin(X̄) =

εexclmin(X̂) (which holds, as we have {s ∈ N : X̄(s) = 1} = {s ∈ N : X̂(s) = 1}) while the
inequality ≥ by εinclmin(X̂) ≥ min{V (s) : s ∈ Q} ≥ V (t) ≥ E and εexclmin(X̄) ≥ εhmin(X̄) = E.
Hence, X̂ ∈ X0.

So, assume that X(t) = 1 and notice that (s, t) /∈ As: for X(s) = 0 this is ensured by line
13, while for X(s) = 1 by line 16. In particular, we also have X(s) = 1. A first impulse could
be to define X̂ as the indicator χN\R0 . However, εhmin(χN\R0) ≤ εexclmin(χN\R0) and it is likely
that εexclmin(χN\R0) = −∞. So, in this case, X̂ needs to be defined more carefully. Specifically,
let i = λ(t) and let Li be the set of all ancestors of i: all j ∈ L such that, according to h,
Oi ⊆ Oj. Let

R = R1 ∪ {t ∈ N \R0 : λ(t) ∈ Li}

and put X̂ = χR. Then, X̂ extends X which, in turn, extends X0. So, X̂ satisfies seeds
constrains and, to show that X̂ ∈ X0, it is enough to prove that εhmin(X̂) > −∞.

To see this, first notice that εexclmin(X̂) =∞. Indeed, otherwise there would exist u, v ∈ R
with (u, v) ∈ As and X̂(u) = X̂(v) = 1. However, they cannot both belong to R1, since this
would mean that E = εhmin(X̄) = −∞. They cannot both belong to R\R1, since Li contains
no siblings. Finally if one of these nodes belongs to R1, say u ∈ R1, then the other cannot
be in R \ R1. Indeed, this would mean that u ∈ D and at the time when u was removed
from Q, the value V (v) = −∞ was assigned. This V (v) = −∞ cannot be ever increased
during execution of HLOIFT. With v ∈ Q, this contradicts the minimality V (t) ≥ E, as
E > −∞ = V (v). So, indeed, εexclmin(X̂) =∞.

From this, εhmin(X̂) = min{εinclmin(X̂), εexclmin(X̄)} ≥ E > −∞, where the equation is jus-
tified by εexclmin(X̂) = ∞ = εexclmin(X̄), while the inequality ≥ by the facts that εinclmin(X̂) ≥
min{V (s) : s ∈ Q} = E and εexclmin(X̄) ≥ εhmin(X̄) = E. This completes the proof of (Q) in
case V (t) <∞.

To finish the proof of (Q) it is enough to show that V (t) =∞ is impossible. Indeed, the
consistency of the seeds ensures that either λ(t) or some of its descendants, say j, contains
a seed, say u. In particular, s0 = 〈j, u〉 ∈ D and X(s0) = X0(s0) = 1. Also, H contains
a path from s0 to s = 〈λ(t), u〉 with each connecting arc having weight −∞. Therefore,
s must belong to D, as otherwise we would have E = −∞. Since s ∈ Nλ(t) and Nλ(t) is
connected and symmetric, it contains adjacent u and v with u ∈ D and v ∈ Q. Hence,
V (t) ≤ V (v) <∞, finishing the proof of (Q).
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