• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.45.2008.tde-11042008-163904
Documento
Autor
Nome completo
Francisco Nogueira Calmon Sobral
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2008
Orientador
Banca examinadora
Birgin, Ernesto Julian Goldberg (Presidente)
Perez, Ana Friedlander de Martinez
Silva, Paulo José da Silva e
Título em português
Programação em dois níveis: reformulação utilizando as condições KKT
Palavras-chave em português
complementaridade
condições KKT
funções NCP
programação em dois níveis
programação não linear
Resumo em português
Em um problema de natureza hierárquica, o nível mais influente toma certas decisões que afetam o comportamento dos níveis inferiores. Cada decisão do nível mais influente é considerada como fixa pelos níveis inferiores, que, com tais informações, tomam decisões que maximizam seus objetivos. Essas decisões podem influenciar os resultados obtidos pelo nível superior, que, por sua vez, também anseia pela decisão ótima. Em programação matemática, este problema é modelado como um problema de programação em níveis. Neste trabalho, consideramos uma classe particular de problemas de programação em níveis: os problemas de programação matemática em dois níveis. Estudamos uma técnica de resolução que consiste em substituir o problema do nível inferior por suas condições necessárias de primeira ordem, que podem ser formuladas de diversas maneiras, conforme as restrições de complementaridade são modificadas. O novo problema torna-se um problema de programação não linear e pode ser resolvido com algoritmos clássicos de otimização. Com o auxílio de condições de otimalidade de primeira e segunda ordem mostramos as relações entre o problema original e o problema reformulado. Aplicamos a técnica a problemas encontrados na literatura, analisamos o seu comportamento e apresentamos estratégias para eliminar certos inconvenientes encontrados.
Título em inglês
Bilevel programming: reformulation using KKT conditions.
Palavras-chave em inglês
bilevel programming
complementarity
KKT conditions
NCP functions
nonlinear programming
Resumo em inglês
In problems of hierarchical nature, the choices made by the most influential level - the so-called leader - affect the behavior of the lower levels. For each one of the leader's decisions there is a response from the lower levels, which maximizes the value of their respective objectives. These optimal choices, in return, may have influence in the results achieved by the leader, which also wants to make the optimal choices. In mathematical programming, this kind of problem is described as a multilevel programming problem. The present work considers a specific kind of multilevel problem: the bilevel mathematical problem. We study a resolution technique which consists in replacing the lower level problem by its necessary first order conditions, which can be formulated in various ways, as complementarity constraints occur and are modified. The new reformulated problem is a nonlinear programming problem which can be solved by classical optimization methods. Using first and second order optimality conditions, we show the relations between the original bilevel problem and the reformulated problem. We apply the described technique to solve a set of bilevel problems taken from the literature, analyse their behavior and discuss strategies to prevent undesirable difficulties that may arise.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
dissertacao.pdf (1.04 Mbytes)
Data de Publicação
2008-07-22
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.