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Resumo

CARDENAS, J. N.Árvore Geradora de Comunicação Ótima. 2021. 85 f. Tese (Mestrado)
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2021.

Neste trabalho estudamos o problema da Árvore Geradora de Comunicação Ótima (AGCO).
Uma instância deste problema consiste de uma quádrupla (G, c,R,w) composta por um
grafo conexo G = (V,E), uma função não-negativa c que atribui a cada elemento e ∈ E

um custo c(e), um conjunto R de pares de vértices em V , e uma função não-negativa w,
chamada demanda, definida sobre R. Cada par (u, v) de R é chamado um requisito, o vér-
tice u é chamado origem e o vértice v é chamado destino do par. Para uma dada árvore
geradora T de G, o custo de comunicação de um requisito r = (u, v) é definido como a
demanda w(r) multiplicada pela distância entre u e v em T (sendo a distância a soma dos
custos das arestas no caminho de u a v em T ).

No problema da Árvore Geradora de Comunicação Ótima, dada uma instância (G, c,R,w),
o objetivo é encontrar em G uma árvore geradora que minimiza a soma total dos custos de
comunicação de todos os requisitos em R. Este problema foi introduzido por T.C.Hu em
1974 e é sabido ser NP-difícil. Alguns de seus casos especiais, não tão triviais, podem ser
resolvidos em tempo polinomial.

Investigamos aqui dois tais casos especiais do problema AGCO, ambos para o caso de G
ser um grafo completo. No primeiro deles, todas as arestas do grafo têm o mesmo custo. Neste
caso, a solução é dada pela árvore de Gomory-Hu de uma certa rede associada à instância
dada. No segundo problema, todos os requisitos têm a mesma demanda, e a solução é dada
por uma árvore que é uma estrela.

Também estudamos algumas formulações lineares inteiras mistas para o problema AGCO.
Para isso, estudamos formulações lineares para o problema da árvore geradora mínima,
algumas das quais fazem uso de fluxos. Tais formulações são combinadas e dão origem a
algumas formulações mistas para o problema AGCO. Implementamos algoritmos branch-
and-cut para tais formulações, e apresentamos os resultados computacionais obtidos.

Palavras-chave: árvore geradora, árvore geradora de comunicação ótima, árvore Gomory-
Hu, branch-and-cut, programação linear inteira.
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Abstract

Cardenas, J. N. Optimal Communication Spanning Tree Problem. 2021. 85 f. Tese
(Mestrado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo,
2021.

In this work we address the Optimal Communication Spanning Tree (OCST) problem.
An instance of this problem consists of a tuple (G, c,R,w) composed of a connected graph
G = (V,E), a nonnegative cost function c defined on E, a set R of pairs of vertices in V ,
and a nonnegative function w, called demand, defined on R. Each pair (u, v) of R is called a
requirement, the vertex u is called origin, and the vertex v is called destination of the pair.
For a given spanning tree T of G, the communication cost of a requirement pair r = (u, v) is
defined as the demand w(r) multiplied by the distance between u and v in T (the distance
being the sum of the costs of the edges in the path from u to v).

In the Optimal Communication Spanning Tree (OCST) problem, we are given an in-
stance (G, c,R,w) and we seek a spanning tree in G that minimizes the overall sum of the
communication costs of all requirements in R. This problem was introduced by T.C.Hu in
1974 and is known to be NP-hard. Some of its special cases, not so trivial, can be solved in
polynomial time.

We address two such special cases of the OCST problem, both restricted to complete
graphs. The first one is the Optimum Requirement Spanning Tree (ORST) problem, in
which all edges have the same cost (a constant). In this case, an optimal solution is given
by a Gomory-Hu tree of a certain associated network. The second one is a special case
of the OCST problem, in which all requirements have the same demand. This problem is
called Minimum Routing Cost Spanning tree (MRCT) (and is also known as the Optimum
Distance Spanning Tree problem).

We also study the main mixed integer linear programming (MILP) formulations for the
OCST problem. For that, we first study formulations for the spanning tree problem, some
purely combinatorial and some based on flows (leading to mixed formulations). Furthermore,
we exhibit the computational results of the experiments we conducted with our implemen-
tation of a branch-and-cut approach for the different MILP formulations that we studied.

Keywords: spanning tree, optimal communication spanning tree, branch-and-cut, Gomory-
Hu tree, integer linear program.
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Chapter 1

Introduction

A spanning tree of a graph G is a connected subgraph of G that is acyclic and contains
all of its vertices. Spanning trees are combinatorial objects that arise in many optimization
problems related to network design. For example, if we are interested in constructing an
electrical network, our aim is to minimize the total length of the links in the network, as
the construction cost increases with each additional link. In this case, a minimum (cost)
spanning tree (MST) is an optimal solution.

In other situations, the network needs to ensure a communication requirement between
some pairs of vertices in the network. In such cases, we seek to minimize the operational
cost of the network. In general, the operational cost depends on both, the communication
requirement and the distance between pairs of vertices in the network. In this work, we
focus on the Optimal Communication Spanning Tree (OCST) problem that models such
situations.

In the OCST problem, we are given a tuple (G, c,R,w) composed of a connected graph
G = (V,E), a nonnegative cost function c defined on E, a set R of pairs of vertices in V , and
a nonnegative function w, called demand, defined on R. Each pair r = (ro, rd) of R is called a
requirement, the vertex ro is called origin, and the vertex rd is called destination. Our objec-
tive is to find a spanning tree T of G that minimizes the overall sum of the communication
cost between the pairs in R, where the communication cost of a requirement pair r = (ro, rd)

is defined as the cost of the path from ro to rd in T multiplied by its demand w(r). This
problem arises in different areas, as for example, in computational biology [WLB+00] and
network design [MW84].

This text is organized as follows. In Chapter 2, we present basic concepts, notation, and
terminology in graph theory, network flows, and mixed integer linear programming (MILP).
In Chapter 3, we formally define the OCST problem. After that, we present a historical
review of the most relevant results regarding OCST that exist in the literature. We continue
with special cases of OCST that admit polynomial-time algorithms.

Later, in Chapter 4, we address different MILP formulations that have been proposed
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for OCST. We begin this chapter by showing MILP formulations for MST that have an
exponential number of inequalities. Since the formulations for OCST use these inequalities,
we also show how to decide, in polynomial time, if a solution satisfies those inequalities.
After that, we present some MILP formulations for OCST.

Finally, in Chapter 5, we show our computational results, comparing the performance
of the formulations presented in the previous chapter. In Chapter 6, we present some final
considerations on our study of the OCST problem, and mention some possible directions
for future work.



Chapter 2

Preliminaries

In this chapter, we introduce the basic concepts, notation, and terminology that we use
throughout this text. The notation and terminology that we use are conventional in graph
theory, polyhedral combinatorics, and combinatorial optimization, but they are included to
make the text self-contained. In each section, some references are given on some of the topics.

2.1 Graph theory

A graph is a pair G = (V,E), where V and E are disjoint sets, together with an incidence
function ψ that maps each element in E to an unordered pair of elements of V . The elements
of V are called vertices and the elements of E are called edges. Given a graph G, we also
denote by V (G) and E(G) its set of vertices and its set of edges, respectively. The order of
a graph G is the cardinality of V (G). If e ∈ E, and ψ(e) = {u, v} (possibly u = v), we say
that e links the vertices u and v, and that u and v are the ends of e. Furthermore, we say
that e is incident to the vertices u and v, and that u and v are adjacent. In case u = v,
the edge uv is called a loop. Two or more edges with the same pair of ends are said to be
parallel.

We say that a graph is simple if it contains neither loops nor parallel edges. Throughout
this text, in the problems to be addressed here, we always consider that the input graph is
simple, but we may not state this explicitly, just in the beginning of the chapter. We will
also simplify the notation, and to refer to simple graphs G = (V,E), we do not specify the
incidence function ψ, and consider that the edge set E consists of unordered pairs of vertices
of V . Thus, we say simply that e = {u, v} is an edge of G. For convenience, when there is
no risk of confusion, instead of {u, v}, we may write uv.

A path in a graph G is a sequence of the form P = 〈v1, e1, v2, . . . , ek, vk+1〉, where
v1, . . . , vk+1 are distinct vertices ofG and ei is an edge that links vi and vi+1 for i = 1, 2, . . . , k.
In this case, we say that P is a path between v1 and vk+1, or that P links v1 and vk+1,
and that v1 and vk+1 are the ends of P . A vertex is called an internal vertex of P if it
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is not an end of P . The length of a path P , denoted by |P |, is its number of edges. We
denote by Puv, a path that links two vertices u and v in G. Usually, we represent a path P
just by its sequence of vertices, writing P = 〈v1, . . . , vk+1〉. If a graph G = (V,E) has a cost
function c : E → R≥0 defined on E, the cost of a path in G is defined as the sum of the
costs of its edges. The cost of a path of minimum cost between two vertices u and v in G
is also called the distance (with respect to c) between u and v, and is denoted distG(u, v),
or simply dist(u, v). In case the edges have no cost associated with them, we consider that
every edge has unit cost.

Let G = (V,E) and G′ = (V ′, E ′) be graphs such that V ′ ⊆ V and E ′ ⊆ E. In this case,
we say that G′ is a subgraph of G, and that G′ is contained in G. We also say that G is
a supergraph of G′. Moreover, if V ′ = V we say that G′ is a spanning subgraph of G.
Given S ⊆ V , the subgraph of G induced by S is the subgraph G[S] = (S,A), where A ⊆ E

is the subset of edges of E whose ends belong to S. Furthermore, we denote by G − S the
subgraph G[V \S], and if F ⊆ E, we denote by G−F the graph (V,E \F ). If α is a vertex
or an edge of G, we write G− α instead of G− {α}. Given A ⊆ E, we denote by G[A] the
subgraph of G whose edge set is A, and whose vertex set consists of all ends of edges of A.
The neighborhood of a vertex v in G is the set NG(v) = {u ∈ V : u is adjacent to v}.
A vertex in NG(v) is said to be a neighbor of v. If G is a simple graph, the degree of a
vertex v in G, denoted by degG(v), is equal to |NG(v)|. (In both cases, the subscript G may
be omitted when there is no danger of confusion.)

Let G = (V,E) be a graph and let S, T ⊆ V . We denote by E(S, T ) the set of edges
in G with one end in S and the other in T . When T = S, we abbreviate it to E(S). If S
is a nonempty proper set of V and T = V \ S, the set E(S, T ) is called the edge cut of G
associated with S, and we denote it by δ(S). Note that δ(S) = δ(V \ S). If we consider two
distinct vertices s, t ∈ V , and a subset S ⊂ V such that s ∈ S and t /∈ S, then we say that
δ(S) is a s-t cut or that S separates s from t.

We say that a graph G is connected if there exists a path that links each pair of vertices
in G. A component of G is a maximal connected subgraph of G. A cycle in G is a sequence
of the form C = 〈v1, e1, v2, . . . , vk, ek, vk+1〉, where v1, v2, . . . , vk are distinct vertices of G,
v1 = vk+1 and ei links vi to vi+1, for i = 1, 2, . . . , k. If G does not contain a cycle, we say
that G is acyclic. An acyclic graph is also called a forest. A tree is a connected forest.

In a tree T = (V,E), we say that a vertex v is an internal vertex of T if its degree is
greater than one. Otherwise, we say that v is an external vertex or a leaf. An extremal
internal vertex is an internal vertex that has at least one neighbor that is a leaf. A star is
a tree with at most one extremal internal vertex.

A directed graph, or digraph, is a pair D = (V,A), where V and A are disjoint sets,
together with an incidence function ψ that maps each element in A to an ordered pair of
elements of V . The elements of V are called vertices or nodes and the elements of A
are called arcs. We also denote by V (D) and A(D) the set of vertices and the set of arcs,
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respectively, of D. If a ∈ A, and ψ(a) = (u, v), we say that u is the tail of a and that v is
its head. We also say that u and v are the ends of a.

Let D = (V,A) be a digraph. For S ⊆ V , the subgraph of D induced by S, denoted
by D[S], is the digraph (S, F ), where F ⊆ A is the subset of arcs with its two ends in S.
Furthermore, we denote by D−S the subgraph D[V \S], and if F ⊆ A, we denote by D−F
the digraph (V,A \ F ). If α is a vertex or an arc of D, we write D − α instead of D − {α}.
Let v ∈ V (D). The indegree of a vertex v in D, denoted by deg−D(v), is the number of
arcs whose head is v; and the outdegree of v in D, denoted by deg+

D(v) is the number of
arcs whose tail is v. Similarly to the case of graphs, concepts such as loops, parallel arcs,
adjacency of vertices can be also be defined (we omit them, as we assume they are clear).

A path in D is a sequence of the form P = 〈v1, a1, v2, . . . , ak, vk+1〉, where v1, . . . , vk+1

are distinct vertices of D and ai is an arc with tail vi and head vi+1, for i = 1, 2, . . . , k. We
say that P is a path that begins in v1 and ends in vk+1, and has length k. Usually, we
represent a path P just by its sequence of vertices, writing P = 〈v1, . . . , vk+1〉.

0

1 2

3 4

0

1 2

3 4

0

1 2

3 4

(a) (b) (c)

Figure 2.1: (a) A graph G; (b) a subgraph of G; (c) a spanning subgraph of G.
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Figure 2.2: (a) A graph G = (V,E) and a set S = {1, 2, 3, 4}; (b) blue edges belong to E(S); (c)
green edges belong to δ(S).

The underlying graph of a digraph D = (V,A), denoted by G(D), is the graph obtained
from D by replacing each arc with an edge with the same ends. Conversely, any graph G

can be regarded as a digraph, by replacing each edge by two opposite oriented arcs with the
same ends. This digraph is called the associated digraph of G, and is denoted by D(G).

An orientation of a simple graph G = (V,E) is a digraph obtained from G by replacing
each edge, say {u, v}, by an arc with the same ends, either (u, v) or (v, u). A rooted tree T
is an orientation of a tree in which every vertex, except one, has indegree equal to one. The
vertex with indegree zero is called the root of T . We also refer to a rooted tree with root r
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as an r-arborescence. Clearly, in an r-arborescence T there exists a unique path from r to
every other vertex in T . In case there exists a path from u to v, in T , we say that u is an
ancestor of v, and that v is a descendant of u.

For convenience, as in the case of graphs, we refer to an arc of a digraph as a pair (u, v).
When an edge (or arc) is used as a subscript, the braces (or parentheses) are always omitted.
Moreover, a comma is used only when it is necessary. For instance, if edges {1, 2} and {1, 12}
are subscripts of a vector x, we use the notation x12 and x1,12, respectively.

For the readers interested in these and other concepts in graph theory, we suggest [BM08]
and [Die12].

2.2 Linear and integer programming

A Linear Program (LP) is an optimization problem of the following form: given vectors
c ∈ Rn , b ∈ Rm and a matrix A ∈ Rm×n, find a vector x ∈ Rn that satisfies the following
restrictions:

minimize
n∑
i=1

cixi (2.1)

subject to
n∑
j=1

Aijxj ≤ bi for i = 1, . . . ,m, (2.2)

xj ≥ 0 for j = 1, . . . , n. (2.3)

We say that xi is a variable of the linear program, for i = 1, . . . , n. Each linear inequality∑n
j=1Aijxj ≤ bi is called a constraint. A vector x ∈ Rn that satisfies all the constraints

is called a feasible solution of the linear program. Furthermore, we say that a feasible
solution x is an optimal solution if for every feasible solution x′ we have

n∑
i=1

cixi ≤
n∑
i=1

cix
′
i.

We refer to Linear Programming problems as the class of problems of the above form.
We note that similar maximization problems with constraints that are equalities are also
included in this class. It is well known that they can be solved in polynomial time, either by
the Interior Point method [Kar84] or the Ellipsoid method [Hač79]. In many applications, the
Simplex method [Dan63] is the most used algorithm for solving linear programs, because of
its good performance on average (although it is known that on some instances it may require
exponential time).
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An Integer Program (IP) is an optimization problem of the form:

minimize
n∑
i=1

cixi (2.4)

subject to
n∑
j=1

Aijxj ≤ bi for i = 1, . . . ,m, (2.5)

xj ∈ Z≥0 for j = 1, . . . , n. (2.6)

That is, it is an LP with the additional restriction that every variable must be a nonneg-
ative integer. It is known that an integer program is an NP-hard problem [GJ79]. When all
variables are required to be binary (0 or 1), it is called a 0/1 linear program.

We say that a vector is binary if all its entries are binary. Furthermore, we denote by Bn

the set of binary vectors in Rn.

Solving an integer program is equivalent to solving a linear program with potentially high
number of constraints [Mey74]. Thus, we can convert any IP to an LP, so that every extreme
point solution of the LP is an optimal solution for the IP. The same result is applicable for
a Mixed-Integer Linear Program (MILP), where we have integer and real variables.

Many problems in combinatorial optimization can be modelled as integer programs. When
we want to solve a specific integer program, say I, one common approach is to drop the
integrality constraint over its variables, and study what is called the linear relaxation of I.

Note that linear relaxations may have an advantage over other schemes, because if an
optimal solution for the linear relaxation is integral, then it is also an optimal solution for
the former IP. In any case, this relaxation gives a lower bound for the value of an optimal
solution of I, if I is a minimization problem. Researchers study how to strengthen the
relaxed LP by adding valid inequalities, preferably facets of the polyhedron defined by the
convex hull of the feasible solutions of I. This approach is used in the subarea known as
polyhedral combinatorics. In the next sections we present some basic concepts useful in
linear programming problems and polyhedral combinatorics.

2.3 Polyhedron and separation problem

Let x1, . . . , xm be vectors in Rn . We say that a vector x ∈ Rn is a linear combination of
x1, x2, . . . , xm if there exist real numbers λ1, . . . , λm such that x =

∑m
i=1 λixi. Moreover, a lin-

ear combination such that
∑m

i=1 λi = 1, for i = 1, 2, . . . ,m, is called an affine combination.
Similarly, a linear combination such that

∑m
i=1 λi = 1 and λi ≥ 0, for i = 1, 2, . . . ,m, is called

a convex combination. A convex combination is called proper if λi > 0, for 1, . . . ,m. We
say that vectors x1, x2, . . . , xm are linearly independent if the system

∑m
i=1 λixi = ~0 has a

unique solution: λi = 0, for i = 1, . . . ,m. In a similar way, vectors x1, x2, . . . , xm are affinely
independent if the system

∑m
i=1 λixi = ~0,

∑m
i=1 λi = 0 has a unique solution λi = 0, for
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i = 1, . . . ,m.

A set of vectors V in Rn is a vector space if, and only if, for each two vectors x, y in V
the vector x + y is in V and for any vector z in V , and a real number λ ∈ R the vector λz
also belongs to V . That is, V is closed under sum and multiplication by a scalar.

Let V be a vector space in Rn and let S be any set of vectors in Rn. If every vector in V
can be expressed as a linear combination of vectors of S, we say that S span V . Moreover, if
S is a subset of V such that it is closed under sum and multiplication by scalar, we say that
S is a subspace of V . We denote the span of vectors x1, x2, . . . , xm by span{x1, x2, . . . , xm}.
Moreover, for any set of vector x1, x2, . . . , xm, in V , span{x1, x2, . . . , xm} is a subspace of V .
Furthermore, if S spans V and S is minimal, then S is called a basis of V . Moreover, the
following conditions are equivalent:

• The set S is a minimal spanning set of V .

• The set S is an independent spanning set of V .

• The set S is a maximal linearly independent set of V .

So, any basis of V has the same number of vectors. Furthermore, the dimension of V is
defined as the cardinality of any basis of V .

Let A ∈ Rm×n be a matrix. The rank of A, denoted by rank(A), is the dimension of
the vector space spanned by its rows (or equivalently, columns). If A is a square matrix, we
denote the determinant of A by det(A). Moreover, A is called nonsingular if det(A) 6= 0.
In this case there exists a unique inverse matrix A−1 such that AA−1 = I where I is the
identity matrix. Besides, if rank(A) = n, we say that A has full rank. Observe that A has
full rank if, and only if, det(A) 6= 0.

A polyhedron P is a set of points that can be described as {x ∈ Rn : Ax ≤ b} where
A is an m× n matrix, and b is a vector in Rm. A hyperplane is a polyhedron of the form
{x ∈ Rn : c′x = δ} for some c ∈ Rn and δ ∈ R. We say that a polyhedron P is a polytope
if it is the convex hull of a finite set of points. That is, a polyhedron P ⊂ Rn is a polytope
if, and only if, there exist vectors l, u ∈ Rn such that l ≤ x ≤ u, for all x ∈ P . A point x is
called a vertex of a polytope P ⊆ Rn if it is not a proper convex combination of two (or
more) distinct points in P . The vertices of a polytope can also be characterized in another
equivalent way. A point x′ ∈ P is a vertex if there exists a hyperplane H such that

{x′} = P ∩H.

Moreover, x′ satisfied with equality by rank(P ) linearly independent inequalities of the
system Ax ≤ b.

Given a polyhedron of the form Q = {(u, x) ∈ Rp×Rq : Au+Bx ≤ b}, where A ∈ Rm×p

and B ∈ Rm×q and b ∈ Rm, the projection of Q onto Rq, or onto the x-space, is defined as

Projx(Q) = {x ∈ Rq : ∃u ∈ Rp : (u, x) ∈ Q}.
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In what follows consider the polyhedron P = {x ∈ Rn : Ax ≤ b}. If c ∈ Rn is a nonzero
vector and δ = min{cx : Ax ≤ b}, the hyperplane {x : cx = δ} is called a supporting
hyperplane of P . A polyhedron F is called a face of P if F = P or F = P ∩H for some
supporting hyperplane H. Thus, F is a face if F = {x ∈ P : A′x = b′} for some subsystem
A′x ≤ b′ of Ax ≤ b. A polyhedron (polytope) is called integral if all of its vertices have
integer coordinates.

We say that a constraint a′x ≤ β is tight (or active) in a face F of P , if a′x = β holds
for each x ∈ F . The dimension of a polyhedron P , denoted by dim(P ), is the maximum
number of affinely independent points in P minus one. Moreover, dim(P ) = n− rank(A).
Thus, the empty face has dimension equal to −1, and a vertex of P has dimension equal
to 0. If a face F has dimension n− 1, it is called a facet.

A polyhedron P ⊂ Rn is a valid formulation for a set X ⊂ Zn if X = P ∩ Zn.
A matrix A ∈ Rm×n is totally unimodular (TU) if every square submatrix of A has
determinant −1, 0 or 1.

Consider a polyhedron P = {x ∈ Rn : Ax ≤ b} such that b is an integer vector. An
important result in integer programming states that: if A is TU, then P is integral [CCZ14].
This result can be used to show that some network flow problems can be solved in polynomial
time. It may also used to obtain some min-max results.

The importance of integer programming lies in its power to model many problems in
combinatorial optimization that have a linear objective function. Well known problems such
as minimum cost spanning tree of a graph, maximum matching in a graph, the travelling
salesman problem can all be modelled as integer programs. In some cases, this modelling
enhanced with further approaches lead to polynomial-time algorithms, in some other cases,
good approximation algorithms can be obtained. Many exact methods can also take advan-
tage of further knowledge on the polyhedron associated with the integer LP.

Some of these techniques will be used in Chapter 4. We will not go into further details
here, but we refer the interested reader to [Sch03]

Given a polytope P ⊆ Rn, and a vector z ∈ Rn, the separation problem (with respect
to P and z) consists in deciding whether z belongs to P or not; and if not, find an inequality
cTx ≤ co with c ∈ Rn such that

n∑
i=1

cixi ≤ co for every x ∈ P and
n∑
i=1

cizi > co.

When z /∈ P , the inequality cTx ≤ co is called a separating hyperplane.

Grötschel, Lovász, and Schrijver [GLS88] showed that if we can solve the separation
problem in polynomial time, the corresponding linear problem (over P ) can be solved in
polynomial time. For further reading, we suggest [CCZ14].
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2.4 Combinatorial optimization problem

A Combinatorial Optimization Problem (COP) can be modelled as a triple (I, S, f),
where I is the set of instances of the problem, S is the set of feasible solutions, and f is a
function (called objective function) f : S→ R that assigns a value to each feasible solution
S ∈ S. For I ∈ I, let us denote by S(I) the set of all feasible solutions for I.

Let Π = (I, S, f) be a COP, and let I be an instance of Π. Then, I can be described by a
triple (E,w,S), where E is a nonempty finite set, w is a function w : E → R, and S = S(I)

is composed by the subsets of E. For linear objective functions f , we have f(S) =
∑

e∈S we.
Given an instance I = (E,w,S), the goal is to find a feasible solution S ∈ S that minimizes
(or maximizes) f(S).

We denote by RE the set of all real-valued vectors indexed by the elements of E. For each
solution S ∈ S, the incidence vector of S, denoted by χS ∈ RE, is defined as:

χSe =

1, if e ∈ S,
0, otherwise.

We may associate a polyhedron P ⊆ R|E| with the triple (E,w,S) as being the convex
hull of the incidence vectors of the solutions in S. That is,

P := conv{χS ∈ RE : S ∈ S}.

Thus, a COP with a linear objective function can be defined as min{wx : x ∈ P}. The
set of vertices of P corresponds to the set of incidence vectors of solutions S ∈ S. Since P
is a polytope, we know that P can be described by a system of linear inequalities. Thus, we
can model a COP as a 0/1 LP. Conversely, every 0/1 LP can be described as a COP.

2.5 Network flows

A network is a pair N = (D, u) where D = (V,A) is a digraph, and u is a nonnegative
function (called capacity) defined on A. A flow in N is a nonnegative function x : A→ R≥0
that satisfies the following condition: xa ≤ ua for each arc a ∈ A.

If x is a flow and R ⊂ V , then x+(R) (resp. x−(R)) denotes the sum of the flows on
the arcs with tail (resp. head) in R and head (resp. tail) in V \ R. The excess of x in R is
x+−(R) = x+(R)− x−(R).

Given a network N = (D, u) and two distinct vertices s and t in D, called source and
sink, respectively, the maximum flow problem consists in finding a flow x in N that
maximizes x+−(s), subject to x+−(v) = 0 for every v ∈ V \{s, t}. The value x+−(s) is called the
value of the flow x (from s to t). More formally, we can model the maximum flow problem
as an LP as follows:
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maximize
∑
sk∈A

xsk −
∑
ks∈A

xks (2.7)

subject to ∑
ij∈A

xij −
∑
jk∈A

xjk = 0 ∀j ∈ V \ {s, t}

xij ≥ 0 ∀ij ∈ A
xij ≤ uij ∀ij ∈ A.

Let G = (V,E) be a graph, and let u′ : E → R≥0 be a function defined on E. The
network associated with G is the pair (D(G), u) such that, for each edge ij ∈ E, the
capacity of the arcs ij, ji ∈ A(D(G)) is uij = uji = u′ij.

Let (G, u) be a network and let S ⊂ V (G) be such that δ(S) is an s-t cut. The capacity
of δ(S) is defined as the sum of the capacities of each edge in δ(S), and its denoted by u(δ(S)).
Moreover, two cuts δ(X) and δ(Y ), are said to cross (overlap) if X and Y cross (overlap).

Dantzig and Fulkerson [DF56] showed an important result in network flows, known as the
max-flow min-cut theorem. This theorem states that, in a network (D, u) with source s
and sink t, the maximum amount of flow going from s to t is equal to the capacity of a
minimum cut separating them. This statement also holds for undirected graphs.

Given a network N = (D, u), a cost function c : A → R≥0, and a function b : V → R,
the minimum cost flow problem consists in finding a flow x that minimizes cx such
that x+−(v) = b(v), for every vertex v in V (D). This problem can be modelled by the
following LP formulation:

minimize
∑
ij∈A

cijxij (2.8)

subject to ∑
ij∈A

xij −
∑
jk∈A

xjk = bj ∀j ∈ V (2.9)

xij ≤ uij ∀ij ∈ A (2.10)

xij ≥ 0 ∀ij ∈ A (2.11)

The case in which each arc ij has an infinite capacity (uij =∞, ∀ij ∈ A) is called the
transhipment problem. For this problem, the LP formulation is as follows:
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minimize
∑
ij∈A

cijxij (2.12)

subject to ∑
ij∈A

xij −
∑
jk∈A

xjk = bj ∀j ∈ V (2.13)

xij ≥ 0 ∀ij ∈ A (2.14)

Observe that, the matrices arising from a maximum flow problem, a minimum cost flow
problem and a transhipment problem, are totally unimodular. Therefore, the extreme points
of the polyhedron associated to any of these problems are integral.

2.6 Exact algorithms to solve ILP problems

In this section we describe the main techniques we have used in the implementation of
the algorithms presented in Chapter 4. We also mention briefly other techniques that may
be used to solve ILP (or MILP) optimization problems.

The branch-and-bound (B&B) method is a fundamental and widely used scheme to
solve hard combinatorial optimization problems. Let I = (E,w,S) be an instance of a COP

Π = (I, S, f), such that E = {1, . . . , n} (see the notation we have defined in Section 2.4).
The B&B method iteratively builds a binary search tree T of subproblems, or subsets of S.
The root of T represents S, its left child represents S0 = {S ∈ S : χS1 = 0}, and its right
child represents S1 = {S ∈ S : χS1 = 1}. After that, we recursively divide the subproblems.
That is, the children of the left child of the root represent the sets S00 = {S ∈ S0 : χS2 = 0},
and S01 = {S ∈ S0 : χS2 = 1}, and so on. Throughout the algorithm, a feasible solution
S∗ ∈ S, called the incumbent solution, is stored globally. At each iteration, the algorithm
selects a new subproblem from the list of unexplored subproblems. If a feasible solution S ′

is found such that f(S ′) < f(S∗), the incumbent solution is updated. When considering a
subproblem, if the lower bound for the value of this subproblem is greater or equal to f(S∗),
the algorithm ignores this subproblem. Otherwise, the problem is divided into subproblems.
Once all the subproblems had been explored, the best incumbent solution is returned.

The main idea in a cutting plane method is to solve an integer program by solving
succesive linear programs. Let P be the polytope defined by the integer program, and let P ′

be its linear relaxation. A generic cutting plane method is as follows [CCZ14]:

• Find an optimal solution x∗ for P ′. If it is integral and x∗ ∈ P . Stop.
• Otherwise, find a cutting plane (valid inequality) that separates x∗ from P , and add

the plane to the formulation. Repeat the step recursively.

The branch-and-cut method consists in applying branch-and-bound and the cutting
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planes techniques at the same time. This method involves running a branch-and-bound al-
gorithm and using cutting planes to tighten the linear programming relaxation. The latter is
done by finding new cutting planes that are added to the LP relaxation at every subproblem.
The technique of adding new constraints is also known as row generation.

When formulating a problem as an MILP, there may exist reasons for considering formu-
lations with a huge number of variables. Sometimes a compact formulation may have a weak
LP relaxation. Frequently, the relaxation can be tightened by a formulation that involves a
huge number of variables. Another reason could be that a compact formulation of a MIP may
have a symmetric structure that causes branch-and-bound to perform poorly because the
problem barely changes after branching. A reformulation with a huge number of variables
can eliminate this symmetry [BJN+98]. The disadvantage of solving these formulations in a
solver is that we cannot consider all of the variables explicitly.

In a column generation approach, the assumption is that in an optimal solution most
of the variables will be nonbasic. Therefore, only a subset of variables may be considered
when solving the problem. Therefore, we add only the variables which have the potential to
improve the objective function (based on their reduced costs).

Dantzig–Wolfe decomposition is an algorithm for solving linear programming prob-
lems with a special structure that relies on delayed column generation technique. In this
scheme, the original formulation is reformulated into a Master Problem (MP). The Re-
stricted Master Problem (RMP) is equal to the master problem with the difference that
only a set of columns (variables) is considered. A subproblem associated with each col-
umn is considered to generate columns (to the RMP) whose inclusion improve the objective
function. The problem of choosing such columns is also called pricing problem.

The branch-and-price method uses both branch-and-bound and column generation
techniques simultaneously. This technique can be used for solving large-scale LP problems.
Generally, the original problem is reformulated by using Dantzig-Wolfe decomposition. If
this method includes row generation it is also called branch-and-price-and-cut method.

The technique known as Benders decomposition reformulates a mixed integer linear
program to one with fewer variables and an exponential number of constraints, which can
be separated eficiently by solving an LP subproblem, known as the Dual Subproblem
(DSP). To accomplish this, the original formulation is projected into the discrete variable
space, resulting in a reformulation known as the Benders Master Problem (MP). In
consequence, the contribution of the continuous variables in the original formulation is es-
timated by two sets of constraints known as feasibility and optimality cuts indexed by the
sets of the extreme rays and the extreme points of DSP, respectively. For further references
in these topics, see [Wol98, MJSS16].
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2.7 Approximation algorithms

Let Π = (I,S, f) be a minimization problem, where I is the set of instances of Π, S is
the set of all feasible solutions for each instance I ∈ I, and f is the objective function.

For a given instance I ∈ I, if S ∈ S is a solution for I, and S minimizes f , we say that
S is an optimal solution for I. We denote by OPT(I) the value of an optimal solution for
an instance I ∈ I.

Let A be an algorithm that, for each I ∈ I, returns a feasible solution A(I). Let α be such
that α ≥ 1, where α is a constant or a function of I. We say that A is an α-approximation
for Π if it runs in polynomial time on the size of I, and

f(A(I)) ≤ αOPT(I), for every I ∈ I.

In this case, we say that A has approximation factor (or ratio) α.

A Polynomial-Time Approximation Scheme (PTAS) for Π is a family of algorithms
{Aε}, where {Aε}, is a (1 + ε)-approximation, for each ε > 0. Thus a PTAS can be seen
as an algorithm that receives, as input, an instance I and an ε > 0. This algorithm runs
in polynomial time on the size of I considering ε as a constant. If this algorithm also runs
in polynomial time on ε, we say that {Aε} is a Fully Polynomial-Time Approximation
Scheme (FPTAS). For further reading on approximation algorithms, we suggest [WS11].



Chapter 3

Optimal communication spanning trees

In this chapter, we address the Optimal Communication Spanning Tree (OCST) problem.
We define this problem formally in Section 3.1 and then, in Section 3.2, we present a historical
review of the results on OCST that have appeared in the literature. In this review, we
highlight the type of results that characterized each period of time. In Section 3.3, we
mention some applications of the OCST problem, and in Section 3.4, we define an important
structure – the Gomory-Hu tree – which is used to solve a special case of the OCST problem.
We finish this chapter by focusing on two special cases of this problem that can be solved
in polynomial time.

In all problems considered in this chapter, the input graph is always connected and simple.

3.1 The OCST problem

An instance of the OCST problem consists of a tuple of the form I = (G, c,R,w), where
G = (V,E) is a connected graph, c : E → R≥0 is a cost function defined on the edges,
R ⊂ V × V , and w : R→ R≥0 is the demand function defined on R. We say that R is a set
of communication requirements, and for a requirement r ∈ R, we consider that r = (ro, rd),
and refer to ro (resp. rd) as the origin (resp. destination) of r. Instead of w(r), sometimes
we write wr.

Given such an instance I = (G, c,R,w), we say that a spanning tree T in G has com-
munication cost cc(T ), a measure defined as follows:

cc(T ) =
∑
r∈R

wr distT (ro, rd), (3.1)

where distT (ro, rd) is the cost of the path from ro to rd in T .

A spanning tree in G that minimizes (3.1) is called an optimal communication span-
ning tree. In the OCST problem, for a given instance I = (G, c,R,w), the objective is to

27
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find an optimal communication spanning tree.

For a spanning tree T and a requirement r ∈ R, the requirement path associated
with r, denoted by Pro,rd , is the path in T that links ro to rd. Observe that, by convention we
consider that the first vertex of the pair is the origin and the second is the destination; for the
cost of the corresponding requirement path it does not matter (as it is the distance between
the origin and destination), but the pairs (u, v) and (u, v) may have different demands, and
both pairs may be in R. We say that R is complete if, for each pair of vertices u, v ∈ V ,
either (u, v) or (v, u) belongs to R.

Example 3.1. An instance of the OCST problem is illustrated in Figure 3.1, together with
a feasible solution T , indicated with ticker edges. To determine the communication cost
of T , we calculate the cost of Pro,rd , for each requirement r ∈ R. The requirement (0, 1) has
demand 4, and P0,1 is composed by the edge {0, 1} whose cost is 1. Thus, it contributes with
cost w0,1 c0,1 = 4 ·1 = 4 to the total communication cost. In a similar way, requirement (1, 2)

contributes with cost 10 = 2(1+4), and requirement (2, 3) contributes with cost 8 = 4+1+3.
Therefore, the communication cost of T is 22.

0

1 2

3

1
4

10

3
8 Requirement (r) Demand (wr)

(0, 1) 4
(1, 2) 2
(2, 3) 1

Figure 3.1: An instance of the OCST problem and a feasible solution T , indicated with ticker edges,
which is also an optimal communication tree.

3.2 Historical review

Spanning trees arise very often in many combinatorial optimization problems. We recall
that a spanning tree of a connected graph G is a connected acyclic subgraph of G that spans
V (G). One of the most studied problems involving spanning trees is the Minimum Spanning
Tree (MST) problem, defined as follows: given a connected graph G with costs associated
with its edges, find in G a spanning tree of minimum total cost.

An algorithm for the MST problem was first presented in 1926 by Borůvka [NN12]. In the
fifties other polynomial-time algorithms to solve it were proposed, being the greedy algorithm
proposed by Kruskal [Kru56] the best known. However, many optimization problems in which
a spanning tree with certain properties are required, are known to become hard. This is the
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case of the OCST problem. In 1978, Johnson, Lenstra, and Kan [JLK78] proved that OCST

is NP-hard, even if all the requirements have the same demand.

In view of this, many approaches have been proposed to solve special cases of OCST,
as well as heuristics [HLN10, FM07, NLL13] and approximation algorithms [WC04]. Exact
algorithms [AM87] and MILP formulations have also been proposed [FLH+13, CFM09,
Lun16, ZCFL19, TI18].

In what follows, we present a historical review of the main results that appeared in the
literature regarding this problem. For every period of time, we mention the most relevant
results.

3.2.1 From 1974 to 1984: introduction of the problem

The OCST problem was introduced in 1974 by T.C.Hu [Hu.74]. He studied two spe-
cial cases of OCST: the Optimum Requirement Spanning Tree (ORST) problem, and a
particular case of the Minimum Routing Cost Spanning Tree (MRCT) problem.

In 1984, Agarwal and Venkateshan [AMS84] presented polynomial-time algorithms for
two constrained cases of ORST. In the first case, some vertices are required to be leaves
of the solution. In the second case, certain pairs of vertices are required to be linked by an
edge in the solution. Finally, he also studied how the structure of a solution for an instance
of ORST changes when we modify the demand of a requirement.

3.2.2 From 1987 to 2012: heuristics and genetic algorithms

Ahuja and Marty [AM87] developed a branch-and-bound approach for OCST and solved
instances with up to 40 vertices. They also proposed a heuristic algorithm that finds near-
optimal solutions for graphs with 100 vertices. This algorithm consists of two phases. In the
first phase, it finds a spanning tree T in G; then, it tries to find another tree with better
communication cost by exchanging one edge in E(T ) with one in E(G) \ E(T ). In 1994,
Palmer and Kershenbaum [PK94] proposed two approaches for OCST: a heuristic algorithm
and a genetic algorithm. Later, in 1995, these authors [PK95] and then Soak [Soa06] in 2006,
proposed genetic algorithms for OCST. In 2011, Hieu, Quoc and Nghia [NQN11] designed an
ant colony heuristics for MRCT. Later, in 2012, Tan [Tan12] presented a genetic approach
for the same problem.

3.2.3 From 1980 on: approximation algorithms

Let (G, c,R,w) be an instance of OCST, where G = (V,E). Let φ : V → R≥0, and let
S = {ro : r ∈ R} be the set of origins of the pairs in R. In what follows, we define variants
of the OCST problem that have been studied in the literature. The additional hypotheses
on the instances of OCST (besides φ and S defined above) are stated for each variant.
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• Minimum Routing Cost Spanning Tree (MRCT): R is complete, and wr = 1, ∀r ∈ R.
• Optimal Product-Requirement Communication Spanning Tree (PROCT): R is com-

plete, and wr = φ(ro) · φ(rd), ∀r ∈ R.
• Optimal Sum-Requirement Communication Spanning Tree (SROCT): R is complete,

and wr = φ(ro) + φ(rd), ∀r ∈ R.
• p-Source OCST (p-OCST): |S| = p

• p-Source MRCT (p-MRCT): |S| = p; wr = 1, ∀r ∈ R; and either (u, v) or (v, u)

belongs to R, ∀u ∈ S and ∀v ∈ V .

The relationship between these problems, according to Wu and Chao [WC04], is shown
in Figure 3.2.

2-source MRCT

p-source MRCT, fixed pMRCT

p-source MRCT, arbitrary p
2-source OCST

PROCT SROCT p-source OCST, fixed p

Optimum Communication Spannig Tree

Figure 3.2: Relationship between variants of OCST.

Johnson et al. [JLK78] showed that MRCT is NP-hard. Since MRCT is a particular case
of PROCT and SROCT, these problems are also NP-hard. In 1980, Wong [Won80] proposed
a 2-approximation algorithm for MRTC. His algorithm chooses a shortest path tree that
minimizes the overall sum of distances from the root to each vertex. In 1996, Bartal [Bar96]
proposed a probabilistic approximation algorithm for OCST. Later, Bartal [Bar98] proposed
an approximation algorithm for the metric case of the OCST with factor log n log log n. In
the same year, Peleg and Reshef [PR98] presented approximation algorithms for several
variants of OCST. Moreover, they showed that OCST is MAX SNP-hard. Thus, it does
not admit a PTAS, unless P = NP.

In 2000, Wu et al. [WCT00b, WLB+00, WCT00a, WCT00c] obtained several results
regarding MRCT, PROCT and SROCT. In [WCT00b], they proposed some approximation
algorithms for MRCT. In [WLB+00], they showed that MRCT is NP-hard, even if the
edge-costs obey the triangle inequality. Moreover, they designed a O(|V |3) algorithm that
transforms an instance of MRCT into a metric instance (metric case). In [WCT00a], they
showed a similar result for PROCT. Futhermore, they proposed a 1.577-approximation
algorithm for PROCT, and a 2-approximation for SROCT. Finally, in [WCT00c], they
proposed a PTAS for PROCT.

In 2002, Wu [Wu02] showed that the 2-MRCT is NP-hard, and proposed a PTAS for
it. Wu and Chao [Wu04], in 2004, showed that the p-OCST is NP-hard, for p ≥ 2. For the
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metric case, on graphs of order n, they presented a 2-approximation algorithm with time
complexity O(np−1). Moreover, they showed a 3-approximation algorithm for the general
case.

In 2015, Ravelo and Ferreira [RF15] presented a PTAS for the metric case of SROCT.
Later in 2017, they studied special cases of the metric p-OCST [RF17]. The previously
mentioned results are listed in Table 3.1.

Problem Authors Approx. factor Running time

MRCT
Wu et.al. [WLB+00] (1 + ε) nO(1/ε)

Wu, Chao and Tang [WCT00a] 1.577 O(n3)

PROCT Wu, Chao and Tang [WCT00c, WCT00a]
(k+3)/(k+1) n(k−1)

1.577 O(n5)

SROCT Wu, Chao and Tang [WCT00a] 2 O(n3)

metric SROCT Ravelo and Ferreira [RF17] 1 + ε
1−ε n6(d 6ε e

2−11d 6
ε
e+1)+1 log2(n)

p-MRCT Ravelo and Ferreira [RF15] (1 + ε) n

(
8p2

ε(2p−ε)−1
)
(p−1)+1

p-OCST Wu [Wu04] 2 O(np−1)

2-MRCT Wu [Wu02] (1 + ε) O(n
1
ε
+1 )

Table 3.1: Approximation algorithms.

3.2.4 From 2002 on: MILP formulations, large-scale optimization

In 2002, Fischetti, Lancia, and Serafini [FLS02] presented two formulations for MRCT.
Regarding OCST, in 2010, Contreras et al. [CFM10a] showed lower bounds for OCST based
on a Lagrangian relaxation. Fernández, Luna, Hildenbrandt, Reinelt, andWiesberg [FLH+13]
proposed a flow formulation in 2013; and in 2015, Luna [Lun16] proposed a formulation based
on rooted trees.

In 2018, Tilk and Irnich [TI18] proposed branch-and-cut-and-price algorithms based on
Dantzig-Wolfe decomposition. These algorithms obtain optimal solutions for instances of
OCST with up to 40 vertices and edge density above 35%.

In 2019, Zetina, Contreras, Fernández and Luna [ZCFL19] proposed an algorithm based
on Benders decomposition, integrated within a branch-and-bound framework. Computa-
tional experiments with this algorithm show that it outperforms the algorithms proposed
by Tilk and Irnich [TI18], expanding the limits of solvability for the OCST problem from
40 to 60 vertices. In terms of exact algorithms, this is the algorithm with best performance.

Agarwal and Venkateshan [AV19] proposed new valid inequalities (and separation routines
for them) for a flow-based formulation to solve the OCST problem. These authors show –on
small instances– computational evidence of the strength of these new inequalities, but they
do not show an algorithm that outperforms the algorithm we have previously mentioned.
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3.3 Applications

The OCST problem and its variants have many applications. One of them is on the
Multiple Sequence Alignment (MSA) problem [WLB+00]. In this problem, given a set of n
strings, our objective is to insert gaps into these strings in such a way that: all the strings
have the same length, and when we consider a position, they all contain the same character
(a gap match every character). The goal is to minimize the total number of gaps.

An example for the strings ATTCG, TTCCG and ATCG is presented in Figure 3.3. A
gap is represented by the character ‘-’.

A T T C - G
- T T C C G
A - T C - G

Figure 3.3: An alignment for strings s1= ATTCG, s2=TTCCG and s3=ATCG.

Waterman [Wat95] designed a polynomial-time algorithm for MSA when we consider
instances with two strings. If we consider instances with at least three strings, the decision
version of this problem is NP-complete [WJ94]. For the general case, an exponential algo-
rithm, using dynamic programming, was proposed by Sankoff [SK83]. This algorithm has
complexity O(2n`n), where ` is the maximum length of the n strings.

Most of the approaches used to solve MSA construct an alignment sequentially by merging
two strings, and by adding the alignment of both strings, until an alignment for all of them is
obtained. Thus, the order in which the merge of the strings is carried out affects the total cost
of the final alignment. The advantage of this approach is its low running time [WLB+00]. In
order to find an upper bound for the total cost of this alignment, we model it as an instance
of OCST, as follows. In the current stage of the procedure, we consider a graph, say G′,
such that every string is represented by a vertex in G′. Moreover, every pair of vertices is
linked by an edge. For each edge, its cost is equal to the edit distance (the cost of turning
one string into the other) of its ends. Finally, we set the demand for each requirement to 1.
Since OCST is NP-hard, approximate solutions are used to maintain a reasonable running
time.

Another application of OCST occurs in the Tree-of-Hubs Location (THL) problem
[CFM10b]. An instance of THL is given by a tuple (G, c,R,w, p, α), where (G, c,R,w)

is defined in an analogous way as in OCST. Besides that, p is a positive integer and α is
a positive real number such that p ≤ |V (G)| and α ≤ 1. Moreover, p and α are related to
the size of a feasible solution and the objective value, respectively. In this problem, we seek
two trees in G, say T and T ′, such that T is a spanning tree of G, and T ′ is a subtree of T
of order p. Moreover, each edge of T must have at least one end in V (T ′). In other words,
each vertex v ∈ V (T )\V (T ′) is a leaf in T . In Figure 3.4, we show an instance of THL with
p = 4, and a feasible solution (T, T ′) where the vertices in gray belong to T ′.
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(a) (b)

Figure 3.4: (a) A graph G of an instance I = (G, c,R,w, p, α), where p = 4; (b) a feasible solution
(T, T ′) for I, where the gray vertices belong to T ′.

In THL, the vertices of T ′ are called hubs. The edges that link hubs represent “fast”
connections. So, they receive a “discount” in their cost that is determined by α. Thus, to
define the objective function, we use an auxiliary cost function c′, associated with E(T ),
defined as follows.

c′ij :=

{
αcij, if ij ∈ E(T ′)

cij, otherwise.
(3.2)

Hence, the objective function that we want to minimize is the following:

∑
r∈R

wr distT (ro, rd), (3.3)

where distT (ro, rd) is the cost, considering c′, of the path between ro and rd in T . In what
follows, we describe a special case of THL, and show how we can model it as an OCST

instance. Let I = (G, c,R,w, p, α) be an instance of THL. Let V ′ ⊆ V be such that |V ′| = p

and |NG(v) ∩ V ′| = 1, for each v ∈ V (G) \ V ′. We are interested in finding a THL such
that V (T ′) = V ′. That is, we want to find an optimal tree such that the hub nodes are
precisely the set V ′. Now, we show how to reduce this problem to OCST. Let h be a
function associated with vertices of G such that h(u) is the hub linked to u, if u ∈ V (G)\V ′.
Otherwise h(u) = u. Let (T, T ′) be a feasible solution, and let r ∈ R be a requirement such
that u = ro and v = rd. Let P be the path from u to v in T . Note that P is composed of
three subpaths, say P1, P2 and P3, such that

• P1 is a path from u to h(u) (possibly empty),

• P2 is a path from h(u) to h(v) in T ′, and

• P3 is a path from h(v) to v (possibly empty).
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Thus, we have that∑
(u,v)∈R

wrdistT (u, v) =
∑

(u,v)∈R

wr
(
cu,h(u) + α distT ′(h(u), h(v)) + cv,h(v)

)
=

∑
(u,v)∈R

wr
(
cu,h(u) + cv,h(v)

)
+ α

∑
(u,v)∈R

wr distT ′(h(u), h(v)).

Since |NG(v) ∩ V ′| = 1, for v ∈ V (G) \ V ′, the first summation in the right side of the
expression above is a constant. As α ≥ 0, the problem reduces to finding an OCST of the
subgraph induced by V ′.

A real application of the previous problem occurred in the design of a high-speed train
network in Spain [CFM10b]. In this case, the goal was to construct train stations in some
fixed cities — those with higher population (the set V ′). Due to the high cost for building
the network, it was required to have a tree topology. Moreover, cities without a station
(vertices not belonging to V ′) were required to be connected to a near city with a station.
Furthermore, the average number of people that would travel between cities was known (the
demand). Thus, this problem could be modelled as a special case of THL.

3.4 Special cases of the OCST problem

In this section, we present special cases of the OCST problem that can be solved in
polynomial time. First, we consider the 1-source OCST problem. After that, we present
two special cases that were investigated by Hu [Hu.74]. In both cases, the input graph is
complete.

3.4.1 1-source MRCT

Given an instance of MRCT, if the origin of all the requirements is the same vertex,
say o, the objective function is the following:

∑
r∈R

distT (o, rd). (3.4)

Moreover, when |R| = 1, we are are looking for a shortest path between two vertices. For
|R| > 1, the tree we are looking for is precisely a shortest path tree with root o [Wu02]. The
latter problem has been extensively studied. Many polynomial-time algorithms have been
proposed for solving it, as for example, Dijkstra’s algorithm [Dij59].
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3.4.2 Optimum Requirement Spanning Tree

The Optimum Requirement Spanning Tree (ORST) problem is a particular case of OCST

in which the input graph is complete and each edge has a cost equal to 1 (c : E → {1}).
Thus, in this case, we want to find a spanning tree T that minimizes:

∑
(ro,rd)∈R

wr|Pro,rd |, (3.5)

where Pro,rd denotes the path between ro and rd in T .

In what follows, we show how to reduce ORST to a multiterminal network flow problem
and how to associate with it a tree, defined as the Gomory-Hu tree [GH61] of this network.
Before, we present the concept of a laminar family consisting of subsets of the vertex set of
the input graph G. This concept is important in the construction of the Gomory-Hu tree.

Laminar families

Let N be a finite set and let A, B be subsets of N . We say that A and B cross or is a
crossing pair if

A ∩B 6= ∅, A 6⊆ B, B 6⊆ A, and A ∪B 6= N.

Similarly, we say that A and B overlap if

A ∩B 6= ∅, A 6⊆ B, and B 6⊆ A.

A family L of sets of a finite set is cross free (resp. overlap free) if no two sets A,B ∈ L
cross (resp. overlap).

Overlap free families are better known as laminar families, the terminology that we
will adopt. Clearly, a laminar family is also a cross free family. Moreover, a laminar family,
over a ground set N , has at most 2|N | − 1 distinct elements [BHR12].

The Gomory-Hu tree

Given the network N = (G, u), where G = (V,E), the Multiterminal Network Flow
(MNF) problem consists in finding a min-cut for every pair of vertices in G. Gomory and
Hu [GH61] studied this problem and showed a polynomial-time algorithm that receives, as
input, the network N and returns, as output, a capacitated tree. This tree is called the
Gomory-Hu tree of N , and its properties are stated in the following theorem.
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Theorem 3.4.1 (Gomory and Hu, 1961). Let (G, u) be a network, (T, c) be a Gomory-Hu
tree of (G, u). Let s and t be two distinct vertices in G. The network (T, c) satisfies the
following properties:

1. Let Pst be the path linking s and t in T . The capacity of a minimum s-t cut in G is
equal to min{ce : e ∈ E(Pst)}.

2. If the edge e∗ achieves the above minimum, then a minimum s-t cut, in G, is given by
the bipartition of V corresponding to the vertices in the two components of T − e∗.

Polynomial-time algorithm for the ORST problem

In this subsection we show that ORST can be solved in polynomial time using the
Gomory-Hu tree of a certain network [GH61]. Let I = (G, c,R,w) be an instance of ORST,
where G = (V,E) is a complete graph of order n, and ce = 1, for every e ∈ E. Let u : E → R
be a capacity function defined as uij = wij+wji, for i, j ∈ V, i 6= j. Without loss of generality,
we assume that wr is equal to zero if r 6∈ R. Throughout this subsection, we say that (G, u)

is the associated network of I.
Hu [Hu.74] showed that the sum of capacities of a Gomory-Hu tree of (G, u) is equal to

the optimal communication cost of I. In Figure 3.5, we show an instance I = (G, c,R,w) of
ORST, and in Figure 3.6 we show its associated network (G, u).

Given a graph G = (V,E), laminar families over V play an important role in the algorithm
for ORST proposed by Hu. In particular, we will consider that each set X in a laminar
family L represents a cut in G. In what follows, we show that, in order to contain a cut that
separates every pair of vertices in G, we must have that |L| ≥ |V | − 1.

1

2

0 3

1

1

1

1

1

1

Requirement (r) Demand (wr)
(0, 1) 4
(0, 2) 3
(0, 3) 2
(1, 2) 7
(1, 3) 3
(2, 3) 6
(3, 2) 2

Figure 3.5: An instance I of the ORST problem.

Lemma 3.4.2 (Hu, 1974). Let G = (V,E) be a graph of order n, and let L be a laminar
family over V . If |L| < n− 1, then there exist vertices, say s and t, such that either s, t ∈ Z
or s, t ∈ V \ Z, for each Z ∈ L.
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1
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3
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Figure 3.6: The associated network (G, u) of the instance I, where uij = wij + wji.

Proof. We show this by induction on n. If n = 2, then |L| = 0. So, the condition holds. Now,
suppose that n ≥ 3. Let X be a maximal set of L, and let Y = V \X. Consider the laminar
families LX = {Z : Z ⊂ X,Z ∈ L} and LY = {Z : Z ⊆ Y, Z ∈ L}. Also, consider the
graphs GX = G[X] and GY = G[Y ]. If |LX | < |X| − 1 or |LY | < |Y | − 1, by the induction
hypothesis the result follows. Thus, suppose that |LX | ≥ |X| − 1 and |LY | ≥ |Y | − 1. Since
L = LX ∪ LY ∪ {X}, we have that

|L| ≥ |LX |+ |LY |+ 1 ≥ |X| − 1 + |Y | − 1 + 1 = n− 1,

a contradiction.

Let G = (V,E) be a connected graph of order n, and let L be a laminar family over V
such that |L| = n − 1. We say that L is a separating family if, for every pair of vertices
i and j in G, there is a set X ∈ L such that δ(X) is an i-j cut. Now, let T be a spanning
tree of G, and let L be a separating family. We say that L corresponds to T (and also
T corresponds to L) if, for every X ∈ L, we have that T [X] is connected. The following
result relates the spanning trees of a graph G to separating families over V (G).

Lemma 3.4.3 (Hu, 1974). Let G = (V,E) be a graph of order n. Let T be a spanning tree
of G, and let L be a laminar family of size n− 1. Then, the following hold:

1. there is a separating family L′ that corresponds to T , and

2. there is a tree T ′ that corresponds to L.

Proof. We will show both claims by induction on n. First, we show statement 1. If n = 1, then
T is a single vertex. Thus, L′ = ∅. So, suppose that n ≥ 2. Let e ∈ E(T ). Let T 1 and T 2 be
the components (trees) of T−e. By induction hypothesis, there exist separating families, say
L1 and L2, that correspond to T 1 and T 2, respectively. Observe that L′ = L1∪L2∪{V (T 1)}
is a separating family that corresponds to T .

Now, we show statement 2. If n = 1, then a tree T ′ with a single vertex corresponds to L.
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Suppose that n ≥ 2. Let X be a maximal set of L, distinct from V , and let Y = V \ X.
Consider the laminar families LX = {Z : Z ⊂ X,Z ∈ L} and LY = {Z : Z ⊂ Y, Z ∈ L}.
Observe that |LX | = |X|−1 and |LY | = |Y |−1. Otherwise, |LX | < |X|−1 or |LY | < |Y |−1

and, by Lemma 3.4.2, there would exist a pair of vertices in T not separated by L. Thus,
by induction hypothesis, there exist trees, say TX and T Y , that correspond to LX and LY ,
respectively. Let x (resp. y) be a vertex in TX (resp. T Y ) such that xy is an edge in G (it
exists because G is connected). Therefore, L corresponds to T ′ = TX ∪ T Y ∪ {xy}.

In Figure 3.7, we show two examples of separating families that correspond to two span-
ning trees. Nodes in gray belong to the laminar cuts associated with each one of the former
trees. Let T be a tree, and let L be a separating family that corresponds to T . The next two
results will relate the number of cuts (induced by sets in L) that separate two vertices to its
distance in T .

Proposition 3.4.4 (Hu, 1974). Let G = (V,E) be a connected graph, T a spanning tree of
G, and L a separating family that corresponds to T . There is a unique set X ∈ L such that
δ(X) is an i-j cut, for each edge ij ∈ E(T ).

Proof. We show the claim by induction on n := |V |. If n = 1, the claim trivialy follows. So,
suppose that n ≥ 2. Let ij ∈ E(T ). We consider two cases.

Case 1: The vertex i or the vertex j is a leaf of T .

Without loss of generality, suppose that i is a leaf of T . Let X ∈ L induce a cut that
separates i from j. Since i is a leaf either X = {i} or X = V \ {i}. Suppose that X = {i}
and Y = V \ {i}. Moreover, as |L| = n − 1, L contains just one of these sets. Otherwise it
would contradict Lemma 3.4.2, since L′ = L \ {X, Y } is a separating family of T − i with
size n− 2.

Case 2: The vertices i and j are internal vertices of T .

Since n ≥ 2, T must contain a leaf, say k. Let p be the neighbor of k in T , and let X ∈ L
induce a p-k cut. By the previous case, such set X is unique. Now, consider the family
L′ = L \ {X}, and the tree T ′ = T − k. Observe that L′ is a separating family that
corresponds to T ′. Since ij ∈ E(T ′), by induction hypothesis, there is a unique set X ′ ∈ L′
that induces an i-j cut. As δ(X) is not an i-j cut, and X ′ ∈ L, the claim follows.

Corollary 3.4.5. Let G = (V,E), T and L be as stated in Proposition 3.4.4. For each edge
e ∈ E(T ), denote by Xe the set in L that induces a cut in T that separates its ends. Consider
two distinct vertices i and j in T , and the set Sij defined as follows:

Sij = {X ∈ L : δ(X) is an i-j cut}.
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Then,
Sij = {Xe : e ∈ Pij},

where Pij is the path in T that links i to j.

Proof. First, observe that for every set X that induces an i-j cut, it must contain a unique
edge in E(Pij) since T [X] is connected. Thus, by Proposition 3.4.4, the result follows.

Consider an instance I = (G, c,R,w) of ORST. Note that since G is complete, any
tree with the same vertex set is a spanning tree of G. In what follows, we show that the
communication cost of a feasible solution of I, say T , is equal to the sum of the capacities
of a separating family that corresponds to T .

1

2

0 3

1

2

0 3

0 1

2 3

23 0 1

2 3 0 1

0 1

2 3

0 1 2

3

2 1 3

1 3

(a) (b)

Figure 3.7: (a) Cuts (in gray) correspond to edges {1, 2}, {2, 3} and {0, 1}; (b) cuts (in gray)
correspond to edges {0, 1}, {1, 2} and {1, 3}.

Lemma 3.4.6 (Hu, 1974). Let I = (G, c,R,w) be an instance of ORST, and let T be a
spanning tree of G. The communication cost of T is equal to∑

X∈L

u(δ(X)),

where L is a separating family that corresponds to T , and (G, u) is the network associated
with I.

Proof. Let X ∈ L. Observe that u(δ(X)) =
∑

s∈X
∑

t∈V \X ust. So, the sum of capacities of
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all the sets in L is equal to: ∑
X∈L

u(δ(X)) =
∑
X∈L

∑
s∈X

∑
t∈V \X

ust. (3.6)

By Corollary 3.4.5 and (3.6), we have that

∑
S∈L

u(δ(S)) =
∑

ij∈E(G)

uijdistT (i, j), (3.7)

=
∑

ij∈E(G)

(wij + wji)distT (i, j).

In what follows, I = (G, c,R,w) is an instance of ORST, and (G, u) is its associated
network. Let T be a spanning tree of G, and L a separating family that corresponds to T .
Since |E(T )| = |L|, Propositon 3.4.4 and Lemma 3.4.6 imply that the communication cost
of T is equal to ∑

e∈E(T )

u(δ(Xe)), (3.8)

where Xe ∈ L is the set that induces a cut that separates the ends of e. Adolphson and
Hu [AH73] showed that, given two spanning trees over the same vertex set, there is a bijection
between its edges that satisfy an important property.

Lemma 3.4.7 (Adolphson and Hu, 1973). Let G = (V,E) be a graph and let B and R

be spanning trees of G. Then, there exists a bijection ϕ : E(B) → E(R) such that ϕ(ij) ∈
E(Pij), for every ij ∈ E(B), where Pij is the path that links i and j in R.

Proof. Let G′ be a (X, Y )-bipartite graph such that X = E(B) and Y = E(R). Moreover,
NG′(ij) = E(Pij), for every ij ∈ E(B). That is, an edge ij ∈ E(B) is linked to the edges
in the path between i and j in R. We show an example of this construction in Figure 3.8.
Observe that the existence of ϕ is equivalent to showing that G′ has a perfect matching. To
show that, we will use Hall’s Theorem.

Let EB be a subset of edges in E(B). We will show that

|EB| ≤ |NG′(EB)|.

Let B′ (resp. R′) be the subgraph spanned by EB (resp. NG′(EB)) in B (resp. R). Moreover,
let us denote by nB and kB (resp. nR and kR) the number of vertices and components,
respectively, of B′ (resp. R′). First, if i ∈ V (B′), there is an edge e ∈ EB incident to i. By
definition, there exists an edge in NG′(e) incident to i. Thus, i ∈ V (R′). Therefore, nB ≤ nR.
Now, since NG′(e) induces a path in R, for every e ∈ E(B), the vertices of a component
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in B′ are contained in a component of R′ which implies that kR ≤ kB. Therefore, we have
that

|EB| = nB − kB ≤ nR − kR = |NG′(EB)|.

e01 e01

e12 e12

e23 e13

Figure 3.8: The bipartite graph G′ obtained from the two trees in Figure 3.7.

Finally, we present the main result of this subsection.

Theorem 3.4.8 (Adolphson and Hu, 1973). Let I = (G, c,R,w) be an instance of ORST

problem, and let T be a Gomory-Hu tree of the network (G, u). Then, T is an optimal solution
for the instance I.

Proof. Let T ∗ be an optimal solution for the instance I. Let L and L∗ be separating families
that correspond to T and T ∗, respectively. By Lemma 3.4.6, it suffices to show that∑

e∈E(T )

u(δ(Xe)) ≤
∑

f∈E(T ∗)

u(δ(X∗f )).

Let ϕ be a bijection between E(T ) and E(T ∗) as in Lemma 3.4.7. Now, let e = ij be an edge
in T , and let f = ϕ(e) be an edge in T ∗. By Theorem 3.4.1, Xe is a minimum i-j cut in G.
On the other hand, since f belongs to the path between i and j in T ∗, we have that X∗f ∈ L∗
is also an i-j cut. Thus, u(δ(Xe)) ≤ u(δ(X∗f )). Therefore, since ϕ is a bijection, adding up
this inequality for each edge e ∈ E(T ), we obtain∑

e∈E(T )

u(δ(Xe)) ≤
∑

f∈E(T ∗)

u(δ(X∗f )).

A Gomory–Hu tree of an n-vertex network can be constructed by considering at most
n − 1 maximum-flow min-cut computations. Many polynomial-time algorithms have been
proposed to construct it, as for example, Push-relabel with FIFO vertex selection rule algo-
rithm [GT88], Dinitz’s algorithm [Din06], Ford-Fulkerson algorithm [FF57], among others.
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3.4.3 A special case of the Minimum Routing Cost Spanning Tree

The Minimum Routing Cost Spanning Tree (MRCT) is a particular case of OCST in
which each requirement has demand equal to 1, and R is complete. The MRCT problem
is also called the optimum distance spanning tree problem [Hu.74]. The goal is to find a
spanning tree T that minimizes the following objective function:

∑
r∈R

distT (ro, rd). (3.9)

As we mentioned before, Johnson et al. [JLK78] showed that the MRCT problem is
NP-hard.

We present here two special cases of MRCT that can be solved in polynomial time. These
results were obtained by Hu [Hu.74]. The first is for MRCT, restricted to instances with
constant cost function c; the other is a slightly stronger result in which the cost function c
need not to be constant, but must satisfy a certain condition.

Let (G, c,R,w) be an instance of MRCT where G is a complete graph of order n. Let T
be spanning tree of G. Let e be any edge in T and let T1 and T2 the components of T − e.
Clearly, for any u ∈ V (T1) and v ∈ V (T2), the path that links u and v, in T , contains the
edge e. Moreover, no path that links two vertices in V (T1) or in V (T2) contains e. Therefore,
the contribution to the communication cost that corresponds to the edge e is ce · k · (n− k),
where k = |V (T1)|. So, we can calculate the communication cost of T by adding up the
contribution of each edge in T .

In Lemma 3.4.9, we show that if all edges have the same cost, then for any instance of
MRCT, an optimal solution is a star. Let T be a tree. We recall that an internal vertex of T
is a vertex that is not a leaf, and that an internal edge is an edge that links two internal
vertices. Moreover, an extremal internal vertex of T is an internal vertex that is adjacent to
a leaf.

Lemma 3.4.9 (Hu, 1974). Let I = (G, c,R,w) be an instance of the MRCT problem, where
G is a complete graph of order n. If all the edges of G have the same cost, then any optimal
solution for I is a star.

Proof. The proof is by contradiction. Note that if n ≤ 3, any spanning tree of G is a star.
So, we can suppose that n ≥ 4. Suppose that there exists an optimal solution T ∗ of I that
is not a star. Let c∗ be the cost of every edge of G. We will consider the communtication
cost of T ∗ as the sum of a) the communtication cost of every internal edge of T , and b) the
commutication cost of every edge incident to a leaf.

First, observe that for every edge incident to a leaf, its communication cost is c∗(n− 1).
Let e be an internal edge of T ∗. Moreover, let k be the order of one of the components
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in T ∗ − e. Thus, the communication cost of e is c∗k(n− k), where k ≥ 2 and n− k ≥ 2.

Observe that c∗k(n − k) > c∗(n − 1) if n ≥ 4. Consider an edge e = uv such that v
is an extremal interval vertex. Then, the tree T ′ obtained from T ∗ by removing every edge
incident to v, and by linking every isolated vertex to u, has less communication cost than T ∗,
a contradiction. Therefore, in an optimal solution for I, every edge must be incident to a
leaf.

The next result, for a slightly more general cost function c, also ensures the existence of
an optimal solution that is a star.

Theorem 3.4.10 (Hu, 1974). Let I = (G, c,R,w) be an instance of the MRCT problem,
where G = (V,E) is a complete graph of order n ≥ 4. Suppose that there exists a nonnegative
number t ≤ (n− 2)/(2n− 2) such that

cij + tcjk ≥ cik, ∀i, j, k ∈ V.

Then, there exists a star that is an optimal solution for I.

Proof. Suppose by contradiction that such optimal solution does not exist. Among the op-
timal solutions, let T ∗ be an optimal solution with the maximum number of leaves possible.

Let q be an extremal internal vertex of T ∗ adjacent to the least number of leaves. Moreover,
let p be an internal vertex adjacent to q in T ∗. Let v1, . . . , vk−1 be the leaves adjacent to q
in T ∗. Since T ∗ contains at least two internal vertices, we have that k ≤ n/2. Now, let T be
a spanning tree of G such that

E(T ) = E(T ∗) \ {qu : u ∈ V, uq ∈ E(T ∗), u 6= p} ∪ {pu : u ∈ V, uq ∈ E(T ∗), u 6= p}.

Observe that T has one more leaf than T ∗. We will show that T has optimal communication
cost, contradicting the choice of T ∗. In Figure 3.9, we show how T is constructed from T ∗.

Observe that the contribution to the communication cost of T ∗ of the edges {pq}∪E(T ∗)\
E(T ) is:

cpqk(n− k) +
k−1∑
i=1

cqvi(n− 1). (3.10)

On the other hand, the contribution of the edges in {pq} ∪E(T ) \E(T ∗) to the commu-
nication cost of T is:

cpq(n− 1) +
k−1∑
i=1

cpvi(n− 1). (3.11)
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Thus, the difference between the communication cost of T ∗ and T is

(n− 1)(cpq)

[
k(n− k)

n− 1
− 1

]
+ (n− 1)

[
k−1∑
i=1

cqvi − cpvi

]
.

Since k(n−k)− (n−1) = n(k−1)− (k2−1) = (k−1)(n−k−1), the previous expression
is equivalent to

(n− 1)(cpq)

[
(n− k − 1)(k − 1)

n− 1

]
+ (n− 1)

[
k−1∑
i=1

cqvi − cpvi

]
.

Therefore, the difference between the communication cost of T ∗ and T is equal to

(n− 1)

[
k−1∑
i=1

(
cqvi − cpvi +

n− k − 1

n− 1
cpq

)]
. (3.12)

Now, we obtain a lower bound on the value of (3.12). Since n is a constant and ce ≥ 0,
we need to minimize n− k− 1 as a function of k. Thus, its minimum value is attained when
k is maximum. By the way we chose q, we have that k ≤ n/2. So,

cqvi − cpvi +
n− k − 1

n− 1
cpq ≥ cqvi − cpvi +

n− 2

2n− 2
cpq ≥ 0.

The last inequality comes from the fact that t ≤ (n − 2)/(2n − 2) and cij + tcjk ≥ cik, for
every i, j, k ∈ V . Therefore, T is also an optimal solution for I, a contradiction.

p q

v1

v2

v3

vk−1

p

v1

v2

v3

vk−1

q

(a) (b)

Figure 3.9: (a) The tree T ∗; (b) the tree T stated in the proof of Theorem 3.4.10.

Therefore, by Theorem 3.4.10, if an instance satisfies the conditions given in that theorem,
we can find an optimal solution by considering each vertex as the center of the star, and
return the one with minimum communication cost.



Chapter 4

Mixed Integer Linear Programming
formulations

In this chapter, we first review some ILP and MILP formulations for the spanning tree
problem. After that, we show how to separate an important class of inequalities, called the
Subtour Elimination Contraints, that will be used in our implementation. Finally, we present
the MILP formulations that exist in the literature for the OCST problem.

4.1 Formulations for the spanning tree problem

In the OCST problem, our aim is to find a spanning tree that minimizes the total com-
munication cost. Thus, we first present formulations to find a spanning tree in a graph.
Throughout this section we consider that the input graph is always connected (even if this
is not stated explicitly).

There exist some well-known formulations for the spanning tree problem in the literature
(see [MW95, CCPS98]). We will present three of these formulations. The first one is known
as the Cut Set (CS) formulation, and the second one is known as the Subtour Elimination
Constraint (SEC formulation). The third one models the problem as a flow in a network.
These three models are classic and are mentioned in [MW95].

Let G = (V,E) be the input graph for the spanning tree problem. In what follows, we
consider binary variables x = (xe)e∈E and impose restrictions to obtain a feasible solution
(spanning tree) given by precisely the edges e ∈ E such that xe = 1.

4.1.1 Cut Set formulation

This formulation is based on the Cut Set inequalities (4.2). These inequalities impose that
a feasible solution x must satisfy the following condition: x(δ(S)) ≥ 1, for each nonempty
proper set S ⊂ V . That is, if T is the graph induced by the support of x, then T must
contain an edge of every cut δ(S), defined by a nonempty proper subset S ⊂ V .

45
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Since a spanning tree of G is a connected subgraph with |V | − 1 edges, the spanning tree
problem can be modelled by the system of inequalities (4.1), (4.2) and (4.3), indicated in
what follows. We call this system the CS formulation.

x(E) = |V | − 1 (4.1)

x(δ(S)) ≥ 1 ∀S ( V, S 6= ∅ (4.2)

xe ∈ {0, 1} ∀e ∈ E (4.3)

The next proposition shows that the above formulation models properly the spanning
tree problem.

Proposition 4.1.1. Let G = (V,E) be a graph. A vector x ∈ B|E| is a feasible solution of
the CS formulation if, and only if, its support induces a spanning tree of G.

Proof. First, observe that the incidence vector of any spanning tree satisfies (4.1), (4.2)
and (4.3). We will show now that the support of a feasible solution x induces a spanning
tree of G. Let T be the subgraph of G induced by the support of x. Since (4.1) implies
that |E(T )| = |V | − 1, we just need to show that T is connected.

By contradiction, suppose that T is not connected. Then, T contains at least two con-
nected components. Let S be the vertex set of one of these components. Clearly, S is
nonempty, and S 6= V . Since there is no edge between S and V \S, we have that x(δ(S)) = 0,
a contradiction to (4.2).

Note that the CS formulation has an exponential number of inequalities. If we consider
a relaxation of this formulation, it is possible to solve it in polynomial time, because the
separation problem corresponding to (4.2) can be solved in polynomial time, by finding a
minimum cut in the graph induced by the support of x. However, the relaxation of this
formulation does not give an integral polytope (that is, we cannot drop the integrality
restriction).

4.1.2 Subtour Elimination Constraint formulation

A spanning tree of G = (V,E) is an acyclic subgraph containing |V | − 1 edges. The
Subtour Elimination Constraints (see (4.5)) impose that the support of a feasible solution
induce an acyclic subgraph. We call the system of inequalities (4.4), (4.5) and (4.6) the SEC

formulation.
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x(E) = |V | − 1 (4.4)

x(E(S)) ≤ |S| − 1 ∀S ( V, S 6= ∅ (4.5)

xe ∈ {0, 1} ∀e ∈ E(G). (4.6)

Proposition 4.1.2. Let G = (V,E) be a graph. A vector x ∈ B|E| is a feasible solution of
the SEC formulation if, and only if, its support induces a spanning tree of G.

Proof. Let T be a spanning tree of G, and let χT be its incidence vector. Since any induced
subgraph of T is a forest, then χT satisfies (4.5). Therefore, χT is a feasible solution of the
SEC formulation. Let us now prove that, if x is a feasible solution, then the subgraph induced
by the support of x is a tree. By Proposition 4.1.1, it suffices to show that x satisfies (4.2).
Let S be a nonempty vertex set such that S ( V . Observe that

x(E) = x(E(S)) + x(E(V \ S)) + x(δ(S)). (4.7)

Since x satisfies (4.5), we have that x(E(S)) ≤ |S|−1 and x(E(V \S)) ≤ |V |−|S|−1. By
replacing these two inequalities in (4.7), we obtain that x(E) ≤ |V | − 2 + x(δ(S)). Finally,
using equation (4.4) in the latter inequality, we have that x(δ(S)) ≥ 1.

Similarly to the CS formulation, there exists an exponential number of inequalities (4.5).
However, in this case, if we relax the integrality of this formulation, the corresponding
polytope is integral. This means that if we can solve the separation problem corresponding to
the inequalities (4.5), then we can solve the spanning tree problem in polynomial time (using
this relaxed formulation). Fortunately, this separation problem can be solved in polynomial
time. We prove this claim after we present the last formulation for the spanning tree problem.

4.1.3 Flow formulation

Let G = (V,E) be the input graph, and let D = (V,A) be its associated digraph. In
the Flow formulation, we choose a vertex r ∈ V . Besides the variables x = (xe)e∈E, we also
have variables f = (fa)a∈A that represent a flow, in D, from r to every other vertex in V .
Moreover, each arc a in this network has capacity ua = |V |−1, and we ensure that if fij > 0,
then xij = 1.

The Flow formulation is defined by the following system of inequalities:
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∑
ij∈E

xij = |V | − 1 (4.8)∑
ij∈A

fij −
∑
jk∈A

fjk = 1 ∀j ∈ V \ {r} (4.9)

fij ≤ (|V | − 1)xij ∀ij ∈ A (4.10)

fij ≥ 0 ∀ij ∈ A (4.11)

xij ∈ {0, 1} ∀ij ∈ E (4.12)

In what follows, we show that the Flow formulation models properly the spanning tree
problem.

Proposition 4.1.3. Let G = (V,E) be a graph and let D = (V,A) be its associated digraph.
Let x ∈ B|E|, and let T be the subgraph of G induced by the support of x. Let r ∈ V . Then,
T is a tree if and only if there exists a vector f ∈ R|A| such that (x, f) is a feasible solution
of the Flow formulation.

Proof. First, we suppose that T is a tree, and show that there exists a vector f such
that (x, f) is a feasible solution of the flow formulation. Let T r be the r-arborescence ob-
tained from T , and let P be the collection of paths, in T r, from r to the other vertices in V .
We denote by Pru the path in P from r to u. We define f as follows. For each arc a ∈ A, we
set

fa = |{Pru : Pru ∈ P , a ∈ A(Pru)}|. (4.13)

Since T is a tree, x satisfies (4.8). Note that, for each vertex j ∈ V \ {r}, if a = ij is
the arc in T r entering j, then f(a) is precisely the number of vertices in the j-arborescence,
say T j, contained in T r, and this value is one unit greater than the number of vertices in
T j − j (considering the definition of the flow value in each of the arcs leaving j). Thus,
for each j ∈ V \ {r}, the pair(x, f) satisfies (4.9). Finally, (x, f) also satisfies (4.10) since
|P| ≤ |V | − 1. Thus (x, f) is a feasible solution of the Flow formulation.

Now let (x, f) be a feasible solution of the Flow formulation. We will show that T is
a tree. We denote by f+

− (u) the excess of flow in vertex u. Furthermore, if S ⊆ V , we
denote by f+

− (S) the sum of f+
− (u) for each u ∈ S. By (4.9), we have that f+

− (u) = 1,
for each u ∈ V \ {r}. Moreover, by the flow conservation property, f+

− (r) = −|V | + 1.
By Proposition 4.1.1, it suffices to show that x satisfies the inequalities (4.2) in the CS

formulation. Let S be a subset of V such that S 6= ∅ and S 6= V . Since f+
− (S̃) = 0 only

if S̃ = V or S̃ = ∅, we have that f+
− (S) 6= 0. Thus, there exists an arc a, from S to V \ S

or vice versa, such that fa > 0. Then, by (4.10), we have that x(δ(S)) ≥ 1. Therefore, x
satisfies (4.2).
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In Figure 4.1, we show an instance of the spanning tree problem. Besides that, we show
the digraph induced by the support of a feasible solution (x, f) of the flow formulation.
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3 4

b(0) = −4

b(1) = 1

b(3) = 1

b(2) = 1

b(4) = 1

3 1

1 1

Figure 4.1: (a) A graph G; and (b) an r-arborescence induced by the support of (x, f). The value
b(j) is the excess of flow in the node j.

4.1.4 Separation routine for the SEC formulation

Let G = (V,E) be the input graph, and consider the linear relaxation of the SEC formu-
lation:

x(E) = |V | − 1, (4.4)

x(E(S)) ≤ |S| − 1 ∀S ⊆ V, S 6= ∅, (4.5)

xe ≥ 0 ∀e ∈ E (4.6)

Edmonds [Edm71] showed that the vertices of the polytope defined by these inequali-
ties are integral. To solve the above relaxation in polynomial time, we need a polynomial
algorithm –called here separation routine– to separate inequalities (4.5)

In what follows, given a vector x that satisfies (4.4) and (4.6), we show how to decide
whether x satisfies (4.5) in polynomial time. If the negative case, a violated inequality is
also shown. This algorithm is mentioned in [LRS11].

First, suppose that x does not satisfy (4.5). Moreover, let S ′ be a subset S ′ ⊆ V , S ′ 6= ∅
that maximizes

x(E(S ′))− |S ′|+ 1 > 0. (4.14)

Using the equation 1 = |V | − x(E) in the previous inequality, we obtain

x(E)− x(E(S ′)) + |S ′| < |V |.

Observe that x(E)−x(E(S ′)) = x(E(V \S ′))+x(δ(S ′)). Thus, if S ′ maximizes the left-hand
side of (4.14), it minimizes
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x(E(V \ S ′)) + x(δ(S ′)) + |S ′|. (4.15)

Therefore, our problem reduces to finding a set S ′ ⊆ V , S ′ 6= ∅, that minimizes (4.15) and
check if this value is less than |V |. In what follows, we model this problem as a minimum
cut problem in a particular network.

Let D = (V,A) be the associated digraph of G. Let s and t be different vertices of V , and
consider the following sets of arcs:

As = {(s, p) : p ∈ V \ {s}},
At = {(p, t) : p ∈ V \ {t}}.

Let Dst = (V,A ∪ As ∪ At). Let (Dst, u) be a network, where the capacity u is defined as
follows.

uij :=


xij
2
, if ij ∈ A

x(δ(j))
2

, if ij ∈ As
1, if ij ∈ At.

(4.16)

Note that, there can be more than one arc between each pair of vertices. Let S ⊆ V such
that s ∈ S and t /∈ S. We denote by δ+st(S) the cut induced by S in Dst. In order to calculate
the value of u(δ+st(S)), we consider the following three sets:

A1 = {ij ∈ A : i ∈ S, j /∈ S},
A2 = {it ∈ At : i ∈ S},
A3 = {si ∈ As : i /∈ S}.

Note that u(δ+st(S)) = u(A1) + u(A2) + u(A3). Moreover, we have that u(A1) = x(δ(S))/2

and u(A2) = |S|. Finally,

u(A3) =
∑
i∈V \S

x(δ(i))/2

= 1
2

(2x(E(V \ S)) + x(δ(V \ S)))

= x(E(V \ S)) + x(δ(V \ S))/2

= x(E(V \ S)) + x(δ(S))/2.

Therefore, we obtain that

u(δ+st(S)) = x(E(V \ S)) + x(δ(S)) + |S|.

The following observation will reduce the number of minimum cut computations needed
to find a set S ′ that minimizes (4.15). Let S ⊆ V , and let s, s′ ∈ S and t, t′ /∈ S. Let (Dst, u)
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(resp. (Ds′t′ , u
′)) be the network constructed from s and t (resp. s′ and t′) as above. Note

that, for i ∈ V \ S, the arc si ∈ As has the same capacity as the arc s′i ∈ As′ . In a similar
way, for i ∈ S, the arc it ∈ At has the same capacity as the arc it′ ∈ At′ . This implies
that u(δ+st(S)) = u′(δ+s′t′(S)). Thus, to find a set S ′ ⊆ V , S ′ 6= ∅, we do the following:

1. choose a vertex s ∈ V ,

2. for each t ∈ V \ {s}, construct Dst and find a minimum s-t cut,

3. for each t ∈ V \ {s}, construct Dts and find a minimum t-s cut.

Therefore, to check if a vector x satisfies (4.5), we need to solve 2|V | − 2 minimum cut
computations.

4.2 Mixed ILP formulations for the OCST problem

4.2.1 Path-Based formulation

Contreras, Fernández and Marín [CFM10a] proposed the Path-Based (PB) formulation.
In what follows, we will describe the idea behind this formulation.

Let I = (G, c,R,w) be an instance of the OCST problem, where G = (V,E). For each
requirement r ∈ R, we consider the digraph D = (V,A) (associated with G and r), in which
we want to find a path that links (ro, rd).

In Figure 4.2 we show an instance of the OCST problem. Moreover, in the same figure,
we indicate with ticker edges a solution, say T , for such instance. Besides that, in Figure 4.3
we show the communication paths, for T , between each origin and destination pair.

0

1 2

3

1 4

10

3
8

Requirement (r) Demand (wr)
(0, 1) 4
(2, 1) 2
(2, 3) 1

Figure 4.2: An instance of the OCST problem and a feasible solution T , indicated with ticker edges.

We consider a binary variable x = (xe)e∈E such that xe = 1 if, and only if, e belongs
to our solution, say T . Moreover, we consider a binary variable y = (yra), where r ∈ R and
a ∈ A(D), such that yra = 1 if, and only if, a belongs to the path P(ro,rd) in T . Note that we
are not considering SEC because we modify the set R, as described in the next paragraphs,
to ensure connectivity.

The Path-Based (PB) formulation is defined by the following mixed integer linear pro-
gram:
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Figure 4.3: All communication paths for R, modelled as network flows, in T .

min
∑
r∈R

wr
∑
ij∈A

cijy
r
ij (4.17)

s.t. ∑
ij∈E

xij = |V | − 1 (4.18)∑
i,rd∈A

yrird = 1 ∀r ∈ R (4.19)∑
ro,k∈A

yrrok = 1 ∀r ∈ R (4.20)∑
ij∈A

yrij −
∑
jk∈A

yrjk = 0 ∀r ∈ R ∀j ∈ V \ {ro, rd} (4.21)

yrij + yrji ≤ xij ∀r ∈ R ∀ij ∈ E (4.22)

xij ∈ {0, 1} ∀ij ∈ E (4.23)

yrij ≥ 0 ∀r ∈ R ∀ij ∈ A (4.24)

Constraints (4.19), (4.20), and (4.21) model the path between the origin and destination
of each requirement r ∈ R as a unit flow. Moreover, constraint (4.22) ensures that the
support of yr induces a path in D that links ro and rd.

Figure 4.4 shows an instance (G, c,R,w) of the OCST problem, where G = (V,E) is
the graph depicted and the requirements r ∈ R are indicated in the table. Besides that,
in Figure 4.5, we show a solution that is not connected. Observe that, adding an artificial
requirement (0, 4) to R with w04 = 0 will guarantee the connectivity of our solution. So, we
will fix a vertex o in V and for each vertex v 6= o in V , we add the pair (o, v) to R with
wo,v = 0 if such a pair does not exist. This ensures that there exists a path between each
pair of vertices. So, T is connected. Therefore, by constraint (4.18), T is a tree.

According to Luna [Lun16], the PB formulation produces the tightest linear relaxation
bound. Despite that, because of the huge number of variables and constraints (up to O(n4)),
a good performance is only achieved when the instances are small or medium.
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Requirement (r) Demand (wr)
(0, 1) 4
(2, 1) 2
(2, 0) 1
(4, 5) 3

Figure 4.4: An instance of the OCST problem.
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Figure 4.5: A graph T that is not connected, induced by the support of an optimal solution for the
PB formulation.

4.2.2 Flow-Based formulation

In the Flow-Based (FB) formulation, the OCST problem is modelled as a set of flows in
a tree. This idea was proposed by Fernández et al. [FLH+13]. Given an instance (G, c,R,w)

of the OCST problem, where G = (V,E), we want to find a subgraph H of G such that H
is a tree. Moreover, for each o ∈ V , we obtain an o-arborescence contained in D(H), the
digraph associated with H. Throughout each one of these arborescences, we send flow from
o to the other vertices.

Consider the instance (G, c,R,w) shown in Figure 4.6. To explain how to calculate the
communication cost of a tree, we will consider the spanning tree T , composed of the ticker
edges {0, 1}, {0, 2}, {1, 3} and {1, 4}.

0

1 2

3 4

1
4

10

3
2

6

8

Requirement (r) Demand (wr)
(0, 1) 4
(0, 3) 3
(2, 1) 2
(2, 4) 1
(3, 4) 5

Figure 4.6: An instance of the OCST problem and a feasible solution T , indicated with ticker edges.

In this case, note that R contains three different origins for all requirements; these are
the vertices 0, 2, and 3. To calculate the communication cost of a tree, each edge ij in the
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tree contributes to the total communication cost with the value:∑
ij∈P(ro,rd)

cijwr.

0

1 2

3 4

0

1 2

3 4

0

1 2

3 4

0

1 2

3 4

0

1 2

3 4

Figure 4.7: All communication paths in T .

We calculate now the communication cost of T , beginning with requirements that have
their origin at vertex 0. As edge {0, 1} is in the path from requirements with destinations 1

and 3, then its contribution is c01(w01 +w03) = 1(4+3) = 7; edge {1, 3} is in the path to the
requirement with destination 3, then its contribution is c13w03 = 3(3) = 9. Thus, their total
contribution is 7+9 = 16 for all requirements with origin 0. The remaining edges contribute
0 as they do not take part in any communication path with origin 0. Similarly, we conclude
that communication paths starting from 2 and 3 contribute 8 and 25, respectively. We can
observe the network flows associated with this example in Figure 4.8.
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0
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3 4

b(0)=0

b(1)=0 b(2)=0

b(3)=−5 b(4)=5

0 0

5
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Figure 4.8: All communication paths in T as network flows.

More formally, we will consider a binary variable x = (xe)e∈E, such that xe = 1 if, and
only if, e belongs to H. Besides that, for each vertex o ∈ V , we have a variable y = (yoa), such
that yoij = 1 if, and only if, ij belongs to the o-arborescence. Finally, variable f oij indicates
the amount of flow in the arc ij that belongs to the network associated with origin o.

The Flow-Based (FB) formulation is defined by the following mixed integer linear pro-
gram:
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min
∑
o∈V

∑
ij∈A

cijf
o
ij (4.25)

s.t.∑
ij∈E

xij = |V | − 1 (4.26)∑
ij∈E(S)

xij ≤ |S| − 1 ∀S ⊂ V, S 6= ∅ (4.27)

∑
ij∈A

f oij−
∑
jk∈A

f ojk = woj ∀o ∈ V ∀j ∈ V \ {o} (4.28)∑
ok∈A

f ook =
∑

(o,d)∈R

wod ∀o ∈ V (4.29)

f oij ≤Myoij ∀o ∈ V ∀ij ∈ A (4.30)∑
ij∈A

yoij = |V | − 1 ∀o ∈ V (4.31)

yoij + yoji ≤ xij ∀o ∈ V ∀ij ∈ E (4.32)

f oij ≥ 0 ∀o ∈ V ∀ij ∈ A (4.33)

yoij ∈ {0, 1} ∀o ∈ V ∀ij ∈ A (4.34)

xij ∈ {0, 1} ∀ij ∈ E (4.35)

Note that the FB formulation can be seen as |V | instances of the 1-source OCST problem.
Constraints (4.26) and (4.27) ensure that the support of x induces a spanning tree, say H.
Besides that, constraints (4.31) and (4.32) guarantee that the digraph induced by the support
of yo is an o-arborescence contained in D(H).

The family of constraints (4.29) guarantees that the initial flow going out from o is equal
to the sum of all demands with its origin at o. Constraints (4.30) and (4.32) ensure that if
variable xij is activated, only one of the arcs ij or ji may have a positive flow. Constraints
(4.28) are the demands of the vertices. These constraints guarantee that the flow retained
by a vertex j is equal to woj. Constraints (4.29) guarantee that each vertex chosen as origin
is the unique source for its associated network (negative demand).

Note that, to guarantee connectedness, it is not enough to add artificial requirements to
R with demand zero. Therefore, contrary to the PB formulation, we consider the Subtour
Elimination Constraints (4.27) to guarantee the connectedness of H.

Relaxation of the Flow-Based formulation

In the Flow-Based formulation, the set of feasible solutions correspond to arborescences.
If we relax the problem to find digraphs whose underlying graph corresponds to a tree, the
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set of optimal solutions is the same, as we will show later. Note that this relaxation is on
the set of feasible solutions. Thus, we will call this formulation the Relaxation of the Flow
Based (RFB) formulation.

Given an instance I = (G, c,R,w) of the OCST problem, we want to find a spanning
tree T of G. For that, for each vertex o we obtain a network, such that we distribute flow
from o to the remaining vertices. Each variable f oij indicates the quantity of flow in the arc
aij that belongs to the network associated to origin o.

The RFB formulation was introduced by [Lun16] in 2016. It is precisely the following
mixed integer linear program:

min
∑
o∈V

∑
ij∈A

cijf
o
ij (4.36)

s.t.∑
ij∈E

xij = |V | − 1 (4.37)∑
ij∈E(S)

xij ≤ |S| − 1 ∀S ⊂ V, S 6= ∅ (4.38)

∑
ij∈A

f oij−
∑
jk∈A

f ojk = woj ∀o ∈ V ∀j ∈ V \ {o} (4.39)∑
ok∈A

f ook =
∑

(o,d)∈R

wod ∀o ∈ V (4.40)

f oij + f oji ≤
( ∑

(o,d)∈R

wod

)
xij ∀o ∈ V ∀ij ∈ E (4.41)

f oij ≥ 0 ∀o ∈ V ∀ij ∈ A (4.42)

xij ∈ {0, 1} ∀ij ∈ E (4.43)

Constraints (4.37) and (4.38) ensure that the support of x induces a spanning tree. Con-
straints (4.40) guarantee that the initial flow going out from o is equal to the sum of the
demands of all requirements that have origin at o. Constraints (4.41) ensure that if any of the
arcs ij or ji has a nonzero flow, the associated variable xij must be activated. Nevertheless,
both arcs can have a nonzero flow. Constraints (4.39) guarantee that the flow retained by a
vertex j in the network associated with o is equal to woj.

In contrast with the FB formulation, we do not consider variables y. However, if an
optimal solution (x, f) for this MILP exists, each digraph induced by f o variables is an
o-arborescence, as shown in Proposition 4.2.1.
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Figure 4.9: Procedure to delete arcs that form a cycle and still get a feasible solution.

Proposition 4.2.1. Let I = (G, c,R,w) be an instance of the OCST problem and let o be
any vertex of G. Let (x, f) be an optimal solution of the RFB formulation for the instance
I, if the problem is feasible. Let T be the graph induced by the support of x and let T ′ be the
digraph induced by the support of f o. Then the digraph T ′ is an o-arborescence contained in
D(G).

Proof. First, observe that T is the underlying graph of T ′. Now suppose, by contradiction,
that T ′ contains opposite arcs. Consider two opposite arcs in T ′, say a and d (fa ≤ fd), we
can construct a new feasible solution (x, f ′), where f ′ is defined, for each arch a′ ∈ T , in the
following way

f ′a′ :=


0, if a′ = a

fd − fa, if a′ = d

fa′ , otherwise.

(4.44)

Clearly, (x, f ′) is a feasible solution with a smaller cost than the cost of (x, f), contradicting
that (x, f) is optimal.

Since T is a tree and each vertex u of T ′ different than o satisfies f+
− (u) ≤ 0, it follows

that T ′ is an o-arborescence.

The following result follows as a corollary of the previous statement.

Corollary 4.2.2. Each digraph induced by f o is an o-arborescence. Moreover, the optimal
value of the RFB formulation is equal to the communication cost of an OCST.

Since we consider n origins and the number of edges can be at most n2, the FB formulation
and its relaxation have at most O(n3) variables.
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4.2.3 Rooted Tree based formulation

In the Rooted Tree Based (RTB) formulation, proposed by [Lun16] to solve the OCST
problem, the idea is to find an o-arborescence, for a fixed vertex o (called root).

Let (G, c,R,w) be an instance of the OCST problem, and D = (V,A) its associated
digraph. We want to obtain a directed subgraph T of D such that T is an o-arborescence
for a fixed vertex o ∈ V . Besides that, we want to find the distance for each pair of vertices
of G in the underlying graph of T .

We show first how to model this problem (of finding an o-arborescence), which can be
seen as a model to find a spanning tree. We consider two sets of variables. We use binary
variables x = (xa)a∈A to indicate which arcs of D are selected to belong to our solution. More
precisely, xa = 1 if and only if a ∈ A is selected. Besides that, we consider binary variables
p = (pij)ij∈V 2 to indicate whether there is a directed path from vertex i to vertex j in our
solution. (This is needed to deal later with the distance between each pair ij of variables.)

The Rooted Tree formulation is defined by the following system of inequalities.

∑
io∈A

xio = 0 (4.45)∑
ij∈A

xij = 1 ∀j ∈ V \ {o} (4.46)

xij ≤ pij ∀ij ∈ A (4.47)

pij + pji ≤ 1 ∀ij ∈ V 2 (4.48)

pij + xjk ≤ 1 + pik ∀{i, j, k} ∈ V 3, i 6= j, j 6= k (4.49)

pik + xjk ≤ 1 + pij ∀{i, j, k} ∈ V 3, i 6= j, j 6= k (4.50)

xij ∈ {0, 1} ∀ij ∈ A (4.51)

pij ∈ {0, 1} ∀ij ∈ V 2 (4.52)

Proposition 4.2.4 shows that if (x, p) is a feasible solution of the above formulation, then
the support of x defines an o-arborescence T and the variable p satisfies: pij = 1 if, and only
if, there exists a path from i to j in T .

Proposition 4.2.3. Let D = (V,A) be a digraph, and let χ ∈ B|A| be its incidence vector.
Let p be a vector in B|V |×|V |. Suppose that (χ, p) satisfies (4.47) and (4.49).Then pik = 1 if
there is a path from i to k in D.

Proof. Let Pik be a path from i to k in D. We show that pik = 1 by induction on |Pik|.
If |Pik| = 1, then χik = 1. Since (χ, p) satisfies (4.47), we have that pik = 1.

Now suppose that |Pik| ≥ 2. Consider that Pik = 〈i, . . . , j, k〉. By the induction hypothesis,
we have that pij = 1. Moreover, since χjk = 1, the inequality (4.49) implies that pik = 1.
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We show now that every feasible solution of the Rooted Tree formulation induces an
o-arborescence.

Proposition 4.2.4. Let G = (V,E) be a graph and let D = (V,A) be its associated digraph.
Consider any fixed vertex o of G. Let x ∈ B|A| and let T be the digraph induced by the support
of x. The digraph T is an o-arborescence if, and only if, there exists a vector p in B|V |×|V |

such that (x, p) is a feasible solution of the Rooted Tree formulation with root o. Moreover,
for vertices i and j in T , we have that pij = 1 if, and only if, there exists a path from i to j
in T .

Proof. First, suppose that T is an o-arborescence. We define p as follows:

pij =

1, if there exists a path in T from i to j.

0, otherwise.

Since T is an o-arborescence, (x, p) satisfies (4.45) and (4.46). The definition of p implies
inequality (4.47). Moreover, since T is acyclic, (x, p) satisfies (4.48). Let i, j and k be vertices
of T . Observe that (4.49) is satisfied when pij+xjk ≤ 1. So, suppose that pij = 1 and xjk = 1.
From the definition of p, there exists a path from i to j; and xjk = 1 implies that there is a
path from j to k. Thus, there exists a path from i to k (so pik = 1). This implies that (x, p)

satisfies (4.49). By an analogous argument, (x, p) also satisfies (4.50). Therefore, (x, p) is a
feasible solution for the Rooted Tree formulation.

Now let (x, p) be a feasible solution of the Rooted Tree formulation. Let T be the digraph
induced by the support of x. We will show that T is an o-arborescence. In what follows, we
show that there is a path, in T , from o to every other vertex in V . Let k ∈ V \ {o}, and let
Pk be a longest path in T ending at k. Let i be the vertex where Pk begins. By the way Pk
was chosen, either i = o or there is an arc ji such that j ∈ V (Pk) \ {k}. In the latter case,
by Proposition 4.2.3, we have that pij + pji = 2, a contradiction to (4.48). This implies that
i = o. Using the fact that T contains a path from o to every vertex in V , combined with
inequalities (4.46)–(4.48) and Proposition 4.2.3, we conclude that T is an o-arborescence.

Finally, let i and k be vertices of T . If T has a path from i to k, then by Proposition 4.2.3,
we have that pik = 1. Suppose now that there is no path in T from i to k. We shall prove
that pik = 0. Let j∗ be the lowest common ancestor of i and k. If j∗ = k, then there is
a path from k to i in T , and (as we have shown), pki = 1. Thus, from (4.48), we have
that pik = 0. Let us now consider that j∗ 6= k. Suppose pik = 1. Let j be the parent of
vertex k in the o-arborescence T . Then xjk = 1. From (4.50) we conclude that pij = 1. Let
j∗ = jp, jp−1, . . . , j1 = k be the vertices in the path from j∗ to k in the o-arborescence T .
Repeating for each of the vertices ji, for i = 3, . . . , p the same argument we have used for
j (= j2), we conclude that pij∗ = 1. Since there is a path from j∗ to i in T , we have that
pj∗i = 1. But then, pj∗i + pij∗ = 2, a contradiction to (4.48). Thus, pik = 0. This concludes
the proof of the proposition.



60 CHAPTER 4. MIXED INTEGER LINEAR PROGRAMMING FORMULATIONS

The Rooted Tree Based (RTB) formulation proposed for the OCST problem is obtained
from the previous (Rooted Tree) formulation extended with variables dij to capture the
distance between i and j in the tree (defined by the support of x).

The RTB formulation is the following mixed integer linear program:

min
∑
r∈R

wrdr (4.53)

s.t. ∑
ij∈A

xij = 1 ∀j ∈ V \ {o} (4.54)

xij ≤ pij ∀ij ∈ A (4.55)

pij + pji ≤ 1 ∀ij ∈ V 2 (4.56)

pij + xjk ≤ 1 + pik ∀{i, j, k} ∈ V 3, i 6= j, j 6= k (4.57)

pik + xjk ≤ 1 + pij ∀{i, j, k} ∈ V 3, i 6= j, j 6= k (4.58)

dik + ckj −M(2− xkj − pik) ≤ dij ∀{i, j, k} ∈ V 3, i 6= j, j 6= k (4.59)

dik + ckj −M(1− xkj + pij + pji) ≤ dij ∀{i, j, k} ∈ V 3, i 6= j, j 6= k (4.60)

dij ≥ cij(xij + xji) ∀ij ∈ A (4.61)

xij ∈ {0, 1} ∀ij ∈ A (4.62)

pij ∈ {0, 1} ∀ij ∈ V 2 (4.63)

To calculate the optimal communication cost in this formulation, we consider the distances
between each origin/destination requirement r ∈ R multiplied by its demand wr. Therefore,
we obtain the objective function (4.53).

The constant M is an upper bound for the cost of each path of G. Since finding a longest
(cost) path is an NP-hard problem [KMR97], in our implementation we consider M as the
maximum cost of an edge of G times |V | − 1.

Proposition 4.2.5 shows that the RTB formulation is a valid formulation for the OCST
problem.

Proposition 4.2.5. Let I = (G, c,R,w) be an instance of the OCST problem and let o be a
vertex of G. Let x be a vector in B|A|. Let T be the digraph induced by the support of x. The
digraph T is an o-arborescence if, and only if, there exist two vectors p ∈ B|V |×|V | and d ∈
R|V |×|V | such that (x, p, d) is a feasible solution of the RTB formulation with root o. Besides
that, if (x, p, d) is an optimal solution, its objective value is equal to the communication cost
of the underlying graph of T .
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Proof. By Lemma 4.2.4, such p exists if, and only if, T is an o-arborescence. Thus, we prove
the statement by showing that, when p exists, for each pair of vertices u and v, duv is lower
bounded by the minimum distance between u and v in T . First, note that for any pair of
vertices u and v, duv ≥ cuv when xuv = 1. Now let i, j and k be vertices of G. Note that
constraint (4.59) is trivially satisfied when xkj +pik < 2. Clearly, constraint (4.60) is trivially
satisfied when pij + pji = 1 or xkj = 0. Thus, we suppose that xkj = 1 or, equivalently, that
k is the parent of j in T . Without loss of generality, we now distinguish two cases. In the
first one, i is an ancestor of j in T (see Figure 4.10). Since xkj = 1 an pik = 1, we have that
dik + ckj ≤ dij. In the second case, i and j have a common ancestor different from i and j
(see Figure 4.11). Since T is acyclic we have that pij + pji = 0. Therefore, dik + ckj ≤ dij.

i

k

j

Figure 4.10: dik + ckj −M(2− xkj − pik) ≤ dij .

k

j

i

Figure 4.11: dik + ckj −M(1− xkj + pij + pji) ≤ dij .
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4.3 Other MILP formulations for the OCST problem

We conclude this chapter by mentioning the current exact algorithm for OCST with
better performance. Before, we mention two other approaches based on Dantzig-Wolfe de-
composition.

Solving instances with more than 40 vertices using Path and Flow Based formulations
takes too much time (owing to their large number of variables and constraints). To over-
come the weakness of these formulations, Tilk and Irnich [TI18] presented a Dantzig–Wolfe
Decomposition for such formulations. Both Dantzig–Wolfe reformulations are solved within
a branch-and-price-and-cut framework.

More recently, Zetina, Contreras, Fernández and Luna [ZCFL19] proposed an algorithm
that uses a strong Benders reformulation within a branch-and-cut framework. To our knowl-
edge, this is currently the best exact algorithm for OCST. It manages to solve instances with
up to 60 vertices.

4.3.1 Dantzig-Wolfe decomposition for the Path-Based formulation

The Path-Based formulation can be decomposed by each requirement r ∈ R so that
all yrij variables for a fixed r form a block. Using this decomposition, the Dantzig–Wolfe
reformulation replaces the yrij variables by variables representing communication paths, keeps
the x variables and the constraints (4.20) and (4.21) (constraints (4.19) are ignored by flow
conservation properties) in the master problem, and reformulates constraints (4.22) with
path variables.

Let Pr be the set of directed paths from ro to rd for each r ∈ R, and let c pr be the
communication cost of a path p for a requirement r. We consider the variables λpr for each
r ∈ R and p ∈ Pr. Besides that, we consider variables y pr,ij is equal to one if path p ∈ Pr
contains the arc ij.

The integer master problem of the Dantzig–Wolfe reformulation of the PB formulation
is the following:
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min
∑
r∈R

∑
p∈Pr

c pr λ
p
r (4.64)

s.t. ∑
p∈Pr

(
y p(r,ij) + y p(r,ji)

)
λpr ≤ xij ∀r ∈ R ∀ij ∈ E (4.65)∑

ij∈E

xij = |V | − 1 (4.66)∑
p∈Pr

λpr = 1 ∀r ∈ R (4.67)

xij ∈ {0, 1} ∀ij ∈ E (4.68)

λpr ≥ 0 ∀r ∈ R ∀p ∈ Pr (4.69)

Constraints (4.67) are the convexity constraints forcing the selection of exactly one path
from ro to rd for each r ∈ R. Let πrij ≤ 0 be the dual prices of the constraints (4.65) of the
restricted master problem, and let µst ∈ R be the dual prices of the convexity constraints
(4.67). The pricing problem (to look for a negative reduced cost), for each block associated
with a fixed r, is the following:

min
∑
ij∈A

wrcij − πrijy rij − µr (4.70)

s.t. ∑
ro,j∈A

y rsj = 1 (4.71)∑
ij∈A

y rij −
∑
ji∈A

y rji = 0 ∀i ∈ V \ {ro, rd} (4.72)

y rij ≥ 0 ∀ij ∈ A (4.73)

Tilk and Irnich [TI18] solve the pricing problem using Dijkstra’s algorithm [Dij59].

4.3.2 Dantzig-Wolfe decomposition for the Flow-Based formulation

The Flow-Based formulation can be decomposed by each vertex u ∈ V so that all yuij and
fuij variables for a fixed u form one block.

Let Su be the set of all (spanning) u-arborescences for each u ∈ V . We consider the
variables λqu for each u ∈ V and q ∈ Su. We also consider variables f q

u,ij that is the flow in
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arc ij for the u-arborescence q ∈ Su and variables y qu,ij is equal to one if the tree q ∈ Su
contains the arc ij. Let c qu be the communication cost of the u-arborescence q ∈ Su.

The master problem of the Dantzig-Wolfe decomposition of the Path-Based formulation
is the following:

min
∑
u∈V

∑
p∈Qu

c quλ
q
u (4.74)

s.t. ∑
q∈Qu

(
y q(u,ij) + y q(u,ji)

)
λqu ≤ xij ∀u ∈ V ∀ij ∈ E (4.75)∑

ij∈E

xij = |V | − 1 (4.76)∑
q∈Qu

λuq = 1 ∀u ∈ V (4.77)

xij ∈ {0, 1} ∀ij ∈ E (4.78)

λqu ≥ 0 ∀u ∈ U ∀q ∈ Qu (4.79)

Let πuij ≤ 0 be the dual prices of the constraints (4.75), and let µu ∈ R be the dual prices
of the convexity constraints (4.77) . There is one pricing problem for each commodity u ∈ V
asking for a negative-reduced cost spanning tree with flows:

min
∑
ij∈A

cijf
u

ij

∑
ij∈A

wrcij − φrijf
r

ij − µr (4.80)

s.t. ∑
uj

f
u

uj =
∑

h∈V \{u}

wuh (4.81)

∑
hj∈A

f
u

hj −
∑
ih∈A

f
u

ih = wuh ∀h ∈ V \ {u} (4.82)

f
u

ij ≤Muy
u
ij ∀ij ∈ A (4.83)∑

ij∈A

y uij ≤ |V | − 1 (4.84)

y uij ∈ {0, 1} ∀ij ∈ A (4.85)

f
u

ij ≥ 0 ∀ij ∈ A (4.86)

This problem is a fixed-cost network flow problem (FCNFP). The authors solve this pricing
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problem with an heuristic algorithm. Besides that they also consider constraints to exclude
nontree solutions.

4.3.3 Benders decomposition for the Path-Based formulation

Zetina, Contreras, Fernández and Luna [ZCFL19] proposed an algorithm that uses a
strong Benders reformulation for the OCST within a branch-and-cut framework and obtain
good solutions during the enumeration process. To apply Benders decomposition to the
Path-Based formulation, the authors fix the variables x, leading to the following primal
subproblem (PSP):

min
∑
r∈R

wr
∑
ij∈A

cijy
r
ij (4.87)

s.t. ∑
i,rd∈A

yrird = 1 ∀r ∈ R (4.88)∑
ro,k∈A

yrrok = 1 ∀r ∈ R (4.89)∑
ij∈A

yrij −
∑
jk∈A

yrjk = 0 ∀r ∈ R ∀j ∈ V \ {ro, rd} (4.90)

yrij + yrji ≤ xij ∀r ∈ R ∀ij ∈ E (4.91)

yrij ≥ 0 ∀r ∈ R ∀ij ∈ A (4.92)

Note that PSP can be split into |R| independent shortest path problems PSPr for each
r ∈ R. Let λ be the dual variables of constraints (4.87), (4.88) , (4.90) and µ the dual
variables of constraints (4.89). From strong duality, each PSPr can be substituted by its
dual LP , denoted by DSPr , of the form:

max (λrrd − λ
r
ro)−

∑
ij∈A

µrijxij (4.93)

s.t.

λrj − λri − µrij ≤ wr(cij) ∀ij ∈ E (4.94)

λri − λrj − µrij ≤ wr(cij) ∀ij ∈ E (4.95)

µrij ≥ 0 ∀ij ∈ E (4.96)

λri ∈ R ∀i ∈ V (4.97)
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The set of extreme rays of DSPr , obtained when it is unbounded, indexes the feasibility
cuts of MP while the set of extreme points, obtained from the optimal solution of DSPr ,
indexes the optimality cuts. The Master Problem (MP) is of the form:

min
∑
r∈R

zr (4.98)

s.t.

zr ≥ λrrd − λ
r
ro −

∑
ij∈E

−µrijxij ∀r ∈ R (λ, µ)r ∈ θr (4.99)

zr ≥ λ
r

rd
− λ rro −

∑
ij∈E

−µ r
ijxij ∀r ∈ R (λ, µ)r ∈ φr (4.100)∑

ij∈E

xij = |V | − 1 (4.101)

xij ∈ {0, 1} ∀ij ∈ E (4.102)

Where θ and φ represent the set of extreme points and extreme rays ofDSPr , respectively.



Chapter 5

Computational Experiments

This chapter is organized as follows. In Section 5.1, we describe the computational envi-
ronment and the programs that we used to perform our experiments. In Section 5.2, we detail
the implementation of the branch-and-cut algorithm using Gurobi optimizer. Section 5.3 de-
scribes how the OCST instances have been generated. Next, in Section 5.4, we compare the
performance of the different MILP formulations for the OCST problem. Finally, Section 5.5
summarizes the results and the contributions of our experiments.

5.1 Computational environment and programs

To generate random instances for the OCST problem, we use the Python Networkx
package [HSS08]. For the computational experiments, we used Gurobi optimizer [Gur19], a
software package of optimization, as the solver for the MILP formulations.

The algorithms were implemented using the standard C++ programming language. To
analyze the results, we use two popular Python data science libraries: Pandas and NumPy.
Pandas library provides an API to manipulate data in a tabular format, while NumPy
provides fast linear algebra operators [PTN+17].

The source code was implemented, compiled, and executed in a computer with 64 GB of
memory RAM and a processor of 2.40 GHz. A more detailed description of the computer
used to run the experiments is shown in Table 5.1.
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Processor
Model Intel(R) Xeon(R) CPU E5620

Clock speed 2.40GHz
Cache L2 256KB
Cache L3 12 MB

RAM Memory
Size 64 GB

Other
SO Debian GNU/Linux

Table 5.1: Computational environment

5.2 Separation algorithms and Gurobi parameters

In this section, we describe how we solved the separation problem for the OCST formu-
lations. Besides, we describe how we configured the optimizer to test all formulations.

To address the separation problem, Gurobi generates and adds constraints (cuts) at run-
time only as required (so-called lazy constraints). Gurobi implements lazy constraints by
allowing user-defined code (callback function). This function is called periodically during
the runtime of the solver. So, any solution that violates these constraints will be cut-off.
Besides that, we configure Gurobi to use a single thread of the processor. Moreover, we
deactivated all built-in cut generation options.

Each formulation for the OCST problem, in Chapter 4, considers x variables whose sup-
port induces a spanning tree, say T . We consider two cases to solve the separation algorithm.

• T is an undirected graph. This is the case of PB and FB formulations. In our imple-
mentations of these formulations, we consider two subcases.

First case: when a feasible integer solution has been found. In this case, we consider
the integral solution and implement a separation routine using a depth-first search
(DFS). If T contains a cycle, say C, we add an inequality corresponding to the vertices
of C.

Second case: when in a node of the branch-and-cut algorithm, a noninteger feasible
solution is found. To provide better lower bounds in the nodes of the branch-and-cut
algorithm, we use the separation procedure that gives us a violated constraint if it
exists (see Chapter 4).

• T is a rooted tree. In particular, the Rooted Tree formulation does not require any
separation algorithm. However, we add SEC (an arborescence version) to obtain better
lower bounds on the nodes of the branch-and-cut algorithm.

In the implementation of the branch-and-cut approach, to select variables to branch,
different strategies are provided by Gurobi optimizer. The following options are available:
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Pseudo Shadow Price Branching [Bea79], pseudo Reduced Cost Branching, Maximum In-
feasibility Branching, and Strong Branching. In our work, we select the default values.

5.3 Description of the experiments

In our experiments, we generate random graphs using the Erdős-Rényi model. More
specifically, we generate graphs G = G(n, p), where n is the number of vertices, and p is the
probability that an edge, say ij, exists in the graph. This is considered for each possible pair
ij of vertices.

An instance (G, c,R,w) is generated in the following way. For fixed n and p, we generate
a random graph G = G(n, p). Then to generate the set R (of communication requirements)
we fix a probability pR and generate a graph GR = G(n, pR). Then, we consider that
(u, v) ∈ R if, and only if, uv ∈ E(GR). Moreover, the values of the cost function c are
randomly generated nonnegative values between 1 and 1000, and each requirement demand
wij, is a random positive value between 1 and maxW (see the table below).

According to the value of p, we will have sparser or denser graphs. Also, pR let us control
the size of the set R. The instances that are generated are then named as SparseRsmallW,
SparseRlargeW, CompleteRsmallW, CompleteRlargeW, according to the values indicated
in the table below.

In the tables on the computational results, we only mention the values of n and p and we
name the DataSets according to the types of instances we have just mentioned.

As we stated earlier, we use the Python Networkx package [HSS08] to generate the
instances. Since the input graphs must be connected, we only consider connected graphs
(graphs that are not connected are discarded).

In the table below we show the names of the DataSets and the values of the parameters
that we have considered.

DataSet maxW pR n p

SparseRsmallW 1000
0.3

20, 40, 50, 60, 70 0.2, 0.5, 1.0
SparseRlargeW 1000000

CompleteRsmallW 1000
1.0

CompleteRlargeW 1000000

Note that for each type of DataSet there are 15 different combinations, each corresponding
to a pair (n, p), where n ∈ {20, 40, 50, 60, 70} and p ∈ {0.2, 0.5, 1.0}. Moreover, for each such
combination, we generate 20 instances. This gives a total of 300 instances for each DataSet
type. The entries shown in the tables correspond to the average values considering these 20

instances.



70 CHAPTER 5. COMPUTATIONAL EXPERIMENTS

5.4 Computational results

In this section we present the computational results regarding the implementation of the
different formulations we have considered. Each instance was executed with a time limit of
1800 seconds.

For each formulation, we show a table containing the following information:

• n: the number of vertices of the graph G.

• p: the probability that an edge exists in G.

• Time: the running time (in seconds).

• Gap: the gap between lower and upper bounds. In the case of the OCST problem, a
minimization problem, we calculate the gap using the following formula:

gap = (UpperBound - LowerBound) / UpperBound.

• Lazy Constraints: number of constraints added when the solver finds feasible integer
solutions that do not satisfy constraints not added initially. That is the case of the
Subtour Elimination Constraints.

• Cuts generated: number of inequalities, for fractional solutions, added to satisfy the
Subtour Elimination Constraints. Implemented as user cuts, in Gurobi, they are useful
for improving the lower bound in a node of the branch-and-cut algorithm.

In the second row, we show the functions that group the results. These are the maximum
value, the minimum value, the mean, and the standard deviation. In the last column it is
indicated the number of instances solved (to optimality).

In the following tables we show the results for DataSet CompleteRlargeW. We have run
our experiments on other DataSets as well. In Table 5.6 we summarize the results obtained,
showing only the number of intances solved.
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n p
Time Gap Lazy C. Cuts

solved
mean std max min mean std mean mean

20 0.2 8.4 16.4 71.5 0.3 0.0 0.0 0.0 3.4 20
20 0.5 13.7 21.4 76.4 0.6 0.0 0.0 0.0 3.7 20
20 1.0 27.0 60.2 270.6 1.6 0.0 0.0 0.0 3.0 20
40 0.2 1 180.5 694.1 1 801.3 28.0 0.0 0.1 0.0 17.2 8
40 0.5 1 421.4 597.4 1 802.8 165.0 0.0 0.0 0.0 12.4 8
40 1.0 1 292.3 699.6 1 800.6 66.8 0.1 0.1 0.0 7.2 8
50 0.2 1 700.0 315.0 1 803.5 437.5 0.1 0.1 0.0 5.7 2
50 0.5 1 675.4 344.7 1 811.4 505.9 0.1 0.1 0.0 2.7 2
50 1.0 1 807.8 15.0 1 858.5 1 800.5 0.2 0.2 0.0 1.6 0
60 0.2 1 805.1 11.7 1 848.6 1 800.2 0.5 0.4 0.0 0.8 0
60 0.5 1 795.6 27.2 1 814.7 1 680.6 0.9 0.3 0.0 0.2 0
60 1.0 1 899.1 110.2 2 201.7 1 801.9 1.0 0.2 0.0 0.0 0
70 0.2 1 801.3 2.1 1 810.3 1 800.7 1.0 0.0 0.0 0.0 0
70 0.5 1 976.4 180.8 2 297.2 1 801.6 1.0 0.0 0.0 0.0 0
70 1.0 3 631.6 2 466.6 12 046.2 1 820.4 1.0 0.0 0.0 0.0 0

Table 5.2: Results for the Path-Based formulation on DataSet CompleteRlargeW.

n p
Time Gap Lazy C. Cuts

solved
mean std max min mean std mean mean

20 0.2 323.0 556.8 1 800.0 1.3 0.0 0.0 0.0 477.4 13
20 0.5 588.3 738.2 1 800.1 2.6 0.0 0.1 0.0 777.5 10
20 1.0 662.4 750.2 1 800.1 16.1 0.0 0.1 0.0 656.8 8
40 0.2 1 800.2 0.1 1 800.6 1 800.0 0.2 0.1 0.0 1 959.7 0
40 0.5 1 800.3 0.2 1 800.8 1 800.0 0.2 0.1 0.0 1 236.9 0
40 1.0 1 800.4 0.3 1 801.1 1 800.1 0.2 0.1 0.0 839.3 0
50 0.2 1 800.3 0.2 1 800.7 1 800.0 0.2 0.1 0.0 1 155.3 0
50 0.5 1 800.8 0.7 1 802.2 1 800.0 0.2 0.1 0.0 721.8 0
50 1.0 1 801.5 1.0 1 803.1 1 800.1 0.2 0.1 0.0 429.0 0
60 0.2 1 800.9 0.6 1 802.0 1 800.0 0.2 0.1 0.0 678.3 0
60 0.5 1 801.8 1.3 1 804.6 1 800.0 0.3 0.1 0.0 389.0 0
60 1.0 1 802.4 1.7 1 805.8 1 800.0 0.2 0.1 0.0 244.2 0
70 0.2 1 802.2 1.2 1 804.5 1 800.1 0.3 0.1 0.0 399.8 0
70 0.5 1 802.6 2.1 1 806.5 1 800.0 0.2 0.1 0.0 241.4 0
70 1.0 1 804.9 3.7 1 812.9 1 800.2 0.3 0.1 0.0 142.0 0

Table 5.3: Results for the Relaxed Flow-Based formulation on DataSet CompleteRLargeW.
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n p
Time Gap Lazy C. Cuts

solved
mean std max min mean std mean mean

20 0.2 417.7 630.3 1 800.0 5.6 0.0 0.0 0.0 488.0 13
20 0.5 674.7 765.8 1 800.1 6.9 0.0 0.1 0.0 853.9 10
20 1.0 765.0 742.6 1 800.1 30.0 0.0 0.1 0.0 678.1 8
40 0.2 1 800.2 0.2 1 800.6 1 800.0 0.2 0.1 0.0 1 790.4 0
40 0.5 1 800.4 0.3 1 800.9 1 800.0 0.2 0.1 0.0 1 076.8 0
40 1.0 1 800.6 0.4 1 801.4 1 800.0 0.2 0.1 0.0 652.0 0
50 0.2 1 800.4 0.4 1 801.2 1 800.0 0.2 0.1 0.0 1 061.6 0
50 0.5 1 800.6 0.6 1 801.9 1 800.0 0.2 0.1 0.0 615.6 0
50 1.0 1 800.9 0.8 1 802.9 1 800.0 0.3 0.1 0.0 329.1 0
60 0.2 1 801.1 0.8 1 802.6 1 800.0 0.2 0.1 0.0 611.4 0
60 0.5 1 801.9 1.2 1 803.4 1 800.2 0.3 0.1 0.0 321.0 0
60 1.0 1 802.5 2.0 1 806.1 1 800.0 0.3 0.1 0.0 150.1 0
70 0.2 1 801.0 1.3 1 804.2 1 800.0 0.3 0.1 0.0 361.7 0
70 0.5 1 802.6 1.9 1 806.4 1 800.1 0.3 0.1 0.0 159.5 0
70 1.0 1 804.0 4.8 1 814.1 1 800.1 0.3 0.1 0.0 25.0 0

Table 5.4: Results for the Flow-Based formulation on DataSet CompleteRLargeW.

n p
Time Gap Lazy C. Cuts

solved
mean std max min mean std mean mean

20 0.2 1 800.1 0.1 1 800.3 1 800.0 0.2 0.1 0.0 128.6 0
20 0.5 1 800.1 0.1 1 800.3 1 800.0 0.2 0.1 0.0 241.1 0
20 1.0 1 800.1 0.1 1 800.3 1 800.0 0.2 0.1 0.0 242.7 0
40 0.2 1 801.7 1.3 1 803.8 1 800.0 0.3 0.1 0.0 43.5 0
40 0.5 1 802.2 1.2 1 803.7 1 800.0 0.3 0.1 0.0 40.3 0
40 1.0 1 801.8 1.7 1 804.4 1 800.0 0.3 0.1 0.0 24.4 0
50 0.2 1 804.1 2.7 1 809.0 1 800.1 0.3 0.1 0.0 21.5 0
50 0.5 1 805.6 3.0 1 810.6 1 800.1 0.3 0.1 0.0 13.7 0
50 1.0 1 806.1 3.4 1 812.4 1 800.0 0.3 0.1 0.0 4.7 0
60 0.2 1 809.0 6.3 1 819.7 1 800.1 0.3 0.1 0.0 11.5 0
60 0.5 1 809.8 5.9 1 820.0 1 800.1 0.4 0.1 0.0 8.0 0
60 1.0 1 813.2 7.4 1 825.4 1 800.6 0.3 0.1 0.0 6.2 0
70 0.2 1 820.9 11.8 1 838.7 1 800.2 0.4 0.1 0.0 7.1 0
70 0.5 1 818.0 12.5 1 842.8 1 800.5 0.3 0.1 0.0 4.6 0
70 1.0 1 821.1 14.3 1 845.3 1 801.4 0.3 0.1 0.0 0.2 0

Table 5.5: Results for the Rooted Tree based formulation on DataSet CompleteRLargeW.
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Table 5.6: Number of instances solved on different DataSets.

5.4.1 Instances solved and instances with tight gaps

In this subsection, for each DataSet type we show the number of instances solved to
optimality (Figure 5.1) and the number of instances not solved, but for which tight gaps
were obtained (Figure 5.2) within the time limit of 1800 seconds. We consider four different
formulations, each one represented in a different color.

The reader interested in the implementations, instances, and results can consult the public
repository:

https://github.com/jainor/ocst-problem/.

5.5 Concluding remarks

The tables with the computational results shown in the previous section indicate that
the Path-Based formulation has the best performance among the four formulations that we
have implemented. These results are as expected in the literature. This formulation gives

https://github.com/jainor/ocst-problem/
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Figure 5.1: Number of instances solved per DataSet.
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Figure 5.2: Number of instances per DataSet with a gap less than or equal to 0.1.

tight lower bounds and is efficient for instances up to 30 nodes. The Rooted Tree formulation
leads to the worst performance in terms of efficiency (gaps) and runtime. The Flow-Based
and Relaxed Flow-Based formulations have similar performance, with a slight advantage for
the relaxed version.
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We observe that we have made no additional assumption on the instances (they were all
randomly generated). Perhaps, on some more special instances (metric cases or real datas)
these implementations could perform better.

The implementations we have carried out were aimed at gaining more experience with
the branch-and-cut technique and the use of Gurobi optimizer. We did not expect that
these implementations would outperform other implementations of this nature. Many other
enhancements are needed to be able to solve to optimality instances of medium size (from
40 to 50 vertices).

Current column generation techniques for the OCST problem use the Flow-Based formula-
tion. Although the Relaxed Flow-Based formulation has shown a slight advantage compared
to the Flow-Based formulation, possibly this gain may not make much difference when a
column generation approach is used.

As we have mentioned in Chapter 3, the algorithm with best performance among all
the exact algorithms that have been proposed for the OCST problem has been developed
by Zetina, Contreras, Fernández and Luna [ZCFL19]. It considers an arc-based MILP for-
mulation and is based on Benders decomposition (integrated within a branch-and-bound
framework). It expanded the limits of solvability for the OCST problem from 40 to 60 ver-
tices.

We hope the present work can be used as a starting point for other implementations,
possibly using stronger valid inequalities and good separations routines.
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Chapter 6

Final considerations

In this thesis, we addressed the Optimal Communication Spanning Tree (OCST) problem,
an interesting combinatorial optimization problem, known to be NP-hard.

As many concepts of different areas (graph theory, network flow, integer linear program-
ming, approximation algorithms) are needed to understand the results mentioned or proved
here, to make this text self-contained, these concepts were presented in Chapter 2. Then,
in Chapter 3 we formally defined the OCST problem, presented some variations and special
cases, and mentioned some applications. We also presented an overview on this problem,
mentioning the main results we have found in the literature. In this chapter, we focused on
two special cases of the OCST problem. This was a very enriching experience, as it required
a lot of reading and learning concepts of different areas.

In this work, we mainly focused our discussion on exact algorithms. First, we investi-
gated special cases of the OCST problem for which polynomial-time algorithms have been
developed. In particular, we found very interesting the result concerning the 1-source OCST
problem and its relation with the min-cost flow problem. However, this part was not included
in this work. The study of the Gomory-Hu tree was specially rewarding. This was done in
Chapter 3.

Then, in Chapter 4 we addressed the main mixed integer linear programming models that
have been proposed for the OCST problem. For that, we first presented some ILP and MILP
formulations for the spanning tree problem. This way, we revised some classical results on
this topic, including a result on the separation of a well-known class of inequalities – the
Subtour Elimination Constraints – interesting on its own right, considering that they are
used in many problems.

In Chapter 5 we presented our computational experiments with the implementation of
some MILP formulations for the OCST problem using a branch-and-cut approach. The
source code of these implementations will be made available to anyone interested in testing
a new formulation or tighten an existing formulation with new inequalities.

For further investigations on this topic, perhaps the Relaxed Flow-Based formulation is

77
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a good candidate. A challenging work, in our view, would be to develop an approach using
row and column generation algorithms like Dantzig-Wolfe decomposition. This approach
would lead to a pricing problem similar to the 1-source OCST problem. To the best of our
knowledge about the current state of the art –on row and column generations–, the Flow-
Based formulation is used with relaxation only in its pricing subproblem. We need a deeper
understanding of this approach to accomplish this task, but it seems that this would be a
possible direction to explore.

We did not focus on approximation algorithms for the OCST problem and some variants,
but it seems to be another line of research that would be interesting to explore. In Chapter 3
we only mentioned some main results, but this short survey may be useful to someone
interested in this line of research.

In conclusion, we think the study of this topic brought us the opportunity to learn many
different results and approaches. We still feel that there is much more to learn, and that we
have only scratched the first layers, and we have to explore many more layers to be able
to contribute with original and relevant results. This work has given me encouragement to
further explore the problems mentioned here and/or other related problems.
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