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Abstract

Belief Revision addresses the problem of how to change epistemic states, usually represented in
the literature by sets of logical sentences. Solid theoretical results were consolidated with the AGM
paradigm, which deals with theories (logically closed sets of sentences). After that, the theory was
extended to belief bases, that is, arbitrary sets of sentences. Besides all this theoretical framework,
AI researchers face serious difficulties when trying to implement belief revision systems. One of
the major complications is the closure required by AGM theory, which cannot be easily computed.
Even belief bases, which do not require closure, seem to be improper for practical purposes, since
their changes are usually very rigid (syntax dependent).

Some operations, known as pseudo-contractions, are in the middle ground between belief set
change and belief base change. In the present work we have proposed a new pseudo-contraction
operation, studied its properties and characterized it. We have also found connections between this
operator and some other pseudo-contractions.
Keywords: belief revision, pseudo-contractions.
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Resumo

Revisão de Crenças aborda o problema de como alterar estados epistêmicos, normalmente rep-
resentados na literatura como conjuntos de sentenças lógicas. Resultados teóricos sólidos foram
consolidados com o paradigma AGM, que lida com teorias (conjuntos de sentenças logicamente
fechados). Depois disso, a teoria foi estendida para bases de crenças, isto é, conjuntos arbitrários
de sentenças. Apesar de todo esse arcabouço teórico, pesquisadores de IA enfrentam sérias dificul-
dades ao tentar implementar sistemas de revisão de crenças. Uma das maiores complicações é o
fecho exigido pela teoria AGM, que não pode ser facilmente computado. Mesmo bases de crenças,
que não exigem fechamento, parecem ser impróprias para fins práticos, pois suas alterações são
geralmente muito rígidas (dependentes de sintaxe).

Algumas operações, conhecidas como pseudo-contrações, estão no meio do caminho entre mu-
danças para conjuntos de crenças e mudanças para bases de crenças. Nesse trabalho, propomos uma
nova operação de pseudo-contração, estudamos suas propriedades e a caracterizamos. Também en-
contramos conexões entre esse operador e algumas outras pseudo-contrações.
Palavras-chave: revisão de crenças, pseudo-contrações.
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Chapter 1

Introduction

Belief revision (also known as Belief Dynamics, Belief Change or Theory Change) is a field
of study that addresses the problem of how to change belief states (or epistemic states). Rational
agents, be they humans or machines, certainly have some representation of their knowledge or belief
system (the problem of how to represent knowledge and belief systems is studied by a field in the
intersection of computer science and philosophy, Knowledge Representation). How do these agents
change these representations when they are faced with new information? This is the question that
Belief Revision wants to answer. As Gärdenfors (one of the founders of the field) has claimed [Gär88,
preface], there is little use in knowing how to represent knowledge if we do not know how to change
these representations.

The initial hallmark of this research area is the paper by Alchourrón, Gärdenfors and Makinson
[AGM85], in which they propose to represent belief states by sets of logical propositions closed
under some consequence operator, the so-called belief sets. Three main operations can be applied
on these belief sets: expansion, contraction and revision. Expansion is the simple addition of a new
belief (a logical sentence), followed by the closure of the resulting set. Contraction is the removal of
a belief and revision is the addition of a new belief, as in expansion, but with the requirement that
the resulting set be logically consistent. Contraction and revision operations cannot be uniquely
defined, but have been constrained by a set of rationality postulates instead.

In further studies (such as [Han92a]), a generalization of the AGM theory was proposed wherein
epistemic states were represented by arbitrary sets of logical sentences, not necessarily closed, called
belief bases (sometimes called just bases). From a computational standpoint, belief bases are very
useful since they do not demand logical closure, which is hard to compute, if possible at all. It
turns out that bases have a theoretical advantage also, for they are more expressive than belief
sets. A belief set can be obtained from the closure of a belief base, whereas many belief bases can
“represent” the same belief set.

One of the contraction postulates, success, requires the contracted element not to be entailed by
the resulting epistemic state. Although belief bases are not necessarily closed, the success postulate
still checks the contracted element against its closure, to see if it is implied. So, it is as if there are
two classes of beliefs in the base: the represented beliefs (also called explicit beliefs) and the derived
beliefs (implicit beliefs).

Belief bases are not free of problems, though. Since traditional contractions respect the inclusion
postulate (a requirement that no new element is added in the operation), base contraction can be
very destructive. Without adding new elements, it is not possible to “weaken” any formula, which
could be enough to perform the contraction in consonance with success. This means that more than
what is necessary will be removed, considering that we want minimal informational change1. This
problem can also be viewed as the problem of syntactic dependence, i.e., for two bases representing
the same belief set, the codification of the base (the individual formulas it contains) can lead to
different contractions. This phenomenon does not exist in the context of belief sets, they represent

1For a thorough discussion on this principle, see [Rot00]. Harman also considers this principle in his book [Har86],
for instance, in the discussions that start at pages 46 and 59.
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2 INTRODUCTION 1.0

a belief state in the knowledge level [New82], ignoring syntactic variations.
A first goal of this work is to investigate contraction operations that lie between belief base

contractions and belief set contractions, trying to find some balance between syntactic independence
and computational efficiency. We have described some of the properties of these operations and
characterizations for them (representation theorems). In order to accomplish that, we have given
up the inclusion postulate, giving rise to what is called pseudo-contraction. Secondly, we want to
investigate the relations between our proposal and other pseudo-contractions.

The rest of this dissertation is organized as follows. Chapter 2 introduces the subject of logic
with material found in the literature, defining classical propositional logic and some notational con-
ventions. Chapter 3 lays out the theoretical background on belief revision and pseudo-contractions.
Chapters 4, 5 and 6 represent our main contributions. In the first, we describe a new pseudo-
contraction, explaining its usefulness through examples, proving some formal properties and rela-
tionships with other pseudo-contractions. In the second, we put forth a discussion about minimality,
resource-bounded reasoners and postulates. In the third, we show two concrete examples where our
theory can be applied. Chapter 7 briefly summarizes some related work, and finally, in Chapter 8
we conclude, analyzing possibilities for future work.



Chapter 2

Logic

Logic is the basis for Belief Revision and for most studies in the field of Knowledge Represen-
tation (and for a lot of other things, of course). For this reason, we are going to talk about logic in
this chapter1.

First we just introduce the subject of logic, in Section 2.1. Next, we present the classical propo-
sitional logic in Section 2.2. In Section 2.3, we define and talk a little about consequence relations
and some of their properties. Then, in Section 2.4 we take account of basic notational conventions
in use along this text.

2.1 Why Logic?

Belief Revision and Knowledge Representation are deeply related to Artificial Intelligence, and
most of their applications have probably something to do with intelligent systems, “programs that
think” in some (limited) way. With this in mind, we must quote this wise paragraph by Brachman
and Levesque [BL04]:

Before any system aspiring to intelligence can even begin to reason, learn, plan, or explain its
behavior, it must be able to formulate the ideas involved. You will not be able to learn something
about the world around you, for example, if it is beyond you to even express what that thing is.
So we need to start with a language of some sort, in terms of which knowledge can be formulated.

So, we need a language in terms of which some knowledge can be expressed and then, bearing
these representations, some reasoning can be done in order to learn new things. As machines cannot
read natural language (very well) yet, to make this process easier, it is better to employ a formal
language, that is, a language that is clearly and mathematically defined. Logics are good candidates
for this kind of language.

In the next section we describe classical propositional logic in detail.

2.2 Classical Propositional Logic

Among a plethora of logics, we chose the classical propositional logic to describe here in detail
because it is perhaps the most known, natural and commonly used logic today. It also serves as
a backbone for many other logics. Besides that, it is the logic we use in most examples in this
dissertation.

Still inspired by [BL04], we will define precisely the language of classical propositional logic2

through two aspects: its syntax and semantics.
1 This chapter was included only in order to make this dissertation self-contained for researchers of computer

science and correlated areas. Those who already have a good background in logic can skip straight to Section 2.4.
2A better and deeper presentation of this logic can be found in [Eps90]. Classical propositional logic can be

understood as a fragment of first order logic (FOL), which is carefully introduced in [BL04].

3



4 LOGIC 2.2

In this section we will call the language of classical propositional logic L. A formal language like
L can be considered to be a (possibly infinite) set of sentences.

2.2.1 Syntax

Each sentence of L is a sequence of symbols. The set of allowed symbols together with rules
specifying how they can be arranged to form a well-formed sentence is what we call syntax.

There are two classes of symbols in propositional logic: the logical and the nonlogical ones.
The logical symbols are: not (¬), and (∧) and or (∨). The nonlogical symbols are an infinite set
P of propositional symbols or propositional atoms (or just atoms), and are usually represented by
lowercase latin letters (p, q, r,...). We have also parentheses as ancillary symbols.

Now for the rules. Any atom (member of P) is a (well-formed) sentence of L. If α and β are
(well-formed) sentences of L, the following are (well-formed) sentences of L as well:

• ¬(α)

• (α ∧ β)

• (α ∨ β)

Nothing more than these are sentences of L. So, by those rules, the atoms p and q are both
well-formed sentences of L. Then, (p ∧ q) is a sentence as well, and therefore ((p ∧ q) ∨ p) and
¬((p ∧ q) ∨ p) are sentences too, but (¬ ∧ p) and (p¬q) are not.

We also use the following abbreviations:

• (α→ β) for (¬α ∨ β)

• (α↔ β) for ((α→ β) ∧ (β → α))

• ⊥ for (α ∧ ¬α)

• > for (α ∨ ¬α)

2.2.2 Semantics

We just defined what the members (the sentences) of L are. Now we need to have some standard
way to interpret these sentences, a way to specify what they mean, what they say about the world.

It is not possible just to look at a sentence of L and tell what it means in an absolute way.
This is due to the fact that the atoms do not have a fixed meaning, their meaning are application-
dependent. Each atom is a proposition about the world. It states that the world is one way, not the
other. For example, we can say that p means that The planet Mercury is round. As any proposition,
p can have two possible values: it can be true, or it can be false.

So, after defining what the atoms mean, the semantics allows us to understand unambiguously
the meaning of any sentence of L, and it does so through interpretations. An interpretation of
classical propositional logic is a valuation, a functionM : P → {true, false}. We can say an atomic
proposition p is satisfied by an interpretation if it is true in that interpretation, that is, ifM(p) =
true. In that case we write �M p. In the opposite case, we write 6�M p. The same kind of notation
applies to arbitrary sentences of L. If �M α, then the sentence α is satisfied byM. But what does
that mean? We can define what sentences are satisfied by an interpretation in a recursive fashion
from the base case (single atoms), as we have done for the syntax. Let α and β be sentences. Then:

• �M >

• 6�M ⊥

• �M ¬α if and only if 6�M α
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• �M α ∧ β if and only if �M α and �M β

• �M α ∨ β if and only if �M α or �M β

As promised, using this semantics we can now understand the meaning of any sentence of L
provided we know what the atoms mean. For example, consider the sentence p→ q, where p means
“the planet is before Venus” and q means “the planet is Mercury”. If we say an interpretation M
satisfies this sentence, �M p → q, which by syntax rules is an abbreviation for �M ¬p ∨ q, then,
using the rules above, we get that �M ¬p or �M q, therefore 2M p or �M q. So, we come to the
conclusion that, in this interpretation, either the planet is Mercury (sentence q is true inM), or it
is not before Venus (sentence p is false inM). So, the meaning of the entire sentence is “The planet
is Mercury or it is not before Venus”.3

If a sentence α is satisfied in all interpretations, then we say it is valid and write � α, otherwise it
is invalid, and we write 6� α. If it is satisfied in some interpretation we say it is satisfiable, otherwise
we say it is unsatisfiable. If a sentence α is satisfied in all interpretations that satisfy all sentences
in the set A, we say that A entails α or that α is a logical consequence of A, and write A � α. If
an interpretation M satisfies a sentence α, we say that M is a model of α, and if it satisfies all
sentences of a set A, we say that it is a model of A. Deciding whether a formula α is satisfiable is
known as the propositional satisfiability problem (usually abbreviated as SAT ).

2.2.3 Natural Deduction

Now we know what formulas are part of the language of propositional logic and what they mean,
but we still need to have a method of proof, that is, a formal method which can decide, given a set
of formulas A and a formula α, whether A |= α. If we can find a proof within our method from A to
α we write A ` α. It is desirable that this method be sound (if A ` α, then A |= α) and complete
(if A |= α, then A ` α). The method of proof for classical propositional logic known as natural
deduction is both sound and complete, although the problem it tries to solve is computationally
intractable in the general case4. In what follows, we are going to give a brief description of it.

The natural deduction method simply consists of taking a set of premises and repeatedly ap-
plying one among a set of rules over them to produce new sentences (which are added to the set of
premises and over which the rules can also be applied), until the desired conclusion is obtained.

Now we quickly show the names of the rules5 followed by its descriptions (inputs and outputs):

• ∧i: if you already have the formulas α and β, you can use this rule to obtain α ∧ β.

• ∧e1: if you have α ∧ β, use this rule to obtain α.

• ∧e2: from α ∧ β obtain β.

• ∨i1: from α obtain α ∨ β.

• ∨i2: from β obtain α ∨ β.

• ∨e: if you can demonstrate δ from α and from β separately, and you already have α ∨ β, you
can use this rule to obtain δ.

• → i: assume α, if you can prove β from this and the other sentences, you can obtain α→ β.

• → e: if you have α and α → β obtain β (this rule is also known by its latin name modus
ponens).

3We can digress a bit (to a philosophical outlook) and wonder whether two sentences that always evaluate to the
same value (true or false) in all models can be said to have the same meaning.

4 An intractable problem is a problem that can be solved in theory but its solution takes too long to be calculated
in practice, e.g., if it has exponential complexity in the size of the input.

5The names are pronounced as a concatenation of the name of the connective followed by introduction/elimination,
e.g., ∧i is read and introduction and ∧e is and elimination.
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• ¬i: obtain ¬α if you can prove ⊥ from the premises by assuming α (also known by latin name
reductio ad absurdum, reduction to absurdity).

• ¬e: if you have α and ¬α you can obtain ⊥.

• ⊥e: if you have ⊥ you can obtain α.

• ¬¬i: if you have α you can obtain ¬¬α.

• ¬¬e: if you have ¬¬α you can obtain α.

As an example of a natural deduction procedure, let us derive the rule known as modus tollens,
i.e., p→ q,¬q ` ¬p.

1. p→ q (premise)
2. ¬q (premise)
−−−−−−−−−−
3. p (assumption)
4. q (from 1 and 3, applying the rule → e)
5. q ∧ ¬q (abbreviated as ⊥, from 2 and 4, applying the rule ∧i)
−−−−−−−−−− (hereafter the assumption p is no longer valid)
6. ¬p (from 3 and 5, applying the rule ¬i)

So, since the method is sound and complete, A |= α if and only if A ` α, i.e., whenever A entails
α we can use this method to deduce α from A, and if some α is deduced from A using this method,
we can assure that α is a logical consequence of A. The intractability arises from the difficulty in
finding the sequence of rules we need to apply and over what input sentences.

2.3 Consequence Relations

A consequence relation is a function C : 2L → 2L, that maps sets of sentences (of the language)
into sets of sentences. Given a sentence α and a set of sentences A, we say that α ∈ C(A) if
and only if A ` α, that is, α is provable/deductible from A. The consequence relation of classical
propositional logic (where ` means provability by natural deduction, for instance) will be denoted
by Cn throughout this dissertation (if we use Cn for designating another consequence relation than
the classical one, it will be clearly specified). A (logically) closed set is a set K where K = C(K),
for some consequence relation C, usually Cn (unless otherwise specified).

We list below some important properties a consequence relation can have.

(Monotonicity) If A ⊆ B then C(A) ⊆ C(B)

(Inclusion) A ⊆ C(A)

(Idempotence) C(A) = C(C(A))

(Supraclassicality) Cn(A) ⊆ C(A)

(Compactness) If α ∈ C(A), then α ∈ C(A′) for some finite A′ ⊆ A.

(Deduction) β ∈ C(A ∪ {α}) if and only if α→ β ∈ C(A).

Basically,monotonicity is saying that if we expand our set of premises, all the old conclusions will
be kept, they should not disappear. Inclusion is a requirement that all premises are also conclusions,
the reasoning process should not eliminate any premise. Idempotence says that the consequence
relation computes everything at once, all the conclusions that can possibly be drawn will be drawn
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in the first application of the function. A second application over the result of the first one will not
yield new conclusions.

Supraclassicality says that the consequence relation will infer at least the classical consequences,
that is, the conclusions that one could infer using first order logic. By compactness, if some conclusion
can be drawn from a set of sentences, then it can be drawn from a finite subset of it.

We say a logic is Tarskian if its consequence relation satisfies monotonicity, inclusion and idem-
potence.

Additionaly, we define the following property:

(Subclassicality) C(A) ⊆ Cn(A)

This property just constrains the consequence relation to generate less consequences than clas-
sical propositional logic consequence (Cn).

It is worth mentioning that Cn satisfies all these properties (it is Tarskian and satisfies com-
pactness, deduction, supraclassicality and subclassicality).

As a last remark, we should note that to compute the Cn closure of a set of sentences B is a
difficult task, since deciding whether a single sentence α is a consequence of B is intractable, finding
all the consequences is even harder.

2.4 Notational Conventions

In this section we settle some notational conventions.
We assume a logic is defined as a tuple 〈L, C〉, where L is the language and C is a consequence

relation. As already mentioned, we usually denote by Cn the consequence relation of classical
propositional logic. A closed set is closed by Cn unless otherwise specified. An arbitrary set of
sentences will be called a belief base, and a closed one is a belief set or a theory.

Subsets of L, that is, sets of logical sentences, will be denoted by uppercase latin letters
(A,B,C,...), usually A,B,A′, B′,... for arbitrary sets and K,K ′,... for closed sets. Elements of L,
i.e., logical sentences, are denoted by lowercase greek letters (α, β, δ,...) and propositional atoms,
by lowercase latin letters (p, q, r,...).

The notation A ` α (α is provable from A) will be used interchangeably with its equivalent
α ∈ C(A) (α is in the set of consequences of A), and in this case C is the consequence relation
associated to the proof method denoted by `. We write A 0 α if and only if α /∈ C(A). Here again,
we assume the consequence relation associated to ` is Cn unless otherwise mentioned.
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Chapter 3

Belief Revision

In this chapter we are going to summarize a fraction of the theory of Belief Revision that will
be fundamental for the understanding of this work. First, in Section 3.1, we introduce the theory
known as the AGM Paradigm, that has begun with the seminal paper by Alchourrón, Gärdenfors
and Makinson [AGM85]. Subsequently, in Section 3.2, we present some theoretical background
for Base Change, a generalization of the AGM theory to arbitrary sets of sentences. To finish, in
Section 3.3, we talk about pseudo-contractions, operations similar to contractions but not meeting
the inclusion postulate. This last section will be the starting point for our work.

3.1 AGM Paradigm

In this section we will shortly describe the most influential theory of belief revision, that has
begun with Alchourrón, Gärdenfors and Makinson (henceforth AGM ) [AGM85].

AGM have represented epistemic states partially1 through belief sets, which are sets of sentences
closed by some consequence relation (which we will call Cn). So, K ⊆ L is a belief set if and only
if K = Cn(K). The underlying logic is 〈L, Cn〉, where Cn (which here in the AGM paradigm is
not necessarily the consequence of classical propositional logic) is supposed to be Tarskian and to
satisfy supraclassicality, compactness and deduction, and the language L is supposed to be closed
under the classical Boolean connectives2.

3.1.1 Belief Change Operations

Three epistemic change operations were defined for belief sets: expansion, contraction and re-
vision. These operations are supposed to take place as the agent’s response when faced with new
information.

Expansion (denoted by +) is the simple addition of a sentence to the set, followed by its closure:

K + α = Cn(K ∪ {α})

The other two operations are not so simple, and have not been uniquely defined, but they have
just been constrained by the rationality postulates. Contraction (denoted by −) is the complete
removal of a belief from the belief set. Since the belief set must always be closed, the remaining
beliefs must not imply the removed one (otherwise it would be present in the closure). In order
to comply with this requirement, some other beliefs may be deleted together with the contracted
sentence.

Revision (denoted by ∗) is similar to expansion, it is the addition of a new belief, but with
the further requirement that the resulting belief set be consistent. To accomplish that, one can

1Partially because belief states are fully determined by the set of sentences (the belief set) together with its
epistemic ordering.

2That means: if α, β ∈ L, then ¬α ∈ L, α ∧ β ∈ L and α ∨ β ∈ L.

9
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first contract by the negation of the target sentence, then expand by it. This relationship between
contraction and revision is known as the Levi identity [Gär88], and the inverse relationship is the
Harper identity [Gär88].

(Levi Identity) K ∗ α = (K − ¬α) + α

(Harper Identity) K − α = (K ∗ ¬α) ∩K

These relationships come in handy because we can now focus on contractions, after all, revisions
can (usually) be obtained from them.

Notice that it is very important to avoid an inconsistent state in the AGM paradigm, as in this
occasion we would lose all distinctions in the belief set. Any inconsistency lead to one and the same
belief set, the whole language L3.

3.1.2 AGM Postulates

As stated earlier, contraction and revision have not been completely defined. Instead, some
rationality postulates have been elaborated in order to limit the space of possible contractions (and
revisions), intending to allow just the operations considered “rational”. The following are the six
basic AGM postulates for contraction [AGM85]:

(Closure) K − α = Cn(K − α)

(Success) If α 6∈ Cn(∅), then α 6∈ K − α

(Inclusion) K − α ⊆ K

(Vacuity) If α 6∈ K, then K − α = K

(Recovery) K ⊆ (K − α) + α

(Extensionality) If Cn(α) = Cn(β), then K − α = K − β

Closure requires the result of a contraction to be a belief set (a closed set of beliefs). The success
postulate is satisfied if the contracted sentence is not implied by the resulting set, unless it is a
tautology. Inclusion forbids us to add anything new in the operation. Vacuity requires that, if the
contracted belief is not in the original belief set, nothing is done. Recovery, the most controversial
one4, says that if we add the contracted belief again after the contraction, the beliefs contained
in the original belief set must be recovered. Finally, extensionality is just saying that equivalent
formulas must have the same effect when contracted.

Revisions obtained from contractions respecting these postulates (using the Levi identity) also
satisfy a set of postulates (the AGM revision postulates), which we will not mention here.

Other two postulates, known as the supplementary AGM postulates (for contraction), have been
proposed: conjunctive inclusion and conjunctive overlap.

(Conjunctive Inclusion) If α /∈ K − α ∧ β, then K − α ∧ β ⊆ K − α

(Conjunctive Overlap) K − α ∩K − β ⊆ K − α ∧ β

Conjuctive inclusion says that if when contracting by α ∧ β one has to remove α, then all
sentences removed by the contraction of α are also to be removed in the contraction by α ∧ β.
Conjunctive overlap assures that a belief that is in K − α and in K − β is also in K − α ∧ β.

3This happens because the logic used is supraclassical, so it inherits from classical propositional logic the ⊥e
derivation rule (falsum elimination, from natural deduction): α ∧ ¬α ` β for any α, β.

4See [Mak87] for clarification.
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3.1.3 Partial Meet Contraction

Besides a set of postulates, AGM have proposed a construction for a contraction operation.
Before defining it, we will introduce some basic concepts out of which it depends. The first one is
the notion of remainder set.

Definition 3.1 [AM82] Let B ⊆ L and α ∈ L. The remainder set B⊥α is such that X ∈ B⊥α if
and only if:

• X ⊆ B

• X 0 α

• For all sets Y , if X ⊂ Y ⊆ B, then Y ` α

Intuitively, a remainder set of a set B by a sentence α is the set of maximal subsets of B that
do not imply α.

Next, we define selection function. A selection function chooses some elements of the remainder
set. At least one of the elements must be picked, unless the remainder set is empty.

Definition 3.2 [AGM85] A function γ is a selection function for the set B if and only if:

• If B⊥α 6= ∅ then ∅ 6= γ(B⊥α) ⊆ B⊥α

• Otherwise, γ(B⊥α) = {B}

Now we are in position to define the contraction proposed by AGM, partial meet contraction.

Definition 3.3 [AGM85] Let γ be a selection function for a set of sentences B. The partial meet
contraction of B by a sentence α is given by B − α =

⋂
γ(B⊥α).

If the selection function chooses exactly one element of the remainder set, the resulting con-
traction is called a maxichoice contraction. This type of contraction is maximal, in the sense that
we cannot add back any removed element of the original set to it and still comply with success.
If γ selects all the elements, it gives rise to full meet contraction. Full meet contractions are very
conservative in a sense, since they just take the elements that are never “involved” in the derivation
of the contracted sentence α, they are present in all the maximal subsets not implying α. The
in-between cases are just called partial meet contractions.

A maxichoice selection function has very strange effects either in contractions or in revisions
generated by them (via Levi identity). The following lemma and corollary ilustrate the unexpected
behaviour.

Lemma 3.1 [AM82] If α ∈ K and K−α is defined by means of a maxichoice contraction operation,
then for any formula β, either α ∨ β ∈ K − α or α ∨ ¬β ∈ K − α.

Corollary 3.2 [AM82] If a revision operation is defined from a maxichoice contraction by means
of the Levi identity, then, for any α such that ¬α ∈ K, K ∗α will be maximal, i.e., for every formula
β, either β ∈ K ∗ α or ¬β ∈ K ∗ α.

Even meeting all the six AGM postulates, that should guarantee at least some sort of minimality,
full meet contractions are too destructive, as can be seen in the following two results.

Lemma 3.3 [AM82] If α ∈ K and K −α is defined by means of a full meet contraction operation,
then β ∈ K − α if and only if β ∈ K ∩ Cn(¬α).

Corollary 3.4 [AM82] If a revision operation is defined from full meet contraction by means of the
Levi identity, then, for any α such that ¬α ∈ K, K ∗ α = Cn(α).
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Furthermore, we can define a partial meet operation based on a transitive relation between
beliefs.

Definition 3.4 [AGM85] A selection function γ for K is said to be transitively relational if and
only if there is a transitive relation ≤ over 2K such that the following identity holds:

γ(K⊥α) = {X ∈ K⊥α|X ′ ≤ X for all X ′ ∈ K⊥α}

Definition 3.5 [AGM85] A partial meet function is transitively relational if and only if it can be
determined by some transitively relational selection function.

3.1.4 Representation Theorems

A representation theorem is a characterization of a mathematical construction. It sets up a
list of postulates or axioms and ensures the exchangeability between an operation meeting these
axioms and an operation conforming to the mathematical construction. The following representation
theorem is one of the most important results of belief revision. It establishes an equivalence between
the set of AGM postulates and partial meet contraction.

Theorem 3.5 [AGM85] An operator − is a partial meet contraction for a belief set K if and only
if for all sentences α the operation K −α satisfies closure, success, inclusion, vacuity, recovery and
extensionality.

Another representation theorem, this time for contractions satisfying all basic plus the two
suplementary postulates, can be found in the same paper.

Theorem 3.6 [AGM85] An operator − is a transitively relational partial meet contraction for a
belief set K if and only if for all sentences α the operation K−α satisfies closure, success, inclusion,
vacuity, recovery, extensionality, conjunctive inclusion and conjunctive overlap.

3.2 Base Change

Base change is belief revision applied to arbitrary sets, not necessarily closed, the so-called belief
bases.

This generalization is useful for computational reasons, as any system which represents knowl-
edge will do it through a finite representation.

A belief base B always has an associated belief set K = Cn(B). For that reason, belief bases
are also more expressive than belief sets, since we can have different belief bases “generating” the
same belief set. This link creates a distinction among the beliefs an agent holds. There are the
explicit beliefs, which are the ones in the base, and the implicit beliefs, which are derived within the
closure5.

3.2.1 Partial Meet Contraction for Belief Bases

The construction of Definition 3.3 can also be applied to arbitrary sets of sentences (belief
bases), in such a way that it satisfies the following set of postulates:

(success) If α /∈ Cn(∅), then α /∈ Cn(B − α)

(inclusion) B − α ⊆ B
5It is important to have a clear philosophical stance on what it means to be an explicit and an implicit belief.

For instance, we can regard the explicit beliefs as the beliefs in fact belived by the agent, and the implicit beliefs as
mere consequences of those real beliefs, or we can regard both explicit and implicit beliefs as equally important, the
separation being just a technical issue.
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(relevance) If β ∈ B \ (B − α), then there is a B′ such that B − α ⊆ B′ ⊆ B, α /∈ Cn(B′),
but α ∈ Cn(B′ ∪ {β})

(uniformity) If for all B′ ⊆ B, α ∈ Cn(B′) if and only if β ∈ Cn(B′), then B − α = B − β

The postulate of relevance says that, if something is removed, it is helping to imply the con-
tracted element. Uniformity is similar to extensionality but stronger.

Furthermore, we have the following representation theorem:

Theorem 3.7 [Han92b] An operator − is a partial meet contraction for a belief base B if and only
if for all sentences α the operation B − α satisfies success, inclusion, relevance and uniformity.

When an operation satisfying all the postulates of Theorem 3.7 is applied over a belief set, it
will also satisfy the postulates of Theorem 3.5 [Han99, p. 122-123]6.

3.2.2 Kernel Contraction

A generalization of partial meet contraction, developed in the context of belief bases, is kernel
contraction, which was defined by Hansson7. Instead of picking the intersection of maximal consis-
tent sets, the idea behind kernel contraction is to take the minimal sets implying the element to be
contracted and to remove at least one element of each of those sets. Before defining this operation
formally, we need to define kernel sets and incision functions.

Definition 3.6 [Han94] Let B ⊆ L and α ∈ L. Then the kernel operation over the set B and the
sentence α is the set B ⊥⊥ α, such that X ∈ B ⊥⊥ α if and only if:

• X ⊆ B

• X ` α, and

• If Y ⊂ X, then Y 0 α.

The elements of the kernel set are the α-kernels. So, in contrast with the notion of remainder
sets, an α-kernel of B is a minimal subset of B which implies α.

An incision function is a function that selects at least one element of each α-kernel.

Definition 3.7 [Han94] An incision function σ for B is a function such that for all α:

• σ(B ⊥⊥ α) ⊆
⋃

(B ⊥⊥ α)

• If ∅ 6= X ∈ B ⊥⊥ α, then X ∩ σ(B ⊥⊥ α) 6= ∅

Now, we are in position to define kernel contraction.

Definition 3.8 [Han94] Let σ be an incision function for B. The kernel contraction ≈σ for B is
defined as follows:

B ≈σ α = B \ σ(B ⊥⊥ α)

Kernel contraction satisfies the weaker postulate of core-retainment (proposed in [Han91]) in-
stead of relevance.

(core-retainment) If β ∈ B \ (B − α), then there is a B′ such that B′ ⊆ B, α /∈ Cn(B′), but
α ∈ Cn(B′ ∪ {β})

Hansson has also proven the representation theorem for kernel contractions.
6This holds for classical logics, for other cases see [RWFA13].
7A generalization of safe contraction [AM85].
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Theorem 3.8 [Han94] An operator ≈σ is a kernel contraction for a belief base B if and only if for
all sentences α the operation B ≈σ α satisfies success, inclusion, core-retainment and uniformity.

A desirable property for contractions that kernel contraction unfortunately does not have is
relative closure [Han91].

(relative closure) B ∩ Cn(B − α) ⊆ B − α

This property is a consequence of the postulate of relevance [Han99, p. 71], which kernel con-
traction does not satisfy. Due to the lack of this property, kernel contraction violates the principle of
minimality of belief change [Han99, p. 90]. For instance, consider the logically independent sentences
p and q, and let A = {p, p∨ q, p↔ q}. The kernel contraction A− (p∧ q) = {p} is possible, whereas
partial meet contraction cannot have this outcome. As observed by Hansson, it is not sensible to
give up p ∨ q, since p was kept. Nevertheless, a special type of kernel contraction called smooth
kernel contraction [Han94] satisfies relative closure.

3.2.3 Base-Generated Operators

A base contraction operator gives rise to a theory contraction operator on the base’s correspond-
ing belief set [Neb89, Fuh91].

Definition 3.9 Let B ⊆ L, K = Cn(B) and − be a contraction operator for B. We say that ÷ is
a contraction operator for K generated from − if for all α ∈ L we have that K ÷ α = Cn(B − α).

Any base-generated contraction operation does not satisfy recovery [Han99, p. 307].

3.3 Pseudo-Contractions

Partial meet contraction over belief bases may be too destructive. Consider, for instance, the
belief base B = {p∧q}. If we (partial meet) contract p, the result would be B−p = ∅. This outcome
can be justified if we regard p and q as beliefs obtained together, then, if we give up one, we give up
the other. But the outcome B−p = {q} is also (and, by intuition, possibly even more) conceivable8.
This result cannot be obtained due to inclusion.

Hansson has proposed a weakening of the inclusion postulate, called logical inclusion [Han89].

(Logical Inclusion) Cn(B − α) ⊆ Cn(B)

This author has suggested to call operations satisfying success and logical inclusion pseudo-
contractions [Han93]. Naturally, all contractions (operations satisfying success and inclusion) are
also pseudo-contractions.

3.3.1 Nebel’s Pseudo-Contraction

Nebel has proposed a pseudo-contraction for bases (which we will abbreviate as NPC) that
generates a contraction which satisfies all the six AGM postulates [Neb89].

Definition 3.10 Let
∧
B be the conjunction of all elements of B. Nebel’s pseudo-contraction for

the set B is the operator − such that for all sentences α:

B − α =

{
B if α ∈ Cn(∅)⋂
γ(B⊥α) ∪ {α→

∧
B} otherwise

8 And here we reveal why it is essential to have a clear philosophical stance on what a belief base is. If we regard
each explicit belief as a piece of information obtained at once and independently of other beliefs, then the sentence
p∧ q of the base was obtained in this form, p and q together, and maybe we should not remove one without removing
the other. In any case, we can regard the beliefs in the base as arbitrary codifications of the agent’s beliefs, and as
such it is only their consequences/content that matter (and not the syntactic form).
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In [RW08], Ribeiro and Wassermann have already noted that there is no other intuition behind
Nebel’s operation than maintaining recovery, a postulate which has been deemed as polemic (as
we have already mentioned). These authors, in the same paper, have proposed some reformulations
of Nebel’s construction. The first (here called NPC′) is identic to the above mentioned one, but it
adds {α→ β|β ∈ B} instead. The second one (NPC′′) adds {α→ β|β ∈ B \

⋂
γ(B⊥α)}.

3.3.2 General Partial-Meet Pseudo-Contraction (GPMPC)

Although the belief set operation generated from Nebel’s pseudo-contraction satisfies all the
AGM postulates, it adds unnecessary information to the base. As shown in [RW08], it suffices
to add {α →

∧
B′}, where B′ = B \

⋂
γ(B⊥α). Intending to avoid useless additions and yet

maintaining some “degree” of recovery, they have proposed a new contraction operator, based on
the notion of an extension of a selection function.

Definition 3.11 [RW08] Let γ be a selection function for a set B and let B∗ contain B. An
extension of γ to B∗ is a selection function γ∗ such that for every Y ∈ γ∗(B∗⊥α) there is an
X ∈ γ(B⊥α) such that X ⊆ Y .

Then, they define the general partial meet pseudo-contraction.

Definition 3.12 [RW08] Let B be a finite belief base, α ∈ L and γ a selection function for B. The
general partial meet pseudo-contraction B − α is given by:

B − α =

{
B if α ∈ Cn(∅)⋂
γ∗(B∗⊥α) otherwise

where B∗ = B ∪ Cn∗(B \
⋂
γ(B⊥α)), γ∗ is an extension of γ to B∗ and Cn∗ is a consequence

relation.

In order to axiomatize some notion of minimality in the additions to the base, these authors
propose the core-addition postulate [RW08], which the last construction does not always satisfy (it
depends on the Cn∗ used). In the same paper, following the idea of Hansson’s logical inclusion, they
have also proposed logical relevance, a weakening of relevance9, and logical recovery, a weakening
of recovery.

(Core-Addition) If β ∈ (B − α) \B, then there is a β′ ∈ B \ (B − α) and a B′ ⊆ B − α such
that α→ β′ /∈ Cn(B′) but α→ β′ ∈ Cn(B′ ∪ {β}).

(Logical Relevance) If β ∈ B \ (B − α), then there is a B′ such that B − α ⊆ B′ ⊆ Cn(B),
α /∈ Cn(B′), but α ∈ Cn(B′ ∪ {β})

(Logical Recovery) B ⊆ Cn(B − α+ α)

Some properties of this pseudo-contraction can be found in the paper [RW08], but we reproduce
the main results here. The next two propositions concern properties of the GPMPC operation itself.

Proposition 3.9 [RW08] GPMPC satisfies success, logical inclusion, logical vacuity, extensionality
and core-retainment.

Proposition 3.10 [RW08] If Cn∗ satisfies subclassicality, then GPMPC satisfies logical relevance.

The next two propositions are properties of the operation on belief sets generated by the GPMPC
operation.

9We first thought that a base contraction operation satisfying logical relevance would yield a base-generated
operation satisfying relevance, but this is not the case. This would imply a base-generated contraction satisfying
recovery, what is impossible. The same argument applies to logical recovery.
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Proposition 3.11 [RW08] The operation on belief sets generated from GPMPC satisfies closure,
inclusion, vacuity, success and extensionality.

In the paper, the authors propose to use Cn∗(X) = {α → β|β ∈ X} as a means to obtain a
new version of Nebel’s construction (NGPMPC, Nebel’s GPMPC). This construction is equivalent
to NPC′′.

3.4 Conclusion

So, in this chapter we briefly presented the AGM paradigm, the dominant approach to belief
revision. It is a solid framework, with different facets, two of them being the rationality postulates
and the partial meet construction, which we exposed here. It is easy to see that only highly idealized
agents could implement belief revision in the way the AGM paradigm demands, due to two reasons.
The first of them is that the epistemic state is represented by belief sets, very large mathematical
entities. If we are dealing with classical logic, these sets contain infinitely many sentences. The
second reason is that in order to compute the remainder sets of these infinite entities one must do
an enormous amount of work (recall from Chapter 2 the SAT problem, whose instances cannot be
solved in polynomial time yet10).

After presenting the AGM paradigm, we introduced the topic of base change, the theory of
belief change for belief bases. Belief bases are more expressive than belief sets and also more easily
representable, since they are not necessarily infinite. Nevertheless, their change tends to be quite
destructive, deleting more information than necessary, partly due to the inclusion postulate.

Finally, we presented pseudo-contractions, that in the cases seen so far are also base change
operations, but allowing the addition or weakening of formulas, which contradict the inclusion pos-
tulate. Nebel’s pseudo-contraction, one of the first constructions of this type to be proposed, lacks
intuition beyond attaining the recovery postulate, which no base-generated partial meet contraction
has. It adds more information than necessary to the base. As a way to fix this, GPMPC was pro-
posed. We start our research trying to better understand this construction, by studying a simplified
operation based on it.

10And never will, if the most accepted conjecture that P 6= NP is correct.



Chapter 4

A New Pseudo-Contraction

In this work we want to further explore the possibility of working with belief bases with logical
inclusion, allowing for some syntax independence without having to resort to belief sets. In Section
4.1 we present our proposal, its definition and some basic properties satisfied by it. Section 4.2 has
some practical examples of applications to motivate our work. Section 4.3 connects our operation
with other pseudo-contraction found in the literature.

Most results and discussion in this chapter are our contribution (unless otherwise mentioned),
and part of them (mostly from Sections 4.1 and 4.2) was already published [SRW15].

4.1 Definition and Basic Properties

The direct application of partial meet contraction over closed belief sets and over belief bases
creates problems of practical (computational infeasibility) and theoretical (syntax dependence)
nature, respectively. One of the aims of this study is to assess the effects of doing the traditional
partial meet contraction on belief bases closed by a consequence operation that is between the
classical consequence operator and the identity (i.e., the base itself). Hence, we will assume that
this operator (here called Cn∗) is Tarskian.

We will study the properties of the application of the partial meet contraction over a set closed
under Cn∗, i.e., the operator defined as:

Definition 4.1 Let B be a set of sentences, Cn∗ a consequence relation and γ a selection function
for Cn∗(B). The operator −∗ is such that, for all sentences α:

B −∗ α =
⋂
γ(Cn∗(B)⊥α)

Notice that B −∗ α =
⋂
γ(Cn∗(B)⊥α) = Cn∗(B) −γ α, where −γ is partial meet contraction.

Since −γ satisfies the postulates of success, inclusion, relevance and uniformity, it follows directly
(details in the proof just ahead) that −∗ satisfies success and the following “starred” versions of
inclusion, relevance and uniformity:

(inclusion∗) B − α ⊆ Cn∗(B)

(relevance∗) If β ∈ Cn∗(B) \ (B − α), then there is a B′ such that B − α ⊆ B′ ⊆ Cn∗(B),
α /∈ Cn(B′), but α ∈ Cn(B′ ∪ {β})

(uniformity∗) If for all B′ ⊆ Cn∗(B), α ∈ Cn(B′) if and only if β ∈ Cn(B′), then B−α = B−β

For several applications it is important that the construction satisfies the original success pos-
tulate, and not only a starred version of it:

17



18 A NEW PSEUDO-CONTRACTION 4.1

(success∗) If α /∈ Cn∗(∅), then α /∈ Cn∗(B − α)

We want that the sentence to be contracted ceases to be logically (classically) implied by the
resulting set after the contraction. In this case, the role of the consequence relation Cn∗ is just to
give a degree of syntactic independence to the operation.

As our purpose here is to make the contraction on a set closed by a Cn∗ that does not generate as
many consequences as the classic Cn, it is desirable that Cn∗ satisfies the property of subclassicality
(see Section 2.3).

Clearly, if Cn∗(A) = A (identity), we have that −∗ is the usual operation of partial meet
contraction on bases. Similarly, for all Tarskian Cn∗ that also satisfies subclassicality, applying −∗
to belief sets (i.e., K = Cn∗(K) = Cn(K)) yields the usual AGM partial meet contraction on belief
sets.

Observation 4.1 If Cn∗ satisfies

• subclassicality, then an operation satisfying inclusion∗ also satisfies logical inclusion.

• inclusion, then an operation satisfying uniformity∗ also satisfies uniformity.

• subclassicality and inclusion, then an operation satisfying relevance∗ also satisfies logical rel-
evance.

The next corollary follows:

Corollary 4.1 If Cn∗ satisfies inclusion and subclassicality, then an operation that satisfies inclusion∗,
relevance∗ and uniformity∗ also satisfies logical inclusion, logical relevance and uniformity.

With a proof that is very similar to that of the representation theorem for partial meet contrac-
tion on bases (which can be found in [Han99]), we can prove the following representation theorem:

Theorem 4.2 Provided that Cn∗ satisfies inclusion, idempotence and subclassicality, an operation
is a −∗ operator if and only if it satisfies success, inclusion∗, relevance∗ and uniformity∗.

To prove this representation theorem, first, we will reproduce here (with minor adjustments)
two properties that will be needed in the proofs.

Observation 4.2 [AM81](Upper Bound Property) If X ⊆ A, and α /∈ Cn(X), then there is some
X ′ such that X ⊆ X ′ ∈ A⊥α.

Observation 4.3 [Han99, p. 39, observation 1.39] The following two conditions are equivalent:

• A⊥β1 = A⊥β2

• For all subsets D of A : β1 /∈ Cn(D) if and only if β2 /∈ Cn(D).

Now we are ready for the proof.

Proof of Theorem 4.2:
Construction-to-postulates: We know that A −∗ α =

⋂
γ(Cn∗(A)⊥α) = Cn∗(A) −γ α, where

−γ is the partial meet contraction. We also know that −γ satisfies success, inclusion, relevance and
uniformity. So, we have:

• If α /∈ Cn(∅), then α /∈ Cn(Cn∗(A)−γ α)

• Cn∗(A)−γ α ⊆ Cn∗(A)

• If β ∈ Cn∗(A) \ (Cn∗(A) −γ α), then there is a B′ such that Cn∗(A) −γ α ⊆ B′ ⊆ Cn∗(A),
α /∈ Cn(B′), but α ∈ Cn(B′ ∪ {β}).
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• If for all B′ ⊆ Cn∗(A), α ∈ Cn(B′) if and only if β ∈ Cn(B′), then Cn∗(A) −γ α =
Cn∗(A)−γ β.

Since Cn∗(A)−γ α = A−∗ α, we are done.
Postulates-to-construction:
This part is is almost trivially obtained from the proof of the representation theorem for partial

meet contraction for bases, which can be found in [Han99, p. 129].
Let −∗ be an operation for A that satisfies success, inclusion∗, relevance∗ and uniformity∗. From

Cn∗ satisfying inclusion and subclassicality and corollary 4.1 we conclude that −∗ also satisfies
logical relevance and uniformity. Let γ be a function such that:

• If Cn∗(A)⊥α = ∅, then γ(Cn∗(A)⊥α) = {Cn∗(A)}.

• Otherwise γ(Cn∗(A)⊥α) = {X ∈ Cn∗(A)⊥α |A−∗ α ⊆ X}

We need to show that (1) γ is a well-defined function, (2) γ is a selection function and (3)⋂
γ(Cn∗(A)⊥α) = A−∗ α for all α.
Part 1: For γ to be a well-defined function, for all α and β, if Cn∗(A)⊥α = Cn∗(A)⊥β, we must

have
⋂
γ(Cn∗(A)⊥α) =

⋂
γ(Cn∗(A)⊥β). Suppose that Cn∗(A)⊥α = Cn∗(A)⊥β. It follows from

observation 4.3 that any subset of Cn∗(A) implies α if and only if it implies β. By uniformity (of
partial meet), Cn∗(A)−∗ α = Cn∗(A)−∗ β. By the definition of γ we have γ(Cn∗(Cn∗(A))⊥α) =
γ(Cn∗(Cn∗(A))⊥β). By idempotence of Cn∗, the result follows.

Part 2: For γ to be a selection function it remains to be proven that if Cn∗(A)⊥α is not
empty, then γ(Cn∗(A)⊥α) is not empty as well. Then, assuming Cn∗(A)⊥α 6= ∅, we know that
there is at least one X ∈ Cn∗(A)⊥α, and we must show that at least one of these X contains
A−∗ α. Since Cn∗(A)⊥α is not empty, α /∈ Cn(∅), and by success, α /∈ Cn(A−∗ α). By inclusion∗,
A−∗ α ⊆ Cn∗(A), then, by the subclassicality of Cn∗ and the upper bound property (observation
4.2), there is an A′ such that A −∗ α ⊆ A′ and A′ ∈ Cn∗(A)⊥α. By the construction of γ,
γ(Cn∗(A)⊥α) is non-empty.

Part 3: Case 1, α ∈ Cn(∅). Then, by logical relevance, since there is no A′ such that α /∈
Cn(A′), no element is in A \A−∗ α, then, using inclusion∗, A ⊆ A−∗ α ⊆ Cn∗(A). We know that
Cn∗(A)⊥α = ∅, then

⋂
γ(Cn∗(A)⊥α) = Cn∗(A). We need to show that Cn∗(A) ⊆ A −∗ α. By

relevance∗, we know that Cn∗(A) \A−∗ α = ∅, then Cn∗(A) ⊆ A−∗ α.
Case 2, α /∈ Cn(∅). Cn∗(A)⊥α is non-empty and by part 2, γ(Cn∗(A)⊥α) is non-empty as well.

Since A −∗ α is a subset of all elements of γ(Cn∗(A)⊥α), A −∗ α ⊆
⋂
γ(Cn∗(A)⊥α). We need to

show that
⋂
γ(Cn∗(A)⊥α) ⊆ A−∗ α.

Take ε /∈ A −∗ α. If ε /∈ Cn∗(A), obviously ε /∈
⋂
γ(Cn∗(A)⊥α). If ε ∈ Cn∗(A) \ A −∗ α, then

by relevance∗ there is an A′ such that A−∗α ⊆ A′ ⊆ Cn∗(A), α /∈ Cn(A′) but α ∈ Cn(A′∪{ε}). It
follows from the upper bound property that there is an A′′ such that A ⊆ A′′ and A′′ ∈ Cn∗(A)⊥α.
From A ⊆ A′′, α ∈ Cn(A′∪ε) and ε ∈ A′′ we conclude that α ∈ Cn(A′′), so we must have ε /∈ A′′. By
our definition of γ, A′′ ∈ γ(Cn∗(A)⊥α), and since ε /∈ A′′, we conclude that ε /∈

⋂
γ(Cn∗(A)⊥α),

concluding the proof. �

From this theorem and the previous corollary, it also follows:

Corollary 4.3 If Cn∗ satisfies inclusion, idempotence and subclassicality, then −∗ satisfies success,
logical inclusion, logical relevance and uniformity.

It is interesting that we have here a set of postulates that are independent from Cn∗. Nonetheless,
these postulates do not characterize the operation, and are in general weaker than the postulates
with ∗. Hansson’s logical inclusion postulate is quite reasonable for base operations, as it brings
syntactic independence, although with inclusion∗ we already have a degree of independence, and
with better preservation of the original set (since Cn∗ is subclassical), and, depending on the chosen
Cn∗, we avoid the complexity problem we have with the closure of Cn.
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Another desirable property in rational contraction operations is relative closure (cf. Section 3.2).
This property is a consequence of the postulate of relevance, which −∗ does not satisfy. Nevertheless,
relative closure is satisfied, given the condition that Cn∗ satisfies inclusion.

Proposition 4.4 If Cn∗ satisfies inclusion, the −∗ operator satisfies relative closure.

Proof: We know that A −∗ α = Cn∗(A) −γ α, where −γ is the partial meet contraction. Since
partial meet satisfies relative closure [Han99, p. 71], Cn∗(A)∩Cn(Cn∗(A)−γ α) ⊆ Cn∗(A)−γ α is
valid. From this we have Cn∗(A)∩Cn(A−∗ α) ⊆ A−∗ α. By the inclusion property of Cn∗ and set
theory we get A ∩ Cn(A−∗ α) ⊆ Cn∗(A) ∩ Cn(A−∗ α) and hence A ∩ Cn(A−∗ α) ⊆ A−∗ α. �

As seen in Section 3.2, kernel contraction is an alternative construction for contraction, which
is characterized by the same postulates as partial meet contraction on bases, except for relevance,
which is weakened to core-retainment.

Kernel contraction may have erratic behaviour due to its non-satisfaction of relevance, as men-
tioned in Chapter 3. Would the weakening of relevance to relevance∗ or logical relevance be enough
so as to make these behaviours show up in the −∗ operator? Kernel contraction does not satisfy
any of these last two postulates. Furthermore, Hansson had already noticed that the lack of relative
closure also contributes to these unnecessary removals in contraction. The operator −∗, as shown
above, satisfies relative closure.

A property of our pseudo-contraction is enforced closure∗.

(enforced closure∗) B − α = Cn∗(B − α)

Proposition 4.5 If Cn∗ is Tarskian and satisfies subclassicality, an operator that satisfies inclusion∗

and relevance∗ also satisfies enforced closure∗.

Proof: Since Cn∗ is Tarskian, by inclusion, A−α ⊆ Cn∗(A−α). We want to show that Cn∗(A−α) ⊆
A − α. Suppose by contradiction that β ∈ Cn∗(A − α) \ (A − α). From inclusion∗, monotonicity
and idempotence of Cn∗ we obtain β ∈ Cn∗(A) \A− α. Relevance∗ guarantees that there is an A′

such that A−α ⊆ A′ ⊆ Cn∗(A), α /∈ Cn(A′) but α ∈ Cn(A′ ∪ {β}). By subclassicality of Cn∗ and
β ∈ Cn∗(A − α) we have β ∈ Cn(A − α). By A − α ⊆ A′ and by the inclusion property of Cn,
β ∈ Cn(A′). So, we have Cn(A′) = Cn(A′ ∪ {β}), which is a contradiction. �

Whenever A ⊂ Cn∗(A), this postulate will imply that vacuity is not satisfied, which is an
essential postulate from the point of view of rational contractions (that respect the principle of
minimal change). It has as effect that the belief base will always end up closed by Cn∗ after the
contraction, even though the original base was not closed.

Nevertheless, our construction does satisfy a weaker form of vacuity:

(vacuity∗) If α /∈ Cn(B), then B − α = Cn∗(B)

Proposition 4.6 If Cn∗ satisfies subclassicality, an operator that satisfies inclusion∗ and relevance∗

also satisfies vacuity∗.

Proof: Assume α /∈ Cn(B).
By inclusion∗ we already have B−α ⊆ Cn∗(B). To finish the proof it is sufficient to prove that

Cn∗(B) \ (B − α) = ∅.
By relevance∗, if β ∈ Cn∗(B) \ (B−α), then there is a B′ such that B−α ⊆ B′ ⊆ Cn∗(B) and

α ∈ Cn(B′ ∪ {β}). From this and subclassicality of Cn∗ we get B′ ∪ {β} ⊆ Cn∗(B) ⊆ Cn(B) and
then by monotonicity and idempotence of Cn we have Cn(B′ ∪ {β}) ⊆ Cn(B). Since α /∈ Cn(B)
by assumption, we cannot have such α. �
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Corollary 4.7 If Cn∗ is Tarskian and satisfies subclassicality, then the operator −∗ satisfies en-
forced closure∗ and vacuity∗.

A simple way to restore vacuity is to redefine the −∗ operator in the following manner:

Definition 4.2 Let B be a set of sentences, Cn∗ a function from sets of sentences to sets of
sentences and γ a selection function for Cn∗(B). The operator −′∗ is such that, for all sentence α:

B −′∗ α =

{
B if α /∈ Cn(B)⋂
γ(Cn∗(B)⊥α) otherwise

Observation 4.4 The −′∗ operator satisfies success, inclusion∗, uniformity∗ and vacuity. If Cn∗

satisfies inclusion and subclassicality, −′∗ also satisfies logical inclusion, uniformity and relative
closure.

The proof of the observation above is not given, but can be trivially obtained from Theorem
4.2, Corollary 4.1 and Proposition 4.4. Notice that relevance∗ and logical relevance were lost and
although we have attained vacuity, we have only partly gotten rid of enforced closure∗ (just when
α /∈ Cn(B)).

If on one hand logical inclusion seems to make more sense than inclusion for base contractions,
by allowing some syntactic independence, effects such as enforced closure∗ illustrate the need to
refrain from careless additions of sentences in the contraction. Here we should recall the postulate
of core-addition [RW08], seen in Section 3.3.

Any operator satisfying inclusion will satisfy this postulate trivially. If we break {α →
∧
B}

into the set of sentences {α→ β |β ∈ B}, Nebel’s pseudo-contraction will not satisfy core-addition.
Clearly the −∗ operator does not satisfy it also (neither does −′∗), and it does not satisfy vacuity
as well. In the effort to fix these two problems, the operations of general partial-meet pseudo-
contraction and ∆-partial-meet pseudo-contraction, proposed in [RW08], seem to be viable solutions.

4.2 Examples and Applications

In this Section we are going to show some concrete examples of Cn∗ functions that can be
useful in the solution of practical problems. The first example we mention is the Cleopatra example,
adapted from [Han99].

Example 4.1 Consider a language with three propositional letters, p, q and r and a belief base
B = {p ∧ q}, where p stands for Cleopatra had a son and q, Cleopatra had a daughter. If we want
to contract by p, applying a partial meet contraction produces B − p = ∅. This is not always the
expected result, because the loss of faith in the belief that Cleopatra had a son also made us lose faith
in the belief that she had a daughter.

With the classic partial meet construction for bases we would have B⊥p = {∅}, so the selection
function needs to choose {∅}, causing the overall contraction process to produce ∅ as final result.

On the other hand, if we take B to represent the belief set K = Cn(B), then K contains both
p and q and the belief that Cleopatra had a daughter (q) may survive the contraction, i.e., we may
have q ∈ K − p. But then we would also have p ∨ r, r → p and many other irrelevant formulas in
the resulting set, since it is closed under Cn.

Let us consider an intermediate consequence operator:

Cn∗1(A) = {α |α ∈ A or for any formulas β, δ, α ∧ β ∈ A or β ∧ α ∈ A or β ∧ α ∧ δ ∈ A}

This operator is “breaking the conjunctions into conjuncts”. We can use Cn∗1 with the−∗ operator
to solve the problem of the preceding example. In this case, we have Cn∗1(B) = {p ∧ q, p, q} and
Cn∗1(B)⊥p = {{q}}, hence the selection function would choose the whole remainder set, {{q}},
and, accordingly, B −∗ p = {q}.
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Although the usefulness of this consequence operation is dubious, its use already brings better
results than the typical base contraction in some cases, as in the former example.

Example 4.2 Suppose I believe that the town of Juazeiro do Norte is located in the state of
Pernambuco (j → p) and that the state of Pernambuco is located in Brazil (p→ b). Speaking with
a colleague, I found that this town is not located in his state (Pernambuco), that is, I contract j → p
from my base. The outcome is B − (j → p) = {p → b}. So, I no longer know whether Juazeiro do
Norte is located in Brazil.

In this example, as well as in the previous one, one can blame the poor codification of the
belief base for the problems. The knowledge that Juazeiro do Norte is located in Brazil, if obvious,
perhaps would be individually justified, and so it would deserve to be explicitly in the base. At this
point the syntactic independence dilemma reappears. In some cases we want to have it, but without
having to generate infinitely many derivative sentences with little utility.

However, when working with ontologies, for instance, it is possible that the user does not want
to make explicit every possible relationship, trusting the transitivity of some properties (i.e., he
would be more concerned with his ontology on the knowledge level than on the syntactic level).
One may also want a knowledge base with little redundancy.

Again, neither the belief base nor the belief set approach would give us the desired result.
Returning to the foregoing example, we could use a Cn∗2 that adds to the base the result of one

application of the transitivity of →:

Cn∗2(A) = A ∪ {α1 → α2| for some β, α1 → β, β → α2 ∈ A}.

In that case, we would have Cn∗2(B) = B ∪ {j → b}, which results in Cn∗2(B)⊥(j → p) =
{{p → b, j → b}}. As in the last example, the selection function must choose the only member of
the remainder set, therefore B −∗ (j → p) = {p→ b, j → b}. It is interesting to note that we could
also use here a Cn∗2′(B) being the set of all Horn consequences of B.

The following example was adapted from [Han93].

Example 4.3 Suppose I believe, for good and independent reasons, that Andy is son of the mayor
(a) and Bob is son of the mayor (b). Then I hear the mayor say: “I certainly have nothing against
our youth studying abroad. My only son did it for three years”. I then have to retract a∧ b from my
base B = {a, b}. But it is reasonable to retain a belief that either Andy or Bob is the son of the
mayor, i.e., the result of the contraction should be {a ∨ b}.

The remainder set for the operation above is B⊥(a ∧ b) = {{a}, {b}}. So, the resulting partial
meet contraction is either {a}, {b} or ∅, the first two being odd since we do not seem to have reasons
to prefer a over b or vice-versa.

In the same paper where he presented the example above, Hansson has done an extensive study
of partial meet contraction on disjunctively closed bases. If we define Cn∗3(A) as the disjunctive
closure of A, as defined by Hansson, that is, Cn∗3(A) is the set of sentences that are either elements
of A or disjunctions of elements of A, we can manage to get the desired result.

Cn∗3(A) = A ∪ {
∨
αi|αi ∈ A}

We have Cn∗3(B) = {a, b, a∨b}. Then, the remainder set is Cn∗3(B)⊥(a∧b) = {{a, a∨b}, {b, a∨
b}}, and so the selection function may choose both sets, producing the expected result in the lack
of evidence for a or b: B −∗ (a ∧ b) = {a ∨ b}.

Consider now the case where the language has three propositional letters (a, b, and c). If we
take the belief set K = Cn(B), we have that K contains a ∨ c and b ∨ c. It is not hard to see
that there are two remainder sets containing these two formulas, namely {a, a ∨ b, a ∨ c, b ∨ c} and
{b, a ∨ b, a ∨ c, b ∨ c}, and hence, they may survive contraction, even if the original set did not
mention c. Again, this shows the inconvenience of using classical closure.
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4.3 Connections with GPMPC

We now show the connections between general partial-meet pseudo-contraction and our new
pseudo-contraction −∗ (that was conceived as a simplification of the former). We should keep in
mind that we turned back to this more sophisticated construction as a way to prevent a problem (or
feature, if you will) of the −∗ operator, which we mentioned in the end of Section 4.1: its violation of
minimality, which manifests itself in the form of enforced closure∗ and the failure to satisfy vacuity
(two properties which, in turn, are closely related) and core-addition. The construction of GPMPC
makes it easier to reach core-addition, but we will postpone the discussion about this postulate to
chapter 5.

First we define a two-place selection function.

Definition 4.3 [Han99, p. 105] A two-place selection function γ is a function which maps sets of
sentences (B) into suitable selection functions (γB for B).

If the context is clear, we will omit the subscript of γB, writing just γ. Now, we can redefine the
operator from Ribeiro and Wassermann as:

Definition 4.4 Let γ be a two-place selection function. The new general partial-meet pseudo-
contraction operator − is an operator that, for all sets B and all sentences α:

B − α =
⋂
γ(Cn∗α,γ(B)⊥α)

where Cn∗α,γ(B) = B ∪ fα(B \
⋂
γ(B⊥α)), and fα : 2L → 2L.

The intuition behind the function fα comes from [RW08]. Their construction was designed as
a pseudo-contraction, which will expand the original base with some consequences of the elements
that would usually be removed by a partial meet contraction (represented by the set B\

⋂
γ(B⊥α)).

These consequences are drawn according to a consequence relation, intended to be weaker than the
classical Cn, here denoted by this fα. The idea is that some formulas that would be removed by
partial meet contraction could just be weakened, and this weakening is done by extracting some
consequences with fα and making the traditional partial meet operation afterwards.

Comparing to Ribeiro and Wassermann’s operator, we eliminated the exception clause for the
case when α is a tautology, because it was redundant in the case when fα(∅) = ∅ (which is a
sensible requirement on fα). The set B∗ was replaced by Cn∗α,γ so as to make explicit that we are
dealing with a “weak closure” of the original set (as in our −∗ operation) and that this consequence
relation depends both on the contracted sentence and on the selection function. Note that since γ is
a two-place selection function, the two appearances of γ in the definition above are not referring to
the same function. The first is actually γCn∗α,γ(B), a selection function for Cn∗α,γ(B), and the second
is γB, a selection function for B1.

We replaced the extension of a selection function γ∗ from the original definition by the more
general concept of a two-place selection function. We can then verify in what situations the re-
lationship between γCn∗α,γ(B) and γB satisfies a property that makes the former equivalent to an
extension of the latter (recall definition 3.11).

We cannot regard this (redefined) general partial-meet pseudo-contraction as a special case
of the −∗ operator, because its consequence relation depends on both the belief base and the
contracted element. Still, we want to investigate the conditions under which Cn∗α,γ satisfies inclusion,
monotonicity, idempotence and subclassicality, so we could apply some of the results showed before
to that operation as well. However, before working with this new definition, we will present some
further properties of GPMPC (as it was originally defined), besides the ones already listed in Section
3.3.

1This definition of γCn∗
α,γ(B) may seem circular but it is not, since Cn∗α,γ(B) depends only on γB , not on γ itself.

In fact, we should have written Cn∗α,γB (B) but the definition is already too complicated, so we are going to leave it
as it is for the sake of simplicity.
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4.3.1 Properties of GPMPC

Basic properties of GPMPC are enumerated in Section 3.3. In [RW08] they claim the following
observation:

Observation 4.5 [RW08] Let γ be a selection function for B and let B∗ contain B. If γ∗ is an
extension of γ to B∗, then for any X ∈ γ(B⊥α) there is a Y ∈ γ∗(B∗⊥α) such that X ⊆ Y .

Nonetheless, if one wants this property, it should also be part of the definition of an extension
of a selection function, because the following proposition holds true:

Proposition 4.8 If γ∗ is defined according to definition 3.11, then observation 4.5 is not valid.

Proof: We show a counterexample. Let A = {p, q, r}. So A⊥(p∧ q) = {{p, r}, {q, r}}. Let A∗ = A,
so A∗⊥(p ∧ q) = A⊥(p ∧ q). If γ(A⊥(p ∧ q)) = A⊥(p ∧ q), then for γ∗(A∗⊥(p ∧ q)) = {p, r}, γ∗
satisfies the definition but not the observation. �

The following lemma is an intermediary result we are going to use to prove another property of
GPMPC.

Lemma 4.9 Let A∗ = A ∪X, γ be a selection function for A and γ∗ be an extension of γ to A∗

(according to definition 3.11). If
⋂
γ∗(A∗⊥α) ⊆ A, then

⋂
γ∗(A∗⊥α) =

⋂
γ(A⊥α).

Proof: If ε ∈
⋂
γ(A⊥α), then ε ∈ X for all X ∈ γ(A⊥α). Since, by definition of γ∗, for all

Y ∈ γ∗(A∗⊥α), there is an X ∈ γ(A⊥α) such that X ⊆ Y , we conclude that ε ∈ Y for all
Y ∈ γ∗(A∗⊥α), therefore

⋂
γ(A⊥α) ⊆

⋂
γ∗(A∗⊥α).

For the other direction of the proof, let us assume
⋂
γ∗(A∗⊥α) 6⊆

⋂
γ(A⊥α). So, there must be

an ε ∈
⋂
γ∗(A∗⊥α) such that ε /∈

⋂
γ(A⊥α). Thus, ε ∈ Y for all Y ∈

⋂
γ∗(A∗⊥α), but ε /∈ X for

some X ∈ γ(A⊥α), accordingly, for all those Y ’s and some of those X’s, ε ∈ Y \X. Since X ∈ A⊥α,
for any ε ∈ A \X we have X ∪ {ε} ` α, and since Y 0 α, it must be the case that ε ∈ A∗ \A. But
we know that

⋂
γ∗(A∗⊥α) ⊆ A, therefore this ε cannot exist and so we come to a contradiction. �

As an immediate result we have the next corollary:

Corollary 4.10 Let A∗ = A, γ be a selection function for A and γ∗ be an extension of γ to A∗.
Then

⋂
γ∗(A∗⊥α) =

⋂
γ(A⊥α).

This corollary is basically saying that any extension of a selection function to the same set will
always produce the same partial meet contraction (notice that we have not even used observation
4.5).

Now we can easily prove the seemingly obvious property that follows:

Proposition 4.11 If a GPMPC operation satisfies inclusion, then it satisfies relevance.

This proposition is not as obvious as it seems. Respecting inclusion does not mean that B∗

is the same as B. The inclusion property refers to the overall result of the operation, not to the
consequence relation that generates B∗. So it could be the case that an operation added elements
to B∗ but they were lost in the contraction afterwards. Likewise, we do not know much about the
behaviour of γ∗ in relation to γ, for instance, even if B∗ = B it could be the case that the resulting
contractions were different (actually, now we know that this is impossible, thanks to the previous
corollary).

Proof of Proposition 4.11: Let − be a GPMPC and −γ be a partial meet contraction. If α is a
tautology, B − α = B = B −γ α, so let us consider the main case when α /∈ Cn(∅).
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Since inclusion holds,
⋂
γ∗(B∗⊥α) ⊆ B, and thus, by lemma 4.9,

⋂
γ∗(B∗⊥α) =

⋂
γ(B⊥α).

We know relevance holds for partial meet contraction, so it must hold for GPMPC in this case as
well. �

Now we prove some additional properties of GPMPC.

Proposition 4.12 GPMPC does not satisfy uniformity (in general).

Proof: We give a counterexample.

A = {p, q, r} A∗ = A ∪ {p ∨ x}
A⊥p = {{q, r}} A∗⊥p = {{q, r, p ∨ x}}
A⊥(p ∨ x) = {{q, r}} A∗⊥(p ∨ x) = {{q, r}}

For all A′ ⊆ A, A′ ` p if and only if A′ ` p ∨ x, but
⋂
γ∗(A∗⊥p) = A − p 6= A − (p ∨ x) =⋂

γ∗(A∗⊥(p ∨ x)). �

Proposition 4.13 GPMPC satisfies relative closure.

Proof: In the case when the contracted element α is a tautology the result follows trivially (and,
again, in this case GPMPC behaves exactly like partial meet contraction, which satisfies relative
closure). So let us examine the main case, where α is not a tautology.

Let β /∈ A− α. We want to show that β /∈ A ∩ Cn(A− α). If β /∈ A the result follows trivially,
so let us consider the case where β ∈ A. We want β /∈ Cn(A − α). Suppose to the contrary that
β ∈ Cn(A−α). Then

⋂
γ∗(A∗⊥α) ` β, so by compactness of Cn there is a subset B of

⋂
γ∗(A∗⊥α)

such that B ` β, and thus all elements of γ∗(A∗⊥α) contain B. Since β /∈
⋂
γ∗(A∗⊥α), then there

is some Y ∈ γ∗(A∗⊥α) such that β /∈ Y . By the definition of an extension of a selection function,
since γ∗ is an extension of γ, there is some X ∈ γ(A⊥α) such that X ⊆ Y and, of course, β /∈ X.
Since X is a maximal subset of A not implying α, we cannot add any element of A to it without
implying α. β ∈ A \X, so X ∪ {β} ` α. Since Y contains B that implies β and also contains X, Y
implies α, which is a contradiction. �

Proposition 4.14 GPMPC does not satisfy core-addition (in general).

Proof: Let A = {p ∧ q}, A⊥p = ∅. Let A∗ = {p ∧ q, q ∨ x}, so A∗⊥p = {q ∨ x}. The sentence q ∨ x
was legally added to A∗ but {q ∨ x} ∪ {p} 0 p ∧ q. �

4.3.2 Relating the Operations

We depart from definition 4.4 and try to connect this operation with our previously defined −∗
operation. Unfortunately, we cannot say that the New GPMPC (from definition 4.4) is a special
case of our −∗ pseudo-contraction (as we initially thought), because the consequence relation of the
New GPMPC depends on both the belief base and the input sentence, whereas the consequence
relation of our pseudo-contraction disregards the input sentence. In any case, we want to know
when the consequence relation Cn∗α,γ has inclusion, idempotence, monotonicity and subclassicality,
so we can verify which of the results from Section 4.1 apply to this construction.

Now we prove that Cn∗α,γ is Tarskian and subclassical under some conditions.

Proposition 4.15 Cn∗α,γ satisfies inclusion.

Proof: Follows directly from the definition of Cn∗α,γ . �

The following condition, which is divided into two independent parts, is necessary for the next
proofs. The plausibility of this condition will be discussed just ahead.
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Definition 4.5 Let γ be a two-place selection function. We say that γ satisfies Selection Linkage
(part 1 and part 2) if and only if the following conditions are (respectively) met. For all A,A′, if
A ⊆ A′, then, for all α:

1. and for all X ∈ γ(A⊥α) there is an X ′ ∈ γ(A′⊥α) such that X ⊆ X ′.

2. and for all X ′ ∈ γ(A′⊥α) there is an X ∈ γ(A⊥α) such that X ⊆ X ′.

Proposition 4.16 If fα is monotonic and γ satisfies part 1 of Selection Linkage, then Cn∗α,γ sat-
isfies monotonicity.

Proof: Let A′ = A∪B and A∩B = ∅. If B = ∅ then A′ = A and so Cn∗α,γ(A′) = Cn∗α,γ(A). So let
B 6= ∅ and then A ⊂ A′. Therefore, Cn∗α,γ(A) ⊆ Cn∗α,γ(A′) if and only if A ∪ fα(A \

⋂
γ(A⊥α)) ⊆

A ∪ fα(A′ \
⋂
γ(A′⊥α)) ∪ B. The latter is true if (but not only if) fα(A \

⋂
γ(A⊥α)) ⊆ fα(A′ \⋂

γ(A′⊥α)). Since fα is monotonic, we just need A \
⋂
γ(A⊥α) ⊆ A′ \

⋂
γ(A′⊥α), which is true

if
⋂
γ(A′⊥α) \

⋂
γ(A⊥α) ⊆ B, by set theory. So, we want that, if it is the case that for all

X ′ ∈ γ(A′⊥α) and some X ∈ γ(A⊥α) we have β ∈ X ′ and β /∈ X, then β ∈ B.
Suppose β /∈ B, β ∈ X ′ for all X ′ ∈ γ(A′⊥α) and β /∈ X for some X ∈ γ(A⊥α). By part 1 of

Selection Linkage, we know that for all Z ∈ γ(A⊥α) there is a Z ′ ∈ γ(A′⊥α) such that Z ⊆ Z ′. If
Z = Z ′ and β /∈ Z, then β /∈ Z ′. Otherwise Z ⊂ Z ′, and if β /∈ Z, since β /∈ B, β ∈ A. But since
Z ⊂ Z ′, Z ′ 0 α and β ∈ Z ′, Z ∪ {β} 0 α, which is a contradiction since Z ∈ A⊥α. �

The next condition is used in the proof of idempotence. It seems a bit puzzling at first, but the
idea behind it is quite simple. We are going to discuss its intuition and plausibility just after the
proofs.

Definition 4.6 (Condition 1) For all B ⊆ L and all α ∈ L, Cn∗α,γ and γ are such that Cn∗α,γ(B) \
B ⊆ Cn∗α,γ(B)−α∪D, where D is some set such that fα(X)\fα(X \D) ⊆ B for all X ⊆ Cn∗α,γ(B).

Proposition 4.17 Let fα be monotonic, Condition 1 hold and γ be a two-place selection function
such that for all X ′ ∈ γ(Cn∗α,γ(B)⊥α) there is an X ∈ γ(B⊥α) such that X ⊆ X ′2. Then, Cn∗α,γ
satisfies idempotence.

Proof: Let B0 = B and Bi+1 = Cn∗α,γ(Bi) = Bi ∪ fα(Bi \
⋂
γ(Bi⊥α)) for all i ≥ 0. We want

Cn∗α,γ(B) = Cn∗α,γ(Cn∗α,γ(B)), that is, Bi = Bi+1 for all i ≥ 1, or, equivalently, B1 = B2. So we
want B1 = B0∪ fα(B0 \

⋂
γ(B0⊥α)) = B1∪ fα(B1 \

⋂
γ(B1⊥α)) = B2, i.e., fα(B1 \B1−α) ⊆ B ∪

fα(B\B−α), where − is partial meet contraction. From the conditions on γ, we get B−α ⊆ B1−α.
Again, we want fα(B1 \B1 − α) ⊆ B ∪ fα(B \B − α). Since fα is monotonic, B1 \ (B1 − α) ⊆

B \ (B − α) would be enough, but it is not necessary since some elements of fα(B1 \ B1 − α) can
be in B, so we just need (B1 \ (B1 − α)) \D ⊆ B \ (B − α), or B1 \ (B1 − α) ⊆ B \ (B − α) ∪D,
where fα(B1 \ (B1−α)) \ fα((B1 \ (B1−α)) \D) ⊆ B. We already have B−α ⊆ B1−α, so, by set
theory, it only remains for us to prove that B1 \B ⊆ B1 − α ∪D, but this is granted by Condition
1. �

Before proceeding to the discussion about Selection Linkage and Condition 1, we will prove that
Cn∗α,γ can be subclassical.

Proposition 4.18 If fα(B \ (B − α)) ⊆ Cn(B) or fα satisfies subclassicality and monotonicity,
then Cn∗α,γ satisfies subclassicality.

Proof: If fα(B\(B−α)) ⊆ Cn(B), the result follows directly from the construction of Cn∗α,γ . In the
other case, since B\(B−α) ⊆ B, by monotonicity and subclassicality of fα we get fα(B\(B−α)) ⊆
fα(B) ⊆ Cn(B). �

2The last condition mentioned could have been replaced by the stronger Selection Linkage part 2.
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At this moment we have all sufficient conditions to make Cn∗α,γ Tarskian and subclassical, which
allow us to use most results from Section 4.1 on the New GPMPC.

Now, we are going to talk a bit about the two conditions defined earlier in order to prove the
Tarskian properties of Cn∗α,γ . First, we will tackle Condition 1 (definition 4.6) via two examples.

We can slightly modify Nebel’s pseudo-contraction (see definition 3.10), redefining it as a New
GPMPC, where Cn∗α,γ(B) = B ∪ fα(B \

⋂
γ(B⊥α)), and fα(X) = {α → β|β ∈ X}. In this case

we have that the included sentences α → β will never help to imply the removed sentence α, so
all elements added, i.e., Cn∗α,γ(B) \ B, will survive the contraction (by relevance of partial meet
contraction), and so they will be in Cn∗α,γ(B)−α. Therefore, this construction will satisfy Condition
1, and the set D (referred to in Condition 1) is not even required in this case.

For constructions such as fα(X) = {β|β is a conjunct in some ε ∈ X}, we have the property
that fα(fα(X)) = ∅ for any X, since once the conjunctions are broken, no more consequences are
produced (we are considering, for example, that fα({p ∧ q}) = {p, q}, but fα({p, q}) = ∅). So, the
consequences, Cn∗α,γ(B) \B, will constitute the set D, where fα(X) = fα(X \D) for any X, since
the freshly created conjuncts cannot be broken any further, which means that the set D does not
influence the outcomes of fα in any way. Thus, in this example the construction satisfies Condition
1 as well.

Condition 1 establishes that all conclusions generated by Cn∗α,γ must be in one of three possible
categories. The first category is made up of sentences which survive the contraction by α. The
second is the group of sentences which do not influence the results of fα. And the third, the set
of sentences which are already in B. The two examples above produce consequences in the first
and second category, respectively. Although a pair of examples are scarcely sufficient to prove that
Condition 1 is reasonable, it is illustrative of its plausibility, and other similar instances of fα can
be built which will also cause the consequences to be in the foregoing categories. Therefore, there
are reasonable scenarios where Cn∗α,γ is idempotent.

Now for the discussion on Selection Linkage. The next results show that Selection Linkage is a
too strong assumption.

Proposition 4.19 If Selection Linkage part 1 holds, then γ is full meet.

Proof: For all sets such that B⊥α = {B} we must have γ(B⊥α) = {B}. These sets do not
imply α. So, for any set B′ we will have B′⊥α = {B1, B2, ..., Bn}, where each Bi is selected in
Bi⊥α, i.e., Bi ∈ γ(Bi⊥α). So, by Selection Linkage part 1, they all should be selected, and thus
γ(B⊥α) = B⊥α for any B. �

Proposition 4.20 Selection Linkage part 2 is impossible.

Proof: Take a set B such that B⊥α = {B1, B2}. Some subset of B⊥α must be selected. If B1

is selected, then, since B2 ⊆ B and B2⊥α = {B2}, we must have by Selection Linkage part 2
that B2 ⊆ B1, what is impossible since {B1, B2} ⊆ B⊥α. Analogously, the same happens if B2 is
selected. �

Corollary 4.21 Selection Linkage is impossible.

So, only Selection Linkage part 1 is possible, and even that requires quite strong conditions
(full meet selection function). Fortunately, to prove Proposition 4.17, we can use another condition
(which is possible, at least) instead of Selection Linkage part 2, as shown in the proof.

These last results are interesting not just with regard to the New GPMPC but also with respect
to the subject of (two-place) selection functions.
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4.3.3 Concluding Remarks

The New GPMPC is not a particular case of the −∗ operator, because its consequence relation
considers the input sentence in addition to the belief base. It is a particular case of a two-place −∗
operator, whose consequence relation depends not only on the belief base but also on the input
sentence. The conditions for Cn∗α,γ to be Tarskian are very strong, specially for monotonicity.
Nevertheless, it turns out that the only result of Section 4.1 that needs monotonicity of Cn∗ is
Proposition 4.5. Cn∗α,γ inclusion is granted and idempotence holds on reasonable conditions.

New GPMPC satisfies vacuity, as a result of Cn∗α,γ(B) = B whenever α /∈ Cn(B), assuming
fα(∅) = ∅. Comparing to GPMPC, the New GPMPC has gained uniformity (if Cn∗α,γ satisfies
inclusion).

Usually, in belief revision, change operators are defined only for a single set (the other case is
called “iterated revision”). If the New GPMPC operator is defined only for a single set B (as is
the case of GPMPC in [RW08]), we can define Cn∗α,γ only for B as well. Since Cn∗α,γ depends on
γB, which is defined only for B, it is reasonable to define Cn∗α,γ only for B too. So, if we consider
the domain of fα as being 2L, fα can be a partial function undefined for any X ⊆ L, except
for B \

⋂
γ(B⊥α). Thus, fα(B \

⋂
γ(B⊥α)) can take any value, say hα(B), without worrying

if B \
⋂
γ(B⊥α) = B′ \

⋂
γ(B′⊥α) for some B′ (in which case we could not assign arbitrary

values for fα with these arguments, the values should be the same since fα is a function). So,
Cn∗α,γ = B ∪ hα(B). Since hα(B) can be anything we want, Cn∗α,γ is any operator of consequence
with inclusion. This is quite astonishing, for it converts the New GPMPC operator into the two-
place −∗ operator with a Cn∗ that respects inclusion. It is desirable that Cn∗α,γ satisfies inclusion,
so, in the most typical case, the New GPMPC is equivalent to the two-place −∗, and not just a
specific case of it, as was thought (and stated) before. We can say this version of New GPMPC is
“not global”, by virtue of it being applicable only for the belief base B (which is, again, the most
common case in belief revision).

The limitation that γ∗ must be an extension of γ is not a problem too (in regard to the equiv-
alence between the operations) because, as long as fα(B \

⋂
γ(B⊥α)) can be anything we desire,

we can define γ∗ as we wish and make a compatible γ.
The vacuity clause (when α ∈ Cn(∅)) is not necessary if fα(∅) = ∅, so, even if it is kept, it will

not affect the result.
If we make Cn∗α,γ and fα total functions, though, we do not have the equivalence anymore. But

this is not really necessary since we are not making a global operator. Although, the independence
between the functions and the set B can be useful for practical reasons. Moreover, this equivalence
is more of a theoretical nature, and just reveals that the expressive power of both constructions is
the same. By this we are claiming (without formal proof) that the following observation is valid:

Observation 4.6 Provided that Cn∗ and Cn∗α,γ satisfy inclusion, a pseudo-contraction can be con-
structed as a two-place −∗ operation if and only if it can be constructed as a (not global) New
GPMPC.



Chapter 5

Minimality and the Postulates

This small chapter, a sequel of the work developed in the previous one, is a discussion concerning
the postulates, mainly about how they could encode minimality, but also about success.

First, in Section 5.1, we talk about general principles behind belief contraction. Then, in Section
5.2, we discuss the core-addition postulate. Next, in Section 5.3, we discuss the success postulate.

5.1 Guiding Principles of Contractions

We have seen that a contraction can have various possible outcomes. What are the guiding
principles which guarantee that one contraction is more rational than another? If we go through
the AGM postulates for contraction (closure, success, inclusion, vacuity, recovery and extensionality)
we can acknowledge some of these principles.

Maybe success is the key one. If we contract a non-tautological belief α and it remains there
after contraction, we can barely call this a contraction of α1.

Closure is somewhat “technical”, and it is useful mostly because we are dealing with ideal agents
in AGM paradigm. However, as noted by Hansson in [Han99, p. 69], a weaker version of closure,
relative closure, is important to preserve the coherence of contractions. It seems illogical to remove
a consequence of the contracted set if this consequence was already in the original set.

Extensionality tries to bring sanity to the behaviour of contractions across different situations.
For example, when we contract two formulas that say the same thing via different syntactic rep-
resentations, the result should be the same (in other words, syntactic independence is desirable).
However, by the same argument, if I had two belief sets B and B′ and I contracted equivalent
formulas, should not I had the same effect over the “relevant parts” of B and B′ (supposing this
relevant part of both sets is the same)? Extensionality does not avoid this, since contractions are
usually defined just for one belief set.

The other three postulates have the same underlying principle: minimality of changes. If we are
going to change our beliefs due to the removal of α, this change must be just the minimal acceptable
change (i.e., a minimal one that respects the other postulates).

Vacuity requires minimality of change (no change, indeed) when the contracted α is not in
the belief set. Inclusion requires minimality with respect to additions: nothing is added during
contraction. Recovery tries to guarantee minimality in removals. So little is removed that if we add
α back we have again all the knowledge we had before. It is as though just the information that
comes with α has been removed.

Since we are working with pseudo-contractions, we replace inclusion by logical inclusion, what
makes sense for belief bases. What we now want is to strengthen this minimality of additions, and
we can do this with the postulate of core-addition.

1In any event, success is not above criticism (even in this chapter we present some issues about it).

29
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5.2 Core-Addition

The core-addition postulate (Section 3.3.2) has some problems. Even if adding {α1, α2, ..., αn} to
a contraction causes it to violate core-addition, it is possible that adding only the sentence

∧n
i=1 αi

does not. The problem resides in the fact that some conjuncts in
∧n
i=1 αi may not be necessary to

imply some removed element, while the entire sentence is. So, the postulate is sensible to syntactic
variations. We must be very emphatic in the minimalism demanded by core-addition, since we
are already allowing additions (contrary to AGM, base change postulates and minimality principle
in general), they must really be very small, minimal ideally. With this ambition, we propose two
adjustments in the postulate.

We do not want that an added element (say β) only helps in deriving some removed element
(say β′) for some subset B′ of B−α. We want it to be mandatory to the derivation of this β′ inside
B − α. Which means that there is some β′ ∈ B \ (B − α) for which β′ /∈ Cn(B − α ∪ {α} \ {β}),
that is, β′ is not implied by the contraction expanded by α without β, but it is implied with the
help of β, or β′ ∈ Cn(B − α ∪ {α}). In other words, β′ would not be recovered without β. This
leads us to the following modification of core-addition:

(Core-Addition′) If β ∈ (B − α) \ B, then there is some β′ ∈ B \ (B − α) such that β′ /∈
Cn(B − α ∪ {α} \ {β}) but β′ ∈ Cn(B − α ∪ {α})

Furthermore, if β was added because it is necessary to imply some removed β′, no formula ε
weaker than β could be used to replace β with this purpose. By weaker we mean a formula which
is implied by β but does not imply it, ε ∈ Cn(β), β /∈ Cn(ε). As shown in observation 5.1 ahead,
this is the same as Cn(ε) ⊂ Cn(β), and in a way says that “ε contains less information than β”. So
we can modify core-addition in order to demand that the added elements be as weak as possible:

(Core-Addition′′) If β ∈ (B − α) \ B, then there is some β′ ∈ B \ (B − α) and some B′ ⊆
(B − α) such that for all ε such that Cn(ε) ⊂ Cn(β), we have that β′ /∈ Cn(B′ ∪ {α, ε}) and
β′ ∈ Cn(B′ ∪ {α, β}).

So, for example, if a ∧ b was included, then a is not enough to derive some β′ removed in
contraction (in presence of the contracted α and the rest of the base).

Combining both modifications, we get the following:

(Core-Addition′′′) If β ∈ (B−α)\B, then there is some β′ ∈ B \ (B−α) such that and for all
ε such that Cn(ε) ⊂ Cn(β) we have that β′ /∈ Cn(B−α∪{α, ε} \ {β}) but β′ ∈ Cn(B−α∪{α}).

We can easily see that the satisfaction of core-addition′′′ implies the satisfaction of core-addition′

and core-addition′′, and that the satisfaction of each of those two implies the satisfaction of the
original postulate. The implications do not hold in the opposite direction.

In the way Nebel’s Pseudo-Contraction is formulated (see Section 3.3), it does not even satisfy
the original core-addition (in the vacuity case: if the contracted element is not in the base, a
sentence is added anyway), so it does not satisfy any of the postulates proposed here. Nebel’s
GPMPC (NGPMPC) satisfies core-addition, but does not satisfy core-addition′ nor core-addition′′.

The Section “Minimal Additions” in [RW08] starts with an argument in favor of core-addition,
namely, that it is possible to have logical recovery without adding all sentences that NGPMPC
adds. They gave an example. Consider the base {p∧¬r, p∧¬r ∧ q} and the contraction by p. Both
formulas are given up, but we only need α → p ∧ ¬r ∧ q to maintain logical recovery. It turns
out that the original core-addition is so weak that it is not enough to prevent the problem of this
example. Clearly, a contraction respecting core-addition′ will not accept the addition of α→ p∧¬r
if α→ p ∧ ¬r ∧ q has already been added in this example.

A problem (or feature, if you will) of core-addition′′ can be illustrated with the following example.
Consider the contraction {p ∧ q} − p. Core-addition′′ allows the result p→ q, but forbids q (which,
intuitively, seems very plausible).



5.3 SUCCESS 31

Some versions of core-addition can be viewed as a strengthening of logical inclusion, but some
can not. The results follow.

Proposition 5.1 An operation satisfying core-addition does not necessarily satisfy logical inclusion.

Proof: We can show a counterexample.
Take the base B = {p ∧ q} and the contraction B − q = {q ∧ x}. This operation satisfy core-

addition but does not satisfy logical inclusion. �

Proposition 5.2 An operation satisfying core-addition′ does not necessarily satisfy logical inclu-
sion.

Proof: The proof is identical to the previous one. �

Proposition 5.3 For a logical language closed under the boolean operators, any operation satisfying
core-additon′′ will also satisfy logical inclusion.

Proof: Consider β ∈ (B−α)\B. Then, there is some β′ ∈ B \(B−α) and some B′ ⊆ (B−α) such
that for all ε such that Cn(ε) ⊂ Cn(β), we have that β′ /∈ Cn(B′∪{α, ε}) and β′ ∈ Cn(B′∪{α, β}).
(We will refer to all these conditions on β as “the conditions”.) We want to show that β ∈ Cn(B).

Take ε = α → β′. Since β′ ∈ B, then ε ∈ Cn(B). This ε is such that β′ ∈ Cn(B′ ∪ {α, ε}).
If there is an ε weaker than that satisfying β′ ∈ Cn(B′ ∪ {α, ε}), then we can take it instead. We
can repeat this step until we find the weakest ε′ satisfying the above conditions, and it holds that
ε′ ∈ Cn(B).

Suppose there is a ε′′ for which the above conditions hold, but Cn(ε′′) 6⊂ Cn(ε′) (otherwise
we should have chosen ε′′ instead of ε′) and Cn(ε′) 6⊂ Cn(ε′′) (otherwise we just pick ε′). We are
supposing there is no ε weaker than ε′′ for which the conditions hold. This would be the only way
ε′′ could satisfy the conditions without being inside Cn(B). But, if both ε′ and ε′′ are weakest
formulas satisfying the conditions (in the sense that there is no formula weaker than them), we
can take their disjuction, which is weaker than them, and it would satisfy the conditions. This is a
contradiction since we assumed ε′ and ε′′ had no weaker formulas satisfying the conditions. �

Corollary 5.4 For classical propositional logic, any operation satisfying core-additon′′′ will also
satisfy logical inclusion.

Observation 5.1 α ∈ Cn(β) and β /∈ Cn(α) if and only if Cn(α) ⊂ Cn(β).

Proof: If {α} ⊂ Cn(β), by monotony and idempotence of Cn, Cn(α) ⊂ Cn(β). If Cn(β) ⊆ Cn(α),
by inclusion, β ∈ Cn(α), so we conclude that Cn(β) 6⊆ Cn(α), i.e., Cn(α) ⊂ Cn(β).

For the other direction, by inclusion, α ∈ Cn(α), and since Cn(α) ⊂ Cn(β), α ∈ Cn(β). If
β ∈ Cn(α), by monotony and idempotence, Cn(β) ⊆ Cn(α), contradicting Cn(β) 6⊆ Cn(α). �

5.3 Success

The success postulate is reasonable in the context of perfect reasoners, as thought by AGM, but
we can cast doubt upon it for resource-bounded reasoners (that is, reasoners that may not be able
to realize all the consequences of its beliefs). We are going to show some examples.

Example 5.1 I believe some sentence α. For some reason, I note that α is not necessarily true,
I doubt it, so I contract α from my set of beliefs. Still, my knowledge base may have beliefs that
together imply α, without my noticing, and afterwards I may derive α again.
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The above example seems perfectly sane for a human reasoner, for instance.

Example 5.2 We have a theory which comprises α. We contract α. This does not mean we belief
α is false (in that case we would revise the base with ¬α), we just do not know about α. We do not
have to seek and remove anything from our theory that imply α. Maybe it is hidden somewhere, we
are just unsure of it, so we remove it.

Of course, the above example makes no sense for perfect reasoners, since the closure would
readily add the contracted belief.

As remarked by Hansson [Han99, p. 64], it is difficult to find an example of pure contraction2.
These two examples have something to do with this. If instead of just contracting some sentence by
doubting it we had revised our base by the negation of it, then the total elimination of the sentence
and the beliefs that imply it would be mandatory (otherwise we end up with an inconsistent
base). But revision, as defined by the Levi Identity, if contraction was like the above examples,
would be inconsistent. Thus, perhaps we should allow inconsistencies, or perhaps revision should
be defined in another way (independent of contraction, maybe). If we are thinking about resource-
bounded reasoners, allowing inconsistencies makes sense, since humans, for example, do not have
an inconsistency-free set of beliefs.

It is strange that, in many cases, the examples used to justify the reasonableness of AGM pos-
tulates are intuitions about human beings and our reasoning, after all, we are not perfect reasoners.

Maybe it would be interesting to have a naive contraction operation, that just removes α (much
like an opposite of expansion), and another purge operation, that removes what is needed to avoid
α being forced to be true (the contractions as we know them).

We can have “degrees of success”. Borrowing a lot from the philosophical outlook of [Was00]3,
one can devise a stepwise consequence operation, which Wassermann calls Inf . We can compute
success over Inf∗ (all steps of Inf) when dealing with perfect reasoners, and over some Infn for
resource-bounded reasoners. The bigger the n, the smarter the agent. Thus, the naive contraction
could use 0-success (α /∈ Inf0(B) = B) and purge could use ∞-success (α /∈ Inf∗(B), where
Inf∗(B) approaches Cn(B)).

The use of two different types of logical consequence (one for closure and one for success) is
one of the fundamental differences of this work. The consideration of success under weaker logics
was made before by Wassermann [Was03], where just the “relevant” beliefs were taken into account
when contracting by some formula. The agent then could continue having this belief implied, but
she can not see it, so she believes that contraction was successful.

2Although, in computer science, removal from logical databases can be viewed as pure contractions.
3In which we see a belief revision approach for resource-bounded agents.



Chapter 6

Application Examples

In this chapter we are going to present two application examples where our Cn∗ closure and our
pseudo-contraction can be used as a theoretical grounding. The first, in Section 6.1, demonstrates
how our weak closure is implicitly present in popular inference engines for ontologies. The second,
in Section 6.2, shows how our pseudo-contraction can be applied to change of probabilistic bases.

6.1 Pseudo-contractions in Ontology Engineering

Ontologies1 are a particularly useful realization of knowledge representation (and of the millen-
nial philosophical idea of ontology, which dates back to Parmenides in Ancient Greece). They are
used to explicitly specify some body of knowledge, designating a set of concepts and their proper-
ties, as well as relationships between those concepts. Ontologies have a wide variety of applications
today, many of them related to the semantic web.

Those ontologies are for the most part internally represented through a logical language, which
is usually a description logic2. One of the most basic description logics is ALC. Sentences of ALC
can be translated into sentences of first order logic3.

Ontology engineering (the process of creating and maintaining ontologies) is often done with
the aid of ontology editing software, such as Protégé4. With the assistance of this kind of software,
the user can specify an ontology and then query it, using some query language, like SPARQL
[PS06, PAG06]. Commonly, the ontology is recorded as a belief base, with just the information
explicitly provided by the user. So, the user can only use SPARQL to query this “belief base”. In
order to obtain some of the logical consequences of her ontology, the user is required to employ some
automated reasoner, which will transform her dataset into something which resembles our weak
closure. Some widely known reasoners used for this purpose are HermiT5, Pellet6 and FaCT++7.
We are going to examine some aspects of the inference done by HermiT, that seems to outperform
its contestants in most cases [SMH08] (although the inference done by the other reasoning engines
are probably very similar, the main differences lie in the implementation details and performance).
Since we have not found any formal specification of the inference done by HermiT, we will define
this inference based on observations of the behaviour of this reasoner, and assume what is more
plausible.

1Since our intention here is just to depict the usage of our theory, detailed information on ontologies is beyond
the scope of this dissertation. For an introduction on ontologies see [Gru93, Gru95, NM01].

2A good introduction on description logics and the language ALC can be found in [LMP08, BHS08].
3A translation method is in [BHS08, p. 144].
4http://protege.stanford.edu/
5http://www.hermit-reasoner.com/
6https://github.com/complexible/pellet
7http://owl.man.ac.uk/factplusplus/
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6.1.1 The Logic ALC

Before proceeding, we reproduce here some definitions about the language ALC. First, we define
its syntax:

Definition 6.1 [BHS08] Let NC be a set of concept names and NR be a set of role names. The set
of ALC-concept descriptions is the smallest set such that

• >,⊥, and every concept name A ∈ NC is an ALC-concept description,

• if C and D are ALC-concept descriptions and r ∈ NR, then C uD, C tD, ¬C, ∀r.C, and
∃r.C are ALC-concept descriptions.

The syntax of ALC accepts as valid concept descriptions: > (top) and ⊥ (bottom), which are the
concepts containing all and no members of the domain, respectively; concept names; intersection
and union of two simpler concepts; negation of a concept; universal and existential quantification
of a role with a concept (for example, ∀child.Female is a concept whose members only have female
children).

The following definition shows the semantics of ALC.

Definition 6.2 [BHS08] An interpretation I = (∆I , .I) consists of a non-empty set ∆I , called the
domain of I, and a function .I that maps every ALC-concept to a subset of ∆I , and every role
name to a subset of ∆I ×∆I such that, for all ALC-concepts C,D and the role names r,

• >I = ∆I , ⊥I = ∅,

• (C uD)I = CI ∩DI , (C tD)I = CI ∪DI , ¬CI = ∆I \ CI ,

• ∃r.C = {x ∈ ∆I | There is some y ∈ ∆I with (x, y) ∈ rI and y ∈ CI},

• ∀r.C = {x ∈ ∆I | For all y ∈ ∆I , if (x, y) ∈ rI , then y ∈ CI}

In other words, the interpretation contains a domain, and a function which maps every concept
into a subset of the domain and roles into binary relations between elements of the domain. The
interpretation of intersection/union between concepts is straightforward: it is given by the inter-
section/union between the subsets of the domain which represent these concepts. The negation of
a concept is interpreted as the elements of the domain which are not in the interpretation of this
concept.

Now, we define axioms of concept inclusion and TBox.

Definition 6.3 [BHS08] A general concept inclusion (GCI) is of the form C v D, where C,D
are ALC-concepts. A finite set of GCIs is called a TBox. An interpretation I is a model of a GCI
C v D if CI ⊆ DI ; I is a model of a TBox T if it is a model of every GCI in T .

A TBox is a set of concept inclusions, which are, in turn, sentences asserting that all elements
of a concept are also elements of another.

Next, we define assertional axioms and ABox.

Definition 6.4 [BHS08] An assertional axiom is of the form x : C or (x, y) : r, where C is an
ALC-concept, r is a role name, and x and y are individual names. A finite set of assertional axioms
is called an ABox. An interpretation I is a model of an assertional axiom x : C if xI ∈ CI , and I
is a model of an assertional axiom (x, y) : r if (xI , yI) ∈ rI ; I is a model of an ABox A if it is a
model of every axiom in A.

An ABox is a set of assertional axioms, which are sentences saying that an individual is a
member of a concept or that two individuals are related through a certain role.

Finally, we define knowledge base.
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Definition 6.5 [BHS08] A knowledge base (KB) is a pair (T ,A), where T is a TBox and A is an
ABox. An interpretation is a model of a KB if it is a model of its TBox and of its ABox.

We say that KB |= α if and only if every model of KB is also a model of α, where α is an
element of a TBox or of an ABox.

6.1.2 Analysing the Consequence Relation

Based on the observed behaviour of HermiT inside the Protégé environment, and making some
plausible assumptions, we presume that its consequence relation CnH , given an ALC ontology (or
knowledge base) KB, generates an inferred ontology CnH(KB) that is the smallest set for which
the following properties hold:

• If an axiom is in KB, it is in CnH(KB).

• Applying it twice is the same as applying it once, that is, CnH(KB) = CnH(CnH(KB))

• For all pairs of user defined concepts C,D, if KB |= C v D, then C v D ∈ CnH(KB)

• For all user defined individuals a and concepts C, if KB |= a : C, then a : C ∈ CnH(KB).

• For all user defined individuals x, y and roles r, ifKB |= (x, y) : r, then (x, y) : r ∈ CnH(KB).

The first two observations warrant that CnH satisfies inclusion and idempotence, respectively.
It is easy to see that if one of the three last rules are used to generate a consequence over KB,
this same consequence would be generated for any KB′ such that KB ⊆ KB′, since the ALC
consequence relation CnALC8 is monotonic. Thus, CnH is also monotonic.

Because all the consequences generated by the five rules above are also consequences of CnALC ,
we can say that CnH satisfies the following:

For all A, CnH(A) ⊆ CnALC(A)

Since CnALC is subclassical9, CnH is too. So we have a CnH that satisfies inclusion, idempo-
tence, monotonicity and subclassicality, what makes it a perfect example of our weak closure Cn∗

described in the previous chapters. Therefore, all those properties hold for CnH as well, and a
pseudo-contraction based on it would have the aforementioned properties.

The importance of this result lies in the fact that we gave some theoretical background for an
operation that is already being used a lot in practice.

6.2 Pseudo-contractions in Probabilistic Belief Revision

In the work [dBFR+16], we deal with consolidation (the operation of turning an inconsistent
belief base into a consistent one) of probabilistic knowledge bases. (Under the AGM paradigm, one
can think of consolidation simply as the contraction by falsum.) We work with a logical language
composed by sentences of the form P (φ|ψ) ≥ q, called a probabilistic conditional, which means that
“the probability of φ being true given that ψ is true is at least q”, where φ and ψ are formulas of
classical propositional logic and q is a real number in the interval [0, 1].

In the AGM paradigm, contraction (and consequently, consolidation) is done via the removal of
formulas. However, in probabilistic logic, another way of making a belief base consistent is possible,
via the changing of probabilities. When probability bounds are changed, AGM postulate of inclusion
is violated. When we decrease the value of the probability bound of a sentence, what we are really
doing is a weakening of this formula.

8 α ∈ CnALC(KB) if and only if KB |= α, where |= is defined as in the previous subsection.
9Considering the translation to FOL.
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The weakening of formulas was made possible by what is known as pseudo-contractions, subject
thoroughly discussed in this dissertation. As we already know, this weakening is just the addition
of formulas implied by the original set of beliefs, which is done before contraction. The problem
is that there is little clue on how to choose the consequences, problem aggravated in the case of
consolidation by the fact that the consequences of an inconsistent set is the whole language. To
avoid this situation, one possibility is to use a subclassical consequence instead of the classical one10,
operation described in Chapter 4 of this dissertation. This was the approach taken by the authors.

We propose an element-wise consequence relation, Cnew, given by the following expressions:

• For all Γ ∈ K, Cnew(Γ) =
⋃
{Cnew({α})|α ∈ Γ}

• For all α = P (φ|ψ) ≥ q ∈ L, Cnew({α}) =
⋃
{P (φ|ψ) ≥ q′|q′ ∈ [0, 1], q′ ≤ q}

where K is the set of all probabilistic knowledge bases and L is the language.

In that paper, a type of consolidation called maximal consolidation is studied. This consolidation
is one wherein the contradiction is removed solely through the decreasing of some probabilities, in
a way that the distance between the original array of probabilities and the new consistent one
is minimal, according to some measure of distance. Interestingly enough, taking Cnew as Cn∗,
maximal consolidations always respect inclusion∗, but relevance∗ is violated. If the result of a
maximal consolidation is closed under Cn∗ afterwards, relevance∗ is recovered.

We go on with the goal of characterizing a maximal consolidation. We come to the conclusion
that an operation is the Cn∗ closure of a maximal consolidation if and only if it respects success,
inclusion∗ and fullness∗ (again, taking Cnew as Cn∗).

(Fullness∗) If β ∈ Cn∗(B) \ (B − α), then α /∈ Cn(B − α) and α ∈ Cn((B − α) ∪ {β})

Notice that fullness∗ is a strengthening of relevance∗. Its non-starred version is one of the
postulates that characterize maxichoice contraction. Uniformity∗ was not required in the former
characterization because consolidations are always contractions by ⊥.

10In fact, the term subclassical is not adequate here, since their standard consequence relation Cn is the one from
probabilistic logic.



Chapter 7

Related Work

In this chapter we will make short surveys of articles that are not necessarily a basis for our
work, but similar to it in design or intention.

7.1 Degrees of Recovery and Inclusion

This subject has been covered in the paper [RW08], which was the primary source of inspiration
for this master’s dissertation. We have already described parts of it in Section 3.3.

The general idea of that paper is relaxing the postulate of inclusion to obtain some “degree” of re-
covery. Doing so, they define some pseudo-contractions, one of which is General Partial Meet Pseudo-
Contraction (GPMPC) which was further (and deeply) explored here. As this pseudo-contraction
is rather complicated, we have studied in this project the properties of a pseudo-contraction that
seems like a simplified version of GPMPC.

7.2 Disjunctively Closed Bases

In the paper [Han93], Hansson develops one of the closest proposals to the one described here.
The author takes the disjunctive closure of the belief base before making the contraction, and
compares the results. The disjunctive closure adds all disjunctions of elements of the set to it (of
course we must not add equivalent disjunctions if we want the set to keep finite).

Our approach is a generalization of Hansson’s, we replace disjuctive closure by a general conse-
quence operation.

7.3 Local Change

In [HW02], the authors propose the use of local change operators. When a base is revised or
contracted by some belief, for instance, the base is not affected in its entirety, only parts of the base
are relevant for the target belief. A local operator looks only at this relevant chunk of the base to
make the changes.

In the course of their text, they define very general belief revision operators, not necessarily
local, and prove some results and representation theorems for them. They have found properties of
partial meet based on an inference operation C which is required only to be compact and monotonic.

The main difference from this general partial meet to our pseudo-contraction regards the success
postulate. Whereas they define belief change operations for any logic whose consequence relation
respects some properties, here we use a general consequence relation just for computing the closure.
Thus, in our case, success is still verified against classical entailment.
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7.4 Approximate Belief Revision

In [CPW01], the authors propose the use of approximate entailment as defined by [SC95]. One
of the approximate entailment relations, denoted by �1

S , is unsound and complete, the other, �3
S , is

sound but incomplete. Since we have that if B �3
S α then B � α and that if B 21

S α then B 2 α,
we can use these relations to approximate � and 2, respectively. The context is a set S ⊆ L, where
L is the set of atoms of B (also known as the language of B).

They propose a strategy to define the context set S, based on a notion of relevance between
atoms. They define a sketch of an algorithm that improves the approximation iteratively. The
extreme cases happen when S = ∅, and when S = L, in which case we have classical entailment.

They show that we can define consequence relations based on these entailments, and that they
satisfy a set of properties that allow them to be used together with the axiomatizations of local
change [HW02] to implement belief revision.

Our approach differs from this in the same way as it does from the local change approach, since
this is a practical realization of local change theory of belief revision.

7.5 Infobase Pseudo-Contraction

A different approach on pseudo-contractions was taken by [MLH00] and further developed in
[Mey01]. The authors replace the formulas that cannot be retained with weakened formulas (“re-
placing” actually means including new formulas in the base, so they are dealing with pseudo-
contractions). They call their bases infobases (a belief base in which all beliefs have independent
standing).

They use a pre-order on U (the set of all interpretations of L). The contraction for belief
sets obtained from this pre-order satisfies the 8 AGM postulates (the six basic ones plus the two
supplementary postulates). This pre-order is assembled taking the syntactic form of the infobase
into account. The formulas retained in this theory contraction will be kept in the base contraction.
The others will be weakened.

In those papers some examples can be found which show that in the knowledge level the results
are pretty decent, but in the symbolic level the resulting base is made up of unnatural and redundant
formulas. The authors make it clear that their purpose is to use the expressiveness of the infobase
to improve belief set contraction.

They define base contraction from belief set contraction. Therefore, due to the closure of belief
sets, we can conclude that their main concern is not of a computational nature. So, our works are
similar in the sense they address pseudo-contractions, but have very different focuses, since our
approach seems closer to the possibility of an actual implementation.

7.6 Horn Belief Revision

Works such as [Del08],[DW13] and [BMVW11] have addressed belief revision for Horn logic,
which is a fragment of classical propositional logic.

In the AGM paradigm everything is done inside a classical logic framework (which means that
the remainder sets are calculated according to a classical logic and success is verified according to
it, also). Considering the general results of [HW02], everything can be done inside some particular
logic (which can be very different from the classical ones). In these papers, everything is done inside
Horn logic. In this case, the difference from these works to ours is that here we deal with two
different consequence relations: one to compute the remainder sets and another to compute success.



Chapter 8

Conclusions and Future Work

Here we will make a small summary of what was done in this project and then list some of the
possible issues future work can cover.

8.1 Conclusion

As already said, traditional belief revision is difficult to implement due to the infinite set of
consequences produced by the deductive closure of any set of beliefs. Working with belief bases,
sets not closed by logical consequence, is possible, however partial meet contraction applied on these
sets has a destructive effect, usually eliminating much more information than necessary.

The idea of employing a consequence relation which produces less consequences than the classical
one on belief bases to produce computable and yet reasonable belief base contractions was posed
by Ribeiro and Wassermann [RW08]. The characterization of the operation proposed there (here
abbreviated to GPMPC) is difficult, since the operation is very complicated. In order to further
the understanding of GPMPC and hence make a small contribution to the study of the problem
of implementation of belief revision, we studied the properties of a simplified operation, inspired
by GPMPC. This new operation is simply partial meet contraction for bases closed under a weak
consequence relation.

Some formal properties of the operation have been found and demonstrated, and the connections
between it and GPMPC revealed, and also some further properties of GPMPC have been found.
The possible applications of this simple operation have been explored, and some examples have been
given, the main ones being related to ontology engineering and belief dynamics in probabilistic logic.

Moreover, we have put forward a discussion about the principles underlying belief revision,
centered on pseudo-contractions. The postulate of core-addition, proposed in the paper mentioned
[RW08], has been deeply analysed and some modifications of it have been proposed.

With this work we hope to have done a meaningful contribution to the study of implementation
of belief revision and bounded reasoners.

8.2 Future Work

As the reader may have noticed, much of what was done here was inspired by some ideas from
the paper from Ribeiro and Wassermann [RW08]. If I had more time, I would naturally continue
investigating the other constructions proposed there, trying to find their representation theorems
and connections between them and other pseudo-contractions, and to improve the intuitions and
discussions about them and their parts.

Of course, revision operations have been deliberately ignored in this dissertation. Even though
they can be defined via contraction and Levi identity, studying the operation proposed here by the
standpoint of revisions can perhaps show new interesting facts. This also applies for consolidations
and other less famous belief revision operations.

39



40 CONCLUSIONS AND FUTURE WORK

At the moment, a study of the computational complexity of various classes of Cn∗ functions is
lacking. As pointed out by professor Marcelo Finger, it would be interesting to see how much of the
classical consequences we could obtain in polynomial time.

We still need a lot more comprehension on how to build useful, meaningful Cn∗ functions. It
is not too evident what should be kept and what could be removed from classical consequence in
order to produce a significant subset of it.

We briefly mentioned a two-place pseudo-contraction, whose weak consequence relation also
considers the input sentence as a parameter. This generalization of the pseudo-contraction studied
here still must be examined.

One last point to be explored and which is not clear yet is the understanding of the implications
of this theoretical background to the practical examples displayed here. We have showed how our
operator relates, for example, to an inference operation that is being thoroughly used in ontology
engineering, but the implications of our theory to that area are not completely clear yet.
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