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Resumo

Pesquisadores de visão computacional são constantemente desafiados com perguntas mo-
tivadas por aplicações reais. Uma dessas questões é se um programa de computador poderia
distinguir grupos de pessoas com base em sua ascendência geográfica, usando apenas imagens
frontais de seus rostos. Os avanços nesta área de pesquisa nos últimos dez anos mostram
que a resposta a essa pergunta é afirmativa. Vários artigos abordam esse problema apli-
cando métodos como Padrões Binários Locais (LBP), valores de pixels brutos, Análise de
Componentes Principais ou Independentes (PCA/ICA), filtros de Gabor, Características Bi-
ologicamente Inspiradas (BIF) e, mais recentemente, Redes Neurais Convolucionais (CNN).

Neste trabalho propomos combinar o modelo “bag-of-words” visual com novas técnicas
de aprendizagem por dicionário e uma nova abordagem de estrutura espacial para carac-
terísticas da imagem. Um extenso conjunto de experimentos foi realizado usando dois dos
maiores bancos de dados de imagens faciais disponíveis (MORPH-II e FERET), alcançando
resultados muito competitivos para reconhecimento de gênero e etnia, ao passo que utiliza
um conjunto consideravelmente pequeno de imagens para treinamento.
Palavras-chave: processamento de imagens de faces; classificação de gênero e etnia; modelo
bag-of-words visual; aprendizagem por dicionário.
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Abstract

Computer Vision researchers are constantly challenged with questions that are motivated
by real applications. One of these questions is whether a computer program could distinguish
groups of people based on their geographical ancestry, using only frontal images of their
faces. The advances in this research area in the last ten years show that the answer to
that question is affirmative. Several papers address this problem by applying methods such
as Local Binary Patterns (LBP), raw pixel values, Principal or Independent Component
Analysis (PCA/ICA), Gabor filters, Biologically Inspired Features (BIF), and more recently,
Convolution Neural Networks (CNN).

In this work we propose to combine the Bag-of-Visual-Words model with new dictionary
learning techniques and a new spatial structure approach for image features. An extensive
set of experiments has been performed using two of the largest face image databases avail-
able (MORPH-II and FERET), reaching very competitive results for gender and ethnicity
recognition, while using a considerable small set of images for training.
Keywords: face image processing; gender and ethnicity classification; bag-of-visual-words
model; dictionary learning.
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Chapter 1

Introduction

Adult human beings can usually distinguish certain groups of people based on their
geographical ancestry. This poses a fair question to the Computer Vision researchers: could
a computer program do the same based on frontal images of human faces? Many papers
name this problem as "race" or "ethnicity" discrimination/classification. None of these words
correctly applies to the problem and they are also subject of controversial discussions. In
this work, we are going to follow Fu et al. (2014) and adopt "ethnicity classification" to
name this problem.

Gender is another possible subject of study in the realm of classification of face images.
Gender, ethnicity and face recognition have a widely range of applications: from CBIR
systems and automatic image annotation, to social networks and social privacy, targeted
advertising, law enforcement applications, etc. In a nutshell, a solution to these problems can
be useful to mitigate the complexity of several applications related to human identification.

The advances in this research topic in the last ten years show that it is possible to classify
gender and ethnicity based solely on face images. Although there are several papers that
approach this problem (recent surveys can be found in Fu et al. (2014), Ng et al. (2015)
and Ng et al. (2012)), one of the key challenges about developing a method for ethnicity and
gender categorization is the scarcity of databases with built-in labels that by themselves are
very difficult to assign, specially for ethnicity. Furthermore, most of the existing databases
offer only a few thousand images, many from the same subject in distinct poses or acquisition
dates.

Despite the problem about creating and labeling a new database, which is arduous and
challenging by itself, the majority of the papers (about 40) reviewed in the surveys use
databases with less than 4,000 images, usually with less unique subjects than that. For
this reason, although many of them report great accuracy (≥ 90%), their results could be
biased and the proposed methods could underperform drastically if tested in bigger and
more diverse databases.
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2 INTRODUCTION 1.1

1.1 Objectives

The main motivation of this work is to improve the Bag-of-Visual-Words (BoVW) model
for the problem of ethnicity and gender classification from faces, by proposing new ideas
and methods for its clustering and pooling phases. We used the MORPH-II dataset, one
of the largest available with labels for both ethnicity and gender (Ricanek Jr and Tesafaye,
2006). We designed and experimented with domain adaptation using two other well known
databases in the literature for this problem: FERET (Phillips et al., 2000) and AR (Martinez
, 1998).

We are specially interested in improving the quality of the generated codewords (the
“visual vocabulary”), as well as to suggest new ideas to improve the quality of existing
pooling methods. Finally, we are also interested in some properties of the kind of datasets
we are dealing with (faces), since they are stable in the sense that most features (such as
mouth, nose, eyes, ears, etc) will share similar relative spatial positions along all images in
the set.

Furthermore, we hope the methods proposed here will be useful not only for gender
or ethnicity classification, but also to a wide range of problems with similar needs and/or
properties. Our Centers of Incidence approach (see Chapter 4) can be used to improve
accuracy within existing pooling strategies, and our pooling formalism (also in Chapter 4)
should work fine in any dataset with the property of quasi-invariability of the spatial position
of features (details in Section 4.4). Similarly, our Robust Dictionary Learning scheme (see
Chapter 5) can be applied in many applications which require clustering, sparse coding or
even outlier detection techniques.

1.1.1 Contributions

The major contributions achieved by this work are the following:

• A new way to divide the spatial subregions when using approaches like the spatial
pyramids (Lazebnik et al., 2006). We introduce the concept of “Centers of Incidence”
(CoIs), based on the relative spatial distribution of features in the training set. This
method can directly benefit the existing pooling methods.

• A side effect of proposing the CoIs approach led to the development of our own pooling
method, which takes advantage in the property of the stability of the relative spatial
position of features in face images.

• A new framework for Robust Dictionary Learning (RDL), based on the composition
of two concave functions to diminish the effects of outliers in the training set.

• A heuristic for our RDL method algorithm initialization, which employs some under-
complete dictionaries and helps it to better detect outliers, and consequently delivers
a better set of codewords.
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• Experiments with ethnicity and gender classification using the proposed approaches
with a large (> 40, 000 images) test set, while achieving competitive results even when
using a relatively small training set.

1.2 Publications

During the development of this work, the following papers were published and are cur-
rently planned:

• The paper Araujo et al. (2018) describes our Robust Dictionary Learning framework
(see Section 5.4), which takes advantage of a composition of two concave functions
to generate robust dictionaries while suppressing the interference of outliers in the
training set. It also proposes a heuristic initialization which can further increase the
identification of outliers through the use of undercomplete dictionaries. This study was
presented as a lecture at the 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), from 15 to 20 of April 2018, in Calgary, Canada.

• A paper with a more detailed study of our RDL approach along with its mini-batch
version (see Section 5.4.3) and new experiments is being prepared to be published.

• A paper on the new pooling formalism is presented in Chapter 4. As in Chapter 6,
where we plan to show how existing pooling methods can benefit from our idea of
Centers of Incidence (see Section 4.2), as well as the superiority of our new pooling
method presented here in Section 4.4, is being prepared to be published.

1.3 Organization of this work

This work is organized as follows: Chapter 2 introduces the main researches in the area
of ethnicity and gender classification. Chapter 3 reviews the bag-of-words architecture along
with other theoretical foundations. Chapter 4 introduces new ideas on how to subdivide
image features into subregions and presents a new pooling strategy that takes the spatial
distribution of features into account. Chapter 5 reviews some important dictionary learning
techniques and proposes a new robust dictionary learning algorithm to attenuate the im-
portance of outliers in the input data. Chapter 6 presents experiments using the proposed
methods. Finally, Chapter 7 contains our final considerations and the conclusion of this
work.
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Chapter 2

Literature Review

This chapter makes a brief introduction to the main works in the area of ethnicity and
gender classification from human faces.

2.1 Related work on gender classification

The problem of gender classification has been recently surveyed by Ng et al. (2015).
The authors reviewed about 40 papers and report that most of them use databases of less
than 4,000 images: some works are based on the use of smaller databases, such as FERET
(Phillips et al., 2000), while others select a fraction of larger databases to approximate the
number of females and males, due to the unbalance between classes. Concerning methods,
most of them uses Local Binary Patterns (LBP), pixel values, Principal Component Analysis
(PCA) or Independent Component Analysis (ICA), Gabor filter, all associated with Support
Vector Machine (SVM) classifiers.

From the papers reported, the study proposed by Ramón-Balmaseda et al. (2012) do
experiments with a very large database known as MORPH-II (Ricanek Jr and Tesafaye
, 2006) database. However, they only consider a subset of 8,488 females and 9,326 males and
not the entire dataset. They use Local Binary Patterns (LBP) (Ojala et al., 1996, 2002),
which is a well known texture descriptor, computed for many subregions that are combined
later, and then used to feed a Support Vector Machine (SVM) classifier. The authors report
they achieved accuracies ranging from 94% to 97%, but they use around 14,000 images for
their training set, leaving only 3,560 images for the test set, a small and disproportional
amount compared to the set used for training the classifier. They also perform two cross-
database experiments (i.e., given databases A and B, one trains with database A and tests
with database B) using the Labeled Faces in the Wild (LFW) database (Huang et al., 2007)
and the Image of Groups databases (Gallagher and Chen, 2009) as the test set, achieving
accuracies ranging from 50% to 76% in both databases.

Another study that uses MORPH-II is the one proposed by Chu et al. (2010), using
subspace learning techniques. The number of images used for training and for testing is not

5
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exactly clear, but the authors report they use the same number of male and females subjects
for training and test. They achieve an accuracy near 88% when using 400 training subjects.
None the methods proposed by Ramón-Balmaseda et al. (2012) and by Chu et al. (2010)
were verified for a potential classification of ethnicity.

More recently, Borgi et al. (2014) reported accuracies around 92% for the AR database (Martinez
, 1998), but he uses half the images (50) for training, leaving only the other 50 images for
test. They also use the FEI database (Thomaz and Giraldi, 2010) for gender experiments,
reaching about 94% accuracy, but to achieve this they had to use 1,800 images for training
and only 1,000 for test. The DeepGender method proposed by Juefei-Xu et al. (2016) uses
around 89,000 images from 5 different datasets for training, achieving accuracies around 79%

to 98% using the AR dataset for test, depending on the subset.
The work of Duan et al. (2018) proposes age and gender classification on the MORPH-

II dataset using more advanced deep learning techniques. They report an accuracy slightly
better than 87% for gender classification.

2.2 Related work on ethnicity classification

The problem of ethnicity classification from face images has also been recently surveyed
by Fu et al. (2014). The authors reviewed about 60 papers on some of the different recog-
nition methods and databases used to train and test the classifiers. This survey states that
most of the about 20 databases reviewed are not specific to ethnicity and gender classifi-
cation but they can be used to this task because they are already labeled. One important
information about the databases reviewed is that most of them have less than 10,000 images.
Besides that, there are several images per subject so the amount of distinct persons is even
less than that.

Fu et al. (2014) also review several algorithms published to classify gender and ethnicity.
Local Binary Patterns, or Kernel Class-dependent Feature Analysis (KCFA), or shape, or
skin color and or Haar Wavelets, combined with Support Vector Machines are the most
commonly used methods to classify ethnicity. Forty two papers have been reviewed in the
survey and only five of them report less than 90% of accuracy. The best accuracy reported
is 99.5% for a method that uses a combination of Harr Wavelets, KNN, Kernel KNN and
Multidimensional Scaling (MDS), although Fu et al. (2014) states that these accuracies
mean the best results for all possible ethnic groups.

Only one paper surveyed (Guo and Mu, 2010) uses the MORPH-II database, and it
applies techniques such as Biologically Inspired Features (BIF) combined with Manifold
Learning, Principal Component Analysis (PCA), Orthogonal Locality Preserving Projections
and SVM to classify ethnicity. However, they only consider ethnic groups with the same
gender, because their objective is to evaluate the influence of gender (and also age) for
ethnicity classification. Moreover, they use a smaller subset of the database, with 5,140



2.2 RELATED WORK ON ETHNICITY CLASSIFICATION 7

females and 15,920 males. In their experimental design, each gender is divided into two
groups used as training and test sets, meaning they use a considerable amount of training
images. The results achieve accuracies ranging from 97% to 99%.

The work of Wang et al. (2016b) also made experiments using the MORPH-II dataset
and compared their results with Guo and Mu (2010). Thus, they randomly chose 10,530
images from Africans and another 10,530 from Caucasians, and used them in a ten fold
scheme, similarly to what Guo and Mu (2010) did. They reported an overall accuracy above
99%, using a training set with around 19,000 images.

More recently, Wang et al. (2017) proposed a Deep Multi-Task Learning (DMTL) net-
work to perform age, gender and race classification at the same time. The model is pre-trained
with the ImageNet 2012 dataset (Krizhevsky et al., 2012), and they use the entire MORPH-
II dataset in a five fold scheme to fine-tune the initial model and then classification. They
reported around 96% and 98% for ethnicity and gender, respectively.
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Chapter 3

Bag-of-Visual-Words

This chapter presents an introduction to the bag-of-words formalism and its applicability
in the area of computer vision, along with other correlated methods.

3.1 The bag-of-words model for text classification

Inspired by the work by Harris (1954) on text analysis using the frequency of the words’
occurrences in a text, Bag-of-Words (BoW) has been proposed as a text ranking and clas-
sification method. The mathematical definition of a “Bag” is a set that admits duplicated
elements. Therefore, the histogram of frequencies of the elements presented in a bag can be
used as a vector of features to represent an instance of the bag.

The BoW architecture was also exploited by computer vision researchers with good
successes. First, low-level features, such as those detailed in Section 3.2, are extracted from an
image. Then, using unsupervised learning algorithms, these low-level features are clustered,
generating a codebook (an analogy to a word dictionary). Finally, a pooling operation takes
place to associate each low-level feature to one or more clusters. This final operation generates
a histogram of frequencies of codewords, similar to the one generated by the traditional BoW
model, which is a mid-level representation of the image. In the following sections we detail
and explore this architecture.

3.2 Feature descriptors

Local image descriptors plays an important role in several computer vision tasks nowa-
days. Among the several types of local descriptors, SIFT and SURF are the most used
and cited ones. SIFT is a method introduced by Lowe (Lowe, 1999) for identifying image
features that are invariant to translation, rotation and scale. The method was adopted by
Csurka (Csurka et al., 2004) for its good stability against perturbations (noise), robustness
to moderate perspective transformations and illumination variations, leading to a richer and
more discriminative representation. The method also enables the use of Euclidean metric

9
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over the feature space, which is simpler and faster to compute in contrast to Mahalanobis
distance (Mahalanobis, 1936), for example.

The main idea of the method is to obtain image descriptors from the difference between
successive Gaussian-blurred images in distinct scales. These descriptors are computed from
keypoints, which are obtained based on the analysis of the orientations of the gradients
at each point of the image. This analysis stage determines potential points and eliminate
unstable ones. The surviving points will form the set of SIFT keypoints from an image.

The other method that is largely used to obtain image descriptors is SURF (Bay et al.,
2006). The method is based on SIFT but it is designed to be faster. In its standard version,
SURF detects points of interest by an approximation of the Hessian matrix and employs a
squared-shaped filter to approximate the Laplacian of Gaussian (LoG). This allows the use
of a summed area table (also known as integral image) for filtering, which is very efficient
and can be done easily in parallel. SURF descriptors are based on the sum of the Haar
Wavelets response around a point of interest.

Local descriptors are computed over keypoints, normally from random points or over a
evenly sampled grid of them. Both methods give good results but points evenly sampled
gives better accuracy (Fei-Fei and Perona, 2005b).

3.3 A study about visual words

It is possible to apply the BoW model to digital images, through some adaptations.
Firstly, there is no textual vocabulary that could be utilized. Thus, a local feature descriptor
such as SIFT or SURF is employed to extract a set of points of interest which are capable
to discriminate distinct aspects in an image.

Figure 3.1 shows faces from 4 subjects: a man and a woman from Caucasian origin
(Figures 3.1a and 3.1b), a man and a woman from Hispanic origin (Figures 3.1c and 3.1d).
Each face contains 3 fixed points, described as the following:

• Points {P1a, P1b, P1c, P1d}: central region of the right 1 eye.

• Points {P2a, P2b, P2c, P2d}: right lower corner 1 of the nose (near the nostril).

• Points {P3a, P3b, P3c, P3d}: central region from the mouth.

These points are selected not only because they represent important features of human
faces (such as mouth, nose, eye), but also because they are in regions with drastic gradi-
ent changes. Thus, they are ideal for categorization with feature descriptors like the ones
described in Section 3.2.

After fixing the points in Figure 3.1, one can compute their respective SIFT descriptors.
Each descriptor is a 128-dimensional vector, and the respective values for the points above

1With respect to the subject.
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Figure 3.1: Examples of visual words in face images extracted from MORPH-II database.

are presented in Tables A.1 and A.2 (see Appendix A). Table 3.1 shows all possible distances
between each point represented by its SIFT descriptors (Fig. 3.1). The 4-nearest neighbors
from each point are highlighted.

P1a P2a P3a P1b P2b P3b P1c P2c P3c P1d P2d P3d

P1a 0.0 532.4 364.0 196.9 481.3 399.2 329.0 519.8 351.1 227.8 517.3 358.1
P2a 532.4 0.0 466.2 515.2 186.6 456.8 479.1 273.5 468.2 512.9 267.9 473.7
P3a 364.0 466.2 0.0 390.4 439.3 190.0 368.0 400.1 241.8 377.3 436.9 236.2
P1b 196.9 515.2 390.4 0.0 478.0 408.2 311.6 507.8 374.8 206.5 497.0 386.4
P2b 481.3 186.6 439.3 478.0 0.0 428.0 436.5 275.9 443.5 455.9 285.0 444.0
P3b 399.2 456.8 190.0 408.2 428.0 0.0 373.3 404.4 302.2 398.1 446.1 289.2
P1c 329.0 479.1 368.0 311.6 436.5 373.3 0.0 474.9 358.1 289.9 492.4 356.9
P2c 519.8 273.5 400.1 507.8 275.9 404.4 474.9 0.0 424.5 492.3 196.0 410.7
P3c 351.1 468.2 241.8 374.8 443.5 302.2 358.1 424.5 0.0 348.4 438.2 132.9
P1d 227.8 512.9 377.3 206.5 455.9 398.1 289.9 492.3 348.4 0.0 491.1 345.6
P2d 517.3 267.9 436.9 497.0 285.0 446.1 492.4 196.0 438.2 491.1 0.0 425.3
P3d 358.1 473.7 236.2 386.4 444.0 289.2 356.9 410.7 132.9 345.6 425.3 0.0

Table 3.1: Distance matrix between the SIFT descriptors from the points in Figure 3.1

From the data in Table 3.1, one can see that given any point, its nearest points are the
ones from other images in similar regions. One possible explanation is that these regions
share similar gradient directions. Furthermore, also examining Table 3.1, people from the
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Point Nearest centroid
P1a c1
P2a c2
P3a c3
P1b c1
P2b c2
P3b c3
P1c c1
P2c c2
P3c c3
P1d c1
P2d c2
P3d c3

Table 3.2: Nearest centroids to the SIFT descriptors from the points in Figure 3.1. Centroid
coordinates are available in Table A.3.

same ethnic group are closer, compared to people from different ones.
If a vector quantization algorithm such as K-Means is applied to SIFT descriptors, it

is possible to group the points from Figure 3.1 into clusters of similar elements. Table 3.2
shows the centroids assigned2 to each point from Figure 3.1, considering 3 clusters.

Note that each cluster is correctly assigned to the same specific region from each of the
considered faces: centroid c1 represents the right eye, c2 the right lower corner from the
nose, and c3 the central region from the mouth. A visual word represents a group of similar
descriptors. In the example of Figure 3.1 and Table 3.2, each one of the centroids is a visual
word. Consequently, the vocabulary size is adjustable, depending on the number of clusters
chosen for the K-Means algorithm.

3.4 The Bag-of-Visual-Words model

Using the same ideas from the BoW model, the Bag-of-Visual-Words (BoVW) method
has been proposed by Csurka et al. (2004) and performs considerably well for scene and
object classification. This model has no predefined vocabulary as in the case of the text
categorization problem. Instead, multidimensional features are extracted from the images in
a training set and later grouped into “words”. The rational to do that is because many of
the feature vectors share some similarities with one another and then a vocabulary can be
generated using unsupervised learning algorithms from the set of feature vectors.

Formally, consider a set of images I = {I1, . . . , IN} as a training set, U = {U1, . . . ,UN}
a set of descriptors, where Ui ∈ Rd×M corresponds to the set of descriptors extracted from
the image Ii, so that Ui = {ui1 , . . . ,uiM}, with uij ∈ Rd, i.e., d is the dimension of the

2The closest centroid from each point.
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descriptor vector and M the number of descriptors (or features) per image3.
After the extraction of the descriptors from the images in the training set, a vector

quantization method partitions all the elements uij ∈ U into K clusters, along with their
respective centroids: C = {c1, . . . , cK}, with ci ∈ Rd. The centroids (or codewords) are
representatives of the clusters and they form a visual vocabulary of size K, also known
as the codebook or dictionary. The standard K-Means algorithm is widely used for this
task, since it is one of the simplest square-error partitioning methods (Csurka et al., 2004).
However, other algorithms can be used for this task, such as the K-SVD (Aharon et al.
, 2006) or LC-KSVD (Jiang et al., 2011), which are dictionary learning methods for sparse
representations based on multiple singular value decomposition.

Let H = {h1, . . . ,hN} be a set of histograms, where hi corresponds to a single histogram
that encodes Ui. Each hi has a fixed length equal to K, the vocabulary size. Let him be the
m-bin of histogram hi, with 1 ≤ m ≤ K, and let f be a function that projects a descriptor
uij to a visual word:

f(uij) =


1 if m = arg min

k∈{1,...,K}
||uij − ck||22, ∀uij ∈ Ui

0 otherwise
(3.1)

then, for each bin m of hi, a pooling operation is performed according to:

him =
M∑
j=1

f(uij) (3.2)

Finally, each histogram hi along with its respective label (provided by the dataset) is
given as input to a classifier (SVM, Naïve Bayes, etc) for training.

Once the classifier has been trained, given a new image I′ /∈ I, the descriptors are
extracted from I′ and encoded to a histogram h′ /∈ H, in the same way as performed in the
training phase. Finally, h′ is given to the classifier which returns its predicted label.

3.5 Spatial structure

BoVW is intrinsically a collection of orderless words therefore it does not take the spatial
structure of a face into consideration. When dealing with face categorization problem, all the
images belong to the same category, thus a single histogram of orderless local features from
the whole face would not have sufficient between-class variations (Lazebnik et al., 2006).
One way to improve the method and use the structure information is to divide the image
into regions, treat each region as a new image and compute the occurrences of words for
each one of them, exemplified in Figure 3.3.

The algorithm is straightforward: after partitioning the image, treat each region as a new
3M is fixed for all images since we employ a dense sampling approach.
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Figure 3.2: The BoVW pipeline: features are extracted from human faces in order to create a visual
vocabulary, which is used to train a classifier.

Figure 3.3: Images a) and b) represent the same image (with equal features), while histograms a)
and b) represent their feature counts, respectively. Note that Histogram b) is more discriminative
than a).

image and compute the occurrences of words for each one of them. The final histogram is
achieved by concatenating every individual region histogram in the same order (e.g., top-
bottom and left-right) for all images in a set. The size of that histogram depends directly
on the number of regions and it is equal to K · p · q in the standard BoVW model, where
K is the size of the visual vocabulary, p and q are the number of horizontal and vertical
subdivisions, respectively. Finally, equal-sized keypoints are sampled over a non-overlapping
dense grid (Figure 6.5f). In addition, a new boundary is defined in the middle of the x-axis.

An extension of this idea was proposed by Grauman and Darrell (2005) and Lazebnik et al.
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(2006). They came up with the concept of spatial pyramids, where the spatial positions of
the features in an image are subdivided in various levels of resolution. Histograms in distinct
levels are associated to a weight, which is inversely proportional to the cell width. This way,
the more finer the resolution is, the higher is the weight associated with it.

3.6 Pooling strategies

More recently, extensions of the BoW formalism for images were proposed. In this work,
we explore in more detail the ideas behind three of those novel models: PIWAH (Pair of
Identical Words Angle Histogram) (Khan et al., 2012), BOSSA (Bag of Statistical Sampling
Analysis) (Avila et al., 2011) and its improved version BossaNova (Avila et al., 2013). Their
main idea lies in improving the links between the codewords and local descriptors in the
resulting histogram, by focusing on the pooling step.

3.6.1 PIWAH scheme

This technique aims to characterize the relative spatial distribution of the patches asso-
ciated with each visual word ck. It assumes that for a given object category and visual word
the distribution of angles between the descriptors is stable.

The construction of the proposed histogram is based on Equation 3.3. First, from the
set Uck of the descriptors assigned to the codeword ck, consider all the pairs of that set and
build the set PIWk composed by the corresponding position pair:

PIWk = {(Pa, Pb)|(ua,ub) ∈ U 2
ck
,ua 6= ub} (3.3)

where Pa and Pb are the spatial positions in the image from which descriptors ua and ub

have been extracted. Thus, the cardinality of PIWk is
(
β
2

)
, i.e. the number of all possible

pairs between two distinct elements among β elements.
Next, for each pair of points in the set PIWk, the angle θ between them and the horizontal

axis is computed using the law of cosines:

θ =

 arccos
( −−−→
PaPb·~i
||
−−−→
PaPb||

)
if
−−→
PaPb ·~j > 0

π − arccos
( −−−→
PaPb·~i
||
−−−→
PaPb||

)
otherwise

(3.4)

with
−−→
PaPb being the vector formed by the points Pa and Pb, as well as the orthogonal

unit vectors ~i and ~j which define the image plane. Finally, the histogram of all θ angles is
computed, with the optimal number of bins B being chosen empirically. The authors called
this the PIW angle histogram for the word ck, denoting it as PIWAHk. Figure 3.4 presents
three examples of PIWAHk histogram distributions.

A global representation of an image is achieved by combining all the individual PIWAHk

histograms, according to Equation 3.5. Each sub histogram PIWAHk is normalized to the



16 BAG-OF-VISUAL-WORDS 3.6

Figure 3.4: Examples of toy distributions and their respective 9-bin PIW histograms (Khan et al.,
2012).

number of descriptors β assigned to ck.

PIWAH = (α1PIWAH1, . . . , αKPIWAHK) (3.5)

with αk = β
||PIWAHk||1

.

3.6.2 BOSSA scheme

Let αi,j be the Euclidean distance from a centroid ci to a descriptor uj, and let c̄i and
σi be the mean and standard deviation of the distances from the descriptors of cluster to
its centroid ci. The BOSSA histogram is computed by estimating the probability density
function of each cluster, according to Equation 3.6:

zi,b = card
(
uj|αi,j ∈ αmaxi .

[ b
B

;
b+ 1

B

])
(3.6)

where B denotes the number of bins of each histogram zi, αmaxi = c̄i + (λmax · σi) is the
maximum distance in the Rd feature space to which zi is computed. Essentially, B and λmax

are the two parameters of BOSSA. Figure 3.5 shows an illustration of the αmaxi parameter
and histogram zi.

After computing a local histogram zi for all centroids ci, they are normalized according
to zi = zi/||zi||1 and then concatenated to build the final image representation h. Addition-
ally, a histogram t = {t1, . . . , tK} counting the occurrence of descriptors in each cluster is
incorporated to z. The final BOSSA image representation is defined as:

h = [[zi,b], ti]
T , where 1 ≤ i ≤ K and 1 ≤ b ≤ B (3.7)
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Figure 3.5: Illustration of the BOSSA αmaxi parameter and histogram Zi.

therefore, the final BOSSA histogram h is of size K × (B + 1).

3.6.3 BossaNova scheme

BossaNova brings four major improvements over BOSSA. The first improvement proposes
the use of soft-assignment coding in the computation of each αi,j and is based on the work
of Liu et al. (2011). The authors argue that soft-assignment attenuates the effects of coding
errors induced by the quantization of descriptor space. Considering the k-nearest descriptors
to a centroid ci, the soft-assignment αi,j can be computed as:

αi,j =
e−βi||uj−ci||22∑k

m=1 e
−βm||uj−cm||22

(3.8)

where βi regulates the softness of the soft-assignment (the bigger, the hardest is the assign-
ment). While Liu et al. (2011) uses a global β parameter, BossaNova takes advantage of the
standard deviation σi of each cluster ci to compute individual βi values, such that βi = σ−2i
(Avila et al., 2013).

The second improvement was the addition of the αmini = c̄i− (λmin · σi) parameter. This
comes from the observation that the descriptors rarely are closer than a certain threshold to
a given centroid. That means some bins in each zi histogram that form the BOSSA image
representation are mostly zero. Equation 3.6 is rewritten as follows:
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zi,b = card
(
uj|αi,j ∈

[ b
B

;
b+ 1

B

])
, where

b

B
≥ αmini and

b+ 1

B
≤ αmaxi (3.9)

The third improvement is a two step histogram normalization: primarily compute the
power normalization of each zi and ti and then perform a `2-normalization to each of these
histograms as well, according to the following set of equations:

zi =
√
zi

ti =
√
ti

zi = zi/||zi||2
ti = ti/||ti||2

(3.10)

The forth and last improvement is to apply a weight factor s to each ti value, which can
be learned via cross-validation. Thus, Equation 3.7 is rewritten as follows:

h = [[zi,b], sti]
T , where 1 ≤ i ≤ K and 1 ≤ b ≤ B (3.11)



Chapter 4

New Pooling Formalism

This chapter presents new ideas for the pooling phase in the Bag-of-Visual-Words model.
This new formalism takes advantage on the quasi-invariability of the spatial positions of
certain features in face images, and can be applied to other similar datasets.

4.1 Introduction

Most pooling strategies used in the BoVW model do not take into account the spatial
structure of the objects in an image. State-of-the-art methods such as BOSSA and BossaNova
(Avila et al., 2011, 2013) consider the distribution of the features in relation to a codeword in
the Rd space, but disregard the relation between features in the 2-dimensional image space.
Other methods like the one proposed in Khan et al. (2012) try to solve this problem, but
while trying to keep simplicity, it lacks important information about feature counting, and
in addition suffer from inefficiencies.

Another important issue is that all these models rely on the standard SPM (Spatial
Pyramid Match) (Lazebnik et al., 2006) subregions division to increase their accuracy rates.
This type of rigid division usually cause the final BoVW histogram to be very sparse and
does not take into account the spatial distribution of the features on the images. In the
following, we present some new ideas to improve recognition rates in BoVW like models.

4.2 Centers of Incidence

One of the problems of subdividing an image into r rectangular subregions of equal area
regards to the spatial distribution of the features for a given codeword ci. As can be seen in
Figure 4.1, most descriptors concentrate in specific areas of the images, leaving some regions
with (almost) zero incidence of them. This causes the final histogram h (which represents
an image after the pooling step) to be very sparse, since all the bins related to the regions
with zero incidence of features will be equal to zero, which will later affects negatively the
accuracy of the classifier.

19
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Figure 4.1: Spatial positions of the image features encoded to a codeword ci in 100 images of
African and Caucasian subjects. Each image is subdivided into 3× 3 regions.

To tackle this problem, we propose a new way to represent these subregions, which uses
some statistics about the spatial distribution of the image features. By knowing the spatial
distribution of the image features for each codeword1, it is possible to improve the physical
arrangement of the subregions in a way that minimizes the number of unused bins in his-
togram h. Note that this process assumes that each codeword ci will have distinct subregions
layouts, because different codewords will have their own feature spatial distributions.

Given the distribution of the features in a fixed codeword, one question that soon arises
is how to divide the subregions in a way that respects the distribution layout and, at the
same time, is more representative, when compared to the standard rectangular subdivision
method (Lazebnik et al., 2006). Moreover, such process should be computationally efficient
and preferably easy to understand geometrically. For this purpose, we introduce the idea we
call Centers of Incidence (CoIs).

1Given a codeword, we want to know all the features in the training set which are encoded to that
codeword along with their relative spatial positions in the images.
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a) Spatial distribution of features and the computed Centers of Incidence.
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b) Computed Voronoi diagrams representing the new subdivision of spatial regions.

Figure 4.2: 2D histograms representing the distribution of the spatial positions of features in the
training set for 4 codewords. The white circles represent the position of the Centers of Incidence
with q = {1, . . . , 6}.
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Algorithm 1 Centers of Incidence computation
Input: Codebook {c1, . . . , cK}, descriptors of all training images U , number of centers q.
1: Let L and P be two lists of size K, where Lw and Pw represent their w-th index.
2: Compute the descriptors labels {α1, . . . , α|U|}, where αi = arg min

k∈{1,...,K}
||ui − ck||22, ∀ui ∈ U

3: for i← 1, |U| do
4: for w ← 1, K do
5: if αi = w then
6: [x, y]← ui.x , ui.y {x and y are the coordinates of ui in the dense SIFT grid}
7: Append the coordinates [x, y] to Lw
8: for w ← 1, K do
9: Pw ← k-Means(points=Lw, qty_centers=q) {Run k-Means for the points in Lw}
Output: P {Returns the list P, with each Pw being a set of q centroids}

The centers of incidence computation is detailed in Algorithm 1. This process is performed
only once during the training phase and the result, a set of 2-dimensional coordinates, is
stored for later use in classification. The algorithm first computes the labels of all descriptors
in the training set. Then, it gets the (relative) spatial coordinate of each descriptor u in the
(x, y) plane and insert it in a sublist that stores all the coordinates of the word w, which is
the same word u is labeled. That sublist acts as a distribution “histogram” for a given word
w. Finally, for each sublist compute the CoIs through the k-Means algorithm. Note that even
we are using a clustering algorithm at the final step, its execution will be considerable fast,
because the spatial information is two-dimensional and the number of CoIs (the number of
clusters q) is relatively small.

The algorithm returns a list of CoIs for all codewords in the vocabulary. Figure 4.2a
shows the spatial distribution of features in 4 distinct codewords and the position of the
computed CoIs, represented by the white circles, for q = {1, . . . , 6}. Figure 4.2b presents the
computed Voronoi regions (Okabe et al., 2009) for the same 4 codewords, for q = {3, . . . , 6}.
These will act as the new subregions from which a new BoVW histogram h will be computed,
as previously discussed in Section 3.5.

4.3 Encoding BoVW with centers of incidence

The idea of Centers of Incidence can be seen as a generalization of the standard rectangu-
lar subregions division (Lazebnik et al., 2006), since it is possible to use CoIs to achieve the
same effect as these fixed regions. Figure 4.3 shows an example of the equivalence between
them. Basically, CoIs can be arranged in fixed positions at the center of each subregion.
Given a feature uj, which spatial position is inside a subregion ri (Figure 4.3b), it will also
have the point qi (Figure 4.3c) as its closest CoI. In fact, if Voronoi diagrams are computed
for the case of Figure 4.3c, they will delimit exactly the same regions as in Figure 4.3b.

Thus, this notion of distance between a feature uj and a CoI qi is the equivalent to say
that uj falls into the subregion ri. Moreover, it is important to note that the definition of the
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Figure 4.3: An illustration of the equivalence between the idea of the standard rectangular subregions
division (Grauman and Darrell, 2005; Lazebnik et al., 2006) and the Centers of Incidence: a) two
descriptors (red stars) and their spatial positions; b) the same image divided into 3×3 regions; c) 9
centers of incidence (blue circles) positioned at the centers of each subregion. Note that the closest
points from u1 and u2 are q4 and q9 respectively, hence ri ≡ qi, 1 ≤ i ≤ 9.

centers of incidence is more powerful, since each codeword has its own CoI layout, instead
of fixed subregions with the same format as defined by Lazebnik et al. (2006).

The process to encode a (standard) BoVW histogram using CoIs is straightforward. First,
compute the label αj for a given descriptor uj, using the visual vocabulary. Then, get the
(x, y) coordinates from uj in the feature space (the dense SIFT/SURF grid, for example),
and compute the distances between (x, y) and each CoI. Here, the `1 or `2-norms can be
employed, but our experiments showed that the `2-norm commonly leads to a slightly better
accuracy. After that, given the closest CoI coordinate pi from (x, y), 1 ≤ i ≤ q and q being
the number of CoIs per codeword, increase the bin (αj, i) from the BoVW histogram h by
one unit. This process is formally described in Algorithm 2.

Algorithm 2 Standard BoVW encoding using the Centers of Incidence
Input: Codebook {c1, . . . , cK}, image descriptors U = {u1, . . . ,uM}, list of centers of inci-

dence P, number of centers of incidence per visual word q.
1: Let h be a vector of size K · q
2: Compute the descriptors labels {α1, . . . , αm}, where αj = arg min

k∈{1,...,K}
||uj − ck||22, ∀uj ∈ U

3: for j ← 1, M do
4: Compute the closest CoI pi ∈ Pαj

from the (relative) spatial position of uj
5: hαj ,i ← hαj ,i + 1
Output: h

4.4 New pooling method

Following the CoIs idea, we propose a new representation of images which extends the
BoVW model. Essentially, our approach takes advantage of the quasi-invariability of the
relative spatial positions of objects in some classes of datasets, such as face databases, as
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exemplified in Figure 4.4. In these kind of images, it is known that there are eyes, eyebrows,
nose, mouth, ears, etc. Furthermore, each image will have exactly two eyes, the eyebrows
will be above them, one nose in the middle, a mouth below the nose, one ear in the left and
another in the right side, and so on. Thus, the spatial relations between these objects would
play an important role for image classification in such types of datasets.

Algorithm 3 Our pooling method
Input: Codebook {c1, . . . , cK}, centroids means {µ1, . . . , µK}, centroids standard de-

viations {σ1, . . . , σK}, standard deviation threshold λmax, image descriptors Ui =

{u1, . . . ,uM}, list of centers of incidence P, number of centers of incidence per visual
word q, number of angle bins B, power parameter p.

1: for w ← 1, K do
2: Let U ⊂ Ui be the set of descriptors which cw is their the closest centroid
3: dmax ← µw + (σw · λmax)

4: Let W ⊂ Ui be the set of descriptors in the range dmax from cw

5: for all pi ∈ Pw do
6: Compute τ , the number of elements in U where pi is their closest center of incidence

7: tw,i ← tw,i + τ {Equivalent to the standard BoVW pooling}
8: for all rj ∈ W do
9: [x, y]← rj.x , rj.y {x and y are the coordinates of rj in the dense SIFT grid}
10: Compute the angle θ between pi and [x, y] using Equation 3.4
11: h←

⌊
(B · θ)/180

⌋
+ 1

12: if h > B then
13: h← B {In case θ = 180◦}
14: d← ||pi − [x, y]||1 {`1-norm between the pi and the x, y coordinates of rj}
15: if d 6= 0 then
16: zw,i,h ← zw,i,h + d(−p) {Inverse distance power}
17: else
18: zw,i,h ← zw,i,h + 1 {Avoids division by zero and increment by 1}
19: zw,i ← zw,i/||zw,i||2 {`2 normalization}
20: t←

√
t {Power normalization}

21: h← [t, z] {Concatenate all the sub histograms t and z}
Output: h

The work by Khan et al. (2012) introduces a pooling algorithm based on the angles of
the spatial positions of features on the images. The angular information between features
gives relevant cues about the structure of the objects represented in an image. To simplify
the model and make it more efficient, they limit the angle computation between features
encoded to the same codeword.
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Figure 4.4: Examples of the quasi-invariability of features in face images from the MORPH-II
dataset, after face detection, alignment and rescaling. Rectangles with 6 distinct colors (each rep-
resenting a specific face region) are placed over the same spatial positions in all images. Note that
despite a small error margin, they all bound a certain part of the face: mouth, nose, eyes and ears.

Algorithm 3 presents our pooling strategy based on the ideas of CoIs, angles and visual
word ambiguities (Avila et al., 2011, 2013; Khan et al., 2012). Instead doing the intense task
of computing

(
b
2

)
angles between features like in Khan et al. (2012), with b being the number

of features encoded in a given codeword, we are interested in the angles between features
and the q CoIs of that codeword, which is much more efficient.

The final histogram h returned by the algorithm is composed by two parts (t and z) as
in Avila et al. (2011). The first part t encompasses a hard-assignment as in the standard
BoVW pooling, and the second part z encodes the angular information in B bins, for each
codeword. The resulting histogram also has the same size as in Avila et al. (2011) and
Avila et al. (2013).

As can be seen in Algorithm 3, the set of descriptors in W are computed from a multiple
of the mean and standard deviation of each codeword. This process is very similar to what
BOSSA and BossaNova do, while it accounts to assignment ambiguities when encoding a
descriptor to a codeword. It also controls the number of similar features that will be used
for the computation of angles.

The angles are defined by the horizontal plane of the image and the 2D vectors formed
between each feature position on the image and the spatial position of each CoI. The angles
vary from 0◦ to 180◦ and are calculated according to Equation 3.4. Finally, the `1-norm d

between each descriptor rj coordinate (x, y) and each CoI pi shall be computed, and then
increment d(−p) (the inverse distance power) units to the bin zw,i,h of subhistogram zw. This
way, zw keeps not only the angular information, but also how representative it is by storing
how far the (x, y) coordinate of descriptor rj is from the CoI pi.
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Chapter 5

Dictionary Learning

This chapter presents a brief introduction to the field of dictionary learning and some di-
rect contributions from this work to this area. It is also an extension of the paper Araujo et al.
(2018), published by us at the IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP 2018).

5.1 Introduction to Dictionary Learning

Dictionary learning is a field in signal processing which aims at finding a structure, known
as dictionary, generally in the form of an overcomplete matrix (Mairal et al., 2009b). The
dictionary constitutes a set of vector basis called atoms, not required to be orthogonal, which
can describe any element of a complex input signal via sparse representation, a form of a
linear combination of these elements in which mostly are zeros (sparse).

Thus, one fundamental assumption in these techniques is that the dictionary must be
inferred from the input data. The development of these methods in signal processing field
was encouraged by the need to represent the input data using as few elements as possible.
Dictionary learning has a wide range of applications, from data compression, signal recov-
ery, signal/image denoising (Bao et al., 2013; Dong et al., 2011; Elad and Aharon, 2006), to
unsupervised clustering (Ramirez et al., 2010; Sprechmann and Sapiro, 2010), which will be
the focus on this work.

In the sequence, Sections 5.2 and 5.3 present a brief introduction to two algorithms for
dictionary learning and sparse representation, which can replace K-Means as a clustering
algorithm in the BoVW model: K-SVD, and an improved version that incorporates the
features labels, known as LC-KSVD. Then, Section 5.4 introduces a new method resulted
from this work, which uses concave functions with robust dictionary learning to generate
higher quality dictionaries and mitigate the effects outliers have in the learning process.

27
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5.2 The K-SVD algorithm

The K-SVD (K-Singular Value Decomposition) is a dictionary learning algorithm pro-
posed by Aharon et al. (2006), commonly used to create overcomplete dictionaries for
sparse signal representation. It is also known as a generalization of the K-means algo-
rithm (Aharon and Elad, 2006). Let Y ∈ RN×M be a set of descriptors arranged as the

columns of a matrix, where M =
n∑
i=1

|Ui| is the total amount of descriptors in the training

set (see Section 3.4). The algorithm starts with an initial overcomplete dictionaryD ∈ RN×K ,
and it aims to iteratively improve D to achieve sparser representations of Y by solving the
following optimization problem:

min
D,X

{
||Y −DX||2F

}
, subject to i ∈ [1,M ], ||xi||0 ≤ T (5.1)

where ‖ · ‖F is the Frobenius norm on matrices (Golub and Van Loan, 2012), X ∈ RK×M

is the sparse representation matrix, xi is the i-th column of X, ‖ • ‖0 counts the number of
non-zero elements of • and T is a sparsity constraint factor (i.e. each signal has at most T
items in its decomposition).

The algorithm consists of two main steps that occur iteratively: the first involves the
sparse-coding of a signal Y, given the current dictionary estimate, producing the sparse
matrix X. The second concerns the improvement of D, given the current sparse representa-
tions. The atoms (columns) of the dictionary are updated only one atom at a time based on
the SVD decomposition, which optimizes the target function for an individual atom while
the others are kept fixed. There are many algorithms to efficiently solve the sparse approxi-
mation problem, which is known to be NP-hard, such as the Orthogonal Matching Pursuit
(OMP) (Pati et al., 1993), the FOCUSS algorithm (Gorodnitsky and Rao, 1997) and others.
Although FOCUSS gives nearly optimal solutions to the pursuit problem, it makes K-SVD
more likely to be stuck in a local minima. Therefore it is recommended to use OMP rather
than FOCUSS (Rubinstein et al., 2008).

5.3 The LC-KSVD algorithm

The LC-KSVD (Label Consistent K-SVD) method aims to leverage the supervised infor-
mation (input labels) of input signals in order to learn a discriminative dictionary for sparse
signal representation. It incorporates a discriminative sparse coding error criterion and can
also incorporate an optimal classification performance criterion into the objective function,
which is optimized using the K-SVD algorithm. One of the advantages of this method lies
on its complexity being bounded by the complexity of K-SVD (Jiang et al., 2011).

Basically, each dictionary item is chosen so that it represents a subset of the training
descriptors ideally from a single class. That means each dictionary item will be associated
to a single class. Thus, there is an explicit correspondence between the class labels and the
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dictionary items (Jiang et al., 2011). Figure 5.1 shows some examples of sparse representa-
tions computed by LC-KSVD. Note that there are some peaked values due to the stronger
correspondence between dictionary atoms and classes. In the sequence, we give an overview
of the two variations of LC-KSVD. Further details can be found in Jiang et al. (2011).

Figure 5.1: Examples of sparse representations computed by LC-KSVD, with T = 10 (sparsity
factor) and K = 2000 (number of atoms). Note the peaked nature of the histograms.

5.3.1 LC-KSVD1

The first variation of LC-KSVD incorporated a discriminative sparse code error term
||Q−AX||22 to enforce that the sparse codes X approximate the discriminative sparse codes

in matrix Q ∈ RK×M , where M =
n∑
i=1

|Ui| and A ∈ RK×K is a linear transformation matrix

that transforms the original sparse codes to be most discriminative in the feature space RK .
The objective function for dictionary reconstruction is defined in Equation 5.2:

< D,A,X >= arg min
D,A,X

||Y −DX||22 + α||Q−AX||22,

subject to i ∈ [1,M ], ||xi||0 ≤ T
(5.2)
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where α is a scalar that controlling the contribution between the reconstruction term and
the label consistent regularization.

5.3.2 LC-KSVD2

The second variation of LC-KSVD includes the classification error term ||H−WX||22, in
order to make the dictionary reconstruction optimal for classification. Thus, Equation 5.2 is
rewritten as:

< D,W,A,X >= arg min
D,W,A,X

||Y −DX||22 + α||Q−AX||22 + β||H−WX||22,

subject to i ∈ [1,M ], ||xi||0 ≤ T
(5.3)

where matrix H ∈ Rδ×M contains the class labels of input signals Y, δ is the number of
classes in the training set and matrix W ∈ Rδ×K denotes the classifier parameters. α and β
are scalars controlling the contribution of their respective terms.

Optimization

The K-SVD algorithm is used to find the optimal solution for all parameters simultane-
ously. Equation 5.2 (excluding the classification error term) and Equation 5.3 can be written
as:

||
(

Y√
αQ√
βH

)
−
(

D√
αA√
βW

)
X||22,

subject to ∀i, ||xi||0 ≤ T

(5.4)

The terms in Equation 5.4 can be represented as Ynew = (Yt,
√
αQt,

√
βHt)t, and

Dnew = (Dt,
√
αAt,

√
βWt)t, where Dnew is `2 normalized column-wise. This means that

the optimization of Equation 5.4 is equivalent to solving the following problem, which is
exactly the problem K-SVD solves:

< Dnew,X >= arg min
Dnew,X

{
||Ynew −DnewX||22

}
,

subject to ∀i, ||xi||0 ≤ T
(5.5)

5.3.3 LC-KSVD initialization

Before running LC-KSVD, parametersD0,A0 andW0 should be initialized. First, several
iterations of K-SVD within each class are run, and then their outputs are combined to form
D0. Thus, each dictionary item is initialized based on the class it corresponds and their labels
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will remain fixed during the entire learning process. Moreover, the dictionary elements are
uniformly allocated to each class, meaning the number of elements should be proportional
to the dictionary size K.

Parameters A0 and W0 are initialized based on the multivariate ridge regression model,
with the quadratic loss and `2-norm regularization (Jiang et al., 2011):

A = arg min
A
||Q−AX||2 + λ2||A||22 (5.6)

which yields to Equation 5.7 for A0, and Equation 5.8 for W0:

A = (XXt + λ2I)
−1XQt (5.7)

W = (XXt + λ1I)
−1XHt (5.8)

where the matrix X is computed using the initialized D0 and the training signals Y.

5.4 Concave losses for robust dictionary learning

The remaining of this chapter describes our direct contributions to the field of dictionary
learning and sparse coding.

5.4.1 Introduction and formalism

Formally, given a data matrix composed of n elements of dimension d, X ∈ Rd×n and
each column being an example xi, the dictionary learning problem is given by:

min
D∈Rd×K ,A∈RK×n

1

2

n∑
i=1

‖xi −Dai‖22 + ΩD(D) + ΩA(A) (5.9)

where ΩD and ΩA represent some constraints and/or penalties on the dictionary set D and
the matrix coefficient A, each column being a linear combination coefficients ai so that
xi ≈ Dai. Typical regularizers are sparsity-inducing penalty on A, or unit-norm constraint
on each dictionary element although a wide variety of penalties can be useful (Bach et al.,
2012; Rakotomamonjy, 2013; Tibshirani, 1996).

As depicted by the mathematical formulation of the problem, the learned dictionary D

depends on training examples {xi}ni=1. However, because of the quadratic loss function in
the data fitting term, D is in addition, very sensitive to outlier examples. Our goal here
is to address the robustness of the approach to outliers. For this purpose, we consider loss
functions that downweight the importance of outliers in X making the learned dictionary
less sensitive to them.

Typical approaches in the literature, that aim at mitigating influence of outliers, use
Frobenius norm or component-wise `1 norm as data-fitting term instead of the squared-
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Frobenius one (Nie et al., 2010; Wang et al., 2016a). Some works propose loss functions
such as the `q function, with q ≤ 1 function or the capped function g(u) = min(u, ε), for
u > 0 (Jiang et al., 2015; Wang et al., 2013). Due to these non-smooth and non-convex loss
function, the resulting dictionary learning problem is more difficult to solve than the original
one given in Equation 5.9. As such, authors have developed algorithms based on an iterative
reweighted least-square approaches tailored to the loss function `q or min(u, ε) (Jiang et al.,
2015; Wang et al., 2013).

Our contribution in this area is: (i) to introduce a generic framework for robust dictionary
learning by considering as loss function the composition of the Frobenius norm and some con-
cave loss functions (our framework encompasses previously proposed methods while enlarging
the set of applicable loss functions); (ii) to propose a generic majorization-minimization al-
gorithm applicable to concave, smooth or non-smooth loss functions. Furthermore, because
the resulting learning problem is non-convex, its solution is sensitive to initial conditions,
hence we propose a novel heuristic for dictionary initialization that helps in detecting outliers
more efficiently during the learning process.

5.4.2 Framework and algorithm

In order to robustify the dictionary learning process against outliers, we need a learning
strategy that puts less emphasis on examples that are not “correctly” approximated by the
learned dictionary. Hence, we propose the following generic learning problem:

min
D,A

1

2

∑
i

F (‖xi −Dai‖22) + ΩD(D) + ΩA(A). (5.10)

where F (•) is a function over R>0. Note that in the sequel, we will not focus on the penalty
and constraints over the dictionary elements and coefficients A. Hence, we consider them as
the classical unit-norm constraint over dj and the `1 sparsity-inducing penalty over {ai}.

The concavity of F is crucial for robustness as it helps in down-weighting influence of
large ‖xi −Dai‖2. For instance, if we set F (•) =

√
•, the above problem is similar to the

convex robust dictionary learning proposed by Wang et al. (2016a). In order to provide
better robustness, our goal is to introduce a generic form of F that leads to a concave loss
with respect to ‖xi−Dai‖2, instead of a linear, yet concave one as in Wang et al. (2016a).

In this work, we emphasize robustness by considering F as the composition of two concave
functions F (•) = g(•)◦

√
•, with g a non-decreasing concave function over R>0, such as those

used for sparsity-inducing penalties. Typically, g(•) can be the q−power, q ≤ 1 function-
inducing uq, the log function log(ε + u), the SCAD function (Fan and Li, 2001), or the
capped-`1 function min(u, ε), or the MCP function (Zhang et al., 2010). A key property on
F is that concavity is preserved by the composition of some specific concave functions as
proved by the following lemma which proof is omitted due to its simplicty.

Lemma 1 Let g be a non-decreasing concave function on R>0 and h be a concave function
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on a domain Ω to R>0, then g ◦ h is concave. Furthermore, if g is a strictly increasing
function and h strictly concave, then g ◦ h is strictly concave.

Definition 2 Let C ⊂ Rd be a convex set, and let h : C → R be a concave function. We say
a vector p is a supergradient of h at the point u0 if for every u it satisfies the supergradient
inequality,

h(u0) + p · (u− u0) ≥ h(u)

for every concave function h, the set of all supergradients of h at u0 is called the superdif-
ferential of h at u0.

In our framework, h is the square-root function with Ω = R>0. In addition, functions
g, such as those given above, are either a concave or strictly concave functions and are all
non-decreasing, hence F = g ◦ h is concave. Owing to concavity, for any u0 and u in R>0,

F (u) ≤ F (u0) + F ′(u0)(u− u0)

where F ′(u0) is an element of the superdifferential of F at u0. As F is concave, the superdif-
ferential is always non-empty and if F is smooth at u0, then F ′(u0) is simply the gradient
of F at u0. However, since F is a composition of functions, in a non-smooth case, comput-
ing superdifferential is difficult unless the inner function is a linear function (Rockafellar
, 2015). Next lemma provides a key result showing that a supergradient of g ◦

√
• can be

simply computed using chain rule because
√
• is a bijective function on R>0 to R>0 and g

is non-decreasing.

Lemma 3 Let g a non-decreasing concave function on R>0 and h a bijective differentiable
concave function on a domain R>0 to R>0, then if g1 is a supergradient of g at z then g1 ·h′(s)
is a supergradient of g ◦ h at a point s so that z = h(s).

Proof As g1 ∈ ∂g(z), we have ∀y, g(y) ≤ g(z)+g1 ·(y−z). Owing to bijectivity of h, define t
and s so that y = h(t) and z = h(s). In addition, concavity of h gives h(t)−h(s) ≤ h′(s)(t−s)
and because g is non-decreasing, g1 ≥ 0. Combining everything, we have g1 · (y − z) =

g1 · (h(t)−h(s)) ≤ g1h
′(s)(t− s). Thus ∀t, g(h(t)) ≤ g(h(s)) + g1h

′(s)(t− s) which concludes
the proof since g1 is a supergradient of g at h(s).

Based on the above majorizing linear function property of concave functions and because
in our case F ′(u0) can easily be computed, we consider a majorization-minimization approach
for solving Problem 5.10. Our iterative algorithm consists, at iteration τ , in approximating
the concave loss function F at the current solution Dτ and Aτ and then solve the resulting
approximate problem for D and A. This yields in solving:

min
D,A

1

2

∑
i

si‖xi −Dai‖22 + ΩD(D) + ΩA(A) (5.11)
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Algorithm 4 The proposed Robust DL method

Input: Data matrix X ∈ Rd×n, dictionary size K, sparsity factor λ, ε, number of iterations
M .

1: if (K > d) and (use undercomplete initialization) then
2: Initialize D and s with Algorithm 8
3: else
4: random initialization of D, A
5: sj = 1 for j = 1, . . . , n
6: for i = 1 to M do
7: repeat
8: Update D with Algorithm 5
9: for j = 1 to n do
10: aj ← 1

2
||xj −Da||22 + λ

sj
||a||1

11: until convergence
12: for j = 1 to n do
13: update sj according to Equation 5.12
Output: D, s

Algorithm 5 Dictionary update
Input: Data matrix X, dictionary D, coefficient matrix A, weights vector s.
1: B = [b1, . . . ,bK ] ∈ RK×K =

∑n
i=1 siaia

T
i

2: Z = [z1, . . . , zK ] ∈ Rd×K =
∑n

i=1 sixia
T
i

3: repeat
4: for j = 1 to K do
5: uj ← 1

Bjj
(zj −Dbj) + dj {update the j-th column of D}

6: dj ← 1
max(||uj ||2,1)uj

7: until convergence
Output: D

where si = [g ◦
√
• ]′ at Dτ and aτ,i. Since, we have

[g ◦
√
• ]′(u0) =

1

2
√
u0
g′(
√
u0)

weights si can be defined as

si =
g′(‖xi −Dτaτ,i‖2)
2‖xi −Dτaτ,i‖2

. (5.12)

This definition of si can be nicely interpreted. Indeed, if g is so that g′(u)
u

becomes small
as u increases, examples with large residual values ‖xi −Dτaτ,i‖2 have less importance in
the learning Problem 5.11 because their corresponding values si are small.

Note how the composition g ◦
√
• allows us to write the data fitting term with respect

to the squared residual norm so that at each iteration, the problem to solve is simply a
weighted smooth dictionary learning problem, convex in each of its parameters, that can be
addressed using off-the-shelf tools. As such, it can be solved alternatively for D with fixed
A and then for A with fixed D. For fixed A, the optimization problem is thus:
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min
D

1

2

∑
i

‖x̃i −Dãi‖22 + ΩD(D) (5.13)

where x̃i =
√
sixi and ãi =

√
siai. This problem can be solved using a proximal gradient

algorithm or block-coordinate descent algorithm as given in Mairal et al. (2009a). For fixed
D, the problem is separable in ai and each sub-problem is equivalent to a Lasso problem
with regularization λ

si
.

The above algorithm is generic in the sense that it is applicable to any continuous concave
and non-decreasing function g, even non-smooth ones. This is in constrast with algorithms
proposed in Wang et al. (2013) and Jiang et al. (2015) which have been tailored to some
specific functions g. In addition, the convergence in objective value of the algorithm is
guaranteed for any of these g functions, by the fact that the objective value in Equation
5.10 decreases at each iteration while it is obviously lower bounded.

5.4.3 Online variant

We also propose a variant of Algorithm 4 to deal with mini-batches. Assuming that the
training data X is composed by i.i.d. (independent and identically distributed) samples,
Algorithm 6 picks h elements at a time and then uses standard sparse coding steps to
compute a set of decompositions [at−h+1, . . . , at] of the mini-batch [xt−h+1, . . . ,xt] over Dt−1,
the dictionary calculated in the previous iteration.

Algorithm 6 The proposed Online Robust DL method

Input: Data matrix X ∈ Rd×n, dictionary size K, sparsity parameter λ, ε, number of
iterations M , mini-batch data size h.

1: Initialize dictionary D and coefficient matrix A.
2: Initialize B and Z as zero matrices.
3: sj = 1 for j = 1 to n
4: for each {xt−h+1, . . . ,xt} in X do
5: for i = 1 to M do
6: repeat
7: B̂← B +

∑t
j=(t−h+1) sjaja

T
j

8: Ẑ← Z +
∑t

j=(t−h+1) sjxja
T
j

9: D← Algorithm 7
(
[xt−h+1, . . . ,xt],D, B̂, Ẑ

)
10: for j = (t− h+ 1) to t do
11: aj ← 1

2
||xj −Da||22 + λ

sj
||a||1

12: until convergence
13: for j = (t− h+ 1) to t do
14: update sj according to Equation 5.12
15: B← B̂, Z← Ẑ
Output: D, s

In the inner loop (starting from line 6), matrices B and Z carry all the “past information”
from coefficients [a1, . . . , at−h]. Information from new data is computed in

∑t
j=(t−h+1) sjaja

T
j
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and
∑t

j=(t−h+1) sjxja
T
j , which are combined with that past information and then stored in

matrices B̂ and Ẑ, respectively, thus keeping track of past and current coefficients [a1, . . . , at].
A very similar approach is used in other online dictionary learning methods such as the ones
proposed by Mairal et al. (2009a), Mairal et al. (2010) and Lu et al. (2013).

A heuristic to speed up convergence is proposed by Mairal et al. (2009a). Since the
information added to matrices B̂ and Ẑ have the same weight as the previous mini-batches,
a straightforward and natural idea is to rescale the “past” information so that the newer
coefficients [at−h+1, . . . , at] have more weight. This can be done by replacing lines 7 and 8 of
Algorithm 6 with the following:B̂← βB +

∑t
j=(t−h+1) sjaja

T
j

Ẑ← βZ +
∑t

j=(t−h+1) sjxja
T
j

(5.14)

with β = γ+1−h
γ+1

, such that γ = τh if τ < h, or γ = h2 + τ − h if τ ≥ h, where τ is the
number of iterations of the outer loop (line 4 in Algorithm 6).

The online dictionary update step is presented in Algorithm 7, and it is a slightly modified
version of its batch counterpart (Algorithm 5). In this setup, matrices parameters B and
Z are previously computed iteratively inside the loop of Algorithm 6, according to the new
incoming mini-batch.

Algorithm 7 Online dictionary update

Input: Dictionary D, matrix B̂ = [b̂1, . . . , b̂K ] ∈ RK×K , matrix Ẑ = [ẑ1, . . . , ẑK ] ∈ Rd×K .
1: repeat
2: for j = 1 to K do
3: uj ← 1

B̂jj
(ẑj −Db̂j) + dj {update the j-th column of D}

4: dj ← 1
max(||uj ||2,1)uj

5: until convergence
Output: D

5.4.4 Undercomplete initialization

The problem our RDL method solves is non-convex, thus its solution is very sensitive to
initialization. The existence of outliers in the data matrix X amplifies the effect, resulting
in a biased dictionary D, which does not generalize the non-outliers properly. Hence, a
suitable initialization of the weights in s is essential in our iterative algorithm, based on
Equation 5.11.

By identifying the outliers before learning, it would be possible to assign si ≈ 0 to
those samples, therefore they would become irrelevant for the dictionary learning problem.
Although this process seems straightforward, detecting outliers in a set of samples is a hard
problem itself (Chandola et al., 2007).
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Algorithm 8 Undercomplete initialization

Input: Data matrix X, dictionary D ∈ Rd×K , with d < K, number of atoms in each batch
b < K, parameters λ and ε.

1: N ←
⌈
K
b

⌉
{number of batches}

2: s = 0
3: Initialize D = [d1, . . . ,dK ] as a zero matrix
4: for i = 0 to (N − 1) do
5: I = indices related to i-th batch
6: D̂, ŝ← Algorithm 4

(
X, |I|, λ, ε, 1

)
7: DI ← D̂ {assign learned dictionary to the appropriate indices}
8: s← s + ŝ {accumulate weights}
9: s← s

N
{compute average}

Output: D, s

In Algorithm 8 we propose an initialization strategy to tackle this problem. It assumes
heuristically that if most samples belong to a linear subspace of Rd, while outliers are outside
this subspace, then those outliers could be easier identified by an undercomplete dictionary
rather than an overcomplete one. Moreover, if the sparsity penalty is weak enough, it would
be possible to approximate quite well any sample through an overcomplete dictionary, there-
fore even an outlier would be assigned with a large si value.

Thus, if the dimension of the problem is less than the number of dictionary elements, as
it is in an overcomplete scheme, our heuristic initializes the dictionary D and weights vector
s by learning mini-batches of dictionary atoms of size b, with b < d, as shown in the for loop
in Algorithm 8. Each iteration of the loop calls one iteration of Algorithm 4, with the size
of the dictionary (the parameter K) equals to b. If there is a small portion of outliers in the
samples in X, ŝi (line 6) will probably be bigger for non-outliers and smaller for outliers. A
new ŝ vector is computed for each mini-batch, and its values accumulated in s (line 8). In the
end, an average of s is computed by dividing its values by N , the number of mini-batches.

It is important to observe that, on average, ŝ will be bigger for non-outliers, once its
value is derived from Equation 5.12 through one iteration of Algorithm 4. Thus, the concave
function g will limit the effects the outliers cause on the reconstruction error ‖xi −Dai‖2.
Besides, during that iteration, the dictionary D is going to be undercomplete, which will
also cause the error to be bigger for the outliers, in the average case.
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Chapter 6

Experiments

Given the ideas introduced and proposed in the previous chapters, here we apply them
into experiments and present empirical results. The first part focuses on experiments with
synthetic data, while the second introduces the datasets, data preparation, sampling strate-
gies and experimental setups.

6.1 Concave robust dictionary learning with synthetic

data

To evaluate our RDL method presented in Section 5.4, we propose two experiments with
synthetic generated datasets with outliers to demonstrate its robustness against them. The
first experiment shows the visual behavior of our RDL algorithm using 2D samples, and the
other displays its accuracy on data with higher dimension.

6.1.1 Synthetic experiment with 2D data

This experiment aims to visually show the capabilities of our RDL algorithm in the
detection of outliers. This is much easier to observe and understand in two dimensions since
the generated dataset can be trivially plotted.

It begins with two clusters are generated using two Gaussian distributions, each con-
taining 250 points along with 50 outliers. As can be seen in Figure 6.1, the outliers are
represented as the red triangles (top left sub-figure), far away from the clusters, resulting in
a total of 550 points. The points are clustered using K-SVD (Aharon et al., 2006) as well as
our RDL method with g(u) = u and also g(u) = log(ε+ u) functions, respectively.

We then compare how many of the original outliers are among the 50 highest recon-
struction values. Our method, using the log function, proved to be the most robust against
outliers, with 47 from the 50 true outliers detected. It is followed by the variant with the
identity function, which identified 27 outliers, and finally by K-SVD, which was naturally
not able to identify any of the original outliers. This example also shows that concavity of

39
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function g (see Section 5.4.2) helps in better identifying outliers.
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Figure 6.1: Synthetic 2D data drawn from two Gaussian distributions. The outliers are repre-
sented as the red triangles. (top-left) Original data with outliers. (top-right) Clustering with K-SVD.
(bottom-left) Clustering with our RDL method with the (identity) function g(u) = u. (bottom-right)
Clustering our RDL method using the function g(u) = log(ε+ u).

6.1.2 Synthetic experiment with high dimension data

After showing the behavior of our RDL methods in two dimensions, our aim with these
experiments is to prove the capabilities of those methods to detect outliers under higher
dimensional data. To achieve this, we generate synthetic data of 32 dimensions using a
similar approach as described by Lu et al. (2013) to create the data based on a dictionary
and sparse coefficients. Basically, generate n sparse coefficients {β1, . . . , βn} ∈ Rκ×n with
a given sparsity ratio (20%, for example), a dictionary D ∈ R32×κ, and finally the data
xi = Dβi + ξi, with 1 ≤ i ≤ n. The term ξi is additive noise to simulate outliers.

The metric adopted to compare the results is the AUC Curve (AUROC) (Fawcett, 2006)
of outlier scores {si} after executing Algorithm 4: outliers should have scores 1/si larger than
non-outliers, and each point in Figure 6.2 is the average of 5 runs using newly generated
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Figure 6.2: Performance of our RDL method with multidimensional data using the standard and
undercomplete initialization schemes.

data.
We observe that the behavior for both lines is the same in Figure 6.2a until the number

of atoms reach 32, since K ≤ d and the condition in the first line of Algorithm 4 is not met.
The performance of the undercomplete initialization method also deteriorates for dictionary
sizes a little bit greater than d, but as far as K starts to increase it becomes evident that this
method outperforms the default initialization. Figure 6.2b shows that our method stays very
stable independent of the number of samples, given a constant outlier ratio, regardless of the
initialization method. Finally, Fig. 6.2c shows the behavior of both initialization strategies
in scenarios where the outlier proportion changes. It can be noticed that the AUROC values
decrease slowly as long as the number of outliers in the samples increase. This is natural since
when the proportion of outliers is large, outliers can hardly be considered outliers anymore.
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6.2 MORPH-II, FERET and AR databases

The design of a face image database is usually guided by certain specific hypothesis
and objectives. Therefore, the databases are somehow different one from the others. For
example, the SCfaceDB (Tome et al., 2013) has around 4,000 images from 130 subjects
taken from cameras in an indoor environment, with manually assigned landmarks. The LFW
(Labeled Faces in the Wild) (Learned-Miller et al., 2016) has 13,000 images of faces from
1,680 subjects, all collected from the Web. Most of these images were taken in unconstrained
environments, which makes it a challenging database, but some images have more than one
face in them. On the other hand, the 10k US Adult Faces Database (Bainbridge et al., 2013)
has around 10,000 images, mostly taken from Google Images, and it was originally created
for a study on the memorability of face photographs. All the faces of this database had their
backgrounds removed, while the faces are presented inside a circle.

Although some of these face databases have labels for ethnicity or gender, most of them
were not primarely designed to be used in these kinds of problems. Each one have its own
drawback: the dataset is considerable small, the classes are very unbalanced (some classes
have a very limited number of images), the presence of more than one subject in one image,
there is some level of occlusion (like the ones provoked by the background removal in the
10k US Adult Faces Database), and so on.

In the following we describe in more detail three face image datasets: MORPH-II, FERET
and AR, used to assess the performance of the proposed approaches. They were elected to
be used in this work because they have labels for ethnicity (the first two) and gender and
they were used extensively in other studies about this problem.

MORPH (Ricanek Jr and Tesafaye, 2006) is a face image dataset that consists of two
“albums”: Albums 1 and 2. For this study, we chose Album 2 (better known as MORPH-II)
since it contains around 55,000 frontal face images and includes meta data for gender and
ethnicity. There are 5 classes, unbalanced distributed in the following way: African (77.2%),
Caucasian (19.2%), Hispanic (3.2%), Asian (< 0.3%) and “Others” (< 0.15%). Furthermore,
gender distribution inside each ethnicity is also unbalanced, with the predominance of males
from 70% up to 94%, depending on the class.

The FERET database (Phillips et al., 2000) is smaller than MORPH-II, but it also comes
with labels for gender and ethnicity. It has many collections of images from around 1,000
subjects, divided by pose, illumination and facial expressions. Most of these collections are
small, with less than 300 images. For this reason we only consider the bigger collection,
which has around 1,000 frontal face images with regular facial expression, also known by
its two letter code as the “Fa” album. Considering the five major ethnic groups, the images
are distributed as: African (7.98%), Asian (17.50%), Middle-eastern (5.42%), Caucasian
(63.25%) and Hispanic (5.83%), which means FERET is also very unbalanced for ethnicity,
with a large predominance of Caucasian subjects. Gender distribution is a bit fairer for
African (56.41% females, 43.59% males), Caucasian (41.42% females, 58.58% males) and
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FERET	database

MORPH-II	database

Figure 6.3: Examples of African and Caucasian subjects from MORPH-II and FERET databases.
The grayscale images are obtained after the preprocessing phase described in Section 6.2.1

Hispanic (52.63% females, 47.37% males). Ethnic groups Asian (33.33% females, 66.67%
males) and Middle-eastern (11.32% females, 88.68% males) are the most unbalanced for
gender. Figure 6.3 shows some examples of images taken from FERET and MORPH-II
datasets.

The AR dataset (Martinez, 1998) is a much smaller but widely used collection of face
images. It consists of many subsets featuring different facial expressions and levels of occlu-
sion. It has labels for gender only, and each subset have about 100 images (50 for men and
50 for women). Figure 6.4 shows images of two subjects extracted from the AR database,
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AR	database

Figure 6.4: Examples of a female and a male subject from the AR database in different conditions:
“neutral expression” (left), “all side lights on” (center), “wearing sun glasses” (right).

each with examples of 3 subsets (from left to the right): “neutral expression”, “all side lights
on” and “wearing sun glasses”.

6.2.1 Face preprocessing

In spite of following an acquisition protocol, sometimes even frontal images have some
imperfections as, for instance, being slightly bent. Therefore, in order to mitigate the com-
plexity of the problem and achieve high accuracy, the images must be preprocessed. The
major goals of this step are: (i) to eliminate most of the background and areas unrelated
to the subject’s face (e.g., most of the hair, clothing parts, etc) and (ii) to align a face
with respect to its eyes. In this work we used OpenCV’s eye and face detectors, which are
based on Haar feature-based cascade classifiers (Viola and Jones, 2001) to locate the eyes
(to estimate the alignment correction) and face (to eliminate background).

The algorithm to correct these two problems is based on the steps presented in Figure 6.5:

• Apply a pre-trained classifier for frontal face detection (haarcascade_frontalface_default.xml
or haarcascade_frontalface_alt.xml); if one of them fails, we try the other and if both
fail the image is discarded from the training set.

• Find both eyes inside the face region, estimate the angle of inclination (θ as in Figure
6.5b) and perform an affine transform to realign the image. Two eye detectors provided
by OpenCV have been used: haarcascade_eye.xml and haarcascade_eye_tree_eyeglasses.xml.
If both eyes are located, we evaluate if their regions overlap or if the angle does not
exceed a given threshold tθ = ±30◦ in any direction.

• Realign the image by the estimated θ (Figure 6.5c) and detect the face in the adjusted
image (Figure 6.5d).
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Figure 6.5: Image preprocessing phases: a) face detection; b) angular evaluation and alignment cor-
rection; c) face detection over the aligned image; d) aligned face; e) gray scale conversion, cropping
and normalization; f) spatial regions over the face and dense keypoint sampling.

• Convert to grayscale and crop it according to the following proportions: from left to
the right, the first 1

8
and the last 1

8
of the domain are cut out, and from top to the

bottom, the first 1
4
and the last 1

20
of the domain are also excluded (Figure 6.5e). This

step eliminate undesired background and allows us to take advantage of the facial
symmetries.

Ethnicity Female Male Female + Male
African 4,701 (AF) 28,173 (AM) 32,874 (A)

Caucasian 2,098 (CF) 5,844 (CM) 7,942 (C)
Hispanic 86 (HF) 1,366 (HM) 1,452 (H)
African +
Caucasian 6,799 34,017 40,816

African +
Caucasian +
Hispanic

6,885 35,383 42,268

Table 6.1: Number of images in MORPH-II used for our study (classes aliases in parentheses).

Although MORPH-II provides manually annotated eye coordinates, that information is
not present in other datasets. FERET has these annotations for some of its images only,
for example, and they are certainly absent in real applications. The method described here
worked properly for over 75% of the images available in both MORPH-II and FERET.
Tables 6.1 and 6.2 present the number of images for which the process was successful for
each ethnicity and for each gender.
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Ethnicity Female Male Female + Male
African 39 30 69

Caucasian 203 273 476
African +
Caucasian 242 303 545

Table 6.2: Number of images in FERET used for our study.

6.3 Experiments with real data

6.3.1 Dense SIFT vs dense SURF

An important step in the BoVW model is how to sample the features throughout the
images (Fei-Fei and Perona, 2005a). We adopted the dense sampling in our experiments,
where features are computed from an evenly sampled grid of patches in each image, since
this strategy is known to lead to superior results (Van De Sande et al., 2010). But yet, there
is the need to find the ideal patch size.

To accomplish this, we performed a series of experiments varying the vocabulary size,
along with the size of the patches in the grid used for dense sampling, to evaluate how those
parameters affect ethnicity and gender classification for the SIFT and SURF descriptors.
The training data is composed by 3 sets of 600 images each (300 images per class). Since
classifying all images from Table 6.1 a hundred times would be computationally expensive
and due to the unbalanced amount of images per class in MORPH-II, we made a new
balanced test set by selecting 2,000 images per class for the test phase. This test set is
composed by 1,000 African females and 1,000 males, plus 1,000 Caucasian females and 1,000
males.

We compare the sampling results for gender and ethnicity with dense SIFT and dense
SURF. The selected values for the patch sizes are: 6, 10, 20, 30, 40 and 50, with the following
vocabulary sizes: 50, 100, 150, 200, 250 and 300 codewords. That means each graph represent
the result of 36 experiments, leading to a total of 144 experiments considering the 4 graphs.

The results are presented in Figure 6.6 as surface plots of the overall accuracies ob-
tained for the test sets, and represent the average accuracy with each of the 3 training sets.
They show that SIFT achieves the best results with patches of 10 × 10 pixels, in contrast
to SURF which achieves best results with larger patches. An interesting fact that can be
easily observed is that the correct choice of patch size influences the accuracy more than
the vocabulary size. Another fact one has to analyze is the trade-off between patch sizes,
accuracy and efficiency, because the smaller the patch, the greater the quantity of keypoints
to sample in an image. Consequently, more computer resources will be needed to compute
their descriptors, encoding to histograms in the pooling phase, and so on.
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Figure 6.6: A comparison between the overall accuracy in different configurations of patch and
vocabulary sizes for SIFT and extended SURF descriptors.

6.3.2 Classifier setup

To build the gender and ethnicity classifiers, we adopted a lightweight setup to gain
efficiency while maintaining high accuracy rates. Given the results from the experiments in
Section 6.3.1 we use a patch size of 10×10 pixels for the dense SIFT sampling. Sections 6.3.3
and 6.3.4 use a vocabulary size of 200 codewords, while Section 6.3.5 improves the quality of
the training set by using more images and a bigger visual vocabulary with 400 codewords,
which increases accuracies dramatically, but on the other hand it makes the classification a
little more expensive.
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Since all images belong to the same categorical group (faces) and the ones in MORPH-II
are not in the same scale, the images used for training and test are resized to a fixed width
and height (300 × 300 pixels), between the steps described in Figure 6.5c and Figure 6.5e
at the preprocessing phase. This ensures that very similar face regions in distinct images
and scales could generate spatially close descriptors in the feature space. Furthermore, the
original proportions are kept because the face detectors from OpenCV return images with
equal width and height.

Our main focus is the MORPH-II dataset, since it is one of the largest labelled available
for gender and ethnicity classification, with a reasonable diversity of subjects and image
resolutions. Additional experiments are performed with the FERET and AR datasets. In
Sections 6.3.3, 6.3.4 and 6.3.5 we compare the accuracy of the BoVW model in the problem
of gender and ethnicity classification by replacing the clustering algorithms and pooling
strategies with the following:

• Clustering algorithms:

– K-SVD (see Section 5.2)

– LC-KSVD1 (see Section 5.3.1)

– LC-KSVD2 (see Section 5.3.2)

– Our online RDL with g(u) = log(ε+ u) (see Algorithm 6)

– Our RDL with its standard initialization and g(u) = log(ε+u) (see Algorithm 4)

– Our RDL with the undercomplete initialization and g(u) = log(ε + u) (see Sec-
tion 5.4.4)

• Pooling strategies:

– Standard BOVW (the standard hard-assignment scheme, see Section 3.4)

– BOSSA, with B = 4 and λmax = 2 (see Section 3.6.2)

– BossaNova, with B = 4, λmin = 2 and λmax = 2 (see Section 3.6.3)

– PIWAH, with B = 4 (see Section 3.6.1)

– Our pooling proposal, with B = 4, λmax = 2 and p = 0.5 (see Section 4.4)

After the pooling phase, the computed histograms are used in SVMs (Support Vector
Machine) for training and then classification. Each SVM use a RBF (Radial Basis Function)
kernel (Broomhead and Lowe, 1988), with optimal parameters previously computed using
a grid search method. All the results are the average of the overall accuracy of 10 groups
(folds) of training data.
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6.3.3 Gender classification on the MORPH-II dataset

The training set for these experiments is composed by 810 images (405 for each class)
from the MORPH-II database. For this task, we select the two largest ethnic groups (African
and Caucasian), totalling 40,816 images (see Table 6.1), i.e., the other 40,006 images are kept
for classification.

Table 6.3 shows the results of gender classification using the studied methods. These
experiments use a 3 × 2 spatial regions layout, as shown in Figure 6.5f, due to the good
discriminative power achieved while keeping a reasonable histogram size. These experiments
reveal great improvement in accuracy when using our RDL methods in the clustering phase
of the BoVW model.

Clustering strategy
Pooling

K-SVD LC-KSVD1 LC-KSVD2
RDL RDL RDL

method online standard undercomplete
Standard BoVW 84.20% (0.799) 85.31% (0.812) 84.91% (1.098) 85.46% (0.515) 85.59% (0.703) 86.07% (0.490)

BOSSA 85.45% (0.614) 85.66% (0.711) 85.28% (1.064) 86.63% (0.508) 86.75% (0.537) 87.20% (0.489)
BossaNova 85.60% (1.010) 85.58% (0.828) 85.75% (1.305) 86.62% (0.546) 86.83% (0.219) 87.29% (0.509)
PIWAH 84.34% (1.172) 84.96% (0.675) 85.19% (1.022) 85.40% (0.324) 85.59% (0.892) 85.64% (0.424)

Table 6.3: Average classification accuracies and standard deviations for gender on the MORPH-II
dataset using the standard subregions approach.

In another set of experiments we repeated all the scenarios, but instead of using the
3 × 2 region layout, we replaced them by 6 CoIs. The results in Table 6.4 demonstrate the
discriminative power of our centers of incidence approach. They also show that our pooling
strategy achieves the best results in all clustering schemes, since it needs the CoIs to work.

Clustering strategy
Pooling

K-SVD LC-KSVD1 LC-KSVD2
RDL RDL RDL

method online standard undercomplete
Standard BoVW 84.47% (0.847) 85.57% (1.004) 85.36% (1.084) 86.15% (0.667) 86.37% (0.608) 86.87% (0.668)

BOSSA 85.51% (0.903) 85.86% (1.016) 85.68% (1.017) 86.63% (0.508) 86.88% (0.599) 87.44% (0.582)
BossaNova 85.71% (0.979) 85.95% (0.489) 85.91% (1.335) 86.76% (0.807) 86.91% (0.680) 87.66% (0.491)
PIWAH 84.54% (0.834) 85.25% (1.077) 85.30% (0.879) 85.41% (0.270) 85.51% (0.863) 85.76% (0.647)
Ours 87.27% (0.488) 87.10% (0.784) 87.00% (0.819) 88.13% (0.524) 88.19% (0.493) 88.36% (0.376)

Table 6.4: Average classification accuracies and standard deviations for gender on the MORPH-II
dataset using the CoI approach.

6.3.4 Ethnicity classification on the MORPH-II dataset

Following the gender classification, we performed a similar set of experiments with eth-
nicity. This time, we use two scenarios: the first with 2 classes (African and Caucasian) and
the other with 3 classes (African, Caucasian and Hispanic). The former uses 810 images and
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the last 1,215 images for training (405 per class) for each of the 10 folds. The remaining
images (40,006 for 2 classes and 41,053 for 3 classes) are used in the classification step.

Table 6.5 displays the results with the 3 × 2 region layout. Again, note that our RDL
approach achieves the best results for all pooling strategies, while remarkably our classifiers
obtained higher accuracies for ethnicity.

Clustering strategy
Pooling

K-SVD LC-KSVD1 LC-KSVD2
RDL RDL RDL

method online standard undercomplete
Standard BoVW 96.22% (0.160) 96.27% (0.312) 96.44% (0.282) 96.72% (0.120) 96.96% (0.357) 96.88% (0.117)

BOSSA 96.81% (0.077) 96.39% (0.364) 96.49% (0.270) 96.66% (0.105) 96.99% (0.256) 97.03% (0.196)
BossaNova 96.88% (0.107) 96.69% (0.273) 96.73% (0.246) 96.99% (0.099) 97.08% (0.210) 97.26% (0.103)
PIWAH 96.34% (0.152) 96.39% (0.434) 96.46% (0.262) 96.95% (0.084) 97.10% (0.214) 97.21% (0.072)

Table 6.5: Average classification accuracies and standard deviations for ethnicity (with 2 classes)
on the MORPH-II dataset using the standard subregions approach.

Table 6.6 shows the accuracies for the same set of experiments, but again replacing the
3 × 2 region layout by 6 CoIs. The last rows contains the results for our pooling strategy,
which also got the best results. One more time, these results show the discriminative power
of our centers of incidence approach over the standard subregion division.

Clustering strategy
Pooling

K-SVD LC-KSVD1 LC-KSVD2
RDL RDL RDL

method online standard undercomplete
Standard BoVW 96.72% (0.148) 96.83% (0.249) 96.89% (0.236) 97.07% (0.144) 97.18% (0.269) 97.33% (0.109)

BOSSA 96.86% (0.157) 96.93% (0.444) 96.98% (0.215) 96.98% (0.102) 97.03% (0.236) 97.14% (0.196)
BossaNova 96.99% (0.102) 97.15% (0.258) 97.13% (0.215) 97.23% (0.121) 97.47% (0.192) 97.60% (0.078)
PIWAH 96.60% (0.221) 96.84% (0.341) 96.87% (0.217) 97.09% (0.099) 97.14% (0.196) 97.33% (0.071)
Ours 97.71% (0.090) 97.73% (0.181) 97.79% (0.198) 98.00% (0.085) 98.07% (0.073) 98.13% (0.067)

Table 6.6: Average classification accuracies and standard deviations for ethnicity (with 2 classes)
on the MORPH-II dataset using the CoI approach.

Finally, Tables 6.7 and 6.8 present the results for both subregions and CoIs approaches,
respectively. The performance of the classifiers is affected by the new Hispanic class, but our
pooling method was able to achieve over 91% of accuracy (see Table 6.8). This phenomenon
was already noted in the past by Guo and Mu (2010) when using the MORPH-II dataset,
because it is harder to distinguish between hispanics and caucasians. In fact we got this
same problem, with a lot of caucasian subjects being classified as hispanics and vice-versa,
rather than being mistaken by african subjects.
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Clustering strategy
Pooling

K-SVD LC-KSVD1 LC-KSVD2
RDL RDL RDL

method online standard undercomplete
Standard BoVW 88.53% (0.235) 88.64% (0.589) 88.55% (0.594) 89.03% (0.298) 89.11% (0.374) 89.38% (0.192)

BOSSA 89.02% (0.193) 89.19% (0.514) 89.11% (0.543) 90.06% (0.215) 90.27% (0.262) 90.45% (0.173)
BossaNova 89.07% (0.311) 89.53% (0.760) 89.65% (0.789) 90.14% (0.241) 90.41% (0.291) 90.57% (0.272)
PIWAH 88.61% (0.270) 88.72% (0.692) 88.86% (0.636) 89.08% (0.226) 89.22% (0.310) 89.29% (0.167)

Table 6.7: Average classification accuracies and standard deviations for ethnicity (with 3 classes)
on the MORPH-II dataset using the standard subregions approach.

Clustering strategy
Pooling

K-SVD LC-KSVD1 LC-KSVD2
RDL RDL RDL

method online standard undercomplete
Standard BoVW 89.30% (0.306) 89.59% (0.477) 89.68% (0.400) 89.85% (0.194) 89.94% (0.304) 89.98% (0.125)

BOSSA 89.87% (0.268) 90.02% (0.395) 89.96% (0.400) 90.40% (0.142) 90.45% (0.305) 90.56% (0.104)
BossaNova 89.91% (0.406) 90.15% (0.692) 90.18% (0.779) 90.52% (0.275) 90.67% (0.357) 90.73% (0.262)
PIWAH 88.65% (0.316) 89.32% (0.532) 89.38% (0.499) 89.42% (0.245) 89.50% (0.399) 89.66% (0.116)
Ours 90.27% (0.237) 90.37% (0.454) 90.49% (0.459) 91.21% (0.197) 91.29% (0.149) 91.42% (0.144)

Table 6.8: Average classification accuracies and standard deviations for ethnicity (with 3 classes)
on the MORPH-II dataset using the CoI approach.

6.3.5 Improvements and applying our classifier to other datasets

In this section we improve our classifier by increasing the number of training images to
1,998 (999 per class), for both gender and ethnicity1 classification tasks. As in the previous
experiments, all the images in the training set are taken from the MORPH-II dataset. The
number of visual words is also increased to 400, which still offers a reasonable trade-off
between efficiency and accuracy. Since our RDL techniques outperformed the others, we
only use the batch versions (with standard and undercomplete dictionary initializations) for
simplicity

In the first part, we apply the improved classifiers to the MORPH-II database, so we
can assess the enhancement in accuracies, compared to the ones with smaller training sets
and vocabularies from Sections 6.3.3 and 6.3.4. Then, we aim to prove empirically that our
approach is robust by performing some domain adaptation experiments by classifying the
images from FERET (ethnicity and gender) and the AR (gender only) databases.

Tables 6.9 and 6.10 presents the results for both problems in the MORPH-II database.
Note the sharp increase in accuracy for the gender classification problem (up to 95%, com-
pared with the previous result, a bit more than 88%). Improvements can also be noted for
ethnicity, but since the previous setup have already lead to higher accuracies, it seems to
approach to the limits of our BoVW scheme.

1This time we only focus on the 2 classes problem for ethnicity classification, since there would be few
images left for hispanics.
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Pooling method
Clustering strategy

RDL RDL
standard undercomplete

S
u
b
re

gi
on

s Standard BoVW 92.19% (0.058) 93.46% (0.272)
BOSSA 93.28% (0.073) 94.27% (0.212)

BossaNova 93.19% (0.179) 94.54% (0.260)
PIWAH 92.87% (0.116) 93.49% (0.393)

C
oI

s

Standard BoVW 92.57% (0.105) 93.99% (0.125)
BOSSA 93.64% (0.045) 94.66% (0.129)

BossaNova 93.63% (0.110) 94.68% (0.211)
PIWAH 93.00% (0.096) 93.63% (0.277)
Ours 94.95% (0.069) 95.32% (0.111)

Table 6.9: Average classification accuracies and standard deviations for gender on the MORPH-II
dataset.

Pooling method
Clustering strategy

RDL RDL
standard undercomplete

S
u
b
re

gi
on

s Standard BoVW 97.16% (0.064) 97.57% (0.106)
BOSSA 97.34% (0.045) 97.51% (0.095)

BossaNova 97.55% (0.102) 97.54% (0.095)
PIWAH 97.03% (0.050) 97.36% (0.143)

C
oI

s

Standard BoVW 97.49% (0.060) 97.87% (0.095)
BOSSA 97.81% (0.049) 97.95% (0.085)

BossaNova 97.81% (0.090) 97.98% (0.085)
PIWAH 97.40% (0.059) 97.73% (0.067)
Ours 98.14% (0.062) 98.17% (0.043)

Table 6.10: Average classification accuracies and standard deviations for ethnicity (with 2 classes)
on the MORPH-II dataset.

a)

b)

Figure 6.7: Examples of misclassified gender in the MORPH-II dataset: a) Females classified as
Males; b) Males classified as Females.
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Figures 6.7 and 6.8 show examples of misclassified images in the experiments from Tables
6.9 and 6.10, respectively. Note that some images are quite challenging to describe due
to specific traits in the hairstyle, facial expression or even color skin, although these are
subjective matters.

a)

b)

Figure 6.8: Examples of misclassified ethnicity in the MORPH-II dataset: a) Africans classified as
Caucasians; b) Caucasians classified as Africans.

Results with the FERET dataset are shown in Tables 6.11 and 6.12. Even with all the
training images being from the MORPH-II dataset, the setup using the proposed RDL
method along with our pooling strategy is able to achieve up to 91% for gender and up to
81% for ethnicity classification. Thus, we can have an idea of how powerful our model is,
because different datasets have distinct illumination and scenario conditions, and even the
camera quality and resolution could affect results. We believe that these results could be
further improved if more images were used on the training step, especially if they were from
different datasets, which is not the case here.

Pooling method
Clustering strategy

RDL RDL
standard undercomplete

S
u
b
re

gi
on

s Standard BoVW 86.55% (0.734) 87.39% (0.614)
BOSSA 87.72% (0.627) 88.95% (0.567)

BossaNova 87.85% (1.401) 89.18% (0.681)
PIWAH 87.18% (1.228) 87.83% (0.841)

C
oI

s

Standard BoVW 86.70% (1.314) 87.42% (0.406)
BOSSA 87.88% (0.668) 89.40% (0.642)

BossaNova 87.99% (1.744) 89.44% (1.011)
PIWAH 87.21% (0.609) 89.21% (0.505)
Ours 88.89% (1.292) 90.25% (0.975)

Table 6.11: Average classification accuracies and standard deviations for gender on the FERET
dataset.

Finally, Tables 6.13, 6.14 and 6.15 show the results of gender classification in the AR
dataset with the “neutral expression”, “all side lights on” and “wearing sun glasses” subsets.
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Pooling method
Clustering strategy

RDL RDL
standard undercomplete

S
u
b
re

gi
on

s Standard BoVW 77.32% (0.865) 78.42% (2.866)
BOSSA 80.26% (1.568) 80.42% (0.513)

BossaNova 80.71% (1.527) 80.59% (1.155)
PIWAH 79.06% (0.784) 79.51% (2.619)

C
oI

s

Standard BoVW 77.93% (0.787) 80.42% (2.116)
BOSSA 80.70% (0.851) 80.54% (1.403)

BossaNova 80.85% (3.195) 80.98% (2.234)
PIWAH 80.27% (0.774) 80.08% (1.979)
Ours 81.17% (2.222) 81.36% (1.108)

Table 6.12: Average classification accuracies and standard deviations for ethnicity (with 2 classes)
on the FERET dataset.

The neutral expression set is very similar to the ones in MORPH-II and FERET. On the
other hand, the set with great variation in light conditions poses a challenge to our classifiers,
as well as the set with sunglasses, which is one of the most common types of face occlusion
when dealing with such a classification problem.

Pooling method
Clustering strategy

RDL RDL
standard undercomplete

S
u
b
re

gi
on

s Standard BoVW 70.00% (1.844) 72.50% (6.859)
BOSSA 71.70% (1.418) 78.50% (5.696)

BossaNova 74.80% (2.960) 78.60% (4.884)
PIWAH 70.70% (1.900) 77.20% (6.258)

C
oI

s

Standard BoVW 73.80% (3.124) 78.40% (5.276)
BOSSA 79.40% (2.289) 82.70% (3.035)

BossaNova 79.90% (5.467) 82.90% (4.721)
PIWAH 74.50% (2.110) 80.90% (2.700)
Ours 82.40% (2.200) 85.20% (1.077)

Table 6.13: Average classification accuracies and standard deviations for gender on the AR (“neu-
tral expression”) dataset.

One important detail that prevented the AR dataset to perform better is the fact that
the faces there are already cropped, as seen in Figure 6.4. Note that the ears, part of the
hair and part of the chin are missing, what makes it difficult to apply the face processing
step described in Section 6.2.1. Since all our training examples are from MORPH-II and
they all passed by those steps, it means that the sampling step of our BoVW scheme will
be far from ideal for the AR images.
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Nevertheless our results were reasonably good when compared with the work of Borgi et al.
(2014), which used half the images from AR for training and half for classification, so things
are tougher for us since we use a complete different dataset for training and the full AR set
(double the images) for test. More recently, the work of Juefei-Xu et al. (2016) uses a much
more complex classifier using deep learning techniques to achieve better results, but their
training set consists of about 89,000 images extracted from 5 distinct face databases.

Pooling method
Clustering strategy

RDL RDL
standard undercomplete

S
u
b
re

gi
on

s Standard BoVW 65.20% (2.600) 70.10% (5.186)
BOSSA 69.70% (2.410) 70.10% (5.069)

BossaNova 69.80% (3.458) 72.20% (8.588)
PIWAH 71.10% (2.914) 75.00% (5.762)

C
oI

s

Standard BoVW 76.10% (7.892) 79.40% (1.685)
BOSSA 76.30% (7.721) 81.00% (2.966)

BossaNova 76.70% (1.952) 81.50% (5.886)
PIWAH 76.30% (5.951) 80.70% (1.418)
Ours 80.00% (3.873) 84.20% (2.182)

Table 6.14: Average classification accuracies and standard deviations for gender on the AR (“all
side lights on”) dataset.

Pooling method
Clustering strategy

RDL RDL
standard undercomplete

S
u
b
re

gi
on

s Standard BoVW 69.30% (5.883) 71.10% (2.468)
BOSSA 69.60% (7.046) 71.80% (1.720)

BossaNova 69.90% (3.400) 71.40% (2.615)
PIWAH 68.40% (3.693) 71.70% (2.002)

C
oI

s

Standard BoVW 73.00% (2.530) 73.60% (4.271)
BOSSA 73.70% (5.001) 76.00% (2.022)

BossaNova 74.00% (4.123) 76.30% (2.973)
PIWAH 69.30% (1.900) 72.40% (4.005)
Ours 76.40% (5.269) 76.80% (2.088)

Table 6.15: Average classification accuracies and standard deviations for gender on the AR (“wear-
ing sun glasses”) dataset.
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6.3.6 CoIs configuration: Standard vs Fixed vs Random positions

This section aims to show empirically the advantages of using clustering techniques to
compute the Centers of Incidence (CoIs), as presented in Section 4.2. To achieve this, we
perform experiments with three different ways to set the CoIs spatial positions:

• Standard positions, set using the K-Means algorithm (as defined in Section 4.2).

• Fixed positions, by setting the positions of the CoIs in the centers of each of the
3× 2 subregions.

• Random positions, by randomly selecting the position of the CoIs in the descriptors’
space.

Figure 6.9 shows some examples of each of these three approaches, where the CoIs are
represented by the white circles. The images represents a 2D histogram of the spatial distri-
bution of descriptors for each codeword in the training set.

St
an

da
rd

Codeword 1 Codeword 2 Codeword 3 Codeword 4 Codeword 5

Fi
xe

d
Ra

nd
om

Figure 6.9: Examples on five codewords in different configurations of Centers of Incidence (white
points) and the Voronoi regions they define: Standard (with clustering, as defined in Section 4.2),
Fixed (equivalent to the 3× 2 subregion configuration), and Randomly distributed centers.

The experiments are accomplished using the MORPH-II dataset and as in our previous
setups they are made for both gender and ethnicity classification. For the clustering step
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we used our RDL undercomplete approach with 200 visual words, and for simplicity we
compare the results using two pooling methods: the standard BoVW (using CoIs instead of
subregions, as defined in Section 4.3) and our pooling method. The results are presented in
Tables 6.16 and 6.17, respectively.

Pooling method
Type of CoI Standard BoVW

Ours
configuration with CoIs

Standard (with clustering) 86.87% (0.668) 88.36% (0.376)
Fixed positions 86.07% (0.488) 87.68% (0.410)

Randomly distributed 84.99% (0.908) 87.52% (0.385)

Table 6.16: Average classification accuracies and standard deviations for gender on the MORPH-II
dataset using three approaches for CoIs distribution.

For both cases, the best results are achieved by using the clustering (standard) approach,
which corroborates with the theory discussed by us earlier in Sections 4.2 and 4.3. We believe
that this happens because this approach makes the CoIs more representative by making
the final BoW histogram (i.e., the image representation) less sparse. Another interesting
result happens with the fixed positions approach, which gives similar results when using
the standard BoVW pooling with 3 × 2 subregions (compare with Table 6.3 for gender
and Table 6.5 for ethnicity). This supports our claim that the CoIs approach can be seen
as a generalization of the subregion division, as discussed in Section 4.3. Finally, those
experiments clearly show that the randomly distributed CoI positions is the worst approach.

Pooling method
Type of CoI Standard BoVW

Ours
configuration with CoIs

Standard (with clustering) 97.33% (0.109) 98.13% (0.067)
Fixed positions 96.88% (0.118) 98.01% (0.074)

Randomly distributed 96.62% (0.308) 97.96% (0.072)

Table 6.17: Average classification accuracies and standard deviations for ethnicity on the MORPH-
II dataset using three approaches for CoIs distribution.
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Chapter 7

Conclusion

In this chapter we review the activities and key contributions achieved in this work, as
well as suggestions for future directions in this research.

This text presents the theory behind the proposed classifiers, literature review on known
and state-of-the-art methods, as well as information about well known datasets with labels
for gender and ethnicity. The central objective of this work was to employ the bag-of-visual-
words model, which is simple and computationally efficient, to perform gender and ethnicity
classification based solely on face images. This type of model requires a relatively small set
of images for training, which makes sense for this kind of categorization, where the labelled
datasets have a few thousand images in most cases.

The BoVW model can be divided in 4 phases: (i) sampling, (ii) clustering, (iii) pooling
and (iv) classifying. Our goal was to propose new methods for phases (ii) and (iii), which
can greatly improve accuracy. For (ii) we proposed a robust dictionary learning algorithm
that can mitigate the influence of outliers in the result of the unsupervisied learning step.
Furthermore, we proposed an algorithm to better initialize the dictionary and improve the
detection of those outliers in the input data. For (iii) we proposed a new way to subdivide an
image in subregions for the pooling step in BoVW models. Finally, we proposed a pooling
algorithm that can take advantage of this new subdivision and get more discriminative
information based on angles between image features and key positions on how the features
are distributed over the images.

7.1 Suggestions for future works

• Experiments with images taken from unconstrained environments, preferably if they
are taken from high quality and high resolution surveillance cameras, once this kind
of classification would be of great value for law enforcement applications, for example.

• Experiments with age estimation, since MORPH-II, FERET and AR subjects are
concentrated in a very specific and close range of ages it is impractical to perform such
experiments without adding new images from external sources. That could cause the

59
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final set to be biased, since the environmental conditions where and how the images
were taken can influence badly on the classifier.

• Use of other feature detection algorithms, specially methods that encode color infor-
mation.

• Experiments with big datasets with more than 2 or 3 ethnic classes. Although it is
difficult to construct and label this kind of data, it would be interesting to analyze
how powerful a model can be and how it discriminates some combinations of “visually
similar” ethnic groups. For example: Chinese vs Japanese, or Caucasian vs Hispanic.
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Appendix A

Data from Examples

A.1 SIFT descriptors and centroids from Figure 3.1

Points SIFT descriptors

P1a

〈 85, 26, 11, 18, 2, 1, 2, 28, 11, 6, 96, 54, 4, 3, 14, 10, 4, 27, 121, 11, 0, 1, 14, 10, 10, 24, 24, 3, 2, 1, 1, 3, 111,

12, 34, 94, 26, 13, 16, 51, 10, 12, 121, 121, 23, 40, 102, 58, 42, 91, 121, 33, 4, 19, 82, 72, 79, 42, 16, 3, 12, 6, 6,

53, 66, 4, 5, 24, 28, 48, 68, 43, 12, 16, 37, 55, 19, 73, 121, 76, 24, 17, 13, 20, 12, 18, 121, 121, 31, 9, 4, 6, 10, 3,

11, 51, 43, 16, 9, 1, 3, 3, 13, 11, 4, 3, 6, 3, 4, 4, 27, 9, 7, 5, 40, 46, 42, 11, 13, 16, 10, 22, 98, 40, 13, 6, 5, 10 〉

P2a

〈 8, 9, 22, 44, 19, 55, 115, 33, 12, 14, 25, 24, 10, 28, 115, 109, 42, 17, 3, 8, 7, 4, 44, 97, 6, 3, 3, 9, 32, 38, 6, 3, 6,

6, 8, 2, 1, 8, 40, 8, 4, 2, 19, 33, 33, 9, 35, 23, 19, 25, 115, 66, 31, 9, 12, 25, 14, 51, 104, 47, 19, 14, 3, 3, 21, 14,

10, 3, 2, 1, 2, 7, 5, 4, 15, 34, 78, 29, 11, 4, 23, 23, 85, 59, 94, 83, 69, 34, 37, 50, 61, 30, 26, 37, 77, 45, 17, 17,

10, 14, 8, 2, 2, 7, 7, 12, 71, 101, 27, 13, 53, 27, 4, 29, 115, 100, 17, 39, 115, 38, 7, 65, 115, 24, 3, 30, 115, 27 〉

P3a

〈 2, 1, 10, 20, 44, 16, 5, 2, 16, 18, 76, 45, 55, 41, 32, 22, 33, 57, 68, 33, 21, 26, 41, 27, 54, 42, 13, 2, 6, 7, 11, 23,

5, 8, 46, 68, 27, 14, 30, 15, 7, 27, 116, 79, 28, 56, 116, 36, 17, 69, 116, 26, 8, 38, 116, 51, 27, 64, 45, 7, 6, 15,

27, 26, 7, 7, 45, 75, 21, 11, 75, 43, 3, 22, 116, 84, 26, 27, 116, 34, 13, 81, 116, 16, 3, 42, 116, 20, 21, 74, 46, 7,

11, 52, 60, 12, 16, 20, 18, 15, 5, 4, 17, 20, 4, 12, 19, 21, 14, 20, 99, 24, 8, 18, 25, 13, 5, 28, 95, 20, 7, 16, 26, 26,

25, 27, 20, 5 〉

P1b

〈 115, 7, 19, 17, 7, 1, 8, 62, 54, 17, 115, 32, 1, 7, 39, 45, 9, 64, 115, 5, 1, 9, 16, 7, 9, 38, 22, 7, 2, 0, 0, 1, 115,

8, 21, 27, 16, 7, 18, 82, 18, 16, 115, 66, 16, 38, 92, 39, 45, 73, 111, 14, 9, 39, 48, 34, 66, 38, 10, 5, 14, 9, 8, 40,

113, 3, 6, 13, 9, 29, 49, 94, 24, 18, 57, 32, 28, 87, 115, 57, 47, 28, 32, 11, 17, 35, 115, 115, 57, 7, 1, 2, 8, 8, 16,

47, 89, 22, 5, 2, 3, 2, 9, 29, 14, 13, 10, 9, 4, 5, 36, 15, 16, 16, 22, 69, 28, 5, 20, 20, 22, 39, 62, 31, 10, 7, 7, 14 〉

P2b

〈 16, 7, 17, 14, 11, 54, 104, 28, 21, 14, 24, 13, 17, 31, 113, 92, 64, 10, 3, 7, 7, 9, 38, 63, 7, 3, 3, 3, 16, 32, 14, 4,

19, 24, 13, 5, 2, 2, 17, 10, 14, 12, 20, 85, 38, 7, 19, 18, 42, 87, 113, 91, 34, 21, 21, 35, 24, 75, 113, 45, 20, 22,

18, 21, 16, 41, 24, 7, 1, 0, 0, 2, 11, 17, 28, 50, 48, 35, 16, 16, 25, 47, 65, 53, 44, 74, 91, 81, 33, 45, 60, 29, 11,

43, 99, 103, 30, 19, 8, 5, 4, 2, 0, 2, 6, 18, 65, 74, 17, 8, 26, 16, 6, 22, 113, 52, 4, 14, 108, 34, 7, 88, 113, 12, 1,

23, 90, 19 〉

P3b

〈 7, 9, 15, 41, 29, 13, 5, 6, 26, 60, 65, 74, 49, 54, 53, 49, 38, 71, 99, 54, 19, 49, 82, 80, 27, 46, 15, 5, 7, 10, 15,

35, 9, 20, 40, 40, 16, 9, 7, 10, 7, 16, 120, 46, 13, 27, 76, 44, 16, 81, 120, 13, 2, 24, 88, 66, 6, 34, 65, 24, 13, 10,

14, 18, 5, 7, 34, 57, 27, 18, 50, 27, 10, 20, 120, 53, 7, 21, 120, 51, 14, 102, 120, 13, 3, 64, 120, 20, 20, 63, 67, 10,

5, 17, 107, 27, 5, 4, 6, 4, 7, 9, 16, 13, 7, 11, 14, 6, 7, 15, 48, 21, 10, 34, 24, 3, 1, 19, 80, 14, 9, 13, 11, 11, 6, 8,

17, 11 〉

Table A.1: SIFT descriptors from the points in Figures 3.1a and 3.1b.
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Points SIFT descriptors

P1c

〈 30, 2, 8, 4, 1, 2, 13, 107, 20, 24, 48, 7, 1, 18, 55, 75, 4, 24, 44, 5, 7, 55, 112, 14, 4, 6, 10, 6, 12, 60, 92, 16, 36,

3, 18, 21, 10, 39, 50, 90, 13, 44, 120, 65, 10, 94, 120, 38, 20, 105, 120, 21, 19, 62, 103, 51, 35, 47, 44, 12, 14, 18,

32, 36, 40, 14, 9, 7, 5, 35, 41, 25, 17, 19, 50, 29, 10, 101, 120, 45, 21, 16, 29, 29, 37, 75, 120, 84, 78, 12, 2, 3,

35, 25, 48, 68, 39, 38, 11, 2, 1, 1, 1, 5, 15, 21, 20, 4, 1, 4, 13, 12, 9, 12, 24, 32, 29, 15, 24, 14, 45, 25, 30, 12, 23,

10, 8, 12 〉

P2c

〈 9, 11, 18, 8, 3, 42, 71, 14, 9, 9, 16, 20, 21, 47, 114, 46, 61, 8, 2, 5, 25, 17, 50, 53, 20, 4, 2, 7, 59, 51, 35, 19,

16, 20, 16, 2, 1, 1, 4, 9, 11, 15, 31, 36, 35, 18, 17, 16, 52, 57, 76, 27, 35, 22, 18, 18, 27, 18, 55, 39, 35, 17, 5, 10,

20, 40, 30, 20, 11, 2, 2, 6, 19, 30, 114, 83, 41, 35, 22, 23, 17, 71, 114, 68, 40, 60, 77, 29, 36, 53, 110, 62, 13, 29,

58, 34, 30, 74, 31, 40, 32, 4, 13, 21, 20, 26, 86, 47, 24, 18, 114, 66, 6, 40, 114, 29, 13, 33, 114, 37, 10, 19, 114,

35, 7, 33, 114, 30 〉

P3c

〈 7, 10, 23, 21, 25, 16, 7, 9, 24, 55, 79, 26, 26, 23, 17, 9, 29, 25, 74, 51, 19, 12, 7, 14, 22, 11, 19, 8, 6, 6, 4, 10,

13, 23, 114, 67, 22, 18, 40, 26, 13, 47, 114, 52, 22, 46, 114, 37, 27, 53, 114, 55, 14, 45, 114, 40, 36, 79, 75, 26,

12, 18, 29, 12, 20, 26, 40, 21, 17, 16, 87, 50, 4, 38, 114, 27, 22, 38, 114, 30, 21, 20, 114, 42, 9, 31, 114, 45, 35,

27, 33, 47, 49, 37, 60, 14, 12, 89, 44, 3, 2, 5, 10, 4, 3, 30, 56, 19, 11, 21, 53, 13, 6, 12, 60, 52, 8, 6, 48, 24, 18, 7,

23, 94, 31, 3, 5, 9 〉

P1d

〈 101, 21, 19, 6, 1, 2, 15, 67, 12, 8, 71, 19, 3, 3, 36, 40, 5, 23, 62, 7, 2, 2, 8, 6, 1, 7, 25, 5, 1, 0, 0, 0, 118, 26, 59,

38, 10, 15, 29, 40, 22, 26, 120, 117, 27, 56, 85, 52, 55, 95, 120, 38, 16, 55, 45, 61, 24, 32, 55, 10, 7, 16, 18, 46,

95, 15, 12, 17, 16, 35, 61, 41, 32, 34, 64, 38, 38, 120, 120, 80, 64, 26, 50, 25, 20, 79, 120, 120, 22, 3, 1, 1, 6, 16,

22, 45, 79, 55, 10, 5, 12, 9, 4, 11, 22, 22, 15, 10, 9, 13, 30, 22, 11, 10, 13, 28, 13, 5, 18, 28, 10, 8, 8, 8, 3, 2, 2, 8

〉

P2d

〈 19, 22, 15, 9, 12, 35, 61, 22, 16, 13, 24, 19, 12, 23, 76, 69, 16, 8, 6, 10, 3, 5, 12, 22, 4, 7, 5, 5, 16, 28, 12, 4,

47, 39, 16, 8, 5, 4, 8, 22, 16, 15, 25, 39, 37, 13, 16, 35, 20, 37, 81, 30, 19, 12, 13, 33, 22, 26, 66, 21, 22, 30, 6, 7,

52, 53, 29, 8, 2, 2, 2, 13, 21, 27, 96, 27, 41, 32, 16, 11, 5, 47, 125, 43, 70, 77, 53, 15, 43, 47, 125, 30, 7, 14, 43,

79, 33, 60, 36, 27, 12, 4, 12, 8, 19, 56, 125, 54, 14, 35, 125, 35, 8, 62, 125, 48, 12, 67, 125, 27, 7, 60, 125, 37, 9,

30, 125, 37 〉

P3d

〈 11, 8, 10, 7, 17, 8, 5, 9, 4, 27, 71, 18, 38, 29, 13, 11, 22, 24, 96, 25, 8, 12, 11, 25, 28, 11, 22, 10, 9, 12, 7, 18,

16, 33, 117, 37, 10, 11, 43, 15, 7, 37, 118, 51, 32, 69, 118, 17, 16, 72, 118, 31, 11, 32, 118, 69, 18, 49, 90, 23, 17,

16, 31, 18, 20, 41, 48, 17, 12, 36, 58, 26, 6, 57, 118, 25, 9, 61, 118, 16, 10, 34, 118, 44, 6, 22, 118, 44, 19, 29, 51,

35, 25, 37, 48, 21, 12, 79, 27, 1, 3, 15, 8, 7, 4, 31, 56, 9, 8, 32, 69, 12, 4, 13, 57, 33, 4, 5, 68, 35, 3, 1, 26, 97, 22,

14, 11, 12 〉

Table A.2: SIFT descriptors from the points in Figures 3.1c and 3.1d.
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Centroids Centroid coordinates

c1

〈 82.75, 14.0, 14.25, 11.25, 2.75, 1.5, 9.5, 66.0, 24.25, 13.75, 82.5, 28.0, 2.25, 7.75, 36.0, 42.5, 5.5, 34.5,

85.5, 7.0, 2.5, 16.75, 37.5, 9.25, 6.0, 18.75, 20.25, 5.25, 4.25, 15.25, 23.25, 5.0, 95.0, 12.25, 33.0, 45.0, 15.5,

18.5, 28.25, 65.75, 15.75, 24.5, 119.0, 92.25, 19.0, 57.0, 99.75, 46.75, 40.5, 91.0, 118.0, 26.5, 12.0, 43.75,

69.5, 54.5, 51.0, 39.75, 31.25, 7.5, 11.75, 12.25, 16.0, 43.75, 78.5, 9.0, 8.0, 15.25, 14.5, 36.75, 54.75, 50.75,

21.25, 21.75, 52.0, 38.5, 23.75, 95.25, 119.0, 64.5, 39.0, 21.75, 31.0, 21.25, 21.5, 51.75, 119.0, 110.0, 47.0,

7.75, 2.0, 3.0, 14.75, 13.0, 24.25, 52.75, 62.5, 32.75, 8.75, 2.5, 4.75, 3.75, 6.75, 14.0, 13.75, 14.75, 12.75,

6.5, 4.5, 6.5, 26.5, 14.5, 10.75, 10.75, 24.75, 43.75, 28.0, 9.0, 18.75, 19.5, 21.75, 23.5, 49.5, 22.75, 12.25,

6.25, 5.5, 11.0 〉

c2

〈 13.0, 12.25, 18.0, 18.75, 11.25, 46.5, 87.75, 24.25, 14.5, 12.5, 22.25, 19.0, 15.0, 32.25, 104.5, 79.0, 45.75,

10.75, 3.5, 7.5, 10.5, 8.75, 36.0, 58.75, 9.25, 4.25, 3.25, 6.0, 30.75, 37.25, 16.75, 7.5, 22.0, 22.25, 13.25,

4.25, 2.25, 3.75, 17.25, 12.25, 11.25, 11.0, 23.75, 48.25, 35.75, 11.75, 21.75, 23.0, 33.25, 51.5, 96.25, 53.5,

29.75, 16.0, 16.0, 27.75, 21.75, 42.5, 84.5, 38.0, 24.0, 20.75, 8.0, 10.25, 27.25, 37.0, 23.25, 9.5, 4.0, 1.25,

1.5, 7.0, 14.0, 19.5, 63.25, 48.5, 52.0, 32.75, 16.25, 13.5, 17.5, 47.0, 97.25, 55.75, 62.0, 73.5, 72.5, 39.75,

37.25, 48.75, 89.0, 37.75, 14.25, 30.75, 69.25, 65.25, 27.5, 42.5, 21.25, 21.5, 14.0, 3.0, 6.75, 9.5, 13.0, 28.0,

86.75, 69.0, 20.5, 18.5, 79.5, 36.0, 6.0, 38.25, 116.75, 57.25, 11.5, 38.25, 115.5, 34.0, 7.75, 58.0, 116.75,

27.0, 5.0, 29.0, 111.0, 28.25 〉

c3

〈 6.75, 7.0, 14.5, 22.25, 28.75, 13.25, 5.5, 6.5, 17.5, 40.0, 72.75, 40.75, 42.0, 36.75, 28.75, 22.75, 30.5, 44.25,

84.25, 40.75, 16.75, 24.75, 35.25, 36.5, 32.75, 27.5, 17.25, 6.25, 7.0, 8.75, 9.25, 21.5, 10.75, 21.0, 79.25,

53.0, 18.75, 13.0, 30.0, 16.5, 8.5, 31.75, 117.0, 57.0, 23.75, 49.5, 106.0, 33.5, 19.0, 68.75, 117.0, 31.25, 8.75,

34.75, 109.0, 56.5, 21.75, 56.5, 68.75, 20.0, 12.0, 14.75, 25.25, 18.5, 13.0, 20.25, 41.75, 42.5, 19.25, 20.25,

67.5, 36.5, 5.75, 34.25, 117.0, 47.25, 16.0, 36.75, 117.0, 32.75, 14.5, 59.25, 117.0, 28.75, 5.25, 39.75, 117.0,

32.25, 23.75, 48.25, 49.25, 24.75, 22.5, 35.75, 68.75, 18.5, 11.25, 48.0, 23.75, 5.75, 4.25, 8.25, 12.75, 11.0,

4.5, 21.0, 36.25, 13.75, 10.0, 22.0, 67.25, 17.5, 7.0, 19.25, 41.5, 25.25, 4.5, 14.5, 72.75, 23.25, 9.25, 9.25,

21.5, 57.0, 21.0, 13.0, 13.25, 9.25 〉

Table A.3: Centroids computed by K-Means algorithm (with K = 3) from the SIFT descriptors in
Tables A.1 and A.2.
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