• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.45.2018.tde-04112018-225438
Documento
Autor
Nome completo
Igor Cataneo Silveira
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2018
Orientador
Banca examinadora
Mauá, Denis Deratani (Presidente)
Cozman, Fabio Gagliardi
Santos, Diana Maria de Sousa Marques Pinto dos
Título em inglês
Solving University entrance assessment using information retrieval
Palavras-chave em inglês
ENEM
Information retrieval
Multiple-choice question answering
Resumo em inglês
Answering questions posed in natural language is a key task in Artificial Intelligence. However, producing a successful Question Answering (QA) system is challenging, since it requires text understanding, information retrieval, information extraction and text production. This task is made even harder by the difficulties in collecting reliable datasets and in evaluating techniques, two pivotal points for machine learning approaches. This has led many researchers to focus on Multiple-Choice Question Answering (MCQA), a special case of QA where systems must select the correct answers from a small set of alternatives. One particularly interesting type of MCQA is solving Standardized Tests, such as Foreign Language Proficiency exams, Elementary School Science exams and University Entrance exams. These exams provide easy-to-evaluate challenging multiple-choice questions of varying difficulties about large, but limited, domains. The Exame Nacional do Ensino Médio (ENEM) is a High School level exam taken every year by students all over Brazil. It is widely used by Brazilian universities as an entrance exam and is the world's second biggest university entrance examination in number of registered candidates. This exam consists in writing an essay and solving a multiple-choice test comprising questions on four major topics: Humanities, Language, Science and Mathematics. Questions inside each major topic are not segmented by standard scholar disciplines (e.g. Geography, Biology, etc.) and often require interdisciplinary reasoning. Moreover, the previous editions of the exam and their solutions are freely available online, making it a suitable benchmark for MCQA. In this work we automate solving the ENEM focusing, for simplicity, on purely textual questions that do not require mathematical thinking. We formulate the problem of answering multiple-choice questions as finding the candidate-answer most similar to the statement. We investigate two approaches for measuring textual similarity of candidate-answer and statement. The first approach addresses this as a Text Information Retrieval (IR) problem, that is, as a problem of finding in a database the most relevant document to a query. Our queries are made of statement plus candidate-answer and we use three different corpora as database: the first comprises plain-text articles extracted from a dump of the Wikipedia in Portuguese language; the second contains only the text given in the question's header and the third is composed by pairs of question and correct answer extracted from ENEM assessments. The second approach is based on Word Embedding (WE), a method to learn vectorial representation of words in a way such that semantically similar words have close vectors. WE is used in two manners: to augment IR's queries by adding related words to those on the query according to the WE model, and to create vectorial representations for statement and candidate-answers. Using these vectorial representations we answer questions either directly, by selecting the candidate-answer that maximizes the cosine similarity to the statement, or indirectly, by extracting features from the representations and then feeding them into a classifier that decides which alternative is the answer. Along with the two mentioned approaches we investigate how to enhance them using WordNet, a structured lexical database where words are connected according to some relations like synonymy and hypernymy. Finally, we combine different configurations of the two approaches and their WordNet variations by creating an ensemble of algorithms found by a greedy search. This ensemble chooses an answer by the majority voting of its components. The first approach achieved an average of 24% accuracy using the headers, 25% using the pairs database and 26.9% using Wikipedia. The second approach achieved 26.6% using WE indirectly and 28% directly. The ensemble achieved 29.3% accuracy. These results, slightly above random guessing (20%), suggest that these techniques can capture some of the necessary skills to solve standardized tests. However, more sophisticated techniques that perform text understanding and common sense reasoning might be required to achieve human-level performance.
Título em português
Resolvendo Vestibular utilizando recuperação de informação
Palavras-chave em português
ENEM
Multiple-choice question answering
Recuperação de informação
Resumo em português
Responder perguntas feitas em linguagem natural é uma capacidade há muito desejada pela Inteligência Artificial. Porém, produzir um sistema de Question Answering (QA) é uma tarefa desafiadora, uma vez que ela requer entendimento de texto, recuperação de informação, extração de informação e produção de texto. Além disso, a tarefa se torna ainda mais difícil dada a dificuldade em coletar datasets confiáveis e em avaliar as técnicas utilizadas, sendo estes pontos de suma importância para abordagens baseadas em aprendizado de máquina. Isto tem levado muitos pesquisadores a focar em Multiple-Choice Question Answering (MCQA), um caso especial de QA no qual os sistemas devem escolher a resposta correta dentro de um grupo de possíveis respostas. Um caso particularmente interessante de MCQA é o de resolver testes padronizados, tal como testes de proficiência linguística, teste de ciências para ensino fundamental e vestibulares. Estes exames fornecem perguntas de múltipla escolha de fácil avaliação sobre diferentes domínios e de diferentes dificuldades. O Exame Nacional do Ensino Médio (ENEM) é um exame realizado anualmente por estudantes de todo Brasil. Ele é utilizado amplamente por universidades brasileiras como vestibular e é o segundo maior vestibular do mundo em número de candidatos inscritos. Este exame consiste em escrever uma redação e resolver uma parte de múltipla escolha sobre questões de: Ciências Humanas, Linguagens, Matemática e Ciências Naturais. As questões nestes tópicos não são divididas por matérias escolares (Geografia, Biologia, etc.) e normalmente requerem raciocínio interdisciplinar. Ademais, edições passadas do exame e suas soluções estão disponíveis online, tornando-o um benchmark adequado para MCQA. Neste trabalho nós automatizamos a resolução do ENEM focando, por simplicidade, em questões puramente textuais que não requerem raciocínio matemático. Nós formulamos o problema de responder perguntas de múltipla escolha como um problema de identificar a alternativa mais similar à pergunta. Nós investigamos duas abordagens para medir a similaridade textual entre pergunta e alternativa. A primeira abordagem trata a tarefa como um problema de Recuperação de Informação Textual (IR), isto é, como um problema de identificar em uma base de dados qualquer qual é o documento mais relevante dado uma consulta. Nossas consultas são feitas utilizando a pergunta mais alternativa e utilizamos três diferentes conjuntos de texto como base de dados: o primeiro é um conjunto de artigos em texto simples extraídos da Wikipedia em português; o segundo contém apenas o texto dado no cabeçalho da pergunta e o terceiro é composto por pares de questão-alternativa correta extraídos de provas do ENEM. A segunda abordagem é baseada em Word Embedding (WE), um método para aprender representações vetoriais de palavras de tal modo que palavras semanticamente próximas possuam vetores próximos. WE é usado de dois modos: para aumentar o texto das consultas de IR e para criar representações vetoriais para a pergunta e alternativas. Usando essas representações vetoriais nós respondemos questões diretamente, selecionando a alternativa que maximiza a semelhança de cosseno em relação à pergunta, ou indiretamente, extraindo features das representações e dando como entrada para um classificador que decidirá qual alternativa é a correta. Junto com as duas abordagens nós investigamos como melhorá-las utilizando a WordNet, uma base estruturada de dados lexicais onde palavras são conectadas de acordo com algumas relações, tais como sinonímia e hiperonímia. Por fim, combinamos diferentes configurações das duas abordagens e suas variações usando WordNet através da criação de um comitê de resolvedores encontrado através de uma busca gulosa. O comitê escolhe uma alternativa através de voto majoritário de seus constituintes. A primeira abordagem teve 24% de acurácia utilizando o cabeçalho, 25% usando a base de dados de pares e 26.9% usando Wikipedia. A segunda abordagem conseguiu 26.6% de acurácia usando WE indiretamente e 28% diretamente. O comitê conseguiu 29.3%. Estes resultados, pouco acima do aleatório (20%), sugerem que essas técnicas conseguem captar algumas das habilidades necessárias para resolver testes padronizados. Entretanto, técnicas mais sofisticadas, capazes de entender texto e de executar raciocínio de senso comum talvez sejam necessárias para alcançar uma performance humana.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-11-23
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.